WO2022202333A1 - Phenolic resin mixture, and curable resin composition and cured product thereof - Google Patents

Phenolic resin mixture, and curable resin composition and cured product thereof Download PDF

Info

Publication number
WO2022202333A1
WO2022202333A1 PCT/JP2022/010360 JP2022010360W WO2022202333A1 WO 2022202333 A1 WO2022202333 A1 WO 2022202333A1 JP 2022010360 W JP2022010360 W JP 2022010360W WO 2022202333 A1 WO2022202333 A1 WO 2022202333A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phenolic resin
resin composition
real number
curable resin
Prior art date
Application number
PCT/JP2022/010360
Other languages
French (fr)
Japanese (ja)
Inventor
篤彦 長谷川
政隆 中西
一真 井上
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2022548392A priority Critical patent/JP7160511B1/en
Priority to CN202280023890.0A priority patent/CN117043219A/en
Priority to KR1020237031845A priority patent/KR20230158497A/en
Publication of WO2022202333A1 publication Critical patent/WO2022202333A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a phenolic resin mixture, a curable resin composition, and a cured product thereof.
  • phenolic resins are used as curing agents for epoxy resins.
  • the resin composition has been improved in terms of moisture resistance, adhesion, dielectric properties, low viscosity for high filling of fillers (inorganic or organic fillers), and shortening of the molding cycle. Further improvements in various properties such as increased reactivity are required.
  • the shape of the semiconductor package has become more complicated with thinning, stacking, systemization, and three-dimensionalization in accordance with the change, and the pitch of the wire wiring is becoming narrower and finer. Poor fluidity of the resin composition induces wire sweep. Furthermore, a burden is placed on the connection portion of the wire, which has an adverse effect.
  • a method called mold underfill (hereinafter referred to as "MUF"), which seals at once without using underfill, is attracting attention from the viewpoint of a low-cost manufacturing method.
  • the resin needs to pass through a very narrow gap between the chip and the package substrate, so miniaturization of the filler is important.
  • the viscosity of the system increases, causing voids (air gaps) to occur.
  • the sealing resin used in the rewiring layer of wafer-level packages and the correlative insulating film used in the build-up layer must be thin. Since it is necessary to fill the resin composition with a filler, it is also desired to lower the viscosity of the resin composition.
  • Patent Document 1 crystalline epoxy resins is being studied.
  • problems such as that there is a limit to the decrease in fluidity during molding, and that it is difficult to maintain handling properties due to the loss of crystallinity due to mixing with phenol resin after making a composition.
  • a crystalline epoxy resin when used, it must be kneaded at a temperature above the melting point of the crystalline epoxy resin in a kneader, otherwise the epoxy resin will not be sufficiently melted and uniformly dispersed.
  • the molded product of the resin molding material becomes non-uniform, and the strength of the molded product differs depending on the part, so that the characteristics of the semiconductor device deteriorate.
  • the curing reaction proceeds in the kneader, which may lead to a decrease in fluidity and the generation of gelled substances that cause unfilling during molding. .
  • the crystallinity remains even after heat kneading, and this residual crystal melts only during molding, resulting in low curability, burrs and voids, and poor curability.
  • the formed semiconductor device may be inferior in formability, such as stains being likely to be formed on the surface thereof.
  • Patent Document 2 in order to solve the problem of undissolved residue when using a crystalline phenol compound, a quaternary phosphonium compound in a molten state is used as a solvent, and a crystalline phenol compound is added to the solvent. It discloses that the complete dissolution provides a molten mixture that does not leave undissolved parts and has excellent storage stability. However, since it involves heating and melting at about 100° C., there is a possibility that a stable and homogeneous resin composition cannot be obtained when cooled to room temperature.
  • the present invention relates to the following [1] to [5].
  • [1] containing a phenolic resin (A) represented by the following formula (1) or the following formula (2) and a crystalline alkyl-substituted biphenol compound (B) having a melting point of 70 to 300° C.; Phenolic resin mixtures in which the weight ratio of component (B) is from 95/5 to 85/15.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above
  • p is a real number of 0 to 3.
  • n is a repeating number and is a real number of 1 to 20.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above
  • p is a real number of 0 to 3.
  • n is a repeating number and is a real number of 1 to 20.
  • the phenolic resin mixture of the present invention has very high fluidity and excellent handling properties, it contributes to productivity, and is used as an insulating material for electric and electronic parts, laminates (printed wiring boards, build-up boards, etc.) and carbon fiber reinforced composite materials. (hereinafter also referred to as "CFRP"), various composite materials, adhesives, paints and the like. It is particularly useful as a semiconductor encapsulating material for protecting semiconductor elements.
  • the phenol resin mixture of the present invention comprises a phenol resin represented by the following formula (1) or formula (2) (hereinafter also referred to as component (A)) and a crystalline alkyl having a melting point of 70 to 300 ° C. It contains a substituted biphenol compound (B) (hereinafter also referred to as component (B)).
  • R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above
  • p is a real number of 0 to 3.
  • n is a repeating number and is a real number of 1 to 20.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above
  • p is a real number of 0 to 3.
  • n is a repeating number and is a real number of 1 to 20.
  • R 1 in the above formulas (1) and (2) is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, A hydrogen atom is particularly preferred.
  • p is a real number of 0 or 1, particularly preferably 0.
  • n in the formulas (1) and (2) is the value of the number average molecular weight obtained by measurement of phenolic resin gel permeation chromatography (GPC, detector: RI), or each of the separated peaks can be calculated from the area ratio of
  • n in the formulas (1) and (2) is usually 1-20, preferably 1.1-20, more preferably 1.1-10. If n is less than 1, the crystallinity is so strong that a homogeneous resin mixture cannot be obtained even by mechanical kneading. On the other hand, when n is larger than 20, the melt viscosity is high, and it is difficult to use from the viewpoint of fluidity and high filler filling.
  • the phenolic resins represented by the above formulas (1) and (2) can be synthesized based on publicly known synthesis methods, but can also be easily obtained from the market.
  • the phenolic resin represented by the formula (1) is KAYAHARD GPH-65 (manufactured by Nippon Kayaku Co., Ltd., softening point 65°C)
  • the phenolic resin represented by the formula (2) is MEHC-7840-4S (available from Meiwa Kasei Co., Ltd., softening point 58-65°C).
  • Component (B) is a biphenol compound with improved compatibility with component (A) by introducing an alkyl group.
  • a semi-crystalline phenolic resin mixture can be obtained by semi-melting and mixing the crystalline components to homogenously disperse them.
  • the term "semicrystalline” refers to a state in which the resin is turbid and not transparent, and in which fine crystals are uniformly dispersed in the resin.
  • the crystalline alkyl-substituted phenol resin is not completely melted, but is dispersed while maintaining the crystalline state to form a homogeneous semi-crystalline resin composition. It achieves both fluidity and handling characteristics. In other words, it can be used as a phenolic resin mixture with component (A) containing component (B) as an organic filler as a matrix.
  • the component (B) it is important to knead the component (B) at a temperature below the melting point and uniformly disperse it in the resin matrix. After kneading, whether or not the phenolic resin mixture maintains a crystalline state and is uniformly dispersed can be determined by visually confirming the appearance of the phenolic resin mixture after preparation. For example, if the resin and crystal clumps are dispersed unevenly, it indicates that the biphenol compound is not evenly dispersed. can.
  • the melting point of component (B) is usually 70-300°C, preferably 100-250°C. If the temperature is lower than 70° C., it is completely melted by the heat during kneading, making it difficult to maintain the crystallinity. If the temperature is higher than 300° C., the crystals do not melt and are not uniformly dispersed during curing and molding, making it difficult to produce a homogeneous cured product from this molding material.
  • the melting point can be determined from the endothermic peak temperature using, for example, a commercially available differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the molecular weight of component (B) is preferably as small as possible, preferably 190-400, more preferably 210-350, particularly preferably 240-300. Further, the hydroxyl equivalent of component (B) is 95 to 200 g/eq. is preferably 105 to 175 g/eq. is more preferably 120 to 150 g/eq. is particularly preferred.
  • the number of substituted alkyl groups is preferably 2-6. From the viewpoint of crystallinity, the number of substituted alkyl groups is preferably an even number of 2, 4, or 6.
  • the substituted alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, such as methyl group, ethyl group, phenyl group and allyl group. Specific examples include dimethylbiphenol, tetramethylbiphenol, diallylbiphenol, diethylbiphenol, tetraethylbiphenol and diphenylbiphenol.
  • a 4- to 6-substituted biphenol compound when the substituted alkyl group is a methyl group or an ethyl group, a 4- to 6-substituted biphenol compound is preferable, and when the substituted alkyl group is a phenyl group or an allyl group, a disubstituted biphenol compound is preferable.
  • Disubstituted methyl or ethyl groups with small alkyl groups have high reactivity, so even if the molecular weight is small and the initial viscosity is low, the reactivity increases, and as a result, there is a risk that the fluidity will decrease. be.
  • a phenyl group or an allyl group having a large substituent group has a large effect, and tetra-substitution may conversely make the reaction difficult.
  • the total carbon number of the substituent is preferably 2-12, more preferably 4-10.
  • the component (B) used in the present invention may be commercially available or may be produced by a known method.
  • Specific compounds available as commercial products include, for example, 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.; melting point: 223-225°C; molecular weight: 242. 32 Total carbon number of substituents 4), 3,3'-dimethyl-4,4'-biphenol (manufactured by Songwon International Japan Co., Ltd.
  • the phenolic resin mixture of the present invention is obtained by uniformly mixing component (A) and component (B). However, it is preferable to mix at a temperature below the melting point of the component (B) and knead and mix so that the crystals are dispersed. Specifically, it is preferable to knead the mixture at a temperature below the melting point of the crystalline alkyl-substituted bifer compound and use it as an organic filler. In this case, if the crystals are not homogeneously dispersed, the ratio of the blended components (A) and (B) will change, which is undesirable because partial curing failure will occur. Specifically, it is preferable to knead at a temperature lower than 100°C.
  • the temperature exceeds 100°C, aggregation of the crystalline phenolic resin proceeds during cooling to room temperature, and the crystals are not uniformly dispersed. In addition, when heated and melted, it affects the stickiness of the obtained phenolic resin mixture, making it difficult to take out. Furthermore, there is a risk of productivity problems, such as difficulty in charging into the inlet. Therefore, in the present invention, kneading/mixing at a temperature below the melting point is preferred.
  • the obtained tablet-like, powder-like, sheet-like or granular mixture is characterized by being non-sticky even when stored at 20°C.
  • the phenolic resin mixture can be obtained by sufficiently mixing using an extruder, a kneader, a roll, or the like.
  • the weight ratio of component (A) and component (B) is usually 95/5 to 85/15, preferably 90/10 to 85/15. If the weight ratio of component (A) is greater than 95, fluidity will be poor. On the other hand, if the weight ratio of component (A) is less than 85, part of the phenolic resin mixture will crystallize unevenly at 20°C. That is, when the weight ratio of component (A) and component (B) is 95/5 to 85/15, it has fluidity at high temperatures and becomes non-sticky and uniform semi-crystalline at 20°C. Therefore, it has both fluidity and handling.
  • the hydroxyl equivalent of the phenolic resin mixture of the present invention is preferably 130-200 g/eq, more preferably 163-200/eq, and particularly preferably 186-200 g/eq. If the hydroxyl equivalent is less than 130 g/eq, the functional groups are contained in a large amount, so that the curing speed is increased, and sufficient fluidity may not be obtained. On the other hand, when the hydroxyl equivalent is more than 200 g/eq, the curability is poor and sufficient hardness may not be obtained.
  • the ICI melt viscosity (cone plate method) at 150° C. of the present invention is preferably 0.001 to 0.20 Pa s, more preferably 0.005 to 0.15 Pa s, particularly preferably 0.01 to It is 0.1 Pa ⁇ s.
  • the melt viscosity is lower than 0.001 Pa s, the melt viscosity is too low to maintain the dispersed state of the filler.
  • the shrinkage rate of the encapsulating material increases.
  • the curable resin composition of the present invention contains an epoxy resin.
  • epoxy resins that can be used include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3′,5,5′-tetramethyl-[ 1,1'-biphenyl]-4,4'-diol, hydroquinone, resorcinol, naphthalenediol, tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone,
  • the curable resin composition of the invention may contain an inorganic filler.
  • Inorganic fillers include powders of crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, etc. Beads formed by spheroidizing are included, but are not limited to these. These may be used independently and may use 2 or more types.
  • crystalline silica, fused silica, and alumina are preferred from the viewpoint of the balance of properties when it is assumed to be used as a semiconductor sealing material.
  • the content of these inorganic fillers is preferably 70 to 96% by mass with respect to 100% by mass of the curable resin composition of the present invention. In particular, it is preferably 70 to 93% by mass.
  • the fluidity is particularly high, if the amount of the inorganic filler is too small, the balance between the inorganic filler and the resin is disturbed, resulting in portions with a large amount of inorganic filler and portions with a small amount of inorganic filler in the molded product of the resin composition. Unfavorable in terms of iso-characteristics. Moreover, if the content of the inorganic filler exceeds 96%, it is not preferable because the fluidity cannot be obtained.
  • the phenolic resin mixture acts as a curing agent for the epoxy resin.
  • a curing agent not only the phenolic resin mixture of the present invention, but also other curing agents may be used in combination.
  • Other curing agents that can be used include phenolic compounds other than the phenolic resin of the present invention, amine compounds, acid anhydride compounds, amide compounds, carboxylic acid compounds, and the like.
  • phenolic resins and phenolic compounds include bisphenol A, bisphenol F, 3,3'-dimethyl-4,4'-bisphenol A, 3,3'-dimethyl-4,4'-bisphenol F, 3,3' , 5,5′-tetramethyl-4,4′-bisphenol A, 3,3′,5,5′-tetramethyl-4,4′-bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4, 4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, naphthalenediol, tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenols (phenol , alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde
  • phenol resins include phenol aralkyl resins (resins having an aromatic alkylene structure), and particularly preferably a structure having at least one selected from phenol, naphthol, and cresol, the alkylene moiety serving as a linker being benzene. structure, biphenyl structure, and naphthalene structure (specifically, Zyloc, naphthol Zyloc, phenolbiphenylene novolak resin, cresol-biphenylene novolak resin, phenol-naphthalene novolak resin, etc.) It is possible.).
  • amine-based compounds and amide-based compounds include nitrogen-containing compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and polyamide resin synthesized from a dimer of linolenic acid and ethylenediamine.
  • Acid anhydride compounds and carboxylic acid compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, and nadic anhydride.
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride, methylbicyclo[2,2,1]heptane- Acid anhydrides such as 2,3-dicarboxylic anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride; addition of various alcohols, carbinol-modified silicones, and the aforementioned acid anhydrides Examples include carboxylic acid resins obtained by reaction. Other examples include imidazole, trifluoroborane-amine complexes, and guanidine derivative compounds. The above and other curing agents are not limited to these. Moreover, these may be used independently and may use 2 or more types. In the present invention, it is particularly preferable to use a phenolic compound from the aspect of reliability.
  • the amount of the epoxy resin and the curing agent used is preferably 0.7 to 1.2 equivalents per equivalent of the epoxy group of the total epoxy resin. If the amount is less than 0.7 equivalents or if the amount exceeds 1.2 equivalents with respect to 1 equivalent of the epoxy group, curing may be incomplete and good cured physical properties may not be obtained.
  • the curable resin composition of the present invention may further contain a curing accelerator.
  • curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-(dimethylaminomethyl)phenol, 1,8-diaza -tertiary amines such as bicyclo(5,4,0)undecene-7, phosphines such as triphenylphosphine, tetrabutylammonium salts, triisopropylmethylammonium salts, trimethyldecanylammonium salts, cetyltrimethylammonium salts, etc.
  • quaternary phosphonium salts such as quaternary ammonium salts, triphenylbenzylphosphonium salts, triphenylethylphosphonium salts, and tetrabutylphosphonium salts.
  • the counter ions of the quaternary salt are halogen, organic acid ions, hydroxide ions, and the like, and are not particularly specified, but organic acid ions and hydroxide ions are particularly preferred.
  • metal compounds such as tin octylate;
  • the curing accelerator is used in an amount of 0.01 to 5.0 parts by mass based on 100 parts by mass of the epoxy resin.
  • the curable resin composition of the present invention contains various additives such as release agents such as silane coupling agents, stearic acid, palmitic acid, zinc stearate and calcium stearate, surfactants, dyes, pigments and ultraviolet absorbers. Compounding agents and various thermosetting resins can be added.
  • the curable resin composition of the present invention can be blended with a binder resin as needed.
  • binder resins include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. , but not limited to these.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product. Parts by mass are used as needed.
  • the curable resin composition of the present invention can contain a known maleimide compound as necessary.
  • usable maleimide compounds include 4,4′-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2′-bis[4-(4-maleimidophenoxy)phenyl]propane, 3 ,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 4,4′-diphenyletherbismaleimide, 4,4′-diphenylsulfone Bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, biphenylaralkyl-type maleimide, etc., but not limited thereto.
  • a curing accelerator may be blended as necessary, and the above-mentioned curing accelerators, organic peroxides, radical polymerization initiators such as azo compounds, and the like can be used.
  • the curable resin composition of the present invention is obtained by uniformly mixing the above-mentioned respective components in a predetermined ratio, usually precured at 130 to 180 ° C. for 30 to 500 seconds, and further cured at 150 to 200 ° C. After curing for 2 to 15 hours at , the curing reaction proceeds sufficiently to obtain the cured product of the present invention. It is also possible to uniformly disperse or dissolve the components of the curable resin composition in a solvent or the like, remove the solvent, and then cure the composition.
  • the curable resin composition of the present invention thus obtained has moisture resistance, heat resistance, high adhesiveness, low dielectric constant and low dielectric loss tangent. Therefore, the curable resin composition of the present invention can be used in a wide range of fields requiring moisture resistance, heat resistance, high adhesiveness, low dielectric constant and low dielectric loss tangent. Specifically, it is useful as an insulating material, laminate (printed wiring board, BGA substrate, build-up substrate, etc.), sealing material, resist, and all other materials for electrical and electronic parts. In addition to molding materials and composite materials, it can also be used in fields such as paint materials, adhesives, and 3D printing. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial.
  • a semiconductor device has one sealed with the curable resin composition of the present invention.
  • semiconductor devices include DIP (dual in-line package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), SOP (small outline package), TSOP (thin small outline package), and TQFP. (think quad flat package) and the like.
  • the method for preparing the curable resin composition of the present invention is not particularly limited, it may be prepared by dispersing or dissolving each component in a solvent or the like, uniformly mixing, and optionally distilling off the solvent. , or may be prepolymerized.
  • the phenolic resin mixture epoxy resin of the present invention, amine compounds, maleimide compounds, cyanate ester compounds, phenolic resins, curing agents such as acid anhydride compounds, and other additives may be heated in the presence or absence of a solvent. prepolymerized by addition.
  • Mixing or prepolymerization of each component is carried out by using, for example, an extruder, kneader, rolls, etc. in the absence of a solvent, and by using a reactor equipped with a stirrer in the presence of a solvent.
  • a uniform curable resin composition is obtained by kneading using a device such as a kneader, roll, planetary mixer, etc. at a temperature within the range of 50 to 100 ° C. do.
  • a device such as a kneader, roll, planetary mixer, etc.
  • After pulverizing the obtained curable resin composition it is molded into a cylindrical tablet by a molding machine such as a tablet machine, or it is made into a granular powder or a powdery molding, or these compositions are used as a surface support. It is also possible to form a sheet having a thickness of 0.05 mm to 10 mm by melting above and forming a curable resin composition molded body.
  • the obtained molded article becomes a non-sticky molded article at 0 to 20°C, and its fluidity and curability hardly deteriorate even when stored at -25 to 0°C for 1 week or longer.
  • the resulting molded product can be molded into a cured product using a transfer molding machine or a compression molding machine.
  • An organic solvent can be added to the curable resin composition of the present invention to form a varnish-like composition (hereinafter simply referred to as varnish).
  • the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to form a varnish.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.
  • Polyester fiber, polyamide fiber, alumina fiber, paper, etc. is impregnated into a base material and heat-dried to obtain a prepreg, which is hot-press molded to obtain a cured product of the curable resin composition of the present invention. .
  • the solvent is usually used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent. If the amount of solvent is less than this range, the viscosity of the varnish will increase and the workability will be deteriorated. Moreover, if it is a liquid composition, it is possible to obtain a curable resin-cured product containing carbon fibers by, for example, the RTM method.
  • the cured product of the present invention can be used for various purposes.
  • adhesives include adhesives for civil engineering, construction, automobiles, general office and medical use, as well as adhesives for electronic materials.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, adhesives for semiconductors such as underfill, underfill for BGA reinforcement, anisotropic conductive films ( ACF), mounting adhesives such as anisotropic conductive paste (ACP), and the like.
  • it is mainly used as a sealing material for semiconductors, but it can also be used as a substrate or as a mold underfill (MUF).
  • the main applications of encapsulants currently in use are potting, dipping, transfer molding encapsulation for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, IC packages such as QFPs, BGAs, and CSPs.
  • Examples include sealing (including reinforcing underfill) at the time of similar mounting.
  • the gel time is the time required for the sealing material to lose its fluidity when heated at a constant temperature, and can be appropriately selected in relation to curing properties.
  • NC-3000 biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 277 g / eq)
  • MSR-2102 High-purity spherical silica filler (manufactured by Tatsumori Co., Ltd.)
  • TPP Triphenylphosphine (manufactured by Junsei Chemical Co., Ltd.)
  • the curable resin composition of the present invention can be used for insulating materials for electric and electronic parts, laminates (printed wiring boards, build-up boards, etc.) and carbon fiber reinforced composite materials (hereinafter also referred to as "CFRP"). It is useful for various composite materials, adhesives, paints, etc. It is particularly useful as a semiconductor encapsulating material for protecting semiconductor elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A phenolic resin mixture comprising (A) a phenolic resin represented by formula (1) or (2) and (B) a crystalline alkyl-substituted biphenol compound having a melting point of 70 to 300°C, in which the ratio of the weight of the component (A) to the weight of the component (B) is 95/5 to 85/15. (In formula (1), a plurality of R1s and ps are present independently, R1s independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituent as mentioned above, ps independently represent a real number of 0 to 3, and n is the number of repeats and represents a real number of 1 to 20.) (In formula (2), a plurality of R1s and ps are present independently, and R1s independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituent as mentioned above, ps independently represent a real number of 0 to 3, and n is the number of repeats and represents a real number of 1 to 20.)

