WO2022203319A1 - 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체 - Google Patents

기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체 Download PDF

Info

Publication number
WO2022203319A1
WO2022203319A1 PCT/KR2022/003924 KR2022003924W WO2022203319A1 WO 2022203319 A1 WO2022203319 A1 WO 2022203319A1 KR 2022003924 W KR2022003924 W KR 2022003924W WO 2022203319 A1 WO2022203319 A1 WO 2022203319A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
gas flow
insulating nozzle
pump head
external electrode
Prior art date
Application number
PCT/KR2022/003924
Other languages
English (en)
French (fr)
Inventor
홍승민
김건희
이대용
Original Assignee
주식회사 프로텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프로텍 filed Critical 주식회사 프로텍
Priority to JP2023558187A priority Critical patent/JP2024511427A/ja
Priority to CN202280022828.XA priority patent/CN117062672A/zh
Publication of WO2022203319A1 publication Critical patent/WO2022203319A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas

Definitions

  • the present invention relates to an electrohydrodynamic pump head assembly, and more particularly, an electro-hydrodynamic (EHD) pump having a gas flow path for dispensing the viscous solution through a nozzle by applying a potential difference to the viscous solution. It relates to a head assembly.
  • EHD electro-hydrodynamic
  • a pump for dispensing a viscous solution in a high-speed, quantitative manner is widely used in various technical fields, including semiconductor processing.
  • Electro-hydrodynamic (EHD) pumps are sometimes used to more precisely control the dispensing capacity of viscous solutions and to dispense fine line width patterns onto the material.
  • the electrohydrodynamic pump is a pump that discharges the viscous solution through a nozzle using energy generated by an electric field generated by applying a high voltage to the viscous solution stored in the storage unit.
  • Such an electrohydrodynamic pump is capable of discharging a viscous solution in a minute volume, but has a disadvantage in that the dispensing characteristics are greatly affected by factors such as the viscosity of the solution, the surrounding environment, and the shape of the electrode.
  • a relatively high viscosity viscous solution can be easily dispensed, and the discharge shape, pattern, flow rate, etc. of the viscous solution can be relatively easily controlled while maintaining stable dispensing characteristics.
  • an electrohydrodynamic pump head assembly having a gas flow path having a structure that can be used.
  • the present invention has been devised to solve the above-described problems, and has a gas flow path having a structure capable of stably maintaining dispensing characteristics while having excellent dispensing performance of a viscous solution and facilitating adjustment of dispensing characteristics.
  • An object of the present invention is to provide an electrohydrodynamic pump head assembly that
  • Electrohydrodynamic pump head assembly having a gas flow path of the present invention for solving the object as described above, the storage unit in which the viscous solution is stored; an insulating nozzle connected to the storage unit and formed to extend in a longitudinal direction to discharge the viscous solution; an internal electrode disposed on a path through which the viscous solution stored in the storage unit is delivered to the insulating nozzle; and an external electrode formed to surround at least a portion of the insulating nozzle and extended vertically.
  • the electrohydrodynamic pump head assembly having the gas flow path of the present invention has the effect of improving the dispensing quality by easily adjusting the conditions in which the EHD pump dispenses the viscous solution.
  • the electrohydrodynamic pump head assembly having a gas flow path of the present invention has the effect of stably maintaining the dispensing quality of the electrohydrodynamic pump head assembly having a gas flow path for dispensing a viscous solution.
  • FIG. 1 is a perspective view of an electrohydrodynamic pump head assembly having a gas flow path according to an embodiment of the present invention.
  • FIG. 2 and 3 are front views of the electrohydrodynamic pump head assembly having the gas flow path shown in FIG. 1 .
  • FIG. 4 and 5 are respectively a cross-sectional view and a partial enlarged view of an electrohydrodynamic pump head assembly having a gas flow path shown in FIG. 1 .
  • FIG. 6 is a front view of a portion of the electrohydrodynamic pump head assembly having the gas flow path shown in FIG. 1 ;
  • FIG. 7 is an enlarged cross-sectional view of a portion of an electrohydrodynamic pump head assembly having a gas flow path shown in FIG. 1 .
  • FIG. 8 is a view for explaining a state in which the electrohydrodynamic pump head assembly having the gas flow path shown in FIG. 1 is mounted and used in the dispenser.
  • FIG. 9 shows another structure for the external electrode of the electrohydrodynamic hump head assembly shown in FIG. 1 .
  • the electrohydrodynamic pump head assembly having a gas flow path of the present invention is for applying a viscous solution to a material disposed on a base.
  • a voltage is applied to the viscous solution while the material is placed on the grounded base, the viscous solution is discharged onto the material through the nozzle due to the potential difference between the base and the viscous solution.
  • FIG. 1 is a perspective view of an electrohydrodynamic pump head assembly having a gas flow path according to an embodiment of the present invention
  • FIGS. 2 and 3 are front views of the electrohydrodynamic pump head assembly having a gas flow path shown in FIG. 4 and 5 are respectively a cross-sectional view and a partial enlarged view of the electrohydrodynamic pump head assembly having a gas flow path shown in FIG.
  • the electrohydrodynamic pump head assembly having a gas flow path includes a storage unit 110 , an internal electrode 310 , an insulating nozzle 330 , and an external electrode 350 . made including
  • the storage unit 110 is configured to store a viscous solution for discharging through the insulating nozzle 330 .
  • the storage unit 110 may be configured in various forms in which the viscous solution may be stored.
  • a storage unit of a type that delivers the viscous solution stored in a separate container through a tube such as a tube may be used.
  • a pneumatic regulator capable of applying pressure to the viscous solution stored therein may be connected to the storage unit 110 and used.
  • an internal electrode 310 is installed at the lower end of the storage unit 110 .
  • the internal electrode 310 is formed of a conductive material to apply a voltage to the viscous solution stored in the storage unit 110 .
  • the internal electrode 310 of this embodiment is formed in the form of a metal tube having an inner diameter and a constant thickness along the longitudinal direction. With such a structure, the internal electrode 310 may apply a voltage to the viscous solution stored in the storage unit 110 and simultaneously deliver the viscous solution to the insulating nozzle 330 .
  • the insulating nozzle 330 is formed to extend in the longitudinal direction as shown in FIGS. 4, 5 and 7 . It is preferable that at least a portion of the insulating nozzle 330 is formed such that the inner diameter decreases toward the lower side.
  • the upper part of the insulating nozzle 330 of the insulating nozzle 330 has a constant inner diameter along the longitudinal direction, and the lower part is formed in the form of a tube whose inner diameter decreases toward the lower side.
  • the insulating nozzle 330 is formed of an insulating material such as glass.
  • the insulating nozzle 330 is manufactured by drawing a tube made of a glass material.
  • the insulating nozzle 330 is assembled at the lower end of the storage unit 110 like the internal electrode 310 .
  • the insulating nozzle 330 is assembled to the storage unit 110 with the internal electrode 310 inserted therein as shown in FIG. 7 .
  • the insulating nozzle 330 is assembled to the storage unit 110 by a screw coupling method in a state of being coupled to a nut-shaped synthetic resin material structure.
  • the insulating nozzle 330 is connected to the storage unit 110 in a state in which the internal electrode 310 installed to protrude toward the lower end of the storage unit 110 is inserted into the insulating nozzle 330 .
  • the internal electrode 310 may directly supply the viscous solution to the insulating nozzle 330 while simultaneously applying the viscous solution voltage.
  • the internal electrode 310 is formed to be inserted only up to the upper portion where the inner diameter of the insulating nozzle 330 is uniformly formed. With such a structure, the internal electrode 310 can apply a voltage to the viscous solution while delivering the viscous solution to a position very close to the outlet of the insulating nozzle 330 .
  • the interval between the inner diameter of the insulating nozzle 330 and the outer diameter of the inner electrode 310 may be as narrow as possible.
  • the gap between the inner diameter of the insulating nozzle 330 and the outer diameter of the inner electrode 310 is narrowed, the pressure loss and electromagnetic force transmitted to the insulating nozzle 330 are reduced while effectively discharging the viscous solution through the insulating nozzle 330 . can be ejected.
  • the interval between the inner diameter of the insulating nozzle 330 and the outer diameter of the inner electrode 310 is 0.05 mm to 0.1 mm. If the interval between the inner diameter of the insulating nozzle 330 and the outer diameter of the inner electrode 310 is less than 0.05 mm, it is difficult to assemble the insulating nozzle 330 and the inner electrode 310, and the inner diameter and the inner diameter of the insulating nozzle 330 are When the distance between the outer diameters of the electrodes 310 is greater than 0.1 mm, the viscous solution flows between the insulating nozzle 330 and the inner electrode 310 or between the inner wall of the insulating nozzle 330 and the outer wall of the inner electrode 310 . Bubbles may be formed on the surface or the bubbles may be discharged through the insulating nozzle 330 together with the viscous solution.
  • the insulating nozzle 330 , the internal electrode 310 , and the storage unit 110 are assembled to the upper body 210 .
  • the upper body 210 is configured to support the assembly of the storage unit 110 , the internal electrode 310 , and the insulating nozzle 330 .
  • the upper body 210 is used in combination with the lower body 230 .
  • the lower body 230 is provided with an assembly groove 231 formed to extend up and down.
  • the upper body 210 includes an assembly extension 211 formed in a shape corresponding to the assembly groove 231 .
  • the upper body 210 and the lower body 230 are assembled to each other in such a way that the assembly extension 211 of the upper body 210 is inserted into the assembly groove 231 of the lower body 230 .
  • An external electrode 350 is fixed to the lower body 230 . That is, the external electrode 350 is installed and supported on the lower body 230 .
  • the external electrode 350 of the present embodiment is formed in the form of a tube extending vertically.
  • the external electrode 350 formed in a structure in which the inner diameter and thickness are uniformly formed along the vertical direction will be described as an example, but the structure and shape of the external electrode 350 may be variously modified.
  • the inner diameter of the external electrode may be formed in a tubular structure in which the inner diameter increases or decreases along the vertical direction.
  • the external electrode 360 including a plurality of external electrode elements 361 arranged at regular angular intervals along the circumferential direction and extending in the longitudinal direction.
  • the external electrode 350 forms the outer periphery of at least a portion of the insulating nozzle 330 in a non-contact state.
  • the end of the insulating nozzle 330 is inserted into the external electrode 350 .
  • the internal electrode 310 inserted into the insulating nozzle 330 is also inserted into the external electrode 350 .
  • the upper body 210 is installed so as to be liftable with respect to the lower body 230 .
  • the upper body 210 is installed so as to be lifted up and down with respect to the lower body 230 along the guide rail installed on the lower body 230 .
  • the electrohydrodynamic pump head assembly having the gas flow path of this embodiment is configured to manually adjust the height of the upper body 210 and then use a separate fixing member 250 to fix the height of the upper body 210. have.
  • a gas flow path is installed to automatically elevate the upper body 210 with respect to the lower body 230 by installing a lifting member having the same shape as a linear motor capable of adjusting the height of the upper body 210 by a control signal. It is also possible to configure an electrohydrodynamic pump head assembly having. When the height of the upper body 210 is adjusted by the lifting member, the height of the insulating nozzle 330 with respect to the external electrode 350 is adjusted as a result.
  • the electrohydrodynamic pump head assembly having a gas flow path includes a gas flow path 410 connected between the insulating nozzle 330 and the external electrode 350 .
  • a gas flow path 410 is connected between the insulating nozzle 330 and the external electrode 350 so as to transfer gas of positive or negative pressure between the insulating nozzle 330 and the external electrode 350 .
  • the gas flow path 410 is connected to an external pneumatic device via the inside of the lower body 230 between the insulating nozzle 330 and the external electrode 350 .
  • the gas flow path 410 passes through the path between the assembly extension 211 of the upper body 210 and the assembly groove 231 of the lower body 230 .
  • the assembly groove 231 is formed in a cylindrical shape, and the assembly extension part 211 is formed in a cylindrical shape having an outer diameter that fits the assembly groove 231 .
  • a groove-shaped partial flow path 213 extending up and down at equal intervals (intervals of 90 degrees) along the circumferential direction is formed.
  • a ring groove 211 formed in a ring shape along the outer diameter of the assembly extension 211 is formed and connected to the upper end of the partial flow path 213 .
  • the gas flow path 410 is connected between the assembly extension 211 and the assembly groove 231 along a path formed by the partial flow path 213 and the ring groove 211 .
  • the gas flow path 410 extends from the ring groove 211 in the lateral direction of the lower body 230 .
  • the gas flow path 410 is connected to an external pneumatic device through such a path.
  • the compressed gas is injected between the external electrode 350 and the insulating nozzle 330 .
  • the pressure between the external electrode 350 and the insulating nozzle 330 is lowered to suck the air around the insulating nozzle 330 through the gas flow path 410 .
  • the relative position of the insulating nozzle 330 with respect to the external electrode 350 is automatically aligned by inserting the assembly extension 211 of the upper body 210 into the assembly groove 231 of the lower body 230 . . If the tolerance between the assembly extension 211 and the assembly groove 231 is processed to be very small, the horizontal displacement of the insulating nozzle 330 is fixed after the assembly extension 211 is inserted into the assembly groove 231 . . Accordingly, when the assembly extension part 211 is inserted into the assembly groove 231 and slides while being guided by the assembly groove 231 , the insulating nozzle 330 easily enters the interior of the external electrode 350 . In this way, it is possible to prevent damage to the insulating nozzle 330 .
