WO2022201792A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2022201792A1
WO2022201792A1 PCT/JP2022/001835 JP2022001835W WO2022201792A1 WO 2022201792 A1 WO2022201792 A1 WO 2022201792A1 JP 2022001835 W JP2022001835 W JP 2022001835W WO 2022201792 A1 WO2022201792 A1 WO 2022201792A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
control valve
differential pressure
accumulator
control device
Prior art date
Application number
PCT/JP2022/001835
Other languages
English (en)
French (fr)
Inventor
聖二 土方
靖貴 釣賀
雅俊 星野
遼 八木澤
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP22774595.7A priority Critical patent/EP4261352A1/en
Priority to US18/272,121 priority patent/US20240068203A1/en
Priority to KR1020237023384A priority patent/KR20230117219A/ko
Priority to JP2023508684A priority patent/JP7498851B2/ja
Priority to CN202280009996.5A priority patent/CN116761918A/zh
Publication of WO2022201792A1 publication Critical patent/WO2022201792A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • F15B2211/20592Combinations of pumps for supplying high and low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3057Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having two valves, one for each port of a double-acting output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3144Directional control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31552Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/51Pressure control characterised by the positions of the valve element
    • F15B2211/513Pressure control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5153Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5158Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6653Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a working machine such as a hydraulic excavator equipped with an accumulator.
  • Patent Document 1 discloses a hydraulic circuit in which a swing motor drive circuit communicates with a swing energy recovery passage via a check valve, and the swing energy recovery passage is connected to an accumulator via a sequence valve. ing.
  • the differential pressure generated by the sequence valve described in Patent Document 1 is determined by the spring force to a preset value. Therefore, when the pressure oil discharged from the swing motor is accumulated in the accumulator, if the back pressure on the accumulator side of the sequence valve changes, the original pressure on the inlet side of the sequence valve changes and the operation of the swing motor becomes unstable. may become
  • An object of the present invention is to provide a work machine that can stably operate a hydraulic actuator when accumulating pressure oil discharged from the hydraulic actuator in a pressure accumulator.
  • a work machine includes an engine, a hydraulic pump driven by the engine and discharging pressure oil, a hydraulic actuator operated by the pressure oil discharged by the hydraulic pump, and a hydraulic pressure discharged from the hydraulic actuator.
  • a pressure accumulator for accumulating pressure oil
  • a differential pressure control valve provided between the hydraulic actuator and the pressure accumulator for generating a differential pressure between the pressure of the hydraulic actuator and the pressure of the pressure accumulator
  • a pressure sensor that detects the pressure of the device, and a control device that controls the differential pressure control valve based on the detection result of the pressure sensor.
  • the control device controls the differential pressure control valve so that the differential pressure across the pressure sensor decreases in accordance with an increase in the pressure of the pressure accumulator detected by the pressure sensor.
  • FIG. 1 is a side view of the hydraulic excavator according to the first embodiment.
  • FIG. 2 is a diagram showing a hydraulic system provided in the hydraulic excavator according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram of the control device.
  • FIG. 4 is a block diagram showing control of the differential pressure control valve by the control device according to the first embodiment.
  • FIG. 5 is a diagram showing a hydraulic system provided in a hydraulic excavator according to the second embodiment.
  • FIG. 6 is a block diagram showing control of the differential pressure control valve by the control device according to the second embodiment.
  • FIG. 7 is a diagram showing a hydraulic system included in a hydraulic excavator according to Modification 1.
  • FIG. FIG. 8 is a block diagram showing control of the first boom control valve by the control device according to the third embodiment.
  • a working machine according to an embodiment of the present invention will be described with reference to the drawings.
  • the work machine is a crawler hydraulic excavator
  • the work machines perform works such as civil engineering work, construction work, demolition work, and dredging work at work sites.
  • FIG. 1 is a side view of a hydraulic excavator 100 according to the first embodiment.
  • the hydraulic excavator 100 includes a body 105 and a working device 104 attached to the body 105 .
  • the body 105 has a crawler-type running body 102 and a revolving body 103 provided on the running body 102 so as to be able to turn.
  • the traveling body 102 travels by driving a pair of left and right crawlers with a traveling motor 102A.
  • the revolving body 103 is connected to the traveling body 102 via a revolving device having a revolving motor 103A, and is driven by the revolving motor 103A to revolve with respect to the running body 102 .
  • the revolving structure 103 includes a driver's cab 118 in which an operator rides, and an engine room 119 in which an engine 32 as a prime mover and hydraulic equipment such as a hydraulic pump driven by the engine 32 are accommodated.
  • an electric operation device is provided for operating the hydraulic actuators (111A, 112A, 113A, 103A, 102A) of the working device 104, the revolving body 103 and the traveling body 102.
  • a control device 120 that controls the operation of each part of the hydraulic excavator 100 is provided in the operator's cab 118 .
  • the work device 104 is a multi-joint type work device attached to the revolving body 103, and has a plurality of hydraulic actuators and a plurality of driven members driven by the plurality of hydraulic actuators.
  • the work device 104 has a structure in which three driven members (a boom 111, an arm 112 and a bucket 113) are connected in series.
  • the boom 111 is rotatably connected at its base end to the front portion of the revolving body 103 via a boom pin.
  • the base end of the arm 112 is rotatably connected to the tip of the boom 111 via an arm pin.
  • Bucket 113 is rotatably connected to the tip of arm 112 via a bucket pin.
  • the boom 111 is rotationally driven by the telescopic motion of a boom cylinder 111A, which is a hydraulic actuator (hydraulic cylinder).
  • the arm 112 is rotationally driven by an extension and contraction operation of an arm cylinder 112A, which is a hydraulic actuator (hydraulic cylinder).
  • the bucket 113 is rotationally driven by the expansion and contraction of a bucket cylinder 113A, which is a hydraulic actuator (hydraulic cylinder).
  • FIG. 2 is a diagram showing the hydraulic system 106 included in the hydraulic excavator 100 according to the first embodiment. Note that FIG. 2 shows a configuration for driving the swing motor 103A and the boom cylinder 111A, which are hydraulic actuators, and omits illustration of a configuration for driving other hydraulic actuators.
  • the hydraulic system 106 includes a first hydraulic pump 13, a second hydraulic pump 27, a third hydraulic pump 29, and a swing motor 103A which is a hydraulic motor driven by hydraulic fluid as hydraulic fluid supplied from the first hydraulic pump 13. , a boom cylinder 111A that is extended and driven by hydraulic oil supplied from the low pressure accumulator 4 or the high pressure accumulator 21, a low pressure accumulator 4 that accumulates pressure oil discharged from the boom cylinder 111A, and pressure discharged from the swing motor 103A and a high-pressure accumulator 21 for accumulating oil.
  • the direction control valve 14 which is a control valve for controlling the flow of hydraulic oil supplied from the first hydraulic pump 13 to the swing motor 103A, and the bottom side oil chamber 110a of the boom cylinder 111A have low pressure.
  • a second boom control valve 19 which is a control valve for controlling the flow rate of hydraulic oil supplied from the high-pressure accumulator 21 to the bottom-side oil chamber 110a of the boom cylinder 111A when the pressure is high, is provided.
  • the hydraulic system 106 includes a first pressure accumulation control valve 26, which is a control valve for controlling the flow of hydraulic oil supplied from the second hydraulic pump 27 to the low pressure accumulator 4, and a third hydraulic pump 29 to the high pressure accumulator 21.
  • a second pressure accumulation control valve 28, which is a control valve for controlling the flow of the hydraulic oil that is applied, is provided between the swing motor 103A and the high-pressure accumulator 21, and is provided between the pressure on the swing motor 103A side and the pressure on the high-pressure accumulator 21 side. It is provided with a differential pressure control valve 130 that is a control valve that generates a front-to-rear differential pressure, and a tank 107 that stores hydraulic oil.
  • the first hydraulic pump 13 , the second hydraulic pump 27 and the third hydraulic pump 29 are connected to the engine 32 .
  • the first to third hydraulic pumps 13, 27, 29 are driven by the engine 32, suck up working oil from the tank 107, and discharge it as pressure oil.
  • the first to third hydraulic pumps 13, 27, 29 are respectively variable displacement hydraulic pumps.
  • the engine 32 is a power source of the hydraulic excavator 100, and is configured by an internal combustion engine such as a diesel engine, for example.
  • the low-pressure accumulator 4 is a pressure accumulator that accumulates hydraulic oil discharged from the bottom side oil chamber 110a of the boom cylinder 111A and guided through the first boom control valve 2 when the boom cylinder 111A is contracted. That is, the low-pressure accumulator 4 accumulates pressure oil discharged from the boom cylinder 111A (hereinafter also referred to as return oil). The low pressure accumulator 4 supplies the stored pressure oil to the bottom side oil chamber 110a of the boom cylinder 111A through the first boom control valve 2 when the boom cylinder 111A is extended.
  • the high-pressure accumulator 21 is a pressure accumulator that accumulates hydraulic oil having a pressure exceeding the swing brake pressure discharged from the swing motor 103A and guided through the differential pressure control valve 130 when the swing motor 103A is braked to the left or to the right. . That is, the high-pressure accumulator 21 accumulates pressure oil (hereinafter also referred to as return oil) discharged from the turning motor 103A.
  • the high pressure accumulator 21 supplies the stored pressure oil to the bottom side oil chamber 110a of the boom cylinder 111A through the second boom control valve 19 when the boom cylinder 111A is extended.
  • the set pressure (upper limit pressure) of the high pressure accumulator 21 is higher than the set pressure (upper limit pressure) of the low pressure accumulator 4 . This is because the swing brake pressure of the swing motor 103A is higher than the pressure of the bottom side oil chamber 110a of the boom cylinder 111A.
  • the return oil from the hydraulic actuator is collected by the accumulator, it is preferable to collect it by the accumulator whose set pressure is close to the pressure of the return oil, because the pressure loss between the accumulator and the hydraulic actuator becomes smaller.
  • the high-pressure accumulator 21 collects return oil from the swing motor 103A
  • the low-pressure accumulator 4 collects return oil from the bottom-side oil chamber 110a of the boom cylinder 111A. Pressure loss can be kept low, and energy can be recovered efficiently.
  • a communication path 161 communicates a bottom-side pipeline connected to the bottom-side oil chamber 110a of the boom cylinder 111A and a rod-side pipeline connected to the rod-side oil chamber 110b of the boom cylinder 111A.
  • the communication passage 161 is provided with a communication control valve 7 that pressurizes the bottom-side oil chamber 110a and the rod-side oil chamber 110b by communicating the bottom-side oil chamber 110a and the rod-side oil chamber 110b of the boom cylinder 111A when the boom is lowered. is provided.
  • a discharge passage which guides the hydraulic oil in the rod-side oil chamber 110b of the boom cylinder 111A to the tank 107, includes a discharge valve, which is a control valve that controls the flow of hydraulic oil discharged from the rod-side oil chamber 110b of the boom cylinder 111A to the tank 107.
  • a control valve 3 is provided.
  • a first branch passage 133a and a second branch passage 133b are connected to the first turning passage 131 and the second turning passage 132 connected to the turning motor 103A, respectively.
  • the first branch passage 133a and the second branch passage 133b merge and are connected to a recovery passage 135 for guiding hydraulic fluid from the turning motor 103A to the high pressure accumulator 21.
  • a check valve 23 that allows the hydraulic oil to flow only from the first turning passage 131 to the recovery passage 135 is provided in the first branch passage 133a.
  • a check valve 24 that allows the hydraulic oil to flow only from the second turning passage 132 to the recovery passage 135 is provided in the second branch passage 133b.
  • the check valves 23 and 24 send hydraulic fluid in the high-pressure side of the first turning passage 131 and the second turning passage 132 to the differential pressure control valve 130 .
  • a recovery passage 135 connected to the high-pressure accumulator 21 is provided with a differential pressure control valve 130 that functions as a holding valve for holding the turning brake pressure.
  • Differential pressure control valve 130, direction control valve 14, first pressure accumulation control valve 26, second pressure accumulation control valve 28, first boom control valve 2, second boom control valve 19, communication control valve 7, and discharge control valve 3 is controlled by a control signal (control current) output from the control device 120 .
  • FIG. 3 is a hardware configuration diagram of the control device 120.
  • the control device 120 includes a processor 151 such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), and a volatile memory 152 called RAM (Random Access Memory). , a ROM (Read Only Memory), a flash memory, a non-volatile memory 153 such as a hard disk drive, an input interface 154, an output interface 155, and a computer equipped with other peripheral circuits.
  • the control device 120 may be composed of one computer or may be composed of a plurality of computers.
  • the non-volatile memory 153 stores programs capable of executing various calculations.
  • the nonvolatile memory 153 is a storage medium that can read a program that implements the functions of this embodiment.
  • the processor 151 is a processing device that expands a program stored in the nonvolatile memory 153 into the volatile memory 152 and executes operations, and is a processing device that receives signals from the input interface 154, the volatile memory 152, and the nonvolatile memory 153 according to the program. A predetermined arithmetic processing is performed on the .
  • the input interface 154 converts signals input from each sensor (5b, 9, 18b, 30, 31) and the like into data that can be calculated by the processor 151.
  • the output interface 155 generates an output signal according to the calculation result of the processor 151, and transmits the signal to each control valve (2, 3, 7, 14, 19, 26, 28, 130) and the engine 32. etc.
  • the boom operating device 5 and the turning operating device 18 are connected to the control device 120 .
  • the boom operation device 5 is an operation device that instructs the boom 111 to be raised and lowered according to the operator's operation.
  • the boom operating device 5 has an operating lever (operating member) 5a that can be tilted, and an operating sensor 5b that outputs an operating signal to the control device 120 according to the amount of operation (operating angle) of the operating lever 5a.
  • the turning operation device 18 is an operating device that instructs the turning body 103 to turn left and right according to the operation by the operator.
  • the turning operation device 18 has an operation lever (operation member) 18a that can be tilted, and an operation sensor 18b that outputs an operation signal to the control device 120 according to the operation amount (operation angle) of the operation lever 18a.
