WO2022202720A1 - 養液処理方法および植物栽培システム - Google Patents

養液処理方法および植物栽培システム Download PDF

Info

Publication number
WO2022202720A1
WO2022202720A1 PCT/JP2022/012876 JP2022012876W WO2022202720A1 WO 2022202720 A1 WO2022202720 A1 WO 2022202720A1 JP 2022012876 W JP2022012876 W JP 2022012876W WO 2022202720 A1 WO2022202720 A1 WO 2022202720A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
unit
microorganisms
solution recovery
recovery unit
Prior art date
Application number
PCT/JP2022/012876
Other languages
English (en)
French (fr)
Inventor
暁恵 池永
雄太 竹ノ内
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022202720A1 publication Critical patent/WO2022202720A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics

Definitions

  • the present invention relates to a nutrient solution treatment method and a plant cultivation system.
  • the plants are arranged in a pool or the like on a path through which a nutrient solution containing nutrients necessary for plant cultivation circulates, so that the plants can absorb the nutrients. Cultivate under conditions. Therefore, it is necessary to circulate a nutrient solution that satisfies the conditions necessary for plant growth.
  • a nutrient solution that satisfies the conditions necessary for plant growth.
  • organic components including growth-inhibiting substances are discharged from the plant. Therefore, in order to reuse the used nutrient solution, it is necessary to remove the growth-inhibiting substances from the used nutrient solution and to replenish the nutrients so as to obtain the required concentration.
  • the hydroponic sterilizer disclosed in Patent Document 1 shows a technique for easily incorporating a sterilizing section and a removal section into a hydroponic cultivation system. That is, in the nutrient solution sterilizer 10 of Patent Document 1, the nutrient solution is sterilized by being supplied to the ultraviolet sterilization unit 50, and the nutrient solution is supplied to the activated carbon filter unit 28, thereby growth inhibitors are removed from the
  • the nutrient solution sterilizer 10 includes the ultraviolet sterilization unit 50 and the activated carbon filter unit 28, the nutrient solution sterilizer 10 is incorporated into a hydroponic cultivation system for cultivating plants using nutrient solution.
  • the ultraviolet sterilization section 50 and the activated carbon filter section 28 can be easily incorporated into the hydroponics system.
  • the nutrient solution once used for plant cultivation can be easily transferred from a nutrient solution pouring system in which the nutrient solution is not reused to a nutrient solution circulation system in which the nutrient solution is repeatedly used for plant cultivation.
  • the activated carbon in the filter must be replaced periodically, which increases the running costs and labor of the cultivation apparatus. Furthermore, the used activated carbon filter may be discarded, which may adversely affect the environment.
  • the present invention has been made in view of the above situation, and its object is to provide a nutrient solution treatment method that can eliminate or reduce the need to replace or discard activated carbon filters used for nutrient solution treatment in a cultivation apparatus, and It is to provide a plant cultivation system.
  • a nutrient solution treatment method and a plant cultivation system are characterized by the following (1) to (11).
  • a nutrient solution treatment method for treating a used nutrient solution discharged from a cultivation container used for cultivating plants in a cultivation apparatus comprising: receiving the used nutrient solution from the cultivation container; treating the received spent nutrient solution through a bio-supported adsorbent carrying at least microorganisms that degrade plant growth inhibitors; supplying the used nutrient solution after treatment to a reuse route on the upstream side of the cultivation container; Nourishing method.
  • the microorganisms supported on the biological-supporting adsorbent are activated using waste heat from the light source of the cultivation apparatus. , performing regeneration treatment of the biological-supporting adsorbent, The nutrient solution treatment method according to (1) above.
  • a plant cultivation system having a cultivation container that can be used for cultivating a plant and a nutrient solution tank capable of supplying a nutrient solution necessary for growing the plant to the cultivation container, one or more nutrient solution recovery units capable of receiving the used nutrient solution from the cultivation container; a bio-supporting adsorbent that is held in the nutrient solution recovery unit and carries at least microorganisms that decompose plant growth inhibitors; a treated nutrient solution supply unit capable of supplying the treated nutrient solution, which has been treated with the biological-supporting adsorbent in the nutrient solution recovery unit, to the nutrient solution tank;
  • (6) having a first nutrient solution recovery unit and a second nutrient solution recovery unit, which are independent of each other, as the nutrient solution recovery unit; a processing path switching unit capable of selectively introducing the used nutrient solution into one of the first nutrient solution recovery unit and the second nutrient solution recovery unit; A process for activating microorganisms is performed on the nutrient solution recovery part in the regeneration mode for regenerating the organism-supporting adsorbent into a reusable state among the first nutrient solution recovery part and the second nutrient solution recovery part.
  • an activation processing unit that performs The treated nutrient solution treated by the adsorption mode nutrient solution recovery unit of the first nutrient solution recovery unit and the second nutrient solution recovery unit that adsorbs a plant growth inhibitory substance from the used nutrient solution.
  • a treated nutrient solution selection unit to be supplied to the treated nutrient solution supply unit;
  • the activation processing unit supplies hot water generated using exhaust heat from a light source of the cultivation apparatus to the nutrient solution recovery unit in the regeneration mode.
  • the activation processing unit has a preprocessing unit that enables preprocessing for increasing microorganisms in the nutrient solution recovery unit that starts the regeneration mode.
  • the plant cultivation system according to (6) or (7) above.
  • the processing path switching unit selectively transfers the used nutrient solution to at least one of the one or more first nutrient solution recovery units and the one or more second nutrient solution recovery units.
  • the treated nutrient solution selection unit supplies the treated nutrient solution treated by the at least one nutrient solution recovery unit that is the adsorption mode nutrient solution recovery unit to the treated nutrient solution supply unit
  • the activation processing unit performs a process for activating the microorganisms in the nutrient solution recovery units other than the at least one nutrient solution recovery unit in the regeneration mode. ) to (8).
  • the biological-supporting adsorbent is activated carbon supporting the microorganisms.
  • the plant cultivation system according to any one of (5) to (10) above.
  • a reusable nutrient solution can be generated by treating the used nutrient solution through the biological-supporting adsorbent.
  • the used nutrient solution discharged from the cultivation container of the cultivation apparatus contains abundant amounts of oxygen, nitrogen components such as nitric acid, and phosphorus components such as phosphoric acid, in addition to plant growth inhibitors. Therefore, it is possible to activate the microorganisms supported on the biological-supporting adsorbent. Therefore, the activated microorganisms decompose and remove the growth-inhibiting substances adsorbed on the bio-supported adsorbent, and the used bio-supported adsorbent can be naturally regenerated to a reusable state. can. In other words, there is no need to replace or dispose of the used bio-supporting adsorbent.
  • the microorganisms supported on the biological-supporting adsorbent are utilized in an environment at a temperature slightly higher than normal temperature by using the exhaust heat from the light source of the cultivation apparatus. can. Such heating further activates the activity of microorganisms and accelerates the decomposition of growth-inhibiting substances adsorbed on the bio-supporting adsorbent.
  • the time required for the regeneration treatment of the biological-supporting adsorbent can be shortened. That is, in the used biological adsorbent to which the growth inhibitory substance adsorbed from the used nutrient solution is attached, the number of supported microorganisms is decreasing, and the number of microorganisms is reduced by activating the microorganisms. It takes time to increase it and reach a state where it can efficiently decompose growth inhibitors. Therefore, by adding new microorganisms in the pretreatment, it becomes possible to efficiently decompose the growth-inhibiting substances immediately after starting the regeneration of the used bio-supported adsorbent. It can shorten the required period of time.
  • activated carbon supporting microorganisms can be used as an adsorbent, and due to the large specific surface area and the developed microstructure, Since it adsorbs a large amount of molecules in a wide size range, it can improve the water purification effect.
  • a reusable nutrient solution can be generated by processing the used nutrient solution through the biological-supporting adsorbent in the nutrient solution recovery unit. Furthermore, the used nutrient solution discharged from the cultivation container of the cultivation apparatus contains abundant amounts of oxygen, nitrogen components such as nitric acid, phosphorus components such as phosphoric acid, etc., in addition to plant growth inhibitors. Therefore, the microorganisms supported by the biological-supporting adsorbent can be activated.
  • the activated microorganisms decompose and remove the growth-inhibiting substances adsorbed on the bio-supported adsorbent, and the used bio-supported adsorbent can be naturally regenerated to a reusable state. can. In other words, there is no need to replace or dispose of the used bio-supporting adsorbent.
  • the plant cultivation system having the configuration of (6) above, by selectively using the first nutrient solution recovery unit and the second nutrient solution recovery unit, reusable nutrients can be obtained by adsorbing growth inhibitors from the used nutrient solution.
  • the operation of generating the liquid and the operation of regenerating the used bio-supporting adsorbent with attached growth-inhibiting substances can be performed simultaneously. Therefore, even if one of the first nutrient solution recovery unit and the second nutrient solution recovery unit becomes unable to adsorb the growth-inhibiting substance, the other bio-supported adsorbent can be used. Since the treatment of the used nutrient solution can be continued, there is no need to suspend the operation of the cultivation apparatus.
  • the microorganisms supported by the organism-supporting adsorbent can be used in an environment at a temperature slightly higher than room temperature. . Such heating further activates the activity of microorganisms and accelerates the decomposition of growth-inhibiting substances adsorbed on the bio-supporting adsorbent.
  • the time required for the regeneration treatment of the bio-supporting adsorbent can be shortened. That is, in the used biological-supporting adsorbent to which the growth inhibitory substance adsorbed from the used nutrient solution is attached, the number of supported microorganisms is decreasing, and the number of microorganisms is reduced by activating the microorganisms. increases and it takes time to reach a state where growth inhibitors can be efficiently decomposed. Therefore, by adding new microorganisms as a pretreatment in the pretreatment unit, it becomes possible to efficiently decompose the growth-inhibiting substances immediately after starting the regeneration of the used bio-supported adsorbent. It is possible to shorten the time required for the regeneration process.
  • all of the one or more first nutrient solution recovery units are used in the adsorption mode, and all of the one or more second nutrient solution recovery units are used in the regeneration mode. may be used.
  • one first nutrient solution recovery unit may be used in the adsorption mode, and all of the remaining first nutrient solution recovery units and one or more second nutrient solution recovery units may be used in the regeneration mode. good. In this way, the mode of some of the three or more nutrient solution recovery units can be switched to the regeneration mode or the adsorption mode.
  • the used nutrient solution can be treated in a reusable state, and replacement or disposal of the activated carbon filter or the like used for the nutrient solution treatment becomes unnecessary. or reduce the amount of waste.
  • FIG. 1 is a block diagram showing the configuration of a plant cultivation system according to an embodiment of the invention.
  • FIG. 2 is a flow chart showing the operation of the plant cultivation system shown in FIG.
  • FIG. 3 is a block diagram showing the connection state of main parts in the plant cultivation system in the first state.
  • FIG. 4 is a block diagram showing the connection state of main parts in the plant cultivation system in the second state.
  • FIG. 1 shows a configuration example of a plant cultivation system 10 according to an embodiment of the present invention.
  • a plant cultivation system 10 shown in FIG. 1 is used as a cultivation apparatus such as a plant factory that hydroponically cultivates a large number of plants. Note that FIG. 1 shows only the minimum required configuration.
  • a hydroponic cultivation pool 11 is arranged on each shelf of racks in which a large number of racks are arranged vertically, or the cultivation apparatus is installed with a large number of racks arranged in the horizontal direction. expected to operate. Therefore, it is possible to cultivate a large number of plants at the same time, and it is also possible to cultivate different varieties of plants at the same time.
  • cultivation equipment is usually installed indoors.
  • one or more enclosed spaces capable of individually managing the air environment for growing plants that is, completely enclosed spaces or semi-enclosed spaces, are formed indoors, and each completely enclosed space or semi-enclosed space has a different environment. It is also envisioned to grow plants in Moreover, when the cultivation apparatus is installed indoors, or when plants are grown in a completely closed space or a semi-enclosed space, it is necessary to irradiate artificial light with the light necessary for the photosynthesis of the plants.
  • completely closed space means a space that is completely closed from the outside air
  • the term “semi-closed space” means a space that is isolated from the outside air except for a part required for environmental control.
  • the inside of the hydroponic cultivation pool 11 is filled with the nutrient solution 12 necessary for growing the plants 13 in a circulating state.
  • the temperature of the nutrient solution 12 is maintained at, for example, about 20° C. so that the plant 13 can be grown.
  • a plant cultivation light source 14 for emitting light 14a necessary for photosynthesis of the plants 13 from above is installed above the hydroponic cultivation pool 11.
  • an LED (light emitting diode) light source is used as the plant cultivation light source 14 .
  • a nutrient solution inlet of the hydroponic culture pool 11 is connected to the nutrient solution tank 15 via a nutrient solution supply pipe 21 .
  • the nutrient solution tank 15 is connected to the raw water supply section 16 via the raw water supply pipe 22 and is connected to the fertilizer supply section 17 via the fertilizer supply pipe 23 .
  • One end of the recovery pipe 26 is connected to the nutrient solution tank 15 .
  • the inside of the nutrient solution tank 15 is always filled with the nutrient solution 12 adjusted to a state suitable for growing the plants 13 .
  • the nutrient solution 12 in the nutrient solution tank 15 is water containing oxygen, and further contains abundant nitrogen components such as nitric acid and phosphorus components such as phosphoric acid.
  • the nutrient solution 12 in the nutrient solution tank 15 is circulated using a pump (not shown) or the like, and is supplied from the nutrient solution tank 15 to the upstream side of the hydroponics pool 11 via the nutrient solution supply pipe 21 .
  • a plurality of nutrient solution discharge pipes 24 and 25 are connected to the nutrient solution outlet on the downstream side of the hydroponic culture pool 11 .
  • the nutrient solution 12 discharged from the hydroponic culture pool 11 can always circulate along a path returning to the nutrient solution tank 15 via the nutrient solution discharge pipe 24 and the recovery pipe 26 .
