WO2022201828A1 - Carburizing gas supply system and carburizing system - Google Patents

Carburizing gas supply system and carburizing system Download PDF

Info

Publication number
WO2022201828A1
WO2022201828A1 PCT/JP2022/002544 JP2022002544W WO2022201828A1 WO 2022201828 A1 WO2022201828 A1 WO 2022201828A1 JP 2022002544 W JP2022002544 W JP 2022002544W WO 2022201828 A1 WO2022201828 A1 WO 2022201828A1
Authority
WO
WIPO (PCT)
Prior art keywords
carburizing
gas
carbon dioxide
unit
supply system
Prior art date
Application number
PCT/JP2022/002544
Other languages
French (fr)
Japanese (ja)
Inventor
章 軍司
晃平 吉川
昌俊 杉政
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022201828A1 publication Critical patent/WO2022201828A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids

Definitions

  • the present invention relates to a carburizing gas supply system that supplies a carburizing gas to a carburizing furnace that performs carburizing, and a carburizing system that uses the carburizing gas supply system.
  • a gas called RX gas containing hydrogen (H 2 ), carbon monoxide (CO), and nitrogen (N 2 ) as main components is produced by reacting a hydrocarbon such as methane (CH 4 ) with air. is generated and supplied to the carburizing furnace as a base gas.
  • the carburizing process is controlled by adjusting the carbon potential (CP) in the carburizing furnace by adding hydrocarbons called enriched gas to the RX gas as needed.
  • the carbon potential can be estimated from the composition and temperature of the carburizing gas, which is the RX gas or the RX gas to which the enriched gas is added, and can be controlled by the supply flow rate of the enriched gas.
  • carburizing gas with controlled carbon potential is continuously supplied to the carburizing furnace in order to maintain the atmosphere in the carburizing furnace.
  • most of the carbon monoxide and hydrogen contained in the carburizing gas are discharged to the outside of the carburizing furnace without reacting, and are exhausted after being burned. Therefore, there is a problem of consuming a lot of fuel.
  • effective utilization of the exhaust gas discharged from the carburizing furnace has been proposed.
  • Patent Document 1 exhaust gas discharged from a carburizing furnace is recovered, water vapor (H 2 O) and carbon dioxide (CO 2 ) are removed from the exhaust gas, and the exhaust gas after removing water vapor and carbon dioxide is disclosed.
  • a gas supply system that recycles is described.
  • the present invention has been made in view of the above problems, and can reduce carbon dioxide emissions, reduce the amount of new carburizing gas used, and supply an optimum gas composition according to the conditions inside the furnace.
  • a main object of the present invention is to provide a carburizing gas supply system and a carburizing system.
  • the carburizing gas supply system of the present invention provides a carburizing gas supply system that supplies a carburizing gas to a carburizing furnace that performs carburizing treatment, comprising: , a first flow rate measurement unit for measuring the flow rate of the exhaust gas, a first concentration measurement unit for measuring the concentration of the components of the exhaust gas, a first supply unit for supplying carbon dioxide to the exhaust gas, and the flow rate of the exhaust gas.
  • control unit that controls the supply amount of the carbon dioxide based on the concentrations of the above components, a carbon dioxide conversion unit that generates hydrocarbons or carbon monoxide from carbon dioxide and removes water or oxygen, and the carbon dioxide a carburizing gas supply unit for supplying the regenerated carburizing gas containing the hydrocarbons or carbon monoxide generated in the converting unit to the carburizing furnace.
  • a carburizing system includes the carburizing gas supply system and a carburizing furnace for carburizing.
  • This specification includes the disclosure content of Japanese Patent Application No. 2021-051216, which is the basis of priority of this application.
  • the amount of carbon dioxide emissions can be reduced, the amount of new carburizing gas used can be reduced, and the optimum gas composition can be supplied according to the conditions inside the furnace.
  • FIG. 1 is a diagram showing an outline of a carburizing gas supply system and a carburizing system according to Embodiment 1.
  • FIG. 1 shows an outline of a carburizing gas supply system and a carburizing system according to a modification of the first embodiment, in which the carburizing gas supply system measures the flow rate of the gas supplied to the carburizing furnace and the concentration of the components of the gas;
  • FIG. 4 is a diagram showing;
  • FIG. 5 is a diagram showing an outline of a carburizing gas supply system and a carburizing system according to Embodiment 2;
  • FIG. 10 is a diagram showing an outline of a carburizing gas supply system and a carburizing system according to Embodiment 3;
  • FIG. 10 is a diagram showing an outline of a carburizing gas supply system and a carburizing system according to Embodiment 4;
  • 1 is a schematic diagram of a conventional carburizing gas supply system and a carburizing system;
  • the material may be selected singly or in combination as long as it is not inconsistent with the content disclosed in this specification. , materials other than those exemplified below may be selected as long as they are consistent with what is disclosed herein.
  • FIG. 1 is a schematic diagram of a carburizing gas supply system and a carburizing system according to Embodiment 1.
  • FIG. 6 is a schematic diagram of a conventional carburizing system.
  • a conventional carburizing system 100 includes an RX gas generator 1, an enriched gas supply unit 2, a carburizing furnace 3, a combustion facility 4, and a gas flow path 20, as shown in FIG.
  • the carburizing system 100 according to the first embodiment includes an RX gas generator 1, an enriched gas supply unit 2, a carburizing furnace 3, a carburizing gas supply system 50, a combustion facility 4, a gas flow path 20.
  • the RX gas generator 1 reacts a hydrocarbon such as methane (CH 4 ) with air to produce RX gas, which is mainly composed of hydrogen (H 2 ), carbon monoxide (CO), and nitrogen (N 2 ). and is supplied to the carburizing furnace 3 through the gas flow path 20 and the supply port 3a.
  • the enriched gas supply unit 2 adds a hydrocarbon called enriched gas to the RX gas as necessary, and supplies the RX gas to the carburizing furnace 3 via the supply port 3a via the gas flow path 20 .
  • the composition of the RX gas is not particularly limited, for example, it contains 40% by volume of hydrogen, 20% by volume of carbon monoxide, and 40% by volume of nitrogen, in addition to some carbon dioxide (CO 2 ) and water vapor (H 2 O).
  • the enriched gas include, but are not limited to, methane (CH 4 ), propane (C 3 H 8 ), and the like.
  • RX gas or a gas obtained by adding enriched gas to RX gas is supplied as a new carburizing gas.
  • the carburizing furnace 3 uses a new carburizing gas to carburize the steel material placed in the carburizing furnace 3 . Specifically, in the carburizing treatment, carbon is diffused from the surface of the steel material. After the new carburizing gas has been used for the carburizing process, the gas is discharged as exhaust gas from the carburizing furnace 3 to the gas flow path 20 through the discharge port 3b.
  • Exhaust gas contains carbon dioxide and water vapor (water) in addition to hydrogen, carbon monoxide, and nitrogen.
  • composition of the exhaust gas is not particularly limited, it contains, for example, a total of 55 to 59% by volume of hydrogen and carbon monoxide, a total of 1 to 4% by volume of carbon dioxide and water vapor, and 40 to 43% by volume of nitrogen.
  • a carburizing gas supply system 50 is a carburizing gas supply system that supplies a carburizing gas to a carburizing furnace 3, and includes a gas discharge section 30, a first flow rate measuring section 5, and a first concentration measuring section. 6, a first supply unit 8, a second supply unit 9, a third supply unit 15, a control unit 7, a carbon dioxide conversion unit 10, a pressure increasing unit 13, a reforming reaction unit 14, and for carburizing A gas supply unit 40 and a gas flow path 20 are provided.
  • the gas discharge part 30 is composed of an outlet 3b of the carburizing furnace 3 and a gas flow path 20 connected to the outlet 3b, and discharges exhaust gas from the carburizing furnace 3 to the gas flow path 20 through the outlet 3b.
  • the gas flow path 20 is branched downstream of the gas discharge section 30 and connected to the combustion equipment 4 and the first flow rate measurement section 5 respectively.
  • exhaust gas discharged from the carburizing furnace 3 is introduced into the first flow rate measuring section 5 through the gas flow path 20 . All of the exhaust gas discharged from the carburizing furnace 3 can be introduced into the first flow rate measuring unit 5, or only a part of it can be introduced into the first flow rate measuring unit 5.
  • the first flow rate measuring section 5 it is preferable to introduce all of them into the first flow rate measuring section 5 .
  • the rest of the exhaust gas that is not introduced into the first flow rate measuring unit 5 is introduced into the combustion facility 4 via the gas flow path 20, and discharged outside after detoxification.
  • the first flow rate measurement unit 5 measures the flow rate of the exhaust gas introduced into the first flow rate measurement unit 5 . After the flow rate measurement, the exhaust gas is introduced into the first concentration measuring section 6 via the gas flow path 20 .
  • the first concentration measuring section 6 measures the concentrations of the components of the exhaust gas introduced into the first concentration measuring section 6 .
  • the first concentration measuring unit 6 is not particularly limited as long as it measures the concentration of the exhaust gas component that enables the estimation of the carbon consumption, which will be described later.
  • the first concentration measuring unit 6 may measure the concentration of some or all of the components of the exhaust gas. For example, it may be one that measures the concentration of at least carbon dioxide among the components of the exhaust gas.
  • FIG. 2 shows a carburizing gas supply system and a carburizing system according to a modified example of the first embodiment, in which the flow rate of the gas supplied to the carburizing furnace by the carburizing gas supply system and the concentration of the components of the gas are measured. It is a figure which shows the outline of what was made to carry out.
  • the carburizing gas supply system 50 further includes a second flow rate measuring section 21 and a second concentration measuring section 22 in addition to the configuration of the carburizing gas supply system 50 shown in FIG. .
  • the second flow rate measuring unit 21 measures the flow rate of the regeneration carburizing gas supplied to the carburizing furnace 3 .
  • the second concentration measuring unit 22 measures the concentration of the components of the regeneration carburizing gas supplied to the carburizing furnace 3 .
  • the second flow rate measurement unit 21 and the second 2 By measuring the flow rate of the regenerating carburizing gas and the concentration of the components of the regenerating carburizing gas by the concentration measuring unit 22, it becomes easier to estimate the amount of carbon consumed in the carburizing furnace, and the gas to be supplied to the carburizing furnace can be easily estimated. It becomes even easier to supply the optimum gas composition.
  • the first supply unit 8 supplies carbon dioxide to the exhaust gas on the downstream side of the first concentration measurement unit 6 in the gas flow path 20 .
  • the second supply unit 9 supplies hydrogen to the exhaust gas on the downstream side of the first concentration measurement unit 6 in the gas flow path 20 .
  • the control unit 7 determines the supply amount of carbon dioxide supplied to the exhaust gas by the first supply unit 8 based on the flow rate and component concentrations of the exhaust gas measured by the first flow rate measurement unit 5 and the first concentration measurement unit 6, and the amount of hydrogen supplied to the exhaust gas by the second supply unit 9 is controlled.
  • a method for controlling the amount of carbon dioxide supplied and the amount of hydrogen supplied will be described in detail.
  • the amount of carbon added to the steel material from the new carburizing gas and consumed from the new carburizing gas is determined by the flow rate and the composition of the exhaust gas. can be estimated from the concentration of Specifically, as a method for estimating the amount of carbon consumed, for example, carbon is added to the steel material by the reaction shown in formula (1) in the carburizing process, so the amount of carbon consumed is the same amount of substance as the increase in carbon dioxide Based on the premise that it will be After obtaining the amount of increase, the amount of carbon consumption is estimated from the amount of increase in the flow rate of the exhaust gas and the carbon dioxide concentration. Note that even when carbon dioxide reacts according to equation (5) described later, the amount of carbon consumed can be estimated by measuring the water vapor concentration.
  • the flow rate of carbon dioxide supplied to the exhaust gas by the first supply unit 8 is adjusted so that the same amount of carbon as the amount of carbon consumed is supplied to the exhaust gas. Control. Furthermore, based on the flow rate and component concentration of the exhaust gas, the flow rate of carbon dioxide contained in the exhaust gas is calculated, and the flow rate of carbon dioxide contained in the exhaust gas and the amount of carbon dioxide supplied to the exhaust gas by the first supply unit 8 The flow rate of hydrogen supplied to the exhaust gas by the second supply unit 9 is controlled so that the flow rate of the substance amount is the same as the total flow rate. As described above, the supply amount of carbon dioxide and the supply amount of hydrogen are controlled. As a result, the carbon dioxide conversion section 10 and the reforming reaction section 14 can generate reformed gas having the same composition as the carburizing gas.
  • the hydrogen supply source of the second supply unit 9 is not particularly limited, for example, from the viewpoint of suppressing the use of fossil fuels, hydrogen generated from a water electrolysis device (electrolysis device) is preferable.
  • the second supply unit 9 may supply water vapor together with hydrogen to the exhaust gas. Thereby, carbon deposition in the methanation reaction section 11 can be suppressed.
  • the control unit 7 can also control the supply amount of water vapor supplied to the exhaust gas by the second supply unit 9 based on the flow rate and component concentration of the exhaust gas.
  • the third supply section 15 may supply water vapor to the exhaust gas on the downstream side of the first concentration measurement section 6 in the gas flow path 20 . Thereby, carbon deposition in the methanation reaction section 11 can be suppressed.
  • the control unit 7 can also control the amount of water vapor supplied to the exhaust gas by the third supply unit 15 based on the flow rate and component concentration of the exhaust gas.
  • the carbon dioxide conversion section 10 is arranged downstream of the first concentration measurement section 6 in the gas flow path 20, generates hydrocarbons or carbon monoxide from carbon dioxide, and removes water or oxygen.
  • the carbon dioxide conversion unit 10 according to Embodiment 1 has a methanation reaction unit 11 and a water vapor removal unit 12 .
  • the methanation reaction unit 11 generates methane (hydrocarbon) and water vapor (water) by catalytic reaction from the exhaust gas and the mixed gas of carbon dioxide and hydrogen supplied to the exhaust gas.
  • methane and water vapor are generated from carbon dioxide and hydrogen contained in the mixed gas by advancing the methanation reaction represented by the formula (2) through a catalytic reaction.
  • the methanation reaction represented by Formula (3) proceeds simultaneously with the reaction represented by Formula (2).
  • the reaction represented by formula (3) methane and water vapor are produced from carbon monoxide and hydrogen contained in the mixed gas.
  • the reaction temperature of the reaction represented by the formula (2) in the methanation reaction section 11 is preferably 500° C. to 600° C. from the viewpoint of suppressing the progress of the reaction represented by the formula (3).
  • the mixed gas is converted into the converted gas by the reactions shown in the formulas (2) and (3).
  • an appropriate reactor is selected to allow the reaction shown in formula (2) to proceed.
  • the catalyst used in the methanation reaction section 11 is not particularly limited, but examples thereof include Ni-based catalysts.
  • the water vapor removal unit 12 removes water vapor from the converted gas and discharges it to the outside.
  • a method for removing water vapor is not particularly limited, but examples thereof include condensation by cooling, adsorption separation, membrane separation, and the like.
  • the amount of water vapor to be removed is the same amount of oxygen as the oxygen contained in the carbon dioxide supplied to the exhaust gas by the first supply unit 8, and the same amount of hydrogen as the amount of hydrogen supplied to the exhaust gas by the second supply unit 9. of hydrogen is adjusted to be removed from the converted gas. Further, when water vapor is supplied to the exhaust gas by at least one of the third supply unit 15 and the second supply unit 9, the amount of water vapor removed by at least one of the third supply unit 15 and the second supply unit 9 is The same material amount of water vapor as was supplied to is also arranged to be removed from the converted gas. As described above, the reforming reaction section 14 can generate a reformed gas having the same composition as the carburizing gas.
