WO2022201806A1 - 作業機械および作業機械の制御方法 - Google Patents

作業機械および作業機械の制御方法 Download PDF

Info

Publication number
WO2022201806A1
WO2022201806A1 PCT/JP2022/001968 JP2022001968W WO2022201806A1 WO 2022201806 A1 WO2022201806 A1 WO 2022201806A1 JP 2022001968 W JP2022001968 W JP 2022001968W WO 2022201806 A1 WO2022201806 A1 WO 2022201806A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
deceleration
control
state
distance
Prior art date
Application number
PCT/JP2022/001968
Other languages
English (en)
French (fr)
Inventor
陽 竹野
利崇 黒沢
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to EP22774609.6A priority Critical patent/EP4283053A1/en
Priority to US18/549,091 priority patent/US20240151000A1/en
Priority to CN202280016538.4A priority patent/CN116917587A/zh
Publication of WO2022201806A1 publication Critical patent/WO2022201806A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0841Articulated frame, i.e. having at least one pivot point between two travelling gear units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/02Travelling-gear, e.g. associated with slewing gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2083Control of vehicle braking systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/34Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to a work machine and a control method for the work machine.
  • the area from the wheel loader to the object is divided into three areas, the first area, the second area, and the third area, in order of distance from the object. It slows down in the area and stops in the third area.
  • the work machine when working at a construction site, etc., the work machine is often in a relatively unstable state, and if sudden braking is performed in such a state, the state may become even more unstable. have a nature.
  • An object of the present disclosure is to provide a work machine and a control method for the work machine that can stably suppress a collision with an object. (means to solve the problem)
  • a work machine includes a vehicle body, an object detection section, a state detection section, and a control section.
  • the vehicle body has a running body and a work machine arranged on the running body.
  • the object detection unit detects objects around the vehicle body.
  • the state detection unit detects at least one state of the vehicle main body, tilting or bending, and the work implement.
  • the controller sets the deceleration used for automatic braking when an object is detected, based on the relationship between the lateral stability range in which the vehicle body can stop and the position of the center of gravity obtained from the detection information of the state detector.
  • a work machine control method includes an object information acquisition step, a state detection step, and a setting step.
  • the object information obtaining step obtains information about objects around the vehicle body including the traveling body and the working machine arranged on the traveling body.
  • the state detection step detects at least one state of the tilting and bending of the vehicle body and the work implement.
  • the setting step sets the deceleration used for automatic braking when an object is detected, based on the relationship between the lateral stability range in which the vehicle body can stop and the position of the center of gravity obtained from the detection information in the state detection step. (Effect of the invention)
  • FIG. 1 is a side view of a wheel loader according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a configuration diagram of the vicinity of a rear tire of the wheel loader according to the embodiment of the present disclosure, viewed from behind
  • 1 is a block diagram showing the configuration of a wheel loader according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing the configuration of a detection system of a wheel loader according to an embodiment of the present disclosure
  • FIG. 2 is a rear view showing the stability range of the wheel loader according to the embodiment of the present disclosure; The figure which shows the state which the boom of the wheel loader of embodiment concerning this indication rotated upward.
  • FIG. 2 is a diagram showing a state in which the excavation bucket of the wheel loader according to the embodiment of the present disclosure is loaded; The figure which shows the bending state of the wheel loader of embodiment concerning this indication.
  • 1 is a block diagram showing the configuration of a control system of a wheel loader according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a side view showing a stopped state by automatic braking of the wheel loader according to the embodiment of the present disclosure
  • FIG. 4 is a flowchart showing control operations of the wheel loader according to the embodiment of the present disclosure
  • FIG. 4 is a back view showing another example of the stability range of the wheel loader according to the embodiment of the present disclosure;
  • FIG. 1A is a schematic diagram showing the configuration of a wheel loader 100 (an example of a working machine) according to this embodiment.
  • a wheel loader 100 of the present embodiment has a vehicle body 1, a traveling body 2, and a working machine 3. As shown in FIG. The working machine 3 is arranged on the traveling body 2 .
  • the traveling body 2 includes a body frame 10 , a pair of front tires 4 , a cab 5 , an engine room 6 , a pair of rear tires 7 , a counterweight 8 and a pair of steering cylinders 9 .
  • “front”, “rear”, “right”, “left”, “up”, and “down” refer to directions when viewed from the driver's seat.
  • FIG. 1A the front-back direction is indicated by Z, the front direction is indicated by Zf, and the rearward direction is indicated by Zb.
  • FIG. 1B is a rear view of the vicinity of the rear tire 7 of the wheel loader 100 of the present embodiment.
  • the wheel loader 100 uses the work machine 3 to perform earth and sand loading work.
  • the body frame 10 is of a so-called articulated type, and has a front frame 11, a rear frame 12, and a connecting shaft portion 13.
  • the front frame 11 is arranged in front of the rear frame 12 .
  • the connecting shaft portion 13 is provided in the center in the vehicle width direction, and connects the front frame 11 and the rear frame 12 to each other so as to be able to swing.
  • a front axle 34a (see FIG. 5, which will be described later) is attached to the lower side of the front frame 11 along the left-right direction.
  • a pair of front tires 4 are attached to the left and right ends of the front axle 34a.
  • a rear axle 34b is attached to the lower side of the rear frame 12 along the left-right direction, as shown in FIG. 1B.
  • a pair of rear tires 7 are attached to the left and right ends of the rear axle 34b.
  • the rear axle 34b is rotatably attached to the rear frame 12 at a central portion 341 in the left-right direction. As shown in FIG. 1B, the rear axle 34b rotates about the central portion 341 in a roll direction perpendicular to the front-rear direction.
  • the rear axle 34b and the rear tires 7 are shown in solid lines when the left rear tire 7 is rotated downward (arrow R2), and the left rear tire 7 is rotated upward (arrow R1).
  • a rear axle 34b and a rear tire 7 are indicated by two-dot chain lines. In this way, by providing an oscillating mechanism in which the rear axle 34b rolls with respect to the rear frame 12, it is possible to absorb the effects of unevenness on the ground during running.
  • a pair of steering cylinders 9 are arranged on the left and right sides of the connecting shaft portion 13 .
  • Each steering cylinder 9 has one end rotatably attached to the front frame 11 and the other end rotatably attached to the rear frame 12 .
  • the expansion and contraction of the steering cylinder 9 changes the rotation angle (articulate angle) of the front frame 11 with respect to the rear frame 12 .
  • the working machine 3 is driven by hydraulic oil from a working machine pump (not shown).
  • the work implement 3 has a boom 14 , a bucket 15 , a lift cylinder 16 and a bucket cylinder 17 .
  • the boom 14 is attached to the front frame 11 .
  • Bucket 15 is attached to the tip of boom 14 .
  • the lift cylinder 16 and bucket cylinder 17 are hydraulic cylinders. One end of the lift cylinder 16 is attached to the front frame 11 and the other end of the lift cylinder 16 is attached to the boom 14 . The expansion and contraction of the lift cylinder 16 swings the boom 14 up and down. One end of the bucket cylinder 17 is attached to the front frame 11 , and the other end of the bucket cylinder 17 is attached to the bucket 15 via a bell crank 18 . As the bucket cylinder 17 expands and contracts, the bucket 15 swings up and down.
  • the cab 5 is mounted on the rear frame 12, and has a handle for steering operation, a lever for operating the working machine 3, various display devices, and the like.
  • the engine room 6 is arranged on the rear side of the cab 5 and on the rear frame 12, and accommodates an engine 31 therein.
  • the counterweight 8 is arranged at the rear portion of the rear frame 12 .
  • FIG. 2 is a block diagram showing the configuration of the wheel loader 100. As shown in FIG.
  • the wheel loader 100 has a drive system 21, a braking system 22, an operation system 23, a notification system 24, a detection system 25, and a control system 26.
  • the drive system 21 drives the wheel loader 100 .
  • the braking system 22 brakes the wheel loader 100 .
  • the operation system 23 is operated by an operator.
  • the driving system 21 and the braking system 22 operate based on the operation of the operating system 23 by the operator.
  • the notification system 24 notifies the operator based on the detection result of the detection system 25 .
  • the detection system 25 detects the state of the vehicle body 1 , an object behind the vehicle body 1 , and the speed of the vehicle body 1 .
  • the control system 26 operates the drive system 21 , the braking system 22 and the notification system 24 based on the operator's operation on the operation system 23 and detection by the detection system 25 .
  • the drive system 21 has an engine 31, an HST 32, a transfer 33, an axle 34, front tires 4 and rear tires 7, and the steering cylinder 9 described above.
  • the engine 31 is, for example, a diesel engine, and the driving force generated by the engine 31 drives a pump 32a of an HST (Hydro Static Transmission) 32.
  • HST Hydro Static Transmission
  • the HST 32 has a pump 32a, a motor 32b, and a hydraulic circuit 32c connecting the pump 32a and the motor 32b.
  • the pump 32a is a swash plate type variable displacement pump, and the angle of the swash plate can be changed by a solenoid 32d.
  • the pump 32a is driven by the engine 31 to discharge hydraulic oil.
  • the discharged hydraulic fluid is sent to the motor 32b through the hydraulic circuit 32c.
  • the motor 32b is a swash plate type pump, and the angle of the swash plate can be changed by a solenoid 32e.
  • the hydraulic circuit 32c has a first drive circuit 32c1 and a second drive circuit 32c2.
  • Hydraulic oil is supplied from the pump 32a to the motor 32b via the first drive circuit 32c1, thereby driving the motor 32b in one direction (for example, forward direction). Hydraulic oil is supplied from the pump 32a to the motor 32b via the second drive circuit 32c2, thereby driving the motor 32b in the other direction (for example, the reverse direction).
  • the discharge direction of hydraulic oil to the first drive circuit 32c1 or the second drive circuit 32c2 can be changed by the solenoid 32d.
  • the transfer 33 distributes the output from the engine 31 to the front and rear axles 34 .
  • a pair of front tires 4 are connected to the front axle 34 and rotate with the distributed output from the engine 31 .
  • a pair of rear tires 7 are connected to the axle 34 on the rear side, and are rotated by the distributed output from the engine 31 .
  • the braking system 22 includes a service brake valve 41, a brake circuit 42, a parking brake 43, a brake source pressure supply path 44, a shutoff valve 45, an EPC (Electric Proportional Valve) valve 46, a shuttle valve 47, have
  • the service brake valve 41 is operated by a brake pedal 54, which will be described later.
  • a brake source pressure supply passage 44 is connected to the service brake valve 41 .
  • the service brake valve 41 supplies the shuttle valve 47 with hydraulic fluid supplied from the brake source pressure supply passage 44 in the open state.
  • the service brake valve 41 stops the supply of hydraulic fluid from the brake source pressure supply passage 44 to the shuttle valve 47 in the closed state.
  • the opening of the service brake valve 41 is adjusted according to the amount of operation of the brake pedal 54, and the amount of hydraulic oil supplied to the shuttle valve 47 is changed. For example, when the amount of operation of the brake pedal 54 is large, the amount of hydraulic fluid supplied from the service brake valve 41 to the shuttle valve 47 increases.
  • the brake circuits 42 are provided on the front and rear axles 34 .
  • the brake circuit 42 is a hydraulic brake, and the greater the amount or pressure of hydraulic fluid supplied from the shuttle valve 47, the stronger the braking force.
  • Service brake valve 41 and brake pedal 54 constitute a part of the service brake.
  • the parking brake 43 is provided on the transfer 33 .
  • a wet multistage brake that can be switched between a braking state and a non-braking state, a disc brake, or the like can be used.
  • the shutoff valve 45 is connected to the brake source pressure supply passage 44 .
  • the shutoff valve 45 is opened and closed based on instructions from the control system 26 .
  • the shutoff valve 45 supplies hydraulic fluid from the brake original pressure supply passage 44 to the EPC valve 46 in the open state.
  • the shut-off valve 45 stops the supply of hydraulic oil from the brake original pressure supply passage 44 to the EPC valve 46 in the closed state.
  • control system 26 for example, opens the shutoff valve 45 only when the vehicle body 1 is moving backward.
  • the control system 26 determines whether the vehicle body 1 moves backward based on the rotation of the wheels and the operation of the FNR lever 52 .
  • the EPC valve 46 is arranged in the flow path connecting the shutoff valve 45 and the shuttle valve 47 .
  • the EPC valve 46 is opened and closed based on instructions from the control system 26 .
  • the EPC valve 46 supplies hydraulic fluid supplied from the shutoff valve 45 to the shuttle valve 47 in the open state.
  • the EPC valve 46 stops the supply of hydraulic fluid from the shut-off valve 45 to the shuttle valve 47 in the closed state.
  • the opening of the EPC valve 46 is adjusted according to instructions from the control system 26, and the amount of hydraulic oil supplied to the shuttle valve 47 is changed.
  • the shuttle valve 47 supplies the brake circuit 42 with the hydraulic oil having the higher pressure, which is the hydraulic oil supplied through the service brake valve 41 or the hydraulic oil supplied through the EPC valve 46 .
  • the operation system 23 has an accelerator 51 , an FNR lever 52 , a parking switch 53 , a brake pedal 54 , a return switch 55 and a steering operation section 56 .
  • the accelerator 51 is provided inside the cab 5 .
  • the operator operates the accelerator 51 to set the throttle opening.
  • the accelerator 51 generates an opening degree signal indicating the amount of accelerator operation and transmits it to the control system 26 .
  • the control system 26 controls the rotational speed of the engine 31 based on the transmitted signal.
  • the FNR lever 52 is provided on the cab 5.
  • the FNR lever 52 can be in forward, neutral, or reverse positions.
  • An operation signal indicating the position of the FNR lever 52 is sent to the control system 26, and the control system 26 controls the solenoid 32d to switch forward or backward.
  • the control system 26 controls the solenoids 32d and 32e to control the swash plates of the pump 32a and motor 32b so as to provide running resistance.
  • the parking switch 53 is provided in the cab 5, is a switch that can be switched on and off, and transmits a signal indicating the state to the control system 26.
