WO2022202886A1 - 低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法 - Google Patents

低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法 Download PDF

Info

Publication number
WO2022202886A1
WO2022202886A1 PCT/JP2022/013425 JP2022013425W WO2022202886A1 WO 2022202886 A1 WO2022202886 A1 WO 2022202886A1 JP 2022013425 W JP2022013425 W JP 2022013425W WO 2022202886 A1 WO2022202886 A1 WO 2022202886A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
low dielectric
dielectric material
film
resin
Prior art date
Application number
PCT/JP2022/013425
Other languages
English (en)
French (fr)
Inventor
好行 大石
祐二 芝▲崎▼
匡 塚本
Original Assignee
国立大学法人岩手大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岩手大学 filed Critical 国立大学法人岩手大学
Priority to JP2023509240A priority Critical patent/JPWO2022202886A1/ja
Priority to CN202280022862.7A priority patent/CN117062876A/zh
Publication of WO2022202886A1 publication Critical patent/WO2022202886A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols

Definitions

  • the present invention provides a resin composition for a low dielectric material containing a triazine-containing polyether compound, a film for a laminated substrate, a laminated substrate, and a resin composition for a low dielectric material, for use as a low dielectric material for electronic devices and the like.
  • the present invention relates to a method, a method for producing a film for a laminated substrate, and a method for producing a laminated substrate.
  • aromatic polyethers have excellent heat resistance and relatively excellent mechanical strength, so they are widely used in the automotive and mechanical fields as so-called engineering resins.
  • engineering resins As a more preferable engineering resin, development of a new structure that is an even more excellent engineering resin that achieves both heat resistance and thermal stability is underway.
  • Patent Document 1 discloses a phenyltriazine compound bound to an aryl group. This technique aims to provide an aromatic polyether resin which is excellent in heat resistance and thermal stability, is excellent in mechanical strength, etc., and can be advantageously used as an engineering resin.
  • the present invention has been made in view of the above circumstances, and is suitable as a low dielectric material because of its low dielectric constant, low dielectric loss tangent, high transparency, high solubility, and high heat resistance. It is an object of the present invention to provide a resin composition that can be used for a film, a film for a laminated substrate using the same, a laminated substrate, and a method for producing them.
  • a resin composition for a low dielectric material containing a triazine-containing polyether compound having a repeating unit represented by the following general formula (1).
  • n is an integer of 2 or more
  • Ar represents a divalent aromatic group with or without a substituent.
  • R is hydrogen, a linear, branched or cyclic aliphatic group, an aromatic group with or without a substituent, a fluorinated aliphatic group, or a fluorinated aromatic group; show.
  • the resin composition for a low dielectric material containing a triazine-containing polyether compound in which the repeating unit represented by n in the general formula (1) has an average degree of polymerization of 2 to 200.
  • the resin composition for a low dielectric material, wherein the triazine-containing polyether compound has a dielectric constant Dk of 2.8 or less and/or a dielectric loss tangent Df of 0.003 or less.
  • the resin composition for a low dielectric material, wherein the triazine-containing polyether compound has a glass transition temperature of 200° C. or higher.
  • the resin composition for a low dielectric material comprising the triazine-containing polyether compound and an epoxy resin, bismaleimide resin or cyanate resin.
  • the resin composition for a low dielectric material further comprising an inorganic filler, a modifier or a flame retardant.
  • the above-mentioned resin composition for low dielectric materials which is used in equipment for transmitting and receiving high-frequency electromagnetic waves having a frequency of 0.1 to 500 GHz.
  • the resin composition for a low dielectric material which is used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials, or insulating boards.
  • a film for a laminated substrate comprising an insulating material containing the resin composition for a low dielectric material on at least one surface thereof.
  • a laminated substrate comprising two or more of the films for a laminated substrate.
  • a method for producing the resin composition for the low dielectric material A compound represented by the following general formula (16) and a compound represented by the following general formula (17) are mixed and polymerized to obtain a triazine-containing polyether compound represented by the following general formula (18).
  • a method for producing a resin composition for dielectric materials [In formulas (16), (17) and (18), n is an integer of 2 or more, and Ar represents a divalent aromatic group with or without a substituent.
  • R is hydrogen, a linear, branched or cyclic aliphatic group, an aromatic group with or without a substituent, a fluorinated aliphatic group, or a fluorinated aromatic group; show.
  • a method for producing a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate comprising: A method for producing a resin composition for a low dielectric material, wherein the triazine-containing polyether compound, epoxy resin, bismaleimide resin or cyanate resin, curing accelerator and organic solvent are mixed.
  • a method for producing a film for a laminated substrate comprising applying an insulating material containing the resin composition for a low dielectric material to at least one surface of a resin film.
  • a method for producing a laminated substrate comprising laminating two or more of the films for the laminated substrate.
  • a resin composition that can be suitably used as a low dielectric material because it has a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance.
  • a film for a laminated substrate, a laminated substrate, and a method for producing them are obtained.
  • FIG. 2 is a diagram showing FT-IR spectra of Reference Examples 1 to 4 of this example.
  • the resin composition for the low dielectric material of this embodiment contains a specific triazine-containing polyether compound.
  • a low dielectric material is a material with a low dielectric constant and/or a low dielectric loss tangent. That is, it is a low dielectric constant material or a low dielectric loss tangent material, and is hereinafter generically referred to as a "low dielectric material”. Definitions such as conditions for measuring the dielectric constant will be described later.
  • a low dielectric material is used in a portion of an electronic device or electronic component that requires a low dielectric constant and/or a low dielectric loss tangent.
  • a portion requiring a low dielectric constant and/or a low dielectric loss tangent is, for example, a portion that requires insulation, and includes insulating parts such as an insulating plate and insulating parts of a printed wiring board.
  • Printed wiring boards also include flexible printed wiring boards. Since the compound contained in the material of the present embodiment has a low dielectric constant and/or a low dielectric loss tangent, especially at high frequencies, it can be used as electronic components and electronic devices, especially for high-frequency compatible electronic components and electronic devices. is preferred.
  • the triazine-containing polyether compound contained in the resin composition of this embodiment has a repeating unit represented by the following general formula (1).
  • n is an integer of 2 or more
  • Ar is an arylene group, and represents a divalent aromatic group with or without a substituent.
  • the substituent is a group different from the group (atomic group) to be bonded, and can be bonded by replacing some atoms (preferably hydrogen) of the group to be bonded.
  • An aromatic group broadly refers to a group containing the structure of a compound or partially substituted compound having aromatic character.
  • Aliphatic groups broadly refer to groups containing structures of organic or partially substituted compounds that do not have aromatic character.
  • n represents the number of repeating units of the structure represented by formula (1) and is an integer of 2 or more.
  • the average value of the degree of polymerization n of the triazine-containing polyether compound contained in the resin composition for the low dielectric material of the present embodiment is the average degree of polymerization, and the value of the average degree of polymerization ranges from 2 to 200. It is preferably 1, and may be 2-100.
  • R is an organic substituent and may be hydrogen or may be a linear, branched or cyclic aliphatic group. Also, R may be an aromatic group with or without a substituent. In addition, R may be any of the aforementioned aliphatic groups that are fluorinated or any of the aforementioned aromatic groups that are fluorinated.
  • the degree to which R is fluorinated may be selected widely, from one of the carbon attachment sites in R to all carbon attachment sites other than those attached to the group to which it is attached.
  • R when R is a methyl group, 1 to 3 hydrogen atoms of the methyl group may be substituted with fluorine atoms, but 2 to 3 hydrogen atoms are preferred.
  • R in formula (1) may be the same substituent or different.
  • the above-described chemical structure of the triazine-containing polyether compound contained in the resin composition of the present embodiment is determined by infrared spectrum (FT-IR), nuclear magnetic resonance spectrum (NMR, such as 1 H-NMR, 13 C-NMR, 19 F-NMR), elemental analysis, or the like.
  • Examples of the arylene group for Ar include various divalent aromatic compounds obtained by extracting a total of two hydrogen atoms or other substituents bonded to aromatic rings in various aromatic compounds or aromatic ring-containing compounds. can be appropriately selected from group residues. Examples of arylene groups can be appropriately selected from various phenylene groups, naphthylene groups, biphenylene groups, and the like.
  • Ar includes other alkyl groups, alkylene groups, alkylidene groups, cycloalkyl groups, cycloalkylene groups, cycloalkylidene groups, aryl groups, arylene groups, fluorinated alkyl groups, fluorinated alkylene groups, fluorinated aryl groups, or fluorinated An arylene group or the like may be bonded.
  • the triazine-containing polyether compound of the present embodiment may be a triazine-containing polyether compound in which Ar is represented by any one of the following general formulas (2) to (15).
  • formula (2) is BisA
  • formula (3) is BisAF
  • formula (4) is BisPHTG
  • formula (5) is BisPIND
  • formula (6) is BisC
  • formula (7) is TMBisA
  • formula (8) is BisCHP
  • formula (9) is BisZ
  • formula (10) is BisP3MZ
  • formula (11) is BisPCDE
  • formula ( 12) may also be expressed as DTPM
  • equation (13) as BPFL
  • equation (14) as DMBPFL
  • equation (15) as TBISRX.
  • the triazine-containing polyether compound of the present embodiment preferably has an average degree of polymerization of 2 to 200 for repeating units represented by n in the general formula (1).
  • the repeating unit represented by n has an average degree of polymerization of 2 to 200, a compound having an appropriate molecular weight can be obtained when used as a resin composition for a low dielectric material.
  • the molecular weight of the triazine-containing polyether compound of the present embodiment is a number average molecular weight (M n ) of 3 ⁇ 10 3 to 40 ⁇ 10 when Ar in the above formulas (2) to (15) is used. 4 , and more preferably 3 ⁇ 10 3 to 20 ⁇ 10 4 .
  • the weight average molecular weight (M w ) is preferably 6 ⁇ 10 3 to 40 ⁇ 10 4 , more preferably 6 ⁇ 10 3 to 40 ⁇ 10 4 .
  • the molecular weight of the compound of this embodiment can be measured using gel permeation chromatography (GPC) or the like. The average degree of polymerization can be determined from this molecular weight and the structure of the compound described above.
  • the triazine-containing polyether compound of the present embodiment preferably has a dielectric constant Dk of 2.8 or less and/or a dielectric loss tangent Df of 0.003 or less.
  • the dielectric constant Dk and the dielectric loss tangent Df are values measured by an existing dielectric property measuring device.
  • an existing dielectric property measuring device for example, a cavity resonator type device or the like can be used.
  • the triazine-containing polyether compound of the present embodiment preferably has a dielectric constant Dk of 2.7 or less.
  • the dielectric loss tangent D f is preferably 0.003 or less, more preferably 0.002 or less.
  • the triazine-containing polyether compound may have a dielectric constant Dk of 2.7 or less and a dielectric loss tangent Df of 0.002 or less.
  • the triazine-containing polyether compound of the present embodiment preferably has a glass transition temperature of 200° C. or higher, more preferably 260° C. or higher. It is also preferable that the 5% thermal decomposition temperature is 400 to 600°C.
  • the glass transition temperature of the triazine-containing polyether compound of the present embodiment can be measured using differential scanning calorimetry (DSC), thermomechanical analysis (TMA), dynamic viscoelasticity measurement (DMA), and the like.
  • the 5% thermal decomposition temperature of the triazine-containing polyether compound of the present embodiment is obtained by measuring the weight loss temperature.
  • the weight loss temperature can be measured using, for example, thermogravimetry (TGA).
  • the resin composition for low dielectric materials of the present embodiment preferably contains the triazine-containing polyether compound and epoxy resin, bismaleimide resin, cyanate resin, or the like.
  • epoxy resin By containing an epoxy resin, a resin composition for low dielectric materials having excellent heat resistance, mechanical properties and dielectric properties can be obtained.
  • the epoxy resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol sulfide type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, Tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol- Phenol-cocondensed novolak-type epoxy resin, naphthol-cresol co-
  • the bismaleimide resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, diphenylmethane type bismaleimide resin, metaphenylene type bismaleimide resin, bisphenol A diphenyl ether type bismaleimide resin, diphenyl ether type bismaleimide resin, A maleimide resin, a diphenylsulfone-type bismaleimide resin, a diphenoxybenzene-type bismaleimide resin, an aniline novolac-type bismaleimide resin, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
  • the cyanate resin is not particularly limited, but in that a cured product having excellent heat resistance can be obtained, for example, bisphenol A type cyanate resin, tetramethylbisphenol F type cyanate resin, hexafluorobisphenol A type cyanate resin, bisphenol E type A cyanate resin, a bisphenol M-type cyanate resin, a novolak-type cyanate resin, a cyclopentadienylbisphenol-type cyanate resin, or the like may be used. Each of these may be used alone, or two or more of them may be used in combination.
  • the resin composition for the low dielectric material of the present embodiment further contains an inorganic filler, a modifier or a flame retardant.
  • an inorganic filler for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, magnesium hydroxide, or the like may be used.
  • the modifier can be appropriately selected from various thermosetting resins, thermoplastic resins, etc. Examples include phenoxy resins, polyamide resins, polyimide resins, polyetherimide resins, polyethersulfone resins, polyphenylene ether resins, and polyphenylene sulfide resins.
  • polyester resin polystyrene resin, polyethylene terephthalate resin, cycloolefin resin, fluorine resin, or the like may be used.
  • the flame retardant can be appropriately selected from, for example, halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, inorganic flame retardant compounds, and the like.
  • Halogen compounds such as resin; trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri-2-ethylhexyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl Phosphate, phosphate ester such as 2-ethylhexyldiphenyl phosphate, tris(2,6-dimethylphenyl) phosphate, resorcin diphenyl phosphate; condensation of ammonium polyphosphate, polyphosphate amide, red phosphorus, guanidine phosphate, dialkylhydroxymethyl phosphonate, etc.
  • Phosphorus atom-containing compounds such as phosphoric acid or ester compounds
  • nitrogen atom-containing compounds such as melamine
  • inorganic flame retardant compounds
  • the resin composition for a low dielectric material of the present embodiment is preferably used for equipment that transmits and receives high-frequency electromagnetic waves having a frequency of 0.1 to 500 GHz.
  • the resin composition for a low dielectric material of the present embodiment is preferably used for devices that transmit and receive microwave or millimeter wave electromagnetic waves.
  • microwaves refer to electromagnetic waves with a frequency of 0.25 to 100 GHz
  • millimeter waves refer to electromagnetic waves with a frequency of 30 to 300 GHz.
  • the resin composition for a low dielectric material according to the present embodiment can also be suitably used in devices that use electromagnetic waves of frequencies such as 60 GHz for wireless LANs and 75 to 79 GHz for vehicle radars.
  • the resin composition for a low dielectric material of the present embodiment has a sufficiently low dielectric constant and dielectric loss tangent, and is particularly suitable for use with high-frequency electromagnetic waves.
  • the resin composition for low dielectric materials of the present embodiment is preferably used for printed wiring boards, flexible printed wiring boards, sealing materials for electronic parts, resist inks, conductive pastes, insulating materials or insulating plates.
  • the resin composition for low dielectric materials of the present embodiment has sufficiently low dielectric constant and dielectric loss tangent, and is suitable for use in these members. Furthermore, it is particularly suitable for use in these members in equipment that uses high-frequency electromagnetic waves. More specific examples include resin compositions for copper-clad laminates, interlayer insulating materials for build-up printed circuit boards, build-up films, and the like.
  • a resin composition for encapsulating electronic parts a resin composition for resist ink, a binder for friction materials, a conductive paste, a resin casting material, an adhesive, or a coating material such as an insulating paint.
  • the resin composition for a low dielectric material of this embodiment is preferably used as an insulating material between layers of a laminated substrate.
  • the resin composition is preferably prepared by mixing the triazine-containing polyether compound, the epoxy resin, the bismaleimide resin, or the cyanate resin, the curing accelerator and the organic solvent, as in the manufacturing method described below. .
  • the film for laminated substrates of this embodiment has an insulating material containing the resin composition for the low dielectric material on at least one surface.
  • an insulating material containing the resin composition for the low dielectric material By laminating a plurality of films for laminated substrates, these films can be used for laminated substrates, which will be described later.
  • a film for a laminated substrate is composed of a film layer, which will be described later, and an insulating layer containing an insulating material. The insulating layer is provided on at least one surface of the film layer by a manufacturing method to be described later.
  • the film layer can be configured using an appropriately selected film material, such as a resin film or a metal film.
  • a resin film or a metal film such as polyethylene, polypropylene, polyvinyl chloride, polycycloolefin, polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, polyimide, release paper, copper foil, aluminum foil, or the like can be used.
  • the thickness of the laminated substrate film of the present embodiment is not particularly limited, but can be selected from the range of 10 to 150 ⁇ m, preferably from 25 to 50 ⁇ m.
  • the film for laminated substrates of the present embodiment may further have a protective film on its surface.
  • the protective film can prevent dust from adhering to the surface of the film layer and the insulating layer before use and from scratching, and can prevent performance such as insulation from deteriorating before use.
  • the constituent material of the protective film may be selected from the same materials as those of the film layer described above.
  • the thickness of the protective film may range from 1 to 40 ⁇ m.
  • the laminated substrate film and protective film may be subjected to matte treatment, corona treatment, release treatment, or the like.
  • the laminated board is in the form of a conductor laminated board or a build-up printed board, and a conductor layer made of a conductor such as a metal and the insulating layer are laminated, a set of the conductor layer and the insulating layer is formed. It may also be a film for laminated substrates.
  • the resin composition for a low dielectric material of this embodiment has excellent physical properties, heat resistance, a low dielectric constant, and a low dielectric loss tangent.
  • it is also extremely useful as an insulating material between layers composed of films for laminated substrates.