  • the pressurizing section 13 is arranged downstream of the carbon dioxide conversion section 10 in the gas flow path 20, sucks the exhaust gas discharged from the carburizing furnace 3 into the gas flow path 20, and produces a reformed gas in the reforming reaction section 14.
  • the gas is pressurized so as to obtain a pressure for supplying to the carburizing furnace 3.
  • the boosting unit 13 is not particularly limited, but for example, a blower, a pump, or the like can be selected.
  • the converted gas from which water vapor has been removed is introduced into the reforming reaction section 14 via the gas flow path 20 .
  • the reforming reaction section 14 is arranged downstream of the pressurizing section 13 in the gas flow path 20, and produces carbon monoxide and hydrogen by catalytic reaction from methane contained in the converted gas after water vapor removal.
  • carbon monoxide and hydrogen are generated from methane and water vapor contained in the converted gas after water vapor removal by advancing the reaction shown in formula (4) through a catalytic reaction. Furthermore, by advancing the reaction shown in Formula (5) together with the reaction shown in Formula (4), carbon monoxide and water vapor are generated from carbon dioxide and hydrogen contained in the converted gas after water vapor removal.
  • the reaction temperature of the reactions represented by formulas (4) and (5) in the reforming reaction section 14 is 900 from the viewpoint of suppressing carbon deposition and generating a reformed gas having the same composition as the carburizing gas. °C or higher is preferred. Moreover, from the viewpoint of suppressing deterioration of the reforming catalyst, the temperature is preferably 1200° C. or less. Moreover, from the viewpoint of making the composition similar to that of the carburizing gas, the same temperature as that of the RX gas generation section is preferable.
  • the converted gas from which water vapor has been removed is reformed by the reactions shown in formulas (4) and (5) to generate a reformed gas.
  • an appropriate reactor is selected to allow the reactions shown in formulas (4) and (5) to proceed.
  • the reactor used as the RX gas generation section 1 may also be used.
  • the catalyst used in the reforming reaction section 14 is not particularly limited, but examples thereof include Ni-based catalysts.
  • the carburizing gas supply unit 40 is composed of the supply port 3a of the carburizing furnace 3 and the gas flow path 20 connected to the supply port 3a. , through the gas passage 20 and through the supply port 3a to the carburizing furnace 3.
  • the carburizing gas supply system 50 while reusing hydrogen, carbon monoxide, and nitrogen contained in the exhaust gas, carbon monoxide is regenerated from carbon dioxide, water vapor, etc. generated in the carburizing process. is doing. Therefore, the amount of carbon dioxide emissions can be reduced, and carbon monoxide can be regenerated from carbon dioxide, water vapor, and the like with little energy consumption. Furthermore, the amount of RX gas generated by the RX gas generator 1 and the amount of enriched gas added by the enriched gas supply unit 2 can be reduced according to the amount of the reformed gas supplied to the carburizing furnace 3 as the regeneration carburizing gas. . That is, the amount of new carburizing gas used can be reduced. As a result, energy consumption can be reduced during the entire process for carburizing with the carburizing system 100 . Moreover, since the amount of methane consumed by the RX gas generator 1 can be reduced, costs can be reduced.
  • the first supply unit 8 supplies carbon dioxide to the exhaust gas based on the flow rate and component concentrations of the exhaust gas measured by the first flow rate measurement unit 5 and the first concentration measurement unit 6.
  • the supply amount of hydrogen supplied to the exhaust gas by the second supply unit 9 and the supply amount of water vapor supplied to the exhaust gas by the third supply unit 15 or the like can be controlled to optimum amounts.
  • the carbon potential (CP) in the carburizing furnace can be adjusted to an optimum value by adjusting the amount of components such as carbon monoxide and hydrogen contained in the reformed gas to an optimum amount.
  • the carburizing gas supply system 50 preferably operates using renewable energy as electric power.
  • FIG. 3 is a schematic diagram of a carburizing gas supply system and a carburizing system according to a second embodiment.
  • the carburizing gas supply system 50 according to the second embodiment is arranged downstream of the first concentration measuring unit 6 and upstream of the carbon dioxide conversion unit 10 in the gas flow path 20, in addition to the configuration according to the first embodiment.
  • a flow control unit 16 is further provided.
  • the carburizing gas supply system 50 according to the second embodiment does not include the third supply section 15 .
  • the flow control unit 16 branches the exhaust gas after the concentration measurement, thereby introducing a part of the exhaust gas into the methanation reaction unit 11 of the carbon dioxide conversion unit 10 via the gas flow path 20, and transferring the remaining exhaust gas to By flowing it to the downstream side of the carbon dioxide conversion section 10 through the gas flow path 20 , the gas is directly introduced into the reforming reaction section 14 .
  • the first supply unit 8 supplies carbon dioxide to a portion of the exhaust gas introduced into the methanation reaction unit 11, and the second supply unit 9 supplies carbon dioxide to a portion of the exhaust gas introduced into the methanation reaction unit 11. Hydrogen is supplied to part of the exhaust gas introduced into the section 11 . Then, a part of the exhaust gas and a mixed gas in which carbon dioxide and hydrogen supplied to the exhaust gas are mixed are introduced into the methanation reaction section 11 of the carbon dioxide conversion section 10 via the gas flow path 20 .
  • the reaction temperature of the reaction represented by formula (2) in the methanation reaction section 11 is preferably 200°C to 300°C from the viewpoint of increasing the reaction rate.
  • the reforming reaction unit 14 generates a reformed gas in which the remainder of the exhaust gas not introduced into the methanation reaction unit 11 and the converted gas after the removal of water vapor are reformed by the reactions shown in formulas (4) and (5). .
  • the supply amount of carbon dioxide and the amount of hydrogen supplied in the first supply unit 8 and the second supply unit 9 are different from those described above. and the amount of water vapor removed by the water vapor removal unit 12 are the same as those of the first embodiment.
  • the amount of exhaust gas introduced into the methanation reaction unit 11 is reduced by branching the exhaust gas after concentration measurement by the flow control unit 16, thereby reducing the amount of the exhaust gas introduced into the methanation reaction unit 11. size can be reduced.
  • the ratio of the flow rate of the exhaust gas to which carbon dioxide is supplied to the flow rate of carbon dioxide supplied to the exhaust gas is reduced. Therefore, carbon deposition in the methanation reaction section 11 can be suppressed.
  • the amount of methane produced in the methanation reaction section 11 can be controlled by causing the flow control section 16 to partially flow the exhaust gas after the concentration measurement to the bypass channel and to the downstream side of the carbon dioxide conversion section 10. Since it becomes possible, it becomes easy to control the reaction.
  • FIG. 4 is a schematic diagram of a carburizing gas supply system and a carburizing system according to the third embodiment.
  • a separation section 17 (separation section) is further provided.
  • the carbon dioxide conversion unit 10 is arranged downstream of the separation unit 17 in the gas flow path 20, and includes the methanation reaction unit 11 or the carbon monoxide generation reaction unit 18 and the water vapor removal unit 12.
  • the carburizing gas supply system 50 does not include the third supply section 15 .
  • the pressurizing section 13 is arranged downstream of the first concentration measuring section 6 and upstream of the separating section 17 .
  • the separation unit 17 separates water vapor (water) and carbon dioxide from the exhaust gas whose concentration has been measured, and passes the separated gas containing water vapor and carbon dioxide as main components to the carbon dioxide conversion unit 10 through the gas flow path 20.
  • the separation unit 17 By introducing the waste gas into the methanation reaction unit 11 or the carbon monoxide generation reaction unit 18 and flowing the remainder of the exhaust gas after the separation gas is separated downstream of the carbon dioxide conversion unit 10 through the gas flow path 20, It is introduced into the reforming reaction section 14 as it is.
  • the separation method of the separation gas of the separation unit 17 is not particularly limited, but includes, for example, adsorption separation, membrane separation, and the like.
  • the adsorbent used for adsorptive separation is not particularly limited, but examples thereof include zeolite, ceria, molecular sieves, activated carbon and the like.
  • the first supply unit 8 supplies carbon dioxide to the separation gas downstream of the separation unit 17 in the gas flow path 20, and the second supply unit 9 supplies the gas flow Hydrogen is supplied to the separation gas downstream of separation section 17 in line 20 . Then, the separation gas and the mixed gas of carbon dioxide and hydrogen supplied to the separation gas are supplied to the methanation reaction section 11 or the carbon monoxide generation reaction section 18 of the carbon dioxide conversion section 10 through the gas flow path 20. be introduced.
  • methane and water vapor are generated from carbon dioxide and hydrogen contained in the mixed gas by advancing the methanation reaction represented by the formula (2) through a catalytic reaction.
  • the reaction temperature of the reaction represented by formula (2) in the methanation reaction section 11 is preferably 200° C. to 300° C. from the viewpoint of increasing the reaction rate.
  • the mixed gas is converted by the reaction represented by the formula (2) as described above to generate a converted gas.
  • the carbon monoxide generation reaction unit 18 generates carbon monoxide and water vapor from carbon dioxide and hydrogen contained in the mixed gas by advancing the reaction shown in formula (5) through a catalytic reaction.
  • the reaction temperature of the reaction represented by formula (5) in the carbon monoxide generation reaction section 18 is preferably 700°C or higher from the viewpoint of increasing the reaction rate. Moreover, from the viewpoint of suppressing deterioration of the catalyst, the temperature is preferably 1200° C. or less.
  • an appropriate reactor is selected to allow the reaction shown in the formula (5) to proceed.
  • the catalyst used in the carbon monoxide generation reaction unit 18 is not particularly limited, but examples thereof include Ni-based catalysts and Cu-based catalysts. Cu-based catalysts are preferable from the viewpoint of suppressing the generation of methane.
  • the carbon monoxide generation reaction section 18 may also serve as the water vapor removal section 12 by mixing zeolite with a catalyst and selectively adsorbing water vapor. In that case, the reaction represented by formula (5) proceeds even at low temperatures, so the reaction temperature can be reduced to 300° C. or lower.
  • the mixed gas is converted by the reaction represented by the formula (5) as described above to generate a converted gas.
  • the reforming reaction section 14 is arranged on the downstream side of the separation section 17 in the gas flow path 20, and the remainder of the exhaust gas after the separation gas is separated and the converted gas after removal of water vapor are expressed by the formulas (4) and (5). ) to generate a reformed gas reformed by the reaction shown in ).
  • the supply amount of carbon dioxide and the amount of hydrogen supplied in the first supply unit 8 and the second supply unit 9 are different from those described above. and the amount of water vapor removed by the water vapor removal unit 12 are the same as those of the first embodiment.
  • Embodiment 3 water vapor and carbon dioxide are separated from the exhaust gas after concentration measurement by the separation unit 17, and the separated gas containing water vapor and carbon dioxide as main components is converted to the methanation reaction unit 11 or the carbon monoxide generation reaction. Since it is introduced into the methanation reaction unit 11 or the carbon monoxide generation reaction unit 18, the concentration of water vapor, carbon dioxide, etc. in the mixed gas to be reacted in the methanation reaction unit 11 or the carbon monoxide generation reaction unit 18 can be improved. Carbon deposition in the production reaction section 18 can be suppressed. Furthermore, the reaction in the methanation reaction section 11 or the carbon monoxide generation reaction section 18 is facilitated because it is not affected by hydrogen or carbon monoxide.
  • FIG. 5 is a schematic diagram of a carburizing gas supply system and a carburizing system according to a fourth embodiment.
  • the carbon dioxide conversion section 10 has the electrolytic reaction section 19 instead of the methanation reaction section 11 or the carbon monoxide generation reaction section 18. , and does not have the water vapor removal section 12 . Furthermore, unlike the third embodiment, the carburizing gas supply system 50 does not include the second supply section 9 .
  • the first supply section 8 supplies carbon dioxide to the separation gas on the downstream side of the separation section 17 in the gas flow path 20 . Then, the mixed gas in which the separation gas and the carbon dioxide supplied to the separation gas are mixed is introduced into the electrolytic reaction section 19 of the carbon dioxide conversion section 10 via the gas flow path 20 .
  • the reaction represented by the formula (6) is advanced by electrolysis, so that the carbon dioxide contained in the mixed gas, that is, the carbon dioxide contained in the separated gas and the dioxide supplied to the separated gas Produces carbon monoxide from carbon.
  • hydrogen is generated from the water vapor (water) contained in the mixed gas as the reaction represented by the formula (7) proceeds.
  • the amount of current in the electrolysis is controlled so that the carbon dioxide contained in the mixed gas is converted to carbon monoxide. is also used, so not all carbon dioxide is converted to carbon monoxide.
  • oxygen is generated from oxide ions by advancing the reaction shown in formula (8) by electrolysis.
  • the electrolytic reaction section 19 discharges the oxygen to the outside.
  • the mixed gas is converted into the converted gas by the reactions shown in the formulas (6) to (8).
  • the electrolysis reaction unit 19 is not particularly limited, but includes a solid oxide cell capable of co-electrolysis of water vapor and carbon dioxide.
  • the reforming reaction section 14 is arranged on the downstream side of the electrolytic reaction section 19 in the gas flow path 20, and the remainder of the exhaust gas and the converted gas after the separation gas is separated are represented by the formulas (4) and (5). A reformed gas that is reformed by the reaction is generated.
  • the carburizing gas supply system 50 and the carburizing system 100 according to the fourth embodiment are the same as those of the third embodiment except for the method of controlling the amount of carbon dioxide supplied in the first supply unit 8. is.
  • the functions of the second supply unit 9 and the carbon monoxide generation reaction unit 18 according to the third embodiment can be integrated into the electrolytic reaction unit 19, so the configuration can be simplified compared to the third embodiment. . Also, by controlling the amount of electric current in electrolysis, it becomes possible to control the reaction rate, which facilitates the control of the reaction.
  • the present invention is not limited to the embodiments. However, it is included in the technical scope of the present invention and includes various modifications.
  • the embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The main purpose of the present invention is to provide a carburizing gas supply system with which it is possible to reduce the carbon dioxide emission amount, to reduce the usage amount of new carburizing gas, and to supply an optimum gas composition in accordance with the state in a furnace. This carburizing gas supply system comprises: a gas discharge unit that discharges exhaust gas from a carburizing furnace; a first flow rate measurement unit that measures the flow rate of the exhaust gas; a first concentration measurement unit that measures the concentration of components of the exhaust gas; a first supply unit that supplies carbon dioxide to the exhaust gas; a control unit that controls the supply amount of the carbon dioxide on the basis of the flow rate of the exhaust gas and the concentration of the components; a carbon dioxide conversion unit that generates hydrocarbon or carbon monoxide from the carbon dioxide, and removes water or oxygen; and a carburizing gas supply unit that supplies, to the carburizing furnace, regenerated carburizing gas containing components derived from the generated hydrocarbon or carbon monoxide.