  • the insulating nozzle 330 is made of a brittle glass material and is formed to be very thin and long, it is easy to be damaged even by a small impact. As described above, due to the shape and structure of the assembly groove 231 and the assembly extension part 211 , the insulating nozzle 330 easily enters the interior of the external electrode 350 . When the upper body 210 and the lower body 230 are assembled in a state in which the horizontal position of the insulating nozzle 330 with respect to the external electrode 350 is aligned, the insulating nozzle 330 is prevented from being damaged and the insulating nozzle 330 is not damaged. ) easily enters the inside of the external electrode 350 .
  • the length of the insulating nozzle 330 protruding downward of the upper body 210 is preferably shorter than the depth of the assembly groove 231 .
  • the assembly extension 211 starts to be inserted into the assembly groove 231 before the insulating nozzle 330 contacts the bottom of the assembly groove 231 .
  • the position of the insulating nozzle 330 is also automatically aligned.
  • the gap between the assembly groove 231 and the assembly extension part 211 of the remaining parts except for the gas flow path 410 is airtight. do.
  • a sealing member such as an O-ring may be installed in the assembly extension part 211 or the assembly groove 231 to more reliably seal between the assembly groove 231 and the assembly extension part 211 .
  • an insulating cap 233 made of an insulating material is installed on the lower body 230 .
  • the insulating cap 233 has electrode holes formed to penetrate vertically.
  • the insulating cap 233 is coupled to the lower body 230 in a state in which the external electrode 350 can be disposed inside the electrode hole.
  • the insulating cap 233 serves to fix the external electrode 350 to the lower body 230 and protect the operator from high voltage applied to the external electrode 350 .
  • the external electrode 350 is assembled to the lower body 230 .
  • the external electrode 350 is fixed to the lower portion of the lower body 230 using the insulating cap 233 .
  • the external electrode 350 is exposed downward through the electrode hole of the insulating cap 233 .
  • the external electrode 350 is electrically connected to the power supply through the lower body 230 .
  • the power supply device applies a DC voltage to the external electrode 350 with a voltage set by the controller.
  • the internal electrode 310 and the insulating nozzle 330 are assembled in the storage unit 110 .
  • the viscous solution stored in the storage unit 110 is in a state in which it can be discharged to the outside through the internal electrode 310 .
  • the insulating nozzle 330 is assembled with respect to the storage unit 110 so that the internal electrode 310 is inserted up to a portion in which the inner diameter of the insulating nozzle 330 is uniformly formed. In such a state, the viscous solution stored in the storage unit 110 may be directly delivered to the insulating nozzle 330 through the internal electrode 310 .
  • a pneumatic regulator is connected to the storage unit 110 . The pneumatic regulator may apply pressure to the viscous solution stored in the storage unit 110 at a pressure set by the control unit.
  • the assembly of the storage unit 110 , the internal electrode 310 , and the insulating nozzle 330 is mounted on the upper body 210 .
  • the storage unit 110 and its surrounding components are mounted on the upper body 210 .
  • the internal electrode 310 and the insulating nozzle 330 can be easily mounted on the upper body 210 without being caught on the lower body 230 .
  • the internal electrode 310 is connected to the power supply through the upper body 210 .
  • the power supply device applies the DC voltage set by the control unit to the internal electrode 310 .
  • the assembly extension 211 is inserted into the assembly groove 231 as shown in FIGS. 3 and 5 , and the upper body 210 and the lower body 230 are assembled with each other. do.
  • the insulating nozzle 330 is also inserted into the external electrode 350 .
  • Such a process may be performed manually or by a lifting member operated by a signal from the control unit.
  • the relative position between the upper body 210 and the lower body 230 may be adjusted according to various parameters such as working conditions or characteristics of a viscous solution.
  • the assembly extension 211 starts to be inserted into the assembly groove 231 before the insulating nozzle 330 contacts the bottom of the assembly groove 231 or enters the inside of the external electrode 350 , the assembly extension part 211 ) is aligned by the assembly groove 231 and the position of the insulating nozzle 330 is also automatically aligned. Accordingly, the insulating nozzle 330 enters the inside of the external electrode 350 at the correct position. In addition, in the process of entering the insulating nozzle 330 , the insulating nozzle 330 does not come into contact with the external electrode 350 .
  • the end of the insulating nozzle 330 is exposed to the lower portion of the external electrode 350 as shown in FIG. 6 .
  • the electrohydrodynamic pump head assembly having the gas flow path of the present embodiment assembled and used in the order as described above may be used in the state shown in FIG. 8 .
  • the electrohydrodynamic pump of this embodiment is installed and used in a separate transfer device while being installed on the support panel together with other components such as a camera and a sensor.
  • the viscous solution is dispensed in various ways for the material placed on the floor while being transferred in the vertical and horizontal directions by the transfer device.
  • the internal electrode 310 and the external electrode 350 are The viscous solution inside the insulating nozzle 330 is discharged downward by the potential difference with respect to the base generated by the .
  • a constant DC voltage is applied to the internal electrode 310 and pulse voltages of various patterns and frequencies are applied to the external electrode 350 to discharge the viscous solution through the insulating nozzle 330 .
  • the internal electrode 310 since the internal electrode 310 enters the inside of the insulating nozzle 330 , a DC voltage can be applied more effectively for discharging the viscous solution. The dispensing performance of the viscous solution can be improved by such a structure.
  • the internal electrode 310 of the present embodiment is formed in a tube shape, it functions to supply a viscous solution to the insulating nozzle 330 at the same time as forming a potential difference, thereby further improving dispensing performance.
  • the electrohydrodynamic pump head assembly having the gas flow path of this embodiment is more excellent. It has fencing performance.
  • the external electrode 350 is formed in a tube shape to form a space extending up and down while enclosing the outer periphery of the insulating nozzle 330 . In this state, since a DC voltage is applied to the external electrode 350, the electrohydrodynamic pump head assembly having the gas flow path of the present invention can reduce the influence of the external environment or noise interference. As a result, the electrohydrodynamic pump head assembly having the gas flow path of the present invention has the performance of dispensing the viscous solution more stably.
  • Electrohydrodynamic pump head assembly having a structure that can more effectively transmit electromagnetic force to the viscous solution.
  • the gas flow path 410 connected to the external pneumatic pump leads to the lower portions of the upper body 210 and the lower body 230 by the ring groove 211 and the partial flow path 213 formed in the assembly extension 211 .
  • the gas flow path 410 extends again radially in the radial direction and extends to the inner space of the external electrode 350 .
  • the end of the gas flow path 410 is connected to the space between the external electrode 350 and the insulating nozzle 330 .
  • the gas flow path 410 supplies a positive pressure or a negative pressure gas between the external electrode 350 and the insulating nozzle 330 .
  • a pump for dispensing a viscous solution generally performs a purge operation in the process of removing internal air bubbles or performing calibration at the stage of starting the operation.
  • a positive pressure is generated through the gas flow path 410 when performing such a purge operation, the viscous solution helps to be discharged through the insulating nozzle 330 .
  • a gas flow of a constant pressure through the gas flow path 410 occurs around the insulating nozzle 330 even when starting a dispensing operation for a product as well as a purge operation, a stable meniscus for discharge ), which has the effect of shortening the formation time.
  • the electrohydrodynamic pump head assembly having the gas flow path of this embodiment sprays the viscous solution instead of discharging the viscous solution in droplet units. It is also possible to operate to dispense a viscous solution in the form.
  • the electrohydrodynamic pump head assembly having a gas flow path so that a vacuum is formed around the insulating nozzle 330 by transmitting a negative pressure through the gas flow path 410 .
  • a negative pressure is generated in the gas flow path 410 during the purge operation as described above, the viscous solution purged through the insulating nozzle 330 is sucked and discharged to the outside through the gas flow path 410 .
  • the viscous solution is discharged to the outside through the gas flow path 410 without falling to the lower side of the insulating nozzle 330, so that the viscous solution It is possible to prevent contamination of the work space by In addition, even in the case of dispensing the viscous solution in the form of a spray as described above, while the viscous solution is not dispensed to the material, the fine particles of the viscous solution are sucked through the gas flow path 410 and discharged to the outside. 410), a negative pressure may be applied.
  • the external electrode 350 is disposed so as to surround the insulating nozzle 330 in a non-contact state, so that the gas flow path 410 is connected to the insulating nozzle 330 and the external electrode.
  • the gas flow path 410 can be brought close to the position very close to the insulating nozzle 330 by such a structure, the effect of the positive or negative gas pressure transmitted to the gas flow path 410 can be improved. There is this.
  • the dispensing pump such as the electrohydrodynamic pump head assembly having the gas flow path of the present invention
  • the process of the present invention It is possible to calibrate and control the heights of the external electrode 350 and the insulating nozzle 330 using the following method.
  • the upper body 210 is raised with respect to the lower body 230, and the entire structure as shown in FIG. 7 is lowered to measure the height of the external electrode 350.
  • the reference height of the external electrode 350 is determined by lowering the external electrode 350 until the external electrode 350 contacts the LVDT sensor.
  • the relative displacement of the internal electrode 310 or the insulating nozzle 330 with respect to the external electrode 350 can be easily measured or controlled through the relative displacement between the upper body 210 and the lower body 230 .
  • the internal electrode 310 or the insulating nozzle 330 is ), it is possible to accurately grasp and control the height of the main components while preventing the damage. In this way, it is possible to control the dispensing characteristics of the viscous solution by easily adjusting the factors related to the height of the main components.
  • the electrohydrodynamic pump head assembly having a gas flow path of this embodiment is a container-shaped storage unit 110 , an internal electrode 310 , and an insulating nozzle 330 in the upper body 210 as a set. It has a structure that can be installed, so it has convenience in use and superiority in performance. Conventionally, a structure for storing a viscous solution in a container such as a vial and delivering the viscous solution to a nozzle through a tube has been commonly used, but in the present invention, a container-shaped storage unit 110 and an internal electrode 310 and A structure in which the insulating nozzle 330 is directly connected in a short distance is used.
  • the electrohydrodynamic pump head assembly having the gas flow path according to the present embodiment has the advantage that the structure can be simplified and the size can be small.
  • the structure of the present invention as described above may be variously modified while maintaining the above-described advantages.
  • the storage unit 110, the internal electrode 310, and the insulating nozzle 330 are mounted on the upper body 210 in an assembled state as a set, but such a structure may be modified as necessary.
  • the internal electrode 310 and the insulating nozzle 330 are assembled to the upper body 210, the internal electrode 310 and It is also possible to configure to be coupled with the insulating nozzle (330).
  • the structures of the inner electrode 310 , the insulating nozzle 330 , and the outer electrode 350 may be modified into various structures other than the cylindrical structure, and the sizes of the outer and inner diameters are also variously modified as needed. It is possible.
  • the external electrode 360 may be deformed to constitute the external electrode 360 having a cylindrical-like structure by a plurality of external electrode elements 361 arranged in the circumferential direction as shown in FIG. 9 . .
  • the structure of the internal electrode 310 may also be modified and used in the same structure.
  • the electrohydrodynamic pump head assembly having the gas flow path of the present invention so that the height of any one of the internal electrode and the insulating nozzle is adjustable with respect to the other, different from the structure described with reference to the drawings above. As such, by adjusting the height between the inner electrode and the insulating nozzle, dispensing characteristics of the viscous solution can be adjusted.
  • an electrohydrodynamic pump head assembly having a gas flow path in which the internal electrode is not inserted into the insulating nozzle is used. It is also possible to configure. In some cases, a non-tubular internal electrode may be used.
  • the container-shaped storage unit 110 is connected to the internal electrode and the insulating nozzle through an intermediate structure such as a tube. It is also possible to construct an electrohydrodynamic pump head assembly having a gas flow path of a connected structure.
  • the lifting member elevates the lower body with respect to the upper body.
  • assembly structure of the upper body and the lower body may also be variously modified, such as a structure in which screws are coupled to each other, a structure that is snap coupled, etc., rather than a sliding method. It is also possible to construct an electrohydrodynamic pump head assembly having a gas flow path having a body portion formed integrally, rather than being separated from each other into an upper body and a lower body.
  • the electrohydrodynamic pump head assembly having a gas flow path having a structure including the gas flow path 410 has been described above as an example, the structure of the gas flow path can be variously modified, and the gas flow path having a structure without the gas flow path It is also possible to configure an electrohydrodynamic pump head assembly having a.
  • the structure of the gas flow path can also be modified into various shapes other than the structure of the ring groove 211 and the partial flow path 213 described above.