  • the bottom pressure sensor 9 , the first pressure sensor 30 and the second pressure sensor 31 are connected to the control device 120 .
  • the bottom pressure sensor 9 is a pressure sensor that detects the pressure of hydraulic oil in the bottom side oil chamber 110a of the boom cylinder 111A and outputs the detection result to the control device 120.
  • the first pressure sensor 30 is a pressure sensor that detects the pressure of hydraulic fluid in the low pressure accumulator 4 and outputs the detection result to the control device 120 .
  • the second pressure sensor 31 is a pressure sensor that detects the pressure of hydraulic fluid in the high-pressure accumulator 21 and outputs the detection result to the control device 120 .
  • the control device 120 determines whether the pressure detected by the first pressure sensor 30 is less than the low pressure lower limit side threshold. When the control device 120 determines that the pressure detected by the first pressure sensor 30 is less than the low-pressure lower limit threshold, the first pressure accumulation control valve 26 allows the second hydraulic pump 27 and the low-pressure accumulator 4 to communicate with each other. 2 Hydraulic oil discharged from the hydraulic pump 27 is accumulated in the low-pressure accumulator 4 . When the control device 120 determines that the pressure detected by the first pressure sensor 30 is equal to or higher than the low pressure upper limit threshold, the first pressure accumulation control valve 26 cuts off communication between the second hydraulic pump 27 and the low pressure accumulator 4 . .
  • the low-pressure upper limit side threshold is set in advance to a value equal to or higher than the low-pressure lower limit side threshold.
  • the low-voltage upper limit side threshold and the low-voltage lower limit side threshold are stored in the nonvolatile memory 153 .
  • the control device 120 determines whether the pressure detected by the second pressure sensor 31 is less than the high pressure lower limit side threshold.
  • the second pressure accumulation control valve 28 causes the third hydraulic pump 29 and the high pressure accumulator 21 to communicate with each other. 3 Hydraulic oil discharged from the hydraulic pump 29 is accumulated in the high-pressure accumulator 21 .
  • the second pressure accumulation control valve 28 cuts off communication between the third hydraulic pump 29 and the high pressure accumulator 21 .
  • the high-pressure upper limit threshold is set in advance to a value equal to or higher than the high-pressure lower limit threshold.
  • the high voltage upper limit side threshold and the high voltage lower limit side threshold are stored in the nonvolatile memory 153 .
  • the control device 120 operates the boom 111 by controlling the control valves (2, 3, 7, 19) based on the operation signal from the operation sensor 5b of the boom operation device 5 and the detection result of the bottom pressure sensor 9.
  • the details of the control performed by the control device 120 to lower the boom 111 will be described below.
  • the operation lever 5a of the boom operation device 5 When the operation lever 5a of the boom operation device 5 is operated in the downward direction, the operation sensor 5b outputs a boom-down operation signal to the control device 120.
  • FIG. The control device 120 opens the communication control valve 7 to communicate the bottom-side oil chamber 110a and the rod-side oil chamber 110b of the boom cylinder 111A, thereby increasing the pressures of the bottom-side oil chamber 110a and the rod-side oil chamber 110b.
  • the pressure Pbc of the bottom-side oil chamber 110a after the communication control valve 7 is opened is defined by Ab, the pressure-receiving area of the bottom-side oil chamber 110a, Ar, the pressure-receiving area of the rod-side oil chamber 110b, and the pressure Pbc of the communication control valve 7 before opening. Assuming that the pressure in the bottom side oil chamber 110a is Pb, it is expressed by the following equation.
  • Pbc Ab/(Ab ⁇ Ar) ⁇ Pb Therefore, for example, if the pressure receiving area Ab of the bottom side oil chamber 110a is twice the pressure receiving area Ar of the rod side oil chamber 110b, the pressure of the bottom side oil chamber 110a after the communication control valve 7 opens is The pressure rises to twice the pressure in the bottom side oil chamber 110a before the valve 7 opens. Note that the control device 120 can adjust the degree of pressure increase of the bottom-side oil chamber 110 a by adjusting the opening degree of the communication control valve 7 .
  • the control device 120 opens the first boom control valve 2 and accumulates the return oil from the bottom side oil chamber 110a of the boom cylinder 111A in the low pressure accumulator 4. Hydraulic oil in the bottom side oil chamber 110 a is guided through the communication control valve 7 to the rod side oil chamber 110 b and through the first boom control valve 2 to the low pressure accumulator 4 . As a result, the boom cylinder 111A contracts and the boom 111 rotates downward. As described above, the bottom-side oil chamber 110a and the rod-side oil chamber 110b are communicated with each other by the communication control valve 7, and the pressure of the bottom-side oil chamber 110a is increased. Therefore, the energy recovery efficiency of the low-pressure accumulator 4 is improved.
  • the details of the control performed by the control device 120 to raise the boom 111 will be described below.
  • the operation lever 5a of the boom operation device 5 When the operation lever 5a of the boom operation device 5 is operated in the raising direction, the operation sensor 5b outputs a boom raising operation signal to the control device 120.
  • the control device 120 determines whether the pressure detected by the bottom pressure sensor 9 is less than the pressure threshold.
  • the pressure threshold may be a predetermined constant, or may be a variable that increases as the pressure detected by the first pressure sensor 30 increases.
  • the control device 120 determines that the pressure detected by the bottom pressure sensor 9 is less than the pressure threshold value, that is, when the bottom side oil chamber 110a is in a low pressure state, the first boom control valve 2 and the discharge control valve Open 3.
  • the low-pressure accumulator 4 is supplied to the bottom side oil chamber 110a, and hydraulic oil is discharged from the rod side oil chamber 110b to the tank 107.
  • the boom cylinder 111A extends and the boom 111 rotates upward.
  • the second boom control valve 19 and the discharge control valve Open 3.
  • pressure oil discharged from the high-pressure accumulator 21 is supplied to the bottom-side oil chamber 110a, and hydraulic oil is discharged from the rod-side oil chamber 110b to the tank 107.
  • the boom cylinder 111A extends and the boom 111 rotates upward.
  • the control device 120 drives the boom cylinder 111A by the low pressure accumulator 4 when the bottom side oil chamber 110a is in a low pressure state, and drives the boom cylinder 111A by the high pressure accumulator 21 when the bottom side oil chamber 110a is in a high pressure state. It drives the boom cylinder 111A.
  • the pressure loss between the boom cylinder 111A and the accumulator that drives the boom cylinder 111A can be reduced. Therefore, according to this embodiment, the boom cylinder 111A can be efficiently driven.
  • the pressure of the low-pressure accumulator 4 is kept constant by supplying hydraulic fluid from the second hydraulic pump 27, and the pressure of the high-pressure accumulator 21 is kept constant by supplying hydraulic fluid from the third hydraulic pump 29. kept in Therefore, the boom cylinder 111A can be driven to extend by opening the first boom control valve 2 or the second boom control valve 19 at arbitrary timing.
  • the control device 120 operates the revolving body 103 by controlling the direction control valve 14 based on the operation signal from the operation sensor 18b of the revolving operation device 18.
  • control device 120 determines whether the operation lever 18a has been turned left or right.
  • the control device 120 determines that the operation lever 18a has been turned to the left, the control device 120 outputs a control current corresponding to the amount of operation of the operation lever 18a to the first solenoid of the direction control valve 14, and rotates the spool of the direction control valve 14 to the first solenoid. Drive in one direction D1.
  • hydraulic fluid discharged from the first hydraulic pump 13 is supplied to the swing motor 103A through the direction control valve 14 and the first swing passage 131, and the swing motor 103A rotates in the forward direction.
  • Return oil from the swing motor 103A is discharged to the tank 107 through the second swing passage 132 and the directional control valve 14 .
  • the revolving body 103 revolves leftward.
  • the control device 120 determines that the operation lever 18a has been turned to the right, the control device 120 outputs a control current corresponding to the amount of operation of the operation lever 18a to the second solenoid of the direction control valve 14 to turn the spool of the direction control valve 14. It drives in a second direction D2 opposite to the first direction D1.
  • hydraulic fluid discharged from the first hydraulic pump 13 is supplied to the swing motor 103A through the direction control valve 14 and the second swing passage 132, and the swing motor 103A rotates in the direction opposite to the forward direction.
  • Return oil from the swing motor 103A is discharged to the tank 107 through the second swing passage 132 and the directional control valve 14 .
  • the revolving body 103 revolves rightward.
  • the spool of the directional control valve 14 When the operating lever 18a is returned to the neutral position while the revolving body 103 is revolving, the spool of the directional control valve 14 returns to the neutral position. When the spool of directional control valve 14 returns to the neutral position, the actuator port of directional control valve 14 is closed. That is, the supply of hydraulic oil to the swing motor 103A through the direction control valve 14 and the discharge of hydraulic oil from the swing motor 103A through the direction control valve 14 are blocked.
  • the pressure in the passage through which hydraulic oil is discharged from the turning motor 103A rises.
  • a braking force that reduces the swing speed of the swing body 103 acts on the swing motor 103A. That is, the pressure in the high pressure side passage acts on the turning motor 103A as brake pressure.
  • the pressure in the high pressure side passage exceeds the set differential pressure of the differential pressure control valve 130, hydraulic fluid is introduced from the high pressure side passage through the differential pressure control valve 130 to the high pressure accumulator 21, and the high pressure accumulator 21 accumulates pressure. Therefore, in the hydraulic system 106 of this embodiment, the return oil from the turning motor 103A can be sent to the high-pressure accumulator 21 to recover the energy while ensuring the required braking force.
  • the differential pressure control valve 130 determines that the difference between the back pressure of the swing motor 103A, which is the pressure on the upstream side of itself, and the pressure of the high-pressure accumulator 21, which is the pressure on the downstream side of the differential pressure control valve 130, is the set differential pressure. Below, the valve is closed, and when the set differential pressure is exceeded, the valve is opened.
  • the differential pressure control valve 130 is an electromagnetic proportional pressure control valve that can change the set differential pressure according to the control current output by the control device 120 and supplied to the solenoid 130a.
  • the set differential pressure of differential pressure control valve 130 is adjusted according to the control current output from control device 120 .
  • the control device 120 controls the differential pressure control valve 130 based on the detection result of the second pressure sensor 31 .
  • the differential pressure control valve 130 has the same configuration as a well-known electromagnetic proportional relief valve. and a spring provided in the .
  • a spring biases the poppet toward the valve seat.
  • FIG. 4 is a block diagram showing control of the differential pressure control valve 130 by the control device 120 according to the first embodiment. As shown in FIG. 4 , the control device 120 functions as a differential pressure calculator 121 and an output converter 122 by executing programs stored in the nonvolatile memory 153 .
  • the differential pressure calculation unit 121 refers to the differential pressure characteristic Cp stored in advance in the nonvolatile memory 153, and sets the differential pressure control valve 130 based on the pressure of the high pressure accumulator 21 detected by the second pressure sensor 31. Calculate the differential pressure ⁇ P.
  • the differential pressure characteristic Cp is a characteristic in which the set differential pressure ⁇ P of the differential pressure control valve 130 decreases as the pressure of the high pressure accumulator 21 increases, and is stored in the nonvolatile memory 153 in the form of a table, for example.
  • the differential pressure characteristic Cp is determined in advance so that the brake pressure of the swing motor 103A, which is the pressure on the upstream side of the differential pressure control valve 130, is kept constant even when the pressure of the high-pressure accumulator 21 changes. .
  • the differential pressure is 10 MPa. If the pressure of the high pressure accumulator 21 is 21 MPa, the differential pressure will be 9 MPa.
  • the output conversion unit 122 refers to the control current characteristic Ci pre-stored in the nonvolatile memory 153, and based on the set differential pressure ⁇ P calculated by the differential pressure calculation unit 121, the solenoid 130a of the differential pressure control valve 130 A control current value Ic to be supplied is calculated.
  • the output converter 122 outputs a control current corresponding to the calculation result to the solenoid 130 a of the differential pressure control valve 130 .
  • the control current characteristic Ci is a characteristic in which the control current value Ic increases as the set differential pressure ⁇ P increases.
  • the main operations of the hydraulic excavator 100 according to the first embodiment will be described.
  • the operator operates the operation lever 18a of the turning operation device 18 shown in FIG.
  • the spool of the directional control valve 14 returns to the neutral position.
  • the supply of hydraulic oil to the swing motor 103A through the directional control valve 14 and the first turning passage 131 is cut off, and the discharge of hydraulic oil through the second turning passage 132 and the directional control valve 14 is cut off.
  • the pressure in the second turning passage 132 increases.
  • the differential pressure control valve 130 opens.
  • the hydraulic fluid in the second turning passage 132 passes through the check valve 24 in the second branch passage 133b and the differential pressure control valve 130 in the recovery passage 135, and is led to the high pressure accumulator 21.
  • the differential pressure control valve 130 operates so that the differential pressure across it is maintained at the set differential pressure ⁇ P.
  • the set differential pressure ⁇ P is determined by the solenoid thrust generated according to the spring force and the control current.
  • the set differential pressure ⁇ P of the differential pressure control valve 130 becomes smaller as the pressure of the high pressure accumulator 21 increases.
  • the back pressure of the turning motor 103A that is, the change in brake pressure can be reduced. That is, according to this embodiment, even when the pressure of the high-pressure accumulator 21 changes, the braking force of the turning motor 103A can be stably generated, so the decelerating operation of the turning body 103 is stabilized. As a result, in this embodiment, the operability desired by the operator can be realized.
  • the hydraulic excavator (work machine) 100 is operated by an engine 32, a first hydraulic pump (hydraulic pump) 13 driven by the engine 32 and discharging pressure oil, and the pressure oil discharged by the first hydraulic pump 13.
  • a swing motor (hydraulic actuator) 103A a high-pressure accumulator (pressure accumulator) 21 for accumulating pressure oil discharged from the swing motor 103A, a pressure accumulator 21 provided between the swing motor 103A and the high-pressure accumulator 21, and a pressure of the swing motor 103A and the pressure of the high-pressure accumulator 21, a second pressure sensor (pressure sensor) 31 that detects the pressure of the high-pressure accumulator 21, and the detection result of the second pressure sensor 31.