  • Such an insulating material is manufactured by including, in particular, a resin composition for low-dielectric materials, an epoxy resin, a bismaleimide resin, or a cyanate resin as essential components, and, if necessary, an organic solvent and a curing accelerator which will be described later. preferably.
  • the laminated substrate of this embodiment comprises two or more films for laminated substrates. It is preferable that the laminated substrate is formed by laminating the film for a laminated substrate.
  • the laminated substrate film may be an intermediate layer or a base layer in the laminated substrate. Moreover, it may be used for a layer on which a circuit is formed or a layer on which a circuit is not formed. Formation of the circuit can be performed by metal plating or the like.
  • the laminated substrate of this embodiment can also be a conductor laminated substrate.
  • a laminated substrate may be provided with an insulating layer made of a prepreg containing the resin composition for the low dielectric material and a conductor layer.
  • a prepreg for insulation forms an insulating layer by impregnating a fiber base material such as glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, or glass roving cloth with a resin composition for low dielectric materials.
  • the conductor layer can be made of metal, such as copper.
  • the laminated substrate of the present embodiment can be a laminated substrate in the form of a build-up printed circuit board.
  • a laminated board in the form of a build-up printed board can be obtained.
  • Compositions and the like of the insulating layer and conductor layer can be arbitrarily selected from those described above.
  • the resin composition for the low dielectric material of the present embodiment can be used by appropriately mixing components conventionally known as raw materials for the low dielectric material.
  • the resin composition for the low dielectric material of this embodiment has a high affinity with epoxy resin, bismaleimide resin, or cyanate resin, so it can be mixed with a thermosetting resin material. An effect of improving dielectric properties and thermal properties can also be expected.
  • the resin composition for a low dielectric material of the present embodiment has a low dielectric constant, low dielectric loss tangent, high transparency, high solubility, and high heat resistance of the triazine-containing polyether.
  • the triazine-containing polyether of the present embodiment has a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance, so that it can be suitably used as a printed wiring board.
  • conventionally known polymer materials there are almost no materials that achieve a glass transition temperature of more than 260 ° C.
  • the triazine-containing polyether of the present embodiment has a particularly low dielectric constant at high frequencies, a low dielectric loss tangent, high transparency, high solubility, and high heat resistance. It can be suitably used as a constituent material for electronic equipment.
  • a method for producing a resin composition for a low dielectric material comprises mixing a compound represented by the following general formula (16) and a compound represented by the following general formula (17), polymerizing them, and A triazine-containing polyether compound represented by formula (18) is obtained.
  • n is an integer of 2 or more
  • Ar is an arylene group, and represents a divalent aromatic group with or without a substituent.
  • n represents the number of repeating units of the structure represented by formula (18), and is not particularly limited as long as it is an integer of 2 or more. Examples of substituents include those having 1 to 18 carbon atoms.
  • Preferred substituents include alkyl groups such as methyl, alkylene groups such as methylene, alkylidene groups such as isopropylidene, cycloalkyl groups such as cyclohexyl, cycloalkylene groups such as cyclohexylene, cycloalkylidene groups such as cyclohexylidene, phenyl aryl groups such as aryl groups, arylene groups such as phenylene, fluorinated alkyl groups such as trifluoromethyl, fluorinated alkylene groups such as perfluorohexylene, fluorinated aryl groups such as trifluoromethylphenyl, fluorine such as trifluoromethylphenylene and an arylene group.
  • R is an organic substituent and may be hydrogen or may be a linear, branched or cyclic aliphatic group. Also, R may be an aromatic group with or without a substituent. In addition, R may be any of the aforementioned aliphatic groups that are fluorinated or any of the aforementioned aromatic groups that are fluorinated. Examples of organic substituents include those having 1 to 18 carbon atoms.
  • Preferred organic substituents are methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group and hexyl.
  • the compounds of formula (16) and formula (17) are mixed and polymerized by heating and reacting in a polar solvent in the presence of an alkali metal compound to obtain formula (18). to obtain a compound of
  • any compound can be used as long as the compound of formula (17) can be replaced with an alkali metal salt.
  • an alkali metal compound for example, an alkali metal carbonate, hydrogencarbonate, hydroxide, or the like, particularly a carbonate, is preferably used.
  • the alkali metal include lithium, sodium, potassium, rubidium and cesium, with sodium and potassium being preferred.
  • sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium hydroxide or potassium hydroxide can be used. It can be used preferably.
  • These various alkali metal compounds may be used alone or in combination of two or more.
  • polar solvent one that can smoothly proceed with the polymerization reaction can be used as appropriate.
  • polar solvents include 1,3-dimethyl-2-imidazolidone (DMI), tetramethylurea (TMU), N,N'-dimethylpropyleneurea (DMPU), N,N-dimethylformamide (DMF ), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N-cyclohexyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide (DMSO), sulfolane (SUL), and diphenylsulfone etc.
  • DMI 1,3-dimethyl-2-imidazolidone
  • TNU tetramethylurea
  • DMPU N,N'-dimethylpropyleneurea
  • DMF N,N-dimethylformamide
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyr
  • an appropriate amount of an inert solvent component such as toluene or xylene may be added at an appropriate point during the reaction using the polar solvent.
  • the polymerization temperature can be appropriately adjusted depending on the compounds, additives and solvents used, but it is usually preferably 140 to 300°C, more preferably 180 to 250°C. If the temperature is less than this range, it is not efficient because a sufficient reaction rate and degree of polymerization cannot be obtained. Moreover, if the temperature exceeds this range, the resulting compound may undergo decomposition or deterioration.
  • the polymerization reaction time can also be appropriately adjusted depending on the components used and the polymerization temperature, but is usually about 0.1 to 20 hours. For example, when NMP or DMI is used as the polar solvent, polymerization proceeds sufficiently in 3 to 4 hours at a polymerization temperature of 190 to 200°C. In order to increase the molecular weight, it is preferable to carry out the polymerization for 15 to 20 hours, or to use the state in which the polymerization is sufficiently performed such as the stirring bar is stopped as a measure of the completion of the polymerization.
  • an inert solvent component is added to the compounds of formulas (16) and (17), an alkali metal compound, and a polar solvent, followed by heating, and the polymerization temperature is gradually increased to room temperature. to 140-150°C. While maintaining the temperature, the inert solvent component and water are azeotropically removed. Then, the temperature is raised to the polymerization temperature, and the inert solvent component is completely removed while maintaining the temperature. After the inert solvent component is removed, the polymerization temperature is maintained and the polymerization is performed for the polymerization reaction time to obtain the compound of formula (18). After the polymerization reaction is fully completed, it is allowed to cool to room temperature and recovered with methanol. After that, further steps such as washing with methanol or the like, drying under reduced pressure, and/or reprecipitation with an organic solvent may be performed.
  • the resin composition for a low dielectric material of the present embodiment is a resin composition for a low dielectric material used as an insulating material between layers of a laminated substrate
  • the resin composition for a low dielectric material is a triazine-containing poly It is preferably produced by mixing an ether compound, an epoxy resin, a bismaleimide resin, or a cyanate resin, a curing accelerator and an organic solvent. Since the curing reaction of the resin composition for the low dielectric material proceeds rapidly by mixing the curing accelerator in the production, the insulating material can be easily produced.
  • the insulating layer is quickly formed, which is suitable for industrial production.
  • the resin composition for low dielectric materials becomes a so-called varnish during production, and can be easily applied to other members as an insulating material.
  • the coatability is improved when the insulating layer is formed by coating the surface of the film.
  • any compound capable of accelerating the curing of the above compounds can be used as appropriate.
  • imidazoles, tertiary amines, acid anhydrides, or tertiary phosphines may be used.
  • the amount to be added can also be appropriately adjusted depending on the composition of the compound, but is preferably in the range of 0.01 to 2% by mass with respect to the total mass of the resin composition for low dielectric materials.
  • a solvent capable of dissolving the above compound to form a varnish can be appropriately selected.
  • organic solvents such as acetamide or N-methylpyrrolidone can be used.
  • propylene glycol monomethyl ether acetate, cyclohexanone or methyl ethyl ketone can be preferably used.
  • the amount to be added can also be appropriately adjusted depending on the composition of the compound, but in order to form a varnish, the non-volatile content should be in the range of 50 to 70% by mass with respect to the total mass of the resin composition for low dielectric materials. is preferred.
  • the resin composition for a low dielectric material of the present embodiment is produced by further mixing an inorganic filler, a modifier or a flame retardant.
  • Inorganic fillers can be, for example, fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, or magnesium hydroxide.
  • conductive fillers such as silver powder and copper powder can be used as inorganic fillers.
  • modifiers examples include phenoxy resins, polyamide resins, polyimide resins, polyetherimide resins, polyethersulfone resins, polyphenylene ether resins, polyphenylene sulfide resins, polyester resins, polystyrene resins, polyethylene terephthalate resins, and the like.
  • the flame retardant for example, a halogen compound, a phosphorus atom-containing compound, a nitrogen atom-containing compound, an inorganic flame retardant compound, or the like can be used.
  • an insulating material containing a resin composition for a low dielectric material is applied to at least one surface of a resin film.
  • the varnish-like resin composition for a low dielectric material is applied to at least one surface of a resin film as described above.
  • the organic solvent is volatilized by heating or blowing hot air to form an insulating layer.
  • the resin composition for the low dielectric material preferably has a non-volatile content excluding volatile components such as the organic solvent in a range of 30 to 60% by mass. Within this range, the coatability of the compound on a film and the formability of a laminated substrate film are particularly favorable.
  • the thickness of the insulating layer to be formed is equal to or greater than the thickness of the conductor layer of the circuit board on which the laminated board is installed, which will be described later.
  • the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m
  • the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
  • Method for manufacturing laminated substrate In the method for manufacturing a laminated substrate of this embodiment, two or more films for the laminated substrate are laminated.
  • a protective film When manufacturing a printed wiring board using the laminated substrate of the present embodiment, if the film for the laminated substrate is protected by a protective film, after peeling these, the layer is directly in contact with the circuit board. It can be carried out by laminating on one side or both sides of the circuit board, for example, by a vacuum lamination method.
  • the method of lamination may be a batch type or a continuous roll type.
  • the film and circuit board may be heated (preheated) before lamination, if necessary.
  • the fiber base material is impregnated with the resin composition for low dielectric materials prepared in the form of a varnish, and heated at a heating temperature according to the type of solvent used, preferably at 50 to 170° C. to obtain a cured product.
  • An insulating layer of prepreg is obtained. Paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, matted glass, glass roving cloth, or the like can be used as the fiber substrate.
  • thermocompression bonding is, specifically, a method of carrying out at a temperature of 170 to 250° C. under a pressure of 1 to 10 MPa. Moreover, it is preferable to perform the thermocompression bonding for 10 minutes to 3 hours.
  • the laminated board and printed board may be formed in the following procedure. That is, a wiring board having a circuit formed thereon is coated with a resin composition for a low dielectric material using a spray coating method, a curtain coating method, or the like, and then cured. Next, after drilling predetermined through holes or the like as necessary, the surface is treated with a roughening agent, washed with hot water to form unevenness, and then plated with a metal such as copper.
  • the plating method is preferably electroless plating or electrolytic plating.
  • the roughening agent an oxidizing agent, an alkali, an organic solvent, or the like can be used.
  • Such an operation is repeated as desired to alternately build up insulating layers and conductor layers having a predetermined circuit pattern, thereby obtaining a build-up substrate.
  • the drilling of the through-hole part is preferably performed after the formation of the outermost insulating layer.
  • the resin composition for low dielectric material of the present embodiment In order to adjust the resin composition for low dielectric material of the present embodiment to a sealing material for electronic parts, the resin composition for low dielectric material, epoxy resin, bismaleimide resin, or cyanate resin, if necessary After pre-mixing other coupling agents and / or additives such as mold release agents and inorganic fillers, etc., it is sufficiently mixed until uniform using an extruder, kneader, roll, etc. are mentioned.
  • the resin composition obtained by the above-described method is heated to prepare a semi-cured sheet, which is used as an encapsulant tape. A method of placing on a chip, heating to 100 to 150° C. to soften and mold, and curing completely at 170 to 250° C. can be mentioned.
  • the resin composition for low dielectric material of the present embodiment as a resist ink
  • the resin composition for low dielectric material epoxy resin, bismaleimide resin, or cyanate resin, an organic solvent, a pigment
  • a resist ink composition is prepared by adding talc, a filler, and the like, and then the composition is applied onto a printed circuit board by screen printing, followed by curing the resist ink.
  • organic solvents used here include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, cyclohexanone, dimethylsulfoxide, dimethylformamide, dioxolane, tetrahydrofuran, propylene glycol monomethyl ether.
  • Acetate, ethyl lactate and the like can be mentioned.
  • the resin composition for low dielectric materials of the present embodiment is used as an insulating material, for example, an insulating material between semiconductor layers
  • a curing accelerator and a silane coupling agent are blended to prepare a composition, which is applied onto a silicon substrate by spin coating or the like.
  • the cured coating film is in direct contact with the semiconductor, it is preferable to make the coefficient of linear expansion of the insulating material close to that of the semiconductor so that cracks do not occur due to the difference in coefficient of linear expansion in a high-temperature environment.
  • the resin composition for a low dielectric material of the present embodiment is used as a conductive paste
  • fine conductive particles are dispersed in the resin composition for a low dielectric material to form a composition for an anisotropic conductive film.
  • method a method of using a paste resin composition for circuit connection which is liquid at room temperature, or an anisotropic conductive adhesive.
  • TGA Thermogravimetry
  • DSC Differential scanning calorimetry
  • TMA Thermomechanical analysis
  • DMA Dynamic viscoelasticity measurement
  • DMA Dynamic viscoelasticity measurement
  • permittivity/dielectric loss tangent measuring device cavity resonator type
  • TE mode (10 GHz) Commercially available reagents were used and purified by conventional methods as necessary.
  • BFPT 2,4-bis(4-fluorophenyl)-2-phenyl-1,3,5-triazine
  • BFPT used in each example was synthesized as follows. 4-fluorobenzamidine hydrochloride (7.460 g, 42.73 mmol), benzylideneaniline (3.625 g, 20.00 mmol), sodium bicarbonate ( 3.781 g, 45.00 mmol) and N,N-dimethylformamide (DMF, 35 mL) were added, the temperature was raised stepwise to 85° C., and the reaction was carried out at 85° C. for 96 hours. After that, it was allowed to cool to room temperature.
  • the reaction solution was poured into distilled water and chloroform was added.
  • the chloroform solution was washed three times with distilled water using a separating funnel.
  • the recovered chloroform solution was dried over anhydrous sodium sulfate overnight, and the anhydrous sodium sulfate was removed by suction filtration.
  • the chloroform solution was concentrated by an evaporator and poured into methanol (500 mL) to precipitate a crude product. This was collected by suction filtration, washed with methanol under reflux, and dried under reduced pressure at room temperature to obtain a crude brown needle crystal product (1.61 g, 23.3%).
  • the crude product was recrystallized with a mixed solvent of chloroform and methanol and dried under reduced pressure at 80° C. for 24 hours.
  • the synthesized compound was in the form of white needle crystals, yield: 1.46 g, yield: 21.1%, melting point: 258-259°C.
  • Example 1 The compound of Example 1, a polyether (BFPT-BisA) of the following formula, was synthesized as follows. BFPT (0.6907 g, 2.00 mmol) and bisphenol A (0.4566 g, 2.00 mmol) are placed in a two-necked flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube, and potassium carbonate ( 0.3334 g, 2.40 mmol), N-methyl-2-pyrrolidone (NMP, 5.0 mL) as a polar solvent, and toluene (20 mL) as an inert solvent component were added.
  • NMP N-methyl-2-pyrrolidone
  • a Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was established.
  • the temperature was raised stepwise to 150° C. with stirring, toluene was refluxed at 150° C. for 2 hours, and water was removed with a Dean-Stark trap. After that, the temperature was raised to 190° C. and the mixture was stirred for 1 hour to remove toluene.
  • polymerization was carried out at 190° C. for 2 hours. It was allowed to cool to room temperature to obtain a viscous polymerization solution.
  • the polymer was precipitated by pouring into methanol, recovered, washed with hot methanol, and dried under reduced pressure at room temperature for 12 hours. The resulting polymer was dissolved in NMP and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature for 12 hours.
  • This polymer was dissolved in NMP to prepare a 12 wt% solution.
  • This solution was cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 1 hour.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 38 ⁇ m).
  • Example 2 The compound of Example 2, a polyether of the following formula (BFPT-BisAF), was synthesized as follows. BFPT (0.6907 g, 2.00 mmol) and bisphenol AF (0.6725 g, 2.00 mmol) are placed in a two-necked flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube, and potassium carbonate ( 0.3334 g, 2.40 mmol), N,N'-dimethylimidazolidone (DMI, 6.5 mL) as a polar solvent, and toluene (20 mL) as an inert solvent component.
  • BFPT a polyether of the following formula
  • BFPT-BisAF a polyether of the following formula
  • a Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was established.
  • the temperature was raised stepwise to 150° C. with stirring, toluene was refluxed at 150° C. for 2 hours, and water was removed with a Dean-Stark trap. After that, the mixture was heated to 190° C. and stirred for 1 hour to remove toluene. After that, polymerization was carried out at 190° C. for 2 hours. It was allowed to cool to room temperature to obtain a viscous polymerization solution.
  • the polymer was precipitated by pouring into methanol, recovered, washed with hot methanol, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in tetramethylurea (TMU) and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • TNU tetramethylurea
  • the polymer was dissolved in TMU to prepare a 9 wt% solution. This solution was cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 1 hour. A glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 37 ⁇ m).