Description

浸炭用ガス供給システム及び浸炭システムCarburizing gas supply system and carburizing system
 本発明は、浸炭処理を行う浸炭炉に浸炭用ガスを供給する浸炭用ガス供給システム、及びその浸炭用ガス供給システムを用いた浸炭システムに関する。 The present invention relates to a carburizing gas supply system that supplies a carburizing gas to a carburizing furnace that performs carburizing, and a carburizing system that uses the carburizing gas supply system.
 鋼材製の部品の耐摩耗性を高めるために、鋼材に表面から炭素を拡散する浸炭処理が行われている。浸炭処理では、メタン(CH)等の炭化水素及び空気を反応させることにより、RXガスと呼ばれる水素(H)、一酸化炭素(CO)、及び窒素(N)を主成分として含むガスを生成し、それをベースガスとして浸炭炉に供給する。さらに、エンリッチガスと呼ばれる炭化水素を必要に応じてRXガスに追加することにより、浸炭炉内のカーボンポテンシャル(CP)を調整することで浸炭処理を制御している。カーボンポテンシャルは、RXガス又はRXガスにエンリッチガスが追加されたガスである浸炭用ガスの組成及び温度から推定可能であり、エンリッチガスの供給流量により制御可能である。 In order to increase the wear resistance of steel parts, carburizing treatment is performed to diffuse carbon from the surface of the steel material. In the carburizing process, a gas called RX gas containing hydrogen (H 2 ), carbon monoxide (CO), and nitrogen (N 2 ) as main components is produced by reacting a hydrocarbon such as methane (CH 4 ) with air. is generated and supplied to the carburizing furnace as a base gas. Furthermore, the carburizing process is controlled by adjusting the carbon potential (CP) in the carburizing furnace by adding hydrocarbons called enriched gas to the RX gas as needed. The carbon potential can be estimated from the composition and temperature of the carburizing gas, which is the RX gas or the RX gas to which the enriched gas is added, and can be controlled by the supply flow rate of the enriched gas.
 浸炭処理では、浸炭炉内の雰囲気を保つため、カーボンポテンシャルが制御された浸炭用ガスが連続的に浸炭炉に供給される。しかしながら、浸炭用ガスに含まれる一酸化炭素や水素の大部分は反応せずに浸炭炉の外部に排出され、燃焼された後に排気される。このため、多くの燃料を消費するといった問題がある。これに対して、浸炭炉から排出される排ガスの有効利用が提案されている。 In the carburizing process, carburizing gas with controlled carbon potential is continuously supplied to the carburizing furnace in order to maintain the atmosphere in the carburizing furnace. However, most of the carbon monoxide and hydrogen contained in the carburizing gas are discharged to the outside of the carburizing furnace without reacting, and are exhausted after being burned. Therefore, there is a problem of consuming a lot of fuel. On the other hand, effective utilization of the exhaust gas discharged from the carburizing furnace has been proposed.
 例えば、特許文献1には、浸炭炉から排出される排ガスを回収し、排ガスから水蒸気(HO)及び二酸化炭素(CO)を除去した上で、水蒸気や二酸化炭素を除去した後の排ガスを再利用するガス供給システムが記載されている。 For example, in Patent Document 1, exhaust gas discharged from a carburizing furnace is recovered, water vapor (H 2 O) and carbon dioxide (CO 2 ) are removed from the exhaust gas, and the exhaust gas after removing water vapor and carbon dioxide is disclosed. A gas supply system that recycles is described.
特開2017-226893号公報JP 2017-226893 A
 しかしながら、特許文献1に記載されたガス供給システムでは、特許文献1に排ガスから除去した二酸化炭素の処理に関する記載がないため、二酸化炭素がそのまま排出されることで温室効果ガスとして大気に放出される。また、窒素が排ガスから除去されずにガス供給システム内に滞留するので、再利用ガスの窒素の濃度や流量が時間とともに上昇する。その結果、RXガス及び再利用ガスを混合した際に一酸化炭素や二酸化炭素の濃度が低下することで浸炭速度が低下するおそれがある。 However, in the gas supply system described in Patent Document 1, since there is no description about the treatment of carbon dioxide removed from the exhaust gas in Patent Document 1, carbon dioxide is discharged as it is and is released into the atmosphere as a greenhouse gas. . In addition, since nitrogen is not removed from the exhaust gas and stays in the gas supply system, the concentration and flow rate of nitrogen in the recycled gas increase over time. As a result, when the RX gas and the recycle gas are mixed, the concentration of carbon monoxide and carbon dioxide decreases, which may decrease the carburization rate.
 本発明は、上記課題に鑑みてなされたものであり、二酸化炭素排出量を低減でき、かつ新たな浸炭用ガスの使用量を低減でき、炉内の状態に応じて最適なガス組成を供給することが可能な浸炭用ガス供給システム及び浸炭システムを提供することを主目的とする。 The present invention has been made in view of the above problems, and can reduce carbon dioxide emissions, reduce the amount of new carburizing gas used, and supply an optimum gas composition according to the conditions inside the furnace. A main object of the present invention is to provide a carburizing gas supply system and a carburizing system.
 上記課題を解決するために、本発明の浸炭用ガス供給システムは、浸炭処理を行う浸炭炉に浸炭用ガスを供給する浸炭用ガス供給システムにおいて、上記浸炭炉から排ガスを排出するガス排出部と、上記排ガスの流量を測定する第1流量測定部と、上記排ガスの成分の濃度を測定する第1濃度測定部と、上記排ガスに二酸化炭素を供給する第1供給部と、上記排ガスの上記流量及び上記成分の濃度に基づいて、上記二酸化炭素の供給量を制御する制御部と、二酸化炭素から炭化水素又は一酸化炭素を生成し、水又は酸素を除去する二酸化炭素変換部と、上記二酸化炭素変換部で生成された上記炭化水素又は上記一酸化炭素を含む再生浸炭用ガスを上記浸炭炉に供給する浸炭用ガス供給部と、を備えることを特徴とする。 In order to solve the above-described problems, the carburizing gas supply system of the present invention provides a carburizing gas supply system that supplies a carburizing gas to a carburizing furnace that performs carburizing treatment, comprising: , a first flow rate measurement unit for measuring the flow rate of the exhaust gas, a first concentration measurement unit for measuring the concentration of the components of the exhaust gas, a first supply unit for supplying carbon dioxide to the exhaust gas, and the flow rate of the exhaust gas. and a control unit that controls the supply amount of the carbon dioxide based on the concentrations of the above components, a carbon dioxide conversion unit that generates hydrocarbons or carbon monoxide from carbon dioxide and removes water or oxygen, and the carbon dioxide a carburizing gas supply unit for supplying the regenerated carburizing gas containing the hydrocarbons or carbon monoxide generated in the converting unit to the carburizing furnace.
 また、本発明の浸炭システムは、上記浸炭用ガス供給システムと、浸炭処理を行う浸炭炉と、を備えることを特徴とする。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2021-051216号の開示内容を包含する。
A carburizing system according to the present invention includes the carburizing gas supply system and a carburizing furnace for carburizing.
This specification includes the disclosure content of Japanese Patent Application No. 2021-051216, which is the basis of priority of this application.
 本発明によれば、二酸化炭素排出量を低減でき、かつ新たな浸炭用ガスの使用量を低減でき、炉内の状態に応じて最適なガス組成を供給することができる。 According to the present invention, the amount of carbon dioxide emissions can be reduced, the amount of new carburizing gas used can be reduced, and the optimum gas composition can be supplied according to the conditions inside the furnace.
 以上に説明した内容以外の本発明の課題、構成、及び効果は、以下の発明を実施するための形態の説明により明らかにされる。 The problems, configurations, and effects of the present invention other than those described above will be clarified by the following description of the mode for carrying out the invention.
実施形態1に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。1 is a diagram showing an outline of a carburizing gas supply system and a carburizing system according to Embodiment 1. FIG. 実施形態1の変形例に係る浸炭用ガス供給システム及び浸炭システムであって、浸炭用ガス供給システムが浸炭炉に供給するガスの流量及び当該ガスの成分の濃度を測定するようにしたものの概略を示す図である。1 shows an outline of a carburizing gas supply system and a carburizing system according to a modification of the first embodiment, in which the carburizing gas supply system measures the flow rate of the gas supplied to the carburizing furnace and the concentration of the components of the gas; FIG. 4 is a diagram showing; 実施形態2に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。FIG. 5 is a diagram showing an outline of a carburizing gas supply system and a carburizing system according to Embodiment 2; 実施形態3に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。FIG. 10 is a diagram showing an outline of a carburizing gas supply system and a carburizing system according to Embodiment 3; 実施形態4に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。FIG. 10 is a diagram showing an outline of a carburizing gas supply system and a carburizing system according to Embodiment 4; 従来技術に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。1 is a schematic diagram of a conventional carburizing gas supply system and a carburizing system; FIG.
 以下、図面等を用いて、本発明に係る実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明は、これらの説明に限定されるものではなく、本明細書で開示されている技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments according to the present invention will be described using drawings and the like. The following description shows specific examples of the content of the present invention, and the present invention is not limited to these descriptions, and can be implemented by those skilled in the art within the scope of the technical ideas disclosed herein. Various changes and modifications are possible. In addition, in all the drawings for explaining the present invention, parts having the same functions are denoted by the same reference numerals, and repeated explanations thereof may be omitted.
 本明細書に記載される「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的に記載されている上限値又は下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。 "~" described in this specification is used to mean that the numerical values before and after it are included as lower and upper limits. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value described in another stepwise manner. The upper or lower limits of the numerical ranges described herein may be replaced with the values shown in the examples.
 以下で例示している材料群から材料を選択する場合、本明細書で開示されている内容と矛盾しない範囲で、材料を単独で選択してもよく、複数組み合わせて選択してもよい、また、本明細書で開示されている内容と矛盾しない範囲で、以下で例示している材料群以外の材料を選択してもよい。 When selecting a material from the material group exemplified below, the material may be selected singly or in combination as long as it is not inconsistent with the content disclosed in this specification. , materials other than those exemplified below may be selected as long as they are consistent with what is disclosed herein.
(実施形態1)
 実施形態1に係る浸炭用ガス供給システム及び浸炭システムについて説明する。図1は、実施形態1に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。なお、図6は、従来技術に係る浸炭システムの概略を示す図である。
(Embodiment 1)
A carburizing gas supply system and a carburizing system according to Embodiment 1 will be described. FIG. 1 is a schematic diagram of a carburizing gas supply system and a carburizing system according to Embodiment 1. FIG. FIG. 6 is a schematic diagram of a conventional carburizing system.
 従来技術に係る浸炭システム100は、図6に示すように、RXガス生成部1と、エンリッチガス供給部2と、浸炭炉3と、燃焼設備4と、ガス流路20とを備えている。これに対して、実施形態1に係る浸炭システム100は、RXガス生成部1と、エンリッチガス供給部2と、浸炭炉3と、浸炭用ガス供給システム50と、燃焼設備4と、ガス流路20とを備えている。 A conventional carburizing system 100 includes an RX gas generator 1, an enriched gas supply unit 2, a carburizing furnace 3, a combustion facility 4, and a gas flow path 20, as shown in FIG. In contrast, the carburizing system 100 according to the first embodiment includes an RX gas generator 1, an enriched gas supply unit 2, a carburizing furnace 3, a carburizing gas supply system 50, a combustion facility 4, a gas flow path 20.
 RXガス生成部1は、メタン(CH)等の炭化水素及び空気を反応させることにより、RXガスと呼ばれる水素(H)、一酸化炭素(CO)、及び窒素(N)を主成分として含むガスを生成し、ガス流路20経由で供給口3aを介して浸炭炉3に供給する。エンリッチガス供給部2は、エンリッチガスと呼ばれる炭化水素を必要に応じてRXガスに追加することにより、ガス流路20経由で供給口3aを介して浸炭炉3に供給する。RXガスの組成は、特に限定されないが、例えば、水素を40体積%、一酸化炭素を20体積%、窒素を40体積%含み、これらに加えて若干の二酸化炭素(CO)及び水蒸気(HO)を含むものである。エンリッチガスは、特に限定されないが、例えば、メタン(CH)、プロパン(C)等が挙げられる。 The RX gas generator 1 reacts a hydrocarbon such as methane (CH 4 ) with air to produce RX gas, which is mainly composed of hydrogen (H 2 ), carbon monoxide (CO), and nitrogen (N 2 ). and is supplied to the carburizing furnace 3 through the gas flow path 20 and the supply port 3a. The enriched gas supply unit 2 adds a hydrocarbon called enriched gas to the RX gas as necessary, and supplies the RX gas to the carburizing furnace 3 via the supply port 3a via the gas flow path 20 . Although the composition of the RX gas is not particularly limited, for example, it contains 40% by volume of hydrogen, 20% by volume of carbon monoxide, and 40% by volume of nitrogen, in addition to some carbon dioxide (CO 2 ) and water vapor (H 2 O). Examples of the enriched gas include, but are not limited to, methane (CH 4 ), propane (C 3 H 8 ), and the like.
 なお、エンリッチガスをRXガスに追加する必要がある場合は、エンリッチガスをRXガスに追加することにより、浸炭炉3内のカーボンポテンシャル(CP)を調整することで浸炭処理を制御する必要がある場合である。 If it is necessary to add the enriched gas to the RX gas, it is necessary to control the carburizing process by adjusting the carbon potential (CP) in the carburizing furnace 3 by adding the enriched gas to the RX gas. is the case.
 浸炭炉3には、RXガス又はRXガスにエンリッチガスが追加されたガスが新規浸炭用ガスとして供給される。浸炭炉3は、新規浸炭用ガスを使用し、浸炭炉3内に置かれた鋼材に浸炭処理を行う。浸炭処理では、具体的には、鋼材に表面から炭素を拡散する。新規浸炭用ガスが浸炭処理に使用された後のガスは、排ガスとして、浸炭炉3から排出口3bを介してガス流路20に排出される。排ガスは、水素、一酸化炭素、及び窒素に加え、二酸化炭素及び水蒸気(水)を含んでいる。排ガスの組成は、特に限定されないが、例えば、水素及び一酸化炭素を合計55~59体積%、二酸化炭素及び水蒸気を合計1~4%、窒素を40~43体積%含むものである。 To the carburizing furnace 3, RX gas or a gas obtained by adding enriched gas to RX gas is supplied as a new carburizing gas. The carburizing furnace 3 uses a new carburizing gas to carburize the steel material placed in the carburizing furnace 3 . Specifically, in the carburizing treatment, carbon is diffused from the surface of the steel material. After the new carburizing gas has been used for the carburizing process, the gas is discharged as exhaust gas from the carburizing furnace 3 to the gas flow path 20 through the discharge port 3b. Exhaust gas contains carbon dioxide and water vapor (water) in addition to hydrogen, carbon monoxide, and nitrogen. Although the composition of the exhaust gas is not particularly limited, it contains, for example, a total of 55 to 59% by volume of hydrogen and carbon monoxide, a total of 1 to 4% by volume of carbon dioxide and water vapor, and 40 to 43% by volume of nitrogen.
 実施形態1に係る浸炭用ガス供給システム50は、浸炭炉3に浸炭用ガスを供給する浸炭用ガス供給システムであり、ガス排出部30と、第1流量測定部5と、第1濃度測定部6と、第1供給部8と、第2供給部9と、第3供給部15と、制御部7と、二酸化炭素変換部10と、昇圧部13と、改質反応部14と、浸炭用ガス供給部40と、ガス流路20とを備えている。 A carburizing gas supply system 50 according to the first embodiment is a carburizing gas supply system that supplies a carburizing gas to a carburizing furnace 3, and includes a gas discharge section 30, a first flow rate measuring section 5, and a first concentration measuring section. 6, a first supply unit 8, a second supply unit 9, a third supply unit 15, a control unit 7, a carbon dioxide conversion unit 10, a pressure increasing unit 13, a reforming reaction unit 14, and for carburizing A gas supply unit 40 and a gas flow path 20 are provided.