  • the control device 120 controls the differential pressure control valve 130 so that the differential pressure across the front and rear of the accumulator 21 decreases as the pressure of the high-pressure accumulator 21 detected by the second pressure sensor 31 increases.
  • the differential pressure across the differential pressure control valve 130 is reduced as the pressure of the high-pressure accumulator 21 rises, thereby suppressing changes in the brake pressure, which is the pressure on the downstream side of the swing motor 103A. That is, with the above configuration, a stable braking force can be generated. Therefore, according to the present embodiment, it is possible to provide the hydraulic excavator 100 that can stably operate the swing motor 103A when the pressure oil discharged from the swing motor 103A is accumulated in the high-pressure accumulator 21 .
  • the differential pressure control valve 130 is composed of an electromagnetic proportional valve whose set differential pressure ⁇ P is adjusted according to the control current output by the control device 120 .
  • the differential pressure control valve 130 closes when the set differential pressure ⁇ P or less, and opens when the set differential pressure ⁇ P is exceeded.
  • the control device 120 reduces the set differential pressure ⁇ P of the differential pressure control valve 130 according to the increase in the pressure of the high pressure accumulator 21 detected by the second pressure sensor 31 . In this configuration, when the difference between the pressure of the high-pressure accumulator 21 and the brake pressure, which is the pressure on the downstream side of the swing motor 103A, exceeds the set differential pressure ⁇ P, the differential pressure control valve 130 opens and the brake pressure rises. suppressed.
  • FIG. 5 A hydraulic excavator 200 according to the second embodiment will be described with reference to FIGS. 5 and 6.
  • FIG. The same reference numerals are given to the same or corresponding configurations as those described in the first embodiment, and the differences will be mainly described.
  • the revolving body 103 of the hydraulic excavator 200 according to the second embodiment is equipped with an angular velocity sensor 33 such as a gyroscope that detects the angular velocity of revolving of the revolving body 103 .
  • Angular velocity sensor 33 is connected to control device 220 and outputs detection results to control device 220 .
  • the control device 220 according to the second embodiment operates the differential pressure control valve 230 so that the opening area of the differential pressure control valve 230 increases as the pressure of the high-pressure accumulator 21 detected by the second pressure sensor 31 increases. Control. Further, the control device 220 controls the differential pressure control valve 230 so that the opening area of the differential pressure control valve 230 increases as the turning angular velocity detected by the angular velocity sensor 33 increases.
  • FIG. 5 is similar to FIG. 2 and shows the hydraulic system 206 included in the hydraulic excavator 200 according to the second embodiment.
  • a differential pressure control valve 230 which is a spool type electromagnetic proportional valve, is provided in place of the differential pressure control valve 130 described in the first embodiment.
  • the differential pressure control valve 230 has a spool 230b that is a valve element and a sleeve 230c that is a holding member that holds the spool 230b.
  • the differential pressure control valve 230 opens the recovery passage 135 by causing the spool 230b to slide within the sleeve 230c according to the control current output by the control device 220 and supplied to the solenoid 230a.
  • the control device 220 adjusts the opening area of the differential pressure control valve 230, i. Adjust the cross-sectional area of the road.
  • the control device 220 adjusts the differential pressure across the differential pressure control valve 230 by making the opening of the differential pressure control valve 230 function as an orifice and adjusting the opening area.
  • the control device 220 generates a desired brake pressure by controlling the opening area of the differential pressure control valve 230 based on the orifice equation from the flow rate of hydraulic oil discharged from the swing motor 103A and the pressure of the high-pressure accumulator 21.
  • the orifice formula generally expresses the relationship between the differential pressure before and after the restrictor, the flow rate, and the aperture area of the restrictor. If unit conversion is omitted, it can be expressed as the following formula (1).
  • Q is the flow rate flowing through the restriction
  • A is the opening area of the restriction
  • P1 is the upstream pressure of the orifice
  • P2 is the downstream pressure of the orifice
  • C is the flow coefficient
  • Q is the flow rate of hydraulic oil discharged from the swing motor 103A
  • A is the opening area of the differential pressure control valve 230
  • P1 is the upstream pressure of the differential pressure control valve 230
  • P2 is the differential pressure control valve 230.
  • FIG. 6 is a block diagram showing control of the differential pressure control valve 230 by the control device 220 according to the second embodiment.
  • the control device 220 executes the program stored in the nonvolatile memory 153 to obtain the first gain multiplier 223 , the subtractor 225 , the square rooter 226 , the second gain multiplier 227 . , a division unit 228 and an output conversion unit 229 .
  • the subtraction unit 225 calculates, for example, the high pressure detected by the second pressure sensor 31 from the predetermined target turning brake pressure stored in the nonvolatile memory 153 (that is, the target value of the upstream pressure P1 of the differential pressure control valve 230).
  • the pressure of the accumulator 21 (that is, the measured value of the downstream pressure P2 of the differential pressure control valve 230) is subtracted to calculate the target differential pressure (P1-P2).
  • the square root unit 226 calculates the square root of the target differential pressure (P1-P2) calculated by the subtraction unit 225.
  • a second gain multiplier 227 multiplies the calculation result of the square rooter 226 by a predetermined gain K2.
  • the gain K2 corresponds to the flow coefficient C in equation (2).
  • the division unit 228 divides the calculation result of the first gain multiplication unit 223 by the calculation result of the second gain multiplication unit 227 to obtain the target opening area (also referred to as the target opening area) A of the differential pressure control valve 230. Calculate.
  • the output conversion unit 229 refers to the control current characteristic Ci2 pre-stored in the nonvolatile memory 153, and supplies it to the solenoid 230a of the differential pressure control valve 230 based on the target opening area A calculated by the division unit 228.
  • a control current value Ic is calculated.
  • the output converter 229 outputs a control current corresponding to the calculation result to the solenoid 230 a of the differential pressure control valve 230 .
  • the control current characteristic Ci2 is a characteristic in which the control current value Ic increases as the target opening area A increases.
  • the differential pressure control valve 230 is configured by an electromagnetic proportional valve whose opening area is adjusted according to the control current output by the control device 220.
  • the control device 220 controls the differential pressure control valve 230 so that the opening area of the differential pressure control valve 230 increases as the pressure of the high pressure accumulator 21 detected by the second pressure sensor 31 increases. Further, the control device 220 controls the differential pressure control valve 230 so that the opening area of the differential pressure control valve 230 increases as the angular velocity of the revolving body 103 detected by the angular velocity sensor 33 increases.
  • the opening area of the differential pressure control valve 230 increases as the pressure of the high pressure accumulator 21 increases, so that the increase in brake pressure caused by the pressure increase in the high pressure accumulator 21 is suppressed. Also, changes in brake pressure due to changes in the flow rate of the turning motor 103A are suppressed. Therefore, according to the second embodiment, when pressurized oil discharged from the swing motor 103A is accumulated in the high-pressure accumulator 21, the swing motor 103A can be stably operated.
  • the control devices 120 and 220 operate the differential pressure control valves 130 and 230 provided between the high-pressure accumulator 21 that accumulates the return oil of the swing motor 103A that swings the swing body 103 and the swing motor 103A.
  • the control devices 120, 220 control the opening area of the first boom control valve 2 provided between the low-pressure accumulator 4 that accumulates the return oil of the boom cylinder 111A and the boom cylinder 111A, thereby controlling the opening area of the first boom control valve. 2 may be adjusted.
  • FIG. 7 is similar to FIG. 2 and shows a hydraulic system 306 included in a hydraulic excavator 300 according to Modification 1. As shown in FIG.
  • the boom cylinder 111A of the hydraulic excavator 300 according to Modification 1 is provided with a stroke sensor 34 that detects the stroke of the boom cylinder 111A.
  • the control device 320 calculates the extension/retraction speed of the boom cylinder 111A (hereinafter also referred to as cylinder speed) based on the detection result of the stroke sensor 34 .
  • the first boom control valve 2 is a spool type valve whose opening area can be changed according to the control current output by the control device 320 and supplied to the solenoid 2a. It is an electromagnetic proportional valve.
  • the control device 320 opens the first boom control valve 2 and accumulates the return oil from the bottom side oil chamber 110a of the boom cylinder 111A in the low pressure accumulator 4. At this time, the control device 320 adjusts the control current supplied to the solenoid 2a of the first boom control valve 2 to change the opening area of the first boom control valve 2, that is, from the boom cylinder 111A toward the low pressure accumulator 4. Adjust the cross-sectional area of the flow path of the hydraulic fluid. The control device 320 adjusts the differential pressure across the first boom control valve 2 by making the opening of the first boom control valve 2 function as an orifice and adjusting the opening area.
  • FIG. 8 is a block diagram showing control of the first boom control valve 2 by the control device 320 according to the third embodiment.
  • the control device 320 is configured by executing a program stored in the nonvolatile memory 153 so as to implement a speed calculation section 322, a first gain multiplication section 323, a subtraction section 325, a square root section 326, a first gain multiplication section 323, a It functions as a 2-gain multiplier 327 , a divider 328 and an output converter 329 .
  • the speed calculation unit 322 calculates the cylinder speed Vs based on the change over time of the stroke of the boom cylinder 111A detected by the stroke sensor 34.
  • the subtraction unit 325 subtracts the low pressure detected by the first pressure sensor 30 from the target bottom pressure (i.e., the target value of the upstream pressure P1 of the first boom control valve 2) stored in the nonvolatile memory 153 in advance.
  • the pressure of the accumulator 4 (that is, the measured value of the downstream side pressure P2 of the first boom control valve 2) is subtracted to calculate the target front-to-rear differential pressure (P1-P2).
  • the square root unit 326 calculates the square root of the target front-rear differential pressure (P1-P2) calculated by the subtraction unit 325.
  • a second gain multiplier 327 multiplies the calculation result of the square rooter 326 by a predetermined gain Kb.
  • the gain Kb corresponds to the flow coefficient C in Equation (2).
  • the division unit 328 divides the calculation result of the first gain multiplication unit 323 by the calculation result of the second gain multiplication unit 327 to obtain the target opening area (also referred to as the target opening area) A2 of the first boom control valve 2. to calculate
  • the output conversion unit 329 refers to the control current characteristic Ci3 pre-stored in the nonvolatile memory 153, and based on the target opening area A2 calculated by the division unit 328, supplies the current to the solenoid 2a of the first boom control valve 2. A control current value Ic to be used is calculated. The output converter 329 outputs a control current corresponding to the calculation result to the solenoid 2a of the first boom control valve 2.
  • FIG. The control current characteristic Ci3 is a characteristic in which the control current value Ic increases as the target opening area A2 increases.
  • the first boom control valve 2 functions as a differential pressure control valve that generates a front-rear differential pressure when the boom cylinder 111A is lowered.
  • the first boom control valve 2 is a control valve whose opening area can be changed according to the control current supplied to the solenoid 2a.
  • Control device 320 calculates the cylinder speed based on the stroke of boom cylinder 111A detected by stroke sensor 34 .
  • the control device 320 controls the first boom control valve 2 so that the opening area of the first boom control valve 2 increases as the pressure of the low pressure accumulator 4 detected by the first pressure sensor 30 increases. Further, the control device 320 controls the first boom control valve 2 such that the opening area of the first boom control valve 2 increases as the cylinder speed increases.
  • the opening area of the first boom control valve 2 increases as the pressure of the low-pressure accumulator 4 rises, so the bottom pressure rise of the boom cylinder 111A caused by the pressure rise of the low-pressure accumulator 4 is suppressed.
  • the boom cylinder 111A can be stably operated.
  • the hydraulic excavator 300 may perform crane work in which a wire is hung on a hook provided on the back of the bucket 113 to lift a load. In the crane operation, the lifting operation and lowering operation of the boom 111 move the suspended load in the vertical direction.
  • the boom cylinder 111A contracts and the boom 111 rotates downward.
  • Return oil from the bottom side oil chamber 110a of the boom cylinder 111A is led to the low pressure accumulator 4 through the first boom control valve 2.
  • the control device 320 controls the first boom control valve (differential pressure control valve) 2 in response to an increase in the pressure of the low pressure accumulator (pressure accumulator) 4 detected by the first pressure sensor (pressure sensor) 30 .
  • the first boom control valve 2 is controlled so that the opening area of is increased.
  • the differential pressure across the first boom control valve 2 decreases as the pressure in the low pressure accumulator 4 increases. Therefore, while the pressure of the low-pressure accumulator 4 is rising, the pressure of the bottom side oil chamber 110a of the boom cylinder 111A is kept constant, and the speed change of the boom cylinder 111A is suppressed. Since the boom cylinder 111A operates stably, it is possible to prevent the suspended load from swinging during crane work. Therefore, according to Modification 1, the efficiency of crane work can be improved.
  • the working machine is the crawler hydraulic excavator 100, 200, 300, but the present invention is not limited to this.
  • the present invention can be applied to various working machines such as wheel-type hydraulic excavators and wheel loaders.
  • Output conversion unit 130 Differential pressure control valve 130a Solenoid 151 Processor 152 Volatile memory 153 Nonvolatile memory 200 Hydraulic excavator (working machine) 206 Hydraulic system 220 Control device 223 First gain multiplication unit 225 Subtraction unit 226 Square root unit 227 Second gain multiplication unit 228 Division unit 229 Output conversion unit 230 Differential pressure control valve 230a Solenoid 230b Spool 230c Sleeve 300 Hydraulic excavator (working machine) 306 Hydraulic system 320 Control device 322 Speed calculation unit 323 First gain multiplication unit 325 Subtraction unit 326 Square root unit 327 ... second gain multiplication section, 328 ... division section, 329 ... output conversion section