  • the control system 26 puts the parking brake 43 into a braking state or a non-braking state based on the transmitted signal.
  • the brake pedal 54 is provided inside the cab 5 .
  • a brake pedal 54 adjusts the opening of the service brake valve 41 .
  • the return switch 55 is operated by the operator to return from the stopped state after the vehicle body 1 is stopped by automatic braking (an example of avoidance control), which will be described later.
  • the automatic brake may also include the braking force generated by the control by turning off the accelerator 51 and the control by the neutral position of the FNR lever 52 .
  • the steering operation unit 56 includes a steering wheel, a joystick lever, etc., and changes the bending angle (articulate angle) of the front frame 11 with respect to the rear frame 12 . When the steering operation unit 56 is operated, the steering operation angle is transmitted to the control system 26 .
  • the control system 26 sets the steering operation angle to the speed or target angle of the steering cylinder 9 and transmits it to the steering cylinder 9 as a bending operation command.
  • the notification system 24 has an alarm device 61 (an example of a notification unit) and an automatic brake activation notification lamp 63 .
  • the alarm device 61 issues an alarm to the operator according to an instruction from the control system 26 when an object is detected behind the vehicle body 1 while the vehicle is moving backward based on the detection by the rear detection unit 71 of the detection system 25, which will be described later.
  • the notification by the alarm device 61 corresponds to an example of avoidance control.
  • the alarm device 61 may have, for example, a lamp and turn on the lamp.
  • the alarm device 61 may have a speaker instead of a lamp and emit a sound.
  • the warning may be displayed on a display panel such as a monitor.
  • the automatic brake operation notification lamp 63 notifies the operator that the automatic brake is in operation and that the return operation by the return switch 55 is required. When the return switch 55 is operated and the automatic brake is released, the automatic brake activation notification lamp 63 is extinguished.
  • the automatic brake operation notification lamp 63 is not limited to a lamp, and may sound. Also, the notification may be displayed on a display panel such as a monitor.
  • means for informing the operator of information by the informing system 24 can be appropriately selected from lamps, sounds, monitors, and the like.
  • FIG. 3 is a block diagram showing the detection system 25. As shown in FIG.
  • the detection system 25 has a rear detection section 71 (an example of an object detection section), a state detection section 72, and a speed sensor 73 (an example of a speed detection section).
  • the rear detector 71 detects objects behind the vehicle body 1 .
  • the rear detector 71 is attached to, for example, the rear end of the vehicle body 1 as shown in FIG. 1A, but it is not limited to the rear end.
  • the rear detector 71 has, for example, a millimeter wave radar. It is possible to measure the distance to an object by detecting how the millimeter waveband radio waves emitted from the transmitting antenna are reflected by the surface of the object and return to the receiving antenna. A detection result by the state detection unit 72 is transmitted to the control system 26, and the control system 26 can determine that an object exists within a predetermined range when the vehicle is moving backward. Note that it is not limited to the millimeter wave radar, and may be, for example, a camera. Automatic braking is performed when the rear detection unit 71 detects that an object exists behind the vehicle while the vehicle is moving backward.
  • the state detection unit 72 detects the state of the vehicle body 1 . Based on the detection by the state detection unit 72, the control system 26 considers the stability of traveling when automatic braking is performed using a preset set braking force, and applies an overturn prevention braking force with improved stability. perform automatic braking.
  • the deceleration when braking with the set braking force is defined as the set deceleration
  • the deceleration when braking with the overturn prevention braking force is defined as the overturn prevention deceleration. Note that the overturn prevention deceleration is set to be smaller than the set deceleration.
  • the state of the vehicle body 1 used for determining stability is, for example, (1) the tilt angle of the wheel loader 100, (2) the attitude of the work implement 3, (3) the state of the load, and (4) the articulation angle. can be mentioned.
  • FIG. 4 is a diagram showing the wheel loader 100 arranged on the inclined surface S.
  • FIG. In FIG. 4, the wheel loader 100 is inclined in the left-right direction (width direction).
  • FIG. 5 is a diagram schematically showing the back surface of the wheel loader 100. As shown in FIG. FIG. 5 is a diagram of the rear surface of the wheel loader 100 viewed from a direction perpendicular to the inclined surface.
  • the state detector 72 has a vehicle body angle sensor 72f.
  • the vehicle body angle sensor 72f is arranged on the vehicle body frame 10 .
  • the vehicle body controller 90 of the control system 26 can determine that the wheel loader 100 is arranged on the inclined road surface S based on the detection value detected by the vehicle body angle sensor 72f.
  • An IMU Inertial Measurement Unit
  • the state detection unit 72 also detects detection values described later in (2) the attitude of the work implement 3, (3) the state of the load, and the articulate angle. A center-of-gravity position gp of the main body 1 is specified.
  • the center of gravity of the wheel loader 100 is indicated by gp, and its gravitational vector is indicated by arrow g.
  • the stable range R is shown in FIGS. 4 and 5.
  • FIG. In FIG. 5, the stable range R is, for example, a first straight line along the center of the front axle 34a, a second straight line connecting the left end of the front axle 34a and the rotation center 34p of the rear axle 34b, and a right end of the front axle 34a. It is set in a substantially triangular range surrounded by a third straight line connecting the rotation center 34p of the rear axle 34b.
  • the position of the gravitational vector g shown in FIG. 5 is the position where the gravitational vector g from the center of gravity position gp and the stable range R intersect. It should be noted that the stability range R can be similarly set even when the vehicle body frame 10 is bent.
  • Stability is determined based on the position of the gravity vector g from the center of gravity position gp with respect to the stability range R.
  • the greater the lateral tilt the less stable the automatic braking.
  • the stability gradually decreases, so the overturn prevention deceleration is set small.
  • automatic braking is not performed, and only the warning device 61 issues a warning.
  • FIG. 4 shows an example in which the wheel loader 100 is tilted in the left-right direction
  • the tilt in the front-rear direction may also be determined.
  • the stability due to the automatic braking becomes lower.
  • the width of the stability range R in the left-right direction widens toward the front. Therefore, for example, in a state where the body frame 10 is arranged on a slope so that the front frame 11 side is higher than the rear frame 12, the position where the gravity vector g and the stable range R intersect moves rearward (gravity vector g'' See), and the stability range in the lateral direction becomes narrower. Thus, longitudinal tilt affects lateral stability.
  • FIG. 6 is a diagram showing the wheel loader 100 with the boom 14 rotated upward.
  • the state detection unit 72 has, for example, a boom angle sensor 72a (see FIG. 3) in order to detect the attitude of the working machine 3. Based on the angle of the boom 14 detected by the boom angle sensor 72a, the control system 26 calculates the overturn prevention deceleration in consideration of stability.
  • the posture of the work implement 3 may be determined by performing image analysis using a camera other than the boom angle sensor 72a.
  • the stability due to automatic braking decreases.
  • the stability decreases, so the overturn prevention deceleration can be set to decrease.
  • the fall prevention deceleration may be decreased linearly or exponentially as the angle of the boom 14 increases.
  • FIG. 7 is a diagram showing the wheel loader 100 in a state where the load W is loaded on the bucket 15. As shown in FIG.
  • the state detection unit 72 includes a pressure sensor 72b for detecting the pressure of the lift cylinder 16, a boom angle sensor 72a for detecting the pressure of the lift cylinder 16, a boom angle sensor 72a for detecting the state of the load, and a boom angle sensor 72a for detecting whether or not the bucket 15 is in a tilted state. It has a bell crank angle sensor 72d for detecting . Whether or not the bucket 15 is in a tilted state is determined by the length of the bucket cylinder 17 .
  • the length of the bucket cylinder 17 is calculated based on a prestored table, and whether or not the bucket 15 is tilted is detected. can be done.
  • the control system 26 calculates the fall prevention deceleration in consideration of stability.
  • the stability of the automatic braking is reduced.
  • the values of the pressure sensor 72b, the boom angle sensor 72a, and the length of the bucket cylinder 17 increase, the stability decreases, so the fall prevention speed can be set to decrease.
  • the overturn prevention speed may be calculated by weighting the values of the pressure sensor 72b, the boom angle sensor 72a, and the length of the bucket cylinder 17.
  • a sensor capable of detecting the position of the working machine 3 such as the bucket 15 may be used without using the bell crank angle sensor 72d.
  • a camera may be provided to perform image analysis.
  • FIG. 8 is a diagram showing the state of the wheel loader 100 in a bent state.
  • the state detection unit 72 has an articulate angle sensor 72e for detecting the articulate angle ⁇ , as shown in FIG.
  • the articulated angle sensor 72 e detects the tilt angle of the front frame 11 with respect to the rear frame 12 .
  • the control system 26 calculates the overturn prevention deceleration in consideration of stability.
  • the stability due to automatic braking decreases.
  • the stability decreases, so the overturn prevention speed can be set to decrease.
  • the fall prevention deceleration may be decreased linearly or exponentially as the articulate angle increases.
  • the speed sensor 73 detects the speed of the vehicle body 1 and transmits it to the control system 26.
  • FIG. 9 is a block diagram showing the configuration of the control system 26 (an example of the control section) of the wheel loader 100 of this embodiment.
  • the control system 26 has a detection controller 80 and a vehicle body controller 90 .
  • Each of the detection controller 80 and the vehicle body controller 90 includes a processor such as a CPU (Central Processing Unit), a main memory including a non-volatile memory such as ROM (Read Only Memory) and a volatile memory such as RAM (Random Access Memory). Including memory and storage.
  • the detection controller 80 and the vehicle body controller 90 read programs stored in the storage, develop them in the main memory, and execute predetermined processing according to the programs.
  • detection controller 80 and vehicle body controller 90 each have a CPU, but detection controller 80 and vehicle body controller 90 may have a single CPU as a whole.
  • the program may be distributed to the detection controller 80 and the vehicle body controller 90 via a network.
  • the detection controller 80 acquires information on the object detected by the rear detector 71 .
  • the vehicle body controller 90 executes control of automatic braking.
  • the detection controller 80 has an object information acquisition section 81 and a distance calculation section 82 .
  • the object information acquisition unit 81 acquires information on the target object (target object) to stop detected by the rear detection unit 71 .
  • the distance calculator 82 calculates the distance x (an example of the relative distance) from the wheel loader 100 to the object based on the information on the object.
  • the distance calculation unit 82 can calculate the distance x to the object based on how the millimeter wave band radio waves emitted from the transmission antenna of the rear detection unit 71 return after being reflected by the surface of the object.
  • Objects include obstacles such as rocks and houses.
  • the vehicle body controller 90 includes a vehicle body information acquisition section 91, an overturn prevention deceleration calculation section 92, a storage section 93, a control deceleration setting section 94, a braking time calculation section 95, a control start distance calculation section 96, a control and an instruction unit 97 .
  • the vehicle body information acquisition section 91 acquires the vehicle body information detected by the state detection section 72 and the vehicle body speed v 0 detected by the speed sensor 73 .
  • the overturn prevention deceleration calculation unit 92 obtains the stability from the acquired vehicle body information and the vehicle body speed v 0 , and also considers the safety factor to reduce the overturn prevention deceleration of the wheel loader 100 during automatic braking. speed).
  • the overturn prevention deceleration is the deceleration due to the overturn prevention braking force as described above.
  • the overturn prevention deceleration calculator 92 identifies the center-of-gravity position gp and the stable range R of the vehicle body 1 from the acquired vehicle body information, obtains the intersection of the gravity vector from the center-of-gravity position gp and the stable range R, and determines the intersection point. Find the stability based on the position of The overturn prevention deceleration is calculated by adding the safety factor to the obtained stability.
  • the storage unit 93 is a memory provided in the vehicle body controller 90 and stores a preset set deceleration.
  • the set deceleration is a value set in advance based on the hardware capability of the brake circuit 42, etc., and is the deceleration due to the set brake force as described above.
  • the control deceleration setting unit 94 selects the smaller deceleration from the overturn prevention deceleration and the set deceleration, and sets the selected deceleration as the deceleration (control deceleration) when controlling the automatic brake. As a result, if there is a possibility that the wheel loader 100 will overturn when the automatic braking is performed at the set deceleration set in advance, the automatic braking can be performed at the overturn prevention deceleration.
  • the braking time calculator 95 calculates the time until the wheel loader 100 stops from the vehicle body speed and controlled deceleration (an example of deceleration). Specifically, when the vehicle body speed is v0 , the control deceleration is a, and the braking time until the wheel loader 100 stops is t', (Equation 1) holds.
  • the control start distance calculation unit 96 calculates the distance from the object for starting control of the automatic brake. If the distance traveled by the wheel loader 100 until it stops is x', (Formula 2) is established.
  • control start distance calculator 96 obtains the distance xc (alarm control start distance from the object) for starting the warning.
  • the warning control start distance xc (an example of the start distance) can be set based on the automatic brake control start distance xb.
  • the distance xc can be set larger than the automatic brake control start distance xb.
  • the warning control start distance xc is set to be farther from the object than the automatic brake control start distance xb, and the warning can be used as a preliminary warning before starting the automatic braking.
  • FIG. 10 is a diagram showing the distance from the object M of the wheel loader 100.