Description

フェノール樹脂混合物、硬化性樹脂組成物及びその硬化物Phenolic resin mixture, curable resin composition and cured product thereof
 本発明はフェノール樹脂混合物、硬化性樹脂組成物、およびその硬化物に関する。 The present invention relates to a phenolic resin mixture, a curable resin composition, and a cured product thereof.
 半導体封止材分野において、フェノール樹脂はエポキシ樹脂の硬化剤として使用されている。近年は、その発展に伴い、樹脂組成物の高純度化をはじめ耐湿性、密着性、誘電特性、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。  In the field of semiconductor encapsulants, phenolic resins are used as curing agents for epoxy resins. In recent years, along with its development, the resin composition has been improved in terms of moisture resistance, adhesion, dielectric properties, low viscosity for high filling of fillers (inorganic or organic fillers), and shortening of the molding cycle. Further improvements in various properties such as increased reactivity are required.
 また、半導体パッケージの形状はその変遷に従い、薄層化、スタック化、システム化、三次元化と複雑になっており、そのワイヤ配線の狭ピッチ化、細線化がますます進んできているため、樹脂組成物の流動性が悪いとワイヤスィープを誘発してしまう。さらに、ワイヤの接続部に負担がかかり悪影響を及ぼすようになってきた。 In addition, the shape of the semiconductor package has become more complicated with thinning, stacking, systemization, and three-dimensionalization in accordance with the change, and the pitch of the wire wiring is becoming narrower and finer. Poor fluidity of the resin composition induces wire sweep. Furthermore, a burden is placed on the connection portion of the wire, which has an adverse effect.
 さらに、フリップチップタイプのパッケージにおいて、安価製造方法という側面からアンダーフィルを使用せず、一気に封止してしまうというモールドアンダーフィル(以下、「MUF」という。)という手法が注目されている。当該方法においては、チップとパッケージ基板の非常に狭い隙間を樹脂が通り抜ける必要があるため、フィラーの微細化が重要となっており、一方、このフィラーの微細化により、表面積が大きくなることから、系の粘度が上昇し、ボイド(空隙)発生の原因となる。 Furthermore, in flip-chip type packages, a method called mold underfill (hereinafter referred to as "MUF"), which seals at once without using underfill, is attracting attention from the viewpoint of a low-cost manufacturing method. In this method, the resin needs to pass through a very narrow gap between the chip and the package substrate, so miniaturization of the filler is important. The viscosity of the system increases, causing voids (air gaps) to occur.
 また、ウエハーレベルパッケージなど再配線層に使用する封止樹脂や、ビルドアップ層に使用される相関絶縁膜等においては層の厚みが薄いことが必要であり、また線膨張率を下げるため、微細フィラーの充填が必要であるため、同様に、樹脂組成物の低粘度化が求められている。 In addition, the sealing resin used in the rewiring layer of wafer-level packages and the correlative insulating film used in the build-up layer must be thin. Since it is necessary to fill the resin composition with a filler, it is also desired to lower the viscosity of the resin composition.
日本国特開2003-41096号公報Japanese Patent Application Laid-Open No. 2003-41096 日本国特開2013-87137号公報Japanese Patent Application Laid-Open No. 2013-87137
 低粘度化の手法にはさまざま挙げられるが、一般的にはエポキシ樹脂やフェノール樹脂の低分子量化により低粘度化する手法が用いられている。しかしながら、エポキシ樹脂やフェノール樹脂を低分子量化すると、室温(本願においては例えば20℃を指す。)での形状が流動性を持ちやすくなってしまうため、室温での取り扱いが難しく(液状~水あめ~半固形等)、さらには樹脂組成物とした場合、ベタツキが出てしまうため、貯蔵やハンドリング性が困難となる。 There are various methods for reducing the viscosity, but the most common method is to reduce the viscosity by reducing the molecular weight of epoxy resins and phenolic resins. However, if the epoxy resin or phenol resin is made to have a low molecular weight, the shape at room temperature (for example, 20 ° C. in this application) tends to have fluidity, so it is difficult to handle at room temperature (liquid-starch syrup- Semi-solid, etc.), and furthermore, when it is made into a resin composition, it becomes sticky, making storage and handling difficult.
 具体的には樹脂メーカから組成物メーカへ材料を納入する際に冷凍で輸送しないといけないため、エネルギーの大量使用につながる。また、輸送中の温度上昇でのブロッキング(塊になること)で取り扱いのできないものとなってしまう。また、輸送工程において問題はなくても、組成物メーカにて使用する際には室温に戻さないと使用できないため、その際の結露の発生や、室温に戻した際にブロッキングしてしまう問題、仕込み時の例えばホッパーの入り口で詰まってしまう等の問題が生じ得る。さらに、樹脂組成物を均質に混合するために、ボールミル等で粉砕しようとしても粉砕できず、釜内で固まってしまい、装置を破損するなどの問題がある。また出来上がった組成物にも同様の課題が生じる。 Specifically, when delivering materials from resin manufacturers to composition manufacturers, they must be frozen and transported, which leads to a large amount of energy consumption. In addition, it becomes unhandleable due to blocking (agglomeration) due to temperature rise during transportation. In addition, even if there is no problem in the transportation process, it cannot be used unless it is returned to room temperature when it is used by the composition manufacturer. Problems such as clogging at the entrance of the hopper may occur during charging. Furthermore, even if an attempt is made to grind the resin composition with a ball mill or the like in order to mix the resin composition homogeneously, it cannot be ground, and the resin composition solidifies in the pot, resulting in damage to the apparatus. Similar problems also arise in the finished composition.
 こういった課題に対し、結晶性のエポキシ樹脂を用いることが検討されている(特許文献1)。しかしながら、成形時の流動性の低下に限界があること、組成物化したのち、フェノール樹脂と混ざることで結晶性が崩れハンドリング特性を維持するのが難しいなどの課題がある。また、一般に、結晶性エポキシ樹脂を用いる場合、混練機での溶融混練時に結晶性エポキシ樹脂の融点以上で混練しないとエポキシ樹脂が十分に溶融せず均一分散しないので、この溶融混合物を用いたエポキシ樹脂成形材料の成形品は不均一となり、成形品の強度が各部分によって異なるために半導体装置の特性が低下してしまう。しかし、溶融混練時に、この溶融混合物の温度が高いと、混練機内で硬化反応が進行してしまい、流動性の低下、成形時の未充填の原因となるゲル化物の発生等を招く恐れがある。または結晶性の高さから再結晶化を起こすため、加熱混練後でも結晶性が残存し、この残存結晶が成型時になって初めて溶融するため、硬化性が低い、バリやボイドが発生する、得られた半導体装置の表面にしみができやすい等の成形性に劣るおそれがある。 To address these issues, the use of crystalline epoxy resins is being studied (Patent Document 1). However, there are problems such as that there is a limit to the decrease in fluidity during molding, and that it is difficult to maintain handling properties due to the loss of crystallinity due to mixing with phenol resin after making a composition. In general, when a crystalline epoxy resin is used, it must be kneaded at a temperature above the melting point of the crystalline epoxy resin in a kneader, otherwise the epoxy resin will not be sufficiently melted and uniformly dispersed. The molded product of the resin molding material becomes non-uniform, and the strength of the molded product differs depending on the part, so that the characteristics of the semiconductor device deteriorate. However, if the temperature of this molten mixture is high during melt-kneading, the curing reaction proceeds in the kneader, which may lead to a decrease in fluidity and the generation of gelled substances that cause unfilling during molding. . Or, since recrystallization occurs due to high crystallinity, the crystallinity remains even after heat kneading, and this residual crystal melts only during molding, resulting in low curability, burrs and voids, and poor curability. There is a possibility that the formed semiconductor device may be inferior in formability, such as stains being likely to be formed on the surface thereof.
 一方、フェノール樹脂において結晶性を導入する試みもあるが、その結晶性の高さから局所的に結晶化が進行し、均質な樹脂組成物を得ることが難しい課題を有する。これに対し、特許文献2には、結晶性のフェノール化合物を用いた場合の溶け残りの課題を解決するため、溶融状態の4級ホスホニウム化合物を溶媒とし、その溶媒中に結晶性のフェノール化合物を完全溶解することで、溶け残りの発生しない保存安定性に優れる溶融混合物が得られることを開示している。しかしながら100℃程度での加熱溶融を伴うため、室温への冷却時に安定して均質な樹脂組成物が得られない可能性がある。 On the other hand, there are attempts to introduce crystallinity into phenolic resins, but due to the high crystallinity, crystallization progresses locally, making it difficult to obtain a homogeneous resin composition. On the other hand, in Patent Document 2, in order to solve the problem of undissolved residue when using a crystalline phenol compound, a quaternary phosphonium compound in a molten state is used as a solvent, and a crystalline phenol compound is added to the solvent. It discloses that the complete dissolution provides a molten mixture that does not leave undissolved parts and has excellent storage stability. However, since it involves heating and melting at about 100° C., there is a possibility that a stable and homogeneous resin composition cannot be obtained when cooled to room temperature.
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、20℃において半晶状であり、流動性とハンドリング性を両立させるフェノール樹脂混合物を見出し、本発明を完成させるに至った。 In view of the above-mentioned actual situation, the present inventors have made intensive studies, and as a result, have found a phenolic resin mixture that is semi-crystalline at 20°C and has both fluidity and handleability, and have completed the present invention.
 すなわち本発明は、以下の[1]~[5]に関する。
[1]
 下記式(1)または下記式(2)で表されるフェノール樹脂(A)と、融点が70~300℃である結晶状のアルキル置換ビフェノール化合物(B)とを含有し、成分(A)と成分(B)の重量比率が95/5~85/15であるフェノール樹脂混合物。
That is, the present invention relates to the following [1] to [5].
[1]
containing a phenolic resin (A) represented by the following formula (1) or the following formula (2) and a crystalline alkyl-substituted biphenol compound (B) having a melting point of 70 to 300° C.; Phenolic resin mixtures in which the weight ratio of component (B) is from 95/5 to 85/15.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、複数存在するR、pはそれぞれ独立して存在し、Rは水素原子、炭素数1~10のアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、ニトロ基、ニトリル基、アミノ基、または前述と同様の置換基を有しても良いフェニル基を表し、pは0~3の実数である。nは繰り返し数であり、1~20の実数である。) (In formula (1), multiple R 1 and p exist independently, and R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above, p is a real number of 0 to 3. n is a repeating number and is a real number of 1 to 20.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、複数存在するR、pはそれぞれ独立して存在し、Rは水素原子、炭素数1~10のアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、ニトロ基、ニトリル基、アミノ基、または前述と同様の置換基を有しても良いフェニル基を表し、pは0~3の実数である。nは繰り返し数であり、1~20の実数である。)
[2]
 20℃において半晶状を示し、かつ水酸基当量が130~200g/eqである前項[1]に記載のフェノール樹脂混合物。
[3]
 150℃におけるICI溶融粘度(コーンプレート法)が0.001~0.20Pa・sである前項[1]または[2]に記載のフェノール樹脂混合物。
[4]
 前項[1]から[3]のいずれか一項に記載のフェノール樹脂混合物とエポキシ樹脂を含有する硬化性樹脂組成物。
[5]
 前項[4]に記載の硬化性樹脂組成物を硬化した硬化物。
(In formula (2), multiple R 1 and p exist independently, and R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above, p is a real number of 0 to 3. n is a repeating number and is a real number of 1 to 20.)
[2]
