WO2022203027A1 - 半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置 - Google Patents

半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置 Download PDF

Info

Publication number
WO2022203027A1
WO2022203027A1 PCT/JP2022/014173 JP2022014173W WO2022203027A1 WO 2022203027 A1 WO2022203027 A1 WO 2022203027A1 JP 2022014173 W JP2022014173 W JP 2022014173W WO 2022203027 A1 WO2022203027 A1 WO 2022203027A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
semiconductor
cleaning
semiconductor substrate
substrate
Prior art date
Application number
PCT/JP2022/014173
Other languages
English (en)
French (fr)
Inventor
敏明 白坂
智章 柴田
志津 福住
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202280022568.6A priority Critical patent/CN117015844A/zh
Priority to JP2023509320A priority patent/JPWO2022203027A1/ja
Priority to KR1020237032044A priority patent/KR20230161442A/ko
Publication of WO2022203027A1 publication Critical patent/WO2022203027A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02076Cleaning after the substrates have been singulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80009Pre-treatment of the bonding area
    • H01L2224/8001Cleaning the bonding area, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8012Aligning

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method, a cleaning apparatus, a cleaning method, and a semiconductor device. More specifically, the present disclosure relates to a semiconductor device manufacturing method for bonding a semiconductor chip that has been singulated to a semiconductor substrate (semiconductor wafer or another semiconductor chip, etc.), a cleaning apparatus and cleaning method used therefor, and the manufacturing It relates to a semiconductor device manufactured by the method.
  • Non-Patent Document 1 discloses an example of three-dimensional mounting of semiconductor chips.
  • An object of the present disclosure is to provide a semiconductor device manufacturing method, a cleaning apparatus, a cleaning method, and a semiconductor device that can reduce connection failures of semiconductor chips when performing three-dimensional mounting of semiconductor chips.
  • One aspect of the present disclosure relates to a method for manufacturing a semiconductor device.
  • This method of manufacturing a semiconductor device includes steps of preparing a first semiconductor substrate having a first substrate body, a first insulating film and a first electrode provided on one surface of the first substrate body; preparing a second semiconductor substrate having a second insulating film provided on one surface of the second substrate body and a plurality of second electrodes; and a second insulating film disposed on one surface side of the second semiconductor substrate.
  • the second semiconductor substrate is separated into individual pieces by dicing while cleaning the second semiconductor substrate using a mixed cleaning fluid in which gas is introduced into the cleaning liquid.
  • the second semiconductor substrate is separated by dicing while the second semiconductor substrate is cleaned using a mixed cleaning fluid in which gas is introduced into the cleaning fluid.
  • gas is introduced into the cleaning liquid to perform cleaning using the mixed cleaning fluid that has become a mist, it is possible to increase the cleaning ability for fine debris while keeping the ejection pressure lower than in high-pressure cleaning.
  • a semiconductor device can be manufactured using a semiconductor chip from which debris generated by dicing has been reliably removed, and connection failures of the semiconductor chip can be reduced when the semiconductor chip is three-dimensionally mounted.
  • the adhesion strength of the second insulating film to the second substrate body may be adhesion strength at which the peeling rate in a cross-cut test is 1% or less.
  • the ejection pressure of the cleaning liquid is reduced, it is possible to prevent the second insulating film itself or a part thereof from scattering and becoming debris when the second semiconductor substrate is cleaned due to the impact caused by the cleaning. This makes it possible to suppress one of the causes of debris generation when separating semiconductor chips into individual pieces, and to further reduce connection failures of semiconductor chips.
  • the "peeling rate” is the ratio of the number of pieces that are peeled to the total number of pieces in the cross-cut test.
  • the peeling rate (%) is a value obtained by dividing the number of the peeled pieces by the total number of pieces (100 pieces) and multiplying by 100.
  • the thickness of the second insulating film may be 20 ⁇ m or less.
  • a thin semiconductor device can be manufactured by forming finer electrodes or circuits.
  • the minimum size (electrode width) of the second electrode formed in the second insulating film is defined by the thickness of the second insulating film and the aspect ratio of the photosensitive material used.
  • the aspect ratio of the photosensitive material is, for example, 1:1 (opening width:depth)
  • the electrode width of the second electrode can be set to 20 ⁇ m or less by setting the thickness of the second insulating film to 20 ⁇ m or less. can. That is, according to this manufacturing method, it is possible to make the second electrode a fine electrode.
  • the mixed cleaning fluid is jetted toward the second semiconductor substrate so that the jetting pressure of the mixed cleaning fluid is 10 kgf/cm 2 (0.980665 MPa) or less. may be washed.
  • the diced semiconductor chips from flying off (chip flying) due to cleaning when the second semiconductor substrate is diced.
  • the second insulating film from being separated from the second semiconductor substrate by the mixed cleaning fluid.
  • cleaning may be performed by ejecting the mixed cleaning fluid toward the second semiconductor substrate so that the ejection pressure of the mixed cleaning fluid is 2 kgf/cm 2 (0.196133 MPa) or more.
  • the ejection pressure of the mixed cleaning fluid is 2 kgf/cm 2 (0.196133 MPa) or more.
  • debris can be effectively removed by cleaning when dicing the second semiconductor substrate.
  • the manufacturing yield of semiconductor devices can be improved. This makes it possible to further reduce connection failures of the semiconductor chip.
  • the mist after cleaning with the mixed cleaning fluid ejected onto the second semiconductor substrate may be collected.
  • the mixed cleaning fluid containing debris after cleaning can be quickly moved away from the diced and cleaned semiconductor chips to suppress adhesion of debris to the semiconductor chips. As a result, it is possible to further reduce connection failures of the semiconductor chips when the semiconductor chips are three-dimensionally mounted.
  • the mixed cleaning fluid is jetted against the second insulating film of the second semiconductor substrate, and dicing is performed from the second insulating film toward the second substrate body. may be performed.
  • the surface of the second insulating film is exposed to plasma, an ion beam, ultraviolet rays, or an electron beam after dicing. It is possible to easily perform surface treatment by irradiation, or surface treatment by applying a coupling agent or the like to the surface of the second insulating film.
  • the second insulating film of the second semiconductor substrate may contain an inorganic material.
  • the inorganic materials are easily bonded to each other firmly, the bonding strength between the semiconductor substrates can be increased, and the connection reliability of the semiconductor device can be improved.
  • the second insulating film of the second semiconductor substrate may contain an organic material.
  • the organic material which is a relatively soft material, absorbs (incorporates) debris that cannot be removed by cleaning into the insulating film portion made of the organic material, thereby further reducing connection failures of the semiconductor chip. That is, according to this manufacturing method, large debris that is difficult to embed in the insulating film portion is removed by cleaning the second semiconductor substrate using the mixed cleaning fluid, and minute debris that could not be removed by cleaning with the mixed cleaning fluid is removed. is embedded in an insulating film of an organic material to render it harmless, and the removal or rendering harmless of debris of different sizes can be complemented by two means.
  • the thickness of the second insulating film may be 4 ⁇ m or more.
  • minute debris can be embedded in the insulating film made of resin, which is an organic material, so that a good connection can be achieved between the first insulating film and the insulating film portion of the semiconductor chip.
  • the size of debris that can be embedded is defined by the thickness of the resin insulating film. can be done. That is, according to this manufacturing method, even if debris smaller than the thickness of the second insulating film exists, the debris is embedded in the resin insulating film, thereby ensuring good connection between the first insulating film and the insulating film portion of the semiconductor chip. can be
  • the organic material contained in the second insulating film is polyimide, a polyimide precursor, polyamideimide, benzocyclobutene (BCB), polybenzoxazole (PBO), or PBO. It may also contain precursors. Since these materials are liquid or soluble in a solvent, the second insulating film can be easily formed by, for example, spin coating, and a thin film can be easily formed. In addition, since these materials have high heat resistance, they can withstand high temperatures and the like when bonding the first semiconductor substrate and the second semiconductor substrate, so that the substrates can be bonded more reliably.
  • one aspect of the present disclosure relates to a cleaning apparatus used in any of the methods for manufacturing a semiconductor device described above.
  • This cleaning apparatus includes a first introduction section for introducing the cleaning liquid, a second introduction section for introducing the gas, a mixing section for mixing the cleaning liquid with the gas to form a mixed cleaning fluid, and a nozzle for ejecting the mixed cleaning fluid. , provided.
  • the above cleaning device may further include a mist collector that collects the mist after cleaning with the mixed cleaning fluid ejected from the nozzle.
  • the mixed cleaning fluid containing debris after cleaning can be quickly moved away from the diced and cleaned semiconductor chips by the mist collector, thereby suppressing adhesion of debris to the semiconductor chips.
  • This cleaning method includes the steps of preparing a semiconductor substrate having a substrate body, an insulating film provided on one surface of the substrate body, and a plurality of electrodes, and a step of cleaning the semiconductor substrate when singulating the semiconductor substrate.
  • the cleaning step the semiconductor substrate is separated into individual pieces by dicing while cleaning the semiconductor substrate using a mixed cleaning fluid in which gas is introduced into the cleaning liquid.
  • gas is introduced into the cleaning liquid to perform cleaning using the mixed cleaning fluid that has become a mist, it is possible to increase the cleaning ability for fine debris while keeping the ejection pressure lower than in high-pressure cleaning.
  • a semiconductor device can be manufactured using a semiconductor chip from which debris generated by dicing has been reliably removed, and connection failures of the semiconductor chip can be reduced when the semiconductor chip is three-dimensionally mounted.
  • the mixed cleaning fluid in the step of cleaning, is sprayed so that the ejection pressure of the mixed cleaning fluid is 2 kgf/cm 2 (0.196133 MPa) or more and 10 kgf/cm 2 (0.980665 MPa) or less.
  • the insulating film of the semiconductor substrate to be cleaned may include an organic insulating material, and the thickness of the insulating film may be 4 ⁇ m or more. According to this cleaning method, since the ejection pressure is within a predetermined range, large debris is removed by cleaning the semiconductor substrate using the mixed cleaning fluid without peeling off the insulating film by high-pressure cleaning, and cleaning with the mixed cleaning fluid is performed.
  • Micro debris for example, debris with a diameter or width of 4 ⁇ m or less
  • Micro debris can be rendered harmless by embedding it in an insulating film of an organic material.
  • it is possible to effectively reduce connection failures when connecting the individualized semiconductor substrates to other semiconductor substrates.
  • This semiconductor device includes a first semiconductor substrate having a first substrate body, a first insulating film and a first electrode provided on one surface of the first substrate body, a second substrate body, and one surface of the second substrate body. a second semiconductor substrate having a second insulating film and a second electrode provided on the substrate; A first electrode of the first semiconductor substrate and a second electrode of the second semiconductor substrate are bonded together, and a first insulating film of the first semiconductor substrate and a second insulating film of the second semiconductor substrate are bonded together. On the second insulating film, there is no more than one piece of debris of 50 ⁇ m or more within a range of 15 mm in length and 15 mm in width.
  • the second insulating film has a debris size of 50 ⁇ m or more that is suppressed to within one piece within a range of 15 mm in length and 15 mm in width. In this case, in this semiconductor device, connection failures of the semiconductor chip can be reduced.
  • connection failures of semiconductor chips can be reduced when semiconductor chips are three-dimensionally mounted.
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device (C2W) manufactured by a semiconductor device manufacturing method according to an embodiment of the present invention.
  • 2A to 2D are diagrams sequentially showing a method for manufacturing the semiconductor device shown in FIG. 3A and 3B are diagrams schematically showing states of dicing and cleaning in the method of manufacturing the semiconductor device shown in FIG.
  • FIG. 4 is a diagram showing a cleaning apparatus for performing the cleaning shown in FIG. 3.
  • FIG. FIG. 5 is a diagram showing in more detail the bonding method in the method of manufacturing the semiconductor device shown in FIG.
  • FIG. 6 is a diagram showing in more detail the bonding method in the method of manufacturing the semiconductor device shown in FIG. FIG.
  • FIG. 7 is a photograph showing debris adhering to the bonding surface of the semiconductor chip
  • FIG. (b) of (b) shows the bonding surface of the semiconductor chip (Example 1) cleaned by the two-fluid cleaning method.
  • (a) of FIG. 8 is a diagram showing a comparison of the number of remaining debris when semiconductor chips are cleaned by a normal cleaning method (Comparative Example 2) and when cleaned by a two-fluid cleaning method (Example 2).
  • FIG. 8(b) shows the maximum diameter of remaining debris when the semiconductor chip is cleaned by the normal cleaning method (Comparative Example 2) and when the semiconductor chip is cleaned by the two-fluid cleaning method (Example 2).
  • FIG. 9 shows the rate at which mechanical connection can be ensured between the semiconductor chip cleaned by the normal cleaning method (Comparative Example 3) and the semiconductor chip cleaned by the two-fluid cleaning method (Example 3).
  • FIG. 9(b) is a comparison diagram for each bonding temperature
  • FIG. 9(b) shows a case where a semiconductor chip is cleaned by a normal cleaning method (Comparative Example 3) and a case where a semiconductor chip is cleaned by a two-fluid cleaning method (Example 3).
