WO2022201749A1 - 眼鏡レンズ、および眼鏡レンズの設計方法 - Google Patents

眼鏡レンズ、および眼鏡レンズの設計方法 Download PDF

Info

Publication number
WO2022201749A1
WO2022201749A1 PCT/JP2022/000620 JP2022000620W WO2022201749A1 WO 2022201749 A1 WO2022201749 A1 WO 2022201749A1 JP 2022000620 W JP2022000620 W JP 2022000620W WO 2022201749 A1 WO2022201749 A1 WO 2022201749A1
Authority
WO
WIPO (PCT)
Prior art keywords
defocus
area
spectacle lens
areas
center
Prior art date
Application number
PCT/JP2022/000620
Other languages
English (en)
French (fr)
Inventor
華 祁
Original Assignee
ホヤ レンズ タイランド リミテッド
華 祁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 華 祁 filed Critical ホヤ レンズ タイランド リミテッド
Priority to US18/282,973 priority Critical patent/US20240168313A1/en
Priority to KR1020237023656A priority patent/KR20230159361A/ko
Priority to CN202280011189.7A priority patent/CN116783542A/zh
Priority to EP22774554.4A priority patent/EP4318100A1/en
Publication of WO2022201749A1 publication Critical patent/WO2022201749A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Definitions