  • Example 3 The compound of Example 3, a polyether of the following formula (BFPT-BisPHTG), was synthesized as follows. BFPT (0.6907 g, 2.00 mmol) and BisP-HTG (0.6209 g, 2.00 mmol) were placed in a two-necked flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube, and potassium carbonate was added as an alkali metal compound. (0.3334 g, 2.40 mmol), N-methyl-2-pyrrolidone (NMP, 5.0 mL) as a polar solvent, and toluene (20 mL) as an inert solvent component were added.
  • NMP N-methyl-2-pyrrolidone
  • a Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was established.
  • the temperature was raised stepwise to 150° C. with stirring, toluene was refluxed at 150° C. for 2 hours, and water was removed with a Dean-Stark trap. Thereafter, the temperature was raised to 190° C. and stirred for 1 hour to remove toluene. After that, polymerization was carried out at 190° C. for 2 hours. After allowing to cool to room temperature, a brown viscous polymerization solution was obtained.
  • the polymer was precipitated by pouring into methanol, washed with hot methanol after recovery, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in NMP and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • the polymer was dissolved in TMU to prepare a 15 wt% solution. This solution was cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours. A glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 38 ⁇ m).
  • Example 4 The compound of Example 4, a polyether of the following formula (BFPT-BisPIND) was synthesized as follows. BFPT (0.6907 g, 2.00 mmol) and BisPIND (0.5368 g, 2.00 mmol) are placed in a two-necked flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube, and potassium carbonate (0 .3334 g, 2.40 mmol), N-methyl-2-pyrrolidone (NMP, 5.0 mL) as a polar solvent, and toluene (20 mL) as an inert solvent component.
  • NMP N-methyl-2-pyrrolidone
  • a Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was established.
  • the temperature was raised stepwise to 150° C. with stirring, toluene was refluxed at 150° C. for 2 hours, and water was removed with a Dean-Stark trap. Thereafter, the temperature was raised to 190° C. and stirred for 1 hour to remove toluene. After that, polymerization was carried out at 190° C. for 2 hours. After allowing to cool to room temperature, a brown viscous polymerization solution was obtained.
  • the polymer was precipitated by pouring into methanol, washed with hot methanol after recovery, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in NMP and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • the polymer was dissolved in TMU to prepare a 10 wt% solution. This solution was cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours. A glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 43 ⁇ m).
  • Example 5 The compound of Example 5, a polyether of the following formula (BFPT-BisC), was synthesized as follows.
  • BisA in Example 1 was changed to BisC, and polymerization was carried out in NMP (5.0 mL) at 190°C for 3 hours to synthesize a polyether in the same manner.
  • the polymer was dissolved in NMP, cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 47 ⁇ m).
  • Example 6 The compound of Example 6, a polyether of the following formula (BFPT-TMBisA), was synthesized as follows. Polyether was similarly synthesized by replacing BisA in Example 1 with TMBisA and polymerizing in NMP (5 mL) at 200° C. for 3 hours.
  • NMP 5 mL
  • the polymer was dissolved in NMP, cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 63 ⁇ m).
  • Example 7 The compound of Example 7, a polyether of the following formula (BFPT-BisCHP), was synthesized as follows.
  • BisA in Example 1 was changed to BisCHP and polymerization was carried out in NMP (5 mL) at 190° C. for 3 hours to synthesize a polyether in the same manner.
  • the polymer was dissolved in NMP, cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 53 ⁇ m).
  • Example 8 The compound of Example 8, a polyether of the following formula [BFPT-BisZ/BisAF (25 mol %/75 mol %)] was synthesized as follows. BisA in Example 1 was changed to BisZ (25 mol %) and BisAF (75 mol %), and polymerization was carried out in NMP (5 mL) at 190° C. for 3 hours to synthesize a polyether in the same manner.
  • the polymer was dissolved in NMP, cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 84 ⁇ m).
  • NMP N-methyl-2-pyrrolidone
  • TMU tetramethylurea
  • DI N,N'-dimethylimidazolidone
  • DMPU N,N'-dimethylpropyleneurea
  • cyclopentanone cyclohexanone
  • THF tetrahydrofuran
  • Example 9 The compound of Example 9, a polyether of the following formula [BFPT-BisP3MZ/BisAF (50 mol %/50 mol %)] was synthesized as follows. BisA in Example 1 was changed to BisP3MZ (50 mol %) and BisAF (50 mol %), and polymerization was carried out in NMP (5 mL) at 190° C. for 3 hours to similarly synthesize polyether.
  • NMP 5 mL
  • the polymer was dissolved in NMP, cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 58 ⁇ m).
  • Example 10 The compound of Example 10, a polyether of the following formula (BFPT-BisPCDE), was synthesized as follows.
  • BisA in Example 1 was changed to BisPCDE, and polymerization was carried out in NMP (5 mL) at 190° C. for 3 hours to synthesize a polyether in the same manner.
  • the polymer was dissolved in DMPU, cast onto a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 76 ⁇ m).
  • Example 11 The compound of Example 11, a polyether (BFPT-DTPM) of the following formula, was synthesized as follows. By replacing BisA in Example 1 with DTPM, polymerization was carried out in NMP (5.0 mL) at 190° C. for 3 hours to similarly synthesize a polyether.
  • NMP 5.0 mL
  • the polymer was dissolved in NMP, cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 70 ⁇ m).
  • Example 12 The compound of Example 12, the polyether of the following formula (BFPT-BPFL) was synthesized as follows. BFPT (0.6340 g, 1.84 mmol) and BPFL (0.6433 g, 1.84 mmol) are placed in a two-necked flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube. .3060 g, 2.20 mmol), N-methyl-2-pyrrolidone (NMP, 5.0 mL) as a polar solvent, and toluene (20 mL) as an inert solvent component. A Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was created.
  • NMP N-methyl-2-pyrrolidone
  • the temperature was raised stepwise to 150° C. with stirring, and toluene was refluxed at 150° C. for 2 hours to remove water produced by the Dean-Stark trap. Thereafter, the temperature was raised to 190° C. and stirred for 1 hour to remove toluene. After that, polymerization was carried out at 190° C. for 2 hours. After cooling to room temperature, a viscous polymerization solution was obtained. The polymer was precipitated by pouring into methanol, washed with hot methanol after recovery, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in NMP and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • This compound yield 1.134 g, yield: 94%, logarithmic viscosity: 0.88 dL / g (30 ° C., 0.5 g / dL NMP solution), number average molecular weight ( Mn): 77,000, weight average molecular weight (Mw): 206,000, molecular weight distribution (Mw/Mn): 2.7, average degree of polymerization (n): 117.
  • This polymer was dissolved in TMU to prepare a 12 wt % solution. This solution was cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours. A glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 64 ⁇ m).
  • Solubility Soluble in N-methyl-2-pyrrolidone (NMP), tetramethylurea (TMU), N,N'-dimethylimidazolidone (DMI), chloroform, tetrahydrofuran (THF), cyclopentanone, cyclohexanone. rice field.
  • Example 13 The compound of Example 13, a polyether of the following formula (BFPT-DMBPFL) was synthesized as follows. Polymerization was carried out in NMP (5.0 mL) at 190° C. for 3 hours by replacing BisA in Example 1 with DMBPFL to synthesize a polyether in the same manner.
  • NMP 5.0 mL
  • the polymer was dissolved in NMP, cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 79 ⁇ m).
  • Example 14 The compound of Example 14, a polyether of the following formula (BFPT-TBISRX) was synthesized as follows. By replacing BisA in Example 1 with TBISRX, polymerization was carried out in NMP (5.0 mL) at 190° C. for 3 hours to similarly synthesize a polyether.
  • NMP 5.0 mL
  • the polymer was dissolved in NMP, cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours.
  • a glass plate was immersed in distilled water, the film was peeled off, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 85 ⁇ m).
  • R hydrogen (H) (BFPT) and Ar is Bis A compound of formula (2) (BFPT-BisA, Reference Example 1), Bis AF compound of formula (3) (BFPT-BisAF, Reference Example 2) Compound of BisP-HTG of Formula (4) (BFPT-PisP-HTG, Reference Example 3) BisP-IND compound of formula (5) (BFPT-BisP-IND, Reference Example 4) compound was prepared.
  • the reaction solution was poured into distilled water and chloroform was added.
  • the chloroform solution was washed three times with distilled water in a separating funnel.
  • the recovered chloroform solution was dried over anhydrous sodium sulfate overnight, and the anhydrous sodium sulfate was removed by suction filtration.
  • the chloroform solution was concentrated by an evaporator and poured into methanol (500 mL) to precipitate a crude product. This was collected by suction filtration, washed with methanol under reflux, and dried under reduced pressure at room temperature to obtain a crude brown needle crystal product (1.61 g, 23.3%).
  • the crude product was recrystallized with a mixed solvent of chloroform and methanol and dried under reduced pressure at 80° C. for 24 hours.
  • the synthesized compound was in the form of white needle crystals, yield: 1.46 g, yield: 21.1%, melting point: 259-262°C.
  • the analysis results using the above-mentioned equipment are as follows.
  • 1 H-NMR (CDCl 3 , ppm): 8.80-8.73 (m, 6H), 7.62 (t, 1H), 7.57 (t, 2H), 7.27-7.23 ( m, 4H).
  • Reference example 1 The compound of Reference Example 1, polyether (BFPT-BisA), was synthesized as follows. BFPT (0.6907 g, 2.00 mmol) and bisphenol A (0.4566 g, 2.00 mmol) are placed in a two-necked flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube, and potassium carbonate ( 0.3334 g, 2.40 mmol), N,N'-dimethylimidazolidone (DMI, 6.5 mL) as a neutral polar solvent, and toluene (20 mL) as an inert solvent component. A Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was created.
  • BFPT 0.6907 g, 2.00 mmol
  • bisphenol A 0.4566 g, 2.00 mmol
  • potassium carbonate 0.3334 g, 2.40 mmol
  • DMI N,N'-dimethylimidazolidone
  • the temperature was raised stepwise to 150° C. with stirring, and toluene was refluxed at 150° C. for 2 hours to remove the water produced by the Dean-Stark trap. After that, the temperature was raised to 190° C. and the mixture was stirred for 2 hours to remove toluene. After that, polymerization was carried out at 190° C. for 2 hours. After allowing to cool to room temperature, a brown viscous polymerization solution was obtained. The polymer was precipitated by pouring into methanol, washed with hot methanol after recovery, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in N-methyl-2-pyrrolidone (NMP) and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • NMP N-methyl-2-pyrrolidone
  • This polymer was dissolved in NMP to prepare a 12 wt% solution.
  • This solution was cast on a glass plate, heated stepwise to 200° C. under reduced pressure, and dried under reduced pressure at 200° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 38 ⁇ m).
  • Reference example 2 The compound of Reference Example 2, polyether (BFPT-BisAF), was synthesized as follows. BFPT (0.6907 g, 2.00 mmol) and bisphenol AF (0.6725 g, 2.00 mmol) are placed in a two-necked flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube, and potassium carbonate ( 0.3334 g, 2.40 mmol), N,N'-dimethylimidazolidone (DMI, 6.5 mL) as a neutral polar solvent, and toluene (20 mL) as an inert solvent component. A Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was established.
  • BFPT 0.6907 g, 2.00 mmol
  • bisphenol AF 0.6725 g, 2.00 mmol
  • potassium carbonate 0.3334 g, 2.40 mmol
  • DMI N,N'-dimethylimidazo
  • the temperature was raised stepwise to 150° C. with stirring, and toluene was refluxed at 150° C. for 2 hours to remove the water produced by the Dean-Stark trap. After that, the temperature was raised to 190° C. and the mixture was stirred for 2 hours to remove toluene. After that, polymerization was carried out at 190° C. for 2 hours. After allowing to cool to room temperature, a brown viscous polymerization solution was obtained. The polymer was precipitated by pouring into methanol, washed with hot methanol after recovery, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in tetramethylurea (TMU) and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • TNU tetramethylurea
  • Reference example 3 The compound of Reference Example 3, polyether (BFPT-BisPHTG), was synthesized as follows. BFPT (0.6907 g, 2.00 mmol) and BisPHTG (0.6209 g, 2.00 mmol) are placed in a two-necked flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube, and potassium carbonate (0 .3334 g, 2.40 mmol), N-methyl-2-pyrrolidone (NMP, 5.0 mL) as a neutral polar solvent, and toluene (20 mL) as an inert solvent component were added.
  • NMP N-methyl-2-pyrrolidone
  • a Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was established.
  • the temperature was raised stepwise to 150° C. with stirring, and toluene was refluxed at 150° C. for 2 hours to remove the water produced by the Dean-Stark trap. After that, the temperature was raised to 190° C. and the mixture was stirred for 2 hours to remove toluene. After that, polymerization was carried out at 190° C. for 3 hours. After allowing to cool to room temperature, a brown viscous polymerization solution was obtained. The polymer was precipitated by pouring into methanol, washed with hot methanol after recovery, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in NMP and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • This polymer was dissolved in tetramethylurea (TMU) to prepare a 15 wt% solution.
  • TMU tetramethylurea
  • This solution was cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 38 ⁇ m).
  • TMU tetramethylurea
  • Reference example 4 The compound of Reference Example 4, polyether (BFPT-BisPIND), was synthesized as follows. BFPT (0.6907 g, 2.00 mmol) and BisPIND (0.5368 g, 2.00 mmol) are placed in a two-neck flask (50 mL) equipped with a stirrer and a nitrogen gas inlet tube, and potassium carbonate (0 .3334 g, 2.40 mmol), N-methyl-2-pyrrolidone (NMP, 5.0 mL) as a neutral polar solvent, and toluene (20 mL) as an inert solvent component were added. A Dean-Stark trap and a Liebig condenser were attached, and a nitrogen gas atmosphere was created.
  • NMP N-methyl-2-pyrrolidone
  • the temperature was raised stepwise to 150° C. with stirring, and toluene was refluxed at 150° C. for 2 hours to remove the water produced by the Dean-Stark trap. After that, the temperature was raised to 190° C. and the mixture was stirred for 2 hours to remove toluene. After that, polymerization was carried out at 190° C. for 3 hours. After allowing to cool to room temperature, a brown viscous polymerization solution was obtained. The polymer was precipitated by pouring into methanol, washed with hot methanol after recovery, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in NMP and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • This polymer was dissolved in tetramethylurea (TMU) to prepare a 10 wt % solution.
  • TMU tetramethylurea
  • This solution was cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 43 ⁇ m).
  • TMU tetramethylurea
  • the temperature was raised stepwise to 150° C. with stirring, and toluene was refluxed at 150° C. for 2 hours to remove water produced by the Dean-Stark trap. After that, the temperature was raised to 190° C. and the mixture was stirred for 2 hours to remove toluene. After that, polymerization was carried out at 190° C. for 2 hours. After cooling to room temperature, a brown viscous polymerization solution was obtained. The polymer was precipitated by pouring into methanol, recovered, washed with hot methanol, and dried under reduced pressure at room temperature. The resulting polymer was dissolved in tetramethylurea (TMU) and poured into methanol to precipitate a white flake polymer. After recovering the polymer, it was dried under reduced pressure at room temperature.
  • TNU tetramethylurea
  • This compound yield 1.043 g, yield: 87%, logarithmic viscosity: 0.50 dL / g (30 ° C., 0.5 g / dL NMP solution), number average molecular weight (Mn): 46,000, weight average Molecular weight (Mw): 88,000, molecular weight distribution (Mw/Mn): 1.9.
  • This polymer was dissolved in TMU to prepare a 12 wt % solution.
  • This solution was cast on a glass plate, heated stepwise to 160° C. under reduced pressure, and dried under reduced pressure at 160° C. for 3 hours to prepare a colorless and transparent cast film (thickness: 64 ⁇ m).
  • the analysis results using the above-mentioned equipment are as follows.
  • Solubility Soluble in N-methyl-2-pyrrolidone (NMP), tetramethylurea (TMU), N,N'-dimethylimidazolidone (DMI), chloroform, tetrahydrofuran (THF), cyclopentanone, cyclohexanone.
  • NMP N-methyl-2-pyrrolidone
  • TMU tetramethylurea
  • DMI N,N'-dimethylimidazolidone
  • chloroform tetrahydrofuran
  • THF tetrahydrofuran
  • carbonization yield 58% (in nitrogen, 800° C.
  • the amount of polar solvent is 5 mL (that is, the ratio of 25% by volume to 20 mL of toluene), and the polymerization temperature is 190 ° C., a high yield and a high logarithmic viscosity was gotten. Furthermore, when the amount of polar solvent was increased to 6.5 mL, extremely high yields and extremely high logarithmic viscosities were obtained. On the other hand, when the polymerization temperature was 170 to 180° C. and NMP or TMU was used as the polar solvent, the yield and logarithmic viscosity decreased slightly, and discoloration was observed, but production was possible.
  • Reference Test Example 2 Synthesis study of compounds of Reference Examples 1 to 4.
  • the compounds of Reference Examples 1 to 4 were synthesized under the conditions described above. Each reference example was synthesized in the same steps except that DMI was replaced with NMP. The results are shown in Tables 2 and 3.
  • each of Reference Examples 1 to 4 could be synthesized with a high yield above a certain level.
  • the yield, logarithmic viscosity, and number average molecular weight (Mn) were higher and discoloration was less when NMP was used.
  • FIG. 1 shows the FT-IR spectra of Reference Examples 1 to 4 synthesized using DMI as a polar solvent.
  • Table 4 shows the results of elemental analysis for each reference example. Calcd. is a calculated value, Found. is the measured value.
  • Reference Example 1 was soluble in N-methyl-2-pyrrolidone (NMP), tetramethylurea (TMU) and N,N'-dimethylimidazolidone (DMI).
  • NMP N-methyl-2-pyrrolidone
  • THF tetrahydrofuran
  • DMAc N,N-dimethylacetamide
  • N-methyl-2-pyrrolidone (NMP), tetramethylurea (TMU), N,N'-dimethylimidazolidone (DMI), chloroform, tetrahydrofuran (THF), cyclopentanone, cyclohexanone was soluble.
  • NMP N-methyl-2-pyrrolidone
  • TMP tetramethylurea
  • DI N,N'-dimethylimidazolidone
  • chloroform tetrahydrofuran
  • cyclopentanone, cyclohexanone was soluble.
  • Reference Example 5 contains N-methyl-2-pyrrolidone (NMP), tetramethylurea (TMU), N,N'-dimethylimidazolidone (DMI), chloroform, tetrahydrofuran ( THF), cyclopentanone and cyclohexanone.
  • NMP N-methyl-2-pyrrolidone
  • TEU tetramethylurea
  • DMI N,N'-dimethylimidazolidone
  • chloroform chloroform
  • tetrahydrofuran THF
  • cyclopentanone cyclohexanone
  • thermogravimetry TGA
  • DSC differential scanning calorimetry
  • TMA thermomechanical analysis
  • DMA dynamic viscoelasticity measurement
  • Tables 7 and 8 show the results obtained.
  • Table 7 shows glass transition temperature (Tg) and coefficient of thermal expansion (CTE).
  • the glass transition temperature is a value measured in nitrogen at a heating rate of 20° C./min by DSC, a value measured in nitrogen at a heating rate of 10° C./min by TMA, and a temperature rising rate of 2° C./min in nitrogen by DMA. It is a value measured at min.
  • CTE is a value measured by TMA at 150-200°C.
  • T 5% and T 10% in Table 8 are the 5% reduction temperature and the 10% reduction temperature, respectively, and are values measured by TGA in nitrogen or air at a heating rate of 10°C/min.
  • Char yield is the carbonization yield in weight percent at 800° C. in nitrogen.
  • each reference example had a glass transition temperature of around 240° C. or higher, indicating high heat resistance. From the results in Table 8, 5% thermal decomposition and 10% thermal decomposition occurred at 400 ° C. or higher in air and 500 ° C. or higher in nitrogen, indicating high thermal stability. .
  • Table 9 shows the results of examining the dielectric properties of the compounds of Reference Examples 1 to 4 under the above-described dielectric constant measurement conditions.
  • n indicates the refractive index measured by a prism coupler, measured at the F-line (486 nm), d-line (588 nm) and C-line (656 nm).
  • the TE mode represents the in-plane refractive index of the film
  • the TM mode represents the out-of-plane refractive index of the film.
  • V d is the Abbe number
  • n TE and n TM were measured with the d-line (588 nm).
  • Dielectric constant (Dk) and dielectric loss tangent (Df) are values measured with a cavity resonator.
  • a resin composition having a low dielectric constant, a low dielectric loss tangent, a high transparency, a high solubility, and a high heat resistance can be suitably used as a low dielectric material, and a method for producing the same. can get.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性が高く、低誘電材料として好適に使用できる樹脂組成物、それを用いた積層基板用フィルム、積層基板及びそれらの製造方法を提供する。特定の繰り返し単位を有するトリアジン含有ポリエーテル化合物を含む、低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法である。