Landscapes

  • Compressor (AREA)
  • Reciprocating Pumps (AREA)
  • Nozzles (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Coating Apparatus (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 전기수력학적 펌프 헤드 조립체에 관한 것으로서, 더욱 상세하게는 점성 용액에 전위차를 인가하여 노즐을 통해 점성 용액을 디스펜싱하는 기체 유로를 구비하는 전기-수력학(EHD; Electro Hydro Dynamic) 펌프 헤드 조립체에 관한 것이다. 본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는, EHD 펌프가 점성 용액을 디스펜싱하는 조건을 용이하게 조절하여 디스펜싱 품질을 향상시킬 수 있는 효과가 있다. 본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는, 점성 용액을 디스펜싱하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 디스펜싱 품질을 안정적으로 유지할 수 있는 효과가 있다.

Description

기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체
본 발명은 전기수력학적 펌프 헤드 조립체에 관한 것으로서, 더욱 상세하게는 점성 용액에 전위차를 인가하여 노즐을 통해 점성 용액을 디스펜싱하는 기체 유로를 구비하는 전기-수력학(EHD; Electro Hydro Dynamic) 펌프 헤드 조립체에 관한 것이다.
점성 용액을 고속 정량으로 디스펜싱하는 펌프는 반도체 공정 등을 포함한 다양한 기술 분야에 널리 사용된다.
이와 같이 점성 용액을 디스펜싱하는 펌프는 오거(Auger) 펌프, 공압 펌프, 압전(piezo) 펌프, 잉크젯 펌프 등 다양한 형태와 구조의 펌프가 사용된다.
점성 용액의 디스펜싱 용량을 더욱 정교하게 조절하고 미세 선폭의 패턴을 자재에 디스펜싱하기 위하여 전기수력학적(EHD; Electro-hydrodynamic) 펌프를 사용하는 경우도 있다.
전기수력학적 펌프는 저장부에 저장된 점성 용액에 고전압을 인가하여 발생하는 전기장에 의한 에너지를 이용하여 점성 용액을 노즐을 통해 토출시키는 펌프이다.
이와 같은 전기수력학적 펌프는 점성 용액을 미세 용량으로 토출시키는 것이 가능한 반면에 용액의 점성이나 주변 환경, 전극의 형상 등의 요인에 의해 디스펜싱 특성이 크게 영향을 받는 단점이 있다.
따라서, 반도체 공정 등 다양한 분야에 효과적으로 사용하기 위해서는 비교적 고점도의 점성 용액도 용이하게 디스펜싱할 수 있고, 점성 용액의 토출 형상, 패턴, 유량 등을 비교적 용이하게 제어할 수 있으면서 안정적인 디스펜싱 특성을 유지할 수 있는 구조의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체가 필요하다.
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 점성 용액을 디스펜싱하는 성능이 우수하면서도 안정적으로 디스펜싱 특성을 유지할 수 있고 디스펜싱 특성의 조절이 용이한 구조를 가지는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 제공하는 것을 목적으로 한다.
상술한 바와 같은 목적을 해결하기 위한 본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는, 점성 용액이 저장되는 저장부; 상기 저장부에 연결되어 상기 점성 용액을 토출하도록 길이 방향으로 연장되도록 형성되는 절연 재질의 절연 노즐; 상기 저장부에 저장된 상기 점성 용액이 상기 절연 노즐로 전달되는 경로 상에 배치되는 내부 전극; 및 상기 절연 노즐의 적어도 일부분을 감싸도록 형성되어 상하로 연장되도록 형성되는 외부 전극;를 포함하는 점에 특징이 있다.
본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는, EHD 펌프가 점성 용액을 디스펜싱하는 조건을 용이하게 조절하여 디스펜싱 품질을 향상시킬 수 있는 효과가 있다.
본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는, 점성 용액을 디스펜싱하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 디스펜싱 품질을 안정적으로 유지할 수 있는 효과가 있다.
도 1은 본 발명에 일실시예에 따른 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 사시도이다.
도 2 및 도 3은 도 1에 도시된 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 정면도이다.
도 4 및 도 5는 각각 도 1에 도시된 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 Ⅵ-Ⅵ선 단면도와 부분 확대도이다.
도 6은 도 1에 도시된 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 일부분에 대한 정면도이다.
도 7은 도 1에 도시된 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 일부분을 확대한 단면도이다.
도 8는 도 1에 도시된 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 디스펜서에 장착하여 사용하는 상태를 설명하기 위한 도면이다.
도 9는 도 1에 도시된 전기수력학적 험프 헤드 조립체의 외부 전극에 대한 다른 구조를 도시한 것이다.
이하에서는 첨부된 도면을 참조하여, 본 발명의 일실시예에 따른 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체에 대해 설명한다.
본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 베이스 위에 배치된 자재에 점성 용액을 도포하기 위한 것이다. 접지된 베이스 위에 자재가 배치된 상태에서 점성 용액에 전압을 인가하면, 베이스와 점성 용액 사이의 전위차에 의해 점성 용액이 노즐을 통해 자재 위로 토출된다.
도 1은 본 발명에 일실시예에 따른 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 사시도이고, 도 2 및 도 3은 도 1에 도시된 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 정면도이며, 도 4 및 도 5는 각각 도 1에 도시된 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 Ⅵ-Ⅵ선 단면도와 부분 확대도이다.
도 1 내지 도 5를 참조하면, 본 실시예에 따른 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 저장부(110)와 내부 전극(310)과 절연 노즐(330)과 외부 전극(350)을 포함하여 이루어진다.
저장부(110)는 절연 노즐(330)을 통해서 토출하기 위한 점성 용액이 저장되는 구성이다. 저장부(110)는 점성 용액이 저장될 수 있는 다양한 형태로 구성될 수 있다. 별도의 용기에 저장된 점성 용액을 튜브와 같은 관을 통해서 전달하는 형태의 저장부를 사용할 수도 있다. 본 실시에서는 도 1 내지 도 5에 도시한 것과 같이 원통형 카트리지 형태의 용기 구조로 형성된 저장부(110)를 사용하는 경우를 예로 들어 설명한다. 이와 같은 저장부(110)에는 내부에 저장된 점성 용액에 압력을 가할 수 있는 공압 레귤레이터(regulator)가 연결되어 사용될 수 있다.
도 4 및 도 5에 도시한 것과 같이 저장부(110)의 하단에는 내부 전극(310)이 설치된다. 내부 전극(310)은 저장부(110)에 저장된 점성 용액에 전압을 인가할 수 있도록 도전성 재질로 형성된다. 본 실시예의 내부 전극(310)은 길이 방향을 따라 내경과 두께가 일정하게 형성된 금속 관 형태로 형성된다. 이와 같은 구조에 의해 내부 전극(310)은 저장부(110)에 저장된 점성 용액에 전압을 인가하면서 동시에 점성 용액을 절연 노즐(330)로 전달할 수 있다.
절연 노즐(330)은 도 4, 도 5 및 도 7에 도시한 것과 같이 길이 방향으로 연장되도록 형성된다. 절연 노즐(330)은 적어도 일부분이 하측으로 갈수록 내경이 감소하도록 형성되는 것이 좋다. 본 실시예의 경우 도 7에 도시한 것과 같이 절연 노즐(330)의 절연 노즐(330)의 상부는 길이 방향을 따라 내경이 일정하게 형성되고 하부는 하측으로 갈수록 내경이 감소하는 관 형태로 형성된다.
절연 노즐(330)은 글라스와 같은 절연성 재질로 형성된다. 본 실시예의 경우 절연 노즐(330)은 글라스 재질의 관을 인발 가공하는 방법으로 제작된다. 이와 같은 절연 노즐(330)은 내부 전극(310)과 마찬가지로 저장부(110)의 하단에 조립된다.