  • the control instruction unit 97 issues an alarm instruction to the alarm device 61 when the distance x calculated by the distance calculation unit 82 reaches the alarm control start distance xc calculated by the control start distance calculation unit 96 . This causes the alarm device 61 to issue an alarm.
  • the control instruction unit 97 instructs the shut-off valve 45 and the EPC valve 46 to open so that the opening degree becomes the control deceleration a.
  • the brake pedal 54 is not operated, hydraulic oil is supplied to the brake circuit 42 via the shuttle valve 47, and braking is performed at the controlled deceleration a.
  • the wheel loader 100 stops at a distance xt from the object M, as shown in FIG.
  • the wheel loader 100 in a stopped state is indicated by a chain double-dashed line.
  • control instruction unit 97 When the control instruction unit 97 starts controlling the automatic braking, it instructs the automatic braking operation notification lamp 63 to turn on.
  • control instruction unit 97 instructs the automatic brake operation notification lamp 63 to turn off.
  • FIG. 11 is a flow chart showing the control operation of the wheel loader 100 of this embodiment.
  • the object information acquisition section 81 acquires information on the object M from the rear detection section 71 .
  • the object information acquisition unit 81 receives information about an object within a predetermined range from the rear detection unit 71 while detecting that the vehicle is moving backward, the object information acquisition unit 81 transmits the received information about the object to the distance calculation unit 82 . do.
  • the object information acquisition unit 81 detects that the vehicle main body 1 is in a reversed state, for example, when the front tire 4 or the rear tire 7 is rotating rearward, or the FNR lever 52 is in the reversed position.
  • step S20 the vehicle body information acquisition section 91 acquires the vehicle body information detected by the state detection section 72 and the vehicle body speed v0 detected by the speed sensor 73.
  • the vehicle body information includes (1) the tilt angle of the wheel loader 100, (2) the attitude of the work implement 3, (3) the state of the load, and (4) the articulate angle, as described above.
  • step S30 the distance calculation unit 82 calculates the distance x from the wheel loader 100 to the object M based on the information on the object.
  • step S40 the rollover prevention deceleration calculation unit 92 calculates the deceleration that prevents the wheel loader 100 from falling (turnover prevention deceleration) from the acquired vehicle body information, taking into account the safety factor.
  • step S50 the control deceleration setting unit 94 selects the smaller deceleration from the overturn prevention deceleration and the set deceleration stored in the storage unit 93, and uses the selected deceleration to control the automatic brake. Set as the deceleration (control deceleration a) for execution.
  • step S60 the braking time calculator 95 calculates the time t' from the vehicle body speed v0 and the controlled deceleration a to the stop of the wheel loader 100 using (Equation 1).
  • step S70 the control start distance calculator 96 calculates the automatic brake control start distance xb using (Equation 1) to (Equation 5) from the vehicle body speed v 0 , the control deceleration a, and the braking time t′. Calculate Further, the control start distance calculator 96 calculates an alarm control start distance xc for starting an alarm based on the automatic brake control start distance xb.
  • step S80 the control instruction unit 97 instructs the alarm device 61 to issue an alarm when the distance x calculated by the distance calculation unit 82 reaches the alarm control start distance xc calculated by the control start distance calculation unit 96.
  • the shut-off valve 45 is instructed to open, and the EPC valve 46 is instructed to open so that the opening becomes the control deceleration a.
  • the alarm device 61 operates to start an alarm. and the wheel loader 100 stops at a distance xt from the object M.
  • a wheel loader 100 (an example of a working machine) according to the present embodiment includes a vehicle body 1, a rear detection section 71 (an example of an object detection section), a state detection section 72, and a control system 26 (an example of a control section). and
  • the vehicle body 1 has a running body 2 and a working machine 3 arranged on the running body 2 .
  • the rear detector 71 detects an object M around the vehicle body 1 .
  • State detection unit 72 detects at least one state of inclination or bending of vehicle body 1 and work implement 3 .
  • the control system 26 determines the control deceleration used for automatic braking when the object M is detected, based on the relationship between the lateral stability range R in which the vehicle body 1 can stop and the center of gravity position gp, which is obtained from the detection information of the state detection unit 72.
  • Set a an example of deceleration).
  • avoidance control (automatic braking or warning by the warning device 61) can be executed when the object M is detected using the deceleration according to the lateral stability of the vehicle body 1.
  • the vehicle body 1 is in an inclined state with low stability in the lateral direction. In addition, it can be detected that the vehicle body 1 is in a bent state with low stability in the lateral direction. Further, it is possible to detect that the vehicle body 1 is in the state of the work implement 3 with low stability in the lateral direction.
  • Wheel loader 100 (an example of a working machine) according to the present embodiment further includes speed sensor 73 (an example of a speed detection unit).
  • a speed sensor 73 detects the speed of the vehicle body 1 .
  • the control system 26 determines the automatic brake control start distance xb (an example of the start distance) from the object M at which avoidance control for avoiding collision with the object M is started. is set, and avoidance control is executed based on the relative distance x from the vehicle body 1 to the object M and the automatic brake control start distance xb.
  • automatic braking is performed as avoidance control
  • automatic braking is performed with a control braking force that takes into consideration the stability of the vehicle body 1 in the lateral direction, so the vehicle body 1 decelerates in consideration of the stability in the lateral direction. be able to.
  • the avoidance control can be performed based on the braking distance corresponding to the controlled braking force. can. Therefore, collision with the object M can be suppressed in a stable running state.
  • the control system 26 (an example of the control unit) includes a preset deceleration (an example of the first deceleration) for use in automatic braking, and the center of gravity with respect to the stable range R This is compared with the overturn prevention deceleration (an example of the second deceleration) set based on the position gp, and the smaller one is set as the controlled deceleration (an example of the deceleration).
  • the automatic braking control start distance xb is set using the rollover prevention deceleration set based on the state of the vehicle body 1, avoidance control can be performed based on the braking distance extended by the rollover prevention deceleration. .
  • the control system 26 sets the overturn prevention deceleration according to the comparison between the gravity vector g from the gravity center position gp of the vehicle body 1 and the stable range R. As a result, it is possible to set the overturn prevention deceleration that allows the vehicle to be decelerated while traveling stably without overturning.
  • avoidance control includes control for operating automatic braking with controlled braking force.
  • the automatic braking can be activated by deceleration by the control braking force so as to suppress overturning according to the state of the vehicle body 1 .
  • the wheel loader 100 further includes an alarm device 61 (an example of an alarm unit).
  • the alarm device 61 notifies that the object M has been detected.
  • the avoidance control includes control for performing notification by the alarm device 61 .
  • the operator can be notified of the detection of the object M, and the operator can operate to avoid collision with the object M.
  • the control system 26 uses the speed and deceleration a of the traveling body 2 to determine the distance at which the vehicle body 1 can be stopped at a predetermined distance xt before the object M as the automatic brake control start distance. Set as xb.
  • the collision with the object M can be suppressed by performing avoidance control based on the automatic braking control start distance xb.
  • avoidance control includes control for operating automatic braking with controlled braking force.
  • the control system 26 operates the automatic brake with the controlled brake force.
  • the vehicle can stop in front of the object M by activating the automatic brake with the control braking force.
  • the wheel loader 100 further includes an alarm device 61 (an example of an alarm unit).
  • the alarm device 61 notifies that the object M has been detected.
  • Avoidance control further includes control for performing notification by the alarm device 61 .
  • the control system 26 issues a notification using the warning device 61 .
  • the warning control start distance xc at which the warning device 61 notifies is set to a distance farther from the object M than the automatic brake control start distance xb at which automatic braking is actuated.
  • the operator can be preliminarily notified by the alarm device 61 that the automatic braking control start distance xb at which automatic braking is started is reached.
  • the state of work implement 3 includes at least one of the posture of work implement 3 and the state of the load on work implement 3 .
  • vehicle body 1 has vehicle body frame 10 , front axle 34 a , rear axle 34 b , a pair of front tires 4 , and a pair of rear tires 7 .
  • the body frame 10 has a front frame 11 to which the working machine 3 is attached, and a rear frame 12 to which the counterweight 8 is arranged and which is connected to the rear side of the front frame 11 .
  • the front axle 34 a is connected to the front frame 11 .
  • the rear axle 34b is connected to the rear frame 12 so as to be rotatable in the roll direction perpendicular to the front-rear direction.
  • a pair of front tires 4 are attached to both ends of the front axle 34a.
  • a pair of rear tires 7 are attached to both ends of the rear axle 34b.
  • the state detection unit 72 detects the tilt angle of the vehicle body frame 10 as the tilt state of the vehicle body 1 .
  • control deceleration during automatic braking can be set according to the lateral stability based on the tilt angle of the vehicle body 1 of the wheel loader 100 having an oscillating mechanism.
  • the stable range R is set to a range connecting the rotation center 34p of the rear axle 34b and both ends of the front axle 34a. This makes it possible to set a stable range in consideration of the oscillating mechanism.
  • the brake circuit 42 (an example of the service brake) and the EPC valve 46 (an example of the brake valve) capable of adjusting the amount of hydraulic oil supplied to the brake circuit 42 are provided. And further comprising.
  • the control system 26 drives the EPC valve 46 and performs automatic braking using the brake circuit 42 .
  • the vehicle body 1 can be automatically stopped.
  • a control method for wheel loader 100 (an example of a working machine) according to the present embodiment includes step S10 (an example of an object information acquisition step), step S20 (an example of a state detection step), and step S50 (an example of a setting step). And prepare.
  • a step S ⁇ b>10 acquires information about the object M around the vehicle body 1 having the traveling body 2 and the work implement 3 arranged on the traveling body 2 .
  • a step S20 detects at least one state of the vehicle body 1 tilting, bending, and the work implement.
  • the control deceleration a deceleration an example of speed).
  • avoidance control (automatic braking or warning by the warning device 61) can be executed when the object M is detected using the deceleration according to the lateral stability of the vehicle body 1.
  • the flow path is closed by the shut-off valve 45 except when the vehicle body 1 is moving backward. It may not be necessary, and it may be possible to execute automatic braking even when moving forward.
  • the warning device 61 issues a notification at the warning control start distance xc before the automatic brake control start distance xb. may be notified by In short, the warning control start distance should be set based on the calculated automatic brake control start distance xb.
  • the warning control start distance xc is set based on the automatic brake control start distance xb, and when the relative distance x reaches the distance xc, the warning device 61 issues a report.
  • automatic braking does not start even when the relative distance x reaches the distance xb.
  • the operator can, for example, look at the state of the vehicle and step on the brake pedal 54 to generate an appropriate braking force.
  • the control system 26 opens the shut-off valve 45 at the same time as the EPC valve 46. However, when it is detected that the vehicle main body 1 is moving in reverse, regardless of whether the object M is detected, The shutoff valve 45 may be opened. In this case, the control system 26 only needs to open the EPC valve 46 when activating the automatic brake.
  • the brake circuit 42 of the service brake is used to generate the overturn suppression braking force in the automatic braking, but the internal inertia when the accelerator 51 is turned off or the FNR lever 52 is placed at the neutral position.
  • Running resistance by the swash plate of the pump 32a and the motor 32b may be used.
  • FIG. 12 is a block diagram showing a configuration in which the drive system 21 is provided with a torque converter 132 and a transmission 133. As shown in FIG. Driving force from engine 31 is transmitted to transmission 133 via torque converter 132 . The transmission 133 shifts the rotational driving force of the engine 31 transmitted via the torque converter 132 and transmits it to the axle 34 . The transmission 133 is provided with a parking brake 43 .
  • the overturn prevention braking force may be generated by adjusting the opening of the EPC valve 46 .
  • the overturn prevention braking force may be generated by turning off the accelerator 51 .
  • HMT Hydro Mechanical Transmission
  • a service brake using the service brake valve 41, a parking brake 43, or other means for changing the braking force can be appropriately applied.
  • the brakes such as the service brake and the parking brake 43 may be combined with the internal inertia of the prime mover.
  • the wheel loader of the above embodiment may be operated by an operator on board, or may be operated unmanned.
  • a wheel loader is used as an example of a working machine, but the working machine is not limited to a wheel loader, and may be a hydraulic excavator or the like.
  • the steering angle may be detected instead of the articulated angle as the vehicle body information and used to set the overturn prevention deceleration.
  • the stable range R has a substantially triangular shape when viewed from the bottom, but is not limited to this.
  • the stability range R shown in FIG. A range surrounded by a third straight line that connects and intersects the first straight line and the second straight line, and a fourth straight line that connects the right end of the front axle 34a and the right end of the rear axle 34b and intersects the first straight line and the second straight line is set.
  • the stable range R may be formed in a rectangular shape.
  • the effect of being able to suppress collisions with objects in a stable state is exhibited, and it is useful as a wheel loader or the like.
  • Reference Signs List 1 vehicle body 2: traveling body 3: working machine 26: control system 71: rear detector 72: state detector 73: speed sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Regulating Braking Force (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