Description

低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法
 本発明は、電子機器等の低誘電材料として用いるための、トリアジン含有ポリエーテル化合物を含む低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法に関する。
 本願は、2021年3月24日に、日本に出願された特願2021-050547号に基づき優先権を主張し、その内容をここに援用する。
 樹脂材料のうち、芳香族ポリエーテルは、耐熱性に優れ、機械的強度などにも比較的優れているため、いわゆるエンジニアリング樹脂として、自動車分野、又は機械分野等に広く応用されている。さらに好ましいエンジニアリング樹脂としては、耐熱性及び熱安定性を両立した、一層優れたエンジニアリング樹脂である新規な構造の開発が進められている。
 特許文献1には、アリール基と結合したフェニルトリアジン化合物が開示されている。この技術は、耐熱性及び熱安定性に優れ、また機械的強度等にも優れ、エンジニアリング樹脂として有利に利用することができる芳香族ポリエーテル樹脂を提供しようとするものである。
 一方、社会の通信インフラが5Gへと移行していく中で、電子機器に用いられる電磁波のうち、マイクロ波やミリ波といった高周波の領域が注目を集め、通信分野や車両用レーダなどへの応用の研究も進められている。高周波の領域を用いる機器では、基板、共振器、フィルタ、アンテナ等の部材に、低誘電率、低誘電正接性が求められる。それと共に、これらの部材に用いられる素材は、さまざまな機械的特性、例えば物理的強度や熱特性などを両立していることが求められる。こういった特性を満たす材料としては、現在は樹脂材料などにセラミックスフィラーなどの添加したものが考えられている。
特開平6-184300号公報
 一方で、有機材料、特に樹脂材料は、前記高周波の領域での電子機器類や電子部品に応用するために優れた特性を持つものの研究が進められている。その中でも、絶縁部品、プリント配線板などに用いることのできる低誘電の特性を持つ材料や、誘電正接の低い材料は、特に強く求められている。
 本発明者らは、優れた特性を持つ樹脂材料のうちでも、低誘電の特性を持つ材料や、誘電正接の低い材料を探索した。その結果、特定の構造を有するトリアジン含有ポリエーテル化合物が、優れた機械的、熱的特性だけでなく、低誘電率材料そして低誘電正接材料として優れた特性を持つことを見出し、本発明を完成するに至った。
 本発明は上記のような事情を鑑みてなされたものであり、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性が高いことから、低誘電材料として好適に使用できる樹脂組成物、それを用いた積層基板用フィルム、積層基板及びそれらの製造方法を提供することを目的とする。
 上記課題を解決するため、本発明は以下の態様を有する。
[1] 下記一般式(1)で示される繰り返し単位を有するトリアジン含有ポリエーテル化合物を含む、低誘電材料用の樹脂組成物。
Figure JPOXMLDOC01-appb-C000019
[式(1)中、nは2以上の整数であり、Arは、置換基を有する若しくは有さない2価の芳香族基を表す。Rは、水素、直鎖状、分岐鎖状若しくは環状の脂肪族基、置換基を有する若しくは有さない芳香族基、フッ素化された前記脂肪族基、又はフッ素化された前記芳香族基を表す。]
[2] 前記Arが下記一般式(2)~(15)のいずれかで表されるトリアジン含有ポリエーテル化合物を含む、前記の低誘電材料用の樹脂組成物。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
[3] 前記一般式(1)中のnで示される繰り返し単位の平均重合度が2~200であるトリアジン含有ポリエーテル化合物を含む、前記の低誘電材料用の樹脂組成物。
[4] 前記トリアジン含有ポリエーテル化合物は、誘電率Dが2.8以下、及び/又は誘電正接Dが0.003以下である、前記の低誘電材料用の樹脂組成物。
[5] 前記トリアジン含有ポリエーテル化合物は、ガラス転移温度が200℃以上である、前記の低誘電材料用の樹脂組成物。
[6] 前記トリアジン含有ポリエーテル化合物及びエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂を含む、前記の低誘電材料用の樹脂組成物。
[7] 無機質充填材、改質剤又は難燃付与剤をさらに含む、前記の低誘電材料用の樹脂組成物。
[8] 周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられる、前記の低誘電材料用の樹脂組成物。
[9] プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料、又は絶縁板に用いる、前記の低誘電材料用の樹脂組成物。
[10] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えた積層基板用フィルム。
[11] 前記の積層基板用フィルムを2以上備えた積層基板。
[12] 前記低誘電材料用の樹脂組成物の製造方法であって、
下記一般式(16)で表される化合物と下記一般式(17)で表される化合物とを混合し、重合させて下記一般式(18)で表されるトリアジン含有ポリエーテル化合物を得る、低誘電材料用の樹脂組成物の製造方法。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
[式(16)、(17)、(18)中、nは2以上の整数であり、Arは、置換基を有する若しくは有さない2価の芳香族基を表す。Rは、水素、直鎖状、分岐鎖状若しくは環状の脂肪族基、置換基を有する若しくは有さない芳香族基、フッ素化された前記脂肪族基、又はフッ素化された前記芳香族基を表す。]
[13] 積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物の製造方法であって、
 前記トリアジン含有ポリエーテル化合物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、硬化促進剤及び有機溶剤を混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[14] 無機質充填材、改質剤又は難燃付与剤をさらに混合する、前記の低誘電材料用の樹脂組成物の製造方法。
[15] 前記の低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する、積層基板用フィルムの製造方法。
[16] 前記の積層基板用のフィルムを2以上積層する、積層基板の製造方法。
 本発明によれば、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性が高いことから、低誘電材料として好適に使用できる樹脂組成物、それを用いた積層基板用フィルム、積層基板及びそれらの製造方法が得られる。
本実施例の参考例1~4のFT-IRスペクトルを示す図である。
 以下、本発明に係る低誘電材料用の樹脂組成物及びその製造方法について、実施形態を示して説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 (低誘電材料用の樹脂組成物)
 本実施形態の低誘電材料用の樹脂組成物は、特定のトリアジン含有ポリエーテル化合物を含む。
 ここで低誘電材料とは、誘電率が低い及び/又は誘電正接が低い材料である。すなわち、低誘電率材料又は低誘電正接材料であるが、以下、総称して「低誘電材料」という。誘電率の測定条件などの定義は後述する。低誘電材料は、電子機器又は電子部品において低い誘電率及び/又は低い誘電正接が求められる部位に用いる。低い誘電率及び/又は低い誘電正接が求められる部位とは、例えば絶縁が必要とされる部位で、絶縁板等の絶縁部品や、プリント配線板の絶縁部品などが挙げられる。プリント配線板は、フレキシブルプリント配線板も含む。本実施形態の材料が含む化合物は、特に高周波において誘電率が低く、及び/又は誘電正接が低いことから、電子部品や電子機器類としては、特に高周波対応の電子部品や電子機器類に用いることが好ましい。
 本実施形態の樹脂組成物が含むトリアジン含有ポリエーテル化合物は、下記一般式(1)で示される繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000037
 ここで式(1)中、nは2以上の整数であり、Arはアリーレン基であり、置換基を有する若しくは有さない2価の芳香族基を表す。ここで置換基とは、結合する対象となる基(原子団)とは異なるグループの基であり、結合する対象の基の一部の原子(好ましくは水素)を置き換える形で結合し得るものを広く指す。芳香族基は芳香族性を有する化合物又は一部置換された化合物の構造を含む基を広く指す。脂肪族基は広くは芳香族性を有さない有機化合物又は一部置換された化合物の構造を含む基を広く指す。
 式中、nは、式(1)で表される構造の繰り返し単位数を表し、2以上の整数である。後述するように、本実施形態の低誘電材料用の樹脂組成物に含まれるトリアジン含有ポリエーテル化合物の重合度nの平均の値が平均重合度であり、平均重合度の値は2~200であることが好ましく、2~100であってもよい。
 Rは有機置換基であり、水素であってもよく、また直鎖状、分岐鎖状若しくは環状の脂肪族基であってもよい。また、Rは置換基を有する若しくは有さない芳香族基であってもよい。加えて、Rはフッ素化された前記の脂肪族基のいずれか、又はフッ素化された前記芳香族基のいずれかであってもよい。Rがフッ素化される程度は、Rに含まれる炭素の結合部位のうち1か所から、結合する対象の基に結合する以外の全ての炭素の結合部位まで、広く選択されていてよい。例えば、Rがメチル基である場合、メチル基の有する水素のうち1~3か所がフッ素に置換されていてもよいが、2~3か所が好ましい。
 式(1)中のRは、同じ置換基であっても、異なるものであってもよい。
 本実施形態の樹脂組成物が含むトリアジン含有ポリエーテル化合物の上述したような化学構造は、赤外スペクトル(FT-IR)、核磁気共鳴スペクトル(NMR、例えばH-NMR、13C-NMR、19F-NMR)、又は元素分析等によって同定することができる。
 Arのアリーレン基の例としては、各種の芳香族化合物又は芳香族環含有化合物中の芳香族環に結合している水素原子や他の置換基を合計2個引き抜いてなる各種の二価の芳香族残基から、適宜選択することができる。アリーレン基の例としては、各種のフェニレン基、ナフチレン基、及びビフェニレン基などの中から適宜選択することができる。Arには他のアルキル基、アルキレン基、アルキリデン基、シクロアルキル基、シクロアルキレン基、シクロアルキリデン基、アリール基、アリーレン基、フッ素化アルキル基、フッ素化アルキレン基、フッ素化アリール基、又はフッ素化アリーレン基等が結合していてもよい。
 本実施形態の前記トリアジン含有ポリエーテル化合物は、前記Arが下記一般式(2)~(15)のいずれか1で表されるトリアジン含有ポリエーテル化合物であってもよい。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
 ここで、各式で表されるArについて、上記式では二価フェノール(HO-Ar-OH)であり、式(2)はBisA、式(3)はBisAF、式(4)はBisPHTG、式(5)はBisPIND、式(6)はBisC、式(7)はTMBisA、式(8)はBisCHP、式(9)はBisZ、式(10)はBisP3MZ、式(11)はBisPCDE、式(12)はDTPM、式(13)はBPFL、式(14)はDMBPFL、式(15)はTBISRXと表されることもある。
 低誘電材料用の本実施形態の樹脂組成物にこれらの構造のArを用いた場合、特に、誘電率が低く、誘電正接が低く、かつ耐熱性の高いトリアジン含有ポリエーテル化合物を含む、低誘電材料用の樹脂組成物が得られる。
 本実施形態の前記トリアジン含有ポリエーテル化合物は、前記一般式(1)中のnで示される繰り返し単位の平均重合度が2~200であることが好ましい。
 nで示される繰り返し単位の平均重合度が2~200であるとき、低誘電材料用の樹脂組成物として用いる場合に適切な分子量の化合物が得られる。
 本実施形態の前記トリアジン含有ポリエーテル化合物の分子量は、目安として、上述の式(2)~(15)のArを用いたとき、数平均分子量(M)が3×10~40×10であることが好ましく、3×10~20×10であることがさらに好ましい。重量平均分子量(M)が6×10~40×10であることが好ましく、6×10~40×10であることがさらに好ましい。なお、本実施形態の化合物の分子量は、ゲル浸透クロマトグラフィー(GPC)などを用いて測定することができる。この分子量及び前記した化合物の構造から、平均重合度を求めることができる。
 本実施形態の前記トリアジン含有ポリエーテル化合物は、誘電率Dが2.8以下、及び/又は誘電正接Dfが0.003以下であることが好ましい。
 ここで、誘電率D及び誘電正接Dは、既存の誘電特性測定装置で測定した値である。既存の誘電特性測定装置としては、例えば、空洞共振器タイプのものなどを使用できる。
 また、本実施形態の前記トリアジン含有ポリエーテル化合物では、誘電率Dは2.7以下であることが好ましい。誘電正接Dfは0.003以下であることが好ましく、0.002以下であることがさらに好ましい。具体的には、本実施形態の別の側面としては、前記トリアジン含有ポリエーテル化合物は、誘電率Dが2.7以下および誘電正接Dが0.002以下であってもよい。
 本実施形態の前記トリアジン含有ポリエーテル化合物は、ガラス転移温度が200℃以上であることが好ましく、260℃以上であることがさらに好ましい。また、5%熱分解温度が400~600℃であることも好ましい。
 本実施形態の前記トリアジン含有ポリエーテル化合物のガラス転移温度は、示差走査熱量測定(DSC)、熱機械分析(TMA)、動的粘弾性測定(DMA)などを用いて測定することができる。
 本実施形態の前記トリアジン含有ポリエーテル化合物の5%熱分解温度は、重量減少温度を測定することにより得られる。重量減少温度は、例えば熱重量測定(TGA)などを用いて測定することができる。
 本実施形態の低誘電材料用の樹脂組成物は、前記トリアジン含有ポリエーテル化合物及びエポキシ樹脂、ビスマレイミド樹脂、又はシアネート樹脂などを含むことも好ましい。エポキシ樹脂を含有することで、耐熱性、機械特性、誘電特性に優れる低誘電材料用の樹脂組成物が得られる。
 エポキシ樹脂としては、特に限定されないが、耐熱性に優れる硬化物が得られるという点において、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールスルフィド型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ビフェニル変性フェノール型エポキシ樹脂(フェノール骨格とビフェニル骨格がビスメチレン基で連結された多価フェノール型エポキシ樹脂)、ビフェニル変性ナフトール型エポキシ樹脂(ナフトール骨格とビフェニル骨格がビスメチレン基で連結された多価ナフトール型エポキシ樹脂)、アルコキシ基含有芳香環変性ノボラック型エポキシ樹脂(ホルムアルデヒドでグリシジル基含有芳香環及びアルコキシ基含有芳香環が連結された化合物)、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、又はキサンテン型エポキシ樹脂などを用いても良い。これらはそれぞれ単独で用いても、2種以上を併用しても良い。
 ビスマレイミド樹脂としては、特に限定されないが、耐熱性に優れる硬化物が得られるという点において、例えば、ジフェニルメタン型ビスマレイミド樹脂、メタフェニレン型ビスマレイミド樹脂、ビスフェノールAジフェニルエーテル型ビスマレイミド樹脂、ジフェニルエーテル型ビスマレイミド樹脂、ジフェニルスルホン型ビスマレイミド樹脂、ジフェノキシベンゼン型ビスマレイミド樹脂、またはアニリンノボラック型ビスマレイミド樹脂などを用いても良い。これらはそれぞれ単独で用いても、2種以上を併用しても良い。
 シアネート樹脂としては、特に限定されないが、耐熱性に優れる硬化物が得られるという点において、例えば、ビスフェノールA型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂、ヘキサフルオロビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールM型シアネート樹脂、ノボラック型シアネート樹脂、シクロペンタジエニルビスフェノール型シアネート樹脂などを用いても良い。これらはそれぞれ単独で用いても、2種以上を併用しても良い。
 本実施形態の低誘電材料用の樹脂組成物は、無機質充填材、改質剤又は難燃付与剤をさらに含むことも好ましい。
 無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミニウム、又は水酸化マグネシウム等を用いても良い。
 改質剤としては、各種の熱硬化性樹脂および熱可塑性樹脂等から適宜選択できるが、例えばフェノキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、ポリスチレン樹脂、又はポリエチレンテレフタレート樹脂、シクロオレフィン樹脂、フッ素樹脂などを用いてもよい。
 難燃付与剤としては、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物等から適宜選択できるが、例えば、テトラブロモビスフェノールA型エポキシ樹脂やブロム化フェノールノボラック型エポキシ樹脂などのハロゲン化合物;トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ-2-エチルヘキシルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、トリス(2,6-ジメチルフェニル)ホスフェート、レゾルシンジフェニルホスフェートなどのリン酸エステル;ポリリン酸アンモニウム、ポリリン酸アミド、赤リン、リン酸グアニジン、ジアルキルヒドロキシメチルホスホネートなどの縮合リン酸若しくはエステル化合物などの燐原子含有化合物;メラミンなどの窒素原子含有化合物;水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、又は硼酸カルシウムなどの無機系難燃化合物などを用いてもよい。
 本実施形態の低誘電材料用の樹脂組成物は、周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられることが好ましい。
 具体的には、本実施形態の低誘電材料用の樹脂組成物は、マイクロ波又はミリ波の電磁波の送受信を行う機器に用いることが好ましい。ここで、一般にマイクロ波は周波数が0.25~100GHz、ミリ波は周波数が30~300GHzの電磁波を指し、これらの送受信を行う機器に用いることがさらに好ましい。本実施形態の低誘電材料用の樹脂組成物は、無線LANに用いられる60GHzや、車両用レーダに用いられる75~79GHzといった周波数の電磁波を用いる機器にも好適に用いることができる。
 本実施形態の低誘電材料用の樹脂組成物は、誘電率と誘電正接が十分に低く、高周波の電磁波に用いることに特に適している。
 本実施形態の低誘電材料用の樹脂組成物は、プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料又は絶縁板に用いることが好ましい。本実施形態の低誘電材料用の樹脂組成物は、誘電率と誘電正接が十分に低く、これらの部材に用いることに適している。さらに、高周波の電磁波を用いる機器においてこれらの部材に用いることに特に適している。
 さらに具体的な例としては、銅張積層板用樹脂組成物、ビルドアッププリント基板の層間絶縁材料、又はビルドアップフィルム等として用いることができる。また、電子部品の封止材用樹脂組成物、レジストインキ用樹脂組成物、摩擦材用結合剤、導電ペースト、樹脂注型材料、接着剤、又は絶縁塗料等のコーティング材料等に用いることもできる。
 本実施形態の低誘電材料用の樹脂組成物は、積層基板の層間の絶縁材料として用いられることが好ましい。この場合、樹脂組成物は後述する製造方法のように、前記トリアジン含有ポリエーテル化合物、エポキシ樹脂、ビスマレイミド樹脂、又はシアネート樹脂、硬化促進剤及び有機溶剤を混合して調整されていることが好ましい。
(積層基板用フィルム)
 本実施形態の積層基板用フィルムは、前記低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えている。この積層基板用フィルムは、複数を積層することで後述する積層基板に用いることができるものである。
 積層基板用フィルムは、後述するフィルム層、及び絶縁材料を有する絶縁層からなる。絶縁層は、後述する製造方法により、フィルム層の少なくとも1面に備えられている。
 フィルム層は、適宜選択されたフィルム材料、例えば、樹脂フィルムや金属フィルム等を用いて構成することができる。具体的には、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリシクロオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、離型紙、銅箔、アルミニウム箔などを用いて形成することができる。
 本実施形態の積層基板用フィルムの厚さは特に限定されないが、10~150μmの範囲から選択でき、25~50μmの範囲であることが好ましい。
 本実施形態の積層基板用フィルムは、さらに表面に保護フィルムを備えていてもよい。保護フィルムにより、使用する前のフィルム層や絶縁層の表面へのゴミ等の付着やキズが生じることを防止することができ、使用する前に絶縁などの性能が落ちることを防止することができる。保護フィルムの構成素材は、前記したフィルム層と同様の素材から選択してもよい。保護フィルムの厚さは1~40μmの範囲であってもよい。
 なお、積層基板用フィルム及び保護フィルムはマット処理、コロナ処理、又は離型処理等を施してあってもよい。
 なお、積層基板が導体積層基板やビルドアッププリント基板状であって、金属等の導体からなる導体層と、前記絶縁層を積層されているときは、導体層と絶縁層を組み合わせた一組が積層基板用フィルムであることもある。
 本実施形態の低誘電材料用の樹脂組成物は、すぐれた物理的特性、耐熱性、誘電率の低さ、及び誘電正接の低さという特性を有しているため、積層基板用フィルムを2以上備える積層基板において、積層基板用フィルムからなる層間の絶縁材料としても極めて有用である。かかる絶縁材料は、特に、低誘電材料用の樹脂組成物及びエポキシ樹脂、ビスマレイミド樹脂、又はシアネート樹脂を必須成分とし、更に、必要により、後述する有機溶剤や硬化促進剤を配合されて製造されていることが好ましい。
(積層基板)
 本実施形態の積層基板は、前記積層基板用フィルムを2以上備えてなる。積層基板は、前記積層基板用フィルムが積層されてなることが好ましい。積層基板用フィルムは、積層基板において中間層、又は下地層であってもよい。また、回路を形成させる層に用いても、形成させない層に用いてもよい。回路の形成は金属めっき処理などとして行うことができる。
 また、本実施形態の積層基板は、導体積層基板とすることもできる。例えば、前記低誘電材料用の樹脂組成物を含むプリプレグからなる絶縁層と、導体層を備える積層基板とすることができる。絶縁用のプリプレグは、低誘電材料用の樹脂組成物をガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、又はガラスロービング布などの繊維基材に含侵させて絶縁層を形成する。導体層は金属、例えば銅などで形成することができる。
 また、本実施形態の積層基板は、ビルドアッププリント基板状の積層基板とすることもできる。配線基板上に、低誘電材料用の樹脂組成物からなる絶縁層と、その上にめっきされた導体層を交互に形成することで、ビルドアッププリント基板状の積層基板とすることもできる。絶縁層及び導体層の組成等の構成については、前記したものから任意に選択できる。
(その他の構成)
 本実施形態の低誘電材料用の樹脂組成物は、低誘電材料用の素材として従来知られた成分を適宜混合して使用できる。
 本実施形態の低誘電材料用の樹脂組成物は、前述したように、本材料はエポキシ樹脂、ビスマレイミド樹脂、又はシアネート樹脂との親和性が高いため、熱硬化樹脂系の材料を混ぜることで誘電特性及び熱特性を改善する効果も期待できる。
 (低誘電材料用の樹脂組成物の作用効果)
 本実施形態の低誘電材料用の樹脂組成物は、トリアジン含有ポリエーテルの誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、低誘電材料として好適に使用できる。また、本実施形態のトリアジン含有ポリエーテルは、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、プリント配線板として好適に使用できる。
 従来知られたポリマー素材では、ガラス転移温度が260℃超、誘電正接が0.002未満を併せて達成している材料はほとんどないが、本実施形態のうち好ましい範囲では、これらを達成することができる。
 さらに、本実施形態のトリアジン含有ポリエーテルは、特に、高周波における誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、さらに耐熱性が高いことから、高周波対応の電子部品や電子機器類の構成素材として好適に使用できる。
 (低誘電材料用の樹脂組成物の製造方法)
 本実施形態の低誘電材料用の樹脂組成物の製造方法は、下記一般式(16)で表される化合物と下記一般式(17)で表される化合物とを混合し、重合させて下記一般式(18)で表されるトリアジン含有ポリエーテル化合物を得る。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 ここで式(18)中、nは2以上の整数であり、Arはアリーレン基であり、置換基を有する若しくは有さない2価の芳香族基を表す。
 式中、nは、式(18)で表される構造の繰り返し単位数を表し、2以上の整数であれば特に限定されない。
 置換基としては、炭素数が1~18のものが挙げられる。置換基として好ましくは、メチルなどのアルキル基、メチレンなどのアルキレン基、イソプロピリデンなどのアルキリデン基、シクロヘキシルなどのシクロアルキル基、シクロヘキシレンなどのシクロアルキレン基、シクロヘキシリデンなどのシクロアルキリデン基、フェニルなどのアリール基、フェニレンなどのアリーレン基、トリフルオロメチルなどのフッ素化アルキル基、パーフルオロヘキシレンなどのフッ素化アルキレン基、トリフルオロメチルフェニルなどのフッ素化アリール基、トリフルオロメチルフェニレンなどのフッ素化アリーレン基などがあげられる。
 Rは有機置換基であり、水素であってもよく、また直鎖状、分岐鎖状又は環状の脂肪族基であってもよい。また、Rは置換基を有する若しくは有さない芳香族基であってもよい。加えて、Rはフッ素化された前記の脂肪族基のいずれか、又はフッ素化された前記芳香族基のいずれかであってもよい。有機置換基としては、炭素数が1~18のものが挙げられる。有機置換基として好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、フェニル基、メチルフェニル基、ジメチルフェニル基、クメニル基、メシチル基、tert-ブチルフェニル基、ナフチル基、トリフルオロメチル基、トリフルオロメチルフェニル基、ビストリフルオロメチルフェニル基、トリフルオロメチルフェノキシ基、又はビストリフルオロメチルフェノキシ基などがあげられる。
 製造の具体的工程としては、例えば、式(16)と式(17)の化合物を混合し、アルカリ金属化合物の存在下、極性溶媒中で加熱して反応させることで重合させ、式(18)の化合物を得る。
 前記アルカリ金属化合物としては、式(17)の化合物をアルカリ金属塩に代えることが可能なものであればどのようなものも使用可能である。このようなアルカリ金属化合物としては、例えば、アルカリ金属の炭酸塩、炭酸水素塩、又は水酸化物等、特に炭酸塩が好ましく使用される。前記アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム又はセシウムを挙げることができるが、中でも、ナトリウム又はカリウムが好ましい。
 このような各種のアルカリ金属化合物としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム又は水酸化カリウムなどを用いることができ、特に、炭酸カリウム又は炭酸セシウムを好適に用いることができる。これら各種のアルカリ金属化合物は、単独で使用してもよく、2種以上を併用してもよい。