  • FIG. 2 is a diagram comparing the connection strength of each bonding temperature.
  • the term “layer” includes not only a shape structure formed over the entire surface but also a shape structure formed partially when observed as a plan view.
  • the term “step” as used herein refers not only to an independent step, but also to the term if the desired action of the step is achieved even if it cannot be clearly distinguished from other steps. included. Further, a numerical range indicated using “-” indicates a range including the numerical values described before and after "-" as the minimum and maximum values, respectively.
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device manufactured by the manufacturing method according to this embodiment.
  • a semiconductor device 1 is an example of a semiconductor package, includes a first semiconductor substrate 10 and a plurality of semiconductor chips 20, and has a chip-to-wafer (C2W) structure.
  • the plurality of semiconductor chips 20 are produced by dividing a second semiconductor substrate 200, which will be described later, into individual pieces by dicing.
  • a plurality of semiconductor chips 20 are mounted on the first semiconductor substrate 10 to form a three-dimensional mounting structure.
  • the first semiconductor substrate 10 is a substrate on which a plurality of semiconductor chips, such as LSI (Large Scale Integrated Circuit) chips or CMOS (Complementary Metal Oxide Semiconductor) sensors, are formed at locations corresponding to the respective semiconductor chips 20.
  • LSI Large Scale Integrated Circuit
  • CMOS Complementary Metal Oxide Semiconductor
  • Each semiconductor chip 20 may be, for example, a semiconductor chip such as an LSI or memory.
  • the first semiconductor substrate 10 and the plurality of semiconductor chips 20 are micro-bonded by hybrid bonding, which will be described later, so that the respective terminal electrodes and the insulating films surrounding them are firmly and without displacement.
  • the semiconductor device 1 includes one semiconductor chip 20 further separated from the configuration shown in FIG. It may be further singulated into individual semiconductor devices.
  • FIG. 2A to 2D are diagrams sequentially showing a method for manufacturing the semiconductor device shown in FIG. 3A and 3B are diagrams schematically showing states of dicing and cleaning in the method of manufacturing the semiconductor device shown in FIG.
  • the semiconductor device 1 can be manufactured, for example, through the following steps (a) to (h).
  • Step (a) is a step of preparing a first semiconductor substrate 100, which is a silicon substrate on which integrated circuits including semiconductor elements and wirings connecting them are formed.
  • a plurality of first electrodes 103 made of copper, aluminum or the like are provided at predetermined intervals on one surface 101a of a first substrate body 101 made of silicon or the like.
  • a first insulating film 102 made of an inorganic material or an organic material is provided.
  • the first electrode 103 is a facet electrode for exposing the integrated circuit or the like formed on the first semiconductor substrate 100 to the outside through the first insulating film 102 .
  • the plurality of first electrodes 103 may be provided after the first insulating film 102 is provided on the surface 101a of the first substrate body 101, or the plurality of first electrodes 103 may be provided on the surface 101a of the first substrate body 101. After that, the first insulating film 102 may be provided.
  • the step (b) is a step of preparing a second semiconductor substrate 200 which is a silicon substrate on which integrated circuits corresponding to a plurality of semiconductor chips 20 and including semiconductor elements and wirings connecting them are formed.
  • a plurality of second electrodes 203 made of copper, aluminum, or the like are continuously provided on one surface 201a of a second substrate body 201 made of silicon or the like.
  • a second insulating film 202 made of an inorganic material or an organic material is provided.
  • the second electrode 203 is a facet electrode for exposing the integrated circuit or the like formed on the second semiconductor substrate 200 to the outside through the second insulating film 202 .
  • the plurality of second electrodes 203 may be provided after the second insulating film 202 is provided on the surface 201a of the second substrate body 201, or the plurality of second electrodes 203 may be provided on the surface 201a of the second substrate body 201.
  • the second insulating film 202 may be provided from .
  • the first insulating film 102 and the second insulating film 202 used in steps (a) and (b) contain an inorganic material or an organic material.
  • An inorganic material used for the insulating film is, for example, silicon oxide (SiO 2 ).
  • SiO 2 silicon oxide
  • a semiconductor device with a finer structure can be manufactured.
  • the insulating films are bonded together in step (g), which will be described later, the inorganic materials are easily bonded to each other. Therefore, the bonding strength between the semiconductor substrates is increased to improve the connection reliability of the semiconductor device. becomes possible.
  • Organic materials used for insulating films are, for example, polyimides, polyimide precursors (eg, polyimimic esters or polyamic acids), polyamideimides, benzocyclobutene (BCB), polybenzoxazole (PBO), or PBO precursors. These organic materials have a lower elastic modulus than, for example, inorganic materials such as silicon oxide (SiO 2 ), and are soft materials.
  • step (g) which will be described later, even if fine debris is present on the insulating film, it can be absorbed into the insulating film to prevent defective bonding due to the debris. , it is possible to reliably bond the insulating films together.
  • the elastic modulus of the organic material forming the first insulating film 102 and the second insulating film 202 may be, for example, 7.0 GPa or less, 5.0 GPa or less, or 3.0 GPa or less. 2.0 GPa or less, or 1.5 GPa or less.
  • the elastic modulus here means Young's modulus.
  • the organic material forming the first insulating film 102 and the second insulating film 202 preferably has a thermal expansion coefficient of 70 ppm/K or less, more preferably 50 ppm/K or less.
  • each insulating film can be easily formed as a thin film by spin coating or the like. Furthermore, since these organic materials have heat resistance, they can withstand the temperature (e.g., high temperature of 300° C. or higher) when bonding the first electrode 103 and the second electrode 203 in step (h) described later. Thus, the bonding between the insulating films is prevented from deteriorating due to high temperature.
  • a photosensitive resin e.g., a thermosetting non-conductive film (NCF: Non Conductive Film), or a thermosetting resin may be used. good. This organic material may be an underfill material.
  • the first insulating film 102 and the second insulating film 202 may be insulating films containing both an inorganic material and an organic material.
  • the second insulating film 202 may be configured to be firmly adhered to the second substrate body 201.
  • the second insulating film 202 may be adhered to the second substrate body 201 with a peeling rate of 1% or less in a cross-cut test. It may be formed to have strength. Since the second insulating film 202 is firmly adhered to the second substrate main body 201, the second insulating film 202 is wholly or partially peeled off during cleaning in step (e) described later. Debris and chip flying are prevented.
  • the "peeling rate" is the ratio of the number of pieces that are peeled to the total number of pieces in the cross-cut test.
  • the peeling rate (%) is a value obtained by dividing the number of the peeled pieces by the total number of pieces (100 pieces) and multiplying by 100.
  • the thickness of the second insulating film 202 may be 20 ⁇ m or less. By making the thickness of the second insulating film 202 sufficiently thin, the second electrode 203 and the wiring formed from the second electrode 203 can be made finer.
  • the minimum size (electrode width) of the second electrode 203 formed in the second insulating film 202 is defined by the thickness of the second insulating film 202 and the aspect ratio of the photosensitive material used.
  • the aspect ratio of the photosensitive material is, for example, 1:1 (opening width:depth)
  • the electrode width of the second electrode 203 is set to 20 ⁇ m or less by setting the thickness of the second insulating film 202 to 20 ⁇ m or less. be able to.
  • the thickness of the second insulating film 202 may be thicker than 20 ⁇ m. In this case, more debris can be embedded in the resin-made second insulating film 202 when the insulating films are bonded together in step (g), which will be described later, and the insulating films can be bonded more reliably. Further, it is possible to improve the adhesiveness between the insulating films by alleviating the stress that occurs when the insulating films are bonded to each other with one of the resin insulating layers.
  • the thickness of the second insulating film 202 may be 4 ⁇ m or more.
  • the size of debris that can be embedded in the second insulating film 202 is defined by the thickness of the second insulating film 202 made of resin. If the thickness of the second insulating film 202 is, for example, 4 ⁇ m, debris with a diameter or width of 4 ⁇ m can be embedded in the second insulating film 202 .
  • the thickness of the first insulating film 102 may be 20 ⁇ m or less, may be thicker than 20 ⁇ m, or may be 4 ⁇ m or more.
  • the first insulating film 102 may embed debris as described above.
  • Step (c) is a step of polishing the first semiconductor substrate 100 .
  • the surface of the first insulating film 102 provided with the first electrode 103 is polished using a CMP (Chemical Mechanical Polishing) method.
  • the first semiconductor substrate 100 may be polished by the CMP method under the condition that the first electrode 103 made of copper or the like is selectively and deeply etched, and each surface of the first electrode 103 may be subjected to the first insulation. It may be polished by a CMP method so as to match the surface of the film 102 . This polishing also removes debris on the surface of the first semiconductor substrate 100 .
  • Step (d) is a step of polishing the second semiconductor substrate 200 .
  • the surface of the second insulating film 202 provided with the second electrode 203 is polished using the CMP method.
  • the second semiconductor substrate 200 may be polished by the CMP method under the condition that the second electrode 203 made of copper or the like is selectively and deeply etched, and each surface of the second electrode 203 may be subjected to the second insulation. It may be polished by a CMP method so as to match the surface of the film 202 . This polishing also removes debris on the surface of the second semiconductor substrate 200 .
  • polishing may be performed so that the thickness of the first insulating film 102 and the thickness of the second insulating film 202 are the same. may be polished so as to be thicker than the thickness of the first insulating film 102 .
  • polishing may be performed so that the thickness of the second insulating film 202 is thinner than the thickness of the first insulating film 102 . If the second insulating film 202 is thicker than the first insulating film 102 and is made of an organic material, debris adhering to the bonding interface during singulation into the semiconductor chips 20 or chip mounting may occur. can be covered by the second insulating film 202, and junction failure can be reduced.
  • the thickness of the second insulating film 202 is thinner than the thickness of the first insulating film 102, the height of the semiconductor chip 20 to be mounted, that is, the semiconductor device 1 can be reduced.
  • Step (e) is a step of dividing the second semiconductor substrate 200 into individual pieces to obtain a plurality of semiconductor chips 20 .
  • step (e) as shown in FIG. 3, the second semiconductor substrate 200 is placed on a dicing tape 205, and a plurality of semiconductor substrates are cut from the second insulating film 202 toward the second substrate body 201 by a cutting means such as dicing. It separates into semiconductor chips 20 .
  • the second insulating film 202 may be covered with a protective material or the like, and then separated into individual pieces.
  • the second insulating film 202 of the second semiconductor substrate 200 is divided into insulating film portions 202b corresponding to the respective semiconductor chips 20, as shown in FIG. 2(b).
  • a dicing method for singulating the second semiconductor substrate 200 for example, plasma dicing, stealth dicing, or laser dicing can be used.
  • the surface protection material for the second semiconductor substrate 200 during dicing for example, an organic film removable with water or TMAH, or a thin film such as a carbon film removable with plasma or the like may be provided.
  • the surface of the second insulating film 202 is exposed to plasma, ion beams, and ultraviolet rays after dicing.
  • surface treatment may be performed by irradiating electron beams, or surface treatment may be performed by applying a coupling agent or the like to the surface of the second insulating film.
  • the second semiconductor substrate 200 is cleaned by a two-fluid cleaning method during the singulation in step (e).
  • the two-fluid cleaning method is a cleaning method that uses a mixed cleaning fluid in the form of a mist obtained by mixing compressed gas (for example, clean air) with liquid (for example, pure water).
  • compressed gas for example, clean air
  • liquid for example, pure water.
  • FIG. 4 is a diagram schematically showing a cleaning apparatus for performing such two-fluid cleaning. As shown in FIG.
  • the cleaning device 30 includes a mixing section 31 , a first introduction section 32 , a second introduction section 33 and a nozzle 34 .
  • the first introduction section 32 introduces a cleaning liquid such as pure water into the mixing section 31 .
  • the second introduction part 33 introduces gas such as compressed air into the mixing part 31 .
  • the cleaning liquid introduced from the first introduction section 32 is mixed with the compressed air introduced from the second introduction section 33 to form a mist-like mixed cleaning fluid.
  • the mixed cleaning fluid W1 formed in the mixing section 31 is ejected from a nozzle 34 provided at the tip of the mixing section 31 toward the second semiconductor substrate 200 (the surface of the second insulating film 202) during dicing, and 2.
  • a semiconductor substrate is cleaned.
  • the cleaning apparatus 30 further includes a mist collector 35 that collects the cleaning liquid jetted from the nozzle 34 and the second semiconductor substrate 200 has been cleaned.
  • a mist collector 35 collects mixed cleaning fluid W2 containing debris P and the like after cleaning.
  • pure water which is the cleaning liquid
  • compressed air is introduced at a pressure of 0.2 MPa to 0.4 MPa. to form a mixed cleaning fluid W1.
  • the introduction pressure of the compressed air may be, for example, 2.7 kgf/cm 2 to 6.0 kgf/cm 2 (0.26478 MPa to 0.588399 MPa).
  • this mixed cleaning fluid W1 is ejected to the second semiconductor substrate 200 at an ejection pressure of 10 kgf/cm 2 (0.9806565 MPa) or less to clean the second semiconductor substrate 200 .
  • ejection pressure 10 kgf/cm 2 (0.9806565 MPa) or less to clean the second semiconductor substrate 200 .
  • the two fluids which is a mixture of gas and liquid, are turned into fine mist droplets and collided at high speed. Therefore, the second semiconductor substrate 200 diced in the direction D can be efficiently cleaned without high-pressure cleaning.