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

エンジンにより駆動され圧油を吐出する油圧ポンプと、油圧ポンプにより吐出される圧油により動作する油圧アクチュエータと、油圧アクチュエータから排出される圧油を蓄圧する蓄圧装置と、油圧アクチュエータと蓄圧装置との間に設けられ、油圧アクチュエータの圧力と蓄圧装置の圧力との前後差圧を発生させる差圧制御弁と、蓄圧装置の圧力を検出する圧力センサと、圧力センサの検出結果に基づいて差圧制御弁を制御する制御装置と、を備える。制御装置は、圧力センサにより検出される蓄圧装置の圧力の上昇に応じて差圧制御弁の前後差圧が低減するように、差圧制御弁を制御する。

Description

作業機械
 本発明は、アキュムレータを備えた油圧ショベル等の作業機械に関する。
 作業装置が有する位置エネルギを、ブームシリンダを介してアキュムレータに蓄えるとともに旋回体が有する運動エネルギを、旋回モータを介してアキュムレータに蓄えて、エンジンパワーのアシストに利用するエンジンパワーアシストシステムを備えた作業機械が知られている(特許文献1参照)。
 特許文献1には、旋回モータの駆動回路が逆止弁を介して旋回エネルギ回収用の通路に連通され、旋回エネルギ回収用の通路がシーケンス弁を介してアキュムレータに接続された油圧回路が開示されている。
特開2016-205492号公報
 特許文献1に記載のシーケンス弁で発生する差圧は、ばね力によって予め設定した値に定まる。このため、旋回モータから排出される圧油をアキュムレータで蓄圧する際に、シーケンス弁のアキュムレータ側の背圧が変化すると、シーケンス弁の入口側の元圧が変化して旋回モータの動作が不安定になるおそれがある。
 本発明は、油圧アクチュエータから排出される圧油を蓄圧装置に蓄圧する際に、安定して油圧アクチュエータを動作させることのできる作業機械を提供することを目的とする。
 本発明の一態様による作業機械は、エンジンと、前記エンジンにより駆動され圧油を吐出する油圧ポンプと、前記油圧ポンプにより吐出される圧油により動作する油圧アクチュエータと、前記油圧アクチュエータから排出される圧油を蓄圧する蓄圧装置と、前記油圧アクチュエータと前記蓄圧装置との間に設けられ、前記油圧アクチュエータの圧力と前記蓄圧装置の圧力との前後差圧を発生させる差圧制御弁と、前記蓄圧装置の圧力を検出する圧力センサと、前記圧力センサの検出結果に基づいて前記差圧制御弁を制御する制御装置と、を備える。前記制御装置は、前記圧力センサにより検出される前記蓄圧装置の圧力の上昇に応じて前記前後差圧が低減するように、前記差圧制御弁を制御する。
 本発明によれば、油圧アクチュエータから排出される圧油を蓄圧装置に蓄圧する際に、安定して油圧アクチュエータを動作させることのできる作業機械を提供することができる。
図1は、第1実施形態に係る油圧ショベルの側面図である。 図2は、第1実施形態に係る油圧ショベルが備える油圧システムについて示す図である。 図3は、制御装置のハードウェア構成図である。 図4は、第1実施形態に係る制御装置による差圧制御弁の制御について示すブロック図である。 図5は、第2実施形態に係る油圧ショベルが備える油圧システムについて示す図である。 図6は、第2実施形態に係る制御装置による差圧制御弁の制御について示すブロック図である。 図7は、変形例1に係る油圧ショベルが備える油圧システムについて示す図である。 図8は、第3実施形態に係る制御装置による第1ブーム制御弁の制御について示すブロック図である。
 図面を参照して、本発明の実施形態に係る作業機械について説明する。本実施形態では、作業機械がクローラ式の油圧ショベルである例について説明する。作業機械は、作業現場において、土木作業、建設作業、解体作業、浚渫作業等の作業を行う。
 <第1実施形態>
 図1は、第1実施形態に係る油圧ショベル100の側面図である。図1に示すように、油圧ショベル100は、機体105と、機体105に取り付けられた作業装置104と、を備える。機体105は、クローラ式の走行体102と、走行体102上に旋回可能に設けられた旋回体103と、を有する。走行体102は、左右一対のクローラを走行モータ102Aによって駆動することにより走行する。旋回体103は、旋回モータ103Aを有する旋回装置を介して走行体102に連結され、旋回モータ103Aによって駆動されて走行体102に対して旋回する。
 旋回体103は、オペレータが搭乗する運転室118と、原動機であるエンジン32及びエンジン32により駆動される油圧ポンプ等の油圧機器が収容されるエンジン室119と、を備える。
 運転室118内には、作業装置104、旋回体103及び走行体102の油圧アクチュエータ(111A,112A,113A,103A,102A)を操作するための電気式の操作装置が設けられている。また、運転室118内には、油圧ショベル100の各部の動作を制御する制御装置120が設けられている。
 作業装置104は、旋回体103に取り付けられる多関節型の作業装置であって、複数の油圧アクチュエータ、及び複数の油圧アクチュエータにより駆動される複数の駆動対象部材を有する。作業装置104は、3つの駆動対象部材(ブーム111、アーム112及びバケット113)が直列的に連結された構成である。ブーム111は、その基端部が旋回体103の前部に、ブームピンを介して回動可能に連結される。アーム112は、その基端部がブーム111の先端部に、アームピンを介して回動可能に連結される。バケット113は、アーム112の先端部に、バケットピンを介して回動可能に連結される。
 ブーム111は、油圧アクチュエータ(油圧シリンダ)であるブームシリンダ111Aの伸縮動作によって回転駆動される。アーム112は、油圧アクチュエータ(油圧シリンダ)であるアームシリンダ112Aの伸縮動作によって回転駆動される。バケット113は、油圧アクチュエータ(油圧シリンダ)であるバケットシリンダ113Aの伸縮動作によって回転駆動される。油圧ショベル100は、作業装置104を動作させることにより、土砂の掘削作業、均し作業、地面を締め固める転圧作業等を行うことができる。
 図2は、第1実施形態に係る油圧ショベル100が備える油圧システム106について示す図である。なお、図2では、油圧アクチュエータである旋回モータ103A及びブームシリンダ111Aを駆動するための構成について図示し、その他の油圧アクチュエータを駆動するための構成については、図示を省略している。
 油圧システム106は、第1油圧ポンプ13、第2油圧ポンプ27及び第3油圧ポンプ29と、第1油圧ポンプ13から供給される作動流体としての作動油によって駆動される油圧モータである旋回モータ103Aと、低圧アキュムレータ4または高圧アキュムレータ21から供給される作動油によって伸長駆動されるブームシリンダ111Aと、ブームシリンダ111Aから排出される圧油を蓄圧する低圧アキュムレータ4と、旋回モータ103Aから排出される圧油を蓄圧する高圧アキュムレータ21と、を備える。
 また、油圧システム106は、第1油圧ポンプ13から旋回モータ103Aに供給される作動油の流れを制御する制御弁である方向制御弁14と、ブームシリンダ111Aのボトム側油室110aの圧力が低い状態のときに低圧アキュムレータ4からブームシリンダ111Aのボトム側油室110aに供給される作動油の流量を制御する制御弁である第1ブーム制御弁2と、ブームシリンダ111Aのボトム側油室110aの圧力が高い状態のときに高圧アキュムレータ21からブームシリンダ111Aのボトム側油室110aに供給される作動油の流量を制御する制御弁である第2ブーム制御弁19と、を備える。
 さらに、油圧システム106は、第2油圧ポンプ27から低圧アキュムレータ4に供給される作動油の流れを制御する制御弁である第1蓄圧制御弁26と、第3油圧ポンプ29から高圧アキュムレータ21に供給される作動油の流れを制御する制御弁である第2蓄圧制御弁28と、旋回モータ103Aと高圧アキュムレータ21との間に設けられ、旋回モータ103A側の圧力と高圧アキュムレータ21側の圧力との差である前後差圧を発生させる制御弁である差圧制御弁130と、作動油を貯留するタンク107と、を備える。
 第1油圧ポンプ13、第2油圧ポンプ27及び第3油圧ポンプ29は、エンジン32に接続されている。第1~第3油圧ポンプ13,27,29は、エンジン32によって駆動され、タンク107から作動油を吸い上げ、圧油として吐出する。第1~第3油圧ポンプ13,27,29は、それぞれ可変容量型の油圧ポンプである。エンジン32は、油圧ショベル100の動力源であり、例えば、ディーゼルエンジン等の内燃機関により構成される。
 低圧アキュムレータ4は、ブームシリンダ111Aの収縮時に、ブームシリンダ111Aのボトム側油室110aから排出され第1ブーム制御弁2を通じて導かれる作動油を蓄圧する蓄圧装置である。つまり、低圧アキュムレータ4は、ブームシリンダ111Aから排出される圧油(以下、戻り油とも記載する)を蓄圧する。低圧アキュムレータ4は、ブームシリンダ111Aの伸長時に、第1ブーム制御弁2を通じて、蓄えられている圧油をブームシリンダ111Aのボトム側油室110aに供給する。
 高圧アキュムレータ21は、旋回モータ103Aの左旋回ブレーキ時または右旋回ブレーキ時に、旋回モータ103Aから排出され差圧制御弁130を通じて導かれる旋回ブレーキ圧を超える圧力の作動油を蓄圧する蓄圧装置である。つまり、高圧アキュムレータ21は、旋回モータ103Aから排出される圧油(以下、戻り油とも記載する)を蓄圧する。高圧アキュムレータ21は、ブームシリンダ111Aの伸長時に、第2ブーム制御弁19を通じて、蓄えられている圧油をブームシリンダ111Aのボトム側油室110aに供給する。
 高圧アキュムレータ21の設定圧力(上限圧力)は、低圧アキュムレータ4の設定圧力(上限圧力)よりも高い。この理由は、旋回モータ103Aの旋回ブレーキ圧が、ブームシリンダ111Aのボトム側油室110aの圧力よりも高いためである。油圧アクチュエータの戻り油をアキュムレータで回収する際、戻り油の圧力に近い設定圧力のアキュムレータで回収する方が、アキュムレータと油圧アクチュエータとの間の圧力損失が小さくなるため好ましい。本実施形態では、旋回モータ103Aの戻り油を高圧アキュムレータ21で回収し、ブームシリンダ111Aのボトム側油室110aからの戻り油を低圧アキュムレータ4で回収することにより、油圧アクチュエータとアキュムレータとの間の圧力損失を低く抑えることができ、効率的にエネルギを回収することができる。
 ブームシリンダ111Aのボトム側油室110aに接続されるボトム側管路と、ブームシリンダ111Aのロッド側油室110bに接続されるロッド側管路とは、連通路161で連通されている。連通路161には、ブーム下げ動作時にブームシリンダ111Aのボトム側油室110aとロッド側油室110bとを連通させることにより、ボトム側油室110a及びロッド側油室110bを昇圧する連通制御弁7が設けられている。
 ブームシリンダ111Aのロッド側油室110bの作動油をタンク107へ導く排出通路には、ブームシリンダ111Aのロッド側油室110bからタンク107へ排出される作動油の流れを制御する制御弁である排出制御弁3が設けられている。
 旋回モータ103Aに接続される第1旋回通路131及び第2旋回通路132には、それぞれ第1分岐通路133a及び第2分岐通路133bが接続される。第1分岐通路133a及び第2分岐通路133bは合流して、旋回モータ103Aからの作動油を高圧アキュムレータ21に導くための回収通路135に接続される。第1分岐通路133aには、第1旋回通路131から回収通路135への作動油の流れのみを許容するチェック弁23が設けられる。第2分岐通路133bには、第2旋回通路132から回収通路135への作動油の流れのみを許容するチェック弁24が設けられる。チェック弁23,24は、第1旋回通路131及び第2旋回通路132のうち高圧側の通路の作動油を差圧制御弁130に送る。