ホイールローダ(100)は、車両本体(1)、後方検出部(71)、状態検出部(72)、及び制御系(26)を備える。車両本体(1)は、走行体(2)と、走行体(2)に配置された作業機(3)とを有する。後方検出部(71)は、車両本体(1)の周囲の物体(M)を検出する。状態検出部(72)は、車両本体(1)の傾斜、屈曲、および作業機(3)の少なくとも1つの状態を検出する。制御系(26)は、状態検出部(72)の検出情報から求められる車両本体(1)が停止できる横方向における安定範囲(R)と重心位置(gp)の関係に基づき、物体(M)を検出した際の自動ブレーキに用いる制御減速度(a)を設定する。

Description

作業機械および作業機械の制御方法
 本発明は、作業機械および作業機械の制御方法に関する。
 作業機械の一例であるホイールローダにおいて、物体を検出し自動で停止する自動停止システムが提案されている(例えば、特許文献1参照)。
 特許文献1では、ホイールローダから物体までのエリアについて、物体からの距離が近い順に第一エリア、第二エリア、および第三エリアの3つのエリアに分け、第一エリアでは警報を発し、第二エリアでは減速し、第三エリアでは停止させている。
実用新案登録第3219005号
 しかしながら、建設現場等で作業を行っているときは、作業機械が比較的不安定な状態であるときが多く、そのような状態で急な制動が行われると、より不安定な状態となる可能性がある。
 本開示は、安定した状態で物体との衝突を抑制することが可能な作業機械および作業機械の制御方法を提供することを目的とする。
(課題を解決するための手段)
 第1の開示にかかる作業機械は、車両本体と、物体検出部と、状態検出部と、制御部とを備える。車両本体は、走行体と、走行体に配置された作業機と、を有する。物体検出部は、車両本体の周囲の物体を検出する。状態検出部は、車両本体の傾斜、屈曲、および作業機の少なくとも1つの状態を検出する。制御部は、状態検出部の検出情報から求められる車両本体が停止できる横方向の安定範囲と重心位置の関係に基づき、物体を検出した際の自動ブレーキに用いる減速度を設定する。
 第2の開示にかかる作業機械の制御方法は、物体情報取得ステップと、状態検出ステップと、設定ステップと、を備える。物体情報取得ステップは、走行体および走行体に配置された作業機を有する車両本体の周囲の物体の情報を取得する。状態検出ステップは、車両本体の傾斜、屈曲、および作業機の少なくとも1つの状態を検出する。設定ステップは、状態検出ステップの検出情報から求められる車両本体が停止できる横方向の安定範囲と重心位置の関係に基づき、物体を検出した際の自動ブレーキに用いる減速度を設定する。
(発明の効果)
 本開示によれば、安定した状態で物体との衝突を抑制することが可能な作業機械および作業機械の制御方法を提供することができる。
本開示にかかる実施の形態のホイールローダの側面図。 本開示にかかる実施の形態のホイールローダのリアタイヤ近傍を後方から視た構成図。 本開示にかかる実施の形態のホイールローダの構成を示すブロック図。 本開示にかかる実施の形態のホイールローダの検出系の構成を示すブロック図。 本開示にかかる実施の形態のホイールローダが傾斜面に配置されている状態を示す図。 本開示にかかる実施の形態のホイールローダの安定範囲を示す裏面図。 本開示にかかる実施の形態のホイールローダのブームが上方向に回動した状態を示す図。 本開示にかかる実施の形態のホイールローダの掘削バケットに荷を積んでいる状態を示す図。 本開示にかかる実施の形態のホイールローダの屈曲状態を示す図。 本開示にかかる実施の形態のホイールローダの制御系の構成を示すブロック図。 本開示にかかる実施の形態のホイールローダの自動ブレーキによる停止状態を示す側面図。 本開示にかかる実施の形態のホイールローダの制御動作を示すフロー図。 本開示の実施の形態の変形例におけるホイールローダの構成を示すブロック図。 本開示にかかる実施の形態のホイールローダの安定範囲の他の例を示す裏面図。
 本開示にかかる作業機械の一例としてのホイールローダについて図面を参照しながら以下に説明する。
 (ホイールローダの概要)
 図1Aは、本実施の形態のホイールローダ100(作業機械の一例)の構成を示す模式図である。本実施の形態のホイールローダ100は、車両本体1に、走行体2と作業機3を有する。作業機3は、走行体2に配置されている。走行体2は、車体フレーム10と、一対のフロントタイヤ4、キャブ5、エンジンルーム6、一対のリアタイヤ7、カウンタウェイト8、および一対のステアリングシリンダ9と、を備えている。なお、以下の説明において、「前」、「後」、「右」、「左」、「上」、及び「下」とは運転席から前方を見た状態を基準とする方向を示す。また、「車幅方向」と「左右方向」と「横方向」は同義である。図1Aでは、前後方向をZで示し、前方向を示すときはZf、後方向を示すときはZbで示す。図1Bは、本実施の形態のホイールローダ100のリアタイヤ7近傍を後方から視た図である。
 ホイールローダ100は、作業機3を用いて土砂積み込み作業などを行う。
 車体フレーム10は、いわゆるアーティキュレート式であり、フロントフレーム11とリアフレーム12と、連結軸部13と、を有している。フロントフレーム11は、リアフレーム12の前方に配置されている。連結軸部13は、車幅方向の中央に設けられており、フロントフレーム11とリアフレーム12を互いに揺動可能に連結する。
 フロントフレーム11の下側には、左右方向に沿ってフロントアクスル34a(後述する図5参照)が取り付けられている。一対のフロントタイヤ4は、フロントアクスル34aの左右両端に取り付けられている。
 リアフレーム12の下側には、図1Bに示すように、左右方向に沿ってリアアクスル34bが取り付けられている。また、一対のリアタイヤ7は、リアアクスル34bの左右両端に取り付けられている。リアアクスル34bは、左右方向の中央部341でリアフレーム12に回動可能に取り付けられている。リアアクスル34bは、図1Bに示すように、中央部341を中心にして、前後方向に対して垂直なロール方向に回動する。図1Bでは、左側のリアタイヤ7が下方に回動した状態(矢印R2)のリアアクスル34bおよびリアタイヤ7が実線で示されており、左側のリアタイヤ7が上方に回動した状態(矢印R1)のリアアクスル34bおよびリアタイヤ7が二点鎖線で示されている。このように、リアアクスル34bがリアフレーム12に対してロール回転するオシレート機構を設けることによって、走行時に地面の凹凸の影響を吸収することができる。
 一対のステアリングシリンダ9は、連結軸部13を挟んで左右に配置されている。各々のステアリングシリンダ9は、一端がフロントフレーム11に回動可能に取り付けられており、他端がリアフレーム12に回動可能に取り付けられている。ステアリングシリンダ9の伸縮によって、リアフレーム12に対するフロントフレーム11の回動角度(アーティキュレート角度)が変更される。
 作業機3は、図示しない作業機ポンプからの作動油によって駆動される。作業機3は、ブーム14と、バケット15と、リフトシリンダ16と、バケットシリンダ17と、を有する。ブーム14は、フロントフレーム11に装着されている。バケット15は、ブーム14の先端に取り付けられている。
 リフトシリンダ16およびバケットシリンダ17は、油圧シリンダである。リフトシリンダ16の一端はフロントフレーム11に取り付けられており、リフトシリンダ16の他端はブーム14に取り付けられている。リフトシリンダ16の伸縮により、ブーム14が上下に揺動する。バケットシリンダ17の一端はフロントフレーム11に取り付けられており、バケットシリンダ17の他端はベルクランク18を介してバケット15に取り付けられている。バケットシリンダ17が伸縮することによって、バケット15が上下に揺動する。
 キャブ5は、リアフレーム12上に載置されており、内部には、ステアリング操作のためのハンドルや、作業機3を操作するためのレバー、各種の表示装置等が配置されている。エンジンルーム6は、キャブ5の後側であってリアフレーム12上に配置されており、エンジン31が収納されている。カウンタウェイト8は、リアフレーム12の後部に配置されている。
 図2は、ホイールローダ100の構成を示すブロック図である。
 ホイールローダ100は、駆動系21と、制動系22と、操作系23と、報知系24と、検出系25と、制御系26と、を有する。
 駆動系21は、ホイールローダ100の駆動を行う。制動系22は、ホイールローダ100の制動を行う。操作系23は、オペレータによって操作が行われる。オペレータによる操作系23の操作に基づいて駆動系21および制動系22が動作する。報知系24は、検出系25による検出結果に基づいて、オペレータに対する報知を行う。検出系25は、車両本体1の状態、車両本体1の後方の物体、および車両本体1の速度の検出を行う。制御系26は、操作系23に対するオペレータの操作および検出系25による検出に基づいて、駆動系21、制動系22、および報知系24の操作を行う。
 (駆動系21)
 駆動系21は、エンジン31と、HST32と、トランスファ33と、アクスル34と、フロントタイヤ4およびリアタイヤ7と、上述したステアリングシリンダ9と、を有する。
 エンジン31は、例えばディーゼル式のエンジンであり、エンジン31で発生した駆動力がHST(Hydro Static Transmission)32のポンプ32aを駆動する。
 HST32は、ポンプ32aと、モータ32bと、ポンプ32aとモータ32bを接続する油圧回路32cと、を有する。ポンプ32aは、斜板式可変容量型のポンプであって斜板の角度をソレノイド32dによって変更することができる。ポンプ32aがエンジン31によって駆動されることにより作動油を吐出する。吐出された作動油は、油圧回路32cを通ってモータ32bに送られる。モータ32bは、斜板式ポンプであって、斜板の角度をソレノイド32eによって変更することができる。油圧回路32cは、第1駆動回路32c1と、第2駆動回路32c2と、を有する。作動油が、ポンプ32aから第1駆動回路32c1を介してモータ32bに供給されることにより、モータ32bが一方向(例えば、前進方向)に駆動される。作動油が、ポンプ32aから第2駆動回路32c2を介してモータ32bに供給されることにより、モータ32bが他方向(例えば、後進方向)に駆動される。なお、作動油の第1駆動回路32c1若しくは第2駆動回路32c2への吐出方向はソレノイド32dによって変更することができる。
 トランスファ33は、エンジン31からの出力を前後のアクスル34に分配する。
 前側のアクスル34には一対のフロントタイヤ4が接続されており、分配されたエンジン31からの出力で回転する。また、後側のアクスル34には一対のリアタイヤ7が接続されており、分配されたエンジン31からの出力で回転する。
 (制動系22)
 制動系22は、サービスブレーキ弁41と、ブレーキ回路42と、パーキングブレーキ43と、ブレーキ元圧供給路44と、シャットオフ弁45と、EPC(Electric Proportional Valve)弁46と、シャトル弁47と、を有する。
 サービスブレーキ弁41は、後述するブレーキペダル54によって操作される。サービスブレーキ弁41には、ブレーキ元圧供給路44が接続されている。サービスブレーキ弁41は、開状態においてブレーキ元圧供給路44から供給される作動油をシャトル弁47に供給する。サービスブレーキ弁41は、閉状態においてブレーキ元圧供給路44からシャトル弁47への作動油の供給を停止する。
 ブレーキペダル54の操作量に応じてサービスブレーキ弁41の開度が調整され、シャトル弁47に供給される作動油の量が変更される。例えば、ブレーキペダル54の操作量が大きい場合には、サービスブレーキ弁41からシャトル弁47に供給される作動油の量が多くなる。
 ブレーキ回路42は、前後のアクスル34に設けられている。ブレーキ回路42は、油圧式のブレーキであり、シャトル弁47から供給される作動油の量が多いまたは圧が大きいほど制動力が強くなる。サービスブレーキ弁41およびブレーキペダル54は、サービスブレーキの一部を構成する。