  • the ejection pressure of the mixed cleaning fluid used in this two-fluid cleaning method may be 8 kgf/cm 2 (0.784532 MPa) or less, or 4 kgf/cm 2 (0.392266 MPa) or more. Further, the ejection pressure of the mixed cleaning fluid used in this two-fluid cleaning method may be 2 kgf/cm 2 (0.196133 MPa) or more.
  • the cleaning with the mist-like mixed cleaning fluid W1 may be continued or additionally performed after the dicing is finished.
  • the diced second semiconductor substrate 200 may be further cleaned with pure water as rinsing.
  • the diced second semiconductor substrate 200 may be dried.
  • Step (f) is a step of aligning the second electrodes 203 of each of the plurality of semiconductor chips 20 with respect to the first electrodes 103 of the first semiconductor substrate 100, as shown in (c) of FIG.
  • each semiconductor chip 20 is arranged so that the second electrode 203 of each semiconductor chip 20 faces the corresponding first electrode 103 of the first semiconductor substrate 100. Align. Alignment marks or the like may be provided on the first semiconductor substrate 100 for this alignment.
  • Step (g) is a step of bonding the first insulating film 102 of the first semiconductor substrate 100 and the insulating film portions 202b of the plurality of semiconductor chips 20 to each other.
  • step (g) after removing the organic matter or metal oxide adhering to the surface of each semiconductor chip 20, the semiconductor chip 20 is aligned with the first semiconductor substrate 100 as shown in FIG. After this is completed, the insulating film portion 202b of each of the plurality of semiconductor chips 20 is bonded to the first insulating film 102 of the first semiconductor substrate 100 as hybrid bonding (see FIGS. 5A and 5B).
  • the insulating film portions 202b of the plurality of semiconductor chips 20 and the first insulating film 102 of the first semiconductor substrate 100 may be uniformly heated before bonding.
  • the temperature difference between the semiconductor chip 20 and the first semiconductor substrate 100 during bonding is preferably 10° C. or less, for example.
  • Heat bonding at such a uniform temperature forms an insulating bonding portion S1 in which the first insulating film 102 and the insulating film portion 202b are bonded, and the plurality of semiconductor chips 20 are mechanically firmly attached to the first semiconductor substrate 100. can be attached to Further, since the heat bonding is performed at a uniform temperature, it is difficult for misalignment or the like to occur at the bonding portion, and high-precision bonding can be performed.
  • the first electrode 103 of the first semiconductor substrate 100 and the second electrode 203 of the semiconductor chip 20 are separated from each other and are not connected (but aligned).
  • the bonding of the semiconductor chip 20 to the first semiconductor substrate 100 may be performed by other bonding methods, such as room temperature bonding.
  • Step (h) is a step of bonding the first electrode 103 of the first semiconductor substrate 100 and the second electrode 203 of each of the plurality of semiconductor chips 20 .
  • step (h) as shown in (d) of FIG. 2, after the bonding in step (g) is completed, predetermined heat H or pressure or both are applied to perform hybrid bonding of the first semiconductor substrate 100. and the second electrodes 203 of the plurality of semiconductor chips 20 (see also FIG. 5(c)).
  • the annealing temperature in step (g) is preferably 150° C. or higher and 400° C. or lower, and preferably 200° C. or higher and 300° C. or lower. more preferred.
  • FIG. 6(b) shows a state in which the insulating joint portion S1 and the electrode joint portion S2 are formed.
  • the electrode bonding in step (h) is performed after bonding in step (g), but may be performed simultaneously with bonding in step (g). After that, as shown in (c) and (d) of FIG. 6 , all the semiconductor chips 20 are bonded to the first semiconductor substrate 100 to obtain the semiconductor device 1 .
  • the semiconductor device 1 As described above, it is possible to obtain the semiconductor device 1 (see FIG. 1) in which the plurality of semiconductor chips 20 are electrically and mechanically installed at predetermined positions on the first semiconductor substrate 100 with high accuracy. After that, the semiconductor device (C2W) having the configuration shown in FIG. Devices may be formed separately.
  • the second semiconductor substrate 200 is cleaned using the mixed cleaning fluid W1 in which gas is introduced into the cleaning liquid. Meanwhile, the second semiconductor substrate 200 is separated into individual pieces by dicing. In this case, cleaning is performed using the mixed cleaning fluid W1, which is mist-like by introducing gas into the cleaning liquid, so that the ejection pressure can be kept lower than in high-pressure cleaning, and the cleaning ability for fine debris can be increased. .
  • the semiconductor device 1 can be manufactured by using the semiconductor chip 20 from which the debris P generated by dicing has been reliably removed from the joint surface. can be reduced.
  • the adhesion strength of the second insulating film 202 to the second substrate body 201 may be adhesion strength at which the peeling rate in a cross-cut test is 1% or less.
  • the second insulating film 202 itself or a part thereof scatters and becomes debris due to the impact caused by the cleaning. can be suppressed. This makes it possible to suppress one of the causes of debris generation when separating the semiconductor chips 20 into individual pieces, and to further reduce connection failures of the semiconductor chips.
  • the thickness of the second insulating film 202 may be 20 ⁇ m or less.
  • a thin semiconductor device can be manufactured by forming finer electrodes or circuits.
  • the mixed cleaning fluid W1 is sprayed so that the ejection pressure of the mixed cleaning fluid W1 is 10 kgf/cm 2 (0.980655 MPa) or less.
  • 2 Cleaning may be performed by jetting toward the semiconductor substrate 200 .
  • cleaning may be performed by ejecting the mixed cleaning fluid W1 toward the second semiconductor substrate 200 so that the ejection pressure of the mixed cleaning fluid W1 is 2 kgf/cm 2 (0.196133 MPa) or more.
  • the ejection pressure of the mixed cleaning fluid W1 is 2 kgf/cm 2 (0.196133 MPa) or more.
  • debris can be effectively removed by the ejection pressure when the second semiconductor substrate 200 is diced.
  • the manufacturing yield of the semiconductor device can be improved. This makes it possible to further reduce connection failures of the semiconductor chip.
  • the manufacturing method according to the present embodiment in the step of obtaining a plurality of semiconductor chips, even if the mist (mixed cleaning fluid W2) after cleaning with the mixed cleaning fluid W1 ejected onto the second semiconductor substrate 200 is collected, good.
  • the mixed cleaning fluid W2 containing debris after cleaning can be quickly moved away from the diced and cleaned semiconductor chips 20 to suppress reattachment of the debris to the semiconductor chips 20 .
  • the second insulating film 202 of the second semiconductor substrate 200 may contain an inorganic material.
  • the inorganic materials are easily bonded to each other firmly, the bonding strength between the semiconductor substrates can be increased, and the connection reliability of the semiconductor device can be improved.
  • the second insulating film 202 of the second semiconductor substrate 200 may contain an organic material.
  • the organic material which is a relatively soft material, absorbs (incorporates) debris that could not be completely removed by the above-described cleaning into the insulating film portion made of the organic material, thereby further reducing connection failures of the semiconductor chip 20. can do. That is, according to this manufacturing method, large debris that is difficult to embed in the insulating film portion 202b is removed by cleaning the second semiconductor substrate 200 using the mixed cleaning fluid, and minute debris that cannot be removed by cleaning with the mixed cleaning fluid is removed.
  • Debris can be rendered harmless by embedding it in an insulating film of an organic material, and the removal or rendering of debris of different sizes can be complemented by two means.
  • the thickness of the second insulating film 202 may be 4 ⁇ m or more. In this case, by embedding minute debris in the second insulating film 202 made of resin, the connection between the first insulating film 102 and the second insulating film 202 can be improved.
  • the cleaning apparatus 30 also includes a first introduction portion 32 for introducing the cleaning liquid, a second introduction portion 33 for introducing the gas, and a mixing section for mixing the cleaning liquid with the gas to form the mixed cleaning fluid W1. 31 and a nozzle 34 for ejecting the mixed cleaning fluid W1.
  • the cleaning device 30 further includes a mist collector 35 that collects the mist (mixed cleaning fluid W2) ejected from the nozzle 34 after cleaning with the mixed cleaning fluid W1.
  • the mixed cleaning fluid W2 containing debris after cleaning is quickly moved away from the diced and cleaned semiconductor chips 20 by the mist collector 35 to suppress reattachment of the debris to the semiconductor chips 20. can be done. As a result, it is possible to further reduce connection failures of the semiconductor chips when the semiconductor chips are three-dimensionally mounted.
  • the cleaning method according to the present embodiment includes a step of preparing the second semiconductor substrate 200 and a step of cleaning the second semiconductor substrate 200 when singulating it.
  • the cleaning step the second semiconductor substrate 200 is separated into individual pieces by dicing while cleaning the second semiconductor substrate 200 using the mixed cleaning fluid W1 in which gas is introduced into the cleaning liquid.
  • cleaning is performed using the mixed cleaning fluid W1, which is mist-like by introducing gas into the cleaning liquid, so that the ejection pressure can be kept lower than in high-pressure cleaning, and the cleaning ability for fine debris can be increased.
  • the semiconductor device 1 can be manufactured using the semiconductor chip 20 from which debris generated by dicing has been reliably removed, and connection failures of the semiconductor chip can be reduced when the semiconductor chip is three-dimensionally mounted. .
  • the semiconductor device 1 manufactured by the manufacturing method according to the present embodiment has a first substrate body 101 and a first insulating film 102 and a first electrode 103 provided on one surface of the first substrate body 101 . It includes one semiconductor substrate 100 and a plurality of semiconductor chips 20 . The first electrode 103 of the first semiconductor substrate 100 and the second electrode 203 of the semiconductor chip 20 are bonded together, and the first insulating film 102 of the first semiconductor substrate 100 and the insulating film portion 202b of the semiconductor chip are bonded together. There is In this insulating film portion 202b, there is no more than one piece of debris of 50 ⁇ m or more within a range of 15 mm long and 15 mm wide.
  • Example 1 the surface of the semiconductor chip was washed by a normal washing method while being diced (Comparative Example 1), and the surface of the semiconductor chip was washed by a two-fluid washing method (Example 1). Remaining debris (foreign matter) was evaluated.
  • the semiconductor chips to be cleaned corresponded to nine 5 mm square semiconductor chips each having a length of 5 mm and a width of 5 mm.
  • the normal cleaning method according to Comparative Example 1 was performed under the following cleaning conditions using the following cleaning equipment.
  • Cleaning device Dicing device (DFD6302, manufactured by Disco Co., Ltd.) Cleaning conditions: pure water, flow rate: 80 mL/min While dicing the semiconductor device, the bonding surface of the semiconductor chip was cleaned. Thereafter, the diced semiconductor device was rotated at a rotation speed of 800 rpm for 20 seconds to spin clean the bonding surface of the semiconductor chip, and then rinsed with pure water at a flow rate of 0.8 L/min for 10 seconds. After rinsing, the diced semiconductor device was dried by rotating it at 2000 rpm for 20 seconds.
  • the two-fluid cleaning method according to Example 1 was performed under the following cleaning conditions using the following cleaning apparatus.
  • Cleaning device Dicing device (DFD6302, manufactured by Disco Co., Ltd.) Cleaning conditions: pure water flow rate 80ml/min Compressed air pressure 0.3 MPa Ejection pressure 3.05914 kgf/cm 2 (0.3 MPa)
  • the mixed cleaning fluid was used to clean the bonding surface of the semiconductor chip.
  • the diced semiconductor device was rotated at a rotation speed of 800 rpm for 20 seconds to spin clean the bonding surface of the semiconductor chip, and then rinsed with pure water at a flow rate of 0.8 L/min for 10 seconds. After rinsing, the diced semiconductor device was dried by rotating it at 2000 rpm for 20 seconds.
  • FIG. 7 shows a photograph of the bonding surface of the semiconductor chip after cleaning.
  • FIG. 7(a) shows a bonding surface when a semiconductor chip is cleaned under normal cleaning conditions (Comparative Example 1), and FIG. This shows the joint surface after cleaning.
  • FIG. 7(a) shows a bonding surface when a semiconductor chip is cleaned under normal cleaning conditions (Comparative Example 1), and FIG. This shows the joint surface after cleaning.
  • FIG. 7(a) shows a bonding surface when a semiconductor chip is cleaned under normal cleaning conditions (Comparative Example 1)
  • FIG. This shows the joint surface after cleaning.
  • the manufacturing method using the two-fluid cleaning it is possible to obtain a semiconductor device in which the number of debris of 50 ⁇ m or more in the insulating film portion of the semiconductor chip is suppressed to within one within a range of 15 mm in length and 15 mm in width. I have confirmed that it is possible.
  • connection failures of the semiconductor chip can be reduced.
  • Example 2 ( a) Test A for evaluating the number of foreign objects per unit area (number of remaining debris), and (b) Test B for evaluating the maximum diameter of remaining debris. The results of test A are shown in FIG. 8(a), and the results of test B are shown in FIG. 8(b).
  • the data on the left (A1 and B1) show a table plotting each test result, and the data on the right (A2 and B2) summarize the plotted data on the left. Show a table. The number of tests for Test A and Test B was 70 each.
  • the maximum diameter of debris remaining on the bonding surface of the semiconductor chip tends to be 30 ⁇ m or less, and in many cases, the maximum diameter of the remaining debris is 10 ⁇ m or less.
  • the two-fluid cleaning can significantly reduce the number of debris remaining on the bonding surface of the semiconductor chip and the maximum size of the debris compared to the conventional cleaning method.
  • Example 3 ( a) Test C in which the number of spontaneously falling off was evaluated by touching with tweezers after bonding a semiconductor chip and a semiconductor device after cleaning; Samples that did not fall off spontaneously upon touching were selected, and Test D was performed to evaluate the connection strength (average value) between the two. Two pressure bonding temperatures of 300° C. and 350° C. were used when connecting the cleaned semiconductor chip to the semiconductor device. The results of test C are shown in FIG. 9(a), and the results of test D are shown in FIG. 9(b). The number of tests for Test C and Test D was 10 each (for each crimping temperature).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