  • the amount of nutrient solution circulating through the hydroponic culture pool 11 is assumed to be about 5 liters per minute.
  • the used nutrient solution 12 contains growth-inhibiting substances discharged from the plants 13 growing in the hydroponic culture pool 11, the used nutrient solution 12 should be The used nutrient solution 12 cannot be circulated and reused for a long period of time unless the growth-inhibiting substance is removed from the nutrient solution.
  • the nutrient solution recovery unit 18 is connected to the downstream side of the nutrient solution discharge pipe 25 .
  • the nutrient solution recovery section 18 of this embodiment includes a first BAC (Biologically Activated Carbon) processing section 19A and a second BAC processing section 19B that can operate independently of each other.
  • Each of the first BAC processing unit 19A and the second BAC processing unit 19B is preliminarily loaded with predetermined microorganisms having a function of decomposing a substance that inhibits the growth of the plant 13 in the hydroponic culture pool 11, that is, an organic component called an allelopathic substance. It is based on supported biologically activated carbon, or BAC.
  • the first BAC processing section 19A and the second BAC processing section 19B are exemplified by a configuration in which bioactivated carbon is mainly used, but the present invention is not limited to this form.
  • the first BAC processing unit 19A and the second BAC processing unit 19B may be provided with an adsorbent that adsorbs the growth inhibitory substance.
  • a porous body such as a polystyrene porous body may be used. Even when an adsorbent that does not support microorganisms is used, microorganisms adhere to the adsorbent by circulating the nutrient solution, resulting in the formation of an adsorbent that supports microorganisms. Therefore, by using an adsorbent that does not support microorganisms, the growth-inhibiting substances adsorbed from the used nutrient solution can be decomposed by the microorganisms adhering to the adsorbent, thereby regenerating the adsorbent.
  • bioactivated carbon is used as the adsorbent for supporting organisms, but the present invention is not limited to this.
  • polypropylene, polyurethane, porous cellulose, and polyester may be used as bio-supported adsorbents.
  • first BAC processing section 19A and the second BAC processing section 19B have the same configuration and functions, these two systems are distinguished in order to use them in different states in this embodiment. That is, in this embodiment, there are a "first state” and a “second state” that indicate the difference between the usage states of the first BAC processing section 19A and the second BAC processing section 19B.
  • first state one system of the first BAC processing unit 19A and the second BAC processing unit 19B is set to the activated carbon regeneration mode, and the other system is set to the nutrient solution treatment mode, that is, the adsorption mode. use.
  • the “second state” one system of the first BAC processing section 19A and the second BAC processing section 19B is used in the nutrient solution treatment mode, and the other system is used in the activated carbon regeneration mode.
  • two systems of introduction pipes 32 and 33 are connected to the downstream side of the nutrient solution discharge pipe 25 via a switching valve 31 .
  • the introduction pipe 32 connects between the switching valve 31 and the nutrient solution inlet of the first BAC processing section 19A.
  • the introduction pipe 33 connects between the switching valve 31 and the nutrient solution inlet of the second BAC processing section 19B.
  • a microorganism input portion 32a is provided near the nutrient solution inlet of the first BAC treatment portion 19A
  • a microorganism input portion 33a is provided near the nutrient solution inlet of the second BAC treatment portion 19B.
  • Each microorganism input section 32a, 33a is configured as, for example, an openable/closable lid, which can be opened as necessary.
  • a discharge pipe 34 is connected to the nutrient solution outlet of the first BAC treatment part 19A, and a discharge pipe 35 is connected to the nutrient solution outlet of the second BAC treatment part 19B.
  • the discharge pipe 34 is connected to a recovery pipe 38 via an on-off valve 36
  • the discharge pipe 35 is connected to the recovery pipe 38 via an on-off valve 37 .
  • a recovery tube 38 is connected to the recovery tube 26 .
  • a filter flow path is formed between the nutrient solution inlet and the nutrient solution outlet over a sufficiently wide area so that the surface of the bioactivated carbon can easily come into contact with the filter channel.
  • Another hot water channel separated from this filter channel is formed inside the first BAC processing section 19A.
  • the second BAC processing section 19B is similar to the first BAC processing section 19A.
  • Each of the hot water passages of the first BAC processing section 19A and the second BAC processing section 19B is formed in a state in which heat is easily conducted between the hot water flowing therein and the biological activated carbon.
  • one end of the hot water pipe 41 is connected to the hot water inlet, and one end of the hot water pipe 42 is connected to the hot water outlet.
  • the other end of the hot water pipe 41 is connected to a switching valve 45 and the other end of the hot water pipe 42 is connected to a switching valve 46 .
  • one end of the hot water pipe 43 is connected to the hot water inlet, and one end of the hot water pipe 44 is connected to the hot water outlet.
  • the other end of the hot water pipe 43 is connected to the switching valve 45 and the other end of the hot water pipe 44 is connected to the switching valve 46 .
  • the hot water pipe 47 connects between the switching valve 45 and the exhaust heat recovery unit 51
  • the hot water pipe 48 connects between the switching valve 46 and the exhaust heat recovery unit 51 . Also, the flow paths of the two hot water pipes 47 and 48 are connected inside the exhaust heat recovery section 51 .
  • the nutrient solution treated in the BAC treatment unit is transferred to the nutrient solution tank, but the present invention is not limited to this configuration.
  • a temporary storage tank for temporarily storing the nutrient solution after treatment may be provided between the first BAC processing section 19A and the second BAC processing section 19B and the nutrient solution tank 15, a temporary storage tank for temporarily storing the nutrient solution after treatment may be provided.
  • a temporary storage tank By providing such a temporary storage tank, a small amount of nutrient solution is extracted from the hydroponic culture pool 11, and the nutrient solution treated by the first BAC processing unit 19A or the second BAC processing unit 19B is stored in the temporary storage tank to some extent. After accumulating the amount, it can be transferred to the nutrient solution tank 15 .
  • the treated nutrient solution is not returned to the nutrient solution tank 15 during the treatment of the nutrient solution, and a certain amount of the treated nutrient solution is stored, and the nutrient solution is stored at once. It can be returned to the tank 15.
  • the treated nutrient solution can be efficiently returned to the nutrient solution tank 15 .
  • the temporary storage tank on the upstream side (location near the first BAC processing section 19A and the second BAC processing section 19B) of the location where the nutrient solution discharge pipe 24 is connected in the recovery pipe 26.
  • the nutrient solution is prevented from being mixed with the used nutrient solution discharged from the hydroponic culture pool 11 through the nutrient solution discharge pipe 24 to be homogenized, and the plant cultivation system 10 as a whole removes growth inhibitors. can improve efficiency.
  • the present invention is not limited to this configuration.
  • three or more BAC processing units may be provided.
  • one BAC treatment part is used for nutrient solution treatment, and the remaining two or more BAC treatment parts are used for regeneration treatment of the adsorbent.
  • the nutrient solution treatment and the regeneration treatment of the adsorbent can be balanced.
  • part of the three or more BAC processing units can be used as adsorption mode and the rest as regeneration mode.
  • the plant cultivation system 10 includes one or more first BAC processing units 19A and one or more second BAC processing units 19B, as an example, all of the one or more first BAC processing units 19A are placed in the adsorption mode. , and all of the one or more second BAC processing units 19B may be used as the reproduction mode.
  • one first BAC processing section 19A may be used in the adsorption mode, and all of the remaining first BAC processing sections 19A and one or more second BAC processing sections 19B may be used in the regeneration mode. In this way, the modes of some of the three or more BAC processing units can be switched to the regeneration mode or the adsorption mode.
  • a process for removing microorganisms may be performed.
  • Such treatment can be carried out, for example, by washing after sterilizing with a chemical.
  • the amount of microorganisms supported on the adsorbent can be reduced, and the adsorption performance of the adsorbent for growth inhibitors in the nutrient solution can be further enhanced.
  • the exhaust heat recovery unit 51 is physically connected to the plant cultivation light source 14 .
  • the waste heat recovery part 51 forms a metal heat sink for radiating the heat generated by each LED element inside the light source 14 for plant cultivation.
  • a hot water flow path is formed inside the heat sink so that the hot water passing through the hot water pipes 47 and 48 can pass through the inside of the heat sink of the exhaust heat recovery unit 51 .
  • a predetermined pump is installed in order to circulate the hot water through the hot water pipes 47 and 48 .
  • a microorganism culture section 53 is installed at a position adjacent to the hot water pipe 47.
  • the microorganism culture unit 53 is a container that holds microorganisms prepared in advance.
  • the microorganisms retained by the microorganism culture unit 53 have the ability to decompose the growth inhibitors of the plant 13 in the same way as the microorganisms previously carried by the bioactivated carbon of the first BAC treatment unit 19A and the second BAC treatment unit 19B. ing.
  • Such types of microorganisms can be collected in advance from various types of sludge, for example, and placed in the container of the microorganism culture section 53 .
  • the microorganisms in the microorganism culture section 53 are used in pretreatment, which will be described later.
  • the exhaust heat recovery unit 51 shown in FIG. can be heated to generate hot water.
  • the temperature of water before heating is 20° C., it is possible to obtain hot water generated by heating to about 37° C.
  • the flow rate of circulating hot water is assumed to be, for example, about 7 liters per hour.
  • the temperature of the microbial culture section 53 can be raised above room temperature by the circulating hot water.
  • the activity of the microorganisms in the microorganism culture section 53 is activated, so that the number of microorganisms can be increased by culturing them.
  • hot water in the hot water pipe 47 can be supplied to the hot water pipe 41 or 43 .
  • the hot water flowing into the hot water pipe 41 from the switching valve 45 passes through the internal space of the first BAC processing section 19A, is collected by the hot water pipe 42, and is input to the switching valve 46.
  • the switching valve 46 By switching the switching valve 46 , the hot water in the hot water pipe 42 can flow to the hot water pipe 48 via the switching valve 46 .
  • the hot water flowing into the hot water pipe 43 from the switching valve 45 passes through the internal space of the second BAC processing section 19B, is recovered by the hot water pipe 44, and is input to the switching valve 46.
  • the switching valve 46 By switching the switching valve 46 , the hot water in the hot water pipe 44 can flow to the hot water pipe 48 via the switching valve 46 .
  • the processing system switching control unit 52 performs control for switching the system of the nutrient solution recovery unit 18 according to a predetermined switching instruction. That is, the processing system switching control unit 52 controls the switching valves 31, 45, 46, the on-off valves 36, 37, and the microorganism culture unit 53 to change the operating states of the first BAC processing unit 19A and the second BAC processing unit 19B. These two systems can be used properly by switching.
  • the biological activated carbon in the first BAC processing section 19A or the second BAC processing section 19B can treat the used nutrient solution 12 introduced through the nutrient solution discharge pipe 25. That is, by adsorbing the contaminants contained in the used nutrient solution 12 with the bioactivated carbon, the treated nutrient solution 12 containing no contaminants can be generated. Since the treated nutrient solution 12 can be returned to the nutrient solution tank 15 for reuse, there is no need to dispose of contaminated water.
  • the function of the activated carbon will be reduced due to the large amount of contaminants adsorbed on the biologically activated carbon. Therefore, since the treated nutrient solution 12 cannot be treated as it is, the activated carbon must be replaced.
  • the nutrient solution recovery unit 18 is provided with the first BAC processing unit 19A and the second BAC processing unit 19B, the system used for processing the nutrient solution 12 is switched when the function as activated carbon deteriorates. You can just replace the activated carbon.
  • the used activated carbon whose function has deteriorated due to the attachment of a large amount of contaminants is usually disposed of, but in this embodiment, bioactivated carbon is used, so that it can be regenerated to restore its function. is possible.
  • bioactivated carbon is used, so that it can be regenerated to restore its function. is possible.
  • the microorganisms decompose the organic substances, which are contaminants containing growth inhibitors that inhibit the growth of the plants 13, and the biological activated carbon is recycled. It can be regenerated for use. Therefore, there is no need to dispose of the replaced bioactivated carbon.
  • the used nutrient solution 12 discharged from the hydroponic culture pool 11 through the nutrient solution discharge pipe 25 contains oxygen bubbles and sufficient nutrients such as nitrogen and phosphorus.
  • hot water can be selectively flowed into the first BAC processing unit 19A and the second BAC processing unit 19B.
  • Microorganisms can be fully activated.
  • nutrients such as sugar may be added to the used nutrient solution 12, for example.
  • the waste heat of the plant cultivation light source 14 is effectively used to generate hot water, so the energy consumption required for regenerating activated carbon can be greatly reduced.
  • the number of microorganisms carried on the activated carbon will be considerably reduced when the process for regenerating the used biological activated carbon is started. Therefore, even if the microorganisms are activated by heating with warm water, the number of microorganisms will not increase immediately, and it is assumed that it will take a relatively long period of time to recover to a state where the growth-inhibiting substances can be efficiently decomposed. .
  • the microorganism culture section 53 is provided so that new microorganisms can be added to the biological activated carbon as a pretreatment when starting the process for regenerating the used biological activated carbon. That is, during the pretreatment, for example, a certain amount of microorganisms is taken out from the microorganism culture unit 53, introduced from the microorganism introduction unit 32a or 33a, and added to the bioactivated carbon.
  • Such preprocessing can be automatically performed under the control of the processing system switching control unit 52, or can be performed manually.
  • water may be drained from the nutrient solution tank 15 for purposes such as cleaning.
  • FIG. 2 shows main operations in the plant cultivation system 10 shown in FIG. That is, under the control of the processing system switching controller 52 shown in FIG. 1, the state of the plant cultivation system 10 changes according to the procedure shown in FIG. The operation shown in FIG. 2 will be described below.
  • the processing system switching control unit 52 first assigns the regeneration mode to the BAC processing unit of the first system, and assigns the adsorption mode to the BAC processing unit of the second system (step S11). That is, the processing system switching control unit 52 regenerates the biological activated carbon in the first BAC processing unit 19A, and adsorbs contaminants from the used nutrient solution 12 using the biological activated carbon in the second BAC processing unit 19B. to the "first state" for processing.