 前記極性溶媒は、重合反応を円滑に進めることができるものを適宜使用できる。極性溶媒の具体例としては、例えば、1,3-ジメチル-2-イミダゾリドン(DMI)、テトラメチル尿素(TMU)、N,N’-ジメチルプロピレン尿素(DMPU)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、N-シクロヘキシル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド(DMSO)、スルホラン(SUL)、及びジフェニルスルホン等を例示することができる。このうち、DMI又はNMPを用いることが好ましい。これら各種の極性溶媒は、単独で使用してもよく、2種以上を併用してもよい。また、他の溶媒(例えば、トルエン等の芳香族溶媒等)との混合溶媒などとして使用することもできる。
 また、前記極性溶媒を用いて反応を行う途中の適当な時点で、例えば、トルエンやキシレン等の不活性溶媒成分を適量添加してもよい。水分と共沸しやすいこれら溶媒を添加し、反応によって生成した水分を反応系から効率よく除去することができる。
 重合温度は、使用する化合物や添加物、溶媒によって適宜調整できるが、通常、140~300℃で行うことが好ましく、180~250℃で行うことがより好ましい。この温度範囲未満では十分な反応速度や重合度が得られないため効率的でない。また、この温度範囲を超えると得られた化合物が分解や変質等を起こす場合がある。
 重合反応時間も、使用する成分及び前記重合温度によって適宜調整できるが、通常は0.1~20時間程度である。例えば、極性溶媒にNMPやDMIを用いた場合、190~200℃の重合温度では3~4時間で重合が十分に進行する。分子量を高めるためには、15~20時間重合させるか、又は適宜、攪拌子が止まるなどの重合が十分に行われた状態を重合完了の目安とすることが好ましい。
 具体的な製造過程の例としては、まず、式(16)、式(17)の化合物、アルカリ金属化合物、極性溶媒に、不活性溶媒成分を加えて加熱し、段階的に、重合温度を室温から140~150℃まで加熱する。その温度を維持したまま、不活性溶媒成分と水分を共沸させて除去する。ついで、重合温度まで昇温し、その温度を維持したまま、不活性溶媒成分を完全に除去する。不活性溶媒成分が除去された後、重合温度を維持し、前記重合反応時間だけ重合させ、式(18)の化合物を得る。重合反応が十分に完了した後、室温まで放冷し、メタノールにより回収する。この後、メタノール等でさらに洗浄や、減圧乾燥、及び/又は有機溶媒による再沈殿などの工程を経てもよい。
 (製造方法におけるその他の添加物)
 本実施形態の低誘電材料用の樹脂組成物が、積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物である場合、この低誘電材料用の樹脂組成物は、トリアジン含有ポリエーテル化合物、エポキシ樹脂、ビスマレイミド樹脂、又はシアネート樹脂、硬化促進剤及び有機溶剤を混合して製造されることが好ましい。
 硬化促進剤を混合して製造されることで、低誘電材料用の樹脂組成物の硬化反応が速やかに進行するので、絶縁材料としての製造が行いやすい。特に、絶縁材料を後述する積層基板用フィルムの表面の絶縁層として用いる場合は、すみやかに絶縁層が形成されるので工業的な製造に好適である。
 有機溶剤を混合して製造されることで、低誘電材料用の樹脂組成物が製造時にいわゆるワニス状となり、絶縁材料として、他の部材への塗布が行いやすい。特に、絶縁材料を後述する積層基板用フィルムの表面の絶縁層として用いる場合は、フィルムの表面に塗布して絶縁層を形成する際の塗工性が良好となる。
 硬化促進剤としては、前記化合物の硬化を促進できる化合物は適宜使用できるが、例えばイミダゾール類、三級アミン類、酸無水物類又は三級ホスフィン類等を用いても良い。
 添加量も、前記化合物の組成により適宜調整できるが、低誘電材料用の樹脂組成物の総質量に対して0.01~2質量%となる範囲であることが好ましい。
 有機溶剤としては、前記化合物を溶解しワニス状とすることのできる溶剤を適宜選択できるが、例えばアルコール性溶媒、ケトン類、酢酸エステル類、カルビトール類、芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、又はN-メチルピロリドンなどの既知の有機溶剤を用いることができる。なかでも、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン又はメチルエチルケトンは好適に使用できる。
 添加量も、前記化合物の組成により適宜調整できるが、ワニス状とするには、低誘電材料用の樹脂組成物の総質量に対して、不揮発分が50~70質量%となる範囲であることが好ましい。
 本実施形態の低誘電材料用の樹脂組成物は、無機質充填材、改質剤又は難燃付与剤をさらに混合して製造されていることも好ましい。
 無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミニウム、又は水酸化マグネシウムを用いることができる。低誘電材料用の樹脂組成物を導電ペーストや導電フィルムなどの用途に使用する場合は、無機質充填材としては銀粉や銅粉等の導電性充填剤を用いることができる。
 改質剤としては、例えばフェノキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、ポリスチレン樹脂、又はポリエチレンテレフタレート樹脂などを用いることができる。
 難燃付与剤は、例えば、ハロゲン化合物、燐原子含有化合物、窒素原子含有化合物又は無機系難燃化合物などを用いることができる。
(積層基板用フィルムの製造方法)
 本実施形態の積層基板用フィルムの製造方法は、低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する。
 前記製造方法は、具体的には、前述したようにワニス状とした低誘電材料用の樹脂組成物を、樹脂フィルムの少なくとも1面に表面に塗布する。ついで、加熱、あるいは熱風吹きつけ等により有機溶剤を揮散させて、絶縁層を形成させることにより製造することができる。
 ここで、前記低誘電材料用の樹脂組成物は、前記有機溶媒などの揮発成分を除く不揮発分が30~60質量%となる範囲であることが好ましい。この範囲であることで、特に前記配合物のフィルムへの塗工性や、積層基板用フィルムの成形性が好適である。
 形成される絶縁層の厚さは、後述する、積層基板を設置する回路基板が有する導体層の厚さ以上とするのが好ましい。回路基板が有する導体層の厚さは通常5~70μmの範囲であるとすれば、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。
(積層基板の製造方法)
 本実施形態の積層基板の製造方法は、前記の積層基板用のフィルムを2以上積層する。
 本実施形態の積層基板を用いてプリント配線板を製造する際には、積層基板用のフィルムが保護フィルムで保護されている場合はこれらを剥離した後、層を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートするなどをして行うことができる。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前にフィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
 導体積層基板を製造する場合、以下のような手順で形成してもよい。すなわち、前記したワニス状に調整した低誘電材料用の樹脂組成物を、繊維基材に含浸させ、用いた溶剤種に応じた加熱温度、好ましくは50~170℃で加熱することによって、硬化物であるプリプレグの絶縁層を得る。繊維基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、マット化ガラス、又はガラスロービング布などを用いることができる。この際、用いる低誘電材料用の樹脂組成物と繊維基材の配合割合は、通常、プリプレグ中の樹脂分が20~60質量%となるように調整することが好ましい。
 得られたプリプレグを積層し、更に導体層となる素材の膜、例えば銅箔を重ねて、加熱圧着させることにより、目的とする導体板積層基板を得ることができる。ここで加熱圧着させる方法は、具体的には、1~10MPaの加圧下に170~250℃なる温度条件で行う方法が挙げられる。また、加熱圧着は、10分~3時間行うことが好ましい。
 積層基板用フィルムをビルドアッププリント基板として用いる場合、以下のような手順で積層基板及びプリント基板を形成してもよい。すなわち、回路を形成した配線基板にスプレーコーティング法、又はカーテンコーティング法等を用いて、低誘電材料用の樹脂組成物を塗布した後、硬化させる。次いで、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法は、無電解めっき、又は電解めっき処理が好ましい。また前記粗化剤としては、酸化剤、アルカリ、又は有機溶剤等を用いることができる。このような操作を所望に応じて順次繰り返し、絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基板を得ることができる。但し、スルーホール部の穴あけは、最外層の絶縁層の形成後に行うことが好ましく、また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
 (電子部品用封止材等の製造方法)
 本実施形態の低誘電材料用の樹脂組成物を電子部品用封止材に調整するためには、前記低誘電材料用の樹脂組成物、エポキシ樹脂、ビスマレイミド樹脂、又はシアネート樹脂、必要に応じて配合されるその他のカップリング剤、及び/又は離型剤などの添加剤や無機充填材などを予備混合した後、押出機、ニーダ、ロール等を用いて均一になるまで十分に混合する手法が挙げられる。半導体のテープ状封止剤として使用する場合には、前述の手法によって得られた樹脂組成物を加熱して半硬化シートを作製し、封止剤テープとした後、この封止剤テープを半導体チップ上に置き、100~150℃に加熱して軟化させ成形し、170~250℃で完全に硬化させる方法を挙げることができる。
 本実施形態の低誘電材料用の樹脂組成物をレジストインキとして調整するためには、前記低誘電材料用の樹脂組成物、エポキシ樹脂、ビスマレイミド樹脂、又はシアネート樹脂、更に、有機溶剤、顔料、タルク、及びフィラー等を加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。ここで用いる有機溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、シクロヘキサノン、ジメチルスルホキシド、ジメチルホルムアミド、ジオキソラン、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、又はエチルラクテート等が挙げられる。
 本実施形態の低誘電材料用の樹脂組成物を絶縁材料、例えば半導体の層の間の絶縁材料として使用する場合は、例えば、前記低誘電材料用の樹脂組成物、エポキシ樹脂、ビスマレイミド樹脂、又はシアネート樹脂に加え、硬化促進剤、シランカップリング剤を配合して組成物を調整し、これをシリコン基板上にスピンコーティング等により塗布する方法が挙げられる。この場合、硬化塗膜は半導体に直接接することになるため、高温環境下において線膨張率の差によるクラックが生じないよう、絶縁材の線膨張率を半導体の線膨張率に近づけることが好ましい。
 本実施形態の低誘電材料用の樹脂組成物を導電ペーストとして使用する場合、例えば、微細導電性粒子を前記低誘電材料用の樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
 以下、実施例を示す。なお、本発明は実施例に限定されるものではない。
(試験条件)
 試料の合成及び合成した試料についての分析には、以下の機器、試薬を用いた。
 使用した機器及び条件は以下のとおりである。
(1)GPC:東ソー(株)製高速GPCシステムHLC-8220GPC(カラム:東ソーTSKgel(α-M)、カラム温度:45℃、溶離液:N-メチル-2-ピロリドン(NMP)(0.01mol/L臭化リチウムを含む。)、又はテトラヒドロフラン(THF)、検量線:標準ポリスチレン、カラム流速:0.2mL/min)
(2)赤外スペクトル(FT-IR):日本分光(株)製FT/IR-4200
(3)核磁気共鳴スペクトル(NMR):日本電子(株)製JNM-ECA500
(4)熱重量測定(TGA):(株)日立ハイテクサイエンス製TG/DTA7220、昇温速度10℃/min
(5)示差走査熱量測定(DSC):(株)日立ハイテクサイエンス製DSC7000、昇温速度20℃/min
(6)熱機械分析(TMA):(株)日立ハイテクサイエンス製TMA7100、昇温速度10℃/min
(7)動的粘弾性測定(DMA):(株)日立ハイテクサイエンス製DMS7100、昇温速度2℃/min
(8)引張り試験:(株)島津製作所製オートグラフAGS-D型、引張り速度1mm/min
(9)紫外可視スペクトル:(株)島津製作所製UV-1800
(10)屈折率測定:Metricon社製 Model 2010/M PRISM COUPLER
(11)誘電率測定:(株)エーイーティー製誘電率・誘電正接測定装置(空洞共振器タイプ)、TMモード(10GHz)、TEモード(10GHz)
 試薬としては、市販のものを用い必要に応じて常法により精製した。各種反応溶媒は、必要に応じて常法により乾燥・精製した。
 (樹脂組成物の製造)
 前記式(1)の化合物のうち、R=水素(H)(BFPT)で、Arがそれぞれ、
 式(2)のBisAの化合物(BFPT-BisA、実施例1)
 式(3)のBisAFの化合物(BFPT-BisAF、実施例2)
 式(4)のBisPHTGの化合物(BFPT-BisPHTG、実施例3)
 式(5)のBisPINDの化合物(BFPT-BisPIND、実施例4)
 式(6)のBisCの化合物(BFPT-BisC、実施例5)
 式(7)のTMBisAの化合物(BFPT-TMBisA、実施例6)
 式(8)のBisCHPの化合物(BFPT-BisCHP、実施例7)
 式(9)のBisZと式(3)のBisAFの化合物(BFPT-BisZ/BisAF、実施例8)
 式(10)のBisP3MZと式(3)のBisAFの化合物(BFPT-BisP3MZ/BisAF、実施例9)
 式(11)のBisPCDEの化合物(BFPT-BisPCDE、実施例10)
 式(12)のDTPMの化合物(BFPT-DTPM、実施例11)
 式(13)のBPFLの化合物(BFPT-BPFL、実施例12)
 式(14)のDMBPFLの化合物(BFPT-DMBPFL、実施例13)
 式(15)のTBISRXの化合物(BFPT-TBISRX、実施例14)
を調整した。
 製造にあたって用いる式(16)及び式(17)の化合物としては、前記式(16)の化合物として、R=水素(H)とした化合物(BFPT)を用いた。式(17)の化合物として、各実施例について、Arを式(2)(実施例1)、式(3)(実施例2)、式(4)(実施例3)、式(5)(実施例4)、式(6)(実施例5)、式(7)(実施例6)、式(8)(実施例7)、式(9)(実施例8)、式(10)(実施例9)、式(11)(実施例10)、式(12)(実施例11)、式(13)(実施例12)、式(14)(実施例13)、式(15)(実施例14)の化合物を用いた。
(2,4-ビス(4-フルオロフェニル)-2-フェニル-1,3,5-トリアジン(BFPT)の合成)
 各実施例に用いるBFPTは以下のように合成した。
 攪拌子と窒素ガス導入管を備えた三口フラスコ(100mL)に、4-フルオロベンズアミジン塩酸塩(7.460g、42.73mmol)、ベンジリデンアニリン(3.625g、20.00mmol)、炭酸水素ナトリウム(3.781g、45.00mmol)、N,N-ジメチルホルムアミド(DMF、35mL)を入れ、85℃まで段階的に昇温し、85℃で96時間反応させた。その後室温まで放冷した。反応溶液を蒸留水に投入しクロロホルムを加えた。分液ロートでクロロホルム溶液を蒸留水で3回洗浄した。回収したクロロホルム溶液を無水硫酸ナトリウムで一晩乾燥し、吸引ろ過で無水硫酸ナトリウムを除いた後にクロロホルム溶液をエバポレーターで濃縮し、メタノール(500mL)に投入すると、粗生成物が析出した。これを吸引ろ過で回収し、メタノールで還流洗浄した後、室温で減圧乾燥させると、褐色針状晶の粗生成物(1.61g、23.3%)が得られた。粗生成物をクロロホルムとメタノールの混合溶媒で再結晶し、80℃で24時間減圧乾燥した。
 合成した化合物は、形状:白色針状結晶、収量:1.46g、収率:21.1%、融点:258~259℃であった。
 このBFPTについて、前述した機器を用いての分析結果は、
 FT-IR(KBr、cm-1):3051(Ar-H),1603 (C=C),1522 (C=N),1508(C=C),1370 (C-N),1228 (Ar-F)
 H-NMR(CDCl、ppm):8.78-8.73 (m,6H),7.61 (t,1H),7.57 (t,2H),7.26-7.23 (m,4H)
 13C-NMR(CDCl、ppm): 171.74,170.75,165.93,136.06,132.78,132.35,131.38,128.89,115.83
 19F-NMR(CDCl,ppm): 108.41
 元素分析(C2113):計算値 C,73.03%;H,3.79%;N,12.17% 実測値 C,73.02%;H,3.89%;N,12.40%であった。
(実施例1)
 実施例1の化合物、下式のポリエーテル(BFPT-BisA)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000055
 攪拌子と窒素ガス導入菅を備えた二口フラスコ(50mL)に、BFPT(0.6907g、2.00mmol)、ビスフェノールA(0.4566g、2.00mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3334g、2.40mmol)、極性溶媒としてN-メチル-2-ピロリドン(NMP、5.0mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流し、ディーンスタークトラップにより水を除去した。その後、190℃まで昇温し1時間攪拌してトルエンを除去した。その後190℃で2時間重合した。室温まで放冷し、粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で12時間減圧乾燥した。得られたポリマーを、NMPに溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収した後、室温で12時間減圧乾燥した。
 収量:0.761g、収率:71%、対数粘度:1.12dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(NMP)により測定した数平均分子量(Mn):75,000、重量平均分子量(Mw):133,000、分子量分布(Mw/Mn):1.8、平均重合度(n):140であった。
 このポリマーをNMPに溶解し、12wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で1時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚38μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3066(Ar-H),2968(C-H),1592(C=C),1517(C=N),1504(C=C),1368(C-N),1241 (Ar-O).
 H-NMR(CDCl、ppm):8.68(d,6H),7.53-7.50(m,3H),7.24(d,4H),7.09(d,4H),7.00(d,4H),1.69(s,6H)
 元素分析(C3627:計算値 C,81.02%;H,5.10%;N,7.88% 実測値 C,80.72%;H,5.17%;N,7.88%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)に可溶であった。
 ガラス転移温度(Tg):245℃(DSC)、239℃(DMA)、250℃(TMA)
 熱膨張係数(CTE):87ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):448℃(空気中)、525℃(窒素中)
 10%重量減少温度(T10%):486℃(空気中)、534℃(窒素中)
 炭化収率(窒素中、800℃):40%
 カットオフ波長:353nm
 透過率(500nm):81%
 平均屈折率(nave):1.675(d線)
 複屈折(Δn):0.015(d線)
 誘電率(ε=nave ):2.81
 誘電率(Dk):2.78(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.58(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0026(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0024(空洞共振器、TEモード、10GHz)
 引張破断強度:61MPa
 破断伸び:21.9%
 引張初期弾性率:1.8GPa
であった。
(実施例2)
 実施例2の化合物、下式のポリエーテル(BFPT-BisAF)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000056
 攪拌子と窒素ガス導入管を備えた二口フラスコ(50mL)に、BFPT(0.6907g、2.00mmol)、ビスフェノールAF(0.6725g、2.00mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3334g、2.40mmol)、極性溶媒としてN,N’-ジメチルイミダゾリドン(DMI、6.5mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流しディーンスタークトラップにより水を除去した。その後、190℃まで昇温し1時間撹拌してトルエンを除去した。その後190℃で2時間重合した。室温まで放冷し、粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーをテトラメチル尿素(TMU)に溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収した後、室温で減圧乾燥した。
 収量:1.021g、収率:80%、対数粘度:0.98dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):106,000、重量平均分子量(Mw):211,000、分子量分布(Mw/Mn):2.0、平均重合度(n):165であった。
 ポリマーをTMUに溶解し、9wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で1時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚37μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3064(Ar-H),1595(C=C),1518(C=N),1506(C=C),1368(C-N),1248(Ar-O)
 H-NMR(CDCl、ppm):8.74-8.69(m,6H),7.55-7.49(m,3H),7.42(d,4H),7.17(d,4H),7.07(d,4H)
 元素分析(C3621:計算値 C,67.40%;H,3.29%;N,6.55% 実測値 C,67.37%;H,3.48%;N,6.70%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、N,N-ジメチルアセトアミド(DMAc)、シクロヘキサノン、シクロペンタノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):248℃(DSC)、249℃(DMA)、280℃(TMA)
 熱膨張係数(CTE):72ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):526℃(空気中)、534℃(窒素中)
 10%重量減少温度(T10%):545℃(空気中)、548℃(窒素中)
 炭化収率(窒素中、800℃):62%
 カットオフ波長:343nm
 透過率(500nm):83%
 平均屈折率(nave):1.621(d線)
 複屈折(Δn):0.021(d線)
 誘電率(ε=nave ):2.63
 誘電率(Dk):2.65(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.56(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0016(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0015(空洞共振器、TEモード、10GHz)
 引張破断強度:63MPa
 破断伸び:6.1%
 引張初期弾性率:2.1GPa
であった。
(実施例3)
 実施例3の化合物、下式のポリエーテル(BFPT-BisPHTG)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000057
 攪拌子と窒素ガス導入管を備えた二口フラスコ(50mL)に、BFPT(0.6907g、2.00mmol)、BisP-HTG(0.6209g,2.00mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3334g、2.40mmol)、極性溶媒としてN―メチル―2-ピロリドン(NMP、5.0mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流しディーンスタークトラップにより水を除去した。その後、190℃まで昇温し1時間撹拌してトルエンを除去した。その後190℃で2時間重合した。室温まで放冷し、茶色の粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーをNMPに溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収した後、室温で減圧乾燥した。
 収量:1.163g、収率:94%、対数粘度:0.48dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):38,000、重量平均分子量(Mw):65,000、分子量分布(Mw/Mn):1.7、平均重合度(n):61であった。
 ポリマーをTMUに溶解し、15wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚38μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3062(Ar-H),2948(C-H),1593(C=C),1518(C=N),1504(C=C),1368(C-N),1242(Ar-O)
 H-NMR(CDCl、ppm):8.68-8.50(m,6H),7.52-7.48(m,3H),7.36(d,2H),7.23(d,2H),7.05(d,4H),7.00(d,2H),6.94(d,2H),2.71(d,1H),2.47(d,1H),2.04-2.01(br,1H),1.96(d,1H),1.41(d,1H),1.20(t,1H),1.00(s,6H),0.89(t,1H),0.43(s,3H)
 元素分析(C4237:計算値 C,81.92%;H,6.06%;N,6.82% 実測値 C,81.88%;H,6.18%;N,6.88%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、N,N’-ジメチルプロピレン尿素(DMPU)、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):279℃(DSC)、277℃(DMA)、281℃(TMA)
 熱膨張係数(CTE):75ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):480℃(空気中)、511℃(窒素中)
 10%重量減少温度(T10%):496℃(空気中)、520℃(窒素中)
 炭化収率(窒素中、800℃):25%
 カットオフ波長:354nm
 透過率(500nm):81%
 平均屈折率(nave):1.637(d線)
 複屈折(Δn):0.006(d線)
 誘電率(ε=nave ):2.68