半導体装置の製造方法は、第1半導体基板を準備する工程と、第2半導体基板を準備する工程と、第2半導体基板の第2絶縁膜を研磨する工程と、第2半導体基板を個片化し、第2絶縁膜に対応する絶縁膜部分と第2電極とをそれぞれが備えた複数の半導体チップを取得する工程と、第1半導体基板の第1電極に対して半導体チップの第2電極の位置合わせを行う工程と、第1絶縁膜と半導体チップの絶縁膜部分とを互いに貼り合わせる工程と、第1電極と第2電極とを接合する工程と、を備える。複数の半導体チップを取得する工程では、洗浄液内に気体が導入された混合洗浄流体を使用して第2半導体基板を洗浄しながら、第2半導体基板をダイシングにより個片化する。

Description

半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置
 本開示は、半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置に関する。より詳しくは、本開示は、個片化された半導体チップを半導体基板(半導体ウェハ又は別の半導体チップ等)に接合する半導体装置の製造方法、それに用いられる洗浄装置、洗浄方法、及び、当該製造方法によって製造される半導体装置に関する。
 近年、LSIの集積度を向上させるために三次元実装が検討されている。非特許文献1には、半導体チップの三次元実装の一例が開示されている。
F.C. Chen et al., "System on Integrated Chips(SoIC TM) for 3D Heterogeneous Integration", 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), p.594-599(2019)
 このような半導体チップの三次元実装を行う場合において、デバイス同士の配線の微細接合及び接合時の位置ずれ防止のため、Wafer-to-Wafer(W2W)接合に用いられるハイブリッドボンディング技術を使うことが検討されている。しかしながら、半導体チップの三次元実装を行う場合、W2Wと異なり、半導体チップへの個片化を行う工程により異物であるデブリ(切断破片)が発生することがあり、このデブリが半導体チップ等の接合界面(ハイブリッドボンディングの絶縁膜)に付着してしまう虞がある。デブリが半導体チップ等の接合界面に付着したまま接合を行うと、製造される半導体装置において接続不良が生じてしまう。
 本開示は、半導体チップの三次元実装を行う場合において半導体チップの接続不良を低減できる、半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置を提供することを目的とする。
 本開示は、一側面として、半導体装置の製造方法に関する。この半導体装置の製造方法は、第1基板本体と該第1基板本体の一面に設けられた第1絶縁膜及び第1電極とを有する第1半導体基板を準備する工程と、第2基板本体と該第2基板本体の一面に設けられた第2絶縁膜及び複数の第2電極とを有する第2半導体基板を準備する工程と、第2半導体基板の一面側に配置されている第2絶縁膜を研磨する工程と、第2半導体基板を個片化し、第2絶縁膜に対応する絶縁膜部分と少なくとも1つの第2電極とをそれぞれが備えた複数の半導体チップを取得する工程と、第1半導体基板の第1電極に対して複数の半導体チップの内の少なくとも1つの半導体チップの第2電極の位置合わせを行う工程と、第1半導体基板の第1絶縁膜と半導体チップの絶縁膜部分とを互いに貼り合わせる工程と、第1半導体基板の第1電極と半導体チップの第2電極とを接合する工程と、を備える。複数の半導体チップを取得する工程では、洗浄液内に気体が導入された混合洗浄流体を使用して第2半導体基板を洗浄しながら、第2半導体基板をダイシングにより個片化する。
 この製造方法では、複数の半導体チップを取得する工程において、洗浄液内に気体が導入された混合洗浄流体を使用して第2半導体基板を洗浄しながら、第2半導体基板をダイシングにより個片化している。この場合、洗浄液に気体を導入することでミスト状となった混合洗浄流体を用いて洗浄を行うため、高圧洗浄よりも噴出圧力を低く抑えつつ微細なデブリに対する洗浄能力を高くすることができる。これにより、ダイシングで生じるデブリが確実に除去された半導体チップを用いて半導体装置を製造することができ、半導体チップの三次元実装を行う場合において半導体チップの接続不良を低減することができる。
 上記の製造方法において、第2絶縁膜の第2基板本体への接着強さは、碁盤目試験におけるはく離率が1%以下である接着強さであってもよい。この場合、洗浄液の噴出圧力は低減されているものの、第2半導体基板を洗浄した際に当該洗浄による衝撃で第2絶縁膜自体又はその一部が飛散してデブリになることを抑制できる。これにより、半導体チップを個片化する際のデブリの発生要因の1つを抑えて、半導体チップの接続不良を更に低減することが可能となる。なお、「はく離率」は、碁盤目試験における、全個片数に占めるはく離された個片数の割合である。「碁盤目試験」は、JIS K5400に規定される碁盤目試験100マス(間隔:1mm、10×10=100マス)である。具体的には、対象試験片を1mm間隔で縦横それぞれに素地まで届く切込みを11本入れた後、対象試験片にセロハン粘着テープを付着させる。そして、セロハン粘着テープを付着させて1~2分間が経過した後、接着面に対して直角になるようにセロハン粘着セープを保ったまま瞬間的に引き剥がし、はく離された個片数を数える。はく離率(%)は、このはく離された個片数を全個片数(100個)で除して100を乗じた値である。
 上記の製造方法において、第2絶縁膜の厚さは、20μm以下であってもよい。この場合、より微細な電極又は回路を形成して、薄型の半導体装置を作製することが可能となる。例えば、第2絶縁膜内に形成される第2電極の最小サイズ(電極幅)は、第2絶縁膜の厚さと使用される感光性材料のアスペクト比とによって規定される。感光性材料のアスペクト比が例えば1:1(開口幅:深さ)である場合、第2絶縁膜の厚さが20μm以下であることにより、第2電極の電極幅を20μm以下とすることができる。即ち、この製造方法によれば、第2電極を微細な電極とすることが可能となる。
 上記の製造方法において、複数の半導体チップを取得する工程では、混合洗浄流体の噴出圧が10kgf/cm(0.980665MPa)以下となるように、混合洗浄流体を第2半導体基板に向けて噴出して洗浄を行ってもよい。この場合、第2半導体基板をダイシングする際の洗浄により、ダイシングされた半導体チップを飛ばしてしまうこと(チップ飛び)を抑制できる。また、混合洗浄流体により第2絶縁膜を第2半導体基板からはく離させてしまうことを抑制できる。更に、混合洗浄流体で第2半導体基板の絶縁膜を飛散させてデブリを生じさせてしまうことを抑制できる。一方、混合洗浄流体の噴出圧が2kgf/cm(0.196133MPa)以上となるように、混合洗浄流体を第2半導体基板に向けて噴出して洗浄を行ってもよい。この場合、第2半導体基板をダイシングする際の洗浄により、デブリを効果的に除去することができる。以上により、半導体装置の製造歩留まりを向上することが可能となる。これにより、半導体チップの接続不良を更に低減することが可能となる。
 上記の製造方法において、複数の半導体チップを取得する工程では、第2半導体基板に噴出された混合洗浄流体の洗浄後のミストを回収してもよい。この場合、洗浄後にデブリが含有されている混合洗浄流体を、ダイシングされ且つ洗浄された半導体チップから早期に遠ざけて、半導体チップへのデブリの付着を抑制できる。これにより、半導体チップの三次元実装を行う場合において半導体チップの接続不良を更に低減することが可能となる。
 上記の製造方法において、複数の半導体チップを取得する工程では、第2半導体基板の第2絶縁膜に対して混合洗浄流体が噴出されると共に、第2絶縁膜から第2基板本体に向かってダイシングが行われてもよい。この場合、第1半導体基板へ貼り合わせるための第2半導体基板の接合面が表面側にむき出しになるため、ダイシング後に第2絶縁膜の表面に対してプラズマ、イオンビーム、紫外線、又は電子線を照射して表面処理を行ったり、又は、第2絶縁膜の表面にカップリング剤等を付与する表面処理を行ったりすることを容易に行うことができる。
 上記の製造方法において、第2半導体基板の第2絶縁膜が無機材料を含んでいてもよい。この場合、より微細な構成の半導体装置を作製することが可能となる。また、無機材料同士の接合は強固にし易いことから、半導体基板同士の接着強さを高めて、半導体装置としての接続信頼性を向上させることが可能となる。
 上記の製造方法において、第2半導体基板の第2絶縁膜が有機材料を含んでいてもよい。この場合、比較的柔らかい材料である有機材料により、洗浄で取り除けなかったデブリを当該有機材料からなる絶縁膜部分に吸収(内蔵)して、半導体チップの接続不良を更に低減することができる。即ち、この製造方法によれば、絶縁膜部分に埋め込むことが困難な大きなデブリを、混合洗浄流体を使用した第2半導体基板の洗浄により取り除くと共に、混合洗浄流体による洗浄で取り除けなかった微小なデブリを有機材料の絶縁膜に埋め込んで無害化し、異なるサイズのデブリの除去又は無害化を2つの手段で補完して行うことが可能となる。更に、第2絶縁膜が有機材料から構成される場合において、第2絶縁膜の厚さは4μm以上であってよい。この場合、微小なデブリを有機材料である樹脂製の絶縁膜内に埋め込むことができ、これにより、第1絶縁膜と半導体チップの絶縁膜部分との接続を良好な状態とすることができる。埋め込むことが可能なデブリの大きさは樹脂絶縁膜の厚みで規定され、例えば、第2絶縁膜の厚さが4μmである場合、直径4μmの大きさのデブリを第2絶縁膜内に埋め込むことができる。即ち、この製造方法によれば、第2絶縁膜の厚さよりも小さなデブリが存在しても樹脂絶縁膜に当該デブリを埋め込むことで第1絶縁膜と半導体チップの絶縁膜部分との接続を良好なものとすることができる。
 また、第2絶縁膜が有機材料を含む場合において、第2絶縁膜に含まれる有機材料は、ポリイミド、ポリイミド前駆体、ポリアミドイミド、ベンゾシクロブテン(BCB)、ポリベンゾオキサゾール(PBO)、又はPBO前駆体を含んでもよい。これらの材料は液状又は溶媒に可溶であることから、第2絶縁膜を例えばスピンコート等で作製し易くなり、薄膜を成膜し易くなる。また、これらの材料は耐熱性が高いため、第1半導体基板と第2半導体基板とを接合する際の高温等に耐えることができ、基板同士の接合をより確実に行うことが可能となる。
 また、本開示は、一側面として、上述した何れかの半導体装置の製造方法に用いられる洗浄装置に関する。この洗浄装置は、洗浄液を導入する第1導入部と、気体を導入する第2導入部と、洗浄液に気体を混合させて混合洗浄流体を形成する混合部と、混合洗浄流体を噴出するノズルと、を備える。このような洗浄装置を用いることにより、ダイシングされた半導体チップの接合面上のデブリをより確実に除去することが可能となる。
 上記の洗浄装置は、ノズルから噴出された混合洗浄流体の洗浄後のミストを回収するミストコレクタを更に備えていてもよい。この場合、ミストコレクタにより、洗浄後にデブリが含有されている混合洗浄流体を、ダイシングされ且つ洗浄された半導体チップから早期に遠ざけて、半導体チップへのデブリの付着を抑制することができる。これにより、半導体チップの三次元実装を行う場合において半導体チップの接続不良を更に低減することが可能となる。
 また、本開示は、別の側面として、洗浄方法に関する。この洗浄方法は、基板本体と該基板本体の一面に設けられた絶縁膜及び複数の電極とを有する半導体基板を準備する工程と、半導体基板を個片化する際に洗浄を行う工程と、を備える。洗浄を行う工程では、洗浄液内に気体が導入された混合洗浄流体を使用して半導体基板を洗浄しながら、半導体基板をダイシングにより個片化する。この場合、洗浄液に気体を導入することでミスト状となった混合洗浄流体を用いて洗浄を行うため、高圧洗浄よりも噴出圧力を低く抑えつつ微細なデブリに対する洗浄能力を高くすることができる。これにより、ダイシングで生じるデブリが確実に除去された半導体チップを用いて半導体装置を製造することができ、半導体チップの三次元実装を行う場合において半導体チップの接続不良を低減することができる。