 ガス排出部30は、浸炭炉3の排出口3b及び排出口3bに接続されたガス流路20から構成され、浸炭炉3から排出口3bを介して排ガスをガス流路20に排出する。ガス流路20は、ガス排出部30の下流側で分岐することで、燃焼設備4及び第1流量測定部5のそれぞれに接続されている。浸炭用ガス供給システム50では、浸炭炉3から排出された排ガスが、ガス流路20を介して第1流量測定部5に導入する。浸炭炉3から排出された排ガスのうちの全部を第1流量測定部5に導入することもできるし、一部のみを第1流量測定部5に導入することもできるが、二酸化炭素の排出量削減の観点から、全部を第1流量測定部5に導入することが好ましい。第1流量測定部5に導入されない排ガスの残部は、ガス流路20を介して燃焼設備4に導入され、除害後に外部に排出される。 The gas discharge part 30 is composed of an outlet 3b of the carburizing furnace 3 and a gas flow path 20 connected to the outlet 3b, and discharges exhaust gas from the carburizing furnace 3 to the gas flow path 20 through the outlet 3b. The gas flow path 20 is branched downstream of the gas discharge section 30 and connected to the combustion equipment 4 and the first flow rate measurement section 5 respectively. In the carburizing gas supply system 50 , exhaust gas discharged from the carburizing furnace 3 is introduced into the first flow rate measuring section 5 through the gas flow path 20 . All of the exhaust gas discharged from the carburizing furnace 3 can be introduced into the first flow rate measuring unit 5, or only a part of it can be introduced into the first flow rate measuring unit 5. From the viewpoint of reduction, it is preferable to introduce all of them into the first flow rate measuring section 5 . The rest of the exhaust gas that is not introduced into the first flow rate measuring unit 5 is introduced into the combustion facility 4 via the gas flow path 20, and discharged outside after detoxification.
 第1流量測定部5は、第1流量測定部5に導入された排ガスの流量を測定する。流量測定後の排ガスは、ガス流路20を介して第1濃度測定部6に導入される。第1濃度測定部6は、第1濃度測定部6に導入された排ガスの成分の濃度を測定する。第1濃度測定部6は、後述する消費炭素量の推定を可能とする排ガスの成分の濃度を測定するものであれば特に限定されない。第1濃度測定部6は、排ガスの成分の一部又は全部の濃度を測定するものでよい。例えば、排ガスの成分のうち少なくとも二酸化炭素の濃度を測定するものでよい。 The first flow rate measurement unit 5 measures the flow rate of the exhaust gas introduced into the first flow rate measurement unit 5 . After the flow rate measurement, the exhaust gas is introduced into the first concentration measuring section 6 via the gas flow path 20 . The first concentration measuring section 6 measures the concentrations of the components of the exhaust gas introduced into the first concentration measuring section 6 . The first concentration measuring unit 6 is not particularly limited as long as it measures the concentration of the exhaust gas component that enables the estimation of the carbon consumption, which will be described later. The first concentration measuring unit 6 may measure the concentration of some or all of the components of the exhaust gas. For example, it may be one that measures the concentration of at least carbon dioxide among the components of the exhaust gas.
 ここで、図2は、実施形態1の変形例に係る浸炭用ガス供給システム及び浸炭システムであって、浸炭用ガス供給システムが浸炭炉に供給するガスの流量及び当該ガスの成分の濃度を測定するようにしたものの概略を示す図である。 Here, FIG. 2 shows a carburizing gas supply system and a carburizing system according to a modified example of the first embodiment, in which the flow rate of the gas supplied to the carburizing furnace by the carburizing gas supply system and the concentration of the components of the gas are measured. It is a figure which shows the outline of what was made to carry out.
 実施形態1の変形例に係る浸炭用ガス供給システム50は、図1に示す浸炭用ガス供給システム50の構成に加えて、第2流量測定部21及び第2濃度測定部22をさらに備えている。第2流量測定部21は、浸炭炉3に供給される再生浸炭用ガスの流量を測定する。第2濃度測定部22は、浸炭炉3炉に供給される再生浸炭用ガスの成分の濃度を測定する。実施形態1の変形例のように、第1流量測定部5及び第1濃度測定部6が排ガスの流量及び当該排ガスの成分の濃度を測定するのに加えて、第2流量測定部21及び第2濃度測定部22が再生浸炭用ガスの流量及び再生浸炭用ガスの成分の濃度を測定することにより、浸炭炉内で消費された炭素量の推定がさらに容易となり、浸炭炉へ供給するガスを最適なガス組成で供給することがさらに容易に可能となる。 The carburizing gas supply system 50 according to the modification of the first embodiment further includes a second flow rate measuring section 21 and a second concentration measuring section 22 in addition to the configuration of the carburizing gas supply system 50 shown in FIG. . The second flow rate measuring unit 21 measures the flow rate of the regeneration carburizing gas supplied to the carburizing furnace 3 . The second concentration measuring unit 22 measures the concentration of the components of the regeneration carburizing gas supplied to the carburizing furnace 3 . As in the modification of Embodiment 1, in addition to the first flow rate measurement unit 5 and the first concentration measurement unit 6 measuring the flow rate of the exhaust gas and the concentration of the components of the exhaust gas, the second flow rate measurement unit 21 and the second 2 By measuring the flow rate of the regenerating carburizing gas and the concentration of the components of the regenerating carburizing gas by the concentration measuring unit 22, it becomes easier to estimate the amount of carbon consumed in the carburizing furnace, and the gas to be supplied to the carburizing furnace can be easily estimated. It becomes even easier to supply the optimum gas composition.
 第1供給部8は、ガス流路20における第1濃度測定部6の下流側で排ガスに二酸化炭素を供給する。第2供給部9は、ガス流路20における第1濃度測定部6の下流側で排ガスに水素を供給する。 The first supply unit 8 supplies carbon dioxide to the exhaust gas on the downstream side of the first concentration measurement unit 6 in the gas flow path 20 . The second supply unit 9 supplies hydrogen to the exhaust gas on the downstream side of the first concentration measurement unit 6 in the gas flow path 20 .
 制御部7は、第1流量測定部5及び第1濃度測定部6で測定された排ガスの流量及び成分の濃度に基づいて、第1供給部8により排ガスに供給される二酸化炭素の供給量、及び第2供給部9により排ガスに供給される水素の供給量を制御する。ここで、二酸化炭素の供給量及び水素の供給量の制御方法について詳細に説明する。 The control unit 7 determines the supply amount of carbon dioxide supplied to the exhaust gas by the first supply unit 8 based on the flow rate and component concentrations of the exhaust gas measured by the first flow rate measurement unit 5 and the first concentration measurement unit 6, and the amount of hydrogen supplied to the exhaust gas by the second supply unit 9 is controlled. Here, a method for controlling the amount of carbon dioxide supplied and the amount of hydrogen supplied will be described in detail.
 浸炭炉3での浸炭処理において、新規浸炭用ガスから鋼材に添加され、新規浸炭用ガスから消費した炭素量(以下、「消費炭素量」と略すことがある。)は、排ガスの流量及び成分の濃度から推定可能である。具体的には、消費炭素量の推定方法としては、例えば、浸炭処理で式(1)に示す反応により炭素が鋼材に添加されるため、消費炭素量は二酸化炭素の増加量と同一の物質量になるとの前提に基づき、浸炭炉3に供給される新規浸炭用ガスについて予め設定又は測定される二酸化炭素濃度及び排ガスの成分の濃度から、新規浸炭用ガスの二酸化炭素濃度に対する排ガスの二酸化炭素濃度の増加量を求めた上で、排ガスの流量及び二酸化炭素濃度の増加量から消費炭素量を推定する方法等が挙げられる。なお、後述する式(5)により二酸化炭素が反応した場合においても、水蒸気濃度を測定することで消費炭素量を推定可能である。 In the carburizing process in the carburizing furnace 3, the amount of carbon added to the steel material from the new carburizing gas and consumed from the new carburizing gas (hereinafter sometimes abbreviated as "consumed carbon amount") is determined by the flow rate and the composition of the exhaust gas. can be estimated from the concentration of Specifically, as a method for estimating the amount of carbon consumed, for example, carbon is added to the steel material by the reaction shown in formula (1) in the carburizing process, so the amount of carbon consumed is the same amount of substance as the increase in carbon dioxide Based on the premise that it will be After obtaining the amount of increase, the amount of carbon consumption is estimated from the amount of increase in the flow rate of the exhaust gas and the carbon dioxide concentration. Note that even when carbon dioxide reacts according to equation (5) described later, the amount of carbon consumed can be estimated by measuring the water vapor concentration.
 2CO→C+CO                      (1) 2CO→C+CO 2 (1)
 そこで、本制御方法では、消費炭素量を推定した上で、消費炭素量と同一の物質量の炭素が排ガスに供給されるように第1供給部8により排ガスに供給される二酸化炭素の流量を制御する。さらに、排ガスの流量及び成分の濃度に基づいて、排ガスに含まれる二酸化炭素の流量を算出した上で、排ガスに含まれる二酸化炭素の流量及び第1供給部8により排ガスに供給される二酸化炭素の流量の合計と同一の物質量の流量となるように、第2供給部9により排ガスに供給される水素の流量を制御する。以上のようにして、二酸化炭素の供給量及び水素の供給量を制御する。これによって、二酸化炭素変換部10及び改質反応部14により、浸炭用ガスと同様の組成の改質ガスを生成できるようになる。 Therefore, in this control method, after estimating the amount of carbon consumed, the flow rate of carbon dioxide supplied to the exhaust gas by the first supply unit 8 is adjusted so that the same amount of carbon as the amount of carbon consumed is supplied to the exhaust gas. Control. Furthermore, based on the flow rate and component concentration of the exhaust gas, the flow rate of carbon dioxide contained in the exhaust gas is calculated, and the flow rate of carbon dioxide contained in the exhaust gas and the amount of carbon dioxide supplied to the exhaust gas by the first supply unit 8 The flow rate of hydrogen supplied to the exhaust gas by the second supply unit 9 is controlled so that the flow rate of the substance amount is the same as the total flow rate. As described above, the supply amount of carbon dioxide and the supply amount of hydrogen are controlled. As a result, the carbon dioxide conversion section 10 and the reforming reaction section 14 can generate reformed gas having the same composition as the carburizing gas.
 第2供給部9の水素供給源は、特に限定されないが、例えば、化石燃料の使用を抑制する観点から、水電解装置(電解装置)から生成された水素が好ましい。また、第2供給部9としては、排ガスに水素と一緒に水蒸気を供給してもよい。これにより、メタネーション反応部11での炭素析出を抑制できる。制御部7は、排ガスの流量及び成分の濃度に基づいて、第2供給部9により排ガスに供給される水蒸気の供給量を制御することもできる。 Although the hydrogen supply source of the second supply unit 9 is not particularly limited, for example, from the viewpoint of suppressing the use of fossil fuels, hydrogen generated from a water electrolysis device (electrolysis device) is preferable. Alternatively, the second supply unit 9 may supply water vapor together with hydrogen to the exhaust gas. Thereby, carbon deposition in the methanation reaction section 11 can be suppressed. The control unit 7 can also control the supply amount of water vapor supplied to the exhaust gas by the second supply unit 9 based on the flow rate and component concentration of the exhaust gas.
 第3供給部15は、ガス流路20における第1濃度測定部6の下流側で排ガスに水蒸気を供給してもよい。これにより、メタネーション反応部11での炭素析出を抑制できる。制御部7は、排ガスの流量及び成分の濃度に基づいて、第3供給部15により排ガスに供給される水蒸気の供給量を制御することもできる。 The third supply section 15 may supply water vapor to the exhaust gas on the downstream side of the first concentration measurement section 6 in the gas flow path 20 . Thereby, carbon deposition in the methanation reaction section 11 can be suppressed. The control unit 7 can also control the amount of water vapor supplied to the exhaust gas by the third supply unit 15 based on the flow rate and component concentration of the exhaust gas.
 二酸化炭素変換部10は、ガス流路20における第1濃度測定部6の下流側に配置され、二酸化炭素から炭化水素又は一酸化炭素を生成し、水又は酸素を除去する。実施形態1に係る二酸化炭素変換部10は、メタネーション反応部11と、水蒸気除去部12とを有している。メタネーション反応部11は、排ガス並びに排ガスに供給された二酸化炭素及び水素が混合された混合ガスから触媒反応によりメタン(炭化水素)及び水蒸気(水)を生成する。 The carbon dioxide conversion section 10 is arranged downstream of the first concentration measurement section 6 in the gas flow path 20, generates hydrocarbons or carbon monoxide from carbon dioxide, and removes water or oxygen. The carbon dioxide conversion unit 10 according to Embodiment 1 has a methanation reaction unit 11 and a water vapor removal unit 12 . The methanation reaction unit 11 generates methane (hydrocarbon) and water vapor (water) by catalytic reaction from the exhaust gas and the mixed gas of carbon dioxide and hydrogen supplied to the exhaust gas.
 メタネーション反応部11では、具体的には、触媒反応により、式(2)に示すメタネーション反応を進行させることで混合ガスに含まれる二酸化炭素及び水素からメタン及び水蒸気を生成する。 Specifically, in the methanation reaction unit 11, methane and water vapor are generated from carbon dioxide and hydrogen contained in the mixed gas by advancing the methanation reaction represented by the formula (2) through a catalytic reaction.
 CO+4H→CH+2HO                (2) CO2 +4H2->CH4 + 2H2O ( 2 )
 また、メタネーション反応部11では、式(2)に示す反応と同時に式(3)に示すメタネーション反応が進行する。式(3)に示す反応では、混合ガスに含まれる一酸化炭素及び水素からメタン及び水蒸気が生成される。 Also, in the methanation reaction unit 11, the methanation reaction represented by Formula (3) proceeds simultaneously with the reaction represented by Formula (2). In the reaction represented by formula (3), methane and water vapor are produced from carbon monoxide and hydrogen contained in the mixed gas.
 CO+3H→CH+HO                  (3) CO+3H2→CH4 + H2O ( 3 )
 式(3)に示す反応が進行し過ぎる場合には、ガス流路20における二酸化炭素変換部10の下流側の改質反応部14での反応による吸熱量が増加し、エネルギー消費量が増加するおそれがある。そこで、メタネーション反応部11での式(2)に示す反応の反応温度は、式(3)に示す反応の進行を抑制する観点から、500℃~600℃が好ましい。 When the reaction represented by formula (3) proceeds too much, the amount of heat absorbed by the reaction in the reforming reaction section 14 on the downstream side of the carbon dioxide conversion section 10 in the gas flow path 20 increases, and the energy consumption increases. There is a risk. Therefore, the reaction temperature of the reaction represented by the formula (2) in the methanation reaction section 11 is preferably 500° C. to 600° C. from the viewpoint of suppressing the progress of the reaction represented by the formula (3).
 メタネーション反応部11では、以上のように混合ガスが式(2)及び式(3)に示す反応により変換された変換ガスを生成する。 In the methanation reaction section 11, as described above, the mixed gas is converted into the converted gas by the reactions shown in the formulas (2) and (3).
 なお、メタネーション反応部11としては、式(2)に示す反応を進行させる適切な反応器が選択される。メタネーション反応部11で使用される触媒としては、特に限定されないが、例えば、Ni系触媒等が挙げられる。 As the methanation reaction unit 11, an appropriate reactor is selected to allow the reaction shown in formula (2) to proceed. The catalyst used in the methanation reaction section 11 is not particularly limited, but examples thereof include Ni-based catalysts.
 水蒸気除去部12では、変換ガスから水蒸気を除去し外部に排出する。水蒸気の除去方法は、特に限定されないが、例えば、冷却による凝縮、吸着分離、膜分離等が挙げられる。 The water vapor removal unit 12 removes water vapor from the converted gas and discharges it to the outside. A method for removing water vapor is not particularly limited, but examples thereof include condensation by cooling, adsorption separation, membrane separation, and the like.