The phenolic resin mixture according to [1] above, which exhibits a semi-crystalline state at 20° C. and has a hydroxyl equivalent of 130 to 200 g/eq.
[3]
The phenolic resin mixture according to the preceding item [1] or [2], which has an ICI melt viscosity (cone-plate method) at 150° C. of 0.001 to 0.20 Pa·s.
[4]
A curable resin composition containing the phenolic resin mixture according to any one of [1] to [3] above and an epoxy resin.
[5]
A cured product obtained by curing the curable resin composition according to [4] above.
 本発明のフェノール樹脂混合物は非常に高い流動性とハンドリング特性に優れるため、生産性に寄与し、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)や炭素繊維強化複合材料(以下、「CFRP」ともいう。)を始めとする各種複合材料、接着剤、塗料等に有用である。特に半導体素子を保護する半導体封止材料として有用である。 Since the phenolic resin mixture of the present invention has very high fluidity and excellent handling properties, it contributes to productivity, and is used as an insulating material for electric and electronic parts, laminates (printed wiring boards, build-up boards, etc.) and carbon fiber reinforced composite materials. (hereinafter also referred to as "CFRP"), various composite materials, adhesives, paints and the like. It is particularly useful as a semiconductor encapsulating material for protecting semiconductor elements.
 本発明のフェノール樹脂混合物は、下記式(1)または下記式(2)で表されるフェノール樹脂(以下、成分(A)とも称する。)と、融点が70~300℃である結晶状のアルキル置換ビフェノール化合物(B)(以下、成分(B)とも称する。)を含有する。 The phenol resin mixture of the present invention comprises a phenol resin represented by the following formula (1) or formula (2) (hereinafter also referred to as component (A)) and a crystalline alkyl having a melting point of 70 to 300 ° C. It contains a substituted biphenol compound (B) (hereinafter also referred to as component (B)).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(1)中、複数存在するR、pはそれぞれ独立して存在し、Rは水素原子、炭素数1~10のアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、ニトロ基、ニトリル基、アミノ基、または前述と同様の置換基を有しても良いフェニル基を表し、pは0~3の実数である。nは繰り返し数であり、1~20の実数である。) (In formula (1), multiple R 1 and p exist independently, and R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above, p is a real number of 0 to 3. n is a repeating number and is a real number of 1 to 20.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(2)中、複数存在するR、pはそれぞれ独立して存在し、Rは水素原子、炭素数1~10のアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、ニトロ基、ニトリル基、アミノ基、または前述と同様の置換基を有しても良いフェニル基を表し、pは0~3の実数である。nは繰り返し数であり、1~20の実数である。) (In formula (2), multiple R 1 and p exist independently, and R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above, p is a real number of 0 to 3. n is a repeating number and is a real number of 1 to 20.)
 前記式(1)、式(2)中のRは水素原子、炭素数1~10のアルキル基であることが好ましく、水素原子、炭素数1~3のアルキル基であることがさらに好ましく、水素原子であることが特に好ましい。pは0または1の実数であることが好ましく、0であることが特に好ましい。 R 1 in the above formulas (1) and (2) is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, A hydrogen atom is particularly preferred. Preferably, p is a real number of 0 or 1, particularly preferably 0.
 前記式(1)、式(2)中のnの値はフェノール樹脂のゲルパーミエーションクロマトグラフィー(GPC、検出器:RI)の測定により求められた数平均分子量の値、あるいは分離したピークの各々の面積比から算出することが出来る。 The value of n in the formulas (1) and (2) is the value of the number average molecular weight obtained by measurement of phenolic resin gel permeation chromatography (GPC, detector: RI), or each of the separated peaks can be calculated from the area ratio of
 前記式(1)、式(2)中のnの値は通常1~20であり、1.1~20であることが好ましく、1.1~10であることがさらに好ましい。nが1未満の場合、結晶性が強く機械混錬しても均質な樹脂混合物を得ることができない。一方、nが20より大きい場合、溶融粘度が高く、流動性や高フィラー充填の観点から使用が難しい。 The value of n in the formulas (1) and (2) is usually 1-20, preferably 1.1-20, more preferably 1.1-10. If n is less than 1, the crystallinity is so strong that a homogeneous resin mixture cannot be obtained even by mechanical kneading. On the other hand, when n is larger than 20, the melt viscosity is high, and it is difficult to use from the viewpoint of fluidity and high filler filling.
 前記式(1)、式(2)で表されるフェノール樹脂は公然知られた合成方法に基づき合成することもできるが、市場からも容易に入手することができる。例えば、前記式(1)で表されるフェノール樹脂はKAYAHARD GPH-65(日本化薬株式会社製、軟化点65℃)、前記式(2)で表されるフェノール樹脂はMEHC-7840-4S(明和化成株式会社製、軟化点58-65℃)として入手することができる。 The phenolic resins represented by the above formulas (1) and (2) can be synthesized based on publicly known synthesis methods, but can also be easily obtained from the market. For example, the phenolic resin represented by the formula (1) is KAYAHARD GPH-65 (manufactured by Nippon Kayaku Co., Ltd., softening point 65°C), and the phenolic resin represented by the formula (2) is MEHC-7840-4S ( available from Meiwa Kasei Co., Ltd., softening point 58-65°C).
 成分(B)はビフェノール化合物にアルキル基を導入することで成分(A)との相溶性を向上させたものであり、結晶性フェノール化合物の結晶性をある程度維持したまま、成分(A)に均一に半溶融・混合し、結晶成分を均質分散させることにより半晶状のフェノール樹脂混合物を得ることになる。本願において「半晶状」とは、樹脂が濁っていて透明でない状態であり、微結晶が樹脂中に、均一に分散している状態を指す。本願においては結晶状のアルキル置換フェノール樹脂は完全に溶融させず、結晶状態を維持させたまま分散し、均質な半晶状の樹脂組成物とし、有機フィラーのごとく使用することにより、フェノール樹脂混合物の流動性とハンドリング特性を両立させるものである。
 言い換えると、有機フィラーとして成分(B)を含有する成分(A)をマトリックスとするフェノール樹脂混合物として用いることができる。
Component (B) is a biphenol compound with improved compatibility with component (A) by introducing an alkyl group. A semi-crystalline phenolic resin mixture can be obtained by semi-melting and mixing the crystalline components to homogenously disperse them. In the present application, the term "semicrystalline" refers to a state in which the resin is turbid and not transparent, and in which fine crystals are uniformly dispersed in the resin. In the present application, the crystalline alkyl-substituted phenol resin is not completely melted, but is dispersed while maintaining the crystalline state to form a homogeneous semi-crystalline resin composition. It achieves both fluidity and handling characteristics.
In other words, it can be used as a phenolic resin mixture with component (A) containing component (B) as an organic filler as a matrix.
 したがって本願においては成分(B)の融点以下の温度で混練し、樹脂マトリックス中に均質分散することが重要となる。なお、混練後において、結晶状態を維持させ、均一に分散したフェノール樹脂混合物であるかどうかは、調製後のフェノール樹脂混合物の外観を目視で確認することにより判断することができる。例えば、不均一な樹脂と結晶のかたまりが分散した状態であれば、ビフェノール化合物が均質に分散していないことを表し、単に不透明の樹脂板の状態であれば、均一に分散していると判断できる。 Therefore, in the present application, it is important to knead the component (B) at a temperature below the melting point and uniformly disperse it in the resin matrix. After kneading, whether or not the phenolic resin mixture maintains a crystalline state and is uniformly dispersed can be determined by visually confirming the appearance of the phenolic resin mixture after preparation. For example, if the resin and crystal clumps are dispersed unevenly, it indicates that the biphenol compound is not evenly dispersed. can.
 成分(B)の融点は通常70~300℃であり、好ましくは100~250℃である。70℃より低い場合、混練時の熱で完全溶融してしまい、結晶性を維持するのが難しい。また300℃より高い場合、硬化・成型時に結晶が溶融せず均一分散しないので、この成型材料は均質な硬化物を作ることが難しい。
 なお、融点は、例えば、市販の示差走査熱量計(DSC)を用いて吸熱ピーク温度から求めることができる。
The melting point of component (B) is usually 70-300°C, preferably 100-250°C. If the temperature is lower than 70° C., it is completely melted by the heat during kneading, making it difficult to maintain the crystallinity. If the temperature is higher than 300° C., the crystals do not melt and are not uniformly dispersed during curing and molding, making it difficult to produce a homogeneous cured product from this molding material.
The melting point can be determined from the endothermic peak temperature using, for example, a commercially available differential scanning calorimeter (DSC).
 また流動性向上のため、成分(B)の分子量は小さいほうが好ましく、好ましくは190~400であり、さらに好ましくは210~350、特に好ましくは240~300である。
 また、成分(B)の水酸基当量は、95~200g/eq.であることが好ましく、105~175g/eq.であることがより好ましく、120~150g/eq.であることが特に好ましい。
In order to improve fluidity, the molecular weight of component (B) is preferably as small as possible, preferably 190-400, more preferably 210-350, particularly preferably 240-300.
Further, the hydroxyl equivalent of component (B) is 95 to 200 g/eq. is preferably 105 to 175 g/eq. is more preferably 120 to 150 g/eq. is particularly preferred.
 また、成分(B)において、置換されたアルキル基の数としては2~6が好ましい。結晶性の観点から置換されたアルキル基の数は2、4、6の偶数であることが好ましい。置換されたアルキル基として炭素数1~6のアルキル基が好ましく、メチル基、エチル基、フェニル基、アリル基が挙げられる。
 具体的にはジメチルビフェノール、テトラメチルビフェノール、ジアリルビフェノール、ジエチルビフェノール、テトラエチルビフェノール、ジフェニルビフェノールなどが挙げられる。
 本発明においては置換されたアルキル基がメチル基、エチル基の場合、4~6置換タイプのビフェノール化合物が好ましく、フェニル基、アリル基であれば2置換タイプのビフェノール化合物が好ましい。アルキル基が小さいメチル基やエチル基の2置換タイプであるとその反応性が高いため、分子量が小さく初期粘度が低い場合でも、反応性が高くなり、結果的に流動性が落ちてしまうおそれがある。
 一方、置換基の大きなフェニル基やアリル基であればその効果は大きく、4置換とすると逆に反応がしづらくなってしまうおそれがある。置換基の総炭素数は2~12が好ましく、特に4~10が好ましい。
Further, in the component (B), the number of substituted alkyl groups is preferably 2-6. From the viewpoint of crystallinity, the number of substituted alkyl groups is preferably an even number of 2, 4, or 6. The substituted alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, such as methyl group, ethyl group, phenyl group and allyl group.
Specific examples include dimethylbiphenol, tetramethylbiphenol, diallylbiphenol, diethylbiphenol, tetraethylbiphenol and diphenylbiphenol.
In the present invention, when the substituted alkyl group is a methyl group or an ethyl group, a 4- to 6-substituted biphenol compound is preferable, and when the substituted alkyl group is a phenyl group or an allyl group, a disubstituted biphenol compound is preferable. Disubstituted methyl or ethyl groups with small alkyl groups have high reactivity, so even if the molecular weight is small and the initial viscosity is low, the reactivity increases, and as a result, there is a risk that the fluidity will decrease. be.
On the other hand, a phenyl group or an allyl group having a large substituent group has a large effect, and tetra-substitution may conversely make the reaction difficult. The total carbon number of the substituent is preferably 2-12, more preferably 4-10.