 高圧アキュムレータ21に接続される回収通路135には、旋回ブレーキ圧を保持するための保持弁として機能する差圧制御弁130が設けられている。差圧制御弁130、方向制御弁14、第1蓄圧制御弁26、第2蓄圧制御弁28、第1ブーム制御弁2、第2ブーム制御弁19、連通制御弁7、及び、排出制御弁3は、制御装置120から出力される制御信号(制御電流)により制御される。
 図3は、制御装置120のハードウェア構成図である。図3に示すように、制御装置120は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)等のプロセッサ151、所謂RAM(Random Access Memory)と呼ばれる揮発性メモリ152、ROM(Read Only Memory)、フラッシュメモリ、ハードディスクドライブ等の不揮発性メモリ153、入力インタフェース154、出力インタフェース155、及び、その他の周辺回路を備えたコンピュータで構成される。なお、制御装置120は、1つのコンピュータで構成してもよいし、複数のコンピュータで構成してもよい。
 不揮発性メモリ153には、各種演算が実行可能なプログラムが格納されている。すなわち、不揮発性メモリ153は、本実施形態の機能を実現するプログラムを読み取り可能な記憶媒体である。プロセッサ151は、不揮発性メモリ153に記憶されたプログラムを揮発性メモリ152に展開して演算実行する処理装置であって、プログラムに従って入力インタフェース154、揮発性メモリ152及び不揮発性メモリ153から取り入れた信号に対して所定の演算処理を行う。
 入力インタフェース154は、各センサ(5b,9,18b,30,31)等から入力された信号をプロセッサ151で演算可能なデータに変換する。また、出力インタフェース155は、プロセッサ151での演算結果に応じた出力用の信号を生成し、その信号を各制御弁(2,3,7,14,19,26,28,130)、エンジン32等に出力する。
 図2に示すように、制御装置120には、ブーム操作装置5及び旋回操作装置18が接続される。ブーム操作装置5は、オペレータによる操作に応じて、ブーム111の上げ動作及び下げ動作を指示する操作装置である。ブーム操作装置5は、傾動操作可能な操作レバー(操作部材)5aと、操作レバー5aの操作量(操作角)に応じた操作信号を制御装置120に出力する操作センサ5bと、を有する。旋回操作装置18は、オペレータによる操作に応じて、旋回体103の左旋回動作及び右旋回動作を指示する操作装置である。旋回操作装置18は、傾動操作可能な操作レバー(操作部材)18aと、操作レバー18aの操作量(操作角)に応じた操作信号を制御装置120に出力する操作センサ18bと、を有する。
 制御装置120には、ボトム圧センサ9、第1圧力センサ30及び第2圧力センサ31が接続される。ボトム圧センサ9は、ブームシリンダ111Aのボトム側油室110a内の作動油の圧力を検出し、その検出結果を制御装置120に出力する圧力センサである。第1圧力センサ30は、低圧アキュムレータ4内の作動油の圧力を検出し、その検出結果を制御装置120に出力する圧力センサである。第2圧力センサ31は、高圧アキュムレータ21内の作動油の圧力を検出し、その検出結果を制御装置120に出力する圧力センサである。
 制御装置120は、第1圧力センサ30により検出される圧力が低圧下限側閾値未満であるか否かを判定する。制御装置120は、第1圧力センサ30により検出された圧力が低圧下限側閾値未満であると判定した場合、第1蓄圧制御弁26によって第2油圧ポンプ27と低圧アキュムレータ4とを連通し、第2油圧ポンプ27から吐出される作動油を低圧アキュムレータ4に蓄圧する。制御装置120は、第1圧力センサ30により検出された圧力が低圧上限側閾値以上であると判定した場合、第1蓄圧制御弁26によって第2油圧ポンプ27と低圧アキュムレータ4との連通を遮断する。なお、低圧上限側閾値は、低圧下限側閾値以上の値が予め設定される。低圧上限側閾値及び低圧下限側閾値は、不揮発性メモリ153に記憶されている。
 制御装置120は、第2圧力センサ31により検出される圧力が高圧下限側閾値未満であるか否かを判定する。制御装置120は、第2圧力センサ31により検出された圧力が高圧下限側閾値未満であると判定した場合、第2蓄圧制御弁28によって第3油圧ポンプ29と高圧アキュムレータ21とを連通し、第3油圧ポンプ29から吐出される作動油を高圧アキュムレータ21に蓄圧する。制御装置120は、第2圧力センサ31により検出された圧力が高圧上限側閾値以上であると判定した場合、第2蓄圧制御弁28によって第3油圧ポンプ29と高圧アキュムレータ21との連通を遮断する。なお、高圧上限側閾値は、高圧下限側閾値以上の値が予め設定される。高圧上限側閾値及び高圧下限側閾値は、不揮発性メモリ153に記憶されている。
 制御装置120は、ブーム操作装置5の操作センサ5bからの操作信号及びボトム圧センサ9の検出結果に基づいて、制御弁(2,3,7,19)を制御することで、ブーム111を動作させる。
 以下、制御装置120が、ブーム111を下げ動作させるための制御内容について説明する。ブーム操作装置5の操作レバー5aが下げ方向に操作されると、操作センサ5bからブーム下げ操作信号が制御装置120に出力される。制御装置120は、連通制御弁7を開き、ブームシリンダ111Aのボトム側油室110aとロッド側油室110bとを連通し、ボトム側油室110a及びロッド側油室110bを昇圧させる。
 連通制御弁7の開弁後のボトム側油室110aの圧力Pbcは、ボトム側油室110aの受圧面積をAb、ロッド側油室110bの受圧面積をAr、連通制御弁7の開弁前のボトム側油室110aの圧力をPbとすると、次式で表される。
  Pbc=Ab/(Ab-Ar)×Pb
  したがって、例えば、ボトム側油室110aの受圧面積Abがロッド側油室110bの受圧面積Arの2倍であれば、連通制御弁7が開いた後のボトム側油室110aの圧力は、連通制御弁7が開く前のボトム側油室110aの圧力の2倍まで上昇する。なお、制御装置120は、連通制御弁7の開度を調整することにより、ボトム側油室110aの昇圧の度合いを調整することができる。
 また、制御装置120は、ブーム下げ操作信号が入力されると、第1ブーム制御弁2を開いて、ブームシリンダ111Aのボトム側油室110aからの戻り油を低圧アキュムレータ4に蓄圧する。ボトム側油室110aの作動油は、連通制御弁7を通じてロッド側油室110bに導かれるとともに、第1ブーム制御弁2を通じて低圧アキュムレータ4に導かれる。これにより、ブームシリンダ111Aが収縮し、ブーム111が下方向に回動する。なお、上述したように連通制御弁7により、ボトム側油室110aとロッド側油室110bとが連通し、ボトム側油室110aが昇圧される。このため、低圧アキュムレータ4によるエネルギの回収効率が向上する。
 以下、制御装置120が、ブーム111を上げ動作させるための制御内容について説明する。ブーム操作装置5の操作レバー5aが上げ方向に操作されると、操作センサ5bからブーム上げ操作信号が制御装置120に出力される。制御装置120は、ボトム圧センサ9により検出された圧力が、圧力閾値未満であるか否かを判定する。圧力閾値は、予め定められた定数でもよいし、第1圧力センサ30により検出された圧力が大きいほど、大きくなる変数としてもよい。
 制御装置120は、ボトム圧センサ9により検出された圧力が圧力閾値未満であると判定した場合、すなわちボトム側油室110aが低圧状態である場合には、第1ブーム制御弁2及び排出制御弁3を開く。これにより、低圧アキュムレータ4から吐出される圧油がボトム側油室110aに供給されるとともにロッド側油室110bからタンク107に作動油が排出される。その結果、ブームシリンダ111Aが伸長し、ブーム111が上方向に回動する。
 制御装置120は、ボトム圧センサ9により検出された圧力が圧力閾値以上であると判定した場合、すなわちボトム側油室110aが高圧状態である場合には、第2ブーム制御弁19及び排出制御弁3を開く。これにより、高圧アキュムレータ21から吐出される圧油がボトム側油室110aに供給されるとともにロッド側油室110bからタンク107に作動油が排出される。その結果、ブームシリンダ111Aが伸長し、ブーム111が上方向に回動する。
 このように、制御装置120は、ボトム側油室110aが低圧状態である場合には低圧アキュムレータ4によってブームシリンダ111Aを駆動し、ボトム側油室110aが高圧状態である場合には高圧アキュムレータ21によってブームシリンダ111Aを駆動する。これにより、ブームシリンダ111Aと、ブームシリンダ111Aを駆動するアキュムレータとの間の圧力損失を低減することができる。このため、本実施形態によれば、ブームシリンダ111Aを効率よく駆動することができる。
 なお、低圧アキュムレータ4の圧力は、第2油圧ポンプ27から作動油が供給されることにより一定に保たれ、高圧アキュムレータ21の圧力は、第3油圧ポンプ29から作動油が供給されることにより一定に保たれる。このため、任意のタイミングで第1ブーム制御弁2または第2ブーム制御弁19を開くことにより、ブームシリンダ111Aを伸長駆動させることができる。
 制御装置120は、旋回操作装置18の操作センサ18bからの操作信号に基づいて、方向制御弁14を制御することで、旋回体103を動作させる。
 以下、制御装置120が、旋回体103を旋回動作させるための制御内容について説明する。旋回操作装置18の操作レバー18aが操作されると、操作センサ18bから旋回操作信号が制御装置120に出力される。制御装置120は、旋回操作信号に基づき、操作レバー18aが左旋回操作されたか、右旋回操作されたかを判定する。
 制御装置120は、操作レバー18aが左旋回操作されたと判定した場合、操作レバー18aの操作量に応じた制御電流を方向制御弁14の第1ソレノイドに出力し、方向制御弁14のスプールを第1方向D1に駆動する。これにより、第1油圧ポンプ13から吐出された作動油が、方向制御弁14及び第1旋回通路131を通じて旋回モータ103Aに供給され、旋回モータ103Aが正方向に回転する。旋回モータ103Aからの戻り油は、第2旋回通路132及び方向制御弁14を通じてタンク107に排出される。これにより、旋回体103が左方向に旋回する。
 制御装置120は、操作レバー18aが右旋回操作されたと判定した場合、操作レバー18aの操作量に応じた制御電流を方向制御弁14の第2ソレノイドに出力し、方向制御弁14のスプールを第1方向D1とは逆の第2方向D2に駆動する。これにより、第1油圧ポンプ13から吐出された作動油が、方向制御弁14及び第2旋回通路132を通じて旋回モータ103Aに供給され、旋回モータ103Aが正方向とは反対の方向に回転する。旋回モータ103Aからの戻り油は、第2旋回通路132及び方向制御弁14を通じてタンク107に排出される。これにより、旋回体103が右方向に旋回する。
 旋回体103が旋回しているときに、操作レバー18aが中立位置に戻されると、方向制御弁14のスプールが中立位置に戻る。方向制御弁14のスプールが中立位置に戻ると、方向制御弁14のアクチュエータポートが閉じられる。つまり、方向制御弁14を通じた旋回モータ103Aへの作動油の供給、及び旋回モータ103Aからの方向制御弁14を通じた作動油の排出が遮断される。
 これにより、第1旋回通路131及び第2旋回通路132のうち、旋回モータ103Aから作動油が排出される通路(以下、高圧側通路とも記す)の圧力が上昇する。旋回モータ103Aの背圧、すなわち高圧側通路の圧力が上昇することにより、旋回体103の旋回速度を減少させるブレーキ力が旋回モータ103Aに作用する。つまり、高圧側通路の圧力が、ブレーキ圧として旋回モータ103Aに作用する。高圧側通路の圧力が差圧制御弁130の設定差圧を超えると、高圧側通路から差圧制御弁130を通じて高圧アキュムレータ21に作動油が導かれ、高圧アキュムレータ21が蓄圧される。したがって、本実施形態の油圧システム106では、必要なブレーキ力を確保しながら、旋回モータ103Aの戻り油を高圧アキュムレータ21に送り、エネルギの回収を行うことができる。