 パーキングブレーキ43は、トランスファ33に設けられている。パーキングブレーキ43としては、例えば、制動状態と非制動状態に切り替え可能な湿式多段式のブレーキや、ディスクブレーキなどを用いることができる。
 シャットオフ弁45は、ブレーキ元圧供給路44に接続されている。シャットオフ弁45は、制御系26からの指示に基づいて開閉される。シャットオフ弁45は、開状態において、ブレーキ元圧供給路44からEPC弁46に作動油を供給する。シャットオフ弁45は、閉状態において、ブレーキ元圧供給路44からEPC弁46への作動油の供給を停止する。
 本実施の形態では、制御系26は、例えば、車両本体1が後方に移動しているときにのみシャットオフ弁45を開状態にする。車両本体1の後方への移動は、車輪の回転やFNRレバー52の操作に基づいて、制御系26が判断を行う。
 EPC弁46は、シャットオフ弁45とシャトル弁47を接続する流路に配置されている。EPC弁46は、制御系26からの指示に基づいて開閉される。EPC弁46は、開状態において、シャットオフ弁45から供給される作動油をシャトル弁47に供給する。EPC弁46は、閉状態において、シャットオフ弁45からシャトル弁47への作動油の供給を停止する。
 EPC弁46は、制御系26からの指示に応じて開度が調整され、シャトル弁47に供給される作動油の量が変更される。
 シャトル弁47は、サービスブレーキ弁41を介して供給される作動油と、EPC弁46を介して供給される作動油のうち圧力が大きい方の作動油をブレーキ回路42に供給する。
 詳しくは後述するが、ブレーキペダル54が操作されずサービスブレーキ弁41から作動油が供給されない場合でも、制御系26からの指示によってシャットオフ弁45およびEPC弁46が開状態にされると、シャトル弁47からブレーキ回路42に作動油が供給され、自動でブレーキが作動する。
 (操作系23)
 操作系23は、アクセル51と、FNRレバー52と、パーキングスイッチ53と、ブレーキペダル54と、復帰スイッチ55と、ステアリング操作部56と、を有する。
 アクセル51は、キャブ5内に設けられている。オペレータは、アクセル51を操作してスロットル開度を設定する。アクセル51は、アクセル操作量を示す開度信号を生成して制御系26へ送信する。制御系26は、送信される信号に基づいてエンジン31の回転速度を制御する。
 なお、アクセル51をオフ状態にすると、エンジン31への燃料供給が停止される。
 FNRレバー52は、キャブ5に設けられている。FNRレバー52は、前進、ニュートラル、または後進の位置をとることができる。FNRレバー52の位置を示す操作信号が制御系26に送信され、制御系26は、ソレノイド32dを制御して前進または後進を切り替える。また、FNRレバー52がニュートラルの位置の場合、制御系26は、ソレノイド32d、32eを制御し、走行抵抗になるようにポンプ32aとモータ32bの斜板をコントロールする。
 パーキングスイッチ53は、キャブ5内に設けられており、オン・オフに状態を切り替え可能なスイッチであり、その状態を示す信号を制御系26に送信する。制御系26は、送信される信号に基づいてパーキングブレーキ43を制動状態または非制動状態にする。
 ブレーキペダル54は、キャブ5内に設けられている。ブレーキペダル54は、サービスブレーキ弁41の開度を調整する。
 復帰スイッチ55は、後述する自動ブレーキ(回避制御の一例)によって車両本体1が停止した後、停止状態から復帰するためにオペレータによって操作される。なお、アクセル51のオフによる制御、およびFNRレバー52のニュートラル位置による制御で生じる制動力も、自動ブレーキに含まれてもよい。
 ステアリング操作部56は、ステアリングホイール、ジョイスティックレバー等を含み、リアフレーム12に対するフロントフレーム11の屈曲角度(アーティキュレート角度)を変更する。ステアリング操作部56が操作されると、ステアリング操作角が制御系26に送信される。制御系26は、ステアリング操作角を、ステアリングシリンダ9の速度または目標角度に設定し、ステアリングシリンダ9に屈曲操作指令として送信する。
 (報知系24)
 報知系24は、警報装置61(報知部の一例)と、自動ブレーキ作動通知ランプ63と、を有する。
 警報装置61は、後述する検出系25の後方検出部71の検出に基づいて後進時において車両本体1の後方に物体を検出した場合に制御系26からの指示によりオペレータに警報を行う。警報装置61による報知は、回避制御の一例に対応する。
 警報装置61は、例えば、ランプを有し、ランプを点灯させてもよい。また、ランプに限らず、警報装置61がスピーカを有し、音を鳴らしても良い。また、モニター等の表示パネルなどに警報を表示させてもよい。
 自動ブレーキ作動通知ランプ63は、自動ブレーキが作動している状態であることをオペレータに通知し、復帰スイッチ55による復帰動作が必要なことを通知する。なお、復帰スイッチ55が操作され自動ブレーキが解除されると、自動ブレーキ作動通知ランプ63が消灯する。
 なお、自動ブレーキ作動通知ランプ63は、ランプに限らなくてもよく、音を鳴らしても良い。また、モニター等の表示パネルなどに通知を表示させてもよい。
 上述のように報知系24によるオペレータに対する情報の報知の手段は、ランプ、音、モニター等適宜選択することができる。
 (検出系25)
 図3は、検出系25を示すブロック図である。
 検出系25は、後方検出部71(物体検出部の一例)と、状態検出部72と、速度センサ73(速度検出部の一例)と、を有する。
 後方検出部71は、車両本体1の後方の物体を検出する。後方検出部71は、例えば、図1Aに示すように車両本体1の後端に取り付けられているが、後端に限らなくても良い。
 後方検出部71は、例えばミリ波レーダを有している。送信アンテナから発したミリ波帯の電波が物体の表面で反射して戻ってくる様子を受信アンテナで検出し、物体までの距離を測定することができる。状態検出部72による検出結果が制御系26に送信され、制御系26は、後進時に所定範囲内に物体が存在することを判定できる。なお、ミリ波レーダに限らなくてもよく、例えばカメラなどであってもよい。後進時において後方検出部71によって後方に物体が存在することが検出された場合に、自動ブレーキが実行される。
 状態検出部72は、車両本体1の状態を検出する。状態検出部72の検出に基づいて、制御系26は、予め設定された設定ブレーキ力を用いて自動ブレーキを実施した場合の走行の安定性を考慮し、安定性の向上した転倒抑制ブレーキ力での自動ブレーキを実行する。設定ブレーキ力で制動した際の減速度を設定減速度とし、転倒抑制ブレーキ力で制動した際の減速度を転倒抑制減速度とする。なお、転倒抑制減速度は、設定減速度よりも小さく設定される。
 安定性の判断に用いられる車両本体1の状態は、例えば、(1)ホイールローダ100の傾斜角度、(2)作業機3の姿勢、(3)荷の状態、および(4)アーティキュレート角度を挙げることができる。
 (1)ホイールローダの傾斜角度について説明する。
 図4は、傾斜面Sに配置されている状態のホイールローダ100を示す図である。図4では、ホイールローダ100は、左右方向(幅方向)において傾斜している。図5は、ホイールローダ100の裏面を模式的に示した図である。図5は、傾斜面に対して垂直な方向からホイールローダ100の裏面を見た図である。
 状態検出部72は、車体角度センサ72fを有している。車体角度センサ72fは、車体フレーム10に配置されている。制御系26の車体コントローラ90は、車体角度センサ72fで検出される検出値に基づいて、ホイールローダ100が傾斜した路面Sに配置されていることを判定することができる。なお、車体角度センサ72fの代わりにIMU(Inertial Measurement Unit)を用いても良い。
 状態検出部72は、後述する(2)作業機3の姿勢、(3)荷の状態、およびアーティキュレート角度で説明する検出値も検出し、これらの検出値に基づいて制御系26において、車両本体1の重心位置gpが特定される。
 図4では、ホイールローダ100の重心がgpで示されており、その重力ベクトルが矢印gで示されている。図4および図5には、安定範囲Rが示されている。
 図5では、安定範囲Rは、例えば、フロントアクスル34aの中心に沿った第1直線、フロントアクスル34aの左端とリアアクスル34bの回動中心34pを結ぶ第2直線と、フロントアクスル34aの右端とリアアクスル34bの回動中心34pを結ぶ第3直線とによって囲まれる略三角形状の範囲に設定されている。図5に示されている重力ベクトルgの位置は、重心位置gpからの重力ベクトルgと安定範囲Rが交わる位置である。なお、車体フレーム10が屈曲している場合でも同様に安定範囲Rを設定することができる。
 重心位置gpからの重力ベクトルgの安定範囲Rに対する位置に基づいて、安定性が判断される。横方向の傾斜が大きくなるほど、自動ブレーキによる安定性が低下する。例えば、重力ベクトルgの安定範囲Rと交わる位置が安定範囲Rの端に近づくにつれて徐々に安定性が低下するため、転倒抑制減速度が小さく設定される。重力ベクトルgの安定範囲Rと交わる位置が安定範囲Rから逸脱した場合(図5においてg´で示す)には、自動ブレーキを実施せず、警報装置61による警報のみが行われる。
 なお、図4では、ホイールローダ100が左右方向において傾斜している例を示しているが、前後方向における傾斜も判断してもよい。ただし、左右方向において傾斜している方が自動ブレーキによる安定性が低くなる。
 また、図5に示すように、安定範囲Rの左右方向の幅が前に向かうに従って広くなっている。そのため、例えば、フロントフレーム11側がリアフレーム12よりも高くなるように車体フレーム10が斜面に配置されている状態では、重力ベクトルgと安定範囲Rが交わる位置が後方に移動(重力ベクトルg´´参照)し、横方向への安定範囲が狭くなる。このように、前後方向の傾斜が、横方向への安定性に影響する。
 (2)作業機の姿勢
 図6は、ブーム14が上方向に回動した状態のホイールローダ100を示す図である。
 状態検出部72は、作業機3の姿勢を検出するために、例えばブーム角度センサ72a(図3参照)を有している。ブーム角度センサ72aによって検出されるブーム14の角度に基づいて、制御系26は、安定性を考慮して転倒抑制減速度を算出する。なお、ブーム角度センサ72aに限らずカメラを設けて画像解析を行うことによって、作業機3の姿勢を判定してもよい。
 ブーム14の角度が増加するほど、自動ブレーキによる安定性が低下する。例えば、ブーム14の上方向への回動角度が大きくなるに従って安定性が小さくなるため、転倒抑制減速度を小さくなるように設定することができる。なお、転倒抑制減速度の減少は、ブーム14の角度の増加に伴って一次関数的に減少させてもよいし、指数関数的に減少させてもよい。
 (3)荷の状態
 図7は、バケット15に荷Wを積んでいる状態のホイールローダ100を示す図である。
 状態検出部72は、図3に示すように、荷の状態を検出するために、リフトシリンダ16の圧力を検出する圧力センサ72b、ブーム角度センサ72a、およびバケット15がチルト状態であるか否かを検出するためのベルクランク角度センサ72dを有している。バケット15がチルト状態であるか否かは、バケットシリンダ17の長さによって決まる。ブーム角度センサ72aによるブーム角度とベルクランク角度センサ72dによるベルクランク角度から、予め記憶するテーブルに基づいてバケットシリンダ17の長さが算出され、バケット15がチルト状態であるか否かを検出することができる。
 圧力センサ72b、ブーム角度センサ72a、およびベルクランク角度センサ72dの値に基づいて、制御系26は安定性を考慮して転倒抑制減速度を算出する。
 荷Wの量が多くブーム14が上方に回動し、バケット15がチルト状態の方が、自動ブレーキによる安定性が低下する。例えば、圧力センサ72b、ブーム角度センサ72a、およびバケットシリンダ17の長さの値が大きくなるに従って安定性が小さくなるため、転倒抑制速度が小さくなるように設定することができる。なお、圧力センサ72b、ブーム角度センサ72a、およびバケットシリンダ17の長さの値に重みづけを行って、転倒抑制速度を算出してもよい。