  • the present invention relates to spectacle lenses and spectacle lens design methods.
  • a spectacle lens that suppresses the progress of refractive error such as myopia there is a lens in which an island-shaped region having a refractive power more positive than a plurality of prescribed refractive powers is formed (see, for example, Patent Document 1).
  • the spectacle lens of the aspect described in Patent Document 1 is also called DIMS (Defocus Incorporated Multiple Segments) spectacle lens, abbreviated as DIMS.
  • DIMS Defocus Incorporated Multiple Segments
  • the light flux incident from the object-side surface and emitted from the eyeball-side surface is in principle focused on the retina of the wearer, but is defocused.
  • the luminous flux passing through the region is focused at a position in front of the retina, thereby suppressing the progression of myopia.
  • An object of one embodiment of the present invention is to provide a spectacle lens capable of increasing the effect of suppressing myopia progression.
  • a first aspect of the present invention is a base region for causing a light beam incident from the object-side surface to exit from the eyeball-side surface and converge on the retina via the eyeball; a plurality of defocus areas, which are defocus areas in contact with the base area, and have a property that a light beam passing through at least a part of the defocus area is incident on the retina as divergent light; A first defocus region in which the plurality of defocus regions are arranged such that a circular region having a diameter of 4 mm and containing only one defocus region exists in the circle when the surface on the object side is viewed in plan.
  • a spectacle lens having a region arrangement part.
  • a second aspect of the present invention is The spectacle lens according to the first aspect, wherein the first defocus area arrangement portion is provided in a peripheral portion of the spectacle lens.
  • a third aspect of the present invention is In the first defocus area arrangement portion, when the area on the object side is planarly viewed and the area formed at the center position of a circle with a diameter of 4 mm that includes only one defocus area is defined as an area Z1,
  • a fourth aspect of the present invention is In the first defocus area arrangement portion, the distance a between the centers of the adjacent defocus areas and the diameter d of the defocus area satisfy (d + 4 mm) / 2 ⁇ a ⁇ d + 4 mm. 4.
  • a fifth aspect of the present invention is The spectacle lens according to any one of the first to fourth aspects, wherein the diameter d of the defocus area in the first defocus area placement portion is 1.5 mm or more and 3 mm or less.
  • a sixth aspect of the present invention is The spectacle lens according to any one of the first to fifth aspects, wherein a center-to-center distance a between the adjacent defocus regions in the first defocus region placement portion is more than 3 mm and less than 7 mm.
  • a seventh aspect of the present invention is The spectacle lens according to any one of the first to sixth aspects, wherein the spectacle lens is a lens for suppressing myopia progression.
  • An eighth aspect of the present invention is a base region for causing a light beam incident from the object-side surface to exit from the eyeball-side surface and converge on the retina via the eyeball;
  • a method for designing a spectacle lens comprising a plurality of defocus areas contacting the base area and having a property that a light beam passing through at least a part of the defocus area is incident on the retina as divergent light. and
  • a method for designing a spectacle lens comprising:
  • a spectacle lens capable of increasing the effect of suppressing myopia progression.
  • FIG. 1 is a diagram showing how light rays entering the eye from the peripheral visual field are condensed behind the peripheral portion of the retina when the DIMS described in FIG. 1 of Patent Document 1 is worn.
  • FIG. 2 is a diagram showing how light rays entering the eye from the peripheral visual field are condensed behind the peripheral portion of the retina when the spectacle lens according to the embodiment of the present invention is worn.
  • FIG. 3 is a plan view of the object-side surface of the spectacle lens 100 according to the first embodiment of the present invention. 4(a) and 4(b) are enlarged plan views of the first defocus area arrangement portion 30 of the spectacle lens 100 according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of the object-side surface of a spectacle lens 100 according to another embodiment of the present invention.
  • FIG. 6A is a plan view of the object-side surface of the spectacle lens 100 according to Example 1.
  • FIG. FIG. 6B is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 1.
  • FIG. FIG. 7A is a plan view of the object-side surface of the spectacle lens 100 according to Example 2.
  • FIG. 7B is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 2.
  • FIG. FIG. 8A is a plan view of the object-side surface of the spectacle lens 100 according to Example 3.
  • FIG. FIG. 8B is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 3.
  • FIG. FIG. 9A is a plan view of the object-side surface of the spectacle lens 100 according to Example 4.
  • FIG. 9B is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 4.
  • the contrast of the retinal image is determined by the PSF (Point Spread Function) of the optical system.
  • PSF Point Spread Function
  • the size of the spread of the PSF, that is, the size of the spot (light spot) is a major factor in determining the retinal image contrast.
  • FIG. 1 is a diagram showing how light rays entering the eye from the peripheral visual field are condensed behind the peripheral portion of the retina when the DIMS described in FIG. 1 of Patent Document 1 is worn.
  • the DIMS described in Patent Document 1 includes a base region 10 and a plurality of defocus regions 20, and is designed so that the plurality of defocus regions 20 fall within the pupil range. .
  • the luminous flux transmitted through each defocus area 20 is defocused so as to converge in front of the retina.
  • a plurality of light beams transmitted through a plurality of defocus areas 20 gather at a predetermined position by the power of the base area 10 and the eye to form an overall spot (Ds).
  • the power of the base region 10 is set so as to form an image on the retina via the base region 10 and the eye at the central portion of the retina. In many cases, the position of convergence through the retina is posterior to the retina.
  • the inventors have diligently studied the above problems. As a result, it was found that by designing the spectacle lens so that only one defocus area is included within the pupillary range, the effect of suppressing the progression of myopia can be increased.
  • FIG. 2 is a diagram showing how light rays entering the eye from the peripheral visual field are condensed behind the peripheral portion of the retina when the spectacle lens according to one embodiment of the present invention is worn.
  • a plurality of defocus regions 20 having a size larger than that in FIG. They are sparsely placed.
  • the accommodation is increased (corresponding to the retina moving from Rp2 to Rp1), the spot due to the defocus region 20 within the pupillary range becomes larger. Since this is a situation in which the image becomes blurred when the eyeball is stretched, the effect of suppressing the progress of myopia can be obtained.
  • the spot due to the defocus region 20 within the pupillary range will be smaller. Since this is also a situation in which elongation of the eyeball is suppressed, the effect of suppressing progression of myopia can be obtained.
  • the image position Rp2 is often behind the retina in the unaccommodated state. Even in this case, the change in contrast due to accommodative micromovement theoretically suppresses elongation so that the retina is located in front of Rp2.
  • the spot Since there is no problem that the position where Ds) is minimized is behind the retina, the effect of suppressing the progress of myopia is not impaired, and the effect of suppressing the progress of myopia is increased compared to the DIMS described in Patent Document 1. be able to.
  • Patent Document 1 contents not described in this specification are all described in Patent Document 1. It is assumed that the contents not described in Patent Document 1 (especially the contents related to the manufacturing method) are all described in WO2020/004551. If there is a discrepancy between the description of Patent Document 1 and the description of the publication, the description of the publication takes precedence.
  • the spectacle lenses mentioned in this specification have an object-side surface and an eyeball-side surface.
  • the "object-side surface” is the surface that is located on the object side when the spectacles with the spectacle lenses are worn by the wearer, and the "eye-side surface” is the opposite, i.e. the surface with the spectacle lenses. It is the surface positioned on the eyeball side when the spectacles are worn by the wearer.
  • This relationship also applies to the lens substrate that forms the basis of the spectacle lens. That is, the lens substrate also has an object-side surface and an eyeball-side surface.
  • FIG. 3 is a plan view of the object-side surface of the spectacle lens 100 of this embodiment.
  • a spectacle lens 100 of this embodiment includes a base region 10 and a plurality of defocus regions 20 .
  • the base region 10 is configured such that a light flux incident from the object-side surface is emitted from the eyeball-side surface and converges on the retina via the eyeball.
  • the defocus area 20 is in contact with the base area 10, and is configured such that a light beam passing through at least a part of the defocus area 20 is incident on the retina as divergent light.
  • the base region 10 is a portion having a shape capable of realizing the wearer's prescribed refractive power, and is a portion corresponding to the first refractive region of Patent Document 1.
  • the defocus area 20 is an area in which at least part of the area does not condense light to the condensing position of the base area 10 .
  • the defocus region 20 is a portion corresponding to the minute projections of Patent Document 1.
  • the spectacle lens 100 of the present embodiment is a myopia progression suppressing lens, like the spectacle lens described in Patent Document 1.
  • the plurality of defocus areas 20 of the present embodiment may be formed on at least one of the object-side surface and the eyeball-side surface of the spectacle lens 100 . In this embodiment, a case where a plurality of defocus areas 20 are provided only on the object-side surface of the spectacle lens 100 is illustrated.
  • the surface shape of the defocus area 20 is not particularly limited.
  • the defocus area 20 may have a spherical shape, an aspherical shape, a toric surface shape, or a mixed shape thereof. In this embodiment, the case where the defocus area 20 has a spherical shape is exemplified.
  • the number of multiple defocus areas 20 included in the spectacle lens 100 is not particularly limited, but is, for example, 20 or more and 500 or less.
  • the plurality of defocus areas 20 are arranged, for example, in an island shape (that is, separated from each other without adjoining each other).
  • An arrangement mode of the plurality of defocus areas 20 is not particularly limited. In the present embodiment, as shown in FIG. 3, the case where each defocus area 20 is independently and discretely arranged so that the center of each defocus area 20 becomes the vertex of an equilateral triangle (hereinafter also referred to as an equilateral triangle arrangement) is exemplified. do.
  • the defocus area 20 may be formed in the central portion of the spectacle lens 100, or as described in FIG. The defocus area 20 may not be formed.
  • the central portion of the spectacle lens 100 means the lens center (geometric center, optical center, or centering center) of the spectacle lens 100 and its vicinity.
  • the case where the line of sight of the wearer of the spectacle lens 100 when looking straight ahead passes through the center of the lens is exemplified.
  • the spectacle lens 100 has a first defocus area arrangement portion 30.
  • the first defocus area arrangement unit 30 is arranged, for example, from a circumference centered on the lens center of the spectacle lens 100, from a circumference contacting the defocus area 20 closest to the lens center to a circumference contacting the defocus area 20 furthest from the lens center. It is good also as a part to.