  • the switching valve 31 selects the introduction pipe 33 side, the switching valve 45 selects the hot water pipe 41 side, the switching valve 46 selects the hot water pipe 42 side, and the on-off valve 36 is closed and the on-off valve 37 is opened by the processing system switching controller 52 .
  • the processing system switching control unit 52 executes preprocessing for the BAC processing unit of the first system in step S12. In other words, the processing system switching control unit 52 extracts a predetermined amount of microorganisms from the microorganism culture unit 53 and adds them to the biological activated carbon in the first BAC processing unit 19A by introducing them from the microorganism introduction unit 32a.
  • the processing system switching control unit 52 controls so that hot water circulates through the route of the BAC processing unit of the first system in the regeneration mode, and the used nutrient solution is circulated through the route of the BAC processing unit of the second system in the adsorption mode. 12 is controlled in step S13.
  • the processing system switching control unit 52 controls the hot water heated and generated by the exhaust heat recovery unit 51 to flow and circulate through the first BAC processing unit 19A in the regeneration mode, and of microorganisms are warmed and activated by this warm water.
  • the processing system switching control unit 52 controls the hot water heated and generated by the exhaust heat recovery unit 51 to flow and circulate through the first BAC processing unit 19A in the regeneration mode, and of microorganisms are warmed and activated by this warm water.
  • the bioactivated carbon therein becomes contaminants containing growth inhibitors. be treated by adsorption.
  • the processing system switching control unit 52 periodically checks, for example, whether the system switching condition for BAC processing is satisfied (step S14). For example, when a predetermined period of time, for example, several months, elapses after switching to the "first state", the adsorption function of the biologically activated carbon of the second BAC processing unit 19B operating in the adsorption mode declines.
  • the system switching control unit 52 can determine that the system switching condition is satisfied. If the system switching condition for the BAC process is satisfied, the process proceeds to the next step S15 and subsequent steps.
  • the processing system switching control unit 52 assigns the adsorption mode to the BAC processing unit of the first system, and assigns the regeneration mode to the BAC processing unit of the second system (step S15). That is, the processing system switching control unit 52 uses the biological activated carbon in the first BAC processing unit 19A to adsorb contaminants from the used nutrient solution 12, and regenerates the biological activated carbon in the second BAC processing unit 19B. Switch to the "second state”.
  • the switching valve 31 selects the introduction pipe 32 side, the switching valve 45 selects the hot water pipe 43 side, the switching valve 46 selects the hot water pipe 44 side, and the on-off valve 37 is closed and the on-off valve 36 is opened.
  • the processing system switching control unit 52 executes preprocessing for the BAC processing unit of the second system in step S16.
  • the processing system switching control unit 52 takes out a predetermined amount of microorganisms from the microorganism culture unit 53 and adds them to the biological activated carbon in the second BAC processing unit 19B by introducing them from the microorganism introduction unit 33a.
  • the processing system switching control unit 52 controls so that hot water circulates through the path of the BAC processing unit of the second system in the regeneration mode, and the used nutrient solution is circulated through the path of the BAC processing unit of the first system in the adsorption mode. 12 is controlled in step S17.
  • the processing system switching control unit 52 controls the hot water heated and generated by the exhaust heat recovery unit 51 to flow and circulate through the second BAC processing unit 19B in the regeneration mode, and the inside of the second BAC processing unit 19B of microorganisms are warmed and activated by this warm water. Also, when the used nutrient solution 12 discharged from the hydroponic culture pool 11 through the nutrient solution discharge pipe 25 passes through the first BAC processing section 19A, the bioactivated carbon therein becomes a contaminant containing growth inhibitors. be treated by adsorption.
  • the processing system switching control unit 52 periodically checks, for example, whether the system switching condition for BAC processing is satisfied (step S18). For example, when a predetermined period of time, for example, several months, elapses after switching to the "second state", the adsorption function of the biologically activated carbon of the first BAC processing unit 19A operating in the adsorption mode declines. It can be determined that the switching condition is satisfied. When the system switching condition for the BAC process is satisfied, the processing system switching control unit 52 returns to the process of step S11 again, and repeats the same operation as described above.
  • the above "first state” and “second state” are alternately switched.
  • the used biological activated carbon is restored to a reusable state by being treated in the regeneration mode for several months, for example. Therefore, the used biologically activated carbon can be used again in the adsorption mode, and it is not necessary to dispose of the used biologically activated carbon.
  • adsorption treatment of the used nutrient solution 12 can be performed almost continuously while regenerating the used biological activated carbon. Therefore, it is not necessary to suspend the operation of the cultivation apparatus to switch the state.
  • FIG. 3 shows the connection state of the main parts in the plant cultivation system 10 in the "first state". For ease of understanding, descriptions of non-operating parts are omitted in FIG.
  • the nutrient solution path passing through the nutrient solution discharge pipe 25 is connected to the introduction pipe 33 via the switching valve 31, and the second BAC processing section 19B is connected.
  • the nutrient solution outlet side is connected to a recovery pipe 38 via a discharge pipe 35 and an on-off valve 37 . Therefore, in this state, the second BAC processing section 19B can adsorb the contaminants from the used nutrient solution 12 .
  • the hot water path passing through the hot water pipe 47 is connected to the hot water pipe 41 via the switching valve 45 .
  • the hot water pipe 42 is connected to a hot water pipe 48 via a switching valve 46 . Therefore, the hot water generated in the exhaust heat recovery section 51 in the state of FIG. 3 circulates through the first BAC processing section 19A. That is, it is possible to heat the portion of the biologically activated carbon in the first BAC processing section 19A with warm water to activate the microorganisms carried on the activated carbon. This promotes regeneration of the bioactivated carbon.
  • microorganisms are introduced from the microorganism culture unit 53 to the microorganism introduction unit 32a as pretreatment, and added to the biological activated carbon. Since the number of microorganisms adhering to the activated carbon can be increased by introducing the microorganisms and adding them to the biological activated carbon, it becomes possible to efficiently decompose the growth inhibitory substances immediately after the regeneration of the biological activated carbon is started. It is possible to shorten the time required for the regeneration process. It should be noted that the introduction of microorganisms is not essential.
  • the number of microorganisms attached to the bioactivated carbon can be increased by circulating the nutrient solution.
  • Bioactivated carbon can be regenerated by decomposing inhibitors.
  • an adsorbent such as activated carbon or a porous material that does not carry microorganisms may be used. When the adsorbent does not carry microorganisms, the microorganisms adhere to the adsorbent by circulating the nutrient solution, and as a result, an adsorbent carrying microorganisms is formed.
  • the growth-inhibiting substances adsorbed from the used nutrient solution can be decomposed by the microorganisms adhering to the adsorbent, thereby regenerating the adsorbent.
  • FIG. 4 shows the connection state of the main parts in the plant cultivation system 10 in the "second state". For ease of understanding, descriptions of non-operating parts are omitted in FIG.
  • the nutrient solution path passing through the nutrient solution discharge pipe 25 is connected to the introduction pipe 32 via the switching valve 31, and the first BAC processing section 19A
  • the nutrient solution outlet side is connected to a recovery pipe 38 via a discharge pipe 34 and an on-off valve 36 . Therefore, in this state, the first BAC processing section 19A can adsorb the contaminants from the used nutrient solution 12 .
  • the hot water path passing through the hot water pipe 47 is connected to the hot water pipe 43 via the switching valve 45 .
  • a hot water pipe 44 is also connected to a hot water pipe 48 via a switching valve 46 . Therefore, the hot water generated in the exhaust heat recovery section 51 in the state of FIG. 4 circulates through the second BAC processing section 19B. That is, it is possible to heat the portion of the biologically activated carbon in the second BAC processing section 19B with warm water to activate the microorganisms carried on the activated carbon. This promotes regeneration of the bioactivated carbon.
  • microorganisms are introduced from the microorganism culture unit 53 to the microorganism introduction unit 33a as pretreatment, and these microorganisms are added to the biological activated carbon. Since the number of microorganisms adhering to the activated carbon can be increased by introducing the microorganisms and adding them to the biological activated carbon, it becomes possible to efficiently decompose the growth inhibitory substances immediately after the regeneration of the biological activated carbon is started. It is possible to shorten the time required for the regeneration process. As described above, the introduction of microorganisms is not essential, and an adsorbent such as activated carbon that does not support microorganisms may be used instead of biologically activated carbon.
  • the plant cultivation system 10 decomposes the growth inhibiting substances by the microorganisms activated by utilizing the waste heat of the plant cultivation light source 14, the energy required for regenerating the bioactivated carbon into a reusable state is can be reduced. Furthermore, there is no need to provide dedicated additional equipment to regenerate the bioactivated carbon.
  • the plant cultivation system 10 performs pretreatment and adds new microorganisms when starting to regenerate the biological activated carbon, it is possible to shorten the period until the microorganisms are activated to a state where they can efficiently decompose growth inhibitors. Therefore, the bioactivated carbon can be regenerated to a reusable state in a relatively short period of time.
  • the first BAC processing unit 19A and the second BAC processing unit 19B which can be selectively used by the nutrient solution recovery unit 18, the adsorption mode and the regeneration mode of the biological activated carbon can be selected. can be performed simultaneously. Therefore, by alternately switching between the adsorption mode and the regeneration mode, the process of adsorbing the contaminants from the used nutrient solution 12 can be performed almost continuously, and there is no need to suspend the operation of the cultivation apparatus.
  • a nutrient solution treatment method for treating used nutrient solution discharged from a cultivation container (hydroponic culture pool 11) used for cultivating plants in a cultivation apparatus comprising: receiving the used nutrient solution from the cultivation container; treating the received spent nutrient solution through a bio-supported adsorbent (BAC) loaded with at least microorganisms that degrade plant growth inhibitors; supplying the used nutrient solution after treatment to a reuse path (recovery pipe 26) on the upstream side of the cultivation container; Nourishing method.
  • BAC bio-supported adsorbent
  • waste heat from the light source of the cultivation apparatus (plant cultivation light source 14) is used to support the organism-supporting adsorbent. activating the microorganisms, and performing regeneration treatment of the biological-supporting adsorbent;
  • step S12 Perform pretreatment to increase the number of microorganisms in the vicinity of the organism-supporting adsorbent before starting the regeneration treatment of the organism-supporting adsorbent (step S12); The nutrient solution treatment method according to [2] above.
  • the biological-supporting adsorbent is activated carbon supporting the microorganisms.
  • the nutrient solution treatment method according to any one of [1] to [3] above.
  • a cultivation container (hydroponic culture pool 11) that can be used for cultivating a plant (13), and a nutrient solution tank (15) that can supply a nutrient solution (12) necessary for growing the plant to the cultivation container.
  • a plant cultivation system (10) comprising: one or more nutrient solution collectors (18) capable of receiving the used nutrient solution from the cultivation container; a biological-supporting adsorbent (first BAC processing unit 19A, second BAC processing unit 19B) held in the nutrient solution recovery unit and carrying microorganisms that decompose plant growth inhibitors; a treated nutrient solution supply unit (recovery pipe 26) capable of supplying the treated nutrient solution treated with the biological-supporting adsorbent in the nutrient solution recovery unit to the nutrient solution tank;
  • [6] having a first nutrient solution recovery unit (first BAC processing unit 19A) and a second nutrient solution recovery unit (second BAC processing unit 19B) that are independent of each other as the nutrient solution recovery unit; a processing path switching unit (switching valve 31) capable of selectively introducing the used nutrient solution to one of the first nutrient solution recovery unit and the second nutrient solution recovery unit; A process for activating microorganisms is performed on the nutrient solution recovery part in the regeneration mode for regenerating the organism-supporting adsorbent into a reusable state among the first nutrient solution recovery part and the second nutrient solution recovery part.
  • the activation processing unit (exhaust heat recovery unit 51, switching valves 45 and 46) to be applied, The treated nutrient solution treated by the adsorption mode nutrient solution recovery unit of the first nutrient solution recovery unit and the second nutrient solution recovery unit that adsorbs a plant growth inhibitory substance from the used nutrient solution.
  • a treated nutrient solution selection unit (on-off valves 36, 37) to be supplied to the treated nutrient solution supply unit;
  • the activation processing unit supplies hot water generated using exhaust heat from the light source (plant cultivation light source 14) of the cultivation apparatus to the nutrient solution recovery unit in the regeneration mode.
  • the plant cultivation system according to [6] above.
  • the activation processing unit has a preprocessing unit (microbial culture unit 53, steps S12 and S16) that enables preprocessing for increasing microorganisms in the nutrient solution recovery unit that starts the regeneration mode.
  • a preprocessing unit microbial culture unit 53, steps S12 and S16
  • the plant cultivation system according to [6] or [7] above.
  • the processing path switching unit selectively transfers the used nutrient solution to at least one of the one or more first nutrient solution recovery units and the one or more second nutrient solution recovery units.
  • the treated nutrient solution selection unit supplies the treated nutrient solution treated by the at least one nutrient solution recovery unit that is the adsorption mode nutrient solution recovery unit to the treated nutrient solution supply unit
  • the activation processing unit performs a process for activating the microorganisms on the nutrient solution recovery units other than the at least one nutrient solution recovery unit that is the nutrient solution recovery unit in the regeneration mode.
  • the plant cultivation system according to any one of [8].
  • the biological-supporting adsorbent is activated carbon supporting the microorganisms.
  • the plant cultivation system according to any one of [5] to [10] above.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)