 誘電率(Dk):2.64(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.57(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0018(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0014(空洞共振器、TEモード、10GHz)
 引張破断強度:73MPa
 破断伸び:4.5%
 引張初期弾性率:2.0GPa
であった。
(実施例4)
 実施例4の化合物、下式のポリエーテル(BFPT-BisPIND)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000058
 攪拌子と窒素ガス導入管を備えた二口フラスコ(50mL)に、BFPT(0.6907g、2.00mmol)、BisPIND(0.5368g、2.00mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3334g、2.40mmol)、極性溶媒としてN―メチル―2-ピロリドン(NMP、5.0mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流しディーンスタークトラップにより水を除去した。その後、190℃まで昇温し1時間撹拌してトルエンを除去した。その後190℃で2時間重合した。室温まで放冷し、茶色の粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーをNMPに溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収したのち、室温で減圧乾燥した。
 収量:1.030g、収率:90%、対数粘度:0.96dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):112,000、重量平均分子量(Mw):380,000、分子量分布(Mw/Mn):3.4、平均重合度(n):195であった。
 ポリマーをTMUに溶解し、10wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚43μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3062(Ar-H),2958(C-H),1593(C=C),1518(C=N),1507(C=C),1368(C-N),1239(Ar-O)
 H-NMR(CDCl、ppm):8.63-8.58(m,6H),7.46-7.42(m,3H),7.19-7.17(m,3H),7.07-7.04(m,2H),7.00-6.96(m,5H),6.86(s,1H),2.43(d,1H),2.24(d,1H),1.67(s,3H),1.36(s,3H),1.11(s,3H)
 元素分析(C3931:計算値 C,81.65%;H,5.45%;N,7.32% 実測値 C,81.41%;H,5.56%;N,7.23%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、N,N’-ジメチルプロピレン尿素(DMPU)、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):266℃(DSC)、265℃(DMA)、286℃(TMA)
 熱膨張係数(CTE):78ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):512℃(空気中)、513℃(窒素中)
 10%重量減少温度(T10%):522℃(空気中)、520℃(窒素中)
 炭化収率(窒素中、800℃):30%
 カットオフ波長:352nm
 透過率(500nm):84%
 平均屈折率(nave):1.653(d線)
 複屈折(Δn):0.012(d線)
 誘電率(ε=nave ):2.73
 誘電率(Dk):2.71(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.72(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0020(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0018(空洞共振器、TEモード、10GHz)
 引張破断強度:63MPa
 破断伸び:3.6%
 引張初期弾性率:1.9GPa
であった。
(実施例5)
 実施例5の化合物、下式のポリエーテル(BFPT-BisC)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000059
 実施例1のBisAをBisCに変えて、NMP(5.0mL)中190℃で3時間重合を行い、同様にポリエーテルを合成した。
 収量:1.07g、収率:95%、対数粘度:0.67dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):55,000、重量平均分子量(Mw):109,000、分子量分布(Mw/Mn):2.0、平均重合度(n):97であった。
 ポリマーをNMPに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚47μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3062(Ar-H),2968(C-H),1593(C=C),1518(C=N),1501(C=C),1368(C-N),1239(Ar-O)
 H-NMR(CDCl、ppm):8.70-8.68(m,6H),7.55-7.49(m,3H),7.18(br,2H),7.10(d,2H),7.02(d,4H),6.94(d,2H),2.20(s,6H),1.71(s,6H)
 元素分析(C3831:計算値 C,81.26%;H,5.56%;N,7.48% 実測値 C,81.67%;H,5.72%;N,7.50%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):229℃(DSC)、228℃(DMA)、267℃(TMA)
 熱膨張係数(CTE):91ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):450℃(空気中)、468℃(窒素中)
 10%重量減少温度(T10%):478℃(空気中)、472℃(窒素中)
 炭化収率(窒素中、800℃):28%
 カットオフ波長:352nm
 透過率(500nm):78%
 平均屈折率(nave):1.663(d線)
 複屈折(Δn):0.014(d線)
 誘電率(ε=nave ):2.77
 誘電率(Dk):2.75(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.71(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0011(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0010(空洞共振器、TEモード、10GHz)
 引張破断強度:77MPa
 破断伸び:11.2%
 引張初期弾性率:2.0GPa
であった。
(実施例6)
 実施例6の化合物、下式のポリエーテル(BFPT-TMBisA)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000060
 実施例1のBisAをTMBisAに変えて、NMP(5mL)中200℃で3時間重合を行い、同様にポリエーテルを合成した。
 収量:1.12g、収率:95%、対数粘度:0.43dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):43,000、重量平均分子量(Mw):77,000、分子量分布(Mw/Mn):1.8、平均重合度(n):72であった。
 ポリマーをNMPに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚63μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3064(Ar-H),2968(C-H),1606(C=C),1521(C=N),1510(C=C),1368(C-N),1235(Ar-O)
 元素分析(C4035:計算値 C,81.46%;H,5.98%;N,7.13% 実測値 C,81.54%;H,6.10%;N,7.02%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):286℃(DSC)、285℃(DMA)、308℃(TMA)
 熱膨張係数(CTE):74ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):419℃(空気中)、450℃(窒素中)
 10%重量減少温度(T10%):442℃(空気中)、453℃(窒素中)
 炭化収率(窒素中、800℃):22%
 カットオフ波長:348nm
 透過率(500nm):78%
 平均屈折率(nave):1.634(d線)
 複屈折(Δn):0.017(d線)
 誘電率(ε=nave ):2.67
 誘電率(Dk):2.66(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.62(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0014(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0016(空洞共振器、TEモード、10GHz)
 引張破断強度:61MPa
 破断伸び:3.5%
 引張初期弾性率:2.0GPa
であった。
(実施例7)
 実施例7の化合物、下式のポリエーテル(BFPT-BisCHP)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000061
 実施例1のBisAをBisCHPに変えて、NMP(5mL)中190℃で3時間重合を行い、同様にポリエーテルを合成した。
 収量:1.33g、収率:95%、対数粘度:0.57dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):56,000、重量平均分子量(Mw):119,000、分子量分布(Mw/Mn):2.1、平均重合度(n):80であった。
 ポリマーをNMPに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚53μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3066(Ar-H),2926(C-H),1588(C=C),1521(C=N),1519(C=C),1368(C-N),1234(Ar-O)
 元素分析(C4847:計算値 C,82.60%;H,6.79%;N,6.02% 実測値 C,82.67%;H,6.85%;N,6.03%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):221℃(DSC)、221℃(DMA)、222℃(TMA)
 熱膨張係数(CTE):95ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):455℃(空気中)、469℃(窒素中)
 10%重量減少温度(T10%):465℃(空気中)、472℃(窒素中)
 炭化収率(窒素中、800℃):9%
 カットオフ波長:350nm
 透過率(500nm):80%
 平均屈折率(nave):1.630(d線)
 複屈折(Δn):0.007(d線)
 誘電率(ε=nave ):2.66
 誘電率(Dk):2.62(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.64(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0008(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0009(空洞共振器、TEモード、10GHz)
 引張破断強度:75MPa
 破断伸び:4.1%
 引張初期弾性率:2.3GPa
であった。
(実施例8)
 実施例8の化合物、下式のポリエーテル [BFPT-BisZ/BisAF(25モル%/75モル%)]は以下のように合成した。
Figure JPOXMLDOC01-appb-C000062
 実施例1のBisAをBisZ(25モル%)とBisAF(75モル%)に変えて、NMP(5mL)中190℃で3時間重合を行い、同様にポリエーテルを合成した。
 収率:94%、対数粘度:1.06dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):80,000、重量平均分子量(Mw):192,000、分子量分布(Mw/Mn):2.4、平均重合度(n):128であった。
 ポリマーをNMPに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚84μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3068(Ar-H),2936(C-H),1596(C=C),1521(C=N),1502(C=C),1368(C-N),1246(Ar-O)
 元素分析(C36.7523.54.5:計算値 C,70.67%;H,3.79%;N,6.73% 実測値 C,71.08%;H,3.97%;N,6.67%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、N,N’-ジメチルプロピレン尿素(DMPU)、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):250℃(DSC)、248℃(DMA)
 熱膨張係数(CTE):83ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):517℃(空気中)、514℃(窒素中)
 10%重量減少温度(T10%):536℃(空気中)、528℃(窒素中)
 炭化収率(窒素中、800℃):59%
 カットオフ波長:351nm
 透過率(500nm):79%
 平均屈折率(nave):1.634(d線)
 複屈折(Δn):0.022(d線)
 誘電率(ε=nave ):2.67
 誘電率(Dk):2.77(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.76(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0017(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0016(空洞共振器、TEモード、10GHz)
 引張破断強度:73MPa
 破断伸び:5.6%
 引張初期弾性率:2.1GPa
であった。
(実施例9)
 実施例9の化合物、下式のポリエーテル[BFPT-BisP3MZ/BisAF(50モル%/50モル%)]は以下のように合成した。
Figure JPOXMLDOC01-appb-C000063
 実施例1のBisAをBisP3MZ(50モル%)とBisAF(50モル%)に変えて、NMP(5mL)中190℃で3時間重合を行い、同様にポリエーテルを合成した。
 収量:1.030g、収率:84%、対数粘度:0.81dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):47,000、重量平均分子量(Mw):110,000、分子量分布(Mw/Mn):2.1、平均重合度(n):76であった。
 ポリマーをNMPに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚58μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3064(Ar-H),2929(C-H),1594(C=C),1518(C=N),1506(C=C),1368(C-N),1246(Ar-O)
 元素分析(C3827:計算値 C,74.25%;H,4.43%;N,6.84% 実測値 C,74.34%;H,4.57%;N,6.83%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、N,N’-ジメチルプロピレン尿素(DMPU)、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):260℃(DSC)、259℃(DMA)
 熱膨張係数(CTE):78ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):499℃(空気中)、510℃(窒素中)
 10%重量減少温度(T10%):527℃(空気中)、520℃(窒素中)
 炭化収率(窒素中、800℃):48%
 カットオフ波長:350nm
 透過率(500nm):78%
 平均屈折率(nave):1.639(d線)
 複屈折(Δn):0.021(d線)
 誘電率(ε=nave ):2.69
 誘電率(Dk):2.75(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.73(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0019(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0020(空洞共振器、TEモード、10GHz)
 引張破断強度:64MPa
 破断伸び:19.4%
 引張初期弾性率:2.0GPa
であった。
(実施例10)
 実施例10の化合物、下式のポリエーテル(BFPT-BisPCDE)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000064
 実施例1のBisAをBisPCDEに変えて、NMP(5mL)中190℃で3時間重合を行い、同様にポリエーテルを合成した。
 収率:96%、対数粘度:0.51dL/g(30℃、0.5g/dLのDMPU溶液)であった。
 ポリマーをDMPUに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚76μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3064(Ar-H),2937(C-H),1592(C=C),1521(C=N),1501(C=C),1368(C-N),1242(Ar-O)
 元素分析(C4543:計算値 C,82.16%;H,6.59%;N,6.39% 実測値 C,82.25%;H,6.65%;N,6.32%
 溶解性:N,N’-ジメチルプロピレン尿素(DMPU)に可溶であった。
 ガラス転移温度(Tg):272℃(DSC)、272℃(DMA)
 熱膨張係数(CTE):83ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):400℃(空気中)、443℃(窒素中)
 10%重量減少温度(T10%):443℃(空気中)、458℃(窒素中)
 炭化収率(窒素中、800℃):30%
 カットオフ波長:350nm
 平均屈折率(nave):1.638(d線)
 複屈折(Δn):0.019(d線)
 誘電率(ε=nave ):2.68
 誘電率(Dk):2.67(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.66(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0020(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0017(空洞共振器、TEモード、10GHz)
 引張破断強度:54MPa
 破断伸び:5.1%
 引張初期弾性率:1.6GPa
であった。
(実施例11)
 実施例11の化合物、下式のポリエーテル(BFPT-DTPM)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000065
 実施例1のBisAをDTPMに変えて、NMP(5.0mL)中190℃で3時間重合を行い、同様にポリエーテルを合成した。
 収率:93%、対数粘度:0.69dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):63,000、重量平均分子量(Mw):199,000、分子量分布(Mw/Mn):3.2、平均重合度(n):95であった。
 ポリマーをNMPに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚70μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3059(Ar-H),1592(C=C),1521(C=N),1499(C=C),1369(C-N),1241(Ar-O)
 H-NMR(CDCl、ppm):8.68-8.64(m,6H),7.52-7.48(m,3H),7.29-7.20(m,14H),7.12(d,4H),6.98(d,4H)
 元素分析(C4631:計算値 C,83.99%;H,4.75%;N,6.39% 実測値 C,84.07%;H,4.85%;N,6.32%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、シクロペンタノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):263℃(DSC)、266℃(DMA)
 熱膨張係数(CTE):97ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):546℃(空気中)、543℃(窒素中)
 10%重量減少温度(T10%):558℃(空気中)、552℃(窒素中)
 炭化収率(窒素中、800℃):53%
 カットオフ波長:352nm
 透過率(500nm):68%
 平均屈折率(nave):1.682(d線)
 複屈折(Δn):0.017(d線)
 誘電率(ε=nave ):2.83
 誘電率(Dk):2.82(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.82(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0018(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0017(空洞共振器、TEモード、10GHz)
 引張破断強度:70MPa
 破断伸び:3.2%
 引張初期弾性率:1.6GPa
であった。
(実施例12)
 実施例12の化合物、下式のポリエーテル(BFPT-BPFL)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000066
 攪拌子と窒素ガス導入管を備えた二口フラスコ(50mL)に、BFPT(0.6340g,1.84mmol)、BPFL(0.6433g、1.84mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3060g、2.20mmol)、極性溶媒としてN-メチル-2-ピロリドン(NMP、5.0mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流し、ディーンスタークトラップにより生成した水を除去した。その後、190℃まで昇温し1時間撹拌してトルエンを除去した。その後190℃で2時間重合した。室温まで冷却し、粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーをNMPに溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収したのち、室温で減圧乾燥した。
 この化合物は収量:1.134g、収率:94%、対数粘度:0.88dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):77,000、重量平均分子量(Mw):206,000、分子量分布(Mw/Mn):2.7、平均重合度(n):117であった。
 このポリマーをTMUに溶解し、12wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚64μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3062(Ar-H),1592(C=C),1519(C=N),1502(C=C),1368(C-N),1241(Ar-O)
 H-NMR(CDCl、ppm):8.65-8.64(m,6H),7.75(d,2H),7.52-7.48(m,3H),7.42(d,2H),7.35(t,2H),7.28(t,2H),7.17(d,4H),7.07(d,4H),6.93(d,4H)
 元素分析(C4629:計算値C,84.25%;H,4.46%;N,6.41%、実測値C,84.18%;H,4.51%;N,6.43%.
 溶解性:N―メチル―2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、クロロホルム、テトラヒドロフラン(THF)、シクロペンタノン、シクロヘキサノンに可溶であった。
 ガラス転移温度(Tg):309℃(DSC)、306℃(DMA)
 熱膨張係数(CTE):96ppm/℃(150から200℃の範囲)
 5%重量減少温度:516℃(空気中)、568℃(窒素中)
 10%重量減少温度:525℃(空気中)、578℃(窒素中)
 炭化収率:58%(窒素中、800℃)
 カットオフ波長:353nm
 500nmでの透過率:82%
 平均屈折率(nave):1.689(d線)
 複屈折(Δn):0.003(d線)
 誘電率(ε=nave ):2.85
 誘電率(Dk):2.82(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.78(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0016(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0017(空洞共振器、TEモード、10GHz)
 引張破断強度:81MPa
 破断伸び:4.4%
 引張初期弾性率:2.2G
であった。
(実施例13)
 実施例13の化合物、下式のポリエーテル(BFPT-DMBPFL)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000067
 実施例1のBisAをDMBPFLに変えて、NMP(5.0mL)中190℃で3時間重合を行い、同様にポリエーテルを合成した。
 収率:95%、対数粘度:0.91dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(THF)により測定した数平均分子量(Mn):87,000、重量平均分子量(Mw):249,000、分子量分布(Mw/Mn):2.9、平均重合度(n):127であった。
 ポリマーをNMPに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚79μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3064(Ar-H),2921(C-H),1588(C=C),1521(C=N),1509(C=C),1369(C-N),1248(Ar-O)
 H-NMR(CDCl、ppm):8.68-8.64(m,6H),7.79(d,2H),7.54-7.47(m,5H),7.39(t,2H),7.32(t,2H),7.11-7.09(m,4H),6.99(d,4H),6.89(d,2H),2.11(s,6H)
 元素分析(C4833:計算値 C,84.31%;H,4.87%;N,6.15% 実測値 C,84.40%;H,4.98%;N,6.12%
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン(THF)、クロロホルムに可溶であった。
 ガラス転移温度(Tg):298℃(DSC)、297℃(DMA)
 熱膨張係数(CTE):86ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):474℃(空気中)、450℃(窒素中)