  • the first defocus area arrangement unit 30 has a plurality of circular areas with a diameter of 4 mm each including only one defocus area 20 when the object-side surface of the spectacle lens 100 is viewed in plan. of defocus areas 20 are arranged.
  • the circular region with a diameter of 4 mm represents the pupillary range of the wearer.
  • the first defocus area placement section 30 is designed with the intention of including only one defocus area 20 within the pupil range.
  • a spot (Ds) formed by the entire luminous flux that has passed through the plurality of defocus areas 20 is not formed behind the retina, and the effect of suppressing the progress of myopia can be obtained, so the effect of suppressing the progress of myopia can be increased.
  • the defocus area 20 In the first defocus area arrangement unit 30, it is necessary to arrange the defocus area 20 so that only one defocus area 20 is necessarily included in all circles with a diameter of 4 mm when the object side surface is viewed from above. no. From the viewpoint of efficiently increasing the effect of suppressing the progression of myopia, the area generated from the center position of a circle with a diameter of 4 mm in which only one defocus area 20 is included in the circle is the first defocus area placement section 30. Of this, it preferably accounts for 25% or more (more preferably 50% or more, still more preferably 70% or more).
  • the first defocus area arrangement portion 30 is provided in the peripheral portion of the spectacle lens 100 .
  • the peripheral portion of the spectacle lens 100 means that light passing through the center of the retina passes through the lens when the wearer of the spectacle lens 100 rotates the eyeball in the range of daily visual behavior. It means the area outside the area. That is, in the range of daily visual behavior, light passing through the peripheral portion of the spectacle lens 100 always reaches the peripheral portion of the retina.
  • the peripheral portion of the spectacle lens 100 may be, for example, a circumference having a diameter of 10 mm (or 20 mm) from the center of the lens when the object-side surface of the spectacle lens 100 is viewed in plan, and an area outside the circle. .
  • the effect of myopia progression suppression can be increased by providing the first defocus region arrangement portion 30 in the peripheral portion of the spectacle lens 100.
  • the peripheral portion of the spectacle lens 100 is a peripheral visual field region within the range of daily visual behavior, by providing the first defocus region arrangement unit 30 in the peripheral portion of the spectacle lens 100, the defocus region The arrangement of the eyeglass lens 20 can reduce the influence on how the spectacle lens 100 looks.
  • FIGS. 4A and 4B are enlarged plan views of the first defocus area arrangement portion 30 of the spectacle lens 100 of this embodiment.
  • the plurality of defocus areas 20 are arranged in an equilateral triangular arrangement, and areas other than the three adjacent defocus areas 20 are omitted.
  • the number of defocus areas 20 included in a circle with a diameter of 4 mm when the object side surface is viewed in plan is the center position of the circle with a diameter of 4 mm (that is, the center of the pupil). ).
  • the number of defocus areas 20 included in the 4 mm diameter circle is calculated. That is, the number of defocus areas 20 included in the pupillary range is calculated when the center of the pupil moves in the equilateral triangular range.
  • the diameter of the defocus area 20 is d
  • the center-to-center distance between adjacent defocus areas 20 is a
  • the area Z3 where the three fan-shaped areas overlap is an area formed at the pupil center position including the three defocus areas 20 within the pupil range.
  • a region Z2 where two fan-shaped regions overlap is a region formed at the pupil center position including two defocus regions 20 within the pupil range.
  • a region Z1 in which the fan-shaped regions do not overlap is a region formed at the pupil center position including only one defocus region 20 within the pupil range.
  • the area Z3 does not exist and is included in any fan-shaped area.
  • the area Z0 is an area formed at the pupil center position where no defocus area 20 is included in the pupil range.
  • the defocus region 20 ⁇ is within the pupil range. all included. In this way, a region Z1A is formed at the pupil center position where one of the defocus regions 20 is entirely included in the pupil range in the region Z1.
  • the proportion of the area Z1 in the first defocus area placement section 30 is large. Moreover, it is preferable that the ratio of the area Z2, the area Z3, and the area Z0 is small. Moreover, it is preferable that the proportion of the area Z1A in the area Z1 is large.
  • the area of the area Z1 (that is, the area formed at the center position of a circle with a diameter of 4 mm that includes only one defocus area 20 when the surface on the object side is viewed in plan) is , preferably 25% or more (more preferably 50% or more) of the area of the first defocus area arrangement portion 30 .
  • the effect of suppressing progression of myopia can be increased.
  • the areas of the first defocus area arrangement portion 30 and the area Z1 within a polygonal range formed by the centers of a plurality of adjacent defocus areas 20 (in this embodiment, three adjacent defocus areas 20 ) may be applied to the entire first defocus area placement section 30 . The same applies when calculating the areas of the area Z2, the area Z3, the area Z0, and the area Z1A.
  • the area of the area Z2 (that is, the area formed at the center position of a circle with a diameter of 4 mm including two defocus areas 20 when the object-side surface is viewed in plan) is It is preferably 50% or less of the area of the first defocus area arrangement portion 30 . As a result, the effect of suppressing progression of myopia can be increased.
  • the area of the area Z3 (that is, the area formed at the center position of a circle with a diameter of 4 mm including three or more defocus areas 20 when the object side surface is viewed in plan) is , is preferably 20% or less of the area of the first defocus area arrangement portion 30 .
  • the effect of suppressing progression of myopia can be increased.
  • the area of the area Z0 (that is, the area formed at the center position of a circle with a diameter of 4 mm that does not include any defocus area 20 when the surface on the object side is viewed in plan) is preferably 10% or less (more preferably 5% or less, still more preferably 0%) of the area of the first defocus area arrangement portion 30 .
  • the effect of suppressing progression of myopia can be increased.
  • the area of the area Z1A (that is, the area formed at the center position of a circle with a diameter of 4 mm that includes one of the defocus areas 20 when the surface on the object side is viewed in plan) is preferably 3% or more (more preferably 5% or more, still more preferably 10% or more) of the area of the region Z1. As a result, the effect of suppressing progression of myopia can be increased.
  • the distance a between the centers of the adjacent defocus areas 20 and the diameter d of the defocus areas are (d+4 mm)/2 ⁇ a ⁇ d+4 mm (that is, (D+d)/2 ⁇ It is preferable to satisfy a ⁇ D+d).
  • the ratio of the area Z1 can be sufficiently increased, and the ratio of the areas Z2, Z3, and Z0 can be sufficiently decreased. Therefore, the effect of suppressing myopia progression can be increased.
  • the diameter d of the defocus area 20 is preferably 1.5 mm or more and 3 mm or less. If the diameter d is less than 1.5 mm, the ratio of the area of the defocus region 20 within the pupillary range becomes too small, which may reduce the effect of suppressing myopia progression. On the other hand, by setting the diameter d to 1.5 mm or more, the ratio of the area of the defocus region 20 within the pupil range is appropriately increased, so that the effect of suppressing the progress of myopia can be increased. On the other hand, if the diameter d exceeds 3 mm, the ratio of the area of the defocus region 20 within the pupil range becomes too large, which may affect how the spectacle lens 100 looks. On the other hand, by setting the diameter d to 3 mm or less, the ratio of the area of the defocus region 20 within the pupillary range is appropriately reduced, so that the effect on the appearance of the spectacle lens 100 can be reduced.
  • the center-to-center distance a between adjacent defocus areas 20 is preferably more than 3 mm and less than 7 mm.
  • the center-to-center distance a is 3 mm or less, the proportion of the area Z2 and the area Z3 in the first defocus area arrangement portion 30 increases, so there is a possibility that the effect of suppressing myopia progression will decrease.
  • the proportion of the area Z2 and the area Z3 in the first defocus area arrangement portion 30 is reduced, so the effect of suppressing myopia progression can be increased.
  • the center-to-center distance a is 7 mm or more, the proportion of the area Z0 in the first defocus area arrangement portion 30 increases, so there is a possibility that the effect of suppressing the progression of myopia will decrease.
  • the ratio of the area Z0 in the first defocus area arrangement portion 30 is reduced, so that the effect of suppressing progression of myopia can be increased.
  • the present invention is also applicable to a method for designing spectacle lenses 100 .
  • the method of designing the spectacle lens 100 of the present embodiment includes a base region 10 in which a light beam incident from the object-side surface is emitted from the eyeball-side surface and converges on the retina via the eyeball, and a defocus lens contacting the base region 10.
  • a method of designing a spectacle lens 100 comprising a plurality of defocus areas 20 having a property that a light flux passing through at least a part of the defocus area 20 is incident on the retina as divergent light
  • a defocus area designing process is provided for arranging a plurality of defocus areas 20 such that a circular area with a diameter of 4 mm containing only one defocus area 20 exists in the circle when viewed from above on the surface on the object side.
  • the defocus area design process is a process of designing the first defocus area placement section 30 described above. The details of the defocus area designing process are omitted because they overlap with the above-mentioned (1) spectacle lens.
  • FIG. 5 is a plan view of the object-side surface of the spectacle lens 100 according to the second embodiment of the present invention.
  • the spectacle lens 100 of this embodiment has a first defocus area placement section 30 and a second defocus area placement section 40 .
  • the second defocus area arrangement portion 40 is provided in a portion closer to the lens center than the first defocus area arrangement portion 30, and when the object side surface of the spectacle lens 100 is viewed in plan, the second defocus area arrangement portion 40 is within a circle with a diameter of 4 mm. It is an area in which a plurality of defocus areas 20 are arranged such that a plurality of defocus areas 20 (for example, 4 or more and 7 or less) are included.
  • the defocused area 20 is defined as a defocused area 20A, and the defocused area 20 arranged so as to include a plurality of defocused areas 20 (for example, 4 or more and 7 or less) within a circle having a diameter of 4 mm is defined as a defocused area 20B.
  • the first defocus area arrangement unit 30, for example, is centered on the lens center of the spectacle lens 100, and from the circumference contacting the defocus area 20A closest to the lens center, the defocus area farthest from the lens center It is good also as a part to the circumference which touches 20A.
  • the second defocus area arrangement unit 40 is, for example, centered on the lens center of the spectacle lens 100, and contacts the defocus area 20B farthest from the lens center from the circumference that touches the defocus area 20B closest to the lens center. It may be a portion up to the circumference.
  • the diameter d B of the defocus area 20 ⁇ /b>B in the second defocus area placement section 40 is smaller than the diameter d of the defocus area 20 ⁇ /b>A in the first defocus area placement section 30 .
  • the center-to-center distance aB between the adjacent defocus areas 20B in the second defocus area placement section 40 is smaller than the center-to - center distance a between the adjacent defocus areas 20A in the first defocus area placement section 30.
  • the diameter d B of the defocus area 20B is, for example, 0.6 mm or more and 1.5 mm or less