Abstract

養液処理に用いる活性炭フィルター等の交換や廃棄を不要とし若しくは削減すること。水耕栽培プール(11)から排出される使用済みの養液(12)を養液回収部(18)内の生物活性炭で処理して水分を再利用可能にする。生物活性炭は植物(13)の成長を阻害する有機物を分解する機能を有する微生物が予め担持された活性炭により構成する。吸着機能が低下した使用済みの生物活性炭を栽培装置の排熱を利用した温水により加温して、微生物を活性化させることで活性炭に付着した有機物を分解し除去する。有機物の分解により再生された生物活性炭を廃棄せずに再利用する。切り替え可能な2系統のBAC処理部を設け、一方の系統が吸着モードの時に他方の系統は再生モードにして、交互にモードを切り替える。再生モードに切り替えた後の前処理で、微生物が活性化するまでの期間を短縮する。

Description

養液処理方法および植物栽培システム
 本発明は、養液処理方法および植物栽培システムに関する。
 例えば、植物の水耕栽培を行う植物工場などの栽培装置においては、植物の栽培に必要な養分を含む養液が循環する経路上のプールなどに植物を配置して、植物が養分を吸収できる状態にして栽培を行う。したがって、植物の育成に必要な条件を満たす養液を循環させる必要がある。また、植物の育成に伴って養液中の養分が吸収されたり、成長阻害物質を含む有機成分が植物から排出されることになる。したがって、使用済みの養液を再利用するためには、使用済みの養液から成長阻害物質を除去したり、必要な濃度が得られるように養分を補給する必要がある。
 例えば特許文献1に開示された養液殺菌装置は、養液栽培システムに殺菌部と除去部とを容易に組み込むための技術を示している。すなわち、特許文献1の養液殺菌装置10では、養液が紫外線殺菌部50に供給されることで養液が殺菌されると共に、養液が活性炭フィルター部28に供給されることで養液中から生育阻害物質が除去される。ここで、養液殺菌装置10は、紫外線殺菌部50と活性炭フィルター部28とを備えているため、この養液殺菌装置10を、養液を使用して植物を栽培する養液栽培システムに組み込むことで、養液栽培システムに紫外線殺菌部50と活性炭フィルター部28とを容易に組み込むことができる。さらに、一度植物栽培に使用された養液は再度使用しない養液のかけ流しシステムから養液を繰り返し植物栽培に循環使用する養液の循環システムへの移行を容易にすることができる。
日本国特開2002-305999号公報
 特許文献1のように活性炭フィルター部を設けることで、有機成分などを養液中から除去することができる。しかしながら、栽培装置で活性炭フィルターをある程度の期間に亘って継続的に使用すると、活性炭が付着した有機物などで汚染されるため、フィルターの機能低下は避けられない。
 したがって、栽培装置で植物の育成に適した環境を維持するためには、定期的にフィルターの活性炭を交換しなければならず、栽培装置におけるランニングコストや作業の手間が増えてしまう。更に、使用済みの活性炭フィルターを廃棄する場合があるので、環境に悪影響を及ぼす可能性がある。
 本発明は、上記の状況に鑑みてなされたものであり、その目的は、栽培装置で養液処理に用いる活性炭フィルター等の交換や廃棄を不要とし若しくは削減することが可能な養液処理方法および植物栽培システムを提供することである。
 前述した目的を達成するために、本発明に係る養液処理方法および植物栽培システムは、下記(1)~(11)を特徴としている。
(1) 栽培装置で植物の栽培に利用される栽培容器から排出される使用済み養液を処理するための養液処理方法であって、
 前記使用済み養液を前記栽培容器から受け入れ、
 受け入れた前記使用済み養液を、少なくとも植物の成長阻害物質を分解する微生物を担持した生物担持吸着剤に通して処理し、
 処理後の前記使用済み養液を、前記栽培容器の上流側の再利用経路に供給する、
 養液処理方法。
(2) 少なくとも前記使用済み養液の処理を開始してから所定期間を経過した後で、栽培装置の光源からの排熱を利用して前記生物担持吸着剤に担持された微生物を活性化して、前記生物担持吸着剤の再生処理を行う、
 上記(1)に記載の養液処理方法。
(3) 前記生物担持吸着剤の再生処理を開始する前に、前記生物担持吸着剤の近傍における微生物の数を増やすための前処理を行う、
 上記(2)に記載の養液処理方法。
(4) 前記生物担持吸着剤は、前記微生物を担持した活性炭である、
 上記(1)乃至(3)のいずれかに記載の養液処理方法。
(5) 植物の栽培に利用可能な栽培容器と、植物の育成に必要な養液を前記栽培容器に供給可能な養液タンクとを有する植物栽培システムであって、
 前記栽培容器からの使用済み養液を受け入れ可能な1つ以上の養液回収部と、
 前記養液回収部に保持され、少なくとも植物の成長阻害物質を分解する微生物を担持した生物担持吸着剤と、
 前記養液回収部で前記生物担持吸着剤により処理された処理済みの養液を、前記養液タンクに供給可能な処理済み養液供給部と、
 を備えた植物栽培システム。
(6) 前記養液回収部として、互いに独立した第1養液回収部、及び第2養液回収部を有し、
 前記使用済み養液を前記第1養液回収部、及び前記第2養液回収部の一方に選択的に導入可能な処理経路切り替え部と、
 前記第1養液回収部、及び前記第2養液回収部のうち前記生物担持吸着剤を再利用可能な状態に再生する再生モードの養液回収部に対して、微生物を活性化する処理を施す活性化処理部と、
 前記第1養液回収部、及び前記第2養液回収部のうち前記使用済み養液から植物の成長阻害物質を吸着する吸着モードの養液回収部で処理された処理済みの養液を前記処理済み養液供給部に与える処理済み養液選択部と、
 を更に備えた上記(5)に記載の植物栽培システム。
(7) 前記活性化処理部は、前記再生モードの養液回収部に対して、栽培装置の光源からの排熱を利用して生成した温水を供給する、
 上記(6)に記載の植物栽培システム。
(8) 前記活性化処理部は、前記再生モードを開始する養液回収部に対して微生物を増やすための前処理を可能にする前処理部を有する、
 上記(6)又は(7)に記載の植物栽培システム。
(9) 前記第1養液回収部に前記再生モードを割り当てて、前記第2養液回収部に前記吸着モードを割り当てる第1状態と、
 前記第1養液回収部に前記吸着モードを割り当てて、前記第2養液回収部に前記再生モードを割り当てる第2状態と、
 を有し、前記第1状態と前記第2状態とを交互に切り替える切替制御部、
 を更に備える上記(6)乃至(8)のいずれかに記載の植物栽培システム。
(10) 前記養液回収部として、互いに独立した、1以上の前記第1養液回収部、及び1以上の前記第2養液回収部を有し、
 前記処理経路切り替え部は、前記使用済み養液を、前記1以上の第1養液回収部、及び前記1以上の第2養液回収部の、少なくともいずれか一の養液回収部に選択的に導入可能であり、
 前記処理済み養液選択部は、前記吸着モードの養液回収部である前記少なくともいずれか一の養液回収部で処理された処理済みの養液を前記処理済み養液供給部に与え、
 前記活性化処理部は、前記再生モードの養液回収部である、前記少なくともいずれか一の養液回収部以外の養液回収部に対して、前記微生物を活性化する処理を施す
 上記(6)乃至(8)のいずれかに記載の植物栽培システム。
(11) 前記生物担持吸着剤は、前記微生物を担持した活性炭である、
 上記(5)乃至(10)のいずれかに記載の植物栽培システム。
 上記(1)の手順の養液処理方法によれば、使用済み養液を生物担持吸着剤に通して処理することで、再利用可能な養液を生成できる。更に、栽培装置の栽培容器から排出される使用済み養液の中には、植物の成長阻害物質以外に、酸素や、硝酸等の窒素分、リン酸等のリン成分が豊富に含まれているので、生物担持吸着剤に担持されている微生物を活性化することができる。したがって、活性化された微生物が生物担持吸着剤に吸着された成長阻害物質を分解して除去することになり、使用後の生物担持吸着剤を再利用可能な状態にまで自然に再生することができる。つまり、使用後の生物担持吸着剤の交換や廃棄をする必要がなくなる。
 上記(2)の手順の養液処理方法によれば、栽培装置の光源からの排熱を利用することで、生物担持吸着剤に担持された微生物を常温よりも少し高い温度の環境下で利用できる。このような加温により、更に微生物の活動が活性化され、生物担持吸着剤に吸着された成長阻害物質の分解が促進される。
 上記(3)の手順の養液処理方法によれば、生物担持吸着剤の再生処理に必要な所要期間を短縮できる。すなわち、使用済み養液から吸着した成長阻害物質が付着した状態の使用済みの生物担持吸着剤においては、担持された微生物の数が減少している状況にあり、この微生物を活性化して数を増やし、効率よく成長阻害物質を分解できる状態になるまでに時間がかかる。そこで、前処理で新たな微生物を添加することにより、使用済みの生物担持吸着剤の再生を開始した直後から効率よく成長阻害物質を分解することが可能になり、生物担持吸着剤の再生処理に必要な所要期間を短縮できる。
 上記(4)の手順の養液処理方法及び上記(11)の構成の植物栽培システムによれば、微生物を担持した活性炭を吸着剤として用いることができ、大きい比表面積と発達した微細構造により、広いサイズ範囲の多量の分子を吸着するため、浄水効果を向上できる。
 上記(5)の構成の植物栽培システムによれば、使用済み養液を養液回収部で生物担持吸着剤に通して処理することで、再利用可能な養液を生成できる。更に、栽培装置の栽培容器から排出される使用済み養液の中には、植物の成長阻害物質以外に、酸素や、硝酸等の窒素分、リン酸等のリン成分などが豊富に含まれているので、生物担持吸着剤に担持されている微生物を活性化することができる。したがって、活性化された微生物が生物担持吸着剤に吸着された成長阻害物質を分解して除去することになり、使用後の生物担持吸着剤を再利用可能な状態にまで自然に再生することができる。つまり、使用後の生物担持吸着剤の交換や廃棄をする必要がなくなる。
 上記(6)の構成の植物栽培システムによれば、第1養液回収部、及び第2養液回収部を使い分けることにより、使用済み養液から成長阻害物質を吸着して再利用可能な養液を生成する動作と、成長阻害物質が付着した使用済みの生物担持吸着剤を再生するための動作とを同時に行うことができる。したがって、第1養液回収部、及び第2養液回収部のうち一方の生物担持吸着剤が成長阻害物質を吸着できない状態になっても、他方の生物担持吸着剤を使用する状態に切り替えれば使用済み養液の処理を継続できるので、栽培装置の稼働を休止する必要がない。
 上記(7)の構成の植物栽培システムによれば、栽培装置の光源からの排熱を利用することで、生物担持吸着剤に担持された微生物を常温よりも少し高い温度の環境下で利用できる。このような加温により、更に微生物の活動が活性化され、生物担持吸着剤に吸着された成長阻害物質の分解が促進される。
 上記(8)の構成の植物栽培システムによれば、生物担持吸着剤の再生処理に必要な所要期間を短縮できる。すなわち、使用済み養液から吸着した成長阻害物質が付着した状態の使用済みの前記生物担持吸着剤においては、担持された微生物の数が減少している状況にあり、この微生物を活性化して数を増やし、効率よく成長阻害物質を分解できる状態になるまでに時間がかかる。そこで、前処理部が前処理として新たな微生物を添加することにより、使用済みの生物担持吸着剤の再生を開始した直後から効率よく成長阻害物質を分解することが可能になり、生物担持吸着剤の再生処理に必要な所要期間を短縮できる。
 上記(9)の構成の植物栽培システムによれば、第1状態と第2状態とを交互に切り替えるので、使用済み養液から成長阻害物質を吸着して再利用可能な養液を生成する吸着モードの動作と、成長阻害物質が付着した使用済みの生物担持吸着剤を再生するための再生モードの動作とを同時に行うことができる。したがって、使用済み養液の処理をほぼ連続的に継続することが可能であり、栽培装置の稼働を休止する必要がなくなる。