 また、チルト状態を検出するために、ベルクランク角度センサ72dを使用せずに、バケット15等の作業機3の位置が検出可能なセンサ(近接センサなど)を用いてもよく、任意にセンサを設定可能である。また、荷の状態を検出するために、カメラを設けて画像解析を行ってもよい。
 (4)アーティキュレート角度
 図8は、屈曲している状態のホイールローダ100の状態を示す図である。
 状態検出部72は、図3に示すように、アーティキュレート角度θを検出するためにアーティキュレート角度センサ72eを有している。アーティキュレート角度センサ72eは、リアフレーム12に対するフロントフレーム11の傾斜角度を検出する。
 アーティキュレート角度センサ72eによって検出されるアーティキュレート角度θに基づいて、制御系26は、安定性を考慮して転倒抑制減速度を算出する。
 アーティキュレート角度θが増加するほど、自動ブレーキによる安定性が低下する。例えば、アーティキュレート角度θが大きくなるに従って安定性が小さくなるため、転倒抑制速度が小さくなるように設定することができる。なお、転倒抑制減速度の減少は、アーティキュレート角度の増加に伴って一次関数的に減少させてもよいし、指数関数的に減少させてもよい。
 速度センサ73は、車両本体1の速度を検出し、制御系26に送信する。
 (制御系26)
 図9は、本実施の形態のホイールローダ100の制御系26(制御部の一例)の構成を示すブロック図である。
 制御系26は、検知コントローラ80と、車体コントローラ90と、を有する。
 検知コントローラ80と車体コントローラ90の各々は、CPU(Central Processing Unit)等のプロセッサと、ROM(Read Only Memory)のような不揮発性メモリおよびRAM(Random Access Memory)のような揮発性メモリを含むメインメモリと、ストレージを含む。検知コントローラ80と車体コントローラ90は、ストレージに記憶されているプログラムを読み出してメインメモリに展開し、プログラムに従って所定の処理を実行する。なお、本実施の形態では、検知コントローラ80と車体コントローラ90の各々がCPUを有していると記載したが、検知コントローラ80と車体コントローラ90が全体で1つのCPUを有していてもよい。また、プログラムは、ネットワークを介して検知コントローラ80と車体コントローラ90に配信されてもよい。
 検知コントローラ80は、後方検出部71で検出された物体の情報を取得する。車体コントローラ90は、自動ブレーキの制御を実行する。
 検知コントローラ80は物体情報取得部81と、距離算出部82と、を有する。
 物体情報取得部81は、後方検出部71によって検出された、停止する目標とする物体(対象物)の情報を取得する。距離算出部82は、物体の情報に基づいて、ホイールローダ100から物体までの距離x(相対距離の一例)を算出する。距離算出部82は、後方検出部71の送信アンテナから発したミリ波帯の電波が物体の表面で反射して戻ってくる様子に基づいて、物体までの距離xを算出することができる。なお、物体としては、岩、家屋などの障害物を挙げることができる。
 車体コントローラ90は、車体情報取得部91と、転倒抑制減速度算出部92と、記憶部93と、制御減速度設定部94と、制動時間算出部95と、制御開始距離算出部96と、制御指示部97と、を備える。
 車体情報取得部91は、状態検出部72で検出した車体情報および速度センサ73で検出した車体速度vを取得する。
 転倒抑制減速度算出部92は、取得した車体情報および車体速度vから安定性を求め、更に安全率も考慮して自動ブレーキの際のホイールローダ100の転倒を抑制する減速度(転倒抑制減速度)を算出する。転倒抑制減速度は、上述したように転倒抑制ブレーキ力による減速度である。例えば、転倒抑制減速度算出部92は、取得した車体情報より車両本体1の重心位置gpと安定範囲Rを特定し、重心位置gpからの重力ベクトルと安定範囲Rとの交点を求め、その交点の位置に基づいて安定性を求める。求めた安定性に安全率を足して転倒抑制減速度が算出される。
 記憶部93は、車体コントローラ90に設けられたメモリであり、予め設定された設定減速度を記憶している。設定減速度は、ブレーキ回路42のハードの能力等から予め設定された値であり、上述したように設定ブレーキ力による減速度である。
 制御減速度設定部94は、転倒抑制減速度と設定減速度のうち小さい減速度を選択し、選択した減速度を自動ブレーキの制御を実行する際の減速度(制御減速度)として設定する。これにより、予め設定した設定減速度で自動ブレーキを実行した場合にホイールローダ100が転倒する可能性がある場合には、転倒抑制減速度で自動ブレーキを実行することができる。
 制動時間算出部95は、車体速度と制御減速度(減速度の一例)からホイールローダ100が停止するまでの時間を算出する。具体的には、車体速度をvとし制御減速度をaとし、ホイールローダ100が停止するまでの制動時間をt´とすると、(式1)が成り立つ。
 (式1)・・・v-at´=0
 そのため、t´=v/aを計算することによって、制動時間t´を求めることができる。
 制御開始距離算出部96は、自動ブレーキの制御を開始するための物体からの距離を算出する。ホイールローダ100が停止するまでに進む距離をx´とすると、(式2)が成り立つ。
 (式2)・・・x´=vt´-(1/2)at´
 (式2)のt´に上述した(式1)のv/aを代入することにより、次の式(3)が導かれる。
 (式3)・・・x´=(1/2)v /a
 自動ブレーキをかける際の物体までの目標停止距離をxtとし、自動ブレーキをかけ始める位置(物体からの距離)をxbとすると、次の(式4)が成り立つ。
 (式4)・・・xb=xt+x´
 (式4)のx´に(式3)の(1/2)v /aを代入すると、次の(式5)が導かれる。
 (式5)・・・xb=xt+(1/2)v /a
 (式5)より、自動ブレーキをかけ始める位置である自動ブレーキ制御開始距離xb(開始距離の一例)を求めることができる。
 また、制御開始距離算出部96は、警報を開始するための距離xc(物体からの警報制御開始距離)を求める。警報制御開始距離xc(開始距離の一例)は、自動ブレーキ制御開始距離xbに基づいて設定することができる。距離xcは、自動ブレーキ制御開始距離xbよりも大きく設定することができる。これにより、警報制御開始距離xcは、自動ブレーキ制御開始距離xbよりも物体からの距離が遠く設定され、警報を自動ブレーキ開始前の予備警報として用いることができる。
 図10は、ホイールローダ100の物体Mからの距離を示す図である。
 制御指示部97は、距離算出部82で算出された距離xが、制御開始距離算出部96で算出した警報制御開始距離xcに達すると警報装置61に発報指示を行う。これにより、警報装置61が警報を発する。
 制御指示部97は、距離xが自動ブレーキ制御開始距離xbに達すると、制御減速度aとなる開度になるようにシャットオフ弁45およびEPC弁46に開指示を行う。これにより、ブレーキペダル54を操作していない場合でも、シャトル弁47を介して作動油がブレーキ回路42に供給され、制御減速度aで制動が行われる。そして、図10に示すように、物体Mからの距離xtでホイールローダ100が停止する。停止した状態のホイールローダ100が二点鎖線で示されている。
 制御指示部97は、自動ブレーキの制御を開始すると、自動ブレーキ作動通知ランプ63に点灯指示を行う。
 オペレータが復帰スイッチ55を操作し、自動ブレーキが解除されると、制御指示部97は自動ブレーキ作動通知ランプ63に消灯指示を行う。
 なお、オペレータがブレーキペダル54を操作し、サービスブレーキ弁41から供給される作動油の圧力がEPC弁46から供給される作動油の圧力よりも大きくなると、サービスブレーキ弁41から供給される作動油によってブレーキ回路42が作動する。
 <動作>
 次に、本実施の形態のホイールローダ100の制御動作について説明する。
 図11は、本実施の形態のホイールローダ100の制御動作を示すフロー図である。
 はじめに、ステップS10において、物体情報取得部81が、後方検出部71から物体Mの情報を取得する。物体情報取得部81は、後進が行われていることを検出している状態において、後方検出部71から所定範囲内における物体の情報を受け取ると、受け取った物体の情報を距離算出部82に送信する。物体情報取得部81は、例えば、フロントタイヤ4もしくはリアタイヤ7が後方に向かって回転していること、またはFNRレバー52が後進位置であることによって車両本体1の後進状態を検出する。
 次に、ステップS20において、車体情報取得部91が状態検出部72で検出した車体情報および速度センサ73で検出した車体速度vを取得する。車体情報は、上述したように、(1)ホイールローダ100の傾斜角度、(2)作業機3の姿勢、(3)荷の状態、および(4)アーティキュレート角度を含む。
 次に、ステップS30において、距離算出部82が、物体の情報に基づいて、ホイールローダ100から物体Mまでの距離xを算出する。
 次に、ステップS40において、転倒抑制減速度算出部92は、取得した車体情報から、安全率も考慮してホイールローダ100の転倒を抑制する減速度(転倒抑制減速度)を算出する。
 次に、ステップS50において、制御減速度設定部94が、転倒抑制減速度と記憶部93に記憶されている設定減速度のうち小さい減速度を選択し、選択した減速度を自動ブレーキの制御を実行する際の減速度(制御減速度a)として設定する。
 次に、ステップS60において、制動時間算出部95が、車体速度vと制御減速度aからホイールローダ100が停止するまでの時間t´を(式1)を用いて算出する。
 次に、ステップS70において、制御開始距離算出部96が、車体速度v、制御減速度a、および制動時間t´より、(式1)~(式5)を用いて自動ブレーキ制御開始距離xbを算出する。また、制御開始距離算出部96は、自動ブレーキ制御開始距離xbに基づいて、警報を開始する警報制御開始距離xcを算出する。
 次に、ステップS80において、制御指示部97は、距離算出部82で算出された距離xが、制御開始距離算出部96で算出した警報制御開始距離xcに達すると警報装置61に発報指示を行い、距離xが自動ブレーキ制御開始距離xbに達すると、シャットオフ弁45に開指示を行い、制御減速度aとなる開度になるようにEPC弁46に開指示を行う。
 これにより、距離xが警報制御開始距離xcに達すると警報装置61が動作して警報が開始され、次に、距離xが自動ブレーキ制御開始距離xbに達すると、制御減速度aによって自動ブレーキが動作し、物体Mからの距離xtでホイールローダ100が停止する。
 <特徴>
 (1)
 本実施の形態にかかるホイールローダ100(作業機械の一例)は、車両本体1と、後方検出部71(物体検出部の一例)と、状態検出部72と、制御系26(制御部の一例)とを備える。車両本体1は、走行体2と、走行体2に配置された作業機3と、を有する。後方検出部71は、車両本体1の周囲の物体Mを検出する。状態検出部72は、車両本体1の傾斜、屈曲、および作業機3の少なくとも1つの状態を検出する。制御系26は、状態検出部72の検出情報から求められる車両本体1が停止できる横方向の安定範囲Rと重心位置gpの関係に基づき、物体Mを検出した際の自動ブレーキに用いる制御減速度a(減速度の一例)を設定する。
 これにより、車両本体1の横方向の安定性に応じた減速度を用いて、物体Mを検出した際に回避制御(自動ブレーキまたは警報装置61による警報)を実行することができる。
 また、車両本体1が、横方向における安定性が低い傾斜状態であることを検出することができる。また、車両本体1が、横方向における安定性が低い屈曲状態であることを検出することができる。また、車両本体1が、横方向における安定性が低い作業機3の状態であることを検出することができる。
 (2)