 10%重量減少温度(T10%):522℃(空気中)、457℃(窒素中)
 炭化収率(窒素中、800℃):56%
 カットオフ波長:354nm
 透過率(500nm):75%
 平均屈折率(nave):1.678(d線)
 複屈折(Δn):0.012(d線)
 誘電率(ε=nave ):2.82
 誘電率(Dk):2.78(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.81(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0019(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0017(空洞共振器、TEモード、10GHz)
 引張破断強度:73MPa
 破断伸び:4.5%
 引張初期弾性率:2.3GPa
であった。
(実施例14)
 実施例14の化合物、下式のポリエーテル(BFPT-TBISRX)は以下のように合成した。
Figure JPOXMLDOC01-appb-C000068
 実施例1のBisAをTBISRXに変えて、NMP(5.0mL)中190℃で3時間重合を行い、同様にポリエーテルを合成した。
 収率:94%、対数粘度:0.68dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPC(NMP)により測定した数平均分子量(Mn):67,000、重量平均分子量(Mw):253,000、分子量分布(Mw/Mn):3.8、平均重合度(n):100であった。
 ポリマーをNMPに溶解し、ガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させた。ガラス板を蒸留水に浸してフィルムを剥がし、200℃で3時間減圧乾燥して、無色透明なキャストフィルム(膜厚85μm)を作製した。
 この実施例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3065(Ar-H),1595(C=C),1521(C=N),1486(C=C),1369(C-N),1220(Ar-O)
 溶解性:N-メチル-2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)に可溶
 ガラス転移温度(Tg):336℃(DSC)、335℃(DMA)
 熱膨張係数(CTE):61ppm/℃(150から200℃の範囲)
 5%重量減少温度(T5%):579℃(空気中)、586℃(窒素中)
 10%重量減少温度(T10%):597℃(空気中)、596℃(窒素中)
 炭化収率(窒素中、800℃):68%
 カットオフ波長:351nm
 透過率(500nm):72%
 平均屈折率(nave):1.689(d線)
 複屈折(Δn):0.015(d線)
 誘電率(ε=nave ):2.85
 誘電率(Dk):2.81(空洞共振器、TMモード、10GHz)
 誘電率(Dk):2.81(空洞共振器、TEモード、10GHz)
 誘電正接(Df):0.0020(空洞共振器、TMモード、10GHz)
 誘電正接(Df):0.0019(空洞共振器、TEモード、10GHz)
 引張破断強度:78MPa
 破断伸び:7.0%
 引張初期弾性率:2.4GPa
であった。
[参考試験例]
 以下、本実施形態の別の態様として、参考例を用いた参考試験を示す。
(試験条件)
 試料の合成及び合成した試料についての分析には、以下の機器、試薬を用いた。
 使用した機器及び条件は以下のとおりである。
(1)GPC:東ソー(株)製高速GPCシステムHLC-8220GPC(カラム:東ソーTSKgel(α-M)、カラム温度:45℃、溶離液:N-メチル-2-ピロリドン(NMP)(0.01mol/L臭化リチウムを含む。)、検量線:標準ポリスチレン、カラム流速:0.2mL/min)
(2)赤外スペクトル(FT-IR):日本分光(株)製FT/IR-4200
(3)核磁気共鳴スペクトル(NMR):BRUKER製AC400P
(4)熱重量測定(TGA):(株)日立ハイテクサイエンス製TG/DTA7300、昇温速度10℃/min
(5)示差走査熱量測定(DSC):(株)日立ハイテクサイエンス製DSC7000、昇温速度20℃/min
(6)熱機械分析(TMA):(株)日立ハイテクサイエンス製TMA7000、昇温速度10℃/min
(7)動的粘弾性測定(DMA):(株)日立ハイテクサイエンス製DMA7100、昇温速度2℃/min
(8)引張り試験:(株)島津製作所製オートグラフAGS-D型、引張り速度10mm/min
(9)紫外可視分光光度計:(株)島津製作所製UV-1800
(10)屈折率測定:Metricon社製 Model 2010/M PRISM COUPLER
(11)誘電率測定:エーイーティー製誘電率・誘電正接測定装置(空洞共振器タイプ)、TEモード(10GHz、20GHz)
 試薬としては、市販のものを用い必要に応じて常法により精製した。各種反応溶媒は、必要に応じて常法により乾燥・精製した。
 (樹脂組成物の製造)
 前記式(1)の化合物のうち、R=水素(H)(BFPT)で、Arがそれぞれ、
 式(2)のBis Aの化合物(BFPT-BisA、参考例1)、
 式(3)のBis AFの化合物(BFPT-BisAF、参考例2)
 式(4)のBisP-HTGの化合物(BFPT-PisP-HTG、参考例3)
 式(5)のBisP-INDの化合物(BFPT-BisP-IND、参考例4)
 の化合物を調整した。
 また、前記式(1)の化合物のうち、R=水素(H)で(BFPT)で、Ar=BPFL(9,9-ビス(4-ヒドロキシフェニル)フルオレン)とした化合物も調整した(BFPT-BPFL、参考例5)。
 製造にあたって用いる式(6)及び式(7)の化合物としては、前記式(6)の化合物として、R=水素(H)とした化合物(BFPT)を用いた。式(7)の化合物として、各参考例について、Arを式(2)(参考例1)、式(3)(参考例2)、式(4)(参考例3)、式(5)(参考例4)の化合物を用いた。
 (各参考例の合成)
(BFPT化合物)
 各参考例に用いる2,4-ビス(4-フルオロフェニル)-6-フェニル-1,3,5-トリアジン(BFPT)は以下のように合成した。
 攪拌子と窒素ガス導入管を備えた三口フラスコ(100mL)に、4-フルオロベンズアミジン塩酸塩(7.460g、42.73mmol)、ベンジリデンアニリン(3.625g、20.00mmol)、炭酸水素ナトリウム(3.781g、45.00mmol)、N,N-ジメチルホルムアミド(DMF、35mL)を入れ、85℃まで段階的に昇温し、85℃で96時間反応させた。その後室温まで放冷した。反応溶液を蒸留水に投入しクロロホルムを加えた。分液ロートでクロロホルム溶液を蒸留水で3回洗浄した。回収したクロロホルム溶液を無水硫酸ナトリウムで一晩乾燥し、吸引ろ過で無水硫酸ナトリウムを除いた後にクロロホルム溶液をエバポレーターで濃縮し、メタノール(500mL)に投入すると、粗生成物が析出した。これを吸引ろ過で回収し、メタノールで還流洗浄した後、室温で減圧乾燥させると、褐色針状晶の粗生成物(1.61g、23.3%)が得られた。粗生成物をクロロホルムとメタノールの混合溶媒で再結晶し、80℃で24時間減圧乾燥した。
 合成した化合物は、形状:白色針状結晶、収量:1.46g、収率:21.1%、融点:259~262℃であった。
 このBFPTについて、前述した機器を用いての分析結果は、
 FT-IR(KBr、cm-1):3051(Ar-H),1603 (C=C),1522 (C=N),1508(C=C),1370 (C-N),1228 (Ar-F).
 H-NMR(CDCl、ppm):8.80-8.73 (m,6H),7.62 (t,1H),7.57 (t,2H),7.27-7.23 (m,4H).
 13C-NMR(CDCl、ppm): 171.74,170.75,165.93,136.06,132.78,132.36,131.39,128.91,115.84
 19F-NMR(CDCl,ppm): 108.41
 元素分析(C2113):計算値 C,73.03%;H,3.79%;N,12.17% 実測値 C,72.94%;H,4.00%;N,12.15%であった。
(参考例1)
 参考例1の化合物、ポリエーテル(BFPT-BisA)は以下のように合成した。
 攪拌子と窒素ガス導入菅を備えた二口フラスコ(50mL)に、BFPT(0.6907g、2.00mmol)、ビスフェノールA(0.4566g、2.00mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3334g、2.40mmol)、中性極性溶媒としてN,N’-ジメチルイミダゾリドン(DMI、6.5mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流しディーンスタークトラップにより生成した水を除去した。その後、190℃まで昇温し2時間攪拌してトルエンを除去した。その後190℃で2時間重合した。室温まで放冷し、茶色の粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーを、N-メチル-2-ピロリドン(NMP)に溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収した後、室温で減圧乾燥した。
 後述する表のBFPT-BisA DMIに示すように、収量:0.618g、収率:58%、対数粘度:0.54dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPCにより測定した数平均分子量(Mn):30,000、重量平均分子量(Mw):62,000、分子量分布(Mw/Mn):2.1であった。
 このポリマーをNMPに溶解し、12wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に200℃まで昇温し、200℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚38μm)を作製した。
 この参考例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3066(Ar-H),2968(C-H),1592(C=C),1517(C=N),1504(C=C),1368(C-N),1241 (Ar-O).
 H-NMR(CDCl、ppm):8.68(d,6H),7.53-7.50(m,3H),7.24(d,4H),7.09(d,4H),7.00(d,4H),1.69(s,6H).
 カットオフ波長:353nm、500nmでの透過率:81%であった。
(参考例2)
 参考例2の化合物、ポリエーテル(BFPT-BisAF)は以下のように合成した。
 攪拌子と窒素ガス導入管を備えた二口フラスコ(50mL)に、BFPT(0.6907g、2.00mmol)、ビスフェノールAF(0.6725g、2.00mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3334g、2.40mmol)、中性極性溶媒としてN,N’-ジメチルイミダゾリドン(DMI、6.5mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流しディーンスタークトラップにより生成した水を除去した。その後、190℃まで昇温し2時間撹拌してトルエンを除去した。その後190℃で2時間重合した。室温まで放冷し、茶色の粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーをテトラメチル尿素(TMU)に溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収した後、室温で減圧乾燥した。
 後述する表のBFPT-BisAF DMIに示すように、収量:1.021g、収率:80%、対数粘度:0.98dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPCにより測定した数平均分子量(Mn):106,000、重量平均分子量(Mw):211,000、分子量分布(Mw/Mn):2.0であった。
 ポリマーをTMUに溶解し、9wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚37μm)を作製した。
 この参考例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3064(Ar-H),1595(C=C),1518 (C=N),1506(C=C),1368(C-N),1248(Ar-O).
 H-MNR(クロロホルム溶媒、ppm):8.74-8.69(m,6H),7.55-7.49(m,3H),7.42(d,4H),7.17(d,4H),7.07(d,4H).
 カットオフ波長:343nm、500nmでの透過率:83%
 平均屈折率(n):1.621(d線)、複屈折(Δn):0.022(d線)、屈折率から計算される誘電率(ε):2.63(ε=n)であった。
(参考例3)
 参考例3の化合物、ポリエーテル(BFPT-BisPHTG)は以下のように合成した。
 攪拌子と窒素ガス導入管を備えた二口フラスコ(50mL)に、BFPT(0.6907g、2.00mmol)、BisPHTG(0.6209g,2.00mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3334g、2.40mmol)、中性極性溶媒としてN―メチル―2-ピロリドン(NMP、5.0mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流しディーンスタークトラップにより生成した水を除去した。その後、190℃まで昇温し2時間撹拌してトルエンを除去した。その後190℃で3時間重合した。室温まで放冷し、茶色の粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーをNMPに溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収した後、室温で減圧乾燥した。
 後述する表のBFPT-BisPHTG NMPにも示すように、収量:1.163g、収率:94%、対数粘度:0.48dL/g(30℃、0.5g/dLのNMP溶液)、前述のGPCにより測定した数平均分子量(Mn):74,000、重量平均分子量(Mw):135,000、分子量分布(Mw/Mn):1.8であった。
 このポリマーをテトラメチル尿素(TMU)に溶解し、15wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚38μm)を作製した。
 この参考例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3062(Ar-H),2948(C-H),1593(C=C),1518(C=N),1504(C=C),1368(C-N),1242(Ar-O).
 H-NMR(CDCl、ppm):8.68-8.65(m,6H),7.52-7.48(m,3H),7.49(d,2H),7.23(d,2H),7.05(d,4H),7.00(d,2H),6.94(d,2H),2.71(d,1H),2.47(d,1H),2.04-2.01(br,1H),1.96(d,1H),1.41(d,1H),1.20(t,1H),0.99(d,6H),0.89(d,1H),0.43(s,6H).
 カットオフ波長:354nm、500nmでの透過率:81%
 平均屈折率(n):1.637(d線)、複屈折(Δn):0.006(d線)、屈折率から計算される誘電率(ε):2.68(ε=n)であった。
(参考例4)
 参考例4の化合物、ポリエーテル(BFPT-BisPIND)は以下のように合成した。
 攪拌子と窒素ガス導入管を備えた二口フラスコ(50mL)に、BFPT(0.6907g、2.00mmol)、BisPIND(0.5368g、2.00mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3334g、2.40mmol)、中性極性溶媒としてN―メチル―2-ピロリドン(NMP、5.0mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流しディーンスタークトラップにより生成した水を除去した。その後、190℃まで昇温し2時間撹拌してトルエンを除去した。その後190℃で3時間重合した。室温まで放冷し、茶色の粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーをNMPに溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収したのち、室温で減圧乾燥した。
 後述する表のBFPT-BisP-IND NMPにも示すように、収量:1.030g、収率:90%、対数粘度:0.96dL/g(30℃、0.5g/dLのNMP溶液)であった。
 このポリマーをテトラメチル尿素(TMU)に溶解し、10wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚43μm)を作製した。
 この参考例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3062(Ar-H),2958(C-H),1593(C=C),1518(C=N),1507(C=C),1368(C-N),1239(Ar-O).
 H-NMR(CDCl、ppm):8.63-8.58(m,6H),7.46-7.42(m,3H),7.19-7.17(m,3H),7.07-7.04(m,2H),7.00-6.96(m,5H),6.86(s,1H),2.42(d,1H),2.24(d,1H),1.67(s,3H),1.36(s,3H),1.11(s,3H).
 カットオフ波長:352nm、500nmでの透過率:84%
 平均屈折率(n):1.653(d線)、複屈折(Δn):0.012(d線)、屈折率から計算される誘電率(ε):2.73(ε=n)であった。
(参考例5)
 参考例5の化合物、ポリエーテル(BFPT-BPFL)は以下のように合成した。
 攪拌子と窒素ガス導入管を備えた二口フラスコ(50mL)に、BFPT(0.6340g,1.84mmol)、BPFL(0.6433g、1.84mmol)を入れ、アルカリ金属化合物として炭酸カリウム(0.3060g、2.20mmol)、中性極性溶媒としてN,N’-ジメチルイミダゾリドン(DMI、6.0mL)、不活性溶媒成分としてトルエン(20mL)を加えた。ディーンスタークトラップとリービッヒ冷却器を取り付け、窒素ガス雰囲気にした。攪拌しながら150℃まで段階的に昇温し、150℃で2時間トルエンを還流し、ディーンスタークトラップにより生成した水を除去した。その後、190℃まで昇温し2時間撹拌してトルエンを除去した。その後190℃で2時間重合した。室温まで冷却し、茶色の粘稠な重合溶液を得た。メタノールに注いでポリマーを沈殿させ、回収した後に熱メタノールで洗浄し、室温で減圧乾燥した。得られたポリマーをテトラメチル尿素(TMU)に溶解させ、メタノールに注ぎ、白色フレーク状のポリマーを沈殿させた。ポリマーを回収したのち、室温で減圧乾燥した。
 この化合物は収量:1.043g、収率:87%、対数粘度:0.50dL/g(30℃、0.5g/dLのNMP溶液)、数平均分子量(Mn):46,000、重量平均分子量(Mw):88,000、分子量分布(Mw/Mn):1.9であった。
 このポリマーをTMUに溶解し、12wt%溶液を調製した。この溶液をガラス板上に流延して、減圧下で段階的に160℃まで昇温し、160℃で3時間減圧乾燥させて、無色透明なキャストフィルム(膜厚64μm)を作製した。
 この参考例について、前述した機器を用いての分析結果は、
 FT-IR(film、cm-1):3062(Ar-H),1593(C=C),1519(C=N),1502(C=C),1368(C-N),1241(Ar-O).
 H-NMR(CDCl、ppm):8.65-8.64(m,6H),7.75(d,2H),7.52-7.48(m,3H),7.42(d,2H),7.35(t,2H),7.28(t,2H),7.17(d,4H),7.07(d,4H),6.93(d,4H).
 元素分析(C4929:計算値C,84.25%;H,4.46%;N,6.41%、実測値C,84.18%;H,4.51%;N,6.43%.
 溶解性:N―メチル―2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、クロロホルム、テトラヒドロフラン(THF)、シクロペンタノン、シクロヘキサノンに可溶。
 5%重量減少温度:515℃(空気中)、568℃(窒素中)、10%重量減少温度:521℃(空気中)、578℃(窒素中)、炭化収率:58%(窒素中、800℃)、ガラス転移温度(Tg):309℃(DSC),331℃(TMA),306℃(DMA).
 引張破断強度:68MPa、破断伸び:4.2%、初期引張弾性率:5.0GPa
 カットオフ波長:353nm、500nmでの透過率:82%
 平均屈折率(n):1.689(d線)、複屈折(Δn):0.003(d線)、屈折率から計算される誘電率(ε):2.85(ε=n
 誘電率(Dk):2.89(TEモード,10GHz)、2.71(TEモード,20GHz)、誘電正接(Df):0.0024(TEモード,10GHz)、0.0025(TEモード,20GHz)であった。
(参考試験例1:極性溶媒及び重合温度の検討)
 参考例2(BFPT-BisAF)、及び、極性溶媒をNMP,TMU,DMIの3種、溶媒の量を5~7.5mL、重合時間を170~190℃に変更した他は同じ条件での製造を行い、極性溶媒及び重合温度の検討を行った。結果を表1に示す。収率(Yield)は前記再沈殿を行った後の値である。対数粘度(ηinh)は0.5g/dLのNMP溶液を用いて、30℃で測定した値である。
Figure JPOXMLDOC01-appb-T000069
 表1に示すように、極性溶媒にDMIを用い、極性溶媒の量を5mL(すなわち、トルエン20mLに対して25体積%の割合)、重合温度を190℃にすると、高い収率、高い対数粘度が得られた。さらに、極性溶媒の量を6.5mLとすると、極めて高い収率、極めて高い対数粘度が得られた。一方、重合温度が170~180℃、極性溶媒にNMPやTMUを用いると、これらの収率や対数粘度はやや減少し、変色等も見られたが、製造することは可能であった。
(参考試験例2:参考例1~4の化合物の合成検討)
 参考例1~4の化合物について、前述の条件で合成した。各参考例について、DMIをNMPにかえた他は同様の工程で合成も行った。結果を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
 参考試験例1で合成した参考例2の他、参考例1~4のそれぞれについて一定以上の高い収率で合成することができた。参考例1、3、4ともに、NMPを用いた方が収率、対数粘度、数平均分子量(Mn)とも高く、変色も少なかった。
 また、上述の機器を用いて測定したFT-IRスペクトルについて、図1に、極性溶媒にDMIを用いて合成した参考例1~4についてのFT-IRスペクトルを示す。
 また、各参考例について元素分析を行った結果を表4に示す。表中のCalcd.は計算値、Found.は実測値である。
Figure JPOXMLDOC01-appb-T000072
(参考試験例3:参考例1~4の化合物の溶解性)
 参考例1~4の化合物について、室温又は加熱を行って溶解性を検討した結果を表5、表6に示した。溶解性は10mg/5.0mLで測定した。
 ++:室温で溶解可能であった。
 +:加熱することで溶解した。
 +-:一部のみ溶解した。
 -:不溶であった。
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
 参考例1については、N―メチル―2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)に可溶であった。
 参考例2については、N―メチル―2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、N,N-ジメチルアセトアミド(DMAc)、クロロホルム、テトラヒドロフラン(THF)、シクロペンタノン、シクロヘキサノンに可溶であった。
 参考例3については、N―メチル―2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、クロロホルム、テトラヒドロフラン(THF)、シクロペンタノン、シクロヘキサノンに可溶であった。
 参考例4については、N―メチル―2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、クロロホルム、テトラヒドロフラン(THF)、シクロペンタノン、シクロヘキサノンに可溶であった。
 なお、表中に示していないが、参考例5については、N―メチル―2-ピロリドン(NMP)、テトラメチル尿素(TMU)、N,N’-ジメチルイミダゾリドン(DMI)、クロロホルム、テトラヒドロフラン(THF)、シクロペンタノン、シクロヘキサノンに可溶であった。
 参考例については特に、安定な化合物ではあるが、一定の有機溶媒に対して可溶であり、再沈殿精製や成形加工に優れていることが示された。
(参考試験例4:参考例1~4の化合物の熱特性)
 参考例1~4の化合物について、前述の熱重量測定(TGA)、示差走査熱量測定(DSC)、熱機械分析(TMA)、動的粘弾性測定(DMA)の測定を行い、熱特性を検討した結果を表7、表8に示した。
 表7にガラス転移温度(Tg)と熱膨張係数(CTE)を示した。ガラス転移温度は、DSCにより窒素中で昇温速度20℃/minで測定した値、TMAにより窒素中で昇温速度10℃/minで測定した値、DMAにより窒素中で昇温速度2℃/minで測定した値である。CTEは、TMAにより150~200℃で測定した値である。
 表8のT5%、T10%は、それぞれ5%減少温度と10%減少温度であり、TGAによって窒素中又は空気中で昇温速度10℃/minで測定した値である。Char yieldは炭化収率で、窒素中800℃における重量%である。
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
 表7の結果より、各参考例はいずれもガラス転移温度が240℃前後かそれ以上であり、高い耐熱性を示した。
 表8の結果より、5%の熱分解、及び10%の熱分解が、空気中において400℃以上、窒素中においていずれも500℃以上で起こっており、熱安定性が高いことが示された。
(参考試験例5:参考例1~4の化合物の誘電特性)
 参考例1~4の化合物について、前述の誘電率測定の条件で誘電特性を検討した結果を表9に示した。
 表9について、nはプリズムカプラーにより測定した屈折率を示し、F線(486nm)、d線(588nm)、C線(656nm)で測定した。TEモードはフィルムの面内における屈折率、TMモードはフィルムの面外における屈折率を表す。Vはアッベ数、naveはnave=[(2nTE +nTM )/3]1/2で求められる平均屈折率であり、nTEとnTMはd線(588nm)で測定したそれぞれのモードの屈折率である。誘電率(ε)はε=nave で求めた値である。誘電率(Dk)と誘電正接(Df)は空洞共振器により測定した値である。
Figure JPOXMLDOC01-appb-T000077
 表9において、参考例1~4のいずれも、Dk(誘電率)が2.6以下、Df(誘電正接)が0.003以下の値であり、十分に低いことが示された。
 なお、表中に示していないが、参考例5では、誘電正接(Df)は0.0024(TEモード,10GHz)、0.0025(TEモード,20GHz)となり、0.003以下の値は見られたものの、誘電率(Dk)が2.89(TEモード,10GHz)、2.71(TEモード,20GHz)と参考例1~4よりも高い値であった。
(参考試験例6:参考例1~4の化合物の機械的特性)
 参考例1~4の化合物について、前述の引張試験の条件で機械的特性を検討した結果を表10に示した。
 引張試験は、10mm/minの引張速度、フィルムは前述の各合成工程において示したキャストフィルムで5mm×30mmのものを用いた。Tsは引張破断強度、Ebは破断伸び、Tmは初期引張弾性率を示す。
Figure JPOXMLDOC01-appb-T000078
 表10において、参考例1~4のいずれも、十分な引張機械特性を示した。
 本発明によれば、誘電率が低く、誘電正接が低く、透明性が高く、溶解性が高く、かつ耐熱性が高いことから、低誘電材料として好適に使用できる樹脂組成物及びその製造方法が得られる。