 上記(10)の構成の植物栽培システムによれば、一例として、1以上の第1養液回収部の全てを吸着モードとして使用し、1以上の第2養液回収部の全てを再生モードとして使用してもよい。また、他の例として、1の第1養液回収部を吸着モードとして使用し、残りの第1養液回収部及び1以上の第2養液回収部の全てを再生モードとして使用してもよい。このように、3以上の養液回収部のうち一部のモードを、再生モード又は吸着モードに入れ替えることができる。
 本発明の養液処理方法および植物栽培システムによれば、使用済みの養液を再利用可能な状態に処理することができ、しかも養液処理に用いる活性炭フィルター等の交換や廃棄が不要になるか又は廃棄の量を削減できる。
 以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための最良の形態を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。
図1は、本発明の実施形態における植物栽培システムの構成を示すブロック図である。 図2は、図1に示した植物栽培システムの動作を示すフローチャートである。 図3は、第1状態の植物栽培システムにおける主要部の接続状態を示すブロック図である。 図4は、第2状態の植物栽培システムにおける主要部の接続状態を示すブロック図である。
 本発明に関する具体的な実施の形態について、各図を参照しながら以下に説明する。
<システムの構成>
 本発明の実施形態における植物栽培システム10の構成例を図1に示す。
 図1に示した植物栽培システム10は、多数の植物を水耕栽培する植物工場等の栽培装置として利用されるものである。なお、図1では必要最小限の構成だけを示してある。
 実際の栽培装置においては、例えば多数の棚を上下に並べて配置したラックの各段の棚に、それぞれ水耕栽培プール11を配置したり、多数のラックを横方向に並べた状態で栽培装置を稼働させることが想定される。したがって、大量の植物を同時に栽培することが可能であり、異なる品種の植物を同時に栽培することも可能である。
 また、栽培装置は通常は建物の屋内に設置される。更に、個別に植物を育成するための空気環境を管理可能な閉鎖空間、すなわち完全閉鎖空間又は半閉鎖空間、を屋内に1つ以上形成し、それぞれの完全閉鎖空間又は半閉鎖空間毎に異なる環境で植物を栽培することも想定される。また、栽培装置を屋内に設置する場合や、完全閉鎖空間又は半閉鎖空間で植物を育成する場合には、植物の光合成に必要な光は人工光により照射する必要がある。完全閉鎖空間とは、外気から完全に遮断され閉鎖された空間を意味し、半閉鎖空間とは、環境調節のために必要な部位を除いて、外気から遮断された空間を意味する。
 また、栽培装置においては植物の育成に悪影響を及ぼす菌や成長阻害物質が栽培装置の外側から侵入するのを防止する必要があり、更に植物自身から排出される成長阻害物質も除去する必要がある。
 図1に示した植物栽培システム10において、水耕栽培プール11の内部は植物13の育成に必要な養液12が循環可能な状態で満たされている。植物13の育成に適した状態になるように、養液12の温度は例えば20℃程度に維持される。水耕栽培プール11の上方には、植物13の光合成に必要な光14aを上方から照射するための植物栽培用光源14が設置されている。本実施形態では植物栽培用光源14としてLED(発光ダイオード)光源を採用している。
 水耕栽培プール11の養液入口は、養液供給管21を介して養液タンク15と接続されている。また、養液タンク15は原水供給管22を介して原水供給部16と接続され、肥料供給管23を介して肥料供給部17と接続されている。また、回収管26の一端が養液タンク15と接続されている。
 養液タンク15の内部は、植物13に育成に適した状態に調整された養液12で常時満たされている。具体的には、養液タンク15内の養液12は、酸素を含有する水であり、更に硝酸等の窒素分、リン酸等のリン成分を豊富に含んでいる。
 養液タンク15内の養液12は、図示しないポンプなどの利用により流通し、養液タンク15から養液供給管21を経由して水耕栽培プール11の上流側に供給される。水耕栽培プール11の下流側の養液出口には、複数の養液排出管24、25が接続されている。水耕栽培プール11から排出された養液12は、養液排出管24、回収管26を経由して養液タンク15に戻る経路で常時循環することができる。水耕栽培プール11を通って循環する養液の量については、一例として、1分間あたり5リットル程度が想定される。
 但し、水耕栽培プール11内で育成している植物13から排出された成長阻害物質が使用済みの養液12に含まれるので、植物13の育成を促進するためには使用済みの養液12から成長阻害物質を除去しない限り、使用済みの養液12を長期間循環させて再利用し続けることができない。
 そのため、養液排出管25の下流側に養液回収部18が接続されている。本実施形態の養液回収部18は、互いに独立した状態で動作可能な第1BAC(Biological activated carbon、生物活性炭)処理部19A、及び第2BAC処理部19Bを備えている。
 第1BAC処理部19A、及び第2BAC処理部19Bのそれぞれは、水耕栽培プール11内の植物13の成長を阻害する物質、すなわちアレロパシー物質という有機成分、を分解する機能を有する所定の微生物が予め担持された生物活性炭、すなわちBACを主体として構成されている。尚、本実施形態では、第1BAC処理部19A及び第2BAC処理部19Bが、生物活性炭を主体とする構成を例示するが、本発明はこの形態に限定されない。第1BAC処理部19A及び第2BAC処理部19Bは、成長阻害物質を吸着する吸着剤を備えればよく、生物活性炭に代えて、微生物を担持しない活性炭を用いてもよいし、活性炭以外の、例えばポリスチレン多孔体等の多孔体を用いてもよい。微生物を担持しない吸着剤を用いた場合であっても、養液を循環させることで吸着剤に微生物が付着され、結果として、微生物を担持した吸着剤が形成される。よって、微生物を担持していない吸着剤を用いて、使用済み養液から吸着した成長阻害物質を、この吸着剤に付着した微生物によって分解させ、吸着剤を再生できる。
 また、本実施の形態では、生物担持吸着剤として生物活性炭を使用しているが、本発明はこれには限られない。例えば、生物担持吸着剤として、ポリプロピレン、ポリウレタン、多孔質セルロース、ポリエステルを用いてもよい。
 第1BAC処理部19Aと第2BAC処理部19Bとは構成及び機能が同じものであるが、本実施形態ではこれらを互いに異なる状態で使用するためにこれら2つの系統を区別してある。すなわち、本実施形態では第1BAC処理部19A、及び第2BAC処理部19Bの使用状態の違いを表す「第1状態」、及び「第2状態」がある。詳細については後述するが、「第1状態」では、第1BAC処理部19A、及び第2BAC処理部19Bの一方の系統を活性炭の再生モード、他方の系統を養液処理モード、すなわち吸着モード、として使用する。また、「第2状態」では第1BAC処理部19A、及び第2BAC処理部19Bの一方の系統を養液処理モード、他方の系統を活性炭再生モードとして使用する。
 図1に示すように、養液排出管25の下流側に切替弁31を介して2系統の導入管32、33が接続されている。導入管32は、切替弁31と第1BAC処理部19Aの養液入口との間を接続している。導入管33は、切替弁31と第2BAC処理部19Bの養液入口との間を接続している。また、第1BAC処理部19Aの養液入口の近傍に微生物投入部32aが設けてあり、第2BAC処理部19Bの養液入口の近傍に微生物投入部33aが設けてある。各微生物投入部32a、33aは、例えば開閉可能な蓋として構成され、必要に応じて開くことができる。
 また、第1BAC処理部19Aの養液出口に排出管34を接続してあり、第2BAC処理部19Bの養液出口に排出管35を接続してある。排出管34は開閉弁36を介して回収管38と接続してあり、排出管35は開閉弁37を介して回収管38と接続してある。回収管38は回収管26と繋がっている。
 図示しないが、第1BAC処理部19Aの内部には、十分に広い面積に亘って生物活性炭の表面と接触しやすいフィルター流路が養液入口と養液出口との間に形成されている。また、このフィルター流路から分離された別の温水流路が第1BAC処理部19Aの内部に形成されている。第2BAC処理部19Bについても上記第1BAC処理部19Aと同様である。第1BAC処理部19A及び第2BAC処理部19Bの各温水流路は、その内部を流通する温水と生物活性炭との間で熱伝導しやすい状態で形成されている。
 第1BAC処理部19Aにおいては、温水の入口に温水管41の一端が接続され、温水の出口に温水管42の一端が接続されている。温水管41の他端は切替弁45に接続され、温水管42の他端は切替弁46に接続されている。
 また、第2BAC処理部19Bにおいては、温水の入口に温水管43の一端が接続され、温水の出口に温水管44の一端が接続されている。温水管43の他端は切替弁45に接続され、温水管44の他端は切替弁46に接続されている。
 温水管47は切替弁45と排熱回収部51との間を接続し、温水管48は切替弁46と排熱回収部51との間を接続している。また、2つの温水管47、48の流路は排熱回収部51の内部で接続されている。
 尚、本実施の形態では、BAC処理部で処理後の養液は、養液タンクへ移送される構成を例示しているが、本発明はこの形態には限定されない。例えば、第1BAC処理部19A及び第2BAC処理部19Bと養液タンク15との間に、処理後の養液を一時的に保管する一時保管用タンクを設けてもよい。
 このような一時保管用タンクを設けることにより、水耕栽培プール11から少量の養液を抜き取り、第1BAC処理部19A又は第2BAC処理部19Bで処理した養液を一時保管用タンクにてある程度の量溜めた後に、養液タンク15へ移送できる。この構成により、一時保管用タンクを設けず、水耕栽培プール11から抜き取った少量の養液を処理して養液タンク15へ戻す場合と比較して、より効率よく養液中の成長阻害物質を除去することができる。一時保管用タンクがない場合、水耕栽培プール11から抜き取った少量の養液を処理する都度、養液タンク15へ戻し、養液タンク15内の養液を徐々に入れ替えることとなる。一方、一時保管用タンクを設けた場合には、養液の処理中は処理済みの養液を養液タンク15へ戻さず、処理済みの養液をある程度の量溜めておいて、一気に養液タンク15へ戻すことができる。このように、一時保管用タンクを設けることにより、処理済みの養液を効率よく養液タンク15へ戻すことができる。
 また、一時保管用タンクを、回収管26において養液排出管24が接続される箇所よりも上流側(第1BAC処理部19A及び第2BAC処理部19Bに近い箇所)に設けることにより、処理後の養液が、水耕栽培プール11から養液排出管24を介して排出された使用済み養液と混ざり合って均一化してしまうことを防止して、植物栽培システム10全体として成長阻害物質の除去効率を向上できる。
 また、本実施の形態では、BAC処理部を2つ設置した構成を例示したが、本発明はこの形態には限定されない。例えば、BAC処理部を3以上設けてもよい。この場合、例えば、生物活性炭(吸着剤)の再生処理に時間がかかる場合等に、1つのBAC処理部を養液処理に用い、残りの2つ以上のBAC処理部にて吸着剤の再生処理を行うことで、養液処理と吸着剤の再生処理とのバランスをとることができる。
 このように、3以上のBAC処理部を設けた場合には、吸着が飽和するサイクルと、吸着剤の再生が完了するサイクルとの比率に応じて、適宜、3以上のBAC処理部の一部を吸着モードとして使用し、残りを再生モードとして使用できる。