 水蒸気の除去量は、第1供給部8により排ガスに供給された二酸化炭素に含有される酸素と同一の物質量の酸素、及び第2供給部9により排ガスに供給された水素と同一の物質量の水素が、変換ガスから除去されるように調整される。また、第3供給部15及び第2供給部9の少なくとも一方により排ガスに水蒸気が供給される場合には、水蒸気の除去量は、第3供給部15及び第2供給部9の少なくとも一方により排ガスに供給された水蒸気と同一の物質量の水蒸気が、さらに変換ガスから除去されるように調整される。以上によって、改質反応部14により、浸炭用ガスと同様の組成の改質ガスを生成できるようになる。 The amount of water vapor to be removed is the same amount of oxygen as the oxygen contained in the carbon dioxide supplied to the exhaust gas by the first supply unit 8, and the same amount of hydrogen as the amount of hydrogen supplied to the exhaust gas by the second supply unit 9. of hydrogen is adjusted to be removed from the converted gas. Further, when water vapor is supplied to the exhaust gas by at least one of the third supply unit 15 and the second supply unit 9, the amount of water vapor removed by at least one of the third supply unit 15 and the second supply unit 9 is The same material amount of water vapor as was supplied to is also arranged to be removed from the converted gas. As described above, the reforming reaction section 14 can generate a reformed gas having the same composition as the carburizing gas.
 昇圧部13は、ガス流路20における二酸化炭素変換部10の下流側に配置され、浸炭炉3からガス流路20に排出される排ガスを吸込み、改質反応部14により生成される改質ガスを浸炭炉3に供給するための圧力が得られるように、ガスを昇圧する。昇圧部13としては、特に限定されないが、例えば、ブロア、ポンプ等が選択できる。 The pressurizing section 13 is arranged downstream of the carbon dioxide conversion section 10 in the gas flow path 20, sucks the exhaust gas discharged from the carburizing furnace 3 into the gas flow path 20, and produces a reformed gas in the reforming reaction section 14. The gas is pressurized so as to obtain a pressure for supplying to the carburizing furnace 3. The boosting unit 13 is not particularly limited, but for example, a blower, a pump, or the like can be selected.
 水蒸気除去後の変換ガスは、ガス流路20を介して改質反応部14に導入される。改質反応部14は、ガス流路20における昇圧部13の下流側に配置され、水蒸気除去後の変換ガスに含まれるメタンから触媒反応により一酸化炭素及び水素を生成する。 The converted gas from which water vapor has been removed is introduced into the reforming reaction section 14 via the gas flow path 20 . The reforming reaction section 14 is arranged downstream of the pressurizing section 13 in the gas flow path 20, and produces carbon monoxide and hydrogen by catalytic reaction from methane contained in the converted gas after water vapor removal.
 改質反応部14では、具体的には、触媒反応により、式(4)に示す反応を進行させることで水蒸気除去後の変換ガスに含まれるメタン及び水蒸気から一酸化炭素及び水素を生成する。さらに、式(4)に示す反応とともに、式(5)に示す反応を進行させることで水蒸気除去後の変換ガスに含まれる二酸化炭素及び水素から一酸化炭素及び水蒸気を生成する。 Specifically, in the reforming reaction section 14, carbon monoxide and hydrogen are generated from methane and water vapor contained in the converted gas after water vapor removal by advancing the reaction shown in formula (4) through a catalytic reaction. Furthermore, by advancing the reaction shown in Formula (5) together with the reaction shown in Formula (4), carbon monoxide and water vapor are generated from carbon dioxide and hydrogen contained in the converted gas after water vapor removal.
 CH+HO→CO+3H                  (4) CO+H→CO+HO                   (5) CH4+ H2O →CO+3H2 ( 4 ) CO2 + H2→CO + H2O (5)
 改質反応部14での式(4)及び式(5)に示す反応の反応温度は、炭素析出を抑制する観点、及び浸炭用ガスと同様の組成の改質ガスを生成する観点から、900℃以上が好ましい。また、改質触媒の劣化を抑制する観点から、1200℃以下が好ましい。また、組成を浸炭用ガスと同様の組成にする観点から、RXガス生成部と同様の温度が好ましい。 The reaction temperature of the reactions represented by formulas (4) and (5) in the reforming reaction section 14 is 900 from the viewpoint of suppressing carbon deposition and generating a reformed gas having the same composition as the carburizing gas. °C or higher is preferred. Moreover, from the viewpoint of suppressing deterioration of the reforming catalyst, the temperature is preferably 1200° C. or less. Moreover, from the viewpoint of making the composition similar to that of the carburizing gas, the same temperature as that of the RX gas generation section is preferable.
 改質反応部14では、以上のように水蒸気除去後の変換ガスが式(4)及び式(5)に示す反応により改質された改質ガスを生成する。 In the reforming reaction section 14, as described above, the converted gas from which water vapor has been removed is reformed by the reactions shown in formulas (4) and (5) to generate a reformed gas.
 なお、改質反応部14としては、式(4)及び式(5)に示す反応を進行させる適切な反応器が選択される。また、改質反応部14としては、RXガス生成部1として使用される反応器を兼用で使用してもよい。改質反応部14で使用される触媒としては、特に限定されないが、例えば、Ni系触媒等が挙げられる。 As the reforming reaction unit 14, an appropriate reactor is selected to allow the reactions shown in formulas (4) and (5) to proceed. As the reforming reaction section 14, the reactor used as the RX gas generation section 1 may also be used. The catalyst used in the reforming reaction section 14 is not particularly limited, but examples thereof include Ni-based catalysts.
 浸炭用ガス供給部40は、浸炭炉3の供給口3a及び供給口3aに接続されたガス流路20から構成され、改質反応部14により生成された改質ガスを、再生浸炭用ガスとして、ガス流路20経由で、供給口3aを介して浸炭炉3に供給する。 The carburizing gas supply unit 40 is composed of the supply port 3a of the carburizing furnace 3 and the gas flow path 20 connected to the supply port 3a. , through the gas passage 20 and through the supply port 3a to the carburizing furnace 3.
 従って、実施形態1では、浸炭用ガス供給システム50において、排ガスに含まれる水素、一酸化炭素、及び窒素を再利用しながら、浸炭処理で生成された二酸化炭素や水蒸気等から一酸化炭素を再生している。このため、二酸化炭素排出量を低減でき、少ないエネルギー消費で二酸化炭素及び水蒸気等から一酸化炭素を再生可能である。さらに、浸炭炉3に再生浸炭用ガスとして供給される改質ガスのガス量に応じて、RXガス生成部1により生成するRXガス量やエンリッチガス供給部2により追加するエンリッチガス量を低減できる。すなわち、新規浸炭用ガスの使用量を低減できる。この結果、浸炭システム100で浸炭処理を行うためのプロセス全体において、エネルギー消費を低減できる。その上、RXガス生成部1でのメタン消費量を低減できるため、コストを低減できる。 Therefore, in the first embodiment, in the carburizing gas supply system 50, while reusing hydrogen, carbon monoxide, and nitrogen contained in the exhaust gas, carbon monoxide is regenerated from carbon dioxide, water vapor, etc. generated in the carburizing process. is doing. Therefore, the amount of carbon dioxide emissions can be reduced, and carbon monoxide can be regenerated from carbon dioxide, water vapor, and the like with little energy consumption. Furthermore, the amount of RX gas generated by the RX gas generator 1 and the amount of enriched gas added by the enriched gas supply unit 2 can be reduced according to the amount of the reformed gas supplied to the carburizing furnace 3 as the regeneration carburizing gas. . That is, the amount of new carburizing gas used can be reduced. As a result, energy consumption can be reduced during the entire process for carburizing with the carburizing system 100 . Moreover, since the amount of methane consumed by the RX gas generator 1 can be reduced, costs can be reduced.
 さらに、実施形態1では、第1流量測定部5及び第1濃度測定部6で測定された排ガスの流量及び成分の濃度に基づいて、第1供給部8により排ガスに供給される二酸化炭素の供給量、第2供給部9により排ガスに供給される水素の供給量、及び第3供給部15等により排ガスに供給される水蒸気の供給量を最適な量に制御できる。これにより、改質ガスに含まれる一酸化炭素や水素等の成分の量を最適な量に調整することで、浸炭炉内のカーボンポテンシャル(CP)を最適値に調整できる。 Furthermore, in the first embodiment, the first supply unit 8 supplies carbon dioxide to the exhaust gas based on the flow rate and component concentrations of the exhaust gas measured by the first flow rate measurement unit 5 and the first concentration measurement unit 6. The supply amount of hydrogen supplied to the exhaust gas by the second supply unit 9 and the supply amount of water vapor supplied to the exhaust gas by the third supply unit 15 or the like can be controlled to optimum amounts. As a result, the carbon potential (CP) in the carburizing furnace can be adjusted to an optimum value by adjusting the amount of components such as carbon monoxide and hydrogen contained in the reformed gas to an optimum amount.
 なお、浸炭用ガス供給システム50としては、再生可能エネルギーを電力として使用することで稼働するものが好ましい。 It should be noted that the carburizing gas supply system 50 preferably operates using renewable energy as electric power.
(実施形態2)
 実施形態2に係る浸炭用ガス供給システム及び浸炭システムについて、実施形態1と異なる点を中心に説明する。図3は、実施形態2に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。
(Embodiment 2)
A carburizing gas supply system and a carburizing system according to the second embodiment will be described, focusing on the differences from the first embodiment. FIG. 3 is a schematic diagram of a carburizing gas supply system and a carburizing system according to a second embodiment.
 実施形態2に係る浸炭用ガス供給システム50は、実施形態1に係る構成に加えて、ガス流路20における第1濃度測定部6の下流側で二酸化炭素変換部10の上流側に配置された流量制御部16をさらに備えている。さらに、実施形態2に係る浸炭用ガス供給システム50は、実施形態1とは異なり、第3供給部15を備えていない。 The carburizing gas supply system 50 according to the second embodiment is arranged downstream of the first concentration measuring unit 6 and upstream of the carbon dioxide conversion unit 10 in the gas flow path 20, in addition to the configuration according to the first embodiment. A flow control unit 16 is further provided. Furthermore, unlike the first embodiment, the carburizing gas supply system 50 according to the second embodiment does not include the third supply section 15 .
 流量制御部16は、濃度測定後の排ガスを分岐することで、排ガスの一部を、ガス流路20を介して二酸化炭素変換部10のメタネーション反応部11に導入し、排ガスの残部を、ガス流路20を介して二酸化炭素変換部10の下流側に流すことで、改質反応部14にそのまま導入する。 The flow control unit 16 branches the exhaust gas after the concentration measurement, thereby introducing a part of the exhaust gas into the methanation reaction unit 11 of the carbon dioxide conversion unit 10 via the gas flow path 20, and transferring the remaining exhaust gas to By flowing it to the downstream side of the carbon dioxide conversion section 10 through the gas flow path 20 , the gas is directly introduced into the reforming reaction section 14 .
 実施形態2に係る浸炭用ガス供給システム50では、第1供給部8が、メタネーション反応部11に導入される排ガスの一部に二酸化炭素を供給し、第2供給部9が、メタネーション反応部11に導入される排ガスの一部に水素を供給する。そして、排ガスの一部並びに排ガスに供給された二酸化炭素及び水素が混合された混合ガスが、ガス流路20を介して二酸化炭素変換部10のメタネーション反応部11に導入される。 In the carburizing gas supply system 50 according to the second embodiment, the first supply unit 8 supplies carbon dioxide to a portion of the exhaust gas introduced into the methanation reaction unit 11, and the second supply unit 9 supplies carbon dioxide to a portion of the exhaust gas introduced into the methanation reaction unit 11. Hydrogen is supplied to part of the exhaust gas introduced into the section 11 . Then, a part of the exhaust gas and a mixed gas in which carbon dioxide and hydrogen supplied to the exhaust gas are mixed are introduced into the methanation reaction section 11 of the carbon dioxide conversion section 10 via the gas flow path 20 .
 メタネーション反応部11での式(2)に示す反応の反応温度は、反応率を高める観点から、200℃~300℃が好ましい。 The reaction temperature of the reaction represented by formula (2) in the methanation reaction section 11 is preferably 200°C to 300°C from the viewpoint of increasing the reaction rate.
 改質反応部14は、メタネーション反応部11に導入されない排ガスの残部及び水蒸気除去後の変換ガスが、式(4)及び式(5)に示す反応により改質された改質ガスを生成する。 The reforming reaction unit 14 generates a reformed gas in which the remainder of the exhaust gas not introduced into the methanation reaction unit 11 and the converted gas after the removal of water vapor are reformed by the reactions shown in formulas (4) and (5). .
 実施形態2に係る浸炭用ガス供給システム50及び浸炭システム100は、以上に説明した以外の構成については、第1供給部8及び第2供給部9での二酸化炭素の供給量及び水素の供給量の制御方法、並びに水蒸気除去部12での水蒸気の除去量を含め、実施形態1と同様である。 In the carburizing gas supply system 50 and the carburizing system 100 according to the second embodiment, the supply amount of carbon dioxide and the amount of hydrogen supplied in the first supply unit 8 and the second supply unit 9 are different from those described above. and the amount of water vapor removed by the water vapor removal unit 12 are the same as those of the first embodiment.
 従って、実施形態2では、流量制御部16により濃度測定後の排ガスを分岐することでメタネーション反応部11への排ガスの導入量を減少させることによって、メタネーション反応部11として選択される反応器のサイズを低減できる。また、実施形態1と同様に排ガスに供給される二酸化炭素の流量及び水素の流量を制御することによって、排ガスに供給される二酸化炭素の流量に対する二酸化炭素が供給される排ガスの流量の比率を低下させることができるため、メタネーション反応部11での炭素析出を抑制できる。さらに、流量制御部16により、濃度測定後の排ガスを部分的にバイバス流路に流し、二酸化炭素変換部10の下流側に流すことによって、メタネーション反応部11でのメタンの生成量の制御が可能となるため、反応の制御が容易となる。 Therefore, in the second embodiment, the amount of exhaust gas introduced into the methanation reaction unit 11 is reduced by branching the exhaust gas after concentration measurement by the flow control unit 16, thereby reducing the amount of the exhaust gas introduced into the methanation reaction unit 11. size can be reduced. In addition, by controlling the flow rate of carbon dioxide and hydrogen supplied to the exhaust gas in the same manner as in the first embodiment, the ratio of the flow rate of the exhaust gas to which carbon dioxide is supplied to the flow rate of carbon dioxide supplied to the exhaust gas is reduced. Therefore, carbon deposition in the methanation reaction section 11 can be suppressed. Furthermore, the amount of methane produced in the methanation reaction section 11 can be controlled by causing the flow control section 16 to partially flow the exhaust gas after the concentration measurement to the bypass channel and to the downstream side of the carbon dioxide conversion section 10. Since it becomes possible, it becomes easy to control the reaction.
(実施形態3)
 実施形態3に係る浸炭用ガス供給システム及び浸炭システムについて、実施形態1と異なる点を中心に説明する。図4は、実施形態3に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。
(Embodiment 3)
A carburizing gas supply system and a carburizing system according to the third embodiment will be described, focusing on the differences from the first embodiment. FIG. 4 is a schematic diagram of a carburizing gas supply system and a carburizing system according to the third embodiment.
 実施形態3に係る浸炭用ガス供給システム50は、実施形態1に係る構成に加えて、ガス流路20における第1濃度測定部6の下流側で二酸化炭素変換部10の上流側に配置された分離部17(分離部)をさらに備えている。そして、二酸化炭素変換部10は、実施形態1とは異なり、ガス流路20における分離部17の下流側に配置され、メタネーション反応部11又は一酸化炭素生成反応部18と、水蒸気除去部12とを有している。さらに、浸炭用ガス供給システム50は、実施形態1とは異なり、第3供給部15を備えていない。また、昇圧部13は、実施形態1とは異なり、第1濃度測定部6の下流側で分離部17の上流側に配置されている。 The carburizing gas supply system 50 according to Embodiment 3, in addition to the configuration according to Embodiment 1, is arranged downstream of the first concentration measuring unit 6 and upstream of the carbon dioxide conversion unit 10 in the gas flow path 20. A separation section 17 (separation section) is further provided. Unlike the first embodiment, the carbon dioxide conversion unit 10 is arranged downstream of the separation unit 17 in the gas flow path 20, and includes the methanation reaction unit 11 or the carbon monoxide generation reaction unit 18 and the water vapor removal unit 12. and Furthermore, unlike the first embodiment, the carburizing gas supply system 50 does not include the third supply section 15 . Further, unlike the first embodiment, the pressurizing section 13 is arranged downstream of the first concentration measuring section 6 and upstream of the separating section 17 .