Claims (16)

  1.  下記一般式(1)で示される繰り返し単位を有するトリアジン含有ポリエーテル化合物を含む、低誘電材料用の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、nは2以上の整数であり、Arは、置換基を有する若しくは有さない2価の芳香族基を表す。Rは水素、直鎖状、分岐鎖状若しくは環状の脂肪族基、置換基を有する若しくは有さない芳香族基、フッ素化された前記脂肪族基、又はフッ素化された前記芳香族基を表す。]
  2.  前記Arが下記一般式(2)~(15)のいずれかで表されるトリアジン含有ポリエーテル化合物を含む、請求項1に記載の低誘電材料用の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
  3.  前記一般式(1)中のnで示される繰り返し単位の平均重合度が2~200であるトリアジン含有ポリエーテル化合物を含む、請求項1又は2に記載の低誘電材料用の樹脂組成物。
  4.  前記トリアジン含有ポリエーテル化合物は、誘電率Dが2.8以下又は誘電正接Dfが0.003以下である、請求項1から3のいずれか1項に記載の低誘電材料用の樹脂組成物。
  5.  前記トリアジン含有ポリエーテル化合物は、ガラス転移温度が200℃以上である、請求項1から4のいずれか1項に記載の低誘電材料用の樹脂組成物。
  6.  前記トリアジン含有ポリエーテル化合物及びエポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂を含む、請求項1から5のいずれか1項に記載の低誘電材料用の樹脂組成物。
  7.  無機質充填材、改質剤又は難燃付与剤をさらに含む、請求項1から6のいずれか1項に記載の低誘電材料用の樹脂組成物。
  8.  周波数が0.1~500GHzの高周波の電磁波の送受信を行う機器に用いられる、請求項1から7のいずれか1項に記載の低誘電材料用の樹脂組成物。
  9.  プリント配線板、フレキシブルプリント配線板、電子部品用封止材、レジストインキ、導電ペースト、絶縁材料、又は絶縁板に用いる、請求項1から8のいずれか1項に記載の低誘電材料用の樹脂組成物。
  10.  請求項1から9のいずれか1に記載の低誘電材料用の樹脂組成物を含む絶縁材料を、少なくとも1面に備えた積層基板用フィルム。
  11.  請求項10に記載の積層基板用フィルムを2以上備えた積層基板。
  12.  請求項1から9のいずれか1項に記載の低誘電材料用の樹脂組成物の製造方法であって、
     下記一般式(16)で表される化合物と下記一般式(17)で表される化合物とを混合し、重合させて下記一般式(18)で表されるトリアジン含有ポリエーテル化合物を得る、低誘電材料用の樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    [式(16)、(17)、(18)中、nは2以上の整数であり、Arは、置換基を有する若しくは有さない2価の芳香族基を表す。Rは、水素、直鎖状、分岐鎖状若しくは環状の脂肪族基、置換基を有する若しくは有さない芳香族基、フッ素化された前記脂肪族基、又はフッ素化された前記芳香族基を表す。]
  13.  積層基板の層間の絶縁材料として用いられる低誘電材料用の樹脂組成物の製造方法であって、
     前記トリアジン含有ポリエーテル化合物、エポキシ樹脂、ビスマレイミド樹脂又はシアネート樹脂、硬化促進剤及び有機溶剤を混合する、請求項12に記載の低誘電材料用の樹脂組成物の製造方法。
  14.  無機質充填材、改質剤又は難燃付与剤をさらに混合する、請求項13に記載の低誘電材料用の樹脂組成物の製造方法。
  15.  請求項13又は14に記載の低誘電材料用の樹脂組成物の製造方法で製造した低誘電材料用の樹脂組成物を含む絶縁材料を、樹脂フィルムの少なくとも1面に塗布する、積層基板用フィルムの製造方法。
  16.  請求項15の積層基板用フィルムの製造方法で製造した積層基板用のフィルムを2以上積層する、積層基板の製造方法。
PCT/JP2022/013425 2021-03-24 2022-03-23 低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法 WO2022202886A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023509240A JPWO2022202886A1 (ja) 2021-03-24 2022-03-23
CN202280022862.7A CN117062876A (zh) 2021-03-24 2022-03-23 低介电材料用树脂组合物、层叠基板用膜、层叠基板、低介电材料用树脂组合物的制造方法、层叠基板用膜的制造方法以及层叠基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050547 2021-03-24
JP2021050547 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202886A1 true WO2022202886A1 (ja) 2022-09-29

Family

ID=83397312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013425 WO2022202886A1 (ja) 2021-03-24 2022-03-23 低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法

Country Status (4)

Country Link
JP (1) JPWO2022202886A1 (ja)
CN (1) CN117062876A (ja)
TW (1) TW202306770A (ja)
WO (1) WO2022202886A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184300A (ja) * 1992-12-17 1994-07-05 Idemitsu Kosan Co Ltd 芳香族ポリエーテル及びその製造方法並びにトリアジン化合物
JP2001503077A (ja) * 1996-09-16 2001-03-06 バイエル・アクチエンゲゼルシヤフト トリアジン重合体そして電界発光装置におけるそれの使用
CN106589348A (zh) * 2016-11-03 2017-04-26 大连理工大学 主链含双苯基芴与三芳基均三嗪结构的聚芳醚及其制备方法
CN106589349A (zh) * 2016-11-03 2017-04-26 大连理工大学 主链含三芳基均三嗪结构的双邻苯二甲腈树脂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184300A (ja) * 1992-12-17 1994-07-05 Idemitsu Kosan Co Ltd 芳香族ポリエーテル及びその製造方法並びにトリアジン化合物
JP2001503077A (ja) * 1996-09-16 2001-03-06 バイエル・アクチエンゲゼルシヤフト トリアジン重合体そして電界発光装置におけるそれの使用
CN106589348A (zh) * 2016-11-03 2017-04-26 大连理工大学 主链含双苯基芴与三芳基均三嗪结构的聚芳醚及其制备方法
CN106589349A (zh) * 2016-11-03 2017-04-26 大连理工大学 主链含三芳基均三嗪结构的双邻苯二甲腈树脂及其制备方法

Also Published As

Publication number Publication date
TW202306770A (zh) 2023-02-16
CN117062876A (zh) 2023-11-14
JPWO2022202886A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
KR101659081B1 (ko) 액정성 열경화형 올리고머 또는 폴리머 및 이를 포함하는 열경화성 조성물 및 기판
TWI448509B (zh) 樹脂組成物,預浸片及其用途
KR101248294B1 (ko) 에폭시 수지, 에폭시 수지 조성물, 이것을 사용한 프리프레그 및 적층판
CN106366128B (zh) 膦菲类化合物及其制备方法和应用
CN108250675B (zh) 一种含磷活性酯及其无卤组合物与覆铜箔基板
JP6886292B2 (ja) 超低誘電損失熱硬化性樹脂組成物およびこれにより製造される高性能ラミネート
TWI657108B (zh) 環氧樹脂組合物、預浸料、層壓板和印刷電路板
US9469757B2 (en) Low dissipation factor resin composition and product made thereby
CN109988298B (zh) 一种改性聚苯醚树脂、热固性树脂组合物及其用途
JP5551147B2 (ja) 印刷回路基板用樹脂組成物及びこれを含む印刷回路基板
KR102572049B1 (ko) 경화성 수지 조성물
KR102338982B1 (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그 및 기판
CN110938234B (zh) 阻燃性化合物、其制造方法、树脂组合物及其制品
US11773262B2 (en) Resin, copper clad laminate made of resin, and printed circuit board
JPWO2019244694A1 (ja) 硬化性化合物
JP2008088079A (ja) シアナト基含有環状ホスフィネート化合物およびその製造方法
WO2022202886A1 (ja) 低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法
US20240209148A1 (en) Resin composition for low-dielectric material, film for multilayer substrate, multilayer substrate, method for producing resin composition for low-dielectric material, method for producing film for multilayer substrate, and method for producing multilayer substrate
JP2004323673A (ja) 新規ポリエステルおよびフィルムおよび積層体
CN111302905A (zh) 一种二官能烯基苯氧基化合物及其制备方法和利用其改性的可溶性双马来酰亚胺树脂
WO2022202894A1 (ja) 低誘電材料用の樹脂組成物、積層基板用フィルム、積層基板、低誘電材料用の樹脂組成物の製造方法、積層基板用フィルムの製造方法及び積層基板の製造方法
JP6578773B2 (ja) 熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層板、プリント配線板
JP4061532B2 (ja) 熱硬化性樹脂組成物、その成形硬化物、電子回路基板用樹脂組成物、これを用いた電子回路基板、及びシアン酸エステル化合物
JP2013040284A (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板
JP4137625B2 (ja) ポリイミド前駆体組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775668

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023509240

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280022862.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775668

Country of ref document: EP

Kind code of ref document: A1