 言い換えれば、植物栽培システム10が、1以上の第1BAC処理部19Aと、1以上の第2BAC処理部19Bと、を備える場合に、一例として、1以上の第1BAC処理部19Aの全てを吸着モードとして使用し、1以上の第2BAC処理部19Bの全てを再生モードとして使用してもよい。また、他の例として、1の第1BAC処理部19Aを吸着モードとして使用し、残りの第1BAC処理部19A及び1以上の第2BAC処理部19Bの全てを再生モードとして使用してもよい。このように、3以上のBAC処理部のうち一部のモードを、再生モード又は吸着モードに入れ替えることができる。
 また、本実施の形態では、第1BAC処理部19A又は第2BAC処理部19Bにおける吸着剤の再生後に、微生物を除去する処理を行ってもよい。このような処理は、例えば、薬剤で殺菌処理した後に洗浄を行うことで実施できる。このような処理を行うことで、吸着剤に担持する微生物量を減らすことで吸着剤の、養液中の成長阻害物質に対する吸着性能をより高めることができる。
 図1に示すように、排熱回収部51は植物栽培用光源14と物理的に接続されている。具体的には、植物栽培用光源14の内部で各LED素子が発生する熱を放熱させるための金属製のヒートシンクを排熱回収部51が形成する。また、温水管47、48を通る温水が排熱回収部51のヒートシンクの内側を通過できるようにヒートシンクの内側に温水の流路が形成されている。なお、図示しないが、温水管47、48を通る経路で温水を循環させるために、所定のポンプが設置されている。
 また、図1に示すように温水管47と隣接する位置に微生物培養部53が設置されている。この微生物培養部53は予め用意した微生物を保持する容器である。微生物培養部53が保持する微生物は、第1BAC処理部19A、及び第2BAC処理部19Bの生物活性炭が予め担持している微生物と同じように、植物13の成長阻害物質を分解する能力を有している。なお、このような種類の微生物は、例えば様々な汚泥の中から事前に採取して微生物培養部53の容器内に入れることが可能である。微生物培養部53内の微生物は、後述する前処理において利用される。
 図1に示した排熱回収部51は植物13への光14aの照射に伴って植物栽培用光源14で発生する排熱を回収するので、排熱回収部51内の流路を通過する水を加温して温水を生成することができる。実際には、一例として、加温する前の水の温度が20℃であるときに、37℃程度まで加温して生成した温水を得ることが可能である。
 このような温水を、温水管47、48、排熱回収部51を通る経路で循環させることにより、温水の温度を一定に維持することが可能である。循環する温水の流量については、例えば1時間あたり7リットル程度とすることが想定される。
 また、図1に示すように温水管47に隣接する位置に微生物培養部53が配置されているので、循環する温水により微生物培養部53の温度を常温よりも高くすることができる。これにより、微生物培養部53内の微生物の活動が活性化するので、微生物を培養してその数を増やすことが可能である。
 切替弁45を切り替えることにより、温水管47の温水を温水管41又は43に供給することができる。
 切替弁45から温水管41に流入した温水は、第1BAC処理部19Aの内部空間を通過して温水管42で回収され、切替弁46に入力される。切替弁46を切り替えることで、温水管42の温水を切替弁46を介して温水管48に流すことができる。
 切替弁45から温水管43に流入した温水は、第2BAC処理部19Bの内部空間を通過して温水管44で回収され、切替弁46に入力される。切替弁46を切り替えることで、温水管44の温水を切替弁46を介して温水管48に流すことができる。
 処理系統切替制御部52は、所定の切替指示に従って、養液回収部18の系統を切り替えるための制御を実施する。すなわち、処理系統切替制御部52が切替弁31、45、46、開閉弁36、37、及び微生物培養部53を制御することにより、第1BAC処理部19A、及び第2BAC処理部19Bの動作状態を切り替えてこれらの2つの系統を使い分けることができる。
 第1BAC処理部19A内、又は第2BAC処理部19B内の生物活性炭は、養液排出管25を介して導入される使用済みの養液12を処理することができる。つまり、使用済みの養液12に含まれている汚染物を生物活性炭で吸着することで、汚染物を含まない処理済みの養液12を生成できる。この処理済みの養液12は養液タンク15に戻して再利用できるので、汚染された水を廃棄する必要がなくなる。
 しかし、例えば数ヶ月程度に亘って連続的に使用済みの養液12の処理を実施すると、生物活性炭に吸着した大量の汚染物の影響で活性炭としての機能が低下する。したがって、そのままでは処理済みの養液12を処理できないので、活性炭の交換が必要になる。
 本実施形態では、養液回収部18に第1BAC処理部19A、及び第2BAC処理部19Bが備わっているので、活性炭としての機能が低下した時に養液12の処理に使用している系統を切り替えるだけで、活性炭を交換することができる。
 また、大量の汚染物が付着して機能が低下した使用済みの活性炭については、通常は廃棄処分されるが、本実施形態では生物活性炭を採用しているので機能が復活するように再生することが可能である。具体的には、生物活性炭に担持されている微生物の活動を活性化させることで、この微生物が植物13の成長を阻害する成長阻害物質を含む汚染物である有機物を分解し、生物活性炭を再利用できる状態に再生することができる。したがって、交換した生物活性炭を廃棄する必要がなくなる。
 微生物の活動を活性化する際には、熱、酸素、及び養分が大きな影響を及ぼす。一方、水耕栽培プール11から養液排出管25を通って排出される使用済みの養液12の中には、酸素バブルが含まれており、窒素やリンなどの養分も十分に含まれている。しかも、図1に示した養液回収部18においては、第1BAC処理部19A、及び第2BAC処理部19Bの内部に選択的に温水を流すことができるので、温水で微生物を加温することにより十分に微生物を活性化できる。尚、微生物の活動を活性化するために、例えば使用済みの養液12に、砂糖などの養分を添加してもよい。また、図1の植物栽培システム10においては植物栽培用光源14の排熱を有効利用して温水を生成するので、活性炭の再生の際に必要なエネルギー消費を大幅に削減できる。
 但し、使用済みの生物活性炭を再生するための工程を開始する時には、活性炭に担持されている微生物の数がかなり減少していることが予想される。したがって、温水により加温して微生物を活性化してもすぐに微生物の数が増えることはなく、成長阻害物質を効率よく分解できる状態に回復するまでに比較的長い期間を要することが想定される。
 そのため、使用済みの生物活性炭を再生するための工程を開始する時に、前処理として新たな微生物を生物活性炭に添加できるように、微生物培養部53が設けてある。つまり、前処理の際に、例えば一定量の微生物を微生物培養部53から取り出して微生物投入部32a又は33aから投入し、それを生物活性炭に添加する。なお、このような前処理については、処理系統切替制御部52の制御により自動的に行うことも可能であるし、手作業で行うことも可能である。
 なお、植物栽培システム10の稼働を一時的に休止して栽培装置のメンテナンスを実施するような時には、清掃などの目的で養液タンク15から水を排水する場合がある。
<システムの動作>
 図1に示した植物栽培システム10における主要な動作を図2に示す。すなわち、図1に示した処理系統切替制御部52の制御により、植物栽培システム10は図2のような手順に従い状態が変化する。図2に示した動作について以下に説明する。
 処理系統切替制御部52は、最初に第1系統のBAC処理部に再生モードを割り当て、第2系統のBAC処理部に吸着モードを割り当てる(ステップS11)。すなわち、処理系統切替制御部52は、第1BAC処理部19A内の生物活性炭を再生処理すると共に、第2BAC処理部19B内の生物活性炭を利用して使用済みの養液12から汚染物を吸着して処理する「第1状態」にする。
 この「第1状態」にするために、切替弁31で導入管33側を選択し、切替弁45で温水管41側を選択し、切替弁46で温水管42側を選択し、開閉弁36を閉じて開閉弁37を開くように処理系統切替制御部52が制御する。
 また、処理系統切替制御部52は第1系統のBAC処理部に対してステップS12で前処理を実行する。つまり、処理系統切替制御部52は、微生物培養部53から所定量の微生物を取り出して、これを微生物投入部32aから投入することにより第1BAC処理部19A内の生物活性炭に添加する。
 処理系統切替制御部52は、再生モードの第1系統のBAC処理部の経路で、温水が循環するように制御すると共に、吸着モードの第2系統のBAC処理部の経路で使用済みの養液12を吸着処理するようにステップS13で制御する。
 つまり、処理系統切替制御部52は、排熱回収部51で加温されて生成された温水が、再生モードの第1BAC処理部19Aを流れて循環するように制御し、第1BAC処理部19A内の微生物をこの温水で加温し活性化する。また、水耕栽培プール11から養液排出管25を通って排出される使用済みの養液12が第2BAC処理部19B内を通過する時に、この中の生物活性炭が成長阻害物質を含む汚染物を吸着処理する。
 処理系統切替制御部52はBAC処理の系統切替条件を満たすかどうかを例えば定期的に調べる(ステップS14)。例えば、上記「第1状態」に切り替えてから所定期間、例えば数ヶ月を経過すると、吸着モードで動作している第2BAC処理部19Bの生物活性炭の吸着機能が衰えるので、そのような場合、処理系統切替制御部52は系統切替条件を満たすと判断できる。BAC処理の系統切替条件を満たす場合は、次のステップS15以降の処理に進む。
 処理系統切替制御部52は、第1系統のBAC処理部に吸着モードを割り当て、第2系統のBAC処理部に再生モードを割り当てる(ステップS15)。すなわち、処理系統切替制御部52は、第1BAC処理部19A内の生物活性炭を利用して使用済みの養液12から汚染物を吸着すると共に、第2BAC処理部19B内の生物活性炭を再生処理する「第2状態」に切り替える。
 この「第2状態」にするために、切替弁31で導入管32側を選択し、切替弁45で温水管43側を選択し、切替弁46で温水管44側を選択し、開閉弁37を閉じて開閉弁36を開くように処理系統切替制御部52が制御する。
 また、処理系統切替制御部52は第2系統のBAC処理部に対してステップS16で前処理を実行する。つまり、処理系統切替制御部52は、微生物培養部53から所定量の微生物を取り出して、これを微生物投入部33aから投入することにより第2BAC処理部19B内の生物活性炭に添加する。
 処理系統切替制御部52は、再生モードの第2系統のBAC処理部の経路で、温水が循環するように制御すると共に、吸着モードの第1系統のBAC処理部の経路で使用済みの養液12を吸着処理するようにステップS17で制御する。
 つまり、処理系統切替制御部52は、排熱回収部51で加温されて生成された温水が、再生モードの第2BAC処理部19Bを流れて循環するように制御し、第2BAC処理部19B内の微生物をこの温水で加温し活性化する。また、水耕栽培プール11から養液排出管25を通って排出される使用済みの養液12が第1BAC処理部19A内を通過する時に、この中の生物活性炭が成長阻害物質を含む汚染物を吸着処理する。
 上記の「第2状態」に切り替えた後も、処理系統切替制御部52はBAC処理の系統切替条件を満たすかどうかを例えば定期的に調べる(ステップS18)。例えば、上記「第2状態」に切り替えてから所定期間、例えば数ヶ月を経過すると、吸着モードで動作している第1BAC処理部19Aの生物活性炭の吸着機能が衰えるので、そのような場合は系統切替条件を満たすと判断できる。BAC処理の系統切替条件を満たす場合、処理系統切替制御部52は、再びステップS11の処理に戻り、上記と同じ動作を繰り返す。