본 실시예의 경우 절연 노즐(330)은 도 7에 도시한 것과 같이 내부에 내부 전극(310)이 삽입된 상태로 저장부(110)에 조립된다. 바람직하게는 절연 노즐(330)은 너트 형태의 합성수지 재질 구조물에 결합된 상태로 저장부(110)에 나사결합 방식에 의해 조립된다. 이때, 저장부(110)의 하단으로 돌출되도록 설치된 내부 전극(310)이 절연 노즐(330)에 삽입된 상태로 절연 노즐(330)이 저장부(110)에 연결된다. 이와 같은 구조에 의해 내부 전극(310)은 점성 용액 전압을 인가하면서 동시에 직접적으로 점성 용액을 절연 노즐(330)에 대해 공급할 수 있다. 본 실시예의 경우, 도 7에 도시한 것과 같이 내부 전극(310)은 절연 노즐(330)의 내경이 일정하게 형성된 상부까지만 삽입되도록 형성된다. 이와 같은 구조에 의해 내부 전극(310)은 절연 노즐(330)의 출구(outlet)와 매우 가까운 위치까지 점성 용액을 전달하면서 그 점성 용액에 대해 전압을 인가할 수 있다.
절연 노즐(330)의 내경과 내부 전극(310)의 외경 사이의 간격은 되도록 좁은 것이 좋다. 절연 노즐(330)의 내경과 내부 전극(310)의 외경 사이의 간격을 좁게 하면, 절연 노즐(330)에 전달되는 압력 손실과 전자기력의 손실을 줄이면서 효과적으로 점성 용액을 절연 노즐(330)을 통해 토출시킬 수 있다.
바람직하게는 절연 노즐(330)의 내경과 내부 전극(310)의 외경 사이의 간격은 0.05㎜ 내지 0.1㎜ 인 것이 좋다. 절연 노즐(330)의 내경과 내부 전극(310)의 외경 사이의 간격이 0.05㎜보다 작으면 절연 노즐(330)과 내부 전극(310)을 조립하는 것이 어렵고, 절연 노즐(330)의 내경과 내부 전극(310)의 외경 사이의 간격이 0.1㎜보다 큰 경우에는 절연 노즐(330)과 내부 전극(310) 사이로 점성 용액이 흐르거나, 절연 노즐(330)의 내벽과 내부 전극(310)의 외벽 사이에 기포가 형성되거나 그 기포가 점성 용액과 함께 절연 노즐(330)을 통해 배출될 수 있다.
절연 노즐(330)과 내부 전극(310)과 저장부(110)는 상부 몸체(210)에 조립된다. 상부 몸체(210)는 저장부(110)와 내부 전극(310)과 절연 노즐(330)의 조립체가 결합되어 지지되는 구성이다. 이와 같은 상부 몸체(210)는 하부 몸체(230)와 조립되어 사용된다.
도 4 및 도 5에 도시한 것과 같이 하부 몸체(230)는 상하로 연장되도록 형성되는 조립 홈(231)을 구비한다. 상부 몸체(210)는 조립 홈(231)에 대응하는 형상으로 형성된 조립 연장부(211)를 구비한다. 상부 몸체(210)의 조립 연장부(211)가 하부 몸체(230)의 조립 홈(231)에 삽입되는 방법으로 상부 몸체(210)와 하부 몸체(230)가 서로 조립된다.
하부 몸체(230)에는 외부 전극(350)이 고정된다. 즉, 외부 전극(350)은 하부 몸체(230)에 설치되어 지지된다. 본 실시예의 외부 전극(350)은 상하로 연장되는 관 형태로 형성된다. 본 실시예의 경우 상하 방향을 따라 내경과 두께가 일정하게 형성되는 구조로 형성되는 외부 전극(350)을 예로 들어 설명하지만, 외부 전극(350)의 구조와 형상은 다양하게 변형될 수 있다. 예를 들어 외부 전극의 내경이 상하 방향을 따라 증가하거나 감소하는 관 행태의 구조로 형성될 수도 있다. 또한, 도 9에 도시한 것과 같이 원주 방향을 따라 일정 각도 간격으로 배열되고 길이 방향으로 연장되는 구조의 복수의 외부 전극 엘리먼트(361)들로 구성된 외부 전극(360)을 사용하는 것도 가능하다.
조립 연장부(211)가 조립 홈(231)에 삽입되어 상부 몸체(210)와 하부 몸체(230)가 서로 조립되면, 외부 전극(350)은 절연 노즐(330)의 적어도 일부분의 외주를 비접촉 상태로 감싸게 된다. 본 실시예의 경우 도 5에 도시한 것과 같이 절연 노즐(330)의 끝부분이 외부 전극(350)에 삽입된 상태가 된다. 이때, 절연 노즐(330)의 내부에 삽입된 상태의 내부 전극(310)도 외부 전극(350)의 내부에 삽입된 상태가 된다.
이와 같은 상태에서 상부 몸체(210)는 하부 몸체(230)에 대해 승강 가능하게 설치된다. 본 실시예의 경우 상부 몸체(210)는 하부 몸체(230)에 설치된 가이드 레일을 따라서 하부 몸체(230)에 대해 상하로 승강 가능하게 설치된다. 본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 수동으로 상부 몸체(210)의 높이를 조절한 후 별도의 고정 부재(250)를 사용하여 상부 몸체(210)의 높이를 고정하도록 구성되어 있다. 경우에 따라서는 제어 신호에 의해 상부 몸체(210)의 높이를 조절할 수 있는 리니어 모터와 같은 형태의 승강 부재를 설치하여 자동으로 상부 몸체(210)를 하부 몸체(230)에 대해 승강하도록 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 구성하는 것도 가능하다. 이와 같은 승강 부재에 의해 상부 몸체(210)의 높이를 조절하면, 결과적으로 외부 전극(350)에 대한 절연 노즐(330)의 높이가 조절된다.
본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 절연 노즐(330)과 외부 전극(350)의 사이로 연결되는 기체 유로(410)를 구비한다. 이와 같은 기체 유로(410)는 절연 노즐(330)과 외부 전극(350)의 사이로 정압 또는 부압의 기체를 전달하도록 절연 노즐(330)과 외부 전극(350)의 사이로 연결된다.
이와 같은 기체 유로(410)는 절연 노즐(330)과 외부 전극(350)의 사이에서 하부 몸체(230)의 내부를 경유하여 외부 공압 장치로 연결된다. 본 실시예의 경우 기체 유로(410)는 상부 몸체(210)의 조립 연장부(211)와 하부 몸체(230)의 조립 홈(231)의 사이의 경로를 경유하게 된다.
조립 홈(231)은 원통형으로 형성되고 조립 연장부(211)는 조립 홈(231)에 꼭 맞는 외경의 원기둥 형태로 형성된다. 조립 연장부(211)의 외면에는 원주 방향을 따라 동일 간격(90도 간격)으로 상하로 연장되는 홈 형태의 부분 유로(213)가 형성된다. 부분 유로(213)의 상단부에는 조립 연장부(211)의 외경을 따라 링 형태로 형성되는 링 홈(211)이 형성되어 연결된다. 기체 유로(410)는 이와 같은 부분 유로(213)와 링 홈(211)에 의해 형성되는 경로를 따라서 조립 연장부(211)와 조립 홈(231)의 사이로 연결된다. 기체 유로(410)는 링 홈(211)에서 하부 몸체(230)의 측방향으로 이어지도록 연장된다. 기체 유로(410)는 이와 같은 경로를 통해 외부 공압 장치에 연결된다.
외부 공압 장치가 정압을 발생시키면 외부 전극(350)과 절연 노즐(330) 사이로 압축 기체를 분사한다. 반대로 외부 공압 장치가 부압을 발생시키면 외부 전극(350)과 절연 노즐(330) 사이의 압력을 낮추어 기체 유로(410)를 통해 절연 노즐(330) 주위의 공기를 흡입하게 된다.
한편, 외부 전극(350)에 대한 상기 절연 노즐(330)의 상대 위치는 상부 몸체(210)의 조립 연장부(211)가 하부 몸체(230)의 조립 홈(231)에 삽입됨으로써 자동으로 정렬된다. 조립 연장부(211)와 조립 홈(231) 사이의 공차를 매우 작게 가공하면, 조립 홈(231)에 조립 연장부(211)가 삽입된 후에는 절연 노즐(330)의 수평 방향 변위는 고정된다. 따라서, 조립 홈(231)에 조립 연장부(211)가 삽입되어 조립 홈(231)에 의해 가이드되면서 슬라이딩하면, 절연 노즐(330)은 외부 전극(350)의 내부로 쉽게 진입하게 된다. 이와 같은 방법으로 절연 노즐(330)의 파손을 방지할 수 있다. 절연 노즐(330)은 취성이 강한 글라스 재질로 매우 가늘고 길게 형성되므로 작은 충격에도 파손되기 쉽다. 상술한 바와 같이 조립 홈(231)과 조립 연장부(211)의 형상과 구조로 인해, 절연 노즐(330)은 외부 전극(350)의 내부로 쉽게 진입하게 된다. 외부 전극(350)에 대한 절연 노즐(330)의 수평 방향 위치를 정렬한 상태에서 상부 몸체(210)와 하부 몸체(230)를 조립하면, 절연 노즐(330)의 파손이 방지되면서 절연 노즐(330)이 용이하게 외부 전극(350)의 내부로 진입하게 된다.
이를 위해 상부 몸체(210)의 하측으로 돌출되는 절연 노즐(330)의 길이는 조립 홈(231)의 깊이보다 짧은 것이 좋다. 이와 같이 구성하면, 절연 노즐(330)이 조립 홈(231)의 바닥에 접촉하기 전에 조립 연장부(211)가 조립 홈(231)에 삽입되기 시작한다. 조립 연장부(211)가 조립 홈(231)에 의해 위치 정렬되면서, 절연 노즐(330)의 위치도 자동 정렬된다.
앞서 설명한 것과 같이 조립 홈(231)과 조립 연장부(211) 사이는 공차가 매우 작게 형성되므로, 기체 유로(410)를 제외한 나머지 부분의 조립 홈(231)과 조립 연장부(211) 사이는 기밀된다. 필요에 따라서는 조립 연장부(211) 또는 조립 홈(231)에 오링과 같은 실링 부재를 설치하여 조립 홈(231)과 조립 연장부(211) 사이를 더욱 확실하게 기밀할 수도 있다.