  • the center-to-center distance a B of the adjacent defocus areas 20B is, for example, 1.0 mm or more and 2.0 mm or less.
  • the spectacle lens 100 of the present embodiment is provided with the second defocus area arrangement portion 40 at a position near the center of the lens.
  • the second defocus area placement section 40 a plurality of defocus areas 20B having a smaller size than in the first defocus area placement section 30 are densely arranged. Therefore, the second defocus area placement section 40 may have less influence on how the spectacle lens 100 looks than the first defocus area placement section 30 does. Therefore, the spectacle lens 100 of the present embodiment may have less influence on how the spectacle lens 100 looks than the spectacle lens 100 of the first embodiment described above.
  • the spectacle lens 100 of the present embodiment is provided with the first defocus area arrangement portion 30 in the peripheral portion of the spectacle lens 100, similarly to the spectacle lens 100 of the first embodiment described above. can increase the effect of
  • the diameter d and the center-to-center distance a of the plurality of defocus areas 20 in the first defocus area placement unit 30 are constant was described, but in the first defocus area placement unit 30 , the diameter d and the center-to-center distance a of the plurality of defocus areas 20 may be changed. Specifically, for example, the diameter d and the center-to-center distance a of the defocus region 20 may be increased from the lens center of the spectacle lens 100 toward the periphery.
  • FIG. 6A is a plan view of the object-side surface of the spectacle lens 100 according to Example 1.
  • the circumference with a radius of 4.6 mm from the center of the lens and its outer side were defined as the first defocus area arrangement portion 30 .
  • the plurality of defocus areas 20 are arranged in an equilateral triangle, and the shape of each defocus area 20 is spherical.
  • the diameter d of the defocus area 20 was set to 2.8 mm
  • the center-to-center distance a of the adjacent defocus areas 20 was set to 6 mm.
  • FIG. 6(b) is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 1.
  • FIG. 6B the line indicating the boundary between the base area 10 and the defocus area 20 is omitted.
  • the center of the circle with a diameter of 4 mm is included in the circle with a diameter of 4 mm when moving through the equilateral triangle range consisting of the centers of the three adjacent defocus areas 20.
  • the number of defocus areas 20 was calculated. That is, the number of defocus regions 20 included in the pupil range was calculated when the center of the pupil moved in the equilateral triangle range shown in FIG. 6(b).
  • FIG. 6(b) the line indicating the boundary between the base area 10 and the defocus area 20 is omitted.
  • the center of the circle with a diameter of 4 mm is included in the circle with a diameter of 4 mm when moving through the equilateral triangle range consisting of the centers of the three adjacent defocus areas 20.
  • the number of defocus areas 20 was
  • T indicates the center of the defocus area 20
  • a circle C1 centered at T indicates an area (area Z1A) in which one of the defocus areas 20 is entirely included within the pupillary range.
  • a circle C2 centered on T indicates a region (hereinafter referred to as region Z1B) in which 50% or more of one of the defocus regions 20 is included within the pupil range.
  • a circle C3 centered at T indicates an area (hereinafter referred to as area Z1C) in which 25% or more of one of the defocus areas 20 is included within the pupil range.
  • a circle C4 centered on T indicates a region (region Z1) in which one of the defocus regions 20 is included within the pupillary range. Then, the areas and ratios of the area Z1, the area Z2, the area Z3, the area Z0, the area Z1A, the area Z1B, and the area Z1C within the range of the equilateral triangle were calculated. Table 1 shows the results.
  • the area ratio of the region Z1 was 83.2344%, which was sufficiently large. Therefore, it was confirmed that the spectacle lens 100 according to Example 1 can efficiently increase the effect of suppressing progression of myopia.
  • FIG. 7A is a plan view of the object-side surface of the spectacle lens 100 according to Example 2.
  • the circumference with a radius of 4 mm from the center of the lens and the outer side thereof were used as the first defocus area arrangement portion 30 .
  • the plurality of defocus areas 20 are arranged in an equilateral triangle, and the shape of each defocus area 20 is spherical.
  • the diameter d of the defocus area 20 was set to 2.0 mm
  • the center-to-center distance a of the adjacent defocus areas 20 was set to 6 mm.
  • FIG. 7(b) is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 2.
  • FIG. 7B the line indicating the boundary between the base area 10 and the defocus area 20 is omitted.
  • the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 2 when the center of the circle with a diameter of 4 mm moves in an equilateral triangle range consisting of the centers of the three adjacent defocus areas 20, the area with a diameter of 4 mm The number of defocus areas 20 contained within the circle was calculated. That is, the number of defocus areas 20 included in the pupil range was calculated when the center of the pupil moved in the equilateral triangle range shown in FIG. 7(b).
  • FIG. 7(b) is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 2.
  • the line indicating the boundary between the base area 10 and the defocus area 20 is omitted.
  • T indicates the center of the defocus area 20
  • a circle C1 centered at T indicates an area (area Z1A) in which one of the defocus areas 20 is entirely included within the pupillary range.
  • a circle C2 centered on T indicates an area (area Z1B) in which 50% or more of one of the defocus areas 20 is included within the pupillary range.
  • a circle C4 centered on T indicates a region (region Z1) in which one of the defocus regions 20 is included within the pupillary range. Then, the areas and ratios of the area Z1, the area Z2, the area Z3, the area Z0, the area Z1A, and the area Z1B within the range of the equilateral triangle were calculated. Table 2 shows the results.
  • the area ratio of the region Z1 was 70.0006%, which was sufficiently large. Therefore, it was confirmed that the spectacle lens 100 according to Example 2 can also efficiently increase the effect of suppressing progression of myopia.
  • the spectacle lens 100 according to Example 2 had a larger area ratio of the region Z1A than the spectacle lens 100 according to Example 1. Therefore, it was confirmed that the spectacle lens 100 according to Example 2 may increase the effect of suppressing the progress of myopia compared to the spectacle lens 100 according to Example 1.
  • FIG. 8A is a plan view of the object-side surface of the spectacle lens 100 according to Example 3.
  • FIG. 3 the circumference with a radius of 13.7 mm from the center of the lens and its outer side were defined as the first defocus area arrangement portion 30 .
  • the plurality of defocus areas 20A are arranged in an equilateral triangle arrangement, and the shape of each defocus area 20A is spherical.
  • a portion surrounded by a circle with a radius of 4.7 mm and a circle with a radius of 13.7 mm from the center of the lens is defined as a second defocus area placement unit 40, and in the second defocus area placement unit 40, a plurality of defocus areas 20B are arranged in an equilateral triangle, and the shape of each defocus area 20B is spherical.
  • the diameter d of the defocus areas 20A was set to 2.8 mm
  • the center-to-center distance a of the adjacent defocus areas 20A was set to 5.7 mm.
  • the diameter d B of the defocus area 20B was set to 1.0 mm
  • the center-to-center distance a B of the adjacent defocus areas 20B was set to 1.5 mm.
  • FIG. 8(b) is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 3.
  • FIG. 8B the line indicating the boundary between the base area 10 and the defocus area 20 is omitted.
  • the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 3 when the center of the circle with a diameter of 4 mm moves in the equilateral triangle range consisting of the centers of the three adjacent defocus areas 20, the 4 mm diameter The number of defocus areas 20 contained within the circle was calculated. In other words, the number of defocus regions 20 included in the pupillary range was calculated when the center of the pupil moved in the equilateral triangular range shown in FIG. 8(b).
  • FIG. 8B the line indicating the boundary between the base area 10 and the defocus area 20 is omitted.
  • T indicates the center of the defocus area 20
  • a circle C1 centered at T indicates an area (area Z1A) in which one of the defocus areas 20 is entirely included within the pupillary range.
  • a circle C2 centered on T indicates an area (area Z1B) in which 50% or more of one of the defocus areas 20 is included within the pupillary range.
  • a circle C3 centered on T indicates a region (region Z1C) in which 25% or more of one of the defocus regions 20 is included within the pupillary range.
  • a circle C4 centered on T indicates a region (region Z1) in which one of the defocus regions 20 is included within the pupillary range.
  • the area ratio of the region Z1 was 71.3559%, which was sufficiently large. Therefore, it was confirmed that the spectacle lens 100 according to Example 3 can efficiently increase the effect of suppressing progression of myopia.
  • the spectacle lens 100 according to Example 3 has the second defocus area arrangement portion 40 at a position close to the lens center, compared to the spectacle lens 100 according to Examples 1 and 2, the spectacle lens It was confirmed that there is a possibility that the influence on the appearance of 100 can be reduced.
  • FIG. 9A is a plan view of the object-side surface of the spectacle lens 100 according to Example 4.
  • the circumference with a radius of 4.6 mm from the center of the lens and its outer side were defined as the first defocus area arrangement portion 30 .
  • the plurality of defocus areas 20 are arranged in a square (arrangement such that the center of each defocus area 20 is the vertex of the square), and the shape of each defocus area 20 is a spherical shape. did.
  • the diameter d of the defocus area 20 was set to 2.8 mm, and the center-to-center distance a of the adjacent defocus areas 20 was set to 6 mm.
  • FIG. 9(b) is an enlarged plan view of the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 4.
  • FIG. 9B the line indicating the boundary between the base region 10 and the defocus region 20 is omitted.
  • the first defocus area arrangement portion 30 of the spectacle lens 100 according to Example 4 when the center of the circle with a diameter of 4 mm moves in the square range formed by the centers of the four adjacent defocus areas 20, the circle with a diameter of 4 mm The number of defocus regions 20 contained within was calculated. That is, the number of defocus regions 20 included in the pupillary range was calculated when the center of the pupil moved in the square range shown in FIG. 9B.
  • FIG. 9B the number of defocus regions 20 included in the pupillary range was calculated when the center of the pupil moved in the square range shown in FIG. 9B.
  • T indicates the center of the defocus area 20
  • a circle C1 centered at T indicates an area (area Z1A) in which one of the defocus areas 20 is entirely included within the pupillary range.
  • a circle C2 centered on T indicates an area (area Z1B) in which 50% or more of one of the defocus areas 20 is included within the pupillary range.
  • a circle C3 centered on T indicates a region (region Z1C) in which 25% or more of one of the defocus regions 20 is included within the pupillary range.
  • a circle C4 centered on T indicates a region (region Z1) in which one of the defocus regions 20 is included within the pupillary range.
  • the area ratio of the region Z1 was 77.7181%, which was sufficiently large. Therefore, it was confirmed that the spectacle lens 100 according to Example 4 can efficiently increase the effect of suppressing progression of myopia.
  • the ratio of the area of the region Z0 was increased compared to the spectacle lenses 100 according to Examples 1, 2, and 3. Therefore, from the viewpoint of reducing the ratio of the area of the region Z0, it was confirmed that the arrangement mode of the plurality of defocus regions 20 in the first defocus region arrangement section 30 is preferably an equilateral triangle arrangement rather than a square arrangement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