 本発明に使用する成分(B)は市販されているものを用いてもよく、公知の方法で製造したものを用いてもよい。市販品として入手できる具体的な化合物としては、例えば、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニル(東京化成工業(株)製 融点223-225℃ 分子量242.32 置換基の総炭素数4)、3,3’-ジメチル-4,4’-ビフェノール(ソンウォンインターナショナルジャパン(株)製 融点162℃ 分子量214.26 置換基の総炭素数2)、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニル(三光化学(株)製) 融点147.7℃ 分子量338.41 置換基の総炭素数12)、3,3’-ジアリルビフェニル-4,4’-ジオール(三井化学ファイン(株)製 融点76℃ 分子量266.34 置換基の総炭素数6)等が挙げられるが、これらに限られない。 The component (B) used in the present invention may be commercially available or may be produced by a known method. Specific compounds available as commercial products include, for example, 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.; melting point: 223-225°C; molecular weight: 242. 32 Total carbon number of substituents 4), 3,3'-dimethyl-4,4'-biphenol (manufactured by Songwon International Japan Co., Ltd. Melting point 162°C Molecular weight 214.26 Total carbon number of substituents 2), 4,4 '-dihydroxy-3,3'-diphenyldiphenyl (manufactured by Sanko Kagaku Co., Ltd.) melting point 147.7°C molecular weight 338.41 total carbon number of substituents 12), 3,3'-diallylbiphenyl-4,4'- Diol (manufactured by Mitsui Chemicals Fine Co., Ltd.; melting point: 76°C; molecular weight: 266.34; total carbon number of substituents: 6);
 本発明のフェノール樹脂混合物は、成分(A)と成分(B)を均一に混合することにより得られる。
 ただし、成分(B)の融点以下の温度で混合し、結晶が分散するように混練混合することが好ましい。具体的には結晶状のアルキル置換ビフェール化合物の融点以下の温度で混練を行い、有機フィラーとして使用することが好ましい。この際、均質に結晶を分散させておかないと配合した成分(A)と成分(B)の比率が変わってしまうため、部分的な硬化不良が起こり、好ましくない。
 具体的には100℃より低い温度で混錬することが好ましい。100℃を超えると室温への冷却過程で結晶性フェノール樹脂の凝集が進行し、結晶が均質に分散しない。また、加熱溶融した場合、得られたフェノール樹脂混合物のべたつきに影響し、取り出しが困難になる、製造プロセスにおいてブロッキング等を起こし、各々がくっついてしまうことで、正確な重量測定が困難になる、さらには仕込み口への投入が難しくなるなど生産性に問題が生じてしまうおそれがある。したがって、本発明においては融点以下の温度での混練・混合が好ましい。
The phenolic resin mixture of the present invention is obtained by uniformly mixing component (A) and component (B).
However, it is preferable to mix at a temperature below the melting point of the component (B) and knead and mix so that the crystals are dispersed. Specifically, it is preferable to knead the mixture at a temperature below the melting point of the crystalline alkyl-substituted bifer compound and use it as an organic filler. In this case, if the crystals are not homogeneously dispersed, the ratio of the blended components (A) and (B) will change, which is undesirable because partial curing failure will occur.
Specifically, it is preferable to knead at a temperature lower than 100°C. If the temperature exceeds 100°C, aggregation of the crystalline phenolic resin proceeds during cooling to room temperature, and the crystals are not uniformly dispersed. In addition, when heated and melted, it affects the stickiness of the obtained phenolic resin mixture, making it difficult to take out. Furthermore, there is a risk of productivity problems, such as difficulty in charging into the inlet. Therefore, in the present invention, kneading/mixing at a temperature below the melting point is preferred.
 得られたタブレット状、パウダー状、シート状もしくは粒状の混合物においては20℃で保管してもべたつきがないことが特徴となる。
 なお、混練・混合においては、押出機、ニーダ、ロール等を用いて充分に混合してフェノール樹脂混合物を得ることができる。
The obtained tablet-like, powder-like, sheet-like or granular mixture is characterized by being non-sticky even when stored at 20°C.
In kneading and mixing, the phenolic resin mixture can be obtained by sufficiently mixing using an extruder, a kneader, a roll, or the like.
 本発明のフェノール樹脂混合物は、成分(A)と成分(B)の重量比率が通常95/5~85/15であり、好ましくは90/10~85/15である。成分(A)の重量比が95より大きいと、流動性が悪くなる。一方、成分(A)の重量比が85より小さいと、20℃においてフェノール樹脂混合物の一部が不均一に結晶化してしまう。すなわち、成分(A)と成分(B)の重量比率が95/5~85/15であることにより、高温においては流動性を有し、20℃ではべたつきのない均一な半晶状となることから、流動性とハンドリング性を兼ね備える。 In the phenolic resin mixture of the present invention, the weight ratio of component (A) and component (B) is usually 95/5 to 85/15, preferably 90/10 to 85/15. If the weight ratio of component (A) is greater than 95, fluidity will be poor. On the other hand, if the weight ratio of component (A) is less than 85, part of the phenolic resin mixture will crystallize unevenly at 20°C. That is, when the weight ratio of component (A) and component (B) is 95/5 to 85/15, it has fluidity at high temperatures and becomes non-sticky and uniform semi-crystalline at 20°C. Therefore, it has both fluidity and handling.
 本発明のフェノール樹脂混合物の水酸基当量は、好ましくは130~200g/eqであり、さらに好ましくは163~200/eqであり、特に好ましくは186~200g/eqである。水酸基当量が130g/eqより小さい場合、官能基が多量に含まれることから硬化速度が速くなり、十分な流動性を得ることができないおそれがある。一方で、水酸基当量が200g/eqより大きい場合、硬化性が悪く、十分な硬度が得られない可能性がある。 The hydroxyl equivalent of the phenolic resin mixture of the present invention is preferably 130-200 g/eq, more preferably 163-200/eq, and particularly preferably 186-200 g/eq. If the hydroxyl equivalent is less than 130 g/eq, the functional groups are contained in a large amount, so that the curing speed is increased, and sufficient fluidity may not be obtained. On the other hand, when the hydroxyl equivalent is more than 200 g/eq, the curability is poor and sufficient hardness may not be obtained.
 本発明の150℃におけるICI溶融粘度(コーンプレート法)は、好ましくは0.001~0.20Pa・sであり、さらに好ましくは0.005~0.15Pa・s、特に好ましくは0.01~0.1Pa・sである。ICI溶融粘度が0.001Pa・sより低い場合、溶融粘度が低すぎるためフィラーの分散状態を維持しづらく、0.20Pa・sより高い場合、十分な量のフィラーを充填することが出来ず、封止材の収縮率が高くなってしまう。 The ICI melt viscosity (cone plate method) at 150° C. of the present invention is preferably 0.001 to 0.20 Pa s, more preferably 0.005 to 0.15 Pa s, particularly preferably 0.01 to It is 0.1 Pa·s. When the ICI melt viscosity is lower than 0.001 Pa s, the melt viscosity is too low to maintain the dispersed state of the filler. The shrinkage rate of the encapsulating material increases.
 本発明の硬化性樹脂組成物はエポキシ樹脂を含有する。
 用いることができるエポキシ樹脂の具体例としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、等シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。
 ただし、使用するエポキシ樹脂をすべて溶融混合した際の軟化点が40~180℃であることが好ましい。特に好ましくは40~150℃である。
The curable resin composition of the present invention contains an epoxy resin.
Specific examples of epoxy resins that can be used include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3′,5,5′-tetramethyl-[ 1,1'-biphenyl]-4,4'-diol, hydroquinone, resorcinol, naphthalenediol, tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclo pentadiene, furfural, 4,4'-bis(chloromethyl)-1,1'-biphenyl, 4,4'-bis(methoxymethyl)-1,1'-biphenyl, 1,4-bis(chloromethyl)benzene, Polycondensates with 1,4-bis(methoxymethyl)benzene and the like and modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, glycidyl ethers derived from alcohols, alicyclic epoxy resins, glycidyl Silsesquioxane-based epoxy resins such as amine-based epoxy resins, glycidyl ester-based epoxy resins (chain-like, cyclic, ladder-like, or a mixture of at least two or more of these siloxane structures with glycidyl groups and/or epoxycyclohexane solid or liquid epoxy resins such as structured epoxy resins), but are not limited thereto.
However, it is preferable that the softening point of all the epoxy resins used is 40 to 180° C. when melt-mixed. Especially preferred is 40 to 150°C.
 本発明の硬化性樹脂組成物には、無機充填剤を含有することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。本発明においては、半導体封止材に使用することを想定する場合には、特性のバランスの観点から結晶シリカ、溶融シリカ、アルミナが好ましい。
 これら無機充填剤の含有量は、本発明の硬化性樹脂組成物100質量%に対して70~96質量%を占める量が用いられることが好ましい。特に70~93質量%であることが好ましい。本発明においては特に流動性が高いため、無機充填剤が少なすぎると無機充填剤と樹脂のバランスがずれ、樹脂組成物の成型体の中で無機充填剤の多い部分と少ない部分が出てしまう等特性面で好ましくない。
 また、無機充填剤の含有量が96%を超えると流動性が出せなくなってしまうため好ましくない。
The curable resin composition of the invention may contain an inorganic filler. Inorganic fillers include powders of crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, etc. Beads formed by spheroidizing are included, but are not limited to these. These may be used independently and may use 2 or more types. In the present invention, crystalline silica, fused silica, and alumina are preferred from the viewpoint of the balance of properties when it is assumed to be used as a semiconductor sealing material.
The content of these inorganic fillers is preferably 70 to 96% by mass with respect to 100% by mass of the curable resin composition of the present invention. In particular, it is preferably 70 to 93% by mass. In the present invention, since the fluidity is particularly high, if the amount of the inorganic filler is too small, the balance between the inorganic filler and the resin is disturbed, resulting in portions with a large amount of inorganic filler and portions with a small amount of inorganic filler in the molded product of the resin composition. Unfavorable in terms of iso-characteristics.
Moreover, if the content of the inorganic filler exceeds 96%, it is not preferable because the fluidity cannot be obtained.
 本発明の硬化性樹脂組成物において、フェノール樹脂混合物はエポキシ樹脂の硬化剤として作用する。本発明においては硬化剤として、本発明のフェノール樹脂混合物だけでなく、他の硬化剤との併用をしてもかまわない。
 使用できる他の硬化剤としては、本発明のフェノール樹脂以外のフェノール系化合物、アミン系化合物、酸無水物系化合物、アミド系化合物、カルボン酸系化合物などが挙げられる。フェノール樹脂、フェノール化合物としては、例えば、ビスフェノールA、ビスフェノールF、3,3’-ジメチル-4,4’-ビスフェノールA、3,3’-ジメチル-4,4’-ビスフェノールF、3,3’,5,5’-テトラメチル-4,4’-ビスフェノールA、3,3’,5,5’-テトラメチル-4,4’-ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのポリフェノール類が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 好ましいフェノール樹脂としては、フェノールアラルキル樹脂(芳香族アルキレン構造を有する樹脂)が挙げられ、特に好ましくはフェノール、ナフトール、クレゾールから選ばれる少なくとも一種を有する構造であり、そのリンカーとなるアルキレン部が、ベンゼン構造、ビフェニル構造、ナフタレン構造から選ばれる少なくとも一種であることを特徴とする樹脂(具体的にはザイロック、ナフトールザイロック、フェノールビフェニレンノボラック樹脂、クレゾール-ビフェニレンノボラック樹脂、フェノール-ナフタレンノボラック樹脂などが挙げられる。)である。
In the curable resin composition of the present invention, the phenolic resin mixture acts as a curing agent for the epoxy resin. In the present invention, as a curing agent, not only the phenolic resin mixture of the present invention, but also other curing agents may be used in combination.