 差圧制御弁130は、自身の上流側の圧力である旋回モータ103Aの背圧と、自身の下流側の圧力である高圧アキュムレータ21の圧力との差(すなわち前後差圧)が、設定差圧以下では閉弁し、設定差圧を超えると開弁する。差圧制御弁130は、制御装置120により出力されソレノイド130aに供給される制御電流に応じて設定差圧の変更が可能な電磁比例式の圧力制御弁である。差圧制御弁130の設定差圧は、制御装置120から出力される制御電流に応じて調整される。制御装置120は、第2圧力センサ31の検出結果に基づいて差圧制御弁130を制御する。
 差圧制御弁130は、周知の電磁比例リリーフ弁と同様の構成を有しており、例えば、弁体であるポペットと、ソレノイド130aの可動鉄心に固定されるロッドと、ロッドとポペットとの間に設けられるばねと、を有している。ばねは、ポペットを弁座に押し付ける向きにポペットを付勢する。ソレノイド130aに流れる制御電流が増加すると、可動鉄心とともにロッドが移動し、ポペットとロッドとの間のばねが圧縮され、設定差圧が増加する。ポペットには、ばねの付勢力とソレノイド130a推力と下流側の圧力が、ポペットを弁座に押し付ける向きに作用する。
 図4を参照して、制御装置120による差圧制御弁130の設定差圧の調整方法について詳しく説明する。制御装置120は、第2圧力センサ31により検出される高圧アキュムレータ21の圧力の上昇に応じて差圧制御弁130の設定差圧を低減する。つまり、制御装置120は、第2圧力センサ31により検出される高圧アキュムレータ21の圧力の上昇に応じて差圧制御弁130の前後差圧が低減するように、差圧制御弁130を制御する。図4は、第1実施形態に係る制御装置120による差圧制御弁130の制御について示すブロック図である。図4に示すように、制御装置120は、不揮発性メモリ153に記憶されているプログラムが実行されることにより、差圧演算部121及び出力変換部122として機能する。
 差圧演算部121は、不揮発性メモリ153に予め記憶されている差圧特性Cpを参照し、第2圧力センサ31により検出された高圧アキュムレータ21の圧力に基づいて、差圧制御弁130の設定差圧ΔPを演算する。差圧特性Cpは、高圧アキュムレータ21の圧力が増加するほど、差圧制御弁130の設定差圧ΔPが減少する特性であり、例えば、テーブル形式で不揮発性メモリ153に記憶されている。
 差圧特性Cpは、高圧アキュムレータ21の圧力が変化した場合であっても、差圧制御弁130の上流側の圧力である旋回モータ103Aのブレーキ圧が一定に保たれるように、予め定められる。例えば、旋回モータ103Aのブレーキ圧を30MPaに設定する場合、高圧アキュムレータ21の圧力が20MPaならば、差圧は10MPaとなる。高圧アキュムレータ21の圧力が21MPaならば、差圧は9MPaとなる。
 出力変換部122は、不揮発性メモリ153に予め記憶されている制御電流特性Ciを参照し、差圧演算部121で演算された設定差圧ΔPに基づいて、差圧制御弁130のソレノイド130aに供給する制御電流値Icを演算する。出力変換部122は、演算結果に応じた制御電流を差圧制御弁130のソレノイド130aに出力する。制御電流特性Ciは、設定差圧ΔPが増加するほど制御電流値Icが増加する特性である。
 第1実施形態に係る油圧ショベル100の主な動作について説明する。例えば、オペレータが、図2に示す旋回操作装置18の操作レバー18aを左旋回方向に操作し、旋回体103を左旋回させる。その後、オペレータが、旋回操作装置18の操作レバー18aを中立位置に戻すと、方向制御弁14のスプールが中立位置に戻る。これにより、方向制御弁14及び第1旋回通路131を通じた旋回モータ103Aへの作動油の供給が遮断されるとともに、第2旋回通路132及び方向制御弁14を通じた作動油の排出が遮断される。その結果、第2旋回通路132の圧力が上昇する。第2旋回通路132の圧力が上昇し、差圧制御弁130の前後差圧が設定差圧ΔPを超えると、差圧制御弁130が開く。差圧制御弁130が開くと、第2旋回通路132の作動油は、第2分岐通路133bのチェック弁24及び回収通路135の差圧制御弁130を通り、高圧アキュムレータ21に導かれる。差圧制御弁130は、その前後差圧が設定差圧ΔPで保持されるように動作する。
 ここで、本実施形態の比較例として、差圧制御弁130に代えて、設定差圧がばね力によって一定値に定まる制御弁が設けられている場合について説明する。この制御弁は、ソレノイド130aを有していない。この比較例では、高圧アキュムレータ21の圧力が上昇すると、旋回モータ103A側の圧力も上昇することになる。比較例では、高圧アキュムレータ21の圧力に応じてブレーキ力が変化するため、旋回モータ103Aの動作が不安定になるおそれがある。その結果、比較例では、オペレータの望む操作性を実現できないおそれがある。
 これに対して、本実施形態に係る差圧制御弁130は、ばね力と制御電流に応じて発生するソレノイド推力によって設定差圧ΔPが定まる。上述したように、差圧制御弁130の設定差圧ΔPは、高圧アキュムレータ21の圧力が増加するほど小さくなる。これにより、旋回モータ103Aの背圧、すなわちブレーキ圧の変化を小さくすることができる。つまり、本実施形態によれば、高圧アキュムレータ21の圧力が変化した場合でも旋回モータ103Aのブレーキ力を安定して発生させることができるので、旋回体103の減速動作が安定する。その結果、本実施形態では、オペレータの望む操作性を実現できる。
 なお、アキュムレータは、容量が小さいほど圧力変動が大きくなる。このため、本実施形態の比較例において、高圧アキュムレータ21を小型化した場合、高圧アキュムレータ21の圧力変動が大きくなることにより、安定したブレーキ圧力を発生させることがより難しくなる。これに対して、本実施形態によれば、高圧アキュムレータ21を小型化した場合であっても、高圧アキュムレータ21の圧力変動に応じて差圧制御弁130の設定差圧が変化するので、安定したブレーキ圧力を発生させることができる。つまり、本実施形態によれば、高圧アキュムレータ21の小型化によるコストの低減、及び高圧アキュムレータ21の小型化による搭載性の向上を図ることもできる。
 上述した実施形態によれば、次の作用効果を奏する。
 (1)油圧ショベル(作業機械)100は、エンジン32と、エンジン32により駆動され圧油を吐出する第1油圧ポンプ(油圧ポンプ)13と、第1油圧ポンプ13により吐出される圧油により動作する旋回モータ(油圧アクチュエータ)103Aと、旋回モータ103Aから排出される圧油を蓄圧する高圧アキュムレータ(蓄圧装置)21と、旋回モータ103Aと高圧アキュムレータ21との間に設けられ、旋回モータ103Aの圧力と高圧アキュムレータ21の圧力との前後差圧を発生させる差圧制御弁130と、高圧アキュムレータ21の圧力を検出する第2圧力センサ(圧力センサ)31と、第2圧力センサ31の検出結果に基づいて差圧制御弁130を制御する制御装置120と、を備える。制御装置120は、第2圧力センサ31により検出される高圧アキュムレータ21の圧力の上昇に応じて上記前後差圧が低減するように、差圧制御弁130を制御する。
 上記構成によれば、高圧アキュムレータ21の圧力の上昇に応じて差圧制御弁130の前後差圧が低減するため、旋回モータ103Aの下流側の圧力であるブレーキ圧の変化が抑えられる。つまり、上記構成では、安定したブレーキ力を発生させることができる。したがって、本実施形態によれば、旋回モータ103Aから排出される圧油を高圧アキュムレータ21に蓄圧する際に、安定して旋回モータ103Aを動作させることのできる油圧ショベル100を提供することができる。
 (2)差圧制御弁130は、制御装置120により出力される制御電流に応じて設定差圧ΔPが調整される電磁比例弁により構成される。差圧制御弁130は、設定差圧ΔP以下では閉弁し、設定差圧ΔPを超えると開弁する。制御装置120は、第2圧力センサ31により検出される高圧アキュムレータ21の圧力の上昇に応じて差圧制御弁130の設定差圧ΔPを低減する。この構成では、高圧アキュムレータ21の圧力と旋回モータ103Aの下流側の圧力であるブレーキ圧との差が、設定差圧ΔPを超えると、差圧制御弁130が開弁し、ブレーキ圧の上昇が抑えられる。
 <第2実施形態>
 図5及び図6を参照して、第2実施形態に係る油圧ショベル200について説明する。なお、第1実施形態で説明した構成と同一もしくは相当する構成には同一の参照番号を付し、相違点を主に説明する。
 第2実施形態に係る油圧ショベル200の旋回体103には、旋回体103の旋回の角速度を検出するジャイロスコープ等の角速度センサ33が取り付けられている。角速度センサ33は制御装置220に接続され、検出結果を制御装置220に出力する。第2実施形態に係る制御装置220は、第2圧力センサ31により検出される高圧アキュムレータ21の圧力の上昇に応じて差圧制御弁230の開口面積が大きくなるように、差圧制御弁230を制御する。また、制御装置220は、角速度センサ33により検出される旋回の角速度が大きいほど差圧制御弁230の開口面積が大きくなるように、差圧制御弁230を制御する。
 図5は、図2と同様の図であり、第2実施形態に係る油圧ショベル200が備える油圧システム206について示す図である。第2実施形態に係る油圧システム206では、第1実施形態で説明した差圧制御弁130に代えて、スプール式の電磁比例弁である差圧制御弁230が設けられている。
 差圧制御弁230は、弁体であるスプール230bと、スプール230bを保持する保持部材であるスリーブ230cとを有する。差圧制御弁230は、制御装置220により出力されソレノイド230aに供給される制御電流に応じてスプール230bがスリーブ230c内を摺動することにより、回収通路135の開口を構成する差圧制御弁230の開口の面積(以下、差圧制御弁230の開口面積とも記す)の変更が可能な制御弁である。制御装置220は、差圧制御弁230のソレノイド230aに供給する制御電流を調整することにより、差圧制御弁230の開口面積、すなわち、旋回モータ103Aから高圧アキュムレータ21に向かって流れる作動油の流路の断面積を調整する。制御装置220は、差圧制御弁230の開口をオリフィスとして機能させ、その開口面積を調整することにより、差圧制御弁230の前後差圧を調整する。
 制御装置220は、旋回モータ103Aから排出される作動油の流量と高圧アキュムレータ21の圧力からオリフィスの式に基づいて、差圧制御弁230の開口面積を制御することにより、所望のブレーキ圧力を発生させる。
 オリフィスの式は一般的に絞りの前後差圧と流量、絞りの開口面積の関係を表したもので、単位換算を省略すると以下の式(1)のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Qは絞りに流れる流量、Aは絞りの開口面積、P1はオリフィスの上流側圧力、P2はオリフィスの下流側圧力、Cは流量係数であり一般的には0.7が使われている。
 式(1)を開口面積Aについて解くと、以下の式(2)が導かれる。
Figure JPOXMLDOC01-appb-M000002
 本実施形態の場合、Qは旋回モータ103Aから排出される作動油の流量、Aは差圧制御弁230の開口面積、P1は差圧制御弁230の上流側圧力、P2は差圧制御弁230の下流側圧力となる。なお、旋回モータ103Aから排出される作動油の流量Qは、旋回体103の角速度と比例関係にある。したがって、流量Qは、旋回体103の角速度に比例定数(後述するゲインK1)を乗じることにより算出できる。