物体側の面から入射した光束を眼球側の面から出射させ、眼球を介して網膜上に収束させるベース領域と、ベース領域と接するデフォーカス領域であって、デフォーカス領域の少なくとも一部を通過する光束が発散光として網膜に入射する性質を持つ複数のデフォーカス領域と、を備え、物体側の面を平面視した際、円内にデフォーカス領域がひとつしか含まれない直径4mmの円領域が存在するように、複数のデフォーカス領域が配置されている第1デフォーカス領域配置部を有する、眼鏡レンズ。

Description

眼鏡レンズ、および眼鏡レンズの設計方法
 本発明は、眼鏡レンズ、および眼鏡レンズの設計方法に関する。
 近視等の屈折異常の進行を抑制する眼鏡レンズとして、レンズ上複数の処方屈折力よりプラスの屈折力を持つ島状領域が形成されたものがある(例えば、特許文献1参照)。特許文献1に記載の態様の眼鏡レンズをDIMS(Defocus Incorporated Multiple Segments)眼鏡レンズ、略してDIMSとも呼ぶ。以下、この島状領域をデフォーカス領域と呼ぶ。
米国出願公開第2017/0131567号
 特許文献1に開示されている構成の眼鏡レンズによれば、物体側の面から入射し眼球側の面から出射する光束が、原則的には装用者の網膜上に焦点を結ぶが、デフォーカス領域の部分を通過した光束は網膜上よりも手前の位置で焦点を結ぶようになっており、これにより近視の進行が抑制されることになる。
 本発明の一実施形態は、近視進行抑制の効果を増大させることができる眼鏡レンズを提供することを目的とする。
 本発明の第1の態様は、
 物体側の面から入射した光束を眼球側の面から出射させ、眼球を介して網膜上に収束させるベース領域と、
 前記ベース領域と接するデフォーカス領域であって、前記デフォーカス領域の少なくとも一部を通過する光束が発散光として網膜に入射する性質を持つ複数のデフォーカス領域と、を備え、
 前記物体側の面を平面視した際、円内に前記デフォーカス領域がひとつしか含まれない直径4mmの円領域が存在するように、前記複数のデフォーカス領域が配置されている第1デフォーカス領域配置部を有する、眼鏡レンズである。
 本発明の第2の態様は、
 前記第1デフォーカス領域配置部は、前記眼鏡レンズの周辺部に設けられている、上記第1の態様に記載の眼鏡レンズである。
 本発明の第3の態様は、
 前記第1デフォーカス領域配置部において、前記物体側の面を平面視した際、前記デフォーカス領域をひとつしか含まない直径4mmの円の中心位置で形成される領域を領域Z1とした時、前記領域Z1の面積は、前記第1デフォーカス領域配置部の面積の25%以上である、上記第1または第2の態様に記載の眼鏡レンズである。
 本発明の第4の態様は、
 前記第1デフォーカス領域配置部において、隣り合う前記デフォーカス領域の中心間距離aと、前記デフォーカス領域の直径dとは、(d+4mm)/2<a<d+4mmを満たす、上記第1から第3のいずれか1つの態様に記載の眼鏡レンズである。
 本発明の第5の態様は、
 前記第1デフォーカス領域配置部において、前記デフォーカス領域の直径dは、1.5mm以上3mm以下である、上記第1から第4のいずれか1つの態様に記載の眼鏡レンズである。
 本発明の第6の態様は、
 前記第1デフォーカス領域配置部において、隣り合う前記デフォーカス領域の中心間距離aは、3mm超7mm未満である、上記第1から第5のいずれか1つの態様に記載の眼鏡レンズである。
 本発明の第7の態様は、
 眼鏡レンズは近視進行抑制レンズである、上記第1から第6のいずれか1つの態様に記載の眼鏡レンズである。
 本発明の第8の態様は、
 物体側の面から入射した光束を眼球側の面から出射させ、眼球を介して網膜上に収束させるベース領域と、
 前記ベース領域と接するデフォーカス領域であって、前記デフォーカス領域の少なくとも一部を通過する光束が発散光として網膜に入射する性質を持つ複数のデフォーカス領域と、を備えた眼鏡レンズの設計方法であって、
 前記物体側の面を平面視した際、の円内に前記デフォーカス領域がひとつしか含まれない直径4mmの円領域が存在するように、前記複数のデフォーカス領域を配置するデフォーカス領域設計工程を有する、眼鏡レンズの設計方法である。
 本発明の一実施形態によれば、近視進行抑制の効果を増大させることができる眼鏡レンズを提供することが可能となる。
図1は、特許文献1の図1に記載のDIMSを装用した際、周辺視野から眼に入射する光線が、網膜周辺部の後方にて集光する様子を示す図である。 図2は、本発明の一実施形態に係る眼鏡レンズを装用した際、周辺視野から眼に入射する光線が、網膜周辺部の後方にて集光する様子を示す図である。 図3は、本発明の第1実施形態に係る眼鏡レンズ100の物体側の面の平面図である。 図4(a)および図4(b)は、本発明の第1実施形態に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。 図5は、本発明の他の実施形態に係る眼鏡レンズ100の物体側の面の平面図である。 図6(a)は、実施例1に係る眼鏡レンズ100の物体側の面の平面図である。図6(b)は、実施例1に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。 図7(a)は、実施例2に係る眼鏡レンズ100の物体側の面の平面図である。図7(b)は、実施例2に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。 図8(a)は、実施例3に係る眼鏡レンズ100の物体側の面の平面図である。図8(b)は、実施例3に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。 図9(a)は、実施例4に係る眼鏡レンズ100の物体側の面の平面図である。図9(b)は、実施例4に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。
<発明者の得た知見>
 まず、発明者が得た知見について説明する。
 眼球は絶えず調節微動が働き、網膜にピントが合うように働く。調節を強める(網膜が後方に移動することに相当)と像のコントラストが高く、調節を弱める(網膜が前方に移動することに相当)と像のコントラストが低い場合、像が網膜の後ろにある。この信号が眼球伸長を速くするきっかけになると考えられる。この場合は近視進行が促進される。逆に調節を弱める(網膜が前方に移動することに相当)と像のコントラストが高く、調節を強める(網膜が後方に移動することに相当)と像のコントラストが低い場合、像が網膜の手前にある。この信号が眼球伸長を遅くするきっかけになると考えられる。
 つまり、調節微動による網膜像のコントラストの変化が、眼球の成長の速さに影響を及ぼすと考えられる。網膜像のコントラストは、光学系のPSF(Point spread function)によって決められる。PSFの広がる大きさ、つまりスポット(光斑)の大きさは網膜像コントラストを決める大きな要因である。
 図1は、特許文献1の図1に記載のDIMSを装用した際、周辺視野から眼に入射する光線が、網膜周辺部の後方にて集光する様子を示す図である。
 図1に示すように、特許文献1に記載のDIMSは、ベース領域10と、複数のデフォーカス領域20とを備えており、瞳孔範囲内に複数のデフォーカス領域20が入る設計になっている。個々のデフォーカス領域20を透過した光束には、網膜手前に収束するようなデフォーカスが与えられる。一方、複数のデフォーカス領域20を透過した複数の光束はベース領域10と眼のパワーにより所定の位置に集まり、全体的なスポット(Ds)を形成する。ここで、ベース領域10は、網膜中央部において、ベース領域10と眼を介して網膜上に像を形成するようにパワーが設定されているが、周辺網膜に入射する光線はベース領域10と眼を介して収束する位置が網膜より後方になる場合が多い。これは、網膜形状の曲率が、光学像面の曲率より大きいことによるものである。したがって、網膜周辺部における全体的なスポット(Ds)の径が最小になる位置も網膜の後方になる場合が多い。この状況では、調節を強める(網膜がRp2からRp1に移動するのに相当する)場合、瞳孔範囲内の複数のデフォーカス領域20による各スポットがそれぞれ大きくなると同時に分離するため、全体的なスポット(Ds)は大きくなる。これは、眼球が伸長すると像がぼやけるという状況であるため、眼球の伸長を抑える効果、つまり、近視進行抑制の効果が得られると考えられる。
 反対に、調節を弱める(網膜がRp2からRp3に移動するのに相当する)場合、瞳孔範囲内の複数のデフォーカス領域20による各スポットはそれぞれ小さくなるものの、各スポットが分離するため、全体的なスポット(Ds)は大きくなる。これは、眼球が収縮すると像がぼやけるという状況であるため、近視進行抑制の効果が得られない可能性がある。
 つまり、瞳孔範囲内に複数のデフォーカス領域20が存在する場合、眼軸の伸長をある程度抑制し、近視進行を抑えることはできるが、網膜周辺部において全体的なスポット(Ds)の径が最小になる位置が網膜より後方になるため、近視進行が逆転するように眼軸の伸長を抑制することはできない。この場合、調節微動によるコントラストの変化は、理論的には網膜をRp2の位置に近づけるように伸長を促すことになる。
 本発明者は、上述のような問題に対して鋭意検討を行った。その結果、瞳孔範囲内にデフォーカス領域がひとつしか入らないように眼鏡レンズを設計することで、近視進行抑制の効果を増大できることを見出した。
 図2は、本発明の一実施形態に係る眼鏡レンズを装用した際、周辺視野から眼に入射する光線が、網膜周辺部の後方にて集光する様子を示す図である。
 図2に示すように、本発明の一実施形態に係る眼鏡レンズでは、瞳孔範囲内にデフォーカス領域20がひとつしか入らないように、図1と比べてサイズの大きい複数のデフォーカス領域20がまばらに配置されている。この状況では、調節を強める(網膜がRp2からRp1に移動するのに相当する)場合、瞳孔範囲内のデフォーカス領域20によるスポットが大きくなる。これは、眼球が伸長すると像がぼやけるという状況であるため、近視進行抑制の効果が得られる。
 また、調節を弱める(網膜がRp2からRp3に移動するのに相当する)場合、瞳孔範囲内のデフォーカス領域20によるスポットは小さくなる。これも、眼球の伸長を抑制する状況であるため、近視進行抑制の効果が得られる。
 図1および図2のように周辺網膜に入射する光線の場合、調節なしの状態では像の位置Rp2は網膜の後方にあることが多い。この場合でも、調節微動によるコントラストの変化は、理論的には網膜をRp2より手前になるように、伸長を抑制することになる。
 本発明の一実施形態に係る眼鏡レンズでは、デフォーカス領域20により網膜手前に収束するようなデフォーカスを与えたにもかかわらず複数のデフォーカス領域20を通った光束全体により形成されるスポット(Ds)が最小となる位置が網膜後方になるという問題が生じないため、近視進行抑制の効果が損なわれることがなく、特許文献1に記載のDIMSと比べて、近視進行抑制の効果を増大させることができる。
[本発明の実施形態の詳細]
 次に、本発明の一実施形態を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 なお、本明細書に記載の無い内容は、特許文献1の記載が全て記載されているものとする。仮に特許文献1に記載の無い内容(特に製造方法に関する内容)は、WO2020/004551号公報の記載が全て記載されているものとする。特許文献1の記載内容と該公報の記載内容に齟齬がある場合は該公報の記載を優先する。
 本明細書で挙げる眼鏡レンズは、物体側の面と眼球側の面とを有する。「物体側の面」とは、眼鏡レンズを備えた眼鏡が装用者に装用された際に物体側に位置する表面であり、「眼球側の面」とは、その反対、すなわち眼鏡レンズを備えた眼鏡が装用者に装用された際に眼球側に位置する表面である。この関係は、眼鏡レンズの基礎となるレンズ基材においても当てはまる。つまり、レンズ基材も物体側の面と眼球側の面とを有する。
<本発明の第1実施形態>(1)眼鏡レンズ
 図3は、本実施形態の眼鏡レンズ100の物体側の面の平面図である。本実施形態の眼鏡レンズ100は、ベース領域10と、複数のデフォーカス領域20とを備えている。ベース領域10は、物体側の面から入射した光束を眼球側の面から出射させ、眼球を介して網膜上に収束させるように構成されている。デフォーカス領域20は、ベース領域10と接しており、デフォーカス領域20の少なくとも一部を通過する光束が発散光として網膜に入射する性質を持つように構成されている。
 ベース領域10は、装用者の処方屈折力を実現可能な形状の部分であり、特許文献1の第1の屈折領域に対応する部分である。
 デフォーカス領域20は、その領域の中の少なくとも一部がベース領域10による集光位置には集光させない領域である。デフォーカス領域20は、特許文献1の微小凸部に該当する部分である。本実施形態の眼鏡レンズ100は、特許文献1に記載の眼鏡レンズと同様、近視進行抑制レンズである。特許文献1の微小凸部と同様、本実施形態の複数のデフォーカス領域20は、眼鏡レンズ100の物体側の面または眼球側の面の少なくとも一方に形成されていればよい。本実施形態においては、眼鏡レンズ100の物体側の面のみに複数のデフォーカス領域20を設けた場合を例示する。
 デフォーカス領域20の表面形状は、特に限定されない。デフォーカス領域20は、球面形状、非球面形状、トーリック面形状、またはそれらが混在した形状であってもよい。本実施形態においては、デフォーカス領域20が球面形状である場合を例示する。