 上記の洗浄方法において、洗浄を行う工程では、混合洗浄流体の噴出圧が2kgf/cm(0.196133MPa)以上で且つ10kgf/cm(0.980665MPa)以下となるように、混合洗浄流体を半導体基板に向けて噴出して洗浄を行い、洗浄される半導体基板の絶縁膜は有機絶縁材料を含み、この絶縁膜の厚さが4μm以上であってもよい。この洗浄方法によれば、噴出圧が所定の範囲にあるため高圧洗浄によって絶縁膜をはく離させることなく、大きめのデブリを混合洗浄流体を使用した半導体基板の洗浄により取り除くと共に、混合洗浄流体による洗浄で取り除けない微小なデブリ(例えば直径又は幅が4μm以下のデブリ)を有機材料の絶縁膜に埋め込んで無害化することができる。これにより、個片化された半導体基板を他の半導体基板に接続する際の接続不良を効果的に低減することが可能となる。
 また、本開示は、別の側面として、半導体装置に関する。この半導体装置は、第1基板本体と該第1基板本体の一面に設けられた第1絶縁膜及び第1電極とを有する第1半導体基板と、第2基板本体と該第2基板本体の一面に設けられた第2絶縁膜及び第2電極とを有する第2半導体基板とを、備える。第1半導体基板の第1電極と第2半導体基板の第2電極とが接合されており、第1半導体基板の第1絶縁膜と第2半導体基板の第2絶縁膜とが接合されている。第2絶縁膜には、50μm以上のデブリが縦15mmで横15mmの範囲内に1個以内である。
 上記の半導体装置では、第2絶縁膜には、50μm以上のデブリが縦15mmで横15mmの範囲内に1個以内に抑えられている。この場合、この半導体装置では、半導体チップの接続不良を低減することができる。
 本開示によれば、半導体チップの三次元実装を行う場合において半導体チップの接続不良を低減することができる。
図1は、本発明の一実施形態に係る半導体装置の製造方法によって製造される半導体装置(C2W)の一例を模式的に示す断面図である。 図2は、図1に示す半導体装置を製造するための方法を順に示す図である。 図3は、図2に示す半導体装置の製造方法におけるダイシング及び洗浄の状態を模式的に示す図である。 図4は、図3に示す洗浄を行うための洗浄装置を示す図である。 図5は、図2に示す半導体装置の製造方法における接合方法をより詳細に示す図である。 図6は、図2に示す半導体装置の製造方法における接合方法をより詳細に示す図である。 図7は、半導体チップの接合面に付着したデブリを示す写真であり、図7の(a)は、通常の洗浄方法で洗浄された半導体チップの接合面(比較例1)であり、図7の(b)は、二流体洗浄方法で洗浄された半導体チップの接合面(実施例1)を示す。 図8の(a)は、半導体チップを通常の洗浄方法で洗浄した場合(比較例2)と二流体洗浄方法で洗浄した場合(実施例2)とでのデブリの残存数の対比を示す図であり、図8の(b)は、半導体チップを通常の洗浄方法で洗浄した場合(比較例2)と二流体洗浄方法で洗浄した場合(実施例2)とでの残存したデブリの最大径の対比を示す図である。 図9の(a)は、半導体チップを通常の洗浄方法で洗浄した場合(比較例3)と二流体洗浄方法で洗浄した場合(実施例3)とでの機械的接続が確保できた率を接合温度毎に対比した図であり、図9の(b)は、半導体チップを通常の洗浄方法で洗浄した場合(比較例3)と二流体洗浄方法で洗浄した場合(実施例3)とでの接続強度を接合温度毎に対比した図である。
 以下、必要により図面を参照しながら本開示のいくつかの実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一の符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。本明細書の記載及び請求項において「左」、「右」、「正面」、「裏面」、「上」、「下」、「上方」、「下方」等の用語が利用されている場合、これらは、説明を意図したものであり、必ずしも永久にこの相対位置である、という意味ではない。更に、図面の寸法比率は図示の比率に限られるものではない。
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
(半導体装置の構成)
 図1は、本実施形態に係る製造方法によって製造される半導体装置の一例を模式的に示す断面図である。図1に示すように、半導体装置1は、例えば半導体パッケージの一例であり、第1半導体基板10と複数の半導体チップ20とを備えており、Chip-to-wafer(C2W)構造を有している。複数の半導体チップ20は、後述する第2半導体基板200をダイシングにより個片化することで作製される。複数の半導体チップ20が第1半導体基板10上に実装されて三次元実装構造となる。第1半導体基板10は、例えばLSI(Large scale Integrated Circuit:大規模集積回路)チップ又はCMOS(Complementary Metal Oxide Semiconductor)センサ等の複数の半導体チップが各半導体チップ20に対応する箇所に形成された基板であってもよい。各半導体チップ20は、例えばLSI又はメモリ等の半導体チップであってもよい。第1半導体基板10と複数の半導体チップ20とは、後述するハイブリッドボンディングにより、それぞれの端子電極とその周りの絶縁膜同士が強固且つ位置ズレせずに微細接合されている。なお、半導体装置1は、図1に示す構成から更に個片化された1の半導体チップ20と、1の半導体チップ20に対応する第1半導体基板10の一部である基板部分とを備える、個別の半導体装置に更に個片化されてもよい。
(半導体装置の製造方法)
 次に、半導体装置1の製造方法について、図2及び図3を参照して、説明する。図2は、図1に示す半導体装置を製造するための方法を順に示す図である。図3は、図2に示す半導体装置の製造方法におけるダイシング及び洗浄の状態を模式的に示す図である。
 半導体装置1は、例えば、以下の工程(a)~工程(h)を経て製造することができる。
(a)第1基板本体101と、第1絶縁膜102及び複数の第1電極103とを有する第1半導体基板100を準備する工程。
(b)複数の半導体チップ20に対応する半導体基板であって、第2基板本体201と、第2絶縁膜202及び複数の第2電極203とを有する第2半導体基板200を準備する工程。
(c)第1半導体基板100の第1絶縁膜102を第1電極103と共に研磨する工程。
(d)第2半導体基板200の第2絶縁膜202を第2電極203と共に研磨する工程。
(e)第2半導体基板200を個片化し、第2絶縁膜202に対応する絶縁膜部分202bと第2電極203とをそれぞれが備えた複数の半導体チップ20を取得する工程。
(f)第1半導体基板100の第1電極103に対して複数の半導体チップ20それぞれの第2電極203の位置合わせを行う工程。
(g)第1半導体基板100の第1絶縁膜102と複数の半導体チップ20の各絶縁膜部分202bとを互いに貼り合わせる工程。
(h)第1半導体基板100の第1電極103と複数の半導体チップ20それぞれの第2電極203とを接合する工程。
[工程(a)及び工程(b)]
 工程(a)は、半導体素子及びそれらを接続する配線などからなる集積回路が形成されたシリコン基板である第1半導体基板100を準備する工程である。工程(a)では、図2の(a)に示すように、シリコン等からなる第1基板本体101の一面101aに、銅又はアルミニウム等からなる複数の第1電極103を所定の間隔で設けると共に無機材料又は有機材料からなる第1絶縁膜102を設ける。第1電極103は、第1半導体基板100に形成された集積回路等を第1絶縁膜102を貫通して外部に露出させるための端面電極である。第1絶縁膜102を第1基板本体101の一面101a上に設けてから、複数の第1電極103を設けてもよいし、複数の第1電極103を第1基板本体101の一面101aに設けてから第1絶縁膜102を設けてもよい。
 工程(b)は、複数の半導体チップ20に対応し、半導体素子及びそれらを接続する配線などからなる集積回路が形成されたシリコン基板である第2半導体基板200を準備する工程である。工程(b)では、図2の(a)に示すように、シリコン等からなる第2基板本体201の一面201a上に、銅又はアルミニウム等からなる複数の第2電極203を連続的に設けると共に無機材料または有機材料からなる第2絶縁膜202を設ける。第2電極203は、第2半導体基板200に形成された集積回路等を第2絶縁膜202を貫通して外部に露出させるための端面電極である。第2絶縁膜202を第2基板本体201の一面201a上に設けてから複数の第2電極203を設けてもよいし、複数の第2電極203を第2基板本体201の一面201aに設けてから第2絶縁膜202を設けてもよい。
 工程(a)及び工程(b)で用いられる第1絶縁膜102及び第2絶縁膜202は、無機材料または有機材料を含んで構成されている。絶縁膜に用いられる無機材料は、例えば、酸化シリコン(SiO)等である。絶縁膜に酸化シリコン等の無機材料を用いる場合、より微細な構成の半導体装置を作製することができる。また、後述する工程(g)で絶縁膜同士を貼り合わせる際、無機材料同士の接合は強固にし易いことから、半導体基板同士の接着強さを高めて、半導体装置としての接続信頼性を向上させることが可能となる。
 絶縁膜に用いられる有機材料は、例えば、ポリイミド、ポリイミド前駆体(例えばポリイミアミックエステル又はポリアミック酸)、ポリアミドイミド、ベンゾシクロブテン(BCB)、ポリベンゾオキサゾール(PBO)、又はPBO前駆体である。これら有機材料は、例えば、酸化シリコン(SiO)等の無機材料に比べて低い弾性率を有しており、柔らかい材料となっている。このような有機材料を用いることにより、後述する工程(g)で絶縁膜同士を貼り合わせる際、絶縁膜上に微細なデブリがあっても絶縁膜内に吸収してデブリによる接合不良を防止し、絶縁膜同士の貼り合わせを確実に行うことが可能となる。例えば、絶縁膜の厚さが4μmである場合、直径または幅が4μmの大きさのデブリを有機絶縁膜内に埋め込むことができる。また、第1絶縁膜102及び第2絶縁膜202を構成する有機材料の弾性率は、例えば7.0GPa以下であってもよく、5.0GPa以下であってもよく、3.0GPa以下であってもよく、2.0GPa以下であってもよく、1.5GPa以下であってもよい。ここでいう弾性率はヤング率を意味する。また、第1絶縁膜102及び第2絶縁膜202を構成する有機材料は、その熱膨張係数が70ppm/K以下であることが好ましく、さらに好ましくは50ppm/K以下であってもよい。
 また、絶縁膜に用いられる前記有機材料は、液状又は溶媒に可溶であることから、スピンコート等により各絶縁膜を薄膜として容易に成膜することができる。更に、これら有機材料は、耐熱性を有していることから、後述する工程(h)で第1電極103及び第2電極203を接合する際の温度(例えば300℃以上の高温)に耐えることができ、絶縁膜同士の接合が高温により劣化しないようになっている。なお、第1絶縁膜102及び第2絶縁膜202を構成する有機材料として、感光性樹脂、熱硬化性の非導電性フィルム(NCF:Non Conductive Film)、又は、熱硬化性樹脂を用いてもよい。この有機材料は、アンダーフィル材であってもよい。また、第1絶縁膜102及び第2絶縁膜202は、無機材料と有機材料との両方を含む絶縁膜であってもよい。
 第2絶縁膜202は、第2基板本体201に対して強固に接着される構成であってもよく、例えば、第2基板本体201に対して碁盤目試験におけるはく離率が1%以下である接着強さを有するように形成してもよい。第2絶縁膜202が第2基板本体201に対して強固に接着していることにより、後述する工程(e)での洗浄の際に第2絶縁膜202が全体的又は部分的にはく離してデブリになったり、チップ飛びが発生したりすることが防止される。なお、「はく離率」は、碁盤目試験における、全個片数に占めるはく離された個片数の割合である。「碁盤目試験」は、JIS K5400に規定される碁盤目試験 100マス(間隔:1mm、10×10=100マス)である。具体的には、対象試験片を1mm間隔で縦横それぞれに素地まで届く切込みを11本入れた後、対象試験片にセロハン粘着テープを付着させる。そして、セロハン粘着テープを付着させて1~2分間が経過した後、接着面に対して直角になるようにセロハン粘着セープを保ったまま瞬間的に引き剥がし、はく離された個片数を数える。はく離率(%)は、このはく離された個片数を全個片数(100個)で除して100を乗じた値である。