 図6を参照して、制御装置220による差圧制御弁230の制御内容について詳しく説明する。図6は、第2実施形態に係る制御装置220による差圧制御弁230の制御について示すブロック図である。図6に示すように、制御装置220は、不揮発性メモリ153に記憶されているプログラムが実行されることにより、第1ゲイン乗算部223、減算部225、開平部226、第2ゲイン乗算部227、除算部228及び出力変換部229として機能する。
 第1ゲイン乗算部223は、角速度センサ33により検出された旋回体103の角速度ωに予め定められたゲインK1を乗算することにより、旋回モータ103Aから排出される作動油の流量Qを演算する(Q=ω・K1)。
 減算部225は、例えば、予め定められ不揮発性メモリ153に記憶されている目標旋回ブレーキ圧力(すなわち差圧制御弁230の上流側圧力P1の目標値)から第2圧力センサ31により検出された高圧アキュムレータ21の圧力(すなわち差圧制御弁230の下流側圧力P2の実測値)を減算し、目標前後差圧(P1-P2)を演算する。
 開平部226は、減算部225で演算された目標前後差圧(P1-P2)の平方根を演算する。第2ゲイン乗算部227は、開平部226の演算結果に予め定められたゲインK2を乗算する。ゲインK2は、式(2)における流量係数Cに相当する。
 除算部228は、第1ゲイン乗算部223の演算結果を第2ゲイン乗算部227の演算結果で除することにより、差圧制御弁230の目標とする開口面積(目標開口面積とも記す)Aを演算する。
 出力変換部229は、不揮発性メモリ153に予め記憶されている制御電流特性Ci2を参照し、除算部228で演算された目標開口面積Aに基づいて、差圧制御弁230のソレノイド230aに供給する制御電流値Icを演算する。出力変換部229は、演算結果に応じた制御電流を差圧制御弁230のソレノイド230aに出力する。制御電流特性Ci2は、目標開口面積Aが増加するほど制御電流値Icが増加する特性である。
 このように、本第2実施形態では、差圧制御弁230が、制御装置220により出力される制御電流に応じて開口面積が調整される電磁比例弁により構成される。制御装置220は、第2圧力センサ31により検出される高圧アキュムレータ21の圧力の上昇に応じて差圧制御弁230の開口面積が大きくなるように、差圧制御弁230を制御する。また、制御装置220は、角速度センサ33により検出される旋回体103の旋回の角速度が大きいほど差圧制御弁230の開口面積が大きくなるように、差圧制御弁230を制御する。この構成では、高圧アキュムレータ21の圧力の上昇に応じて差圧制御弁230の開口面積が大きくなるため、高圧アキュムレータ21の圧力の上昇に起因するブレーキ圧の上昇が抑えられる。また、旋回モータ103Aの流量の変化に起因するブレーキ圧の変化も抑えられる。したがって、本第2実施形態によれば、旋回モータ103Aから排出される圧油を高圧アキュムレータ21に蓄圧する際に、安定して旋回モータ103Aを動作させることができる。
 次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、上述の異なる実施形態で説明した構成同士を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせることも可能である。
 <変形例1>
 上記実施形態では、制御装置120,220が、旋回体103を旋回させる旋回モータ103Aの戻り油を蓄圧する高圧アキュムレータ21と、旋回モータ103Aとの間に設けられた差圧制御弁130,230の前後差圧を調整する例について説明したが、本発明はこれに限定されない。制御装置120,220は、ブームシリンダ111Aの戻り油を蓄圧する低圧アキュムレータ4と、ブームシリンダ111Aとの間に設けられた第1ブーム制御弁2の開口面積を制御して、第1ブーム制御弁2の前後差圧を調整するようにしてもよい。
 以下、図7及び図8を参照して、本変形例1に係る油圧ショベル300について説明する。なお、第2実施形態で説明した構成と同一もしくは相当する構成には同一の参照符号を付し、相違点を主に説明する。図7は、図2と同様の図であり、変形例1に係る油圧ショベル300が備える油圧システム306について示す図である。
 図7に示すように、本変形例1に係る油圧ショベル300のブームシリンダ111Aには、ブームシリンダ111Aのストロークを検出するストロークセンサ34が設けられている。制御装置320は、ストロークセンサ34の検出結果に基づいてブームシリンダ111Aの伸縮速度(以下、シリンダ速度とも記す)を演算する。第1ブーム制御弁2は、第2実施形態で説明した差圧制御弁230と同様、制御装置320により出力されソレノイド2aに供給される制御電流に応じて開口面積の変更が可能なスプール式の電磁比例弁である。
 制御装置320は、ブーム下げ操作信号が入力されると、第1ブーム制御弁2を開いて、ブームシリンダ111Aのボトム側油室110aからの戻り油を低圧アキュムレータ4に蓄圧する。このとき、制御装置320は、第1ブーム制御弁2のソレノイド2aに供給する制御電流を調整することにより、第1ブーム制御弁2の開口面積、すなわち、ブームシリンダ111Aから低圧アキュムレータ4に向かって流れる作動油の流路の断面積を調整する。制御装置320は、第1ブーム制御弁2の開口をオリフィスとして機能させ、その開口面積を調整することにより、第1ブーム制御弁2の前後差圧を調整する。
 図8を参照して、制御装置320による第1ブーム制御弁2の制御内容について詳しく説明する。図8は、第3実施形態に係る制御装置320による第1ブーム制御弁2の制御について示すブロック図である。図8に示すように、制御装置320は、不揮発性メモリ153に記憶されているプログラムが実行されることにより、速度演算部322、第1ゲイン乗算部323、減算部325、開平部326、第2ゲイン乗算部327、除算部328及び出力変換部329として機能する。
 速度演算部322は、ストロークセンサ34により検出されたブームシリンダ111Aのストロークの時間変化に基づいてシリンダ速度Vsを演算する。第1ゲイン乗算部323は、速度演算部322で演算されたシリンダ速度Vsに予め定められたゲインKaを乗算することにより、ブームシリンダ111Aのボトム側油室110aから排出される作動油の流量Qを演算する(Q=Vs・Ka)。
 減算部325は、例えば、予め定められ不揮発性メモリ153に記憶されている目標ボトム圧(すなわち第1ブーム制御弁2の上流側圧力P1の目標値)から第1圧力センサ30により検出された低圧アキュムレータ4の圧力(すなわち第1ブーム制御弁2の下流側圧力P2の実測値)を減算し、目標前後差圧(P1-P2)を演算する。
 開平部326は、減算部325で演算された目標前後差圧(P1-P2)の平方根を演算する。第2ゲイン乗算部327は、開平部326の演算結果に予め定められたゲインKbを乗算する。ゲインKbは、式(2)における流量係数Cに相当する。
 除算部328は、第1ゲイン乗算部323の演算結果を第2ゲイン乗算部327の演算結果で除することにより、第1ブーム制御弁2の目標とする開口面積(目標開口面積とも記す)A2を演算する。
 出力変換部329は、不揮発性メモリ153に予め記憶されている制御電流特性Ci3を参照し、除算部328で演算された目標開口面積A2に基づいて、第1ブーム制御弁2のソレノイド2aに供給する制御電流値Icを演算する。出力変換部329は、演算結果に応じた制御電流を第1ブーム制御弁2のソレノイド2aに出力する。制御電流特性Ci3は、目標開口面積A2が増加するほど制御電流値Icが増加する特性である。
 このように、本変形例では、第1ブーム制御弁2が、ブームシリンダ111Aの下げ動作時に、前後差圧を発生させる差圧制御弁として機能する。第1ブーム制御弁2は、ソレノイド2aに供給される制御電流に応じて開口面積の変更が可能な制御弁である。制御装置320は、ストロークセンサ34により検出されるブームシリンダ111Aのストロークに基づいてシリンダ速度を演算する。制御装置320は、第1圧力センサ30により検出される低圧アキュムレータ4の圧力の上昇に応じて第1ブーム制御弁2の開口面積が大きくなるように、第1ブーム制御弁2を制御する。また、制御装置320は、シリンダ速度が大きいほど第1ブーム制御弁2の開口面積が大きくなるように、第1ブーム制御弁2を制御する。この構成では、低圧アキュムレータ4の圧力の上昇に応じて第1ブーム制御弁2の開口面積が大きくなるため、低圧アキュムレータ4の圧力の上昇に起因するブームシリンダ111Aのボトム圧の上昇が抑えられる。その結果、安定してブームシリンダ111Aを動作させることができる。
 油圧ショベル300は、バケット113の背部に設けられたフックにワイヤーを掛けて吊り荷を吊り上げるクレーン作業を行うことがある。クレーン作業では、ブーム111の上げ動作及び下げ動作により、吊り荷の上下方向の移動を行う。
 オペレータが、ブーム操作装置5の操作レバー5aをブーム下げ側に操作すると、ブームシリンダ111Aが収縮し、ブーム111が下方向に回動する。ブームシリンダ111Aのボトム側油室110aからの戻り油は、第1ブーム制御弁2を通じて低圧アキュムレータ4に導かれる。これにより、低圧アキュムレータ4が蓄圧される。本変形例1では、制御装置320は、第1圧力センサ(圧力センサ)30により検出される低圧アキュムレータ(蓄圧装置)4の圧力の上昇に応じて第1ブーム制御弁(差圧制御弁)2の開口面積が大きくなるように、第1ブーム制御弁2を制御する。これにより、低圧アキュムレータ4の圧力の上昇に応じて第1ブーム制御弁2の前後差圧が低減する。したがって、低圧アキュムレータ4の圧力が上昇している間、ブームシリンダ111Aのボトム側油室110aの圧力が一定に保たれ、ブームシリンダ111Aの速度変化が抑えられる。ブームシリンダ111Aが安定して動作することになるため、クレーン作業において吊り荷が揺れることを防止できる。したがって、本変形例1によれば、クレーン作業の効率を向上することができる。
 <変形例2>
 上記実施形態では、作業機械がクローラ式の油圧ショベル100,200,300である場合を例に説明したが、本発明はこれに限定されない。ホイール式の油圧ショベル、ホイールローダ等の種々の作業機械に本発明を適用することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 2…第1ブーム制御弁(差圧制御弁)、2a…ソレノイド、4…低圧アキュムレータ(蓄圧装置)、5…ブーム操作装置、13…第1油圧ポンプ(油圧ポンプ)、18…旋回操作装置、21…高圧アキュムレータ(蓄圧装置)、27…第2油圧ポンプ(油圧ポンプ)、29…第3油圧ポンプ(油圧ポンプ)、30…第1圧力センサ(圧力センサ)、31…第2圧力センサ(圧力センサ)、32…エンジン、33…角速度センサ、34…ストロークセンサ、100…油圧ショベル(作業機械)、102…走行体、103…旋回体、103A…旋回モータ(油圧アクチュエータ)、104…作業装置、105…機体、106…油圧システム、110a…ボトム側油室、110b…ロッド側油室、111…ブーム、111A…ブームシリンダ(油圧アクチュエータ)、120…制御装置、121…差圧演算部、122…出力変換部、130…差圧制御弁、130a…ソレノイド、151…プロセッサ、152…揮発性メモリ、153…不揮発性メモリ、200…油圧ショベル(作業機械)、206…油圧システム、220…制御装置、223…第1ゲイン乗算部、225…減算部、226…開平部、227…第2ゲイン乗算部、228…除算部、229…出力変換部、230…差圧制御弁、230a…ソレノイド、230b…スプール、230c…スリーブ、300…油圧ショベル(作業機械)、306…油圧システム、320…制御装置、322…速度演算部、323…第1ゲイン乗算部、325…減算部、326…開平部、327…第2ゲイン乗算部、328…除算部、329…出力変換部