 分離部17は、濃度測定後の排ガスから水蒸気(水)及び二酸化炭素を分離し、それらの水蒸気及び二酸化炭素を主成分とする分離ガスを、ガス流路20を介して二酸化炭素変換部10のメタネーション反応部11又は一酸化炭素生成反応部18に導入し、分離ガスが分離された後の排ガスの残部を、ガス流路20を介して二酸化炭素変換部10の下流側に流すことで、改質反応部14にそのまま導入する。 The separation unit 17 separates water vapor (water) and carbon dioxide from the exhaust gas whose concentration has been measured, and passes the separated gas containing water vapor and carbon dioxide as main components to the carbon dioxide conversion unit 10 through the gas flow path 20. By introducing the waste gas into the methanation reaction unit 11 or the carbon monoxide generation reaction unit 18 and flowing the remainder of the exhaust gas after the separation gas is separated downstream of the carbon dioxide conversion unit 10 through the gas flow path 20, It is introduced into the reforming reaction section 14 as it is.
 分離部17の分離ガスの分離方式としては、特に限定されないが、例えば、吸着分離、膜分離等が挙げられる。吸着分離に使用する吸着剤としては、特に限定されないが、例えば、ゼオライト、セリア、モリキュラーシーブ、活性炭等が挙げられる。吸着分離を行う分離部17では、反応室を2つ設けることにより、一方の反応室で吸着分離を行う間に他方の反応室の圧力や温度等を変更することで吸着剤を再生できる。分離ガスの流量を平準化するため、ガス流路20において、分離部17と、第1供給部8からガスを供給する箇所との間にバッファーを設けてもよい。 The separation method of the separation gas of the separation unit 17 is not particularly limited, but includes, for example, adsorption separation, membrane separation, and the like. The adsorbent used for adsorptive separation is not particularly limited, but examples thereof include zeolite, ceria, molecular sieves, activated carbon and the like. By providing two reaction chambers in the separation unit 17 that performs adsorption separation, the adsorbent can be regenerated by changing the pressure, temperature, etc., in one reaction chamber while adsorption separation is performed in the other reaction chamber. In order to equalize the flow rate of the separation gas, a buffer may be provided between the separation section 17 and the location where the gas is supplied from the first supply section 8 in the gas flow path 20 .
 実施形態3に係る浸炭用ガス供給システム50では、第1供給部8が、ガス流路20における分離部17の下流側で分離ガスに二酸化炭素を供給し、第2供給部9が、ガス流路20における分離部17の下流側で分離ガスに水素を供給する。そして、分離ガス並びに分離ガスに供給された二酸化炭素及び水素が混合された混合ガスが、ガス流路20を介して二酸化炭素変換部10のメタネーション反応部11又は一酸化炭素生成反応部18に導入される。 In the carburizing gas supply system 50 according to Embodiment 3, the first supply unit 8 supplies carbon dioxide to the separation gas downstream of the separation unit 17 in the gas flow path 20, and the second supply unit 9 supplies the gas flow Hydrogen is supplied to the separation gas downstream of separation section 17 in line 20 . Then, the separation gas and the mixed gas of carbon dioxide and hydrogen supplied to the separation gas are supplied to the methanation reaction section 11 or the carbon monoxide generation reaction section 18 of the carbon dioxide conversion section 10 through the gas flow path 20. be introduced.
 メタネーション反応部11では、触媒反応により、式(2)に示すメタネーション反応を進行させることで混合ガスに含まれる二酸化炭素及び水素からメタン及び水蒸気を生成する。メタネーション反応部11での式(2)に示す反応の反応温度は、反応率を高める観点から、200℃~300℃が好ましい。 In the methanation reaction unit 11, methane and water vapor are generated from carbon dioxide and hydrogen contained in the mixed gas by advancing the methanation reaction represented by the formula (2) through a catalytic reaction. The reaction temperature of the reaction represented by formula (2) in the methanation reaction section 11 is preferably 200° C. to 300° C. from the viewpoint of increasing the reaction rate.
 メタネーション反応部11では、以上のように混合ガスが式(2)に示す反応により変換された変換ガスを生成する。 In the methanation reaction section 11, the mixed gas is converted by the reaction represented by the formula (2) as described above to generate a converted gas.
 一酸化炭素生成反応部18では、触媒反応により、式(5)に示す反応を進行させることで混合ガスに含まれる二酸化炭素及び水素から一酸化炭素及び水蒸気を生成する。 The carbon monoxide generation reaction unit 18 generates carbon monoxide and water vapor from carbon dioxide and hydrogen contained in the mixed gas by advancing the reaction shown in formula (5) through a catalytic reaction.
 一酸化炭素生成反応部18での式(5)に示す反応の反応温度は、反応率を高める観点から、700℃以上が好ましい。また、触媒の劣化を抑制する観点から、1200℃以下が好ましい。一酸化炭素生成反応部18としては、式(5)に示す反応を進行させる適切な反応器が選択される。一酸化炭素生成反応部18で使用される触媒としては、特に限定されないが、例えば、Ni系触媒、Cu系触媒等が挙げられ、メタンの生成を抑制できる観点から、Cu系触媒等が好ましい。一酸化炭素生成反応部18としては、触媒にゼオライトを混合し、水蒸気を選択吸着させて、水蒸気除去部12を兼ねてもよい。その場合、低温でも式(5)に示す反応が進行するため、反応温度を300℃以下に低減できる。 The reaction temperature of the reaction represented by formula (5) in the carbon monoxide generation reaction section 18 is preferably 700°C or higher from the viewpoint of increasing the reaction rate. Moreover, from the viewpoint of suppressing deterioration of the catalyst, the temperature is preferably 1200° C. or less. As the carbon monoxide generation reaction section 18, an appropriate reactor is selected to allow the reaction shown in the formula (5) to proceed. The catalyst used in the carbon monoxide generation reaction unit 18 is not particularly limited, but examples thereof include Ni-based catalysts and Cu-based catalysts. Cu-based catalysts are preferable from the viewpoint of suppressing the generation of methane. The carbon monoxide generation reaction section 18 may also serve as the water vapor removal section 12 by mixing zeolite with a catalyst and selectively adsorbing water vapor. In that case, the reaction represented by formula (5) proceeds even at low temperatures, so the reaction temperature can be reduced to 300° C. or lower.
 一酸化炭素生成反応部18では、以上のように混合ガスが式(5)に示す反応により変換された変換ガスを生成する。 In the carbon monoxide generation reaction section 18, the mixed gas is converted by the reaction represented by the formula (5) as described above to generate a converted gas.
 改質反応部14は、ガス流路20における分離部17の下流側に配置され、分離ガスが分離された後の排ガスの残部及び水蒸気除去後の変換ガスが、式(4)及び式(5)に示す反応により改質された改質ガスを生成する。 The reforming reaction section 14 is arranged on the downstream side of the separation section 17 in the gas flow path 20, and the remainder of the exhaust gas after the separation gas is separated and the converted gas after removal of water vapor are expressed by the formulas (4) and (5). ) to generate a reformed gas reformed by the reaction shown in ).
 実施形態3に係る浸炭用ガス供給システム50及び浸炭システム100は、以上に説明した以外の構成については、第1供給部8及び第2供給部9での二酸化炭素の供給量及び水素の供給量の制御方法、並びに水蒸気除去部12での水蒸気の除去量を含め、実施形態1と同様である。 In the carburizing gas supply system 50 and the carburizing system 100 according to the third embodiment, the supply amount of carbon dioxide and the amount of hydrogen supplied in the first supply unit 8 and the second supply unit 9 are different from those described above. and the amount of water vapor removed by the water vapor removal unit 12 are the same as those of the first embodiment.
 従って、実施形態3では、分離部17により濃度測定後の排ガスから水蒸気及び二酸化炭素を分離し、それらの水蒸気及び二酸化炭素を主成分とする分離ガスをメタネーション反応部11又は一酸化炭素生成反応部18に導入するため、メタネーション反応部11又は一酸化炭素生成反応部18で反応させる混合ガスの水蒸気や二酸化炭素等の濃度を向上させることができるため、メタネーション反応部11又は一酸化炭素生成反応部18での炭素析出を抑制できる。さらに、メタネーション反応部11又は一酸化炭素生成反応部18での反応は、水素や一酸化炭素の影響を受けないので、容易となる。 Therefore, in Embodiment 3, water vapor and carbon dioxide are separated from the exhaust gas after concentration measurement by the separation unit 17, and the separated gas containing water vapor and carbon dioxide as main components is converted to the methanation reaction unit 11 or the carbon monoxide generation reaction. Since it is introduced into the methanation reaction unit 11 or the carbon monoxide generation reaction unit 18, the concentration of water vapor, carbon dioxide, etc. in the mixed gas to be reacted in the methanation reaction unit 11 or the carbon monoxide generation reaction unit 18 can be improved. Carbon deposition in the production reaction section 18 can be suppressed. Furthermore, the reaction in the methanation reaction section 11 or the carbon monoxide generation reaction section 18 is facilitated because it is not affected by hydrogen or carbon monoxide.
(実施形態4)
 実施形態4に係る浸炭用ガス供給システム及び浸炭システムについて、実施形態3と異なる点を中心に説明する。図5は、実施形態4に係る浸炭用ガス供給システム及び浸炭システムの概略を示す図である。
(Embodiment 4)
A carburizing gas supply system and a carburizing system according to the fourth embodiment will be described, focusing on the differences from the third embodiment. FIG. 5 is a schematic diagram of a carburizing gas supply system and a carburizing system according to a fourth embodiment.
 実施形態4に係る浸炭用ガス供給システム50では、二酸化炭素変換部10は、実施形態3とは異なり、メタネーション反応部11又は一酸化炭素生成反応部18ではなく電解反応部19を有しており、水蒸気除去部12を有していない。さらに、浸炭用ガス供給システム50は、実施形態3とは異なり、第2供給部9を備えていない。 In the carburizing gas supply system 50 according to the fourth embodiment, unlike the third embodiment, the carbon dioxide conversion section 10 has the electrolytic reaction section 19 instead of the methanation reaction section 11 or the carbon monoxide generation reaction section 18. , and does not have the water vapor removal section 12 . Furthermore, unlike the third embodiment, the carburizing gas supply system 50 does not include the second supply section 9 .
 実施形態4に係る浸炭用ガス供給システム50では、第1供給部8が、ガス流路20における分離部17の下流側で分離ガスに二酸化炭素を供給する。そして、分離ガス並びに分離ガスに供給された二酸化炭素が混合された混合ガスが、ガス流路20を介して二酸化炭素変換部10の電解反応部19に導入される。 In the carburizing gas supply system 50 according to Embodiment 4, the first supply section 8 supplies carbon dioxide to the separation gas on the downstream side of the separation section 17 in the gas flow path 20 . Then, the mixed gas in which the separation gas and the carbon dioxide supplied to the separation gas are mixed is introduced into the electrolytic reaction section 19 of the carbon dioxide conversion section 10 via the gas flow path 20 .
 電解反応部19の燃料極では、電気分解により式(6)に示す反応を進行させることにより、混合ガスに含まれる二酸化炭素、すなわち、分離ガスに含まれる二酸化炭素及び分離ガスに供給された二酸化炭素から一酸化炭素を生成する。同時に、式(7)に示す反応が進行することにより、混合ガスに含まれる水蒸気(水)から水素が生成する。この際、混合ガスに含まれる二酸化炭素が一酸化炭素に変換されるように電解での電流量を制御するが、電流は式(6)に示す反応だけではなく式(7)に示す反応にも使用されるため、全ての二酸化炭素が一酸化炭素に変換されるわけではない。 At the fuel electrode of the electrolysis reaction unit 19, the reaction represented by the formula (6) is advanced by electrolysis, so that the carbon dioxide contained in the mixed gas, that is, the carbon dioxide contained in the separated gas and the dioxide supplied to the separated gas Produces carbon monoxide from carbon. At the same time, hydrogen is generated from the water vapor (water) contained in the mixed gas as the reaction represented by the formula (7) proceeds. At this time, the amount of current in the electrolysis is controlled so that the carbon dioxide contained in the mixed gas is converted to carbon monoxide. is also used, so not all carbon dioxide is converted to carbon monoxide.
 CO+2e→CO+O2-                  (6) HO+2e→H+O2-                  (7) CO 2 +2e →CO+O 2− (6) H 2 O+2e →H 2 +O 2− (7)
 一方、電解反応部19の酸素極では、電気分解により式(8)に示す反応を進行させることで、酸化物イオンから酸素が生成する。電解反応部19は、当該酸素を外部に排出する。 On the other hand, at the oxygen electrode of the electrolysis reaction unit 19, oxygen is generated from oxide ions by advancing the reaction shown in formula (8) by electrolysis. The electrolytic reaction section 19 discharges the oxygen to the outside.
 O2-→0.5O+2e                   (8) O 2− →0.5O 2 +2e (8)
 電解反応部19では、以上のように混合ガスが式(6)~式(8)に示す反応により変換された変換ガスを生成する。 In the electrolytic reaction section 19, as described above, the mixed gas is converted into the converted gas by the reactions shown in the formulas (6) to (8).
 なお、電解反応部19としては、特に限定されないが、水蒸気及び二酸化炭素の共電解が可能な固体酸化物形セル等が挙げられる。 The electrolysis reaction unit 19 is not particularly limited, but includes a solid oxide cell capable of co-electrolysis of water vapor and carbon dioxide.
 改質反応部14は、ガス流路20における電解反応部19の下流側に配置され、分離ガスが分離された後の排ガスの残部及び変換ガスが、式(4)及び式(5)に示す反応により改質された改質ガスを生成する。 The reforming reaction section 14 is arranged on the downstream side of the electrolytic reaction section 19 in the gas flow path 20, and the remainder of the exhaust gas and the converted gas after the separation gas is separated are represented by the formulas (4) and (5). A reformed gas that is reformed by the reaction is generated.
 実施形態4に係る浸炭用ガス供給システム50及び浸炭システム100は、第1供給部8での二酸化炭素の供給量の制御方法を含め、以上に説明した以外の構成については、実施形態3と同様である。 The carburizing gas supply system 50 and the carburizing system 100 according to the fourth embodiment are the same as those of the third embodiment except for the method of controlling the amount of carbon dioxide supplied in the first supply unit 8. is.
 従って、実施形態4では、実施形態3に係る第2供給部9及び一酸化炭素生成反応部18の機能を電解反応部19に統合することができるので、実施形態3と比べ構成を簡略化できる。また、電解での電流量を制御することにより、反応率の制御が可能となるため、反応の制御が容易となる。 Therefore, in the fourth embodiment, the functions of the second supply unit 9 and the carbon monoxide generation reaction unit 18 according to the third embodiment can be integrated into the electrolytic reaction unit 19, so the configuration can be simplified compared to the third embodiment. . Also, by controlling the amount of electric current in electrolysis, it becomes possible to control the reaction rate, which facilitates the control of the reaction.
 本発明は、実施形態に限定されるものではなく、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含され、様々な変形例が含む。例えば、実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments. However, it is included in the technical scope of the present invention and includes various modifications. For example, the embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
1   RXガス生成部
2   エンリッチガス供給部
3   浸炭炉
4   燃焼設備
5   第1流量測定部
6   第1濃度測定部
7   制御部
8   第1供給部
9   第2供給部
10  二酸化炭素変換部
11  メタネーション反応部
12  水蒸気除去部
13  昇圧部
14  改質反応部
15  第3供給部
16  流量制御部
17  分離部
18  一酸化炭素生成反応部
19  電解反応部
20  ガス流路
21  第2流量測定部
22  第2濃度測定部
30  ガス排出部
40  浸炭用ガス供給部
50  浸炭用ガス供給システム
100 浸炭システム
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
1 RX gas generation unit 2 Enriched gas supply unit 3 Carburizing furnace 4 Combustion equipment 5 First flow measurement unit 6 First concentration measurement unit 7 Control unit 8 First supply unit 9 Second supply unit 10 Carbon dioxide conversion unit 11 Methanation reaction Section 12 Water vapor removing section 13 Pressure increasing section 14 Reforming reaction section 15 Third supply section 16 Flow rate control section 17 Separation section 18 Carbon monoxide generation reaction section 19 Electrolysis reaction section 20 Gas flow path 21 Second flow measurement section 22 Second concentration Measurement Section 30 Gas Discharge Section 40 Carburizing Gas Supply Section 50 Carburizing Gas Supply System 100 Carburizing System All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (13)