 第2絶縁膜202の厚さは、20μm以下であってもよい。第2絶縁膜202の厚みを十分に薄くすることにより、第2電極203及び第2電極203から形成される配線等をより微細な構成とすることができる。例えば、第2絶縁膜202内に形成される第2電極203の最小サイズ(電極幅)は、第2絶縁膜202の厚さと使用される感光性材料のアスペクト比とによって規定される。感光性材料のアスペクト比が例えば1:1(開口幅:深さ)である場合、第2絶縁膜202の厚さが20μm以下であることにより、第2電極203の電極幅を20μm以下とすることができる。なお、第2絶縁膜202の厚さは、20μmより厚くてもよい。この場合、後述する工程(g)において、絶縁膜同士を貼り合わせる際、樹脂製の第2絶縁膜202内により多くのデブリ埋め込むことができ、絶縁膜同士をより確実に接合することができる。また、絶縁膜同士を接合する際の応力を何れかの樹脂絶縁層で緩和して、絶縁膜同士の接着性を向上させることも可能である。
 さらに、第2絶縁膜202の厚みは4μm以上であってよい。この場合、微小なデブリを樹脂絶縁膜内に埋め込むことで、仮に微小なデブリが残ってしまった場合であっても第1絶縁膜102と第2絶縁膜202との接続を良好にすることが可能となる。例えば、第2絶縁膜202に埋め込むことが可能なデブリの大きさは、樹脂製の第2絶縁膜202の厚みで規定される。第2絶縁膜202の厚みが例えば4μmである場合、直径又は幅が4μmであるデブリを第2絶縁膜202内に埋め込むことができる。即ち、この製造方法によれば、第2絶縁膜202の厚みより小さなデブリが存在しても樹脂絶縁膜にデブリを埋め込むことで、第1絶縁膜102と第2絶縁膜202との接続を良好なものとすることが可能となる。なお、第1絶縁膜102の厚みが、第2絶縁膜202と同様に、20μm以下であってもよいし、20μmより厚くてもよいし、4μm以上であってもよい。第1絶縁膜102が、上述したように、デブリを埋め込んでもよい。
[工程(c)及び工程(d)]
 工程(c)は、第1半導体基板100を研磨する工程である。工程(c)では、第1電極103が設けられた第1絶縁膜102の表面をCMP(Chemical Mechanical Polishing)法を用いて研磨する。工程(c)では、例えば銅等からなる第1電極103を選択的に深く削る条件でCMP法によって第1半導体基板100を研磨してもよいし、第1電極103の各表面が第1絶縁膜102の表面と一致するようにCMP法で研磨してもよい。なお、この研磨により、第1半導体基板100の表面上のデブリも除去される。
 工程(d)は、第2半導体基板200を研磨する工程である。工程(d)では、第2電極203が設けられた第2絶縁膜202の表面をCMP法を用いて研磨する。工程(d)では、例えば銅等からなる第2電極203を選択的に深く削る条件でCMP法によって第2半導体基板200を研磨してもよいし、第2電極203の各表面が第2絶縁膜202の表面と一致するようにCMP法で研磨してもよい。なお、この研磨により、第2半導体基板200の表面上のデブリも除去される。
 工程(c)及び工程(d)では、第1絶縁膜102の厚さと第2絶縁膜202の厚さが同じになるように研磨してもよいが、例えば、第2絶縁膜202の厚さが第1絶縁膜102の厚さよりも厚くなるように研磨してもよい。一方、第2絶縁膜202の厚さが第1絶縁膜102の厚さよりも薄くなるように研磨してもよい。第2絶縁膜202の厚さが第1絶縁膜102の厚さよりも厚く且つ有機材料から形成されている場合には、半導体チップ20への個片化時又はチップ実装時に接合界面に付着するデブリの多くを第2絶縁膜202によって包含することができ、接合不良を低減することができる。一方、第2絶縁膜202の厚さが第1絶縁膜102の厚さよりも薄い場合には、実装される半導体チップ20、つまり半導体装置1の低背化を図ることができる。
[工程(e)]
 工程(e)は、第2半導体基板200を個片化し、複数の半導体チップ20を取得する工程である。工程(e)では、図3に示すように、第2半導体基板200をダイシングテープ205上に配置して、第2絶縁膜202から第2基板本体201に向かってダイシング等の切断手段により複数の半導体チップ20に個片化する。第2半導体基板200をダイシングする際に第2絶縁膜202に保護材等を被覆して、それから個片化してもよい。工程(e)により、第2半導体基板200の第2絶縁膜202は、図2の(b)に示すように、各半導体チップ20に対応する絶縁膜部分202bへと分割される。第2半導体基板200を個片化するダイシング方法としては、例えば、プラズマダイシング、ステルスダイシング又はレーザーダイシングを用いることができる。ダイシングの際の第2半導体基板200の表面保護材としては、例えば、水又はTMAH等で除去可能な有機膜、又は、プラズマ等で除去可能な炭素膜などの薄膜を設けてもよい。なお、第1半導体基板100へ貼り合わせるための第2半導体基板200の接合面が表面側にむき出しになっていることから、ダイシング後に第2絶縁膜202の表面に対してプラズマ、イオンビーム、紫外線、又は電子線を照射して表面処理を行ったり、又は、第2絶縁膜の表面にカップリング剤等を付与する表面処理を行ったりしてもよい。
 本実施形態では、図3に示すように、工程(e)の個片化の際に、第2半導体基板200を二流体洗浄方法によって洗浄する。二流体洗浄方法とは、圧縮した気体(例えば清浄な空気)を液体(例えば純水)に混合してミスト状となった混合洗浄流体を用いて行う洗浄方法を意味する。二流体洗浄方法では、微小な液体を高速で対象物にぶつけることでより高い洗浄能力を実現できる一方、高圧な洗浄水が不要であるため、対象物にかかる衝撃を低減することができる。衝撃が低減されるため、対象物が破損等してデブリの原因となることも低減される。図4は、このような二流体洗浄を行うための洗浄装置を模式的に示す図である。図4に示すように、洗浄装置30は、混合部31、第1導入部32、第2導入部33、及びノズル34を備えている。第1導入部32は、純水などの洗浄液を混合部31に導入する。第2導入部33は、圧縮空気等の気体を混合部31に導入する。混合部31では、第1導入部32から導入された洗浄液に、第2導入部33から導入された圧縮空気を混合させて、ミスト状の混合洗浄流体を形成する。混合部31で形成された混合洗浄流体W1は、混合部31の先端に設けられたノズル34から、ダイシング中の第2半導体基板200(第2絶縁膜202の表面)に向けて噴出され、第2半導体基板が洗浄される。また、洗浄装置30は、ノズル34から噴出され第2半導体基板200の洗浄が終わった洗浄液を回収するミストコレクタ35を更に備えている。ミストコレクタ35により、洗浄後でデブリP等を含む混合洗浄流体W2が回収される。
 洗浄装置30による洗浄条件としては、洗浄液である純水の流量を50mL/分~100mL/分として混合部31に導入すると共に、圧力0.2MPa~0.4MPaの圧縮空気(クリーンエア)を導入して、混合洗浄流体W1を形成する。圧縮空気の導入圧力は、例えば2.7kgf/cm~6.0kgf/cm(0.26478MPa~0.588399MPa)であってもよい。洗浄装置30からは、この混合洗浄流体W1を10kgf/cm(0.9806565MPa)以下の噴出圧で第2半導体基板200に対して噴出して洗浄を行う。図3に示すように、第2半導体基板200をダイシング装置40によりダイシングしながら、このような気体と液体を混合した二流体(混合洗浄流体W1)をミスト状の微小液滴にして高速で衝突させることにより、高圧洗浄を行うことなく、方向Dにむけてダイシングされている第2半導体基板200を効率的に洗浄することができる。この二流体洗浄方法に用いられる混合洗浄流体の噴出圧は、更に8kgf/cm(0.784532MPa)以下であってもよく、4kgf/cm(0.392266MPa)以上であってもよい。また、この二流体洗浄方法に用いられる混合洗浄流体の噴出圧は、2kgf/cm(0.196133MPa)以上であってもよい。ミスト状の混合洗浄流体W1による洗浄は、ダイシング終了後に継続もしくは追加で行っても良い。ミスト状の混合洗浄流体W1での洗浄が終了した後、リンスとして、ダイシングされた第2半導体基板200を更に純水で洗浄してもよい。また、混合洗浄流体での洗浄またはリンスの後に、ダイシングされた第2半導体基板200を乾燥させてもよい。このような二流体洗浄方法により、半導体チップ20の大きさが例えば縦5mm横5mmである場合、各半導体チップ20の接合面に残存するデブリ(異物)を1個以下(縦15mmで横15mmの大きさに換算した場合)に抑えることが可能となる(例えば、図7の(b)を参照)。
[工程(f)]
 工程(f)は、図2の(c)に示すように、第1半導体基板100の第1電極103に対して複数の半導体チップ20それぞれの第2電極203の位置合わせを行う工程である。工程(f)では、図6の(a)に示すように、各半導体チップ20の第2電極203が第1半導体基板100の対応する第1電極103に対向するように、各半導体チップ20の位置合わせを行う。この位置合わせ用に、第1半導体基板100上にアライアメントマーク等を設けてもよい。
[工程(g)]
 工程(g)は、第1半導体基板100の第1絶縁膜102と複数の半導体チップ20の各絶縁膜部分202bとを互いに貼り合わせる工程である。工程(g)では、各半導体チップ20の表面に付着した有機物又は金属酸化物を除去した後、図6の(a)に示すように、第1半導体基板100に対する半導体チップ20の位置合わせを行い、これが終了すると、ハイブリッドボンディングとして複数の半導体チップ20それぞれの絶縁膜部分202bを第1半導体基板100の第1絶縁膜102に接合する(図5の(a)及び(b)参照)。この際、複数の半導体チップ20の絶縁膜部分202bと第1半導体基板100の第1絶縁膜102とを均一に加熱してから接合を行ってもよい。接合の際の半導体チップ20と第1半導体基板100との温度差は、例えば10℃以下が好ましい。このような均一な温度での加熱接合により、第1絶縁膜102と絶縁膜部分202bが接合された絶縁接合部分S1となり、複数の半導体チップ20が第1半導体基板100に対して機械的に強固に取り付けられる。また、均一な温度での加熱接合であることから、接合箇所における位置ズレ等が生じ難く、高精度な接合を行うことができる。この取り付けの段階では、第1半導体基板100の第1電極103と半導体チップ20の第2電極203とは互いに離間しており、接続されていない(但し位置合わせはされている)。なお、半導体チップ20の第1半導体基板100への貼り合わせは、他の接合方法によって行ってもよく、例えば常温接合等で接合してもよい。
[工程(h)]
 工程(h)は、第1半導体基板100の第1電極103と複数の半導体チップ20それぞれの第2電極203とを接合する工程である。工程(h)では、図2の(d)に示すように、工程(g)の貼り合わせが終了すると、所定の熱H又は圧力若しくはその両方を付与して、ハイブリッドボンディングとして第1半導体基板100の第1電極103と複数の半導体チップ20の第2電極203とを接合する(図5の(c)も参照)。第1電極103及び第2電極203が銅から構成されている場合、工程(g)でのアニーリング温度は、150℃以上400℃以下であることが好ましく、200℃以上300℃以下であることがより好ましい。このような接合処理により、第1電極103とそれに対応する第2電極203とが接合された電極接合部分S2となり、第1電極103と第2電極203とが機械的且つ電気的に強固に接合される。図6の(b)に、絶縁接合部分S1と電極接合部分S2とが形成された状態を示す。なお、工程(h)の電極接合は、工程(g)の貼り合わせ後に行われるが、工程(g)の貼り合わせと同時に行われてもよい。その後、図6の(c)及び(d)に示すように、すべての半導体チップ20を第1半導体基板100に接合して、半導体装置1を取得する。
 以上により、第1半導体基板100に複数の半導体チップ20が電気的且つ機械的に所定の位置に高精度に設置された半導体装置1(図1を参照)を取得することができる。この後、図1に示す構成の半導体装置(C2W)を更に個片化して、1の半導体チップ20と当該1の半導体チップ20に対応する第1半導体基板100の部分とから構成される各半導体装置を個別に形成してもよい。
 以上、本実施形態に係る半導体装置の製造方法によれば、複数の半導体チップ20を取得する工程において、洗浄液内に気体が導入された混合洗浄流体W1を使用して第2半導体基板200を洗浄しながら、第2半導体基板200をダイシングにより個片化している。この場合、洗浄液に気体を導入することでミスト状となった混合洗浄流体W1を用いて洗浄を行うため、高圧洗浄よりも噴出圧力を低く抑えつつ微細なデブリに対する洗浄能力を高くすることができる。これにより、ダイシングで生じるデブリPが接合面から確実に除去された半導体チップ20を用いて半導体装置1を製造することができ、半導体チップ20の三次元実装を行う場合において半導体チップの接続不良を低減することができる。