 眼鏡レンズ100が備える複数のデフォーカス領域20の個数は、特に限定されないが、例えば、20個以上500個以下である。
 複数のデフォーカス領域20は、例えば、島状に(つまり、互いに隣接することなく離間した状態で)配置されている。複数のデフォーカス領域20の配置態様は、特に限定されない。本実施形態においては、図3に示すように、各デフォーカス領域20の中心が正三角形の頂点となるように各々独立して離散配置されている場合(以下、正三角形配置ともいう)を例示する。
 特許文献1の図10に記載のように、眼鏡レンズ100の中央部にデフォーカス領域20を形成してもよいし、特許文献1の図1に記載のように、眼鏡レンズ100の中央部にデフォーカス領域20を形成しなくてもよい。本実施形態では、図3に示すように、眼鏡レンズ100の中央部にデフォーカス領域20を形成しない場合を例示する。なお、本明細書において、眼鏡レンズ100の中央部とは、眼鏡レンズ100のレンズ中心(幾何中心、光学中心、または芯取り中心)およびその近傍を意味する。本実施形態では、眼鏡レンズ100の装用者が正面視をした際の視線がレンズ中心を通過する場合を例示する。
 図3に示すように、眼鏡レンズ100は、第1デフォーカス領域配置部30を有している。第1デフォーカス領域配置部30は、例えば、眼鏡レンズ100のレンズ中心を中心とし、最もレンズ中心に近いデフォーカス領域20に接する円周から、最もレンズ中心に遠いデフォーカス領域20に接する円周までの部分としてもよい。第1デフォーカス領域配置部30には、眼鏡レンズ100の物体側の面を平面視した際、円内にデフォーカス領域20がひとつしか含まれない直径4mmの円領域が存在するように、複数のデフォーカス領域20が配置されている。ここで、直径4mmの円領域とは、装用者の瞳孔範囲内を表現したものである。つまり、第1デフォーカス領域配置部30とは、瞳孔範囲内にデフォーカス領域20がひとつしか含まれないようにする意図で設計されたものである。これにより、複数のデフォーカス領域20を通過した光束全体によるスポット(Ds)が網膜後方に形成されることがなく近視進行抑制の効果が得られるため、近視進行抑制の効果を増大させることができる。
 第1デフォーカス領域配置部30において、物体側の面を平面視した際、必ずしもすべての直径4mmの円内にひとつしかデフォーカス領域20を含まれないように、デフォーカス領域20を配置する必要はない。近視進行抑制の効果を効率的に増大させる観点からは、円内にひとつしかデフォーカス領域20を含まれない直径4mmの円の中心位置から生成される領域が、第1デフォーカス領域配置部30のうち、25%以上(より好ましくは50%以上、さらに好ましくは70%以上)占めることが好ましい。
 第1デフォーカス領域配置部30は眼鏡レンズ100の周辺部に設けられていることが好ましい。なお、本明細書において、眼鏡レンズ100の周辺部とは、眼鏡レンズ100の装用者が日常的な視覚挙動の範囲で眼球回旋を行った際に、網膜の中心を通る光がレンズを通過する領域よりも外側の領域を意味する。つまり、日常的な視覚挙動の範囲においては、眼鏡レンズ100の周辺部を通過する光は、常に網膜周辺部に到達する。具体的には、眼鏡レンズ100の周辺部とは、例えば、眼鏡レンズ100の物体側の面を平面視した際、レンズ中心から直径10mm(または20mm)の円周およびその外側の領域としてもよい。近視進行抑制においては、網膜周辺部に到達する光の影響が大きいため、眼鏡レンズ100の周辺部に第1デフォーカス領域配置部30を設けることで、近視進行抑制の効果を増大させることができる。また、眼鏡レンズ100の周辺部は、日常的な視覚挙動の範囲内では周辺視野の領域となるため、眼鏡レンズ100の周辺部に第1デフォーカス領域配置部30を設けることで、デフォーカス領域20が配置されていることによる、眼鏡レンズ100の見え方への影響を小さくすることができる。
 図4(a)および図4(b)は、本実施形態の眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。図4(a)および図4(b)では、複数のデフォーカス領域20は正三角形配置となっており、隣接する3つのデフォーカス領域20以外を省略している。第1デフォーカス領域配置部30において、物体側の面を平面視した際、直径4mmの円内に含まれるデフォーカス領域20の数は、直径4mmの円の中心位置(つまり、瞳孔中心に相当)によって変化する。そこで、直径4mmの円の中心が、隣接する3つのデフォーカス領域20の中心からなる正三角形範囲を移動する際、直径4mmの円内に含まれるデフォーカス領域20の数を計算する。つまり、瞳孔の中心が、該正三角形範囲を移動する際、瞳孔範囲内に含まれるデフォーカス領域20の数を計算する。以下、デフォーカス領域20の直径をd、隣り合うデフォーカス領域20の中心間距離をa、瞳孔径をD(=4mm)とする。
 隣り合うデフォーカス領域20の中心間距離aが、(D+d)/2<a<(D+d)を満たす場合、図4(a)に示すように、デフォーカス領域20αの中心Aから半径r=(D+d)/2の扇型領域内に瞳孔中心がある場合、瞳孔範囲内にデフォーカス領域20αの少なくとも一部が含まれる。また、デフォーカス領域20βの中心Bから半径r=(D+d)/2の扇型領域内に瞳孔中心がある場合、瞳孔範囲内にデフォーカス領域20βの少なくとも一部が含まれる。また、デフォーカス領域20γの中心Cから半径r=(D+d)/2の扇型領域内に瞳孔中心がある場合、瞳孔範囲内にデフォーカス領域20γの少なくとも一部が含まれる。したがって、3つの扇形領域が重なる領域Z3は、瞳孔範囲内にデフォーカス領域20を3つ含む瞳孔中心位置で形成される領域である。また、2つの扇形領域が重なる領域Z2は、瞳孔範囲内にデフォーカス領域20を2つ含む瞳孔中心位置で形成される領域である。また、扇形領域が重ならない領域Z1は、瞳孔範囲内にデフォーカス領域20をひとつしか含まない瞳孔中心位置で形成される領域である。
 図4(b)に示すように、デフォーカス領域20の直径d、および隣り合うデフォーカス領域20の中心間距離aの値によっては、領域Z3が存在せず、どの扇型領域にも含まれない領域Z0が存在する場合がある。つまり、領域Z0は、瞳孔範囲内にデフォーカス領域20がひとつも含まれない瞳孔中心位置で形成される領域である。また、図4(b)に示すように、デフォーカス領域20αの中心から半径r=(D-d)/2の扇型領域内に瞳孔中心がある場合、瞳孔範囲内にデフォーカス領域20αの全部が含まれる。このように、領域Z1のうち、瞳孔範囲内にデフォーカス領域20のひとつが全部含まれる瞳孔中心位置で形成される領域を領域Z1Aとする。
 近視進行抑制の効果を効率的に増大させる観点からは、第1デフォーカス領域配置部30において、領域Z1の割合が大きいことが好ましい。また、領域Z2、領域Z3、および領域Z0の割合が小さいことが好ましい。また、領域Z1のうち、領域Z1Aの割合が大きいことが好ましい。
 第1デフォーカス領域配置部30において、領域Z1(つまり、物体側の面を平面視した際、デフォーカス領域20をひとつしか含まない直径4mmの円の中心位置で形成される領域)の面積は、第1デフォーカス領域配置部30の面積の25%以上(より好ましくは50%以上)であることが好ましい。これにより、近視進行抑制の効果を増大させることができる。なお、第1デフォーカス領域配置部30および領域Z1の面積を算出する際は、隣接する複数のデフォーカス領域20の中心からなる多角形範囲内(本実施形態では、隣接する3つのデフォーカス領域20の中心からなる正三角形範囲内)を、第1デフォーカス領域配置部30全体に適用してもよい。領域Z2、領域Z3、領域Z0、および領域Z1Aの面積を算出する際も同様である。
 第1デフォーカス領域配置部30において、領域Z2(つまり、物体側の面を平面視した際、デフォーカス領域20を2つ含む直径4mmの円の中心位置で形成される領域)の面積は、第1デフォーカス領域配置部30の面積の50%以下であることが好ましい。これにより、近視進行抑制の効果を増大させることができる。
 第1デフォーカス領域配置部30において、領域Z3(つまり、物体側の面を平面視した際、デフォーカス領域20を3つ以上含む直径4mmの円の中心位置で形成される領域)の面積は、第1デフォーカス領域配置部30の面積の20%以下であることが好ましい。これにより、近視進行抑制の効果を増大させることができる。
 第1デフォーカス領域配置部30において、領域Z0(つまり、物体側の面を平面視した際、デフォーカス領域20がひとつも含まれない直径4mmの円の中心位置で形成される領域)の面積は、第1デフォーカス領域配置部30の面積の10%以下(より好ましくは5%以下、さらに好ましくは0%)であることが好ましい。これにより、近視進行抑制の効果を増大させることができる。
 第1デフォーカス領域配置部30において、領域Z1A(つまり、物体側の面を平面視した際、デフォーカス領域20のひとつが全部含まれる直径4mmの円の中心位置で形成される領域)の面積は、領域Z1の面積の3%以上(より好ましくは5%以上、さらに好ましくは10%以上)であることが好ましい。これにより、近視進行抑制の効果を増大させることができる。
 第1デフォーカス領域配置部30において、隣り合うデフォーカス領域20の中心間距離aと、デフォーカス領域の直径dとは、(d+4mm)/2<a<d+4mm(つまり、(D+d)/2<a<D+d)を満たすことが好ましい。これにより、第1デフォーカス領域配置部30において、領域Z1の割合を充分に大きくし、かつ、領域Z2、領域Z3、および領域Z0の割合を充分に小さくすることができる。したがって、近視進行抑制の効果を増大させることができる。
 第1デフォーカス領域配置部30において、デフォーカス領域20の直径dは、1.5mm以上3mm以下であることが好ましい。直径dが1.5mm未満では、瞳孔範囲内におけるデフォーカス領域20の面積の割合が小さくなりすぎるため、近視進行抑制の効果が減少する可能性がある。これに対し、直径dを1.5mm以上とすることで、瞳孔範囲内におけるデフォーカス領域20の面積の割合が適度に大きくなるため、近視進行抑制の効果を増大させることができる。一方、直径dが3mmを超えると、瞳孔範囲内におけるデフォーカス領域20の面積の割合が大きくなり過ぎるため、眼鏡レンズ100の見え方に影響を及ぼす可能性がある。これに対し、直径dを3mm以下とすることで、瞳孔範囲内におけるデフォーカス領域20の面積の割合が適度に小さくなるため、眼鏡レンズ100の見え方への影響を低減することができる。
 第1デフォーカス領域配置部30において、隣り合うデフォーカス領域20の中心間距離aは、3mm超7mm未満であることが好ましい。中心間距離aが3mm以下では、第1デフォーカス領域配置部30における、領域Z2および領域Z3の割合が大きくなるため、近視進行抑制の効果が減少する可能性がある。これに対し、中心間距離aを3mm超とすることで、第1デフォーカス領域配置部30における、領域Z2および領域Z3の割合が小さくなるため、近視進行抑制の効果を増大させることができる。一方、中心間距離aが7mm以上では、第1デフォーカス領域配置部30における、領域Z0の割合が大きくなるため、近視進行抑制の効果が減少する可能性がある。これに対し、中心間距離aを7mm未満とすることで、第1デフォーカス領域配置部30における、領域Z0の割合が小さくなるため、近視進行抑制の効果を増大させることができる。
(2)眼鏡レンズの設計方法
 本発明は、眼鏡レンズ100の設計方法にも適用可能である。本実施形態の眼鏡レンズ100の設計方法は、物体側の面から入射した光束を眼球側の面から出射させ、眼球を介して網膜上に収束させるベース領域10と、ベース領域10と接するデフォーカス領域20であって、デフォーカス領域20の少なくとも一部を通過する光束が発散光として網膜に入射する性質を持つ複数のデフォーカス領域20と、を備えた眼鏡レンズ100の設計方法であって、物体側の面を平面視した際、円内にデフォーカス領域20がひとつしか含まれない直径4mmの円領域が存在するように、複数のデフォーカス領域20を配置するデフォーカス領域設計工程を有する、眼鏡レンズの設計方法である。つまり、デフォーカス領域設計工程とは、上述した第1デフォーカス領域配置部30を設計する工程である。デフォーカス領域設計工程の詳細は、上述の(1)眼鏡レンズと記載内容が重複するため省略する。
<本発明の第2実施形態>
 続いて、本発明の第2実施形態について、第1実施形態と異なる点を中心に説明する。第1実施形態で説明した要素と実質的に同一の要素には、同一の符号を付してその説明を省略する。
 図5は、本発明の第2実施形態に係る眼鏡レンズ100の物体側の面の平面図である。図5に示すように、本実施形態の眼鏡レンズ100は、第1デフォーカス領域配置部30と、第2デフォーカス領域配置部40とを有している。第2デフォーカス領域配置部40は、第1デフォーカス領域配置部30よりレンズ中心に近い部分に設けられており、眼鏡レンズ100の物体側の面を平面視した際、直径4mmの円内にデフォーカス領域20が複数(例えば、4個以上7個以下)含まれるように、複数のデフォーカス領域20が配置されている領域である。以下、眼鏡レンズ100が備える複数のデフォーカス領域20のうち、眼鏡レンズ100の物体側の面を平面視した際、直径4mmの円内にデフォーカス領域20がひとつしか含まれないように配置されたデフォーカス領域20をデフォーカス領域20Aとし、直径4mmの円内にデフォーカス領域20が複数(例えば、4個以上7個以下)含まれるように配置されたデフォーカス領域20をデフォーカス領域20Bとして区別する。