한편, 하부 몸체(230)에는 절연 재질의 절연 캡(233)이 설치된다. 절연 캡(233)은 상하로 관통하도록 형성되는 전극 홀이 형성된다. 절연 캡(233)은 전극 홀의 내부에 외부 전극(350)이 배치될 수 있는 상태로 하부 몸체(230)에 결합된다. 절연 캡(233)은 외부 전극(350)을 하부 몸체(230)에 고정하는 역할과 외부 전극(350)에 인가되는 고전압으로부터 작업자를 보호하는 역할을 한다.
이하, 상술한 바와 같이 구성된 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 작동에 대해 설명한다.
먼저, 본 실시예에 따른 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체의 조립 순서에 대해 설명한다.
도 1, 도 2 및 도 4를 참조하여, 외부 전극(350)을 하부 몸체(230)에 조립한다. 앞서 설명한 바와 같이 절연 캡(233)을 이용하여 외부 전극(350)을 하부 몸체(230)의 하부에 고정하게 된다. 이때, 외부 전극(350)은 절연 캡(233)의 전극 홀을 경유하여 하측으로 노출된다.
외부 전극(350)은 하부 몸체(230)를 통해서 전원 공급 장치에 전기적으로 연결된다. 전원 공급 장치는 제어부에서 설정한 전압으로 외부 전극(350)에 직류 전압을 인가한다.
다음으로, 도 1, 도 2 및 도 7을 참조하여, 저장부(110)에 내부 전극(310)과 절연 노즐(330)을 조립한다. 저장부(110)에 저장된 점성 용액은 내부 전극(310)을 통해 외부로 배출될 수 있는 상태가 된다. 또한, 도 7에 도시한 것과 같이 내부 전극(310)은 절연 노즐(330)의 내경이 일정하게 형성된 부분까지 삽입된 상태가 되도록, 절연 노즐(330)을 저장부(110)에 대해 조립한다. 이와 같은 상태가 되면 저장부(110)에 저장된 점성 용액은 내부 전극(310)을 통해서 절연 노즐(330)에 직접적으로 전달될 수 있다. 저장부(110)에는 공압 레귤레이터가 연결된다. 공압 레귤레이터는 제어부에서 설정한 압력으로 저장부(110)에 저장된 점성 용액에 압력을 가할 수 있다.
이와 같은 상태에서 도 1 및 도 2에 도시한 것과 같이 저장부(110)와 내부 전극(310)과 절연 노즐(330)의 조립체를 상부 몸체(210)에 장착한다. 도 1 및 도 2에 도시한 것과 같이 상부 몸체(210)를 하부 몸체(230)에 대해 상승시킨 상태에서, 저장부(110) 및 그 주변 구성을 상부 몸체(210)에 장착한다. 이와 같이 상부 몸체(210)가 상승된 상태에서는 내부 전극(310)과 절연 노즐(330)이 하부 몸체(230)에 걸리지 않고 상부 몸체(210)에 쉽게 장착될 수 있다.
내부 전극(310)은 상부 몸체(210)를 통해서 전원 공급 장치에 연결된다. 전원 공급 장치는 제어부에서 설정한 직류 전압을 내부 전극(310)에 인가한다.
상부 몸체(210)를 하측으로 슬라이딩시키면 도 3 및 도 5에 도시한 것과 같이 조립 연장부(211)가 조립 홈(231)에 삽입되면서, 상부 몸체(210)와 하부 몸체(230)가 서로 조립된다. 이때, 절연 노즐(330)도 외부 전극(350)의 내부에 삽입된다. 이와 같은 과정은 수작업으로 수행할 수도 있고, 제어부의 신호에 의해 작동하는 승강 부재에 의해 수행할 수도 있다. 상부 몸체(210)와 하부 몸체(230) 사이의 상대 위치는 작업 조건이나 점성 용액의 특성 등 다양한 파라미터에 따라 조절할 수 있다.
앞에서 설명한 것과 같이, 상부 몸체(210)의 하측으로 돌출되는 절연 노즐(330)의 길이가 조립 홈(231)의 깊이보다 짧게 형성되면, 조립 홈(231)의 파손 위험을 낮출 수 있는 장점이 있다. 절연 노즐(330)이 조립 홈(231)의 바닥에 접촉하거나 외부 전극(350)의 내부로 진입하기 전에 조립 연장부(211)가 조립 홈(231)에 삽입되기 시작하므로, 조립 연장부(211)의 위치가 조립 홈(231)에 의해 정렬되면서 절연 노즐(330)의 위치도 자동 정렬된다. 따라서, 절연 노즐(330)은 정확한 위치에서 외부 전극(350)의 내부로 진입하게 된다. 또한, 절연 노즐(330)의 진입 과정에서 절연 노즐(330)은 외부 전극(350)과 접촉하지 않게 된다.
상부 몸체(210)와 하부 몸체(230)의 조립이 완료되면, 도 6에 도시한 것과 같이 절연 노즐(330)의 끝부분은 외부 전극(350)의 하부로 노출된다. 경우에 따라서 상부 몸체(210)의 높이를 조절함으로써, 절연 노즐(330)의 끝부분이 외부 전극(350)의 하부로 노출되지 않은 상태에서 디스펜싱 작업을 실시하는 것도 가능하다.
상술한 바와 같은 순서로 조립되어 사용되는 본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 도 8에 도시한 것과 같은 상태로 사용될 수 있다. 도 8에 도시한 것과 같이 본 실시예의 전기수력학적 펌프는 카메라, 센서 등의 다른 구성과 함께 지지 패널에 설치된 상태에서 별도의 이송 장치에 설치되어 사용된다. 이송 장치에 의해 수직방향과 수평방향으로 이송되면서 바닥에 배치된 자재에 대해 다양한 방법으로 점성 용액을 디스펜싱하게 된다.
상술한 바와 같이 접지된 베이스(바닥)에 자재를 배치하고, 전원 공급 장치에 의해 내부 전극(310)과 외부 전극(350)에 직류 전압을 인가하면, 내부 전극(310) 및 외부 전극(350)에 의해 발생하는 베이스에 대한 전위차에 의해 절연 노즐(330) 내부의 점성 용액이 하측을 향해서 토출된다. 본 실시예의 경우 내부 전극(310)에는 일정한 직류 전압을 인가하고, 외부 전극(350)에는 다양한 패턴과 주파수의 펄스 전압을 인가하여 점성 용액을 절연 노즐(330)을 통해서 토출시킨다. 경우에 따라서는 반대로 외부 전극(350)에 일정한 직류 전압을 인가하고 내부 전극(310)에 특정 주파수의 펄스 전압을 인가하는 방법으로 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 구성하는 것도 가능하다.
도 7에 도시한 것과 같이 내부 전극(310)은 절연 노즐(330)의 내부까지 진입해 있으므로, 점성 용액의 토출을 위해 더욱 효과적으로 직류 전압을 인가할 수 있다. 이와 같은 구조에 의해 점성 용액의 디스펜싱 성능을 향상시킬 수 있다. 또한, 본 실시예의 내부 전극(310)은 관 형태로 형성되어 있으므로, 전위차를 형성하는 것과 동시에 점성 용액을 절연 노즐(330)로 공급하는 기능까지 수행하게 되어 디스펜싱 성능을 더욱 향상시킬 수 있다.
이와 같은 내부 전극(310)과 절연 노즐(330) 사이의 구조로 인해 저장부(110)에 저장된 점성 용액을 절연 노즐(330)로 공급하는 부분과 절연 노즐(330)에서 점성 용액이 토출되는 부분 사이의 거리를 매우 가깝게 할 수 있다. 이러한 구조에 의해 디스펜싱 과정에서 기포가 발생하는 가능성을 비약적으로 낮출 수 있다. 또한 이와 같은 구조로 인해 절연 노즐(330)의 토출구와 매우 가까운 위치에서 내부 전극(310)에 의해 점성용액에 대해 전압을 인가하므로, 본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 우수한 디스펜싱 성능을 갖게 된다. 또한, 이와 같은 구조는 디스펜싱 특성을 직접적으로 제어하기 매우 용이한 장점이 있다.
또한, 외부 전극(350)도 내부 전극(310) 및 절연 노즐(330)과 매우 가까운 위치에서 직류 전압을 인가할 수 있으므로, 본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 더욱 우수한 디스펜싱 성능을 가지게 된다. 특히, 본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 외부 전극(350)이 관 형태로 형성되어서 절연 노즐(330)의 외주를 감싸면서 상하로 연장되는 공간을 형성한다. 이와 같은 상태에서 외부 전극(350)에 직류 전압이 인가되므로, 본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 외부 환경이나 노이즈의 간섭에 의한 영향을 저감시킬 수 있다. 결과적으로 본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 더욱 안정적으로 점성 용액을 디스펜싱하는 성능을 가지게 된다.
또한, 내부 전극(310)과 외부 전극(350)이 모두 원통형으로 형성되는 경우에는 내부 전극(310)과 외부 전극(350) 사이에 전위차가 발생하는 면적과 공간을 더욱 넓힘으로써 본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 점성 용액에 대해 더욱 효과적으로 전자기력을 전달할 수 있는 구조를 가진다.
다음으로, 기체 유로(410)의 작용에 대해 설명한다. 외부 공압 펌프에 연결된 기체 유로(410)는 조립 연장부(211)에 형성된 링 홈(211)과 부분 유로(213)에 의해 상부 몸체(210) 및 하부 몸체(230)의 하부로 이어 진다. 부분 유로(213)의 하단부에서 기체 유로(410)는 다시 방사상으로 반경 방향을 따라 연장되어 외부 전극(350)의 내측 공간까지 이어진다. 결과적으로 외부 전극(350)과 절연 노즐(330)의 사이의 공간에 기체 유로(410)의 끝부분이 연결된다. 외부 공압 펌프의 작동에 따라 기체 유로(410)는 외부 전극(350)과 절연 노즐(330)의 사이에 정압 또는 부압의 기체를 공급하게 된다.