Claims (4)

  1.  エンジンと、
     前記エンジンにより駆動され圧油を吐出する油圧ポンプと、
     前記油圧ポンプにより吐出される圧油により動作する油圧アクチュエータと、
     前記油圧アクチュエータから排出される圧油を蓄圧する蓄圧装置と、
     前記油圧アクチュエータと前記蓄圧装置との間に設けられ、前記油圧アクチュエータの圧力と前記蓄圧装置の圧力との前後差圧を発生させる差圧制御弁と、
     前記蓄圧装置の圧力を検出する圧力センサと、
     前記圧力センサの検出結果に基づいて前記差圧制御弁を制御する制御装置と、を備えた作業機械において、
     前記制御装置は、前記圧力センサにより検出される前記蓄圧装置の圧力の上昇に応じて前記前後差圧が低減するように、前記差圧制御弁を制御する
     ことを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     前記差圧制御弁は、前記制御装置により出力される制御電流に応じて設定差圧が調整される電磁比例弁により構成され、前記設定差圧以下では閉弁し、前記設定差圧を超えると開弁し、
     前記制御装置は、前記圧力センサにより検出される前記蓄圧装置の圧力の上昇に応じて前記差圧制御弁の前記設定差圧を低減する
     ことを特徴とする作業機械。
  3.  請求項1に記載の作業機械において、
     前記差圧制御弁は、前記制御装置により出力される制御電流に応じて開口面積が調整される電磁比例弁により構成され、
     前記制御装置は、前記圧力センサにより検出される前記蓄圧装置の圧力の上昇に応じて前記差圧制御弁の開口面積が大きくなるように、前記差圧制御弁を制御する
     ことを特徴とする作業機械。
  4.  請求項1に記載の作業機械において、
     走行体と、
     前記走行体に旋回可能に設けられた旋回体と、
     前記旋回体の旋回の角速度を検出する角速度センサと、をさらに備え、
     前記油圧アクチュエータは、前記旋回体を旋回させる旋回モータであり、
     前記制御装置は、前記角速度センサにより検出される角速度が大きいほど前記差圧制御弁の開口面積が大きくなるように、前記差圧制御弁を制御する
     ことを特徴とする作業機械。
PCT/JP2022/001835 2021-03-24 2022-01-19 作業機械 WO2022201792A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22774595.7A EP4261352A1 (en) 2021-03-24 2022-01-19 Work machine
US18/272,121 US20240068203A1 (en) 2021-03-24 2022-01-19 Work Machine
KR1020237023384A KR20230117219A (ko) 2021-03-24 2022-01-19 작업 기계
JP2023508684A JP7498851B2 (ja) 2021-03-24 2022-01-19 作業機械
CN202280009996.5A CN116761918A (zh) 2021-03-24 2022-01-19 作业机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050506 2021-03-24
JP2021050506 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022201792A1 true WO2022201792A1 (ja) 2022-09-29

Family

ID=83396757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001835 WO2022201792A1 (ja) 2021-03-24 2022-01-19 作業機械

Country Status (6)

Country Link
US (1) US20240068203A1 (ja)
EP (1) EP4261352A1 (ja)
JP (1) JP7498851B2 (ja)
KR (1) KR20230117219A (ja)
CN (1) CN116761918A (ja)
WO (1) WO2022201792A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056442A1 (ja) * 2014-10-06 2016-04-14 住友重機械工業株式会社 ショベル
JP2016205492A (ja) 2015-04-21 2016-12-08 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP2017119974A (ja) * 2015-12-28 2017-07-06 住友重機械工業株式会社 ショベル
JP2019135406A (ja) * 2018-02-05 2019-08-15 Kyb株式会社 エネルギ回生システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246759B2 (ja) 2008-09-04 2013-07-24 キャタピラー エス エー アール エル 作業機械における油圧制御システム
JP5419572B2 (ja) 2009-07-10 2014-02-19 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
US20140208728A1 (en) * 2013-01-28 2014-07-31 Caterpillar Inc. Method and Hydraulic Control System Having Swing Motor Energy Recovery
US9290911B2 (en) * 2013-02-19 2016-03-22 Caterpillar Inc. Energy recovery system for hydraulic machine
US20150247509A1 (en) * 2014-02-28 2015-09-03 Caterpillar Inc. Machine having hydraulic start assist system
JP6493916B2 (ja) 2015-04-21 2019-04-03 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP6636977B2 (ja) 2017-03-14 2020-01-29 日立建機株式会社 作業機械の油圧駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056442A1 (ja) * 2014-10-06 2016-04-14 住友重機械工業株式会社 ショベル
JP2016205492A (ja) 2015-04-21 2016-12-08 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP2017119974A (ja) * 2015-12-28 2017-07-06 住友重機械工業株式会社 ショベル
JP2019135406A (ja) * 2018-02-05 2019-08-15 Kyb株式会社 エネルギ回生システム

Also Published As

Publication number Publication date
EP4261352A1 (en) 2023-10-18
US20240068203A1 (en) 2024-02-29
CN116761918A (zh) 2023-09-15
JPWO2022201792A1 (ja) 2022-09-29
JP7498851B2 (ja) 2024-06-12
KR20230117219A (ko) 2023-08-07

Similar Documents

Publication Publication Date Title
US7162869B2 (en) Hydraulic system for a work machine
US8857168B2 (en) Overrunning pump protection for flow-controlled actuators
US6502499B2 (en) Hydraulic recovery system for construction machine and construction machine using the same
US20120260642A1 (en) Load holding for meterless control of actuators
KR101755424B1 (ko) 유압 셔블의 유압 구동장치
JP5797061B2 (ja) 油圧ショベル
CN110036211B (zh) 油压挖掘机驱动系统
EP3203087B1 (en) Work vehicle hydraulic drive system
KR20110099237A (ko) 펌프-제어 실린더 쿠셔닝 시스템 및 방법
JP2018054047A (ja) 作業機械の油圧駆動装置
JP6493916B2 (ja) 流体圧回路および作業機械
JP2014095396A (ja) 閉回路油圧駆動装置
JP6430735B2 (ja) 作業機械の駆動装置
WO2022201792A1 (ja) 作業機械
WO2014061407A1 (ja) 油圧駆動システム
US8763388B2 (en) Hydraulic system having a backpressure control valve
US20160152261A1 (en) Hydraulic system with margin based flow supplementation
JP7472321B2 (ja) 作業機械
JP6591370B2 (ja) 建設機械の油圧制御装置
JP2004225805A (ja) 油圧ショベルの油圧回路
JP6292970B2 (ja) 圧力制御弁および作業機械
JP7455285B2 (ja) 建設機械
JP2013044399A (ja) 油圧駆動システム
JP7236596B2 (ja) 建設機械
JP2013124735A (ja) ホイール式作業車両の油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508684

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237023384

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18272121

Country of ref document: US

Ref document number: 202280009996.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022774595

Country of ref document: EP

Effective date: 20230713

NENP Non-entry into the national phase

Ref country code: DE