 本実施形態では、第1デフォーカス領域配置部30は、例えば、眼鏡レンズ100のレンズ中心を中心とし、最もレンズ中心に近いデフォーカス領域20Aに接する円周から、最もレンズ中心から遠いデフォーカス領域20Aに接する円周までの部分としてもよい。また、第2デフォーカス領域配置部40は、例えば、眼鏡レンズ100のレンズ中心を中心とし、最もレンズ中心に近いデフォーカス領域20Bに接する円周から、最もレンズ中心から遠いデフォーカス領域20Bに接する円周までの部分としてもよい。
 第2デフォーカス領域配置部40におけるデフォーカス領域20Bの直径dは、第1デフォーカス領域配置部30におけるデフォーカス領域20Aの直径dより小さい。また、第2デフォーカス領域配置部40における隣り合うデフォーカス領域20Bの中心間距離aは、第1デフォーカス領域配置部30における隣り合うデフォーカス領域20Aの中心間距離aより小さい。具体的には、第2デフォーカス領域配置部40において、デフォーカス領域20Bの直径dは、例えば、0.6mm以上1.5mm以下であり、隣り合うデフォーカス領域20Bの中心間距離aは、例えば、1.0mm以上2.0mm以下である。
 本実施形態の眼鏡レンズ100では、レンズ中心に近い位置に第2デフォーカス領域配置部40が設けられている。また、第2デフォーカス領域配置部40では、第1デフォーカス領域配置部30に比べて、サイズの小さい複数のデフォーカス領域20Bが密に配置されている。そのため、第2デフォーカス領域配置部40は、第1デフォーカス領域配置部30に比べて、眼鏡レンズ100の見え方へ与える影響が小さい可能性がある。したがって、本実施形態の眼鏡レンズ100は、上述した第1実施形態の眼鏡レンズ100と比べて、眼鏡レンズ100の見え方への影響を小さくすることができる可能性がある。また、本実施形態の眼鏡レンズ100は、上述した第1実施形態の眼鏡レンズ100と同様に、眼鏡レンズ100の周辺部に第1デフォーカス領域配置部30が設けられているため、近視進行抑制の効果を増大させることができる。
<本発明の他の実施形態>
 以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上述の実施形態では、第1デフォーカス領域配置部30における複数のデフォーカス領域20の直径dおよび中心間距離aが一定である場合について説明したが、第1デフォーカス領域配置部30において、複数のデフォーカス領域20の直径dや中心間距離aを変化させてもよい。具体的には、例えば、眼鏡レンズ100のレンズ中心から周辺部に向かうほど、デフォーカス領域20の直径dおよび中心間距離aを増加させてもよい。
 次に、本発明に係る実施例を説明する。これらの実施例は本発明の一例であって、本発明はこれらの実施例により限定されない。
(実施例1)
 図6(a)は、実施例1に係る眼鏡レンズ100の物体側の面の平面図である。実施例1では、レンズ中心から半径4.6mmの円周およびその外側を、第1デフォーカス領域配置部30とした。第1デフォーカス領域配置部30において、複数のデフォーカス領域20を正三角形配置とし、各デフォーカス領域20の形状は球面形状とした。また、デフォーカス領域20の直径dを2.8mmとし、隣り合うデフォーカス領域20の中心間距離aを6mmとした。
 図6(b)は、実施例1に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。図6(b)においては、ベース領域10とデフォーカス領域20との境界を示す線を省略している。眼鏡レンズ100の第1デフォーカス領域配置部30において、直径4mmの円の中心が、隣接する3つのデフォーカス領域20の中心からなる正三角形範囲を移動する際、直径4mmの円内に含まれるデフォーカス領域20の数を計算した。つまり、瞳孔の中心が、図6(b)に示す正三角形範囲を移動する際、瞳孔範囲内に含まれるデフォーカス領域20の数を計算した。図6(b)において、Tはデフォーカス領域20の中心を示し、Tを中心とした円C1は、瞳孔範囲内にデフォーカス領域20のひとつが全部含まれる領域(領域Z1A)を示している。また、Tを中心とした円C2は、瞳孔範囲内にデフォーカス領域20のひとつの50%以上が含まれる領域(以下、領域Z1Bとする)を示している。また、Tを中心とした円C3は、瞳孔範囲内にデフォーカス領域20のひとつの25%以上が含まれる領域(以下、領域Z1Cとする)を示している。また、Tを中心とした円C4は、瞳孔範囲内にデフォーカス領域20のひとつが含まれる領域(領域Z1)を示している。そして、該正三角形範囲内の領域Z1、領域Z2、領域Z3、領域Z0、領域Z1A、領域Z1B、および領域Z1Cの面積および割合を算出した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1に係る眼鏡レンズ100は、領域Z1の面積の割合が83.2344%であり、充分に大きかった。したがって、実施例1に係る眼鏡レンズ100は、近視進行抑制の効果を効率的に増大させることができることを確認した。
(実施例2)
 図7(a)は、実施例2に係る眼鏡レンズ100の物体側の面の平面図である。実施例2では、レンズ中心から半径4mmの円周およびその外側を、第1デフォーカス領域配置部30とした。第1デフォーカス領域配置部30において、複数のデフォーカス領域20を正三角形配置とし、各デフォーカス領域20の形状は球面形状とした。また、デフォーカス領域20の直径dを2.0mmとし、隣り合うデフォーカス領域20の中心間距離aを6mmとした。
 図7(b)は、実施例2に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。図7(b)においては、ベース領域10とデフォーカス領域20との境界を示す線を省略している。実施例2に係る眼鏡レンズ100の第1デフォーカス領域配置部30において、直径4mmの円の中心が、隣接する3つのデフォーカス領域20の中心からなる正三角形範囲を移動する際、直径4mmの円内に含まれるデフォーカス領域20の数を計算した。つまり、瞳孔の中心が、図7(b)に示す正三角形範囲を移動する際、瞳孔範囲内に含まれるデフォーカス領域20の数を計算した。図7(b)において、Tはデフォーカス領域20の中心を示し、Tを中心とした円C1は、瞳孔範囲内にデフォーカス領域20のひとつが全部含まれる領域(領域Z1A)を示している。また、Tを中心とした円C2は、瞳孔範囲内にデフォーカス領域20のひとつの50%以上が含まれる領域(領域Z1B)を示している。また、Tを中心とした円C4は、瞳孔範囲内にデフォーカス領域20のひとつが含まれる領域(領域Z1)を示している。そして、該正三角形範囲内の領域Z1、領域Z2、領域Z3、領域Z0、領域Z1A、および領域Z1Bの面積および割合を算出した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例2に係る眼鏡レンズ100は、領域Z1の面積の割合が70.0006%であり、充分に大きかった。したがって、実施例2に係る眼鏡レンズ100も、近視進行抑制の効果を効率的に増大させることができることを確認した。また、実施例2に係る眼鏡レンズ100は、実施例1に係る眼鏡レンズ100と比べて、領域Z1Aの面積の割合が大きくなっていた。したがって、実施例2に係る眼鏡レンズ100は、実施例1に係る眼鏡レンズ100と比べて、近視進行抑制の効果を増大させることができる可能性があることを確認した。
(実施例3)
 図8(a)は、実施例3に係る眼鏡レンズ100の物体側の面の平面図である。実施例3では、レンズ中心から半径13.7mmの円周およびその外側を、第1デフォーカス領域配置部30とした。第1デフォーカス領域配置部30において、複数のデフォーカス領域20Aを正三角形配置とし、各デフォーカス領域20Aの形状は球面形状とした。また、レンズ中心から半径4.7mmの円および半径13.7mmの円で囲まれた部分を、第2デフォーカス領域配置部40とし、第2デフォーカス領域配置部40において、複数のデフォーカス領域20Bを正三角形配置とし、各デフォーカス領域20Bの形状は球面形状とした。第1デフォーカス領域配置部30における、デフォーカス領域20Aの直径dを2.8mmとし、隣り合うデフォーカス領域20Aの中心間距離aを5.7mmとした。また、第2デフォーカス領域配置部40における、デフォーカス領域20Bの直径dを1.0mmとし、隣り合うデフォーカス領域20Bの中心間距離aを1.5mmとした。
 図8(b)は、実施例3に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。図8(b)においては、ベース領域10とデフォーカス領域20との境界を示す線を省略している。実施例3に係る眼鏡レンズ100の第1デフォーカス領域配置部30において、直径4mmの円の中心が、隣接する3つのデフォーカス領域20の中心からなる正三角形範囲を移動する際、直径4mmの円内に含まれるデフォーカス領域20の数を計算した。つまり、瞳孔の中心が、図8(b)に示す正三角形範囲を移動する際、瞳孔範囲内に含まれるデフォーカス領域20の数を計算した。図8(b)において、Tはデフォーカス領域20の中心を示し、Tを中心とした円C1は、瞳孔範囲内にデフォーカス領域20のひとつが全部含まれる領域(領域Z1A)を示している。また、Tを中心とした円C2は、瞳孔範囲内にデフォーカス領域20のひとつの50%以上が含まれる領域(領域Z1B)を示している。また、Tを中心とした円C3は、瞳孔範囲内にデフォーカス領域20のひとつの25%以上が含まれる領域(領域Z1C)を示している。また、Tを中心とした円C4は、瞳孔範囲内にデフォーカス領域20のひとつが含まれる領域(領域Z1)を示している。そして、該正三角形範囲内の領域Z1、領域Z2、領域Z3、領域Z0、領域Z1A、領域Z1B、および領域Z1Cの面積および割合を算出した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例3に係る眼鏡レンズ100は、領域Z1の面積の割合が71.3559%であり、充分に大きかった。したがって、実施例3に係る眼鏡レンズ100は、近視進行抑制の効果を効率的に増大させることができることを確認した。また、実施例3に係る眼鏡レンズ100は、レンズ中心に近い位置に第2デフォーカス領域配置部40を設けているため、実施例1および実施例2に係る眼鏡レンズ100と比べて、眼鏡レンズ100の見え方への影響を小さくすることができる可能性があることを確認した。
(実施例4)
 図9(a)は、実施例4に係る眼鏡レンズ100の物体側の面の平面図である。実施例4では、レンズ中心から半径4.6mmの円周およびその外側を、第1デフォーカス領域配置部30とした。第1デフォーカス領域配置部30において、複数のデフォーカス領域20を正方形配置(各デフォーカス領域20の中心が正方形の頂点となるような配置)とし、各デフォーカス領域20の形状は球面形状とした。また、デフォーカス領域20の直径dを2.8mmとし、隣り合うデフォーカス領域20の中心間距離aを6mmとした。
 図9(b)は、実施例4に係る眼鏡レンズ100の第1デフォーカス領域配置部30の拡大平面図である。図9(b)においては、ベース領域10とデフォーカス領域20との境界を示す線を省略している。実施例4に係る眼鏡レンズ100の第1デフォーカス領域配置部30において、直径4mmの円の中心が、隣接する4つのデフォーカス領域20の中心からなる正方形範囲を移動する際、直径4mmの円内に含まれるデフォーカス領域20の数を計算した。つまり、瞳孔の中心が、図9(b)に示す正方形範囲を移動する際、瞳孔範囲内に含まれるデフォーカス領域20の数を計算した。図9(b)において、Tはデフォーカス領域20の中心を示し、Tを中心とした円C1は、瞳孔範囲内にデフォーカス領域20のひとつが全部含まれる領域(領域Z1A)を示している。また、Tを中心とした円C2は、瞳孔範囲内にデフォーカス領域20のひとつの50%以上が含まれる領域(領域Z1B)を示している。また、Tを中心とした円C3は、瞳孔範囲内にデフォーカス領域20のひとつの25%以上が含まれる領域(領域Z1C)を示している。また、Tを中心とした円C4は、瞳孔範囲内にデフォーカス領域20のひとつが含まれる領域(領域Z1)を示している。そして、該正方形範囲内の領域Z1、領域Z2、領域Z3、領域Z0、領域Z1A、領域Z1B、および領域Z1Cの面積および割合を算出した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例4に係る眼鏡レンズ100は、領域Z1の面積の割合が77.7181%であり、充分に大きかった。したがって、実施例4に係る眼鏡レンズ100は、近視進行抑制の効果を効率的に増大させることができることを確認した。しかしながら、実施例4に係る眼鏡レンズ100は、実施例1、実施例2および実施例3に係る眼鏡レンズ100と比べて、領域Z0の面積の割合が大きくなってしまった。したがって、領域Z0の面積の割合を小さくする観点では、第1デフォーカス領域配置部30における複数のデフォーカス領域20の配置態様は、正方形配置より、正三角形配置が好ましいことを確認した。
10 ベース領域
20、20A、20B デフォーカス領域
30 第1デフォーカス領域配置部
40 第2デフォーカス領域配置部
100 眼鏡レンズ