통상적으로 점성 용액을 디스펜싱하는 펌프는 작업을 시작하는 단계에서 내부 기포를 제거하거나 캘리브레이션(calibration)을 수행하는 과정에서 퍼지(purge) 작업을 수행하는 것이 일반적이다. 이와 같은 퍼지 작업을 수행할 때 기체 유로(410)를 통해서 정압을 발생시키면 절연 노즐(330)을 통해 점성 용액이 토출되는 것을 돕는 작용을 한다. 또한, 퍼지 작업뿐만 아니라 제품에 대한 디스펜싱 작업을 시작하는 경우에도 기체 유로(410)를 통해 일정한 압력의 기체 흐름이 절연 노즐(330)의 주위에 발생하면, 토출을 위한 안정적인 메니스커스(meniscus)를 형성하는 시간을 단축시킬 수 있는 효과가 발생하게 된다.
기체 유로(410)를 통해서 전달되는 기체 압력의 크기나 기체의 유량을 조절하면, 본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체가 액적(droplet) 단위로 점성용액을 토출하는 것이 아니라 스프레이 형태로 점성 용액을 디스펜싱하도록 작동시키는 것도 가능하다.
한편, 기체 유로(410)를 통해서 부압을 전달하여 절연 노즐(330)의 주위에 진공이 형성되도록 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 작동시키는 것도 가능하다. 상술한 바와 같은 퍼지 작업을 수행하는 동안에 기체 유로(410)에 부압을 발생시키면 절연 노즐(330)을 통해 퍼지된 점성 용액이 석션(suction)되어 기체 유로(410)를 통해 외부로 배출된다. 즉, 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 캘리브레이션하거나 작업 준비를 하는 단계에서는 점성 용액이 절연 노즐(330)의 하측으로 떨어지지 않고 기체 유로(410)를 통해 외부로 배출되도록 함으로써, 점성 용액에 의한 작업 공간의 오염을 방지할 수 있다. 또한, 상술한 바와 같이 스프레이 형태로 점성 용액을 디스펜싱하는 경우에도 자재에 대해 점성 용액을 디스펜싱하지 않는 동안에는 기체 유로(410)를 통해 점성 용액의 미세 입자가 석션되어 외부로 배출되도록 기체 유로(410)에 부압을 인가할 수 있다.
본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 외부 전극(350)이 절연 노즐(330)을 비접촉 상태로 감싸도록 배치되어 있으므로, 기체 유로(410)를 절연 노즐(330)과 외부 전극(350)의 사이로 연결하는 것이 쉬운 구조적 장점이 있다. 이와 같은 구조에 의해 기체 유로(410)를 절연 노즐(330)에 매우 가까운 위치로 근접시킬 수 있으므로, 기체 유로(410)에 전달되는 정압 또는 부압의 기체 압력에 의한 작용 효과를 향상시킬 수 있는 장점이 있다.
한편, 본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체와 같은 디스펜싱 펌프는 노즐의 높이를 설정된 값으로 유지하는 것이 매우 중요하다. 본 발명의 경위 다음과 같은 방법을 사용하여 외부 전극(350) 및 절연 노즐(330)의 높이를 보정(calibration)하고 제어할 수 있다.
도 1, 도 2 및 도 4에 도시한 것과 같이, 하부 몸체(230)에 대해 상부 몸체(210)는 상승시킨 상태에서 도 7과 같은 전체 구조물을 하강시켜 외부 전극(350)의 높이를 측정한다. LVDT (Linear Variable Displacement Transducer) 센서를 사용하는 경우에는 외부 전극(350)이 LVDT 센서에 접촉할 때까지 외부 전극(350)을 하강시켜 외부 전극(350)의 기준 높이를 파악한다. 내부 전극(310)이나 절연 노즐(330)의 외부 전극(350)에 대한 상대 변위는 상부 몸체(210)와 하부 몸체(230) 사이의 상대 변위를 통해서 쉽게 측정하거나 조절할 수 있다. 따라서, 상술한 바와 같은 방법으로 외부 전극(350)의 높이는 직업적으로 측정하고, 내부 전극(310) 또는 절연 노즐(330)의 높이는 간접적인 방법으로 측정하면, 내부 전극(310)이나 절연 노즐(330)의 파손을 방지하면서도 주요 구성들의 높이를 정학하게 파악하고 조절하는 것이 가능하다. 이와 같은 방법으로 주요 구성들의 높이와 관련된 인자들을 용이하게 조절하여 점성 용액의 디스펜싱 특성을 제어하는 것이 가능하다.
한편, 본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 상술한 바와 같이 용기 형태의 저장부(110)와 내부 전극(310) 및 절연 노즐(330) 한 세트로 상부 몸체(210)에 장착할 수 있는 구조로 되어 있어서, 사용상의 편리함과 성능상의 우수성을 가지게 된다. 종래에서는 바이알(vial)과 같은 용기에 점성 용액을 저장하고 튜브를 통해서 점성 용액을 노즐로 전달하는 구조가 흔히 사용되었으나, 본 발명의 경우 용기 형태의 저장부(110)와 내부 전극(310) 및 절연 노즐(330)이 직접적으로 근거리에 연결되는 구조를 사용한다. 이로 인해 저장부(110)에 연결된 레귤레이터 압력의 손실을 최소화하면서 내부 전극(310)에 전달할 수 있다. 또한, 중간 연결 튜브를 사용하지 않으므로, 본 실시예의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체는 구조를 단순화할 수 있으며 크기도 작게 구성할 수 있는 장점이 있다.
이와 같은 본 발명의 구조는 상술한 바와 같은 장점을 유지하면서 다양하게 변형될 수 있다. 앞에서, 저장부(110)와 내부 전극(310)과 절연 노즐(330)이 한 세트로 조립된 상태로 상부 몸체(210)에 장착되는 것으로 설명하였으나, 이와 같은 구조는 필요에 따라 변형될 수 있다. 예를 들어, 내부 전극(310)과 절연 노즐(330)이 상부 몸체(210)에 조립된 상태에서 저장부(110)를 상부 몸체(210)에 착탈 가능하게 결합함으로써, 내부 전극(310) 및 절연 노즐(330)과 결합되도록 구성하는 것도 가능하다.
이상, 본 발명에 대해 바람직한 예를 들어 설명하였으나, 본 발명의 범위가 앞에서 설명하고 도시한 형태로 한정되는 것은 아니다.
예를 들어, 내부 전극(310), 절연 노즐(330) 및 외부 전극(350)의 구조는 원통형의 구조 이외에 각각 다른 다양한 구조로 변형될 수 있으며, 외경 및 내경의 크기도 필요에 따라 다양하게 변형 가능하다. 또한, 외부 전극(360)은 도 9에 도시한 것과 같이 원주 방향으로 배열된 복수의 외부 전극 엘리먼트(361)들에 의해 원통형과 유사한 구조를 가지는 외부 전극(360)을 구성하도록 변형되는 것도 가능하다. 내부 전극(310)의 구조 역시 이와 같은 구조로 변형하여 사용할 수 있다.
또한, 앞에서 도면을 참조하여 설명한 구조와 다르게 내부 전극과 절연 노즐 중 어느 하나를 다른 하나에 대해 높이 조절 가능하게 본 발명의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 구성하는 것도 가능하다. 이와 같이 내부 전극과 절연 노즐 사이의 높이를 조절함으로써 점성 용액의 디스펜싱 특성을 조절할 수 있다.
또한, 앞에서 내부 전극(310)은 절연 노즐(330)의 내부에 삽입되는 것으로 설명하였으나, 경우에 따라서는 내부 전극이 절연 노즐에 삽입되지 않는 형태로 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 구성하는 것도 가능하다. 경우에 따라서는 관 형태가 아닌 내부 전극을 사용할 수도 있다.
또한, 내부 전극(310)과 절연 노즐(330)은 용기 형태의 저장부(110)에 직접 연결되는 것으로 설명하고 도시하였으나, 용기 형태의 저장부가 튜브와 같은 중간 구조물을 통해서 내부 전극 및 절연 노즐과 연결되는 구조의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 구성하는 것도 가능하다.
또한, 앞에서 하부 몸체(230)에 대해 상부 몸체(210)가 승강 가능하게 설치된 구조를 예로 들어 설명하였으나, 상부 몸체에 하부 몸체가 승강 가능하게 설치된 구조로 변경하는 것도 가능하다. 이 경우 승강 부재는 상부 몸체에 대해 하부 몸체를 승강시키게 된다.
또한, 상부 몸체와 하부 몸체의 조립 구조 역시 상호 슬라이딩 방식이 아니라 상호 나사 결합하는 구조, 스냅 결합하는 구조 등 다양하게 변형할 수 있다. 상부 몸체와 하부 몸체로 서로 분리되는 구조가 아니라 일체로 형성되는 몸체부를 구비하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 구성하는 것도 가능하다.
또한, 앞에서 기체 유로(410)를 구비하는 구조의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 예로 들어 설명하였으나 기체 유로의 구조는 다양하게 변형 가능하며, 기체 유로를 구비하지 않는 구조의 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체를 구성하는 것도 가능하다. 기체 유로의 구조 역시 앞에서 설명한 링 홈(211)과 부분 유로(213)의 구조 이외에 다른 다양한 형태로 변형하는 것이 가능하다.