  1.  浸炭処理を行う浸炭炉に浸炭用ガスを供給する浸炭用ガス供給システムにおいて、
     前記浸炭炉から排ガスを排出するガス排出部と、
     前記排ガスの流量を測定する第1流量測定部と、
     前記排ガスの成分の濃度を測定する第1濃度測定部と、
     前記排ガスに二酸化炭素を供給する第1供給部と、
     前記排ガスの前記流量及び前記成分の濃度に基づいて、前記二酸化炭素の供給量を制御する制御部と、
     二酸化炭素から炭化水素又は一酸化炭素を生成し、水又は酸素を除去する二酸化炭素変換部と、
     前記二酸化炭素変換部で生成された前記炭化水素又は前記一酸化炭素を含む再生浸炭用ガスを前記浸炭炉に供給する浸炭用ガス供給部と、を備えることを特徴とする浸炭用ガス供給システム。
    In a carburizing gas supply system that supplies carburizing gas to a carburizing furnace that performs carburizing,
    a gas discharge unit for discharging exhaust gas from the carburizing furnace;
    a first flow rate measurement unit that measures the flow rate of the exhaust gas;
    a first concentration measuring unit for measuring concentrations of components of the exhaust gas;
    a first supply unit that supplies carbon dioxide to the exhaust gas;
    a control unit that controls the supply amount of the carbon dioxide based on the flow rate and the concentration of the component of the exhaust gas;
    a carbon dioxide conversion unit that produces hydrocarbons or carbon monoxide from carbon dioxide and removes water or oxygen;
    a carburizing gas supply unit for supplying the regenerated carburizing gas containing the hydrocarbons or carbon monoxide generated in the carbon dioxide conversion unit to the carburizing furnace.
  2.  前記浸炭用ガス供給システムは、前記排ガスに水素を供給する第2供給部をさらに備え、
     前記制御部は、前記排ガスの前記流量及び前記成分の濃度に基づいて、前記水素の供給量を制御することを特徴とする請求項1に記載の浸炭用ガス供給システム。
    The carburizing gas supply system further includes a second supply unit that supplies hydrogen to the exhaust gas,
    2. The gas supply system for carburizing according to claim 1, wherein the control unit controls the supply amount of the hydrogen based on the flow rate of the exhaust gas and the concentration of the component.
  3.  前記第2供給部は、電解装置を有することを特徴とする請求項2に記載の浸炭用ガス供給システム。 The carburizing gas supply system according to claim 2, wherein the second supply unit has an electrolytic device.
  4.  前記二酸化炭素変換部は、二酸化炭素から炭化水素又は一酸化炭素を生成する触媒を有することを特徴とする請求項1~請求項3のいずれか1項に記載の浸炭用ガス供給システム。 The carburizing gas supply system according to any one of claims 1 to 3, wherein the carbon dioxide conversion unit has a catalyst that produces hydrocarbons or carbon monoxide from carbon dioxide.
  5.  前記浸炭用ガス供給システムは、前記排ガスに水を供給する第3供給部をさらに備え、
     前記制御部は、前記排ガスの前記流量及び前記成分の濃度に基づいて、前記水の供給量を制御することを特徴とする請求項4に記載の浸炭用ガス供給システム。
    The carburizing gas supply system further includes a third supply unit that supplies water to the exhaust gas,
    5. The gas supply system for carburizing according to claim 4, wherein the control unit controls the supply amount of the water based on the flow rate and the concentration of the component of the exhaust gas.
  6.  前記二酸化炭素変換部は、二酸化炭素の電気分解により一酸化炭素を生成する電解反応部を有することを特徴とする請求項1に記載の浸炭用ガス供給システム。 The carburizing gas supply system according to claim 1, wherein the carbon dioxide conversion unit has an electrolytic reaction unit that generates carbon monoxide by electrolysis of carbon dioxide.
  7.  前記浸炭用ガス供給システムは、触媒を有する改質反応器をさらに備え、
     前記改質反応器は、前記二酸化炭素変換部から生成された前記炭化水素から一酸化炭素及び水素を生成し、
     前記浸炭用ガス供給部は、前記改質反応器で生成された前記一酸化炭素を含む前記再生浸炭用ガスを前記浸炭炉に供給することを特徴とする請求項1~請求項6のいずれか1項に記載の浸炭用ガス供給システム。
    The carburizing gas supply system further comprises a reforming reactor having a catalyst,
    The reforming reactor produces carbon monoxide and hydrogen from the hydrocarbon produced from the carbon dioxide conversion unit,
    7. The carburizing gas supply unit according to any one of claims 1 to 6, wherein the regenerated carburizing gas containing the carbon monoxide generated in the reforming reactor is supplied to the carburizing furnace. 2. The gas supply system for carburizing according to item 1.
  8.  前記浸炭用ガス供給システムは、前記二酸化炭素変換部の上流側に配置された流量制御部をさらに備え、
     前記流量制御部は、前記排ガスの前記流量及び前記成分の濃度に基づいて、前記排ガスの一部を前記二酸化炭素変換部に導入し、前記排ガスの残部を前記二酸化炭素変換部の下流側に流すことを特徴とする請求項1~請求項7のいずれか1項に記載の浸炭用ガス供給システム。
    The carburizing gas supply system further comprises a flow rate control unit arranged upstream of the carbon dioxide conversion unit,
    The flow rate control unit introduces a portion of the exhaust gas into the carbon dioxide conversion unit based on the flow rate of the exhaust gas and the concentration of the component, and causes the remainder of the exhaust gas to flow downstream of the carbon dioxide conversion unit. The carburizing gas supply system according to any one of claims 1 to 7, characterized in that:
  9.  前記浸炭用ガス供給システムは、前記二酸化炭素変換部の上流側に配置された分離部をさらに備え、
     前記分離部は、前記排ガスから水及び二酸化炭素を分離し、分離した前記水及び前記二酸化炭素を前記二酸化炭素変換部に供給することを特徴とする請求項1~請求項7のいずれか1項に記載の浸炭用ガス供給システム。
    The carburizing gas supply system further comprises a separation section arranged upstream of the carbon dioxide conversion section,
    8. The separation unit separates water and carbon dioxide from the exhaust gas, and supplies the separated water and carbon dioxide to the carbon dioxide conversion unit. The gas supply system for carburizing described in .
  10.  前記分離部は、前記排ガスから前記水及び前記二酸化炭素を吸着分離することを特徴とする請求項9に記載の浸炭用ガス供給システム。 The gas supply system for carburizing according to claim 9, wherein the separation unit adsorbs and separates the water and the carbon dioxide from the exhaust gas.
  11.  前記浸炭用ガス供給システムは、第2流量測定部と第2濃度測定部とをさらに備え、
     前記第2流量測定部は、前記再生浸炭用ガスの流量を測定し、
     前記第2濃度測定部は、前記再生浸炭用ガスの成分の濃度を測定することを特徴とする請求項1~請求項10のいずれか1項に記載の浸炭用ガス供給システム。
    The carburizing gas supply system further comprises a second flow rate measuring section and a second concentration measuring section,
    The second flow rate measuring unit measures the flow rate of the regeneration carburizing gas,
    The carburizing gas supply system according to any one of claims 1 to 10, wherein the second concentration measuring unit measures the concentration of the component of the regenerating carburizing gas.
  12.  再生可能エネルギーを電力として使用することで稼働することを特徴とする請求項1~請求項11のいずれか1項に記載の浸炭用ガス供給システム。 The gas supply system for carburizing according to any one of claims 1 to 11, which is operated by using renewable energy as electric power.
  13.  請求項1~請求項12のいずれか1項に記載の浸炭用ガス供給システムと、浸炭処理を行う浸炭炉と、を備えることを特徴とする浸炭システム。 A carburizing system comprising: the carburizing gas supply system according to any one of claims 1 to 12; and a carburizing furnace for carburizing.
PCT/JP2022/002544 2021-03-25 2022-01-25 Carburizing gas supply system and carburizing system WO2022201828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-051216 2021-03-25
JP2021051216A JP2022149184A (en) 2021-03-25 2021-03-25 Carburizing gas supply system and carburizing system