Other curing agents that can be used include phenolic compounds other than the phenolic resin of the present invention, amine compounds, acid anhydride compounds, amide compounds, carboxylic acid compounds, and the like. Examples of phenolic resins and phenolic compounds include bisphenol A, bisphenol F, 3,3'-dimethyl-4,4'-bisphenol A, 3,3'-dimethyl-4,4'-bisphenol F, 3,3' , 5,5′-tetramethyl-4,4′-bisphenol A, 3,3′,5,5′-tetramethyl-4,4′-bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4, 4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, naphthalenediol, tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenols (phenol , alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural , 4,4′-bis(chloromethyl)-1,1′-biphenyl, 4,4′-bis(methoxymethyl)-1,1′-biphenyl, 1,4′-bis(chloromethyl)benzene, 1 , 4'-bis(methoxymethyl)benzene and other polycondensates and modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and polyphenols such as condensates of terpene and phenols. is not limited to These may be used independently and may use 2 or more types.
Preferable phenol resins include phenol aralkyl resins (resins having an aromatic alkylene structure), and particularly preferably a structure having at least one selected from phenol, naphthol, and cresol, the alkylene moiety serving as a linker being benzene. structure, biphenyl structure, and naphthalene structure (specifically, Zyloc, naphthol Zyloc, phenolbiphenylene novolak resin, cresol-biphenylene novolak resin, phenol-naphthalene novolak resin, etc.) It is possible.).
 アミン系化合物、アミド系化合物としては、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物が挙げられる。
 酸無水物系化合物、カルボン酸系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂が挙げられる。
 その他としては、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられる。
 上記、他の硬化剤はこれらに限定されるものではない。また、これらは単独で用いてもよく、2種以上を用いてもよい。本発明においては特に信頼性の面からフェノール系化合物の使用が好ましい。
Examples of amine-based compounds and amide-based compounds include nitrogen-containing compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and polyamide resin synthesized from a dimer of linolenic acid and ethylenediamine. mentioned.
Acid anhydride compounds and carboxylic acid compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, and nadic anhydride. , hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride, methylbicyclo[2,2,1]heptane- Acid anhydrides such as 2,3-dicarboxylic anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride; addition of various alcohols, carbinol-modified silicones, and the aforementioned acid anhydrides Examples include carboxylic acid resins obtained by reaction.
Other examples include imidazole, trifluoroborane-amine complexes, and guanidine derivative compounds.
The above and other curing agents are not limited to these. Moreover, these may be used independently and may use 2 or more types. In the present invention, it is particularly preferable to use a phenolic compound from the aspect of reliability.
 本発明の硬化性樹脂組成物において、エポキシ樹脂と硬化剤の使用量は、全エポキシ樹脂のエポキシ基1当量に対して0.7~1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。 In the curable resin composition of the present invention, the amount of the epoxy resin and the curing agent used is preferably 0.7 to 1.2 equivalents per equivalent of the epoxy group of the total epoxy resin. If the amount is less than 0.7 equivalents or if the amount exceeds 1.2 equivalents with respect to 1 equivalent of the epoxy group, curing may be incomplete and good cured physical properties may not be obtained.
 本発明の硬化性樹脂組成物には、さらに、硬化促進剤を含有することができる。
 用い得る硬化促進剤の具体例としては、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩などの4級アンモニウム塩、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級ホスホニウム塩が挙げられる。4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤の配合量は、エポキシ樹脂100質量部に対して0.01~5.0質量部が必要に応じ用いられる。
The curable resin composition of the present invention may further contain a curing accelerator.
Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-(dimethylaminomethyl)phenol, 1,8-diaza -tertiary amines such as bicyclo(5,4,0)undecene-7, phosphines such as triphenylphosphine, tetrabutylammonium salts, triisopropylmethylammonium salts, trimethyldecanylammonium salts, cetyltrimethylammonium salts, etc. and quaternary phosphonium salts such as quaternary ammonium salts, triphenylbenzylphosphonium salts, triphenylethylphosphonium salts, and tetrabutylphosphonium salts. The counter ions of the quaternary salt are halogen, organic acid ions, hydroxide ions, and the like, and are not particularly specified, but organic acid ions and hydroxide ions are particularly preferred. metal compounds such as tin octylate; The curing accelerator is used in an amount of 0.01 to 5.0 parts by mass based on 100 parts by mass of the epoxy resin.
 更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、界面活性剤、染料、顔料、紫外線吸収剤等の種々の配合剤、各種熱硬化性樹脂を添加することができる。 Further, the curable resin composition of the present invention contains various additives such as release agents such as silane coupling agents, stearic acid, palmitic acid, zinc stearate and calcium stearate, surfactants, dyes, pigments and ultraviolet absorbers. Compounding agents and various thermosetting resins can be added.
 さらに本発明の硬化性樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100質量部に対して通常0.05~50質量部、好ましくは0.05~20質量部が必要に応じて用いられる。 Further, the curable resin composition of the present invention can be blended with a binder resin as needed. Examples of binder resins include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. , but not limited to these. The blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product. Parts by mass are used as needed.
 本発明の硬化性樹脂組成物は、必要に応じて公知のマレイミド系化合物を配合することができる。用いうるマレイミド化合物の具体例としては、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、ビフェニルアラルキル型マレイミドなどが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。マレイミド系化合物を配合する際は、必要により硬化促進剤を配合するが、前記硬化促進剤や、有機化酸化物、アゾ化合物などのラジカル重合開始剤など使用できる。 The curable resin composition of the present invention can contain a known maleimide compound as necessary. Specific examples of usable maleimide compounds include 4,4′-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2′-bis[4-(4-maleimidophenoxy)phenyl]propane, 3 ,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 4,4′-diphenyletherbismaleimide, 4,4′-diphenylsulfone Bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene, biphenylaralkyl-type maleimide, etc., but not limited thereto. These may be used alone or in combination of two or more. When blending the maleimide-based compound, a curing accelerator may be blended as necessary, and the above-mentioned curing accelerators, organic peroxides, radical polymerization initiators such as azo compounds, and the like can be used.
 本発明の硬化性樹脂組成物は、上記各成分を所定の割合で均一に混合することにより得られ、通常130~180℃で30~500秒の範囲で予備硬化し、更に、150~200℃で2~15時間、後硬化することにより充分な硬化反応が進行し、本発明の硬化物が得られる。又、硬化性樹脂組成物の成分を溶剤等に均一に分散または溶解させ、溶媒を除去した後硬化させることもできる。 The curable resin composition of the present invention is obtained by uniformly mixing the above-mentioned respective components in a predetermined ratio, usually precured at 130 to 180 ° C. for 30 to 500 seconds, and further cured at 150 to 200 ° C. After curing for 2 to 15 hours at , the curing reaction proceeds sufficiently to obtain the cured product of the present invention. It is also possible to uniformly disperse or dissolve the components of the curable resin composition in a solvent or the like, remove the solvent, and then cure the composition.
 こうして得られる本発明の硬化性樹脂組成物は、耐湿性、耐熱性、高接着性、低誘電率、低誘電正接を有する。従って、本発明の硬化性樹脂組成物は、耐湿性、耐熱性、高接着性、低誘電率、低誘電正接の要求される広範な分野で用いることが出来る。具体的には、絶縁材料、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、封止材料、レジスト等あらゆる電気・電子部品用材料として有用である。又、成形材料、複合材料の他、塗料材料、接着剤、3Dプリンティング等の分野にも用いることが出来る。特に半導体封止においては、耐ハンダリフロー性が有益なものとなる。 The curable resin composition of the present invention thus obtained has moisture resistance, heat resistance, high adhesiveness, low dielectric constant and low dielectric loss tangent. Therefore, the curable resin composition of the present invention can be used in a wide range of fields requiring moisture resistance, heat resistance, high adhesiveness, low dielectric constant and low dielectric loss tangent. Specifically, it is useful as an insulating material, laminate (printed wiring board, BGA substrate, build-up substrate, etc.), sealing material, resist, and all other materials for electrical and electronic parts. In addition to molding materials and composite materials, it can also be used in fields such as paint materials, adhesives, and 3D printing. Particularly in semiconductor encapsulation, solder reflow resistance is beneficial.
 半導体装置は本発明の硬化性樹脂組成物で封止されたものを有する。半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。 A semiconductor device has one sealed with the curable resin composition of the present invention. Examples of semiconductor devices include DIP (dual in-line package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), SOP (small outline package), TSOP (thin small outline package), and TQFP. (think quad flat package) and the like.
 本発明の硬化性樹脂組成物の調製方法は特に限定されないが、各成分を溶剤等に分散または溶解させ、均一に混合し、必要に応じて溶剤を留去することで調製してもよいし、あるいはプレポリマー化してもよい。例えば本発明のフェノール樹脂混合物エポキシ樹脂、アミン化合物、マレイミド系化合物、シアネートエステル化合物、フェノール樹脂、酸無水物化合物などの硬化剤及びその他添加剤を、溶剤の存在下または非存在下において加熱することにより追加してプレポリマー化する。各成分の混合またはプレポリマー化は溶剤の非存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。 Although the method for preparing the curable resin composition of the present invention is not particularly limited, it may be prepared by dispersing or dissolving each component in a solvent or the like, uniformly mixing, and optionally distilling off the solvent. , or may be prepolymerized. For example, the phenolic resin mixture epoxy resin of the present invention, amine compounds, maleimide compounds, cyanate ester compounds, phenolic resins, curing agents such as acid anhydride compounds, and other additives may be heated in the presence or absence of a solvent. prepolymerized by addition. Mixing or prepolymerization of each component is carried out by using, for example, an extruder, kneader, rolls, etc. in the absence of a solvent, and by using a reactor equipped with a stirrer in the presence of a solvent.