 また、本実施形態に係る製造方法において、第2絶縁膜202の第2基板本体201への接着強さは、碁盤目試験におけるはく離率が1%以下である接着強さであってもよい。この場合、洗浄液の噴出圧力は低減されているものの、第2半導体基板200を洗浄した際に当該洗浄による衝撃で第2絶縁膜202自体又はその一部が飛散してデブリになってしまうことを抑制することができる。これにより、半導体チップ20を個片化する際のデブリの発生要因の1つを抑えて、半導体チップの接続不良を更に低減することが可能となる。
 また、本実施形態に係る製造方法において、第2絶縁膜202の厚さは、20μm以下であってもよい。この場合、より微細な電極又は回路を形成して、薄型の半導体装置を作製することが可能となる。
 また、本実施形態に係る製造方法において、複数の半導体チップを取得する工程では、混合洗浄流体W1の噴出圧が10kgf/cm(0.980655MPa)以下となるように、混合洗浄流体W1を第2半導体基板200に向けて噴出して洗浄を行ってもよい。この場合、第2半導体基板200をダイシングする際の洗浄により、ダイシングされた半導体チップ20を飛ばしてしまうといったこと(チップ飛び)を抑制することができる。また、混合洗浄流体W1により第2絶縁膜202を第2半導体基板200からはく離させてしまうことを抑制することができる。更に、混合洗浄流体W1で第2半導体基板200の第2絶縁膜202を飛散させてデブリPを生じさせてしまうことを抑制することができる。一方で、混合洗浄流体W1の噴出圧が2kgf/cm(0.196133MPa)以上となるように、混合洗浄流体W1を第2半導体基板200に向けて噴出して洗浄を行ってもよい。この場合、第2半導体基板200をダイシングする際の噴出圧により、デブリを効果的に除去することができる。以上により、半導体装置の製造歩留まりを向上することができる。これにより、半導体チップの接続不良を更に低減することが可能となる。
 また、本実施形態に係る製造方法において、複数の半導体チップを取得する工程では、第2半導体基板200に噴出された混合洗浄流体W1の洗浄後のミスト(混合洗浄流体W2)を回収してもよい。この場合、洗浄後にデブリが含有されている混合洗浄流体W2を、ダイシングされ且つ洗浄された半導体チップ20から早期に遠ざけて、半導体チップ20へのデブリの再付着を抑制することができる。これにより、半導体チップの三次元実装を行う場合において半導体チップの接続不良を更に低減することが可能となる。
 また、本実施形態に係る製造方法において、第2半導体基板200の第2絶縁膜202は、無機材料を含んでもよい。この場合、より微細な構成の半導体装置を作製することが可能となる。また、無機材料同士の接合は強固にし易いことから、半導体基板同士の接着強さを高めて、半導体装置としての接続信頼性を向上させることが可能となる。
 また、本実施形態に係る製造方法において、第2半導体基板200の第2絶縁膜202は、有機材料を含んでもよい。この場合、比較的柔らかい材料である有機材料により、上述した洗浄で完全には取り除けなかったデブリを当該有機材料からなる絶縁膜部分に吸収(内蔵)して、半導体チップ20の接続不良を更に低減することができる。即ち、この製造方法によれば、絶縁膜部分202bに埋め込むことが困難な大きなデブリは、混合洗浄流体を使用した第2半導体基板200の洗浄により取り除くと共に、混合洗浄流体による洗浄で取り除けない微小なデブリは、有機材料の絶縁膜に埋め込んで無害化し、異なるサイズのデブリの除去又は無害化を2つの手段で補完して行うことが可能となる。また、第2絶縁膜202が有機材料から構成される場合、第2絶縁膜202の厚さは、4μm以上であってもよい。この場合、微小なデブリを樹脂製の第2絶縁膜202内に埋め込むことにより、第1絶縁膜102と第2絶縁膜202との接続を良好なものとすることができる。
 また、本実施形態に係る洗浄装置30は、洗浄液を導入する第1導入部32と、気体を導入する第2導入部33と、洗浄液に気体を混合させて混合洗浄流体W1を形成する混合部31と、混合洗浄流体W1を噴出するノズル34と、を備える。二流体洗浄を行うことができる洗浄装置30を用いることにより、ダイシングされた半導体チップの接合面上のデブリをより確実に除去することが可能となる。
 また、本実施形態に係る洗浄装置30は、ノズル34から噴出された混合洗浄流体W1の洗浄後のミスト(混合洗浄流体W2)を回収するミストコレクタ35を更に備えている。この場合、ミストコレクタ35により、洗浄後にデブリが含有されている混合洗浄流体W2を、ダイシングされ且つ洗浄された半導体チップ20から早期に遠ざけて、半導体チップ20へのデブリの再付着を抑制することができる。これにより、半導体チップの三次元実装を行う場合において半導体チップの接続不良を更に低減することが可能となる。
 また、本実施形態に係る洗浄方法は、第2半導体基板200を準備する工程と、第2半導体基板200を個片化する際に洗浄を行う工程と、を備える。洗浄を行う工程では、洗浄液内に気体が導入された混合洗浄流体W1を使用して第2半導体基板200を洗浄しながら、第2半導体基板200をダイシングにより個片化する。この場合、洗浄液に気体を導入することでミスト状となった混合洗浄流体W1を用いて洗浄を行うため、高圧洗浄よりも噴出圧力を低く抑えつつ微細なデブリに対する洗浄能力を高くすることができる。これにより、ダイシングで生じるデブリが確実に除去された半導体チップ20を用いて半導体装置1を製造することができ、半導体チップの三次元実装を行う場合において半導体チップの接続不良を低減することができる。
 また、本実施形態に係る製造方法で製造された半導体装置1は、第1基板本体101と、第1基板本体101の一面に設けられた第1絶縁膜102及び第1電極103とを有する第1半導体基板100と、複数の半導体チップ20とを備える。第1半導体基板100の第1電極103と半導体チップ20の第2電極203とが接合されており、第1半導体基板100の第1絶縁膜102と半導体チップの絶縁膜部分202bとが接合されている。この絶縁膜部分202bには、50μm以上のデブリが縦15mmで横15mmの範囲内に1個以内である。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
[実施例1]
 以下の実施例では、ダイシングしながら半導体チップの表面を通常の洗浄方法で洗浄した場合(比較例1)と、二流体洗浄方法で洗浄した場合(実施例1)とでの半導体チップの表面に残存したデブリ(異物)を評価した。なお、洗浄対象の半導体チップは、縦5mmで横5mmの5mm角の半導体チップ9個分に対応するものであった。
 比較例1に係る通常の洗浄方法は、以下の洗浄装置を用いて、以下の洗浄条件で行った。
 洗浄装置:ダイシング装置((株)ディスコ製、DFD6302)
 洗浄条件:純水 流量 80mL/分
 半導体装置をダイシングしながら半導体チップの接合面を洗浄した。その後、ダイシングされた半導体装置を回転数800rpmで回転して20秒間、半導体チップの接合面をスピン洗浄した後、0.8L/分の流量で純水によるリンスを10秒間行った。リンスの終了後、ダイシングされた半導体装置を2000rpmで20秒間回転させて乾燥を行った。
 実施例1に係る二流体洗浄方法は、以下の洗浄装置を用いて、以下の洗浄条件で行った。
 洗浄装置:ダイシング装置((株)ディスコ製、DFD6302)
 洗浄条件:純水 流量 80ml/分 
      圧縮空気 圧力0.3MPa
      噴出圧 3.05914kgf/cm(0.3MPa)
 上記の純水と圧縮空気を混合した後、半導体装置をダイシングしながらこの混合した洗浄流体を用いて半導体チップの接合面を洗浄した。その後、ダイシングされた半導体装置を回転数800rpmで回転して20秒間、半導体チップの接合面をスピン洗浄した後、0.8L/分の流量で純水によるリンスを10秒間行った。リンスの終了後、ダイシングされた半導体装置を2000rpmで20秒間回転させて乾燥を行った。
 図7に、洗浄後の半導体チップの接合表面の写真を示す。図7の(a)は、通常の洗浄条件(比較例1)で半導体チップを洗浄した際の接合面を示し、図7の(b)は、実施例1に係る二流体洗浄方法で半導体チップを洗浄した際の接合面を示す。図7の(a)に示すように、二流体洗浄を行わなかった場合(通常の洗浄を行った場合)、半導体チップの縦5mmで横5mmの5mm角の範囲に2以上(写真の例では6個)のデブリが残っていることが確認できた。一方、二流体洗浄方法を行うことにより、半導体チップの縦5mmで横5mmの5mm角の範囲にあるデブリが1個以内(ほとんどのチップでゼロ)に抑えられた。このように、二流体洗浄を用いた製造方法によれば、半導体チップの絶縁膜部分に50μm以上のデブリが縦15mmで横15mmの範囲内に1個以内に抑えられた半導体装置を得ることができることが確認できた。このような半導体チップを半導体基板に接合して半導体装置を作製した場合、半導体チップの接続不良を低減することができる。
[実施例2]
 半導体チップを通常方式で洗浄した場合(条件は比較例1と同様、比較例2)と、二流体洗浄方法(条件は実施例1と同様、実施例2)で洗浄した場合とでの、(a)単位面積辺りの異物数(デブリの残存数)を評価する試験Aと、(b)残存したデブリの最大径を評価する試験Bを行った。図8の(a)に試験Aの結果を示し、図8の(b)に試験Bの結果を示す。図8の(a)及び(b)において、左側のデータ(A1及びB1)は、各試験結果をプロットした表を示し、右側のデータ(A2及びB2)は、左側のプロットしたデータをまとめた表を示す。なお、試験A及び試験Bの試験数は、それぞれ70個とした。
 図8の(a)に示すように、通常の洗浄方法の場合、単位面積辺りの半導体チップの接合面に残存したデブリ数は30個/cm以上となる傾向が強かった。一方、二流体洗浄方法の場合、単位面積辺りのデブリ数は20個/cm以下であり、1個/cm以下となることが多かった。また、図8の(b)に示すように、通常の洗浄方法の場合、半導体チップの接合面に残存するデブリの最大径は30μm以上であった。つまり、径の大きなデブリが残存してしまっていることが確認された。一方、二流体洗浄方法の場合、半導体チップの接合面に残存するデブリの最大径が30μm以下となる傾向があり、多くの場合、残存するデブリの最大径が10μm以下であった。このように、二流体洗浄によれば、半導体チップの接合面に残存するデブリの個数及びデブリの最大径が従来の洗浄方法に比べて大幅に低減できることが確認できた。
[実施例3]
 半導体チップを通常方式で洗浄した場合(条件は比較例1と同様、比較例3)と、二流体洗浄方法(条件は実施例1と同様、実施例3)で洗浄した場合とでの、(a)洗浄後の半導体チップと半導体装置とを接合した後にピンセットで触って自然に脱落した数を評価した試験Cと、(b)洗浄後の半導体チップと半導体装置とを接合した際にピンセットで触って自然に脱落しなかったサンプルを選別して両者間での接続強度(平均値)を評価する試験Dとを行った。洗浄された半導体チップを半導体装置に接続する際の圧着温度は300℃と350℃の2つの条件とした。図9の(a)に試験Cの結果を示し、図9の(b)に試験Dの結果を示す。試験C及び試験Dの試験数は、それぞれ10個(各圧着温度毎に)とした。
 図9の(a)に示すように、実施例3に係る二流体洗浄方法を用いた製造方法によれば、比較例3に係る通常の洗浄方法に比べて、洗浄された半導体チップと半導体装置との間でより確実な機械的接続を確保できることが確認できた。また、図9の(b)に示すように、実施例3に係る二流体洗浄方法を用いた製造方法によれば、比較例3に係る通常の洗浄方法に比べて、半導体チップと半導体装置との間でよりシェア強度の高い接合を実現することが確認できた。
 1…半導体装置、10…第1半導体基板、20…半導体チップ、30…洗浄装置、31…混合部、32…第1導入部、33…第2導入部、34…ノズル、35…ミストコレクタ、40…ダイシング装置、100…第1半導体基板、101…第1基板本体、101a…一面、102…第1絶縁膜、103…第1電極、200…第2半導体基板、201…第2基板本体、201a…一面、202…第2絶縁膜、203…第2電極、205…ダイシングテープ。