 本実施の形態にかかるホイールローダ100(作業機械の一例)は、速度センサ73(速度検出部の一例)を更に備える。速度センサ73は、車両本体1の速度を検出する。制御系26は、制御減速度aと車両本体1の速度vに基づいて、物体Mとの衝突を回避する回避制御を開始する物体Mからの自動ブレーキ制御開始距離xb(開始距離の一例)を設定し、車両本体1から物体Mまでの相対距離xと自動ブレーキ制御開始距離xbに基づいて回避制御を実行する。
 これにより、回避制御として自動ブレーキを行う場合には、車両本体1の横方向への安定性を考慮した制御ブレーキ力で自動ブレーキを行うため、横方向への安定性を考慮して減速を行うことができる。
 また、車両本体1の横方向への安定性に応じた制御減速度を用いて、自動ブレーキ制御開始距離xbを設定するため、制御ブレーキ力に応じた制動距離に基づいて回避制御を行うことができる。このため、安定した走行状態で物体Mとの衝突を抑制することができる。
 (3)
 本実施の形態にかかるホイールローダ100では、制御系26(制御部の一例)は、自動ブレーキに用いるために予め設定された設定減速度(第1減速度の一例)と、安定範囲Rに対する重心位置gpに基づいて設定された転倒抑制減速度(第2減速度の一例)とを比較し、小さい方を制御減速度(減速度の一例)として設定する。
 これにより、予め設定された設定減速度で自動ブレーキを作動した場合に横転する可能性があるときには、設定減速度を用いず車両本体1の状態を考慮した転倒抑制減速度で自動ブレーキを行うため、安定した走行状態で物体Mとの衝突を抑制することができる。
 また、車両本体1の状態に基づいて設定した転倒抑制減速度を用いて、自動ブレーキ制御開始距離xbを設定するため、転倒抑制減速度によって伸びた制動距離に基づいて回避制御を行うことができる。
 (4)
 本実施の形態にかかるホイールローダ100では、制御系26は、車両本体1の重心位置gpからの重力ベクトルgと、安定範囲Rとの比較に応じて転倒抑制減速度を設定する。
 これにより、横転せずに安定した走行で減速可能な転倒抑制減速度を設定することができる。
 (5)
 本実施の形態にかかるホイールローダ100では、回避制御は、制御ブレーキ力で自動ブレーキを作動する制御を含む。
 これにより、車両本体1の状態に応じて転倒を抑制するように制御ブレーキ力による減速度で自動ブレーキを作動させることができる。
 (6)
 本実施の形態にかかるホイールローダ100は、警報装置61(報知部の一例)を更に備える。警報装置61は、物体Mを検出したことを報知する。回避制御は、警報装置61による報知を行う制御を含む。
 これにより、オペレータに物体Mの検出を報知でき、オペレータは物体Mとの衝突を回避するように操作を行うことができる。
 (7)
 本実施の形態にかかるホイールローダ100では、制御系26は、走行体2の速度および減速度aを用いて物体Mから所定距離xt手前で車両本体1が停止できる距離を、自動ブレーキ制御開始距離xbとして設定する。
 これにより、自動ブレーキ制御開始距離xbに基づいて、回避制御を行うことで物体Mとの衝突を抑制することができる。
 (8)
 本実施の形態にかかるホイールローダ100では、回避制御は、制御ブレーキ力で自動ブレーキを作動する制御を含む。制御系26は、相対距離xが、自動ブレーキ制御開始距離xbに達すると、制御ブレーキ力で自動ブレーキを作動する。
 これにより、物体Mとの相対距離xが自動ブレーキ制御開始距離Xbに達すると、制御ブレーキ力で自動ブレーキを作動させることにより、物体Mの手前で停止することができる。
 (9)
 本実施の形態にかかるホイールローダ100は、警報装置61(報知部の一例)を更に備える。警報装置61は、物体Mを検出したことを報知する。回避制御は、警報装置61による報知を行う制御を更に含む。制御系26は、相対距離xが、警報制御開始距離xcに達すると、警報装置61による報知を行う。警報装置61による報知を行う警報制御開始距離xcは、自動ブレーキを作動する自動ブレーキ制御開始距離xbより物体Mから遠い距離に設定されている。
 これにより、オペレータに、自動ブレーキが開始される自動ブレーキ制御開始距離xbに達することを警報装置61によって予備的に知らせることができる
 (10)
 本実施の形態のホイールローダ100では、作業機3の状態は、作業機3の姿勢および作業機3の積み荷の状態の少なくとも一方を含む。
 これによって、車両本体1が、作業機3の姿勢及び積荷により設定ブレーキ力で制動させた場合に転倒予防の必要があるような不安定な状態であることを検出することができる。
 (11)
 本実施の形態のホイールローダ100では、車両本体1は、車体フレーム10と、フロントアクスル34aと、リアアクスル34bと、一対のフロントタイヤ4と、一対のリアタイヤ7と、を有する。車体フレーム10は、作業機3が取り付けられたフロントフレーム11と、カウンタウェイト8が配置され、フロントフレーム11の後側に連結されたリアフレーム12と、を有する。フロントアクスル34aは、フロントフレーム11に接続されている。リアアクスル34bは、前後方向に対して垂直なロール方向に回動可能にリアフレーム12に接続されている。一対のフロントタイヤ4は、フロントアクスル34aの両端に取り付けられている。一対のリアタイヤ7は、リアアクスル34bの両端に取り付けられている。状態検出部72は、車両本体1の傾斜状態として、車体フレーム10の傾斜角度を検出する。
 これにより、オシレート機構を有するホイールローダ100の車両本体1の傾斜角度に基づいた横方向の安定性に応じて自動ブレーキの際の制御減速度を設定することができる。 
 (12)
 本実施の形態のホイールローダ100では、安定範囲Rは、リアアクスル34bの回動中心34pとフロントアクスル34aの両端を結ぶ範囲に設定される。
 これにより、オシレート機構を考慮した安定範囲を設定することができる。
 (13)
 本実施の形態のホイールローダ100(作業機械の一例)では、ブレーキ回路42(サービスブレーキの一例)と、ブレーキ回路42への作動油の供給量を調整可能なEPC弁46(ブレーキ弁の一例)と、を更に備える。制御系26は、EPC弁46を駆動しブレーキ回路42を用いて自動ブレーキによる制動を行う。
 これによって、物体Mを検出した場合に、車両本体1を自動で停止させることができる。
 (14)
 本実施の形態のホイールローダ100(作業機械の一例)の制御方法は、ステップS10(物体情報取得ステップの一例)と、ステップS20(状態検出ステップの一例)と、ステップS50(設定ステップの一例)と、を備える。ステップS10は、走行体2および走行体2に配置された作業機3を有する車両本体1の周囲の物体Mの情報を取得する。ステップS20は、車両本体1の傾斜、屈曲、および前記作業機の少なくとも1つの状態を検出する。ステップS50は、ステップS20の検出情報から求められる車両本体1が停止できる横方向の安定範囲Rと重心位置gpの関係に基づき、物体Mを検出した際の自動ブレーキに用いる制御減速度a(減速度の一例)を設定する。
 これにより、車両本体1の横方向の安定性に応じた減速度を用いて、物体Mを検出した際に、回避制御(自動ブレーキまたは警報装置61による警報)を実行することができる。
 <他の実施形態>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施の形態のホイールローダ100では、車両本体1が後進時以外では、シャットオフ弁45によって流路を閉じた状態とすることによって、後進時にのみ自動ブレーキを実行可能としているが、後進時に限らなくてもよく、前進時にも自動ブレーキを実行可能としてもよい。
 (B)
 上記実施の形態のホイールローダ100では、自動ブレーキ制御開始距離xbよりも手前の警報制御開始距離xcで警報装置61による報知を行っているが、自動ブレーキ制御開始距離xbと同じ位置で警報装置61による報知を行ってもよい。要するに、算出された自動ブレーキ制御開始距離xbに基づいて警報制御開始距離が設定されればよい。
 (C)
 上記実施の形態のホイールローダ100では、回避制御として、自動ブレーキの制御と警報装置61による発報の双方を実行しているが、どちらか一方だけであってもよい。
 回避制御として警報装置61による発報だけが実行される場合、自動ブレーキ制御開始距離xbに基づいて警報制御開始距離xcが設定され、相対距離xが距離xcに達すると警報装置61による報知が行われるが、相対距離xが距離xbに達しても自動ブレーキは開始されない。
 この場合、オペレータに回避制御を行うように知らせることができるため、オペレータは例えば車両の状態を見て適切なブレーキ力を生じるようにブレーキペダル54を踏むなどの動作を行うことが可能となる。
 (D)
 上記実施の形態では、制御系26がEPC弁46と同時にシャットオフ弁45を開状態にしているが、車両本体1が後進状態であることを検出した場合には、物体Mの検出にかかわらずシャットオフ弁45を開状態にしてもよい。この場合、制御系26は、自動ブレーキを作動させる際にEPC弁46を開状態に制御するだけでよい。
 (E)
 上記実施の形態では、サービスブレーキのブレーキ回路42を用いて自動ブレーキにおける転倒抑制ブレーキ力を生じさせているが、アクセル51をオフにした際の内部慣性またはFNRレバー52をニュートラルの位置に配置した場合のポンプ32aとモータ32bの斜板による走行抵抗を用いてもよい。
 (F)
 上記実施の形態では、駆動系21にHST32を用いているが、HSTに限らなくても良く、トルクコンバータであってもよい。図12は、駆動系21にトルクコンバータ132とトランスミッション133が設けられた構成を示すブロック図である。エンジン31からの駆動力はトルクコンバータ132を介してトランスミッション133に伝達される。トランスミッション133は、トルクコンバータ132を介して伝達されるエンジン31の回転駆動力を変速してアクスル34に伝達する。トランスミッション133には、パーキングブレーキ43が設けられている。
 なお、トルクコンバータの場合においても、転倒抑制ブレーキ力をEPC弁46の開度を調整して生じさせてもよい。また、アクセル51をオフ状態にすることによって転倒抑制ブレーキ力を生じさせてもよい。
 さらに、HSTに限らず、HMT(Hydro Mechanical Transmission)が用いられても良い。
 なお、制動力の制御は、サービスブレーキ弁41を用いたサービスブレーキ、パーキングブレーキ43、他に制動力を変更する手段を適宜適用できる。
 また、サービスブレーキ、パーキングブレーキ43等のブレーキと原動機側の内部慣性を任意に組み合わせてもよい。
 (G)
 上記実施の形態のホイールローダはオペレータが搭乗して操作してもよいし、無人で操作されてもよい。
 (H)
 上記実施の形態では、作業機械の一例としてホイールローダを用いて説明したが、ホイールローダに限らなくてもよく、油圧ショベル等であってもよい。アーティキュレート式ではない作業機械の場合、車体情報としてアーティキュレート角度に代えてステアリング角度を検出して転倒抑制減速度の設定に用いてもよい。
 (I)
 上記実施の形態では、安定範囲Rは、底面視において略三角形状であるが、これに限られるものではない。例えば、図13に示す安定範囲Rは、フロントアクスル34aの中心軸に沿った第1直線、リアアクスル34bの中心軸に沿った第2直線と、フロントアクスル34aの左端とリアアクスル34bの左端を結び、且つ第1直線および第2直線に交わる第3直線と、フロントアクスル34aの右端とリアアクスル34bの右端を結び、且つ第1直線および第2直線に交わる第4直線とによって囲まれる範囲に設定されている。
 このように、安定範囲Rは、長方形状に形成されていてもよい。
 本発明の作業機械および作業機械の制御方法によれば、安定した状態で物体との衝突を抑制することが可能な効果を発揮し、ホイールローダ等として有用である。
1    :車両本体
2    :走行体
3    :作業機
26   :制御系
71   :後方検出部
72   :状態検出部
73   :速度センサ