Claims (18)

  1. 점성 용액이 저장되는 저장부;
    상기 저장부에 연결되어 상기 점성 용액을 토출하도록 길이 방향으로 연장되도록 형성되는 절연 재질의 절연 노즐;
    상기 저장부에 저장된 상기 점성 용액이 상기 절연 노즐로 전달되는 경로 상에 배치되는 내부 전극;
    상기 절연 노즐의 적어도 일부분을 비접촉 상태로 감싸도록 형성되는 외부 전극; 및
    상기 절연 노즐과 외부 전극의 사이로 정압 또는 부압의 기체를 전달하도록 상기 절연 노즐과 외부 전극의 사이로 연결되는 기체 유로;를 포함하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  2. 제1항에 있어서,
    상기 외부 전극은, 관 형태로 형성되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  3. 제2항에 있어서,
    상기 외부 전극은, 길이 방향을 따라 일정한 내경을 가지도록 형성되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  4. 제2항에 있어서,
    상기 외부 전극은, 길이 방향을 따라 점차적으로 내경이 감소하도록 형성되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  5. 제1항에 있어서,
    상기 외부 전극은, 상기 절연 노즐을 중심으로 원주 방향을 따라 배열되는 복수의 외부 전극 엘리먼트를 포함하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 외부 전극을 지지하도록 상기 외부 전극과 결합되고 상기 기체 유로가 형성되는 하부 몸체;를 더 포함하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  7. 제6항에 있어서,
    상기 절연 노즐을 지지하도록 상기 절연 노즐과 조립되는 상부 몸체;를 더 포함하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  8. 제7항에 있어서,
    상기 하부 몸체는 상하로 연장되는 조립 홈을 구비하고,
    상기 상부 몸체는 상기 조립 홈에 대응하는 형상으로 형성되는 조립 연장부를 구비하고,
    상기 상부 몸체의 조립 연장부가 상기 하부 몸체의 조립 홈에 삽입됨으로써, 상기 외부 전극에 대한 상기 절연 노즐의 상대 위치가 결정되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  9. 제8항에 있어서,
    상기 기체 유로의 일부분은, 상기 상부 몸체와 하부 몸체의 사이에 형성되어 상기 절연 노즐과 외부 전극의 사이로 연결되도록 형성되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  10. 제8항에 있어서,
    상기 절연 노즐의 상기 외부 전극에 대한 위치가 정렬되면서 상기 절연 노즐이 상기 외부 전극에 삽입될 수 있도록, 상기 하부 몸체의 조립 홈은 상기 상부 몸체의 조립 연장부를 상하로 슬라이딩 가능하게 가이드하도록 형성되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  11. 제10항에 있어서,
    상기 상부 몸체의 하측으로 돌출되는 상기 절연 노즐의 길이는 상기 하부 몸체의 조립 홈의 깊이보다 짧은 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  12. 제8항에 있어서,
    상기 하부 몸체의 조립 홈과 상부 몸체의 조립 연장부는, 상기 기체 유로를 제외한 나머지 부분은 서로 기밀되도록 형성되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  13. 제8항에 있어서,
    상기 기체 유로는, 상기 상부 몸체의 조립 연장부와 상기 하부 몸체의 조립 홈의 사이에 상하로 연장되는 복수의 부분 유로를 포함하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  14. 제13항에 있어서,
    상기 복수의 부분 유로는 상기 상부 몸체의 조립 연장부의 외주를 따라 동일 간격으로 배열되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  15. 제6항에 있어서,
    상기 외부 전극이 내측에 배치되도록 형성되는 전극 홀을 구비하고, 상기 하부 몸체의 하부에 결합되는 절연 재질의 절연 캡;을 더 포함하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  16. 제7항에 있어서,
    상기 상부 몸체와 하부 몸체 중 어느 하나는 다른 하나에 대해 승강 가능하게 설치되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  17. 제16항에 있어서,
    상기 상부 몸체와 하부 몸체 중 어느 하나를 다른 하나에 대해 승강시키는 승강 부재;를 더 포함하는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
  18. 제17항에 있어서,
    상기 저장부는 용기 형태로 형성되고, 상기 내부 전극과 절연 노즐은 상기 저장부에 결합되어 설치되는 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체.
PCT/KR2022/003924 2021-03-23 2022-03-21 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체 WO2022203319A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023558187A JP2024511427A (ja) 2021-03-23 2022-03-21 ガス流路を備える電気水力学的ポンプヘッドアセンブリ
CN202280022828.XA CN117062672A (zh) 2021-03-23 2022-03-21 具有气体流道的电流体动力泵头组合