 したがって、図2の動作を実施することにより、上記の「第1状態」と「第2状態」とが交互に切り替わる。そして、使用済みの生物活性炭は上記再生モードで例えば数ヶ月処理することにより、再利用可能な状態に復元される。したがって、使用済みの生物活性炭を再び上記吸着モードで使用することが可能であり、使用済みの生物活性炭を廃棄する必要はない。また、2系統のBAC処理部を交互に切り替えて使用するので、使用済みの生物活性炭を再生しながら、使用済みの養液12に対する吸着処理をほぼ連続的に行うことができる。したがって、状態を切り替えるために栽培装置の稼働を休止する必要がない。
 なお、図1の植物栽培システム10においては処理系統切替制御部52の制御により上記の「第1状態」と「第2状態」とが交互に切り替わるが、この切替は作業者による手動切替で行ってもよい。
<第1状態の植物栽培システム>
 「第1状態」の植物栽培システム10における主要部の接続状態を図3に示す。なお、理解しやすいように図3において動作していない箇所の記載は省略されている。
 図3に示すように、第1状態の植物栽培システム10Aにおいては、養液排出管25を通る養液経路が、切替弁31を経由して導入管33と接続され、第2BAC処理部19Bの養液出口側が排出管35、及び開閉弁37を経由して回収管38と接続されている。したがって、この状態で第2BAC処理部19Bは使用済みの養液12から汚染物を吸着処理することができる。
 また、第1状態の植物栽培システム10Aにおいては、温水管47を通過する温水の経路が、切替弁45を介して温水管41と接続されている。また、温水管42が切替弁46を介して温水管48と接続されている。したがって、図3の状態で排熱回収部51で生成された温水が第1BAC処理部19Aを通過して循環することになる。つまり、第1BAC処理部19A内の生物活性炭の箇所を温水で加温し、活性炭に担持されている微生物を活性化することができる。これにより、生物活性炭の再生が促進される。
 また、図3の「第1状態」に切り替わった直後に、前処理として微生物培養部53から微生物投入部32aに対して追加の微生物が投入され、この微生物が生物活性炭に添加される。この微生物の投入及び生物活性炭への添加によって、活性炭に付着した微生物の数を増加できるため、生物活性炭の再生を開始した直後から効率よく成長阻害物質を分解することが可能になり、生物活性炭の再生処理に必要な所要期間を短縮できる。
 尚、微生物の投入は必須ではない。微生物が投入されず生物活性炭に付着した微生物の数が少ない場合であっても、養液を循環させることで生物活性炭に付着した微生物の数を増加させることができるため、生物活性炭に付着した成長阻害物質を分解して、生物活性炭を再生できる。
 また、生物活性炭に代えて、微生物を担持していない活性炭や多孔体等の吸着剤を用いてもよい。吸着剤が微生物を担持していない場合には、養液を循環させることで吸着剤に微生物が付着され、結果として、微生物を担持した吸着剤が形成される。よって、微生物を担持していない吸着剤を用いて、使用済み養液から吸着した成長阻害物質を、この吸着剤に付着した微生物によって分解させ、吸着剤を再生できる。
<第2状態の植物栽培システム>
 「第2状態」の植物栽培システム10における主要部の接続状態を図4に示す。なお、理解しやすいように図4において動作していない箇所の記載は省略されている。
 図4に示すように、第2状態の植物栽培システム10Bにおいては、養液排出管25を通る養液経路が、切替弁31を経由して導入管32と接続され、第1BAC処理部19Aの養液出口側が排出管34、及び開閉弁36を経由して回収管38と接続されている。したがって、この状態で第1BAC処理部19Aは使用済みの養液12から汚染物を吸着処理することができる。
 また、第2状態の植物栽培システム10Bにおいては、温水管47を通過する温水の経路が、切替弁45を介して温水管43と接続されている。また、温水管44が切替弁46を介して温水管48と接続されている。したがって、図4の状態で排熱回収部51で生成された温水が第2BAC処理部19Bを通過して循環することになる。つまり、第2BAC処理部19B内の生物活性炭の箇所を温水で加温し、活性炭に担持されている微生物を活性化することができる。これにより、生物活性炭の再生が促進される。
 また、図4の「第2状態」に切り替わった直後に、前処理として微生物培養部53から微生物投入部33aに対して追加の微生物が投入され、この微生物が生物活性炭に添加される。この微生物の投入及び生物活性炭への添加によって、活性炭に付着した微生物の数を増加できるため、生物活性炭の再生を開始した直後から効率よく成長阻害物質を分解することが可能になり、生物活性炭の再生処理に必要な所要期間を短縮できる。尚、前述したように、微生物の投入は必須ではなく、生物活性炭に代えて、微生物を担持していない活性炭等の吸着剤を用いてもよい。
<養液処理方法および植物栽培システムの利点>
 図1に示した植物栽培システム10によれば、養液12として水耕栽培プール11に供給する水分を循環させて再利用するので、水を廃棄する必要がなくなり、原水供給部16から供給する水の量を減らすことができる。しかも、使用済みの養液12から成長阻害物質を生物活性炭で吸着し微生物で分解するので、植物13の育成に適した養液12の環境を維持できる。
 また、植物栽培システム10は植物栽培用光源14の排熱を利用して活性化した微生物により成長阻害物質を分解するので、生物活性炭を再利用可能な状態に再生する際に必要とされるエネルギーを減らすことができる。さらに、生物活性炭を再生するために、専用の追加設備を用意する必要がない。
 また、植物栽培システム10は生物活性炭の再生を開始する時に前処理を行い新たな微生物を添加するので、成長阻害物質を効率よく分解できる状態に微生物が活性化するまでの期間を短縮できる。したがって、比較的短い期間で生物活性炭を再利用可能な状態まで再生できる。
 また、植物栽培システム10は養液回収部18が選択的に使用可能な第1BAC処理部19A、及び第2BAC処理部19Bの2系統を有しているので、生物活性炭の吸着モードと再生モードとを同時に実施することができる。したがって、吸着モードと再生モードとを交互に切り替えることで、使用済みの養液12から汚染物を吸着する処理をほぼ連続的に行うことができ、栽培装置の稼働を休止する必要がない。
<補足説明>
 ここで、上述した本発明に係る養液処理方法および植物栽培システムの実施形態の特徴をそれぞれ以下[1]~[11]に簡潔に纏めて列記する。
[1] 栽培装置で植物の栽培に利用される栽培容器(水耕栽培プール11)から排出される使用済み養液を処理するための養液処理方法であって、
 前記使用済み養液を前記栽培容器から受け入れ、
 受け入れた前記使用済み養液を、少なくとも植物の成長阻害物質を分解する微生物を担持した生物担持吸着剤(BAC)に通して処理し、
 処理後の前記使用済み養液を、前記栽培容器の上流側の再利用経路(回収管26)に供給する、
 養液処理方法。
[2] 少なくとも前記使用済み養液の処理を開始してから所定期間を経過した後で、栽培装置の光源(植物栽培用光源14)からの排熱を利用して前記生物担持吸着剤に担持された微生物を活性化して、前記生物担持吸着剤の再生処理を行う、
 上記[1]に記載の養液処理方法。
[3] 前記生物担持吸着剤の再生処理を開始する前に、前記生物担持吸着剤の近傍における微生物の数を増やすための前処理を行う(ステップS12)、
 上記[2]に記載の養液処理方法。
[4] 前記生物担持吸着剤は、前記微生物を担持した活性炭である、
 上記[1]乃至[3]のいずれかに記載の養液処理方法。
[5] 植物(13)の栽培に利用可能な栽培容器(水耕栽培プール11)と、植物の育成に必要な養液(12)を前記栽培容器に供給可能な養液タンク(15)とを有する植物栽培システム(10)であって、
 前記栽培容器からの使用済み養液を受け入れ可能な1つ以上の養液回収部(18)と、
 前記養液回収部に保持され、植物の成長阻害物質を分解する微生物を担持した生物担持吸着剤(第1BAC処理部19A、第2BAC処理部19B)と、
 前記養液回収部で前記生物担持吸着剤により処理された処理済みの養液を、前記養液タンクに供給可能な処理済み養液供給部(回収管26)と、
 を備えた植物栽培システム。
[6] 前記養液回収部として、互いに独立した第1養液回収部(第1BAC処理部19A)、及び第2養液回収部(第2BAC処理部19B)を有し、
 前記使用済み養液を前記第1養液回収部、及び前記第2養液回収部の一方に選択的に導入可能な処理経路切り替え部(切替弁31)と、
 前記第1養液回収部、及び前記第2養液回収部のうち前記生物担持吸着剤を再利用可能な状態に再生する再生モードの養液回収部に対して、微生物を活性化する処理を施す活性化処理部(排熱回収部51、切替弁45、46)と、
 前記第1養液回収部、及び前記第2養液回収部のうち前記使用済み養液から植物の成長阻害物質を吸着する吸着モードの養液回収部で処理された処理済みの養液を前記処理済み養液供給部に与える処理済み養液選択部(開閉弁36、37)と、
 を更に備えた上記[5]に記載の植物栽培システム。
[7] 前記活性化処理部は、前記再生モードの養液回収部に対して、栽培装置の光源(植物栽培用光源14)からの排熱を利用して生成した温水を供給する、
 上記[6]に記載の植物栽培システム。
[8] 前記活性化処理部は、前記再生モードを開始する養液回収部に対して微生物を増やすための前処理を可能にする前処理部(微生物培養部53、ステップS12、S16)を有する、
 上記[6]又は[7]に記載の植物栽培システム。
[9] 前記第1養液回収部に前記再生モードを割り当てて、前記第2養液回収部に前記吸着モードを割り当てる第1状態と、
 前記第1養液回収部に前記吸着モードを割り当てて、前記第2養液回収部に前記再生モードを割り当てる第2状態と、
 を有し、前記第1状態と前記第2状態とを交互に切り替える切替制御部(処理系統切替制御部52、ステップS11~S18)、
 を更に備える上記[6]乃至[8]のいずれかに記載の植物栽培システム。
[10] 前記養液回収部として、互いに独立した、1以上の前記第1養液回収部、及び1以上の前記第2養液回収部を有し、
 前記処理経路切り替え部は、前記使用済み養液を、前記1以上の第1養液回収部、及び前記1以上の第2養液回収部の、少なくともいずれか一の養液回収部に選択的に導入可能であり、
 前記処理済み養液選択部は、前記吸着モードの養液回収部である前記少なくともいずれか一の養液回収部で処理された処理済みの養液を前記処理済み養液供給部に与え、
 前記活性化処理部は、前記再生モードの養液回収部である、前記少なくともいずれか一の養液回収部以外の養液回収部に対して、前記微生物を活性化する処理を施す
 上記[6]乃至[8]のいずれかに記載の植物栽培システム。
[11] 前記生物担持吸着剤は、前記微生物を担持した活性炭である、
 上記[5]乃至[10]のいずれかに記載の植物栽培システム。
 本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本出願は、2021年3月25日出願の日本特許出願(特願2021-051971)に基づくものであり、その内容は本出願の中に参照として援用される。
 10 植物栽培システム
 10A 第1状態の植物栽培システム
 10B 第2状態の植物栽培システム
 11 水耕栽培プール
 12 養液
 13 植物
 14 植物栽培用光源
 14a 光
 15 養液タンク
 16 原水供給部
 17 肥料供給部
 18 養液回収部
 19A 第1BAC処理部
 19B 第2BAC処理部
 21 養液供給管
 22 原水供給管
 23 肥料供給管
 24,25 養液排出管
 26,38 回収管
 31,45,46 切替弁
 32,33 導入管
 32a,33a 微生物投入部
 34,35 排出管
 36,37 開閉弁
 41,42,43,44,47,48 温水管
 51 排熱回収部
 52 処理系統切替制御部
 53 微生物培養部