Claims (8)

  1.  物体側の面から入射した光束を眼球側の面から出射させ、眼球を介して網膜上に収束させるベース領域と、
     前記ベース領域と接するデフォーカス領域であって、前記デフォーカス領域の少なくとも一部を通過する光束が発散光として網膜に入射する性質を持つ複数のデフォーカス領域と、を備え、
     前記物体側の面を平面視した際、円内に前記デフォーカス領域がひとつしか含まれない直径4mmの円領域が存在するように、前記複数のデフォーカス領域が配置されている第1デフォーカス領域配置部を有する、眼鏡レンズ。
  2.  前記第1デフォーカス領域配置部は、前記眼鏡レンズの周辺部に設けられている、請求項1に記載の眼鏡レンズ。
  3.  前記第1デフォーカス領域配置部において、前記物体側の面を平面視した際、前記デフォーカス領域をひとつしか含まない直径4mmの円の中心位置で形成される領域を領域Z1とした時、前記領域Z1の面積は、前記第1デフォーカス領域配置部の面積の25%以上である、請求項1または請求項2に記載の眼鏡レンズ。
  4.  前記第1デフォーカス領域配置部において、隣り合う前記デフォーカス領域の中心間距離aと、前記デフォーカス領域の直径dとは、(d+4mm)/2<a<d+4mmを満たす、請求項1から請求項3のいずれか1項に記載の眼鏡レンズ。
  5.  前記第1デフォーカス領域配置部において、前記デフォーカス領域の直径dは、1.5mm以上3mm以下である、請求項1から請求項4のいずれか1項に記載の眼鏡レンズ。
  6.  前記第1デフォーカス領域配置部において、隣り合う前記デフォーカス領域の中心間距離aは、3mm超7mm未満である、請求項1から請求項5のいずれか1項に記載の眼鏡レンズ。
  7.  眼鏡レンズは近視進行抑制レンズである、請求項1から請求項6のいずれか1項に記載の眼鏡レンズ。
  8.  物体側の面から入射した光束を眼球側の面から出射させ、眼球を介して網膜上に収束させるベース領域と、
     前記ベース領域と接するデフォーカス領域であって、前記デフォーカス領域の少なくとも一部を通過する光束が発散光として網膜に入射する性質を持つ複数のデフォーカス領域と、を備えた眼鏡レンズの設計方法であって、
     前記物体側の面を平面視した際、円内に前記デフォーカス領域がひとつしか含まれない直径4mmの円領域が存在するように、前記複数のデフォーカス領域を配置するデフォーカス領域設計工程を有する、眼鏡レンズの設計方法。
PCT/JP2022/000620 2021-03-22 2022-01-12 眼鏡レンズ、および眼鏡レンズの設計方法 WO2022201749A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/282,973 US20240168313A1 (en) 2021-03-22 2022-01-12 Spectacle lens and method for designing spectacle lens
KR1020237023656A KR20230159361A (ko) 2021-03-22 2022-01-12 안경 렌즈 및 안경 렌즈의 설계 방법
CN202280011189.7A CN116783542A (zh) 2021-03-22 2022-01-12 眼镜镜片及眼镜镜片的设计方法
EP22774554.4A EP4318100A1 (en) 2021-03-22 2022-01-12 Spectacle lens and method for designing spectacle lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021047163A JP2022146279A (ja) 2021-03-22 2021-03-22 眼鏡レンズ、および眼鏡レンズの設計方法
JP2021-047163 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022201749A1 true WO2022201749A1 (ja) 2022-09-29

Family

ID=83396821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000620 WO2022201749A1 (ja) 2021-03-22 2022-01-12 眼鏡レンズ、および眼鏡レンズの設計方法

Country Status (6)

Country Link
US (1) US20240168313A1 (ja)
EP (1) EP4318100A1 (ja)
JP (1) JP2022146279A (ja)
KR (1) KR20230159361A (ja)
CN (1) CN116783542A (ja)
WO (1) WO2022201749A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131567A1 (en) 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
CN110426860A (zh) * 2019-08-02 2019-11-08 上海伟星光学有限公司 一种新优学多焦点聚氨酯镜片的制造方法
WO2020004551A1 (ja) 2018-06-29 2020-01-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
WO2020078693A1 (en) * 2018-10-17 2020-04-23 Essilor International Optical articles having embossed films defining encapsulated microlenses and methods of making the same
JP2021005081A (ja) * 2019-06-25 2021-01-14 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズおよびその設計方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3693737B1 (en) 2015-03-27 2022-03-30 Agilent Technologies, Inc. Method and system for determining integrated metabolic baseline and potential of living cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131567A1 (en) 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
WO2020004551A1 (ja) 2018-06-29 2020-01-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
WO2020078693A1 (en) * 2018-10-17 2020-04-23 Essilor International Optical articles having embossed films defining encapsulated microlenses and methods of making the same
JP2021005081A (ja) * 2019-06-25 2021-01-14 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズおよびその設計方法
CN110426860A (zh) * 2019-08-02 2019-11-08 上海伟星光学有限公司 一种新优学多焦点聚氨酯镜片的制造方法

Also Published As

Publication number Publication date
CN116783542A (zh) 2023-09-19
EP4318100A1 (en) 2024-02-07
US20240168313A1 (en) 2024-05-23
KR20230159361A (ko) 2023-11-21
JP2022146279A (ja) 2022-10-05

Similar Documents

Publication Publication Date Title
JP4891249B2 (ja) 光学的治療方法
US11061253B2 (en) Ophthalmic lenses for reducing, minimizing, and/or eliminating interference on in-focus images by out-of-focus light
JP4652576B2 (ja) 虹輪視の寸法を減少させる多重焦点眼用レンズ
JP5041739B2 (ja) 眼内レンズ
KR20150015046A (ko) 광학적으로 조절되는 주변 부분을 갖는 렌즈 및 상기 렌즈의 설계 및 제조 방법
JP2013537317A (ja) 近視の進行を遅らせる方法及びシステム
JP2008514318A5 (ja)
US20200121450A1 (en) High definition and extended depth of field intraocular lens
WO2021186878A1 (ja) 眼鏡レンズ
JP2023539150A (ja) 眼疾患の管理および/または暗視障害の軽減のための眼用デバイス、システムおよび/または方法
US20230010847A1 (en) High definition and extended depth of field intraocular lens
JP2024019463A (ja) 眼用レンズ用の多重曲率エッジ
TW202138877A (zh) 具有輔助光學元件之眼鏡鏡片
WO2022201749A1 (ja) 眼鏡レンズ、および眼鏡レンズの設計方法
US20220206320A1 (en) Optical frame glasses
US20190231518A1 (en) High definition and extended depth of field intraocular lens
CN213423626U (zh) 一种新型隐形眼镜
US20200341296A1 (en) Aspheric lens capable of using monocular retinal rivalry to control axial length grown rate
JP2019518999A (ja) 眼用レンズ、および、その製造方法
WO2020202081A1 (en) Contact lens and method to prevent myopia progression
CN115053171A (zh) 眼镜镜片
JP2016212163A (ja) 眼軸長さ変化抑制型視力矯正レンズ
JP2022527224A (ja) 高精細および焦点深度拡張型の眼内レンズ
WO2020194713A1 (ja) 眼科用レンズ及び眼科用レンズの製造方法
KR20230039744A (ko) 안경 렌즈 및 그 설계 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011189.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11202305404Q

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 18282973

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022774554

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774554

Country of ref document: EP

Effective date: 20231023