 溶剤等を使用しないで均一に混合する手法としては50~100℃の範囲内の温度でニーダ、ロール、プラネタリーミキサー等の装置を用いて練りこむように混合し、均一な硬化性樹脂組成物とする。得られた硬化性樹脂組成物は粉砕後、タブレットマシーン等の成型機で円柱のタブレット状に成型、もしくは顆粒状の紛体、もしくは粉状の成型体とする、もしくはこれら組成物を表面支持体の上で溶融し0.05mm~10mmの厚みのシート状に成型し、硬化性樹脂組成物成型体とすることもできる。得られた成型体は0~20℃でべたつきのない成型体となり、-25~0℃で1週間以上保管しても流動性、硬化性がほとんど低下しない。
 得られた成型体についてトランスファー成型機、コンプレッション成型機にて硬化物に成型することができる。
As a method for uniform mixing without using a solvent, etc., a uniform curable resin composition is obtained by kneading using a device such as a kneader, roll, planetary mixer, etc. at a temperature within the range of 50 to 100 ° C. do. After pulverizing the obtained curable resin composition, it is molded into a cylindrical tablet by a molding machine such as a tablet machine, or it is made into a granular powder or a powdery molding, or these compositions are used as a surface support. It is also possible to form a sheet having a thickness of 0.05 mm to 10 mm by melting above and forming a curable resin composition molded body. The obtained molded article becomes a non-sticky molded article at 0 to 20°C, and its fluidity and curability hardly deteriorate even when stored at -25 to 0°C for 1 week or longer.
The resulting molded product can be molded into a cured product using a transfer molding machine or a compression molding machine.
 本発明の硬化性樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスともいう。)とすることもできる。本発明の硬化性樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させてワニスとし、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。この範囲よりも溶剤量が少ないと、ワニス粘度が高くなり作業性が悪化し、溶剤量が多いと、硬化物にボイドを発生させる原因になる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有する硬化性樹脂硬化物を得ることもできる。 An organic solvent can be added to the curable resin composition of the present invention to form a varnish-like composition (hereinafter simply referred to as varnish). If necessary, the curable resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to form a varnish. , Polyester fiber, polyamide fiber, alumina fiber, paper, etc., is impregnated into a base material and heat-dried to obtain a prepreg, which is hot-press molded to obtain a cured product of the curable resin composition of the present invention. . In this case, the solvent is usually used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present invention and the solvent. If the amount of solvent is less than this range, the viscosity of the varnish will increase and the workability will be deteriorated. Moreover, if it is a liquid composition, it is possible to obtain a curable resin-cured product containing carbon fibers by, for example, the RTM method.
 本発明の硬化物は各種用途に使用できる。
 例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
 特に本発明においては、半導体の封止材として主に用いられるが、同組成物を基板として使用する手法やモールドアンダーフィル(MUF)として使用することもできる。
The cured product of the present invention can be used for various purposes.
For example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.), sealants, additives to other resins, etc. is mentioned. Adhesives include adhesives for civil engineering, construction, automobiles, general office and medical use, as well as adhesives for electronic materials. Among them, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, adhesives for semiconductors such as underfill, underfill for BGA reinforcement, anisotropic conductive films ( ACF), mounting adhesives such as anisotropic conductive paste (ACP), and the like.
In particular, in the present invention, it is mainly used as a sealing material for semiconductors, but it can also be used as a substrate or as a mold underfill (MUF).
 具体的に現在用いられている封止剤の主な用途としてはコンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。 Specifically, the main applications of encapsulants currently in use are potting, dipping, transfer molding encapsulation for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, IC packages such as QFPs, BGAs, and CSPs. Examples include sealing (including reinforcing underfill) at the time of similar mounting.
 次に、本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り質量部である。尚、本発明はこれら実施例に限定されるものではない。
 以下に実施例で用いた各種分析方法について記載する。
ICI溶融粘度:JIS K 7117-2(ISO3219)に準拠
EXAMPLES Next, the present invention will be described in more detail with reference to examples. In the following, parts are parts by mass unless otherwise specified. However, the present invention is not limited to these examples.
Various analysis methods used in the examples are described below.
ICI melt viscosity: conforms to JIS K 7117-2 (ISO3219)
[実施例1~4、比較例1~3]
 KAYAHARD GPH-65(前記式(1)で表されるフェノール樹脂、日本化薬株式会社製、融点65℃)、MEHC-7840-4S(前記式(2)で表されるフェノール樹脂、明和化成株式会社製、融点58-65℃)、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニル(略:TMBP、東京化成工業(株)製 融点223-225℃ 分子量242.32 置換基の総炭素数4)を表1に示す割合でミキシングロールにて80℃で15分間混練混合を行い、フェノール樹脂混合物を調製した。
[Examples 1 to 4, Comparative Examples 1 to 3]
KAYAHARD GPH-65 (phenolic resin represented by the above formula (1), manufactured by Nippon Kayaku Co., Ltd., melting point 65 ° C.), MEHC-7840-4S (phenolic resin represented by the above formula (2), Meiwa Kasei Co., Ltd. company, melting point 58-65°C), 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl (abbreviation: TMBP, manufactured by Tokyo Chemical Industry Co., Ltd. melting point 223-225°C, molecular weight 242. 32 Substituents having a total carbon number of 4) were kneaded and mixed with a mixing roll at 80° C. for 15 minutes at the ratio shown in Table 1 to prepare a phenolic resin mixture.
[外観観察]
 得られたフェノール樹脂混合物を室温(20℃)にて外観を目視で観察した。
 結晶のかたまりがないもの、すなわち成分(B)が結晶状態を維持したまま均一に分散した状態であるものを〇、結晶のかたまりがあるものを×、として評価した。
[Appearance observation]
The appearance of the obtained phenol resin mixture was visually observed at room temperature (20° C.).
When there were no lumps of crystals, that is, when the component (B) was uniformly dispersed while maintaining the crystalline state, it was evaluated as ◯, and when there were lumps of crystals, it was evaluated as x.
[べた付き感]
 得られたタブレットの表面べたつき感を評価した。評価方法としては、得られたタブレットに10秒間指を押し付けることで塗膜のべたつき度合いを評価した。
○・・・べたつきなくさらさらとした表面である。
△・・・べたつきはあるが、指には貼り付かない。
×・・・非常にべたつき、指に貼り付く。
[Stickiness]
The surface stickiness of the obtained tablets was evaluated. As an evaluation method, the obtained tablet was pressed with a finger for 10 seconds to evaluate the degree of stickiness of the coating film.
◯: The surface was non-sticky and smooth.
Δ: Sticky, but does not stick to fingers.
x: Extremely sticky and sticks to fingers.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[実施例5、6、比較例4]
[スパイラルフロー試験]
 エポキシ樹脂、フェノール樹脂混合物(実施例3、4および比較例3)、シリカフィラー、硬化促進剤を表2の割合でミキシングロールにて80℃で25分間混練混合を行った。続いて、アルキメデススパイラル金型とトランスファー成型機を用いて、以下の条件でスパイラルフロー試験を行った。
 金型:EMMI-1-66に準拠したもの
 金型温度:175℃
 トランスファー圧力:70kgf/cm
 プレス:5tプレス、ポット径:30mm
 注入時間:1秒
 成形時間:120秒
[Examples 5 and 6, Comparative Example 4]
[Spiral flow test]
Epoxy resin, phenol resin mixture (Examples 3 and 4 and Comparative Example 3), silica filler, and curing accelerator in the ratio shown in Table 2 were kneaded and mixed by a mixing roll at 80°C for 25 minutes. Subsequently, using an Archimedes spiral mold and a transfer molding machine, a spiral flow test was conducted under the following conditions.
Mold: Conforming to EMMI-1-66 Mold temperature: 175°C
Transfer pressure: 70 kgf/cm 2
Press: 5t press, pot diameter: 30mm
Injection time: 1 second Molding time: 120 seconds
[ゲルタイム]
 表2記載の硬化性樹脂組成物の適量を金属製ヘラで175℃の熱板に置き、金属製ヘラを使ってかき混ぜ、試料に粘着性がなくなり、熱板から剥がれるようになった時または粘着性がなくなった時間を測定した。
[gel time]
Place an appropriate amount of the curable resin composition shown in Table 2 on a hot plate at 175 ° C with a metal spatula and stir with a metal spatula until the sample becomes tacky and peels off from the hot plate. The time when the sex disappeared was measured.
 スパイラルフロー試験ではその値が大きいほど流動性が良いことを示している。ゲルタイムは封止材を一定温度で加熱したとき、流動性を失うまでの時間であり硬化特性に関し、適宜選択できる。 In the spiral flow test, the higher the value, the better the fluidity. The gel time is the time required for the sealing material to lose its fluidity when heated at a constant temperature, and can be appropriately selected in relation to curing properties.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
NC-3000:ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、エポキシ当量277g/eq)
MSR-2102:高純度真球状シリカフィラー(株式会社龍森製)
TPP:トリフェニルホスフィン(純正化学株式会社製)
NC-3000: biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 277 g / eq)
MSR-2102: High-purity spherical silica filler (manufactured by Tatsumori Co., Ltd.)
TPP: Triphenylphosphine (manufactured by Junsei Chemical Co., Ltd.)
 表1、2より、本発明のフェノール樹脂混合物は、ハンドリング性、および流動性に優れることが確認できた。 From Tables 1 and 2, it was confirmed that the phenolic resin mixture of the present invention has excellent handleability and fluidity.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2021年3月23日付で出願された日本国特許出願(特願2021-048212)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2021-048212) filed on March 23, 2021, the entirety of which is incorporated by reference. Also, all references cited herein are incorporated in their entirety.
 以上のことから、本発明のフェノール樹脂混合物は高い流動性とハンドリング性を有しつつ、生産性および成型性に優れることがわかる。従って、本発明の硬化性樹脂組成物は、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)や炭素繊維強化複合材料(以下、「CFRP」ともいう。)を始めとする各種複合材料、接着剤、塗料等に有用である。特に半導体素子を保護する半導体封止材料として有用である。 From the above, it can be seen that the phenolic resin mixture of the present invention has excellent productivity and moldability while having high fluidity and handleability. Therefore, the curable resin composition of the present invention can be used for insulating materials for electric and electronic parts, laminates (printed wiring boards, build-up boards, etc.) and carbon fiber reinforced composite materials (hereinafter also referred to as "CFRP"). It is useful for various composite materials, adhesives, paints, etc. It is particularly useful as a semiconductor encapsulating material for protecting semiconductor elements.