Claims (11)

  1.  栽培装置で植物の栽培に利用される栽培容器から排出される使用済み養液を処理するための養液処理方法であって、
     前記使用済み養液を前記栽培容器から受け入れ、
     受け入れた前記使用済み養液を、少なくとも植物の成長阻害物質を分解する微生物を担持した生物担持吸着剤に通して処理し、
     処理後の前記使用済み養液を、前記栽培容器の上流側の再利用経路に供給する、
     養液処理方法。
  2.  少なくとも前記使用済み養液の処理を開始してから所定期間を経過した後で、栽培装置の光源からの排熱を利用して前記生物担持吸着剤に担持された微生物を活性化して、前記生物担持吸着剤の再生処理を行う、
     請求項1に記載の養液処理方法。
  3.  前記生物担持吸着剤の再生処理を開始する前に、前記生物担持吸着剤の近傍における微生物の数を増やすための前処理を行う、
     請求項2に記載の養液処理方法。
  4.  前記生物担持吸着剤は、前記微生物を担持した活性炭である、
     請求項1乃至請求項3のいずれか1項に記載の養液処理方法。
  5.  植物の栽培に利用可能な栽培容器と、植物の育成に必要な養液を前記栽培容器に供給可能な養液タンクとを有する植物栽培システムであって、
     前記栽培容器からの使用済み養液を受け入れ可能な1つ以上の養液回収部と、
     前記養液回収部に保持され、少なくとも植物の成長阻害物質を分解する微生物を担持した生物担持吸着剤と、
     前記養液回収部で前記生物担持吸着剤により処理された処理済みの養液を、前記養液タンクに供給可能な処理済み養液供給部と、
     を備えた植物栽培システム。
  6.  前記養液回収部として、互いに独立した第1養液回収部、及び第2養液回収部を有し、
     前記使用済み養液を前記第1養液回収部、及び前記第2養液回収部の一方に選択的に導入可能な処理経路切り替え部と、
     前記第1養液回収部、及び前記第2養液回収部のうち前記生物担持吸着剤を再利用可能な状態に再生する再生モードの養液回収部に対して、微生物を活性化する処理を施す活性化処理部と、
     前記第1養液回収部、及び前記第2養液回収部のうち前記使用済み養液から植物の成長阻害物質を吸着する吸着モードの養液回収部で処理された処理済みの養液を前記処理済み養液供給部に与える処理済み養液選択部と、
     を更に備えた請求項5に記載の植物栽培システム。
  7.  前記活性化処理部は、前記再生モードの養液回収部に対して、栽培装置の光源からの排熱を利用して生成した温水を供給する、
     請求項6に記載の植物栽培システム。
  8.  前記活性化処理部は、前記再生モードを開始する養液回収部に対して微生物を増やすための前処理を可能にする前処理部を有する、
     請求項6又は請求項7に記載の植物栽培システム。
  9.  前記第1養液回収部に前記再生モードを割り当てて、前記第2養液回収部に前記吸着モードを割り当てる第1状態と、
     前記第1養液回収部に前記吸着モードを割り当てて、前記第2養液回収部に前記再生モードを割り当てる第2状態と、
     を有し、前記第1状態と前記第2状態とを交互に切り替える切替制御部、
     を更に備える請求項6乃至請求項8のいずれか1項に記載の植物栽培システム。
  10.  前記養液回収部として、互いに独立した、1以上の前記第1養液回収部、及び1以上の前記第2養液回収部を有し、
     前記処理経路切り替え部は、前記使用済み養液を、前記1以上の第1養液回収部、及び前記1以上の第2養液回収部の、少なくともいずれか一の養液回収部に選択的に導入可能であり、
     前記処理済み養液選択部は、前記吸着モードの養液回収部である前記少なくともいずれか一の養液回収部で処理された処理済みの養液を前記処理済み養液供給部に与え、
     前記活性化処理部は、前記再生モードの養液回収部である、前記少なくともいずれか一の養液回収部以外の養液回収部に対して、前記微生物を活性化する処理を施す
     請求項6乃至請求項8のいずれか1項に記載の植物栽培システム。
  11.  前記生物担持吸着剤は、前記微生物を担持した活性炭である、
     請求項5乃至請求項10のいずれか1項に記載の植物栽培システム。
PCT/JP2022/012876 2021-03-25 2022-03-18 養液処理方法および植物栽培システム WO2022202720A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051971 2021-03-25
JP2021-051971 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022202720A1 true WO2022202720A1 (ja) 2022-09-29

Family

ID=83397370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012876 WO2022202720A1 (ja) 2021-03-25 2022-03-18 養液処理方法および植物栽培システム

Country Status (1)

Country Link
WO (1) WO2022202720A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329923U (ja) * 1976-08-23 1978-03-14
JP2008206448A (ja) * 2007-02-27 2008-09-11 Sharp Corp 除菌可能な水耕栽培装置および水耕栽培方法
JP2013247949A (ja) * 2012-06-04 2013-12-12 Kikuchi Eco Earth:Kk 水処理装置
CN108947136A (zh) * 2018-08-03 2018-12-07 贵州润喆环境治理有限公司 一种养殖污水循环处理与再利用系统
JP2020037824A (ja) * 2018-09-05 2020-03-12 ニシム電子工業株式会社 バイオトイレシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329923U (ja) * 1976-08-23 1978-03-14
JP2008206448A (ja) * 2007-02-27 2008-09-11 Sharp Corp 除菌可能な水耕栽培装置および水耕栽培方法
JP2013247949A (ja) * 2012-06-04 2013-12-12 Kikuchi Eco Earth:Kk 水処理装置
CN108947136A (zh) * 2018-08-03 2018-12-07 贵州润喆环境治理有限公司 一种养殖污水循环处理与再利用系统
JP2020037824A (ja) * 2018-09-05 2020-03-12 ニシム電子工業株式会社 バイオトイレシステム

Similar Documents

Publication Publication Date Title
JP5093679B2 (ja) 精製水製造装置の殺菌方法
CN102666405A (zh) 利用生物活性炭和粒状活性炭的净水系统及净水方法
JP2018508420A (ja) プロセス液によって食品及び/又は容器を処理する方法及び装置
JP2011078332A (ja) 排培養液の回収装置、排培養液の回収方法および水耕栽培装置
WO2022202720A1 (ja) 養液処理方法および植物栽培システム
KR101797212B1 (ko) 폐양액 재순환 시스템
JP7406776B1 (ja) アクアポニックスシステム
KR101667932B1 (ko) 막증류 결합형 혐기하폐수처리 장치 및 방법
KR20160049728A (ko) 식물공장용 고효율 양액재순환시스템 및 이를 이용한 식물공장
KR102098855B1 (ko) 변색 양액 재처리 시스템
JP4611963B2 (ja) 排水処理装置
KR100810996B1 (ko) 정수장치를 구비한 어항
KR20020073972A (ko) 액상촉매와 바이오필터를 이용한 황화수소와 VOCs의처리시스템
KR102094714B1 (ko) 세정과 흡수처리를 포함한 수직거치 담체형 탈취기
KR102450854B1 (ko) 작물 생육을 위한 양액 공급 방법
KR100834308B1 (ko) 로터리식 바이오필터 탈취기
KR102450860B1 (ko) 작물 생육을 위한 양액 공급 장치
KR20020071620A (ko) 어류 양식 수조용 정화 장치
Smolin et al. Chemical regeneration of biological activated carbon in removing nitrophenol
US11117096B2 (en) Method and apparatus for cleaning contaminated gas in a reactor with rubber material
JP4039970B2 (ja) 電解装置及びそれを用いた水処理装置
JPH0515885A (ja) 水槽のオゾンによる浄化方法とその装置
KR100505724B1 (ko) 흡·탈착식 부하변동제어수단을 이용한 악취,휘발성유기화합물질 및 유해물질의 생물학적 처리방법
KR200477051Y1 (ko) 자연통풍형 공기정화기
JP7479651B1 (ja) 食料生産システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775507

Country of ref document: EP

Kind code of ref document: A1