Publications (1)

Publication Number Publication Date
WO2022201828A1 true WO2022201828A1 (en) 2022-09-29

Family

ID=83395451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002544 WO2022201828A1 (en) 2021-03-25 2022-01-25 Carburizing gas supply system and carburizing system

Country Status (2)

Country Link
JP (1) JP2022149184A (en)
WO (1) WO2022201828A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339017A (en) * 2001-05-18 2002-11-27 Daido Steel Co Ltd Heat treatment method and heat treatment furnace
JP2017226893A (en) * 2016-06-24 2017-12-28 大同特殊鋼株式会社 Gas supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339017A (en) * 2001-05-18 2002-11-27 Daido Steel Co Ltd Heat treatment method and heat treatment furnace
JP2017226893A (en) * 2016-06-24 2017-12-28 大同特殊鋼株式会社 Gas supply system

Also Published As

Publication number Publication date
JP2022149184A (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5282103B2 (en) Hydrogen recycling type MCFC power generation system
AU2003261776B2 (en) Fuel Cell Electrical Power Generation System
CN107002256A (en) A kind of method for the carbon monoxide for preparing ultra-high purity
WO2002047191A2 (en) Process for air enrichment in producing hydrogen for use with fuel cells
JP2007254180A (en) Self-sustained lower hydrocarbon direct decomposition process and process system thereof
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
KR101472767B1 (en) Carbon monoxide gas generation apparatus and method
CN107001034A (en) Method for eliminating VOC in ammonia device and hazardous air pollutants
WO2022201828A1 (en) Carburizing gas supply system and carburizing system
JP2002060204A (en) Fuel reformer, its operating method and fuel cell power generation unit using the same
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
JPH0847621A (en) Device for removing carbon monoxide
JPWO2013132847A1 (en) Hydrogen generator, operating method thereof, and fuel cell system
JP2007210835A (en) Apparatus for producing hydrogen and fuel battery system
JP5348938B2 (en) Carbon monoxide gas generator and method
JPH0927337A (en) Fuel cell power generating system
JP2022076978A (en) System and method for processing off-gas discharged from fuel cell
JP2016184550A (en) Gas manufacturing apparatus
JP2008105892A (en) Stopping method for fuel reformer
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
JP5002902B2 (en) Hydrogen generator and fuel cell system
JP5285952B2 (en) Carbon monoxide gas generator and method
JP2020111492A (en) Hydrogen production system
KR101362209B1 (en) Regeneration method and apparatus for sulfur-poisoned reform catalyst in the fuel processor of fuel cell system
JP5276300B2 (en) Method for producing hydrogen gas for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774630

Country of ref document: EP

Kind code of ref document: A1