Claims (5)

  1.  下記式(1)または下記式(2)で表されるフェノール樹脂(A)と、融点が70~300℃である結晶状のアルキル置換ビフェノール化合物(B)とを含有し、成分(A)と成分(B)の重量比率が95/5~85/15であるフェノール樹脂混合物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、複数存在するR、pはそれぞれ独立して存在し、Rは水素原子、炭素数1~10のアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、ニトロ基、ニトリル基、アミノ基、または前述と同様の置換基を有しても良いフェニル基を表し、pは0~3の実数である。nは繰り返し数であり、1~20の実数である。)
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中、複数存在するR、pはそれぞれ独立して存在し、Rは水素原子、炭素数1~10のアルキル基、ヒドロキシル基、メトキシ基、エトキシ基、ニトロ基、ニトリル基、アミノ基、または前述と同様の置換基を有しても良いフェニル基を表し、pは0~3の実数である。nは繰り返し数であり、1~20の実数である。)
    containing a phenolic resin (A) represented by the following formula (1) or the following formula (2) and a crystalline alkyl-substituted biphenol compound (B) having a melting point of 70 to 300° C.; Phenolic resin mixtures in which the weight ratio of component (B) is from 95/5 to 85/15.
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1), multiple R 1 and p exist independently, and R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above, p is a real number of 0 to 3. n is a repeating number and is a real number of 1 to 20.)
    Figure JPOXMLDOC01-appb-C000002