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210037189A KR102424736B1 (ko) 2021-03-23 2021-03-23 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체
KR10-2021-0037189 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022203319A1 true WO2022203319A1 (ko) 2022-09-29

Family

ID=82608948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003924 WO2022203319A1 (ko) 2021-03-23 2022-03-21 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체

Country Status (5)

Country Link
JP (1) JP2024511427A (ko)
KR (1) KR102424736B1 (ko)
CN (1) CN117062672A (ko)
TW (1) TWI799198B (ko)
WO (1) WO2022203319A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110544A1 (en) * 2004-11-22 2006-05-25 Kyekyoon Kim Electrohydrodynamic spraying system
KR101605696B1 (ko) * 2008-01-23 2016-03-23 디비브이 테크놀로지스 (소시에떼 아노님) 전기분사법에 의한 패취의 제조방법
KR101615576B1 (ko) * 2014-09-12 2016-05-11 순천향대학교 산학협력단 전기수력학적 잉크젯 장치
KR101939439B1 (ko) * 2016-07-28 2019-01-16 변도영 잉크젯 방식의 기판 결함 리페어 장치의 노즐 및 잉크젯 방식의 기판 결함 리페어 장치
KR102082621B1 (ko) * 2019-12-13 2020-02-27 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2327895B (en) * 1997-08-08 2001-08-08 Electrosols Ltd A dispensing device
JP2008153322A (ja) * 2006-12-15 2008-07-03 Dainippon Screen Mfg Co Ltd 二流体ノズル、基板処理装置および基板処理方法
GB0709517D0 (en) * 2007-05-17 2007-06-27 Queen Mary & Westfield College An electrostatic spraying device and a method of electrostatic spraying
JP6657505B2 (ja) * 2015-11-09 2020-03-04 アネスト岩田株式会社 静電噴霧装置及び静電噴霧方法
KR101900559B1 (ko) * 2016-08-01 2018-09-20 변도영 스프레이 노즐 및 이를 이용한 코팅 시스템
KR20210002304A (ko) * 2019-06-30 2021-01-07 참엔지니어링(주) 전기수력학을 이용하는 잉크토출장치용 노즐어셈블리
US11370219B2 (en) * 2019-09-10 2022-06-28 The Regents Of The University Of Michigan Multi-nozzle electrohydrodynamic printing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110544A1 (en) * 2004-11-22 2006-05-25 Kyekyoon Kim Electrohydrodynamic spraying system
KR101605696B1 (ko) * 2008-01-23 2016-03-23 디비브이 테크놀로지스 (소시에떼 아노님) 전기분사법에 의한 패취의 제조방법
KR101615576B1 (ko) * 2014-09-12 2016-05-11 순천향대학교 산학협력단 전기수력학적 잉크젯 장치
KR101939439B1 (ko) * 2016-07-28 2019-01-16 변도영 잉크젯 방식의 기판 결함 리페어 장치의 노즐 및 잉크젯 방식의 기판 결함 리페어 장치
KR102082621B1 (ko) * 2019-12-13 2020-02-27 엔젯 주식회사 유도 전기수력학 젯 프린팅 장치

Also Published As

Publication number Publication date
CN117062672A (zh) 2023-11-14
TW202237979A (zh) 2022-10-01
TWI799198B (zh) 2023-04-11
JP2024511427A (ja) 2024-03-13
KR102424736B1 (ko) 2022-07-25

Similar Documents

Publication Publication Date Title
US10562045B2 (en) Nozzle and liquid material discharge device provided with said nozzle
WO2022203315A1 (ko) 튜브형 외부 전극을 구비하는 전기수력학적 펌프 헤드 조립체
CN110177694B (zh) 印刷电子印刷设备
WO2013058475A2 (ko) 정전기력을 이용한 잉크토출장치
CN112874165B (zh) 一种等离子微束同轴电极化诱导电喷打印装置及喷印方法
WO2022203319A1 (ko) 기체 유로를 구비하는 전기수력학적 펌프 헤드 조립체
WO2022203317A1 (ko) 높이 조절형 전기수력학적 펌프 헤드 조립체
WO2022203318A1 (ko) 튜브형 내부 전극을 구비하는 전기수력학적 펌프 헤드 조립체
KR20160031200A (ko) 전기수력학적 잉크젯 장치
KR20210002304A (ko) 전기수력학을 이용하는 잉크토출장치용 노즐어셈블리
KR20140117104A (ko) 액 맺힘 제거기능이 구비된 비접촉식 디스펜서
TW201117884A (en) Dispenser apparatus and method for controlling the same
CN109109460B (zh) 液体灌注设备
US10857787B2 (en) Inkjet recording device
US20240207874A1 (en) Liquid dispensing device
CN209832976U (zh) 储集器盖、储集器和喷墨打印机
WO2017200204A1 (ko) 비전 검사가 용이한 디스펜서의 노즐구조
CN113899959A (zh) 检测装置及其检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22776020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022828.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023558187

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22776020

Country of ref document: EP

Kind code of ref document: A1