 

Claims (16)

  1.  第1基板本体と、該第1基板本体の一面に設けられた第1絶縁膜及び第1電極とを有する第1半導体基板を準備する工程と、
     第2基板本体と、該第2基板本体の一面に設けられた第2絶縁膜及び複数の第2電極とを有する第2半導体基板を準備する工程と、
     前記第2半導体基板の前記一面側に配置されている前記第2絶縁膜を研磨する工程と、
     前記第2半導体基板を個片化し、前記第2絶縁膜に対応する絶縁膜部分と少なくとも1つの前記第2電極とをそれぞれが備えた複数の半導体チップを取得する工程と、
     前記第1半導体基板の前記第1電極に対して前記複数の半導体チップの内の少なくとも1つの半導体チップの前記第2電極の位置合わせを行う工程と、
     前記第1半導体基板の前記第1絶縁膜と前記半導体チップの前記絶縁膜部分とを互いに貼り合わせる工程と、
     前記第1半導体基板の前記第1電極と前記半導体チップの前記第2電極とを接合する工程と、を備え、
     前記複数の半導体チップを取得する工程では、洗浄液内に気体が導入された混合洗浄流体を使用して前記第2半導体基板を洗浄しながら、前記第2半導体基板をダイシングにより個片化する、半導体装置の製造方法。
  2.  前記第2絶縁膜の前記第2基板本体への接着強さは、碁盤目試験におけるはく離率が1%以下である、
    請求項1に記載の半導体装置の製造方法。
  3.  前記第2絶縁膜の厚さは、20μm以下である、
    請求項1又は2に記載の半導体装置の製造方法。
  4.  前記複数の半導体チップを取得する工程では、前記混合洗浄流体の噴出圧が10kgf/cm(0.980665MPa)以下となるように、前記混合洗浄流体を前記第2半導体基板に向けて噴出して洗浄を行う、
    請求項1~3の何れか一項に記載の半導体装置の製造方法。
  5.  前記複数の半導体チップを取得する工程では、前記混合洗浄流体の噴出圧が2kgf/cm(0.196133MPa)以上となるように、前記混合洗浄流体を前記第2半導体基板に向けて噴出して洗浄を行う、
    請求項1~4の何れか一項に記載の半導体装置の製造方法。
  6.  前記複数の半導体チップを取得する工程では、前記第2半導体基板に噴出された前記混合洗浄流体の洗浄後のミストを回収する、
    請求項1~5の何れか一項に記載の半導体装置の製造方法。
  7.  前記複数の半導体チップを取得する工程では、前記第2半導体基板の前記第2絶縁膜に対して前記混合洗浄流体が噴出されると共に、前記第2絶縁膜から前記第2基板本体に向かってダイシングが行われる、
    請求項1~6の何れか一項に記載の半導体装置の製造方法。
  8.  前記第2半導体基板の前記第2絶縁膜が無機材料を含む、
    請求項1~7の何れか一項に記載の半導体装置の製造方法。
  9.  前記第2半導体基板の前記第2絶縁膜が有機材料を含む、
    請求項1~8の何れか一項に記載の半導体装置の製造方法。
  10.  前記第2絶縁膜の厚さが4μm以上である、
    請求項9に記載の半導体装置の製造方法。
  11.  前記第2絶縁膜に含まれる前記有機材料は、ポリイミド、ポリイミド前駆体、ポリアミドイミド、ベンゾシクロブテン(BCB)、ポリベンゾオキサゾール(PBO)、又はPBO前駆体を含む、
    請求項9又は10に記載の半導体装置の製造方法。
  12.  請求項1~11の何れか一項に記載の半導体装置の製造方法に用いられる洗浄装置であって、
     前記洗浄液を導入する第1導入部と、
     前記気体を導入する第2導入部と、
     前記洗浄液に前記気体を混合させて前記混合洗浄流体を形成する混合部と、
     前記混合洗浄流体を噴出するノズルと、
    を備える洗浄装置。
  13.  前記ノズルから噴出された前記混合洗浄流体の洗浄後のミストを回収するミストコレクタを更に備える、
    請求項12に記載の洗浄装置。
  14.  基板本体と、該基板本体の一面に設けられた絶縁膜及び複数の電極とを有する半導体基板を準備する工程と、
     前記半導体基板を個片化する際に洗浄を行う工程と、を備え、
     前記洗浄を行う工程では、洗浄液内に気体が導入された混合洗浄流体を使用して前記半導体基板を洗浄しながら、前記半導体基板をダイシングにより個片化する、洗浄方法。
  15.  前記洗浄を行う工程では、前記混合洗浄流体の噴出圧が2kgf/cm(0.196133MPa)以上で且つ10kgf/cm(0.980665MPa)以下となるように、前記混合洗浄流体を前記半導体基板に向けて噴出して洗浄を行い、
     洗浄される前記半導体基板の前記絶縁膜は、有機材料を含み、
     前記絶縁膜の厚さが4μm以上である、
    請求項14に記載の洗浄方法。
  16.  第1基板本体と、該第1基板本体の一面に設けられた第1絶縁膜及び第1電極とを有する第1半導体基板と、
     第2基板本体と、該第2基板本体の一面に設けられた第2絶縁膜及び第2電極とを有する第2半導体基板とを、備え、
     前記第1半導体基板の前記第1電極と前記第2半導体基板の前記第2電極とが接合されており、
     前記第1半導体基板の第1絶縁膜と前記第2半導体基板の第2絶縁膜とが接合されており、
     前記第2絶縁膜には、50μm以上のデブリが縦15mmで横15mmの範囲内に1個以内である、半導体装置。

     
PCT/JP2022/014173 2021-03-26 2022-03-24 半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置 WO2022203027A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280022568.6A CN117015844A (zh) 2021-03-26 2022-03-24 半导体装置的制造方法、清洗装置、清洗方法及半导体装置
JP2023509320A JPWO2022203027A1 (ja) 2021-03-26 2022-03-24
KR1020237032044A KR20230161442A (ko) 2021-03-26 2022-03-24 반도체 장치의 제조 방법, 세정 장치, 세정 방법, 및, 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/013034 2021-03-26
PCT/JP2021/013034 WO2022201531A1 (ja) 2021-03-26 2021-03-26 半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置

Publications (1)

Publication Number Publication Date
WO2022203027A1 true WO2022203027A1 (ja) 2022-09-29

Family

ID=83396709

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/013034 WO2022201531A1 (ja) 2021-03-26 2021-03-26 半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置
PCT/JP2022/014173 WO2022203027A1 (ja) 2021-03-26 2022-03-24 半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013034 WO2022201531A1 (ja) 2021-03-26 2021-03-26 半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置

Country Status (5)

Country Link
JP (1) JPWO2022203027A1 (ja)
KR (1) KR20230161442A (ja)
CN (1) CN117015844A (ja)
TW (1) TW202303716A (ja)
WO (2) WO2022201531A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126938A (en) * 1980-03-11 1981-10-05 Toshiba Corp Cutting of semiconductor chip
JPH08125121A (ja) * 1994-08-29 1996-05-17 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
WO2008004365A1 (fr) * 2006-07-07 2008-01-10 Tokyo Seimitsu Co., Ltd. Appareil et procédé de découpage en dés
JP2009285769A (ja) * 2008-05-28 2009-12-10 Disco Abrasive Syst Ltd 切削装置
WO2010013728A1 (ja) * 2008-07-31 2010-02-04 日本電気株式会社 半導体装置及びその製造方法
WO2015040798A1 (ja) * 2013-09-20 2015-03-26 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
JP2015139860A (ja) * 2014-01-30 2015-08-03 株式会社ディスコ 切削方法
JP2015225868A (ja) * 2014-05-26 2015-12-14 マイクロン テクノロジー, インク. 半導体装置の製造方法
JP2016092078A (ja) * 2014-10-30 2016-05-23 株式会社東芝 半導体チップの接合方法及び半導体チップの接合装置
JP2019204818A (ja) * 2018-05-21 2019-11-28 住友ベークライト株式会社 電子装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126938A (en) * 1980-03-11 1981-10-05 Toshiba Corp Cutting of semiconductor chip
JPH08125121A (ja) * 1994-08-29 1996-05-17 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
WO2008004365A1 (fr) * 2006-07-07 2008-01-10 Tokyo Seimitsu Co., Ltd. Appareil et procédé de découpage en dés
JP2009285769A (ja) * 2008-05-28 2009-12-10 Disco Abrasive Syst Ltd 切削装置
WO2010013728A1 (ja) * 2008-07-31 2010-02-04 日本電気株式会社 半導体装置及びその製造方法
WO2015040798A1 (ja) * 2013-09-20 2015-03-26 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
JP2015139860A (ja) * 2014-01-30 2015-08-03 株式会社ディスコ 切削方法
JP2015225868A (ja) * 2014-05-26 2015-12-14 マイクロン テクノロジー, インク. 半導体装置の製造方法
JP2016092078A (ja) * 2014-10-30 2016-05-23 株式会社東芝 半導体チップの接合方法及び半導体チップの接合装置
JP2019204818A (ja) * 2018-05-21 2019-11-28 住友ベークライト株式会社 電子装置

Also Published As

Publication number Publication date
CN117015844A (zh) 2023-11-07
JPWO2022203027A1 (ja) 2022-09-29
TW202303716A (zh) 2023-01-16
WO2022201531A1 (ja) 2022-09-29
KR20230161442A (ko) 2023-11-27

Similar Documents

Publication Publication Date Title
US11652083B2 (en) Processed stacked dies
JP7106575B2 (ja) ダイ処理
CN111742398B (zh) 用于处理器件的技术
US20220139867A1 (en) Direct bonding methods and structures
KR20210153760A (ko) 패키지 구조 및 제작 방법들
KR101913522B1 (ko) 박형 웨이퍼 핸들링을 위한 다중 본딩 층
US7087538B2 (en) Method to fill the gap between coupled wafers
KR100741864B1 (ko) 반도체장치의 제조방법
KR20230095110A (ko) 직접 접합 방법 및 구조체
JP2010192867A (ja) 半導体集積回路装置および半導体集積回路装置の製造方法
EP3610501B1 (en) Method of die to wafer bonding of dissimilar thickness die
US20130273691A1 (en) Apparatus and method for thin die-to-wafer bonding
JP2016219776A (ja) キャリア−ワークピース接合スタックの分離方法
US8642390B2 (en) Tape residue-free bump area after wafer back grinding
TWI590398B (zh) 製造包含高可靠性晶粒底膠之積體電路系統的方法
WO2022203027A1 (ja) 半導体装置の製造方法、洗浄装置、洗浄方法、及び、半導体装置
Sakuma et al. Plasma activated low-temperature die-Level direct bonding with advanced wafer dicing technologies for 3D heterogeneous integration
US11710661B2 (en) Semiconductor packages and methods of packaging semiconductor devices
Ganesh et al. Overview and emerging challenges in mechanical dicing of silicon wafers
CN117334640A (zh) 器件晶片的加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509320

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280022568.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775808

Country of ref document: EP

Kind code of ref document: A1