    (In formula (2), multiple R 1 and p exist independently, and R 1 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a methoxy group, an ethoxy group, a nitro group, a nitrile group, an amino group, or a phenyl group which may have the same substituents as described above, p is a real number of 0 to 3. n is a repeating number and is a real number of 1 to 20.)
  2.  20℃において半晶状を示し、かつ水酸基当量が130~200g/eqである請求項1に記載のフェノール樹脂混合物。 The phenolic resin mixture according to claim 1, which exhibits a semi-crystalline state at 20°C and has a hydroxyl equivalent of 130 to 200 g/eq.
  3.  150℃におけるICI溶融粘度(コーンプレート法)が0.001~0.20Pa・sである請求項1または2に記載のフェノール樹脂混合物。 The phenolic resin mixture according to claim 1 or 2, which has an ICI melt viscosity (cone plate method) at 150°C of 0.001 to 0.20 Pa·s.
  4.  請求項1から3のいずれか一項に記載のフェノール樹脂混合物とエポキシ樹脂を含有する硬化性樹脂組成物。 A curable resin composition containing the phenolic resin mixture according to any one of claims 1 to 3 and an epoxy resin.
  5.  請求項4に記載の硬化性樹脂組成物を硬化した硬化物。
     
    A cured product obtained by curing the curable resin composition according to claim 4 .
PCT/JP2022/010360 2021-03-23 2022-03-09 Phenolic resin mixture, and curable resin composition and cured product thereof WO2022202333A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022548392A JP7160511B1 (en) 2021-03-23 2022-03-09 Phenolic resin mixture, curable resin composition and cured product thereof
CN202280023890.0A CN117043219A (en) 2021-03-23 2022-03-09 Phenol resin mixture, curable resin composition, and cured product thereof
KR1020237031845A KR20230158497A (en) 2021-03-23 2022-03-09 Phenolic resin mixture, curable resin composition, and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021048212 2021-03-23
JP2021-048212 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202333A1 true WO2022202333A1 (en) 2022-09-29

Family

ID=83395705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010360 WO2022202333A1 (en) 2021-03-23 2022-03-09 Phenolic resin mixture, and curable resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP7160511B1 (en)
KR (1) KR20230158497A (en)
CN (1) CN117043219A (en)
TW (1) TW202302693A (en)
WO (1) WO2022202333A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006328A (en) * 2011-06-23 2013-01-10 Sumitomo Bakelite Co Ltd Laminate, circuit board, and semiconductor package
JP2014210860A (en) * 2013-04-19 2014-11-13 日本化薬株式会社 Epoxy resin, epoxy resin composition, and cured product thereof
JP2015067615A (en) * 2013-09-26 2015-04-13 日本化薬株式会社 Epoxy resin mixture, curable resin composition and its cured matter
JP2020070303A (en) * 2017-03-07 2020-05-07 日本化薬株式会社 Curable resin composition and cured product thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041096A (en) 2001-07-31 2003-02-13 Sumitomo Bakelite Co Ltd Method for manufacturing epoxy resin molding material and semiconductor device
JP5899498B2 (en) 2011-10-13 2016-04-06 パナソニックIpマネジメント株式会社 Epoxy resin composition for semiconductor encapsulation, method for producing the same, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006328A (en) * 2011-06-23 2013-01-10 Sumitomo Bakelite Co Ltd Laminate, circuit board, and semiconductor package
JP2014210860A (en) * 2013-04-19 2014-11-13 日本化薬株式会社 Epoxy resin, epoxy resin composition, and cured product thereof
JP2015067615A (en) * 2013-09-26 2015-04-13 日本化薬株式会社 Epoxy resin mixture, curable resin composition and its cured matter
JP2020070303A (en) * 2017-03-07 2020-05-07 日本化薬株式会社 Curable resin composition and cured product thereof

Also Published As

Publication number Publication date
TW202302693A (en) 2023-01-16
KR20230158497A (en) 2023-11-20
CN117043219A (en) 2023-11-10
JPWO2022202333A1 (en) 2022-09-29
JP7160511B1 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP6160775B2 (en) Epoxy resin composition for electronic material, cured product thereof and electronic member
JP6366590B2 (en) Epoxy resin mixture, epoxy resin composition, cured product, and semiconductor device
WO2006090662A1 (en) Epoxy resin, hardenable resin composition containing the same and use thereof
WO2007037500A9 (en) Epoxy resin composition and semiconductor device
JP2011176278A (en) Epoxy resin formulation for underfill application
JP6176412B2 (en) Epoxy resin composition for electronic material, cured product thereof and electronic member
TW201930455A (en) Epoxy resin composition for sealing ball grid array package, epoxy resin cured product and electronic component device
TWI438216B (en) Modified liquid epoxy resin, epoxy resin composition by using modified liquid epoxy resin and cured product thereof
TWI618744B (en) Epoxy resin mixture, epoxy resin composition, hardened material, and semiconductor device
JP2017071706A (en) Epoxy resin composition, curable resin composition and cured product thereof
WO2018164042A1 (en) Curable resin composition, cured product thereof, and method for producing curable resin composition
JP2009120815A (en) Epoxy resin composition and semiconductor device
JP5368707B2 (en) Liquid epoxy resin, epoxy resin composition, and cured product
JP7160511B1 (en) Phenolic resin mixture, curable resin composition and cured product thereof
JP7160512B1 (en) Phenolic resin mixture, curable resin composition and cured product thereof
KR20150082188A (en) Epoxy resin mixture, epoxy resin composition, and cured product thereof
JP6284732B2 (en) Epoxy resin mixture and curable resin composition
JP7281246B1 (en) Maleimide resin mixture for sealing material, maleimide resin composition and cured product thereof
JP2010053293A (en) Epoxy resin composition
WO2015060307A1 (en) Phenolic resin, epoxy resin, epoxy resin composition, prepreg, and cured product thereof
JP4942384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
TWI663220B (en) Method for manufacturing resin modified concrete
WO2023127800A1 (en) Epoxy resin composition, cured product, sealing material, and adhesive
JP4776446B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2023021515A (en) Thermosetting resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022548392

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280023890.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775125

Country of ref document: EP

Kind code of ref document: A1