Claims (14)

  1.  走行体と、前記走行体に配置された作業機と、を有する車両本体と、
     前記車両本体の周囲の物体を検出する物体検出部と、
     前記車両本体の傾斜、屈曲、および前記作業機の少なくとも1つの状態を検出する状態検出部と、
     前記状態検出部の検出情報から求められる前記車両本体が停止できる横方向の安定範囲と重心位置の関係に基づき、前記物体を検出した際の自動ブレーキに用いる減速度を設定する制御部と、を備えた、
    作業機械。
  2.  前記車両本体の速度を検出する速度検出部を更に備え、
     前記制御部は、前記減速度と前記車両本体の速度に基づいて前記物体との衝突を回避する回避制御を開始する前記物体からの開始距離を設定し、前記車両本体から前記物体までの相対距離と前記開始距離に基づいて前記回避制御を実行する、
    請求項1に記載の作業機械。
  3.  前記制御部は、前記自動ブレーキに用いるために予め設定された第1減速度と、前記安定範囲に対する前記重心位置に基づいて設定された第2減速度とを比較し、前記第1減速度と前記第2減速度のうち小さい方を前記減速度として設定する、
    請求項1または2に記載の作業機械。
  4.  前記制御部は、前記車両本体の重心位置からの重力ベクトルと、前記安定範囲との比較に応じて前記第2減速度を設定する、
    請求項3に記載の作業機械。
  5.  前記回避制御は、前記減速度で自動ブレーキを作動する制御を含む、
    請求項2に記載の作業機械。
  6.  前記物体を検出したことを報知する報知部を更に備え、
     前記回避制御は、前記報知部による報知を行う制御を含む、
    請求項2に記載の作業機械。
  7.  前記制御部は、前記走行体の速度および前記減速度を用いて前記物体から所定距離手前で前記車両本体が停止できる距離を、前記開始距離として設定する、
    請求項2に記載の作業機械。
  8.  前記回避制御は、前記減速度で前記自動ブレーキを作動する制御を含み、
     前記制御部は、前記相対距離が前記開始距離に達すると、前記減速度で前記自動ブレーキを作動する、
    請求項7に記載の作業機械。
  9.  前記物体を検出したことを報知する報知部を更に備え、
     前記回避制御は、前記報知部による報知を行う制御を更に含み、
     前記制御部は、前記相対距離が前記開始距離に達すると、前記報知部による報知を行い、
     前記報知部による報知を行う前記開始距離は、前記自動ブレーキを作動する前記開始距離より前記物体から遠い距離に設定されている、
    請求項8に記載の作業機械。
  10.  前記作業機の状態は、前記作業機の姿勢および前記作業機の積み荷の状態の少なくとも一方を含む、
    請求項1~9のいずれか1項に記載の作業機械。
  11.  前記車両本体は、
     前記作業機が取り付けられたフロントフレームと、カウンタウェイトが配置され、前記フロントフレームの後側に連結されたリアフレームと、を有する車体フレームと、
     前記フロントフレームに接続されたフロントアクスルと、
     前後方向に対して垂直なロール方向に回動可能に前記リアフレームに接続されたリアアクスルと、
     前記フロントアクスルの両端に取り付けられた一対のフロントタイヤと、
     前記リアアクスルの両端に取り付けられた一対のリアタイヤと、を有し、
     前記状態検出部は、前記車両本体の傾斜状態として、前記車体フレームの傾斜角度を検出する、
    請求項1~10のいずれか1項に記載の作業機械。
  12.  前記安定範囲は、前記リアアクスルの回動中心と前記フロントアクスルの両端を結ぶ範囲に設定される、
    請求項11に記載の作業機械。
  13.  サービスブレーキと、
     前記サービスブレーキへの作動油の供給量を調整可能なブレーキ弁と、を更に備え、
     前記制御部は、前記ブレーキ弁を駆動し前記サービスブレーキを用いて自動ブレーキによる制動を行う、
    請求項1~12のいずれか1項に記載の作業機械。
  14.  走行体および前記走行体に配置された作業機を有する車両本体の周囲の物体の情報を取得する物体情報取得ステップと、
     前記車両本体の傾斜、屈曲、および前記作業機の少なくとも1つの状態を検出する状態検出ステップと、
     前記状態検出ステップの検出情報から求められる前記車両本体が停止できる横方向の安定範囲と重心位置の関係に基づき、前記物体を検出した際の自動ブレーキに用いる減速度を設定する設定ステップと、を備えた、
    作業機械の制御方法。
PCT/JP2022/001968 2021-03-26 2022-01-20 作業機械および作業機械の制御方法 WO2022201806A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22774609.6A EP4283053A1 (en) 2021-03-26 2022-01-20 Work machine and method for controlling work machine
US18/549,091 US20240151000A1 (en) 2021-03-26 2022-01-20 Work machine and control method for work machine
CN202280016538.4A CN116917587A (zh) 2021-03-26 2022-01-20 作业机械以及作业机械的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053326 2021-03-26
JP2021053326A JP2022150638A (ja) 2021-03-26 2021-03-26 作業機械および作業機械の制御方法

Publications (1)

Publication Number Publication Date
WO2022201806A1 true WO2022201806A1 (ja) 2022-09-29

Family

ID=83395378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001968 WO2022201806A1 (ja) 2021-03-26 2022-01-20 作業機械および作業機械の制御方法

Country Status (5)

Country Link
US (1) US20240151000A1 (ja)
EP (1) EP4283053A1 (ja)
JP (1) JP2022150638A (ja)
CN (1) CN116917587A (ja)
WO (1) WO2022201806A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219005A1 (de) 2014-11-14 2017-09-20 Robert Bosch GmbH Stromrichter und verfahren zum betreiben eines stromrichters
JP2019002242A (ja) * 2017-06-19 2019-01-10 株式会社神戸製鋼所 転倒防止装置及び作業機械
JP2019049150A (ja) * 2017-09-11 2019-03-28 日立建機株式会社 作業車両
WO2019180843A1 (ja) * 2018-03-20 2019-09-26 日立建機株式会社 作業車両
JP2020153114A (ja) * 2019-03-19 2020-09-24 株式会社小松製作所 作業車両、および作業車両の制御方法
JP2020165230A (ja) * 2019-03-29 2020-10-08 日立建機株式会社 ホイールローダ
JP2020163919A (ja) * 2019-03-28 2020-10-08 日立建機株式会社 作業機械
US20200315083A1 (en) * 2019-04-03 2020-10-08 Caterpillar Inc. Tipping avoidance system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219005A1 (de) 2014-11-14 2017-09-20 Robert Bosch GmbH Stromrichter und verfahren zum betreiben eines stromrichters
JP2019002242A (ja) * 2017-06-19 2019-01-10 株式会社神戸製鋼所 転倒防止装置及び作業機械
JP2019049150A (ja) * 2017-09-11 2019-03-28 日立建機株式会社 作業車両
WO2019180843A1 (ja) * 2018-03-20 2019-09-26 日立建機株式会社 作業車両
JP2020153114A (ja) * 2019-03-19 2020-09-24 株式会社小松製作所 作業車両、および作業車両の制御方法
JP2020163919A (ja) * 2019-03-28 2020-10-08 日立建機株式会社 作業機械
JP2020165230A (ja) * 2019-03-29 2020-10-08 日立建機株式会社 ホイールローダ
US20200315083A1 (en) * 2019-04-03 2020-10-08 Caterpillar Inc. Tipping avoidance system and method

Also Published As

Publication number Publication date
EP4283053A1 (en) 2023-11-29
JP2022150638A (ja) 2022-10-07
CN116917587A (zh) 2023-10-20
US20240151000A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2021065439A1 (ja) 作業機械および作業機械の制御方法
JP7481983B2 (ja) 作業機械および作業機械の制御方法
JP7002634B2 (ja) 作業車両
JP7483737B2 (ja) 作業機械および作業機械の制御方法
JP2019007175A (ja) ショベル
WO2022201806A1 (ja) 作業機械および作業機械の制御方法
WO2022201805A1 (ja) 作業機械および作業機械の制御方法
JP2021139204A (ja) 作業車両
WO2020188943A1 (ja) 作業車両
WO2022070579A1 (ja) 作業機械
JP6900251B2 (ja) ショベル
WO2024142906A1 (ja) 作業機械、作業機械の制動システムおよび作業機械の制御方法
JP2021050535A (ja) 作業車両
WO2024128214A1 (ja) 作業機械、作業機械の制動システムおよび作業機械の制御方法
WO2024142905A1 (ja) 作業機械および作業機械の制御方法
JP2024093641A (ja) 作業機械、作業機械の制動システムおよび作業機械の制御方法
JP2024086279A (ja) 作業機械、作業機械の制動システムおよび作業機械の制御方法
JP2024093640A (ja) 作業機械および作業機械の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016538.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022774609

Country of ref document: EP

Effective date: 20230821

WWE Wipo information: entry into national phase

Ref document number: 18549091

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE