JP2022527224A - 高精細および焦点深度拡張型の眼内レンズ - Google Patents

高精細および焦点深度拡張型の眼内レンズ Download PDF

Info

Publication number
JP2022527224A
JP2022527224A JP2021560613A JP2021560613A JP2022527224A JP 2022527224 A JP2022527224 A JP 2022527224A JP 2021560613 A JP2021560613 A JP 2021560613A JP 2021560613 A JP2021560613 A JP 2021560613A JP 2022527224 A JP2022527224 A JP 2022527224A
Authority
JP
Japan
Prior art keywords
intraocular lens
virtual aperture
lens according
optical
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021560613A
Other languages
English (en)
Inventor
ジェイ サーバー,エドウィン
ジェイ シムズ,ジェイムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Z Optics Inc
Original Assignee
Z Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/380,622 external-priority patent/US11547554B2/en
Application filed by Z Optics Inc filed Critical Z Optics Inc
Publication of JP2022527224A publication Critical patent/JP2022527224A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • A61F2/1618Multifocal lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/1681Intraocular lenses having supporting structure for lens, e.g. haptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/16965Lens includes ultraviolet absorber
    • A61F2002/1699Additional features not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • A61F2009/00889Capsulotomy

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Prostheses (AREA)

Abstract

眼内レンズに組み込まれた仮想開口を開示する。仮想開口と交差する光線は、網膜上に広く散乱され、光線が網膜上で検出可能なレベルに達するのを事実上阻止する。仮想開口の使用は、単色収差および色収差の除去に役立ち、高精細な網膜像を得ることができる。許容できる視力についての既知の定義では、大きい直径の光学ゾーンの方が、焦点深度は深くなる。また、光学ゾーンの直径を小さくできるので、より薄い眼内レンズを製造することができる。これにより、角膜切開を小さくでき、移植手術が容易になる。

Description

(優先権主張)
本出願は、2019年4月10日に出願された、「高精細および焦点深度拡張型の眼内レンズ(HIGH DEFINITION AND EXTENDED DEPTH OF FIELD INTRAOCULAR LENS)」という名称の米国特許出願16/380,622の優先権を主張する。上記参照された出願の内容は、その全体を参照により本明細書に組み込む。
人間の眼はしばしば、デフォーカス(焦点ぼけ:defocus)や乱視などの収差を抱えており、高い生活の質を維持するためには、それらを矯正して許容できる視力を提供しなければならない。これらのデフォーカスおよび乱視収差の矯正は、レンズを用いて達成することができる。レンズは、眼鏡面、角膜面(コンタクトレンズまたは角膜移植)、あるいは眼内に設置され、フェイキック(有水晶体:水晶体が損なわれていない)またはアフェイキック(無水晶体:水晶体が取り除かれた)眼内レンズ(IOL)として位置することができる。
デフォーカスや乱視などの基本的な収差に加えて、眼はしばしば、球面収差や他の収差などの高次収差を有する。また、眼には、色収差(可視光線の波長によって焦点が変化することによる収差)も存在する。これらの高次収差や色収差は、人の視力の質に悪影響を及ぼす。高次収差や色収差の悪影響は、瞳孔が大きいほど大きくなる。これらの収差を除去した視力を、高精細(HD:High Definition)視力と呼ぶことがある。
老視とは、眼が、異なる距離にある物体に焦点を合わせる能力を失った状態のことである。無水晶体の眼に老視がある。無水晶体の眼に移植される標準的な単焦点IOLは、単一の焦点距離における視力を回復する。様々な距離で良好な視力を得るために、単焦点IOLを2焦点眼鏡または累進屈折力眼鏡を組み合わせて使用する、などの様々な選択肢を適用できる。モノビジョンIOLシステムは、近方視と遠方視を回復するためのもう一つの選択肢である--1眼を、他眼とは異なる焦点距離に設定することで、2つの焦点の両眼での合算を提供して、混合(ブレンド)した視界を提供する。
モノビジョンは、遠くから近くまで眼鏡なしの両眼視を実現するために、IOLを用いて、優位眼を遠方視に、非優位眼を近方視に矯正する、現在最も一般的な老視矯正方法である。また、眼内レンズには2焦点または多焦点であってもよい。多くのIOLは、付加範囲(the addition range)内に分布する1つ以上の焦点領域を有するように設計されている。しかし、離散的焦点(不連続な焦点:discrete foci)を有する要素(element)を使用することだけが、設計の唯一可能な戦略ではない。焦点深度拡張型(EDOF: extended depth of field)の要素の使用、すなわち、必要な付加(または付加範囲)にわたる連続的な焦点セグメントを生成する要素の使用も考慮できる。これらの方法は、様々な焦点領域からの迷光が人の視力を低下させるため、完全に受け入れられるものではない。
本技術分野で必要とされているのは、これらの限界を克服するための、改良された仮想開口(バーチャルアパーチャ:virtual aperture)IOLである。
眼内レンズ(IOL)に組み込まれた仮想開口を開示する。この構造および配置により、仮想開口と交差して網膜上に広く散乱される光線は許容され、光線が網膜上で検出可能なレベルに達することは、事実上阻止される。仮想開口は、単色収差および色収差の除去に役立ち、高精細な網膜像を得ることができる。許容できる視力についての既知の定義では、大きい直径の光学ゾーン(optical zone)のIOLの方が、焦点深度(depth of field)は増加する(深くなる)。白内障の眼は、怪我、以前の眼の手術、または通常のIOLデザインではうまく矯正できないであろう眼の障害により、二次的な問題を抱えていることがある。例えば、合併症のある眼は、非対称性乱視、円錐角膜、角膜移植後、非対称性瞳孔、非常に高度の乱視などを含む。開示された仮想開口IOLデザインは、不要な収差を取り除くことができるため、通常の大きな光学IOLと比較して、改善された視力を提供するのに有効である。
本発明の目的は、光学ゾーンの直径を小さくできることにより、より薄いIOLを製造する方法を教示することであり、これにより、角膜切開を小さくでき、移植手術が容易になる。白内障の眼は、怪我、以前の眼の手術、または通常のIOLデザインではうまく矯正できないであろう眼の障害により、二次的な問題を抱えていることがある。例えば、合併症のある眼は、非対称性乱視、円錐角膜、角膜移植後、非対称性瞳孔、非常に高度の乱視などを含む。開示された仮想開口IOLデザインは、不要な収差を取り除くことができるため、通常の大きな光学IOLと比較して、改善された視力を提供するのに有効である。
本発明のもう一つの目的は、選択した距離範囲での像の解像度のために十分なコントラストを提供しながら、単色収差および色収差の低減と、拡張焦点深度とを示す仮想開口IOLを教示することである。
本発明のさらに別の目的は、等しい屈折力(equal-powered)を有する他のIOLと比較して、薄い中心厚さ(central thickness)を提供する仮想開口IOLを教示することである。
本発明のもう一つの目的は、交互に配置した、高パワー(または高屈折力:high-power)の正レンズ(またはプラスレンズ:positive lens)と負レンズ(またはマイナスレンズ:negative lens)のプロファイルによって実現できる仮想開口を教示することである。
本発明のさらに別の目的は、高パワーの負レンズ表面として実現可能な仮想開口を教示することである。
本発明の別の目的は、交互に配置した高パワーの正レンズと負レンズのプロファイル(高パワーの正負交互レンズプロファイル)と組み合わせた、高パワーの負レンズ表面として実現できる仮想開口を教示することである。
本発明のさらに別の目的は、交互に配置した高パワーの正レンズプロファイルと負レンズプロファイル(高パワーの正負交互レンズプロファイル)と組み合わせたプリズムプロファイルとして実現可能な仮想開口を教示することである。
本発明のさらに別の目的は、フェイキック(有水晶体)またはアフェイキック(無水晶体)IOLを提供することによってこれらの制限を克服し、それと同時に、デフォーカス(焦点ぼけ)と乱視の矯正を提供し、高次収差と色収差を減少させ、拡張焦点深度を提供して視力の質を向上することである。
本発明の別の目的は、フェイキックまたはアフェイキックIOL、角膜移植、コンタクトレンズに採用して、または角膜レーザー手術(LASIK、PRKなど)の手技で使用して、拡張焦点深度を提供および/または高精細な視え方を提供できる仮想開口を教示することである。
さらに別の目的は、非対称性乱視、円錐角膜、角膜移植後、非対称性瞳孔、非常に高度の乱視などの合併症のある眼のための眼内レンズを提供することである。
さらに別の目的は、不要な収差を除去して、通常の大きな光学IOLと比較して、改善された視力を提供できるIOLを提供することである。
本発明のもう一つの目的は、仮想開口を、実際の不透明な開口に置き換えることを教示して、仮想開口と同様の光学的利点を実現することである。
本発明に関連する他の目的、ならびに更なる利点および利益は、以下の説明、例示(実施例)、および特許請求の範囲から、当業者に明らかになるであろう。
図1は、瞳孔のサイズを利用して単色収差を低減する基本的な方法を示す。 図2(AおよびB)は、瞳孔のサイズを利用して色収差を低減する基本的な方法を示す。 図3(AおよびB)は、有効瞳孔サイズを制限するための仮想開口の基本的な考え方を示す。 図4は、IOLに組み込まれた、高パワーレンズ部としての仮想開口を示す。 図5は、負レンズ部としての仮想開口を示す。 図6(AおよびB)は、高パワーレンズセクションと連結した負レンズ(またはプリズム)セクションとしての仮想開口を示す。 図7(AおよびB)は、小さな視覚ゾーン(または光学ゾーン:optic zone)の悪影響を防ために、仮想開口を使用することを示す。 図8は、長円形(または楕円形)の光学ゾーンの例であるレンズAと、円形の光学ゾーンの例であるレンズBを示す。 図9は、方位角対称な半径方向プロファイルを示す。 図10は,要素A,B,C,D,およびEを比較した、対称的な半径方向プロファイルを示す。 図11は、2次元のレンズ領域を示す。 図12は、2次元の高パワーレンズの1つの形状(geometry)を示している。
(好ましい実施形態の詳細な説明)
本発明の詳細な実施形態が本明細書に開示されている。しかしながら、開示された実施形態は本発明の単なる例示であり、様々な形態で具現化することが可能であることを理解されたい。したがって、本明細書に開示された特定の機能的および構造的な詳細は、限定するものとして解釈されるべきではなく、単に特許請求の範囲の基礎として、また、実質的に、適度に詳細な構造において、本発明を様々に採用することを当業者に教示するための代表的な基礎として解釈されるべきである。
図1は、光軸2を中心とした単一の収束レンズ1を示している。入射光線3は、光軸に平行であり、レンズの焦点4と交差する。観察面5が焦点から更に離れた位置にある場合、入射光線は、観察面と交差するまで続く。入射光線3と同じ光線高さにある入射光線をすべてトレースすると、観察面上にぼかし円(にじんだ円:blur circle)6ができる。光線高さが入射光線3よりも低い他の入射光線は、このぼかし円6の内側に入る。そのような光線の1つが、入射光線3よりも光軸に近い入射光線7である。入射光線7も、焦点4と交差し、更に観察面5と交差する。入射光線7と等しい光線高さで全ての入射光線をトレースすると、ぼかし円6よりも小さいぼかし円8がトレースされる。
ここに表現されている光学原理は、平行な入射光線の高さが低くなると、対応するぼかし円も小さくなるということである。この単純な関係は人間の眼にも当てはまる。別の言い方をすれば、眼のデフォーカス(光屈折誤差:dioptric error)が一定量ある場合、入射光線の高さが低くなると視力が改善される。この原理は、焦点が合っていない対象をより鮮明に見ようとして眼を細めるときに使われる。
図1のトレースは、単一波長の入射光の場合である。多色光の場合、この場合は3つの波長の光であるが、図2のような状況になる。眼の成分と典型的な光学材料では、波長が長くなると屈折率が低くなることがよく知られている。図2Aでは、収束レンズ21は光軸22を有している。入射光線23は、青(450nm)、緑(550nm)、赤(650nm)の3つの波長の光からなる。3つの波長の屈折率が異なるため、青色光線24は緑色光線25よりも屈折し、緑色光線は赤色光線26よりも屈折する。緑色光線の焦点が合っていれば、緑色光線は光軸で観察面27と交差する。これらの3つの光線の色の広がりにより、観察面上に有色のぼかし円28ができる。図2Bでは、有色の入射光線29は、図2Aの有色の入射光線23よりも光線高さが低い。これにより、観察面での有色のぼかし円33が小さくなる。このように、図1の単色の場合と同様に、有色光線の高さが低くなると、色のにじみが小さくなる。
図1および図2は、光線高さを低くする(瞳孔径を小さくする)と、網膜における単色収差と色収差の両方が減少し、見え方の質が向上することを示している。別の言い方をすれば、光線高さが低くなると焦点深度が増加する(深くなる)。
図3Aは、光軸2と開口35を有する収束レンズ34を示す。入射光線36は開口を通過し、そしてレンズ焦点37を通過し、観察面38と交差して、そこで小さなぼかし円39をトレースする。入射光線40は開口よって遮られるため、観察面に進んで大きなぼかし円41を生じることはできない。入射光線の高さを制限する開口は、観察面でのにじみ(ぼやけ)を軽減する。図3Bでは、「仮想開口(バーチャルアパーチャ)」と呼んでいるものを示している。つまり、実際には光線を遮断する開口ではないが、光学的効果はほぼ同様である。仮想開口42を通って伝搬する光線43は広く拡散(広がる:spread)されるので、観察面の任意の1点における迷光(ぼやけた光:blurring light)の寄与はほとんどない。これがIOLの発明の主な動作メカニズムである。白内障手術や眼内レンズを移植して数ヶ月から数年後に、透明な後嚢上に後嚢混濁(PCO)と呼ばれる状態が発生し、質の高い視力を妨げることがある。PCOの発生率は、白内障手術やIOL移植を受けた眼の5%~50%程度と報告されている。PCOを除去する治療では、しばしば、後嚢切開を行うためにNd:YAGレーザーを用いて治療介入することを含む。この場合、レーザーは、眼内レンズを通して焦点を合わせて、嚢切開を行う。もし、仮想開口が、代わりに、真の開口(true aperture)などの不透明なものであれば、この治療は阻害されるだろう。開示された仮想開口は、小さな開口の利点を提供すると同時に、PCO治療のためのYAGによる嚢切開を可能にするように意図して設計されている。
図4は、仮想開口を採用したIOLの基本レイアウトを示している。この図では、中央光学ゾーン(central optical zone)46が、デフォーカス(焦点ぼけ)、乱視、およびレンズに求められるその他の矯正を行う。一般的に、仮想開口を採用したIOLは、従来のIOLに比べて中央光学ゾーンの直径が小さくなる。これにより、中心厚さが薄くなり、IOLの移植が容易になり、手術中の角膜切開を小さくできる。仮想開口48は更に、周辺に配置され、IOLハプティック50は、より遠い周辺に配置される。仮想開口は遷移領域47によって光学ゾーンに接続され、ハプティックは遷移領域49によって仮想開口に接続されている。遷移領域47および49は、遷移領域の両側の表面の0次および1次の連続性を確保するように設計されている。これを実現する一般的な方法は、3次ベジェ関数などの多項式関数である。これらのような遷移方法は当業者に知られている。
好ましい実施形態では、仮想開口ゾーン48は、一連の、高パワーの正レンズおよび負レンズプロファイルである。したがって、この領域と交差する光線は、IOLの下流側に広く分散される。これらのプロファイルは、領域全体が、屈折した光線を適切に方向転換および/または分散させる限り、一連の円錐形、多項式(ベジェ関数など)、有理スプライン、回折プロファイル、または他の同様のプロファイルとして実現できる。好ましい使用法は、回折プロファイルよりも滑らかな高パワープロファイルであり、これにより、高精度旋盤または金型を用いたIOLの製造が簡単になるからである。当業者に知られているように、ハプティックの後ろ側は、後嚢混濁につながる細胞増殖を阻害するために、四角い(または正方形の)エッジを含むべきである。
図5は、仮想開口ゾーン51の別のプロファイル、すなわち発散レンズプロファイルを示している。これは、図4のアプローチよりも厚いエッジプロファイルを必要とすることに留意されたい。図6Aでは、好ましい高パワーの正負交互レンズプロファイルのクローズアップを、入射光線および透過光線と共に示している。図6Bは、図6Aのプロファイルを、下地のプリズムまたは負レンズと組み合わせた場合の効果を示している。この場合、これもレンズのエッジが広くなる代わりに、出射光線が広範囲に散乱するだけでなく、眼の黄斑または網膜の中心視セクションから遠ざかる方向に向けられる。
図7Aは、高パワーIOL60を示しており、通常は、比較的小さな光学直径と、厚みのある中心厚さとを有する。眼の瞳孔が光学ゾーンよりも大きい場合、入射光線64は、光学系を完全に逃れて、網膜63に向かう途中でハプティック61とのみ交差する可能性がある。このような状況では、眼の周辺視野に顕著なアーチファクトが発生する。予想通りに視覚ゾーン(または光学ゾーン:optic zone)と交差する入射光線62は、網膜の中心視に正しく屈折する。図7Bでは同じ光学系を図示しているが、光学系とハプティックの間に仮想開口65を備えている。この場合、光学ゾーンの外側でレンズと交差する入射光線64は、網膜上で分散されて、明らかなアーチファクトは発生しない。
これらを総合すると、仮想開口を組み込んだこれらのIOLの特徴は、高精細(HD)、拡張焦点深度(EDOF)であると正確に説明できる。
仮想開口IOLの基本レイアウトは図4に示されている。好ましい実施形態では、中央光学ゾーン46の直径は3.0mmであり、仮想開口48の幅は1.5mmである。したがって、中央光学ゾーンと仮想開口の組み合わせは、一般的な市販のIOLと同様の直径6.0mmの光学部品である。
球面、トーリック(円環状:Toric)、およびゼロ収差の視覚ゾーン(または光学ゾーン)。
白内障患者の大部分は、角膜に乱視がある。水晶体を除去した後、残った光学系の乱視角膜の眼は、理想的にはトーリックレンズ、つまり乱視用レンズで矯正される。これらの患者には、レンズの中央の光学部分をトーリックにすることで、改善された視力矯正を提供する。また、光学部分が小さくても、ある程度の球面収差は矯正できる。したがって、最適に矯正(補正)された光学ゾーンでは、すべてのレンズで球面収差が矯正され、角膜乱視のある患者にはトーリック矯正が行われるだろう。
トーリック矯正は、2つの主方向(principle directions)に、眼の角膜の乱視パワーと一致するであろう2つの主要パワー(principle powers)を提供することによって、当業者によって容易に行われる。
球面レンズまたはトーリックレンズのいずれかの球面収差は、レンズの1つ以上の表面に円錐形のプロファイルを採用することによって矯正される。このようなレンズは、軸上にある遠方の物体に対するレンズの単色収差がゼロであることから、収差がゼロであると言われる。円錐プロファイルの頂点部曲率半径(apical radius)Raは、レンズの所望の近軸パワー(paraxial power)に対して通常通り計算される。そして、レンズ材料の屈折率、レンズの中心厚さ、レンズの前面および背面の形状に基づいて、円錐定数Kが選択される。
矯正が乱視に対するものである場合には、レンズ表面形状の少なくとも1つは、直交する2つの主方向に円錐形のプロファイルを有する双円錐形(biconic)である。好ましい実施形態では、トーリック光学系は、各表面が双円錐である等価の両凸表面デザインを有する。非トーリック光学系は、各表面が円錐形である等価の両凸表面デザインを有する。双円錐面の場合も円錐面の場合も、表面の最適な円錐定数Kは、当業者に知られている光学光線追跡を用いて決定される。
多焦点。一部の患者は、特定の距離の視力矯正を提供する多焦点光学系を好む場合がある。1つの例は、一般的に近方視と遠方視の両方に焦点を合わせる力を提供する2焦点光学系である。別の例は、近方視、中間視、および遠方視に焦点を合わせることができる3焦点光学系である。いずれの場合も、多焦点IOLを実現するためには、屈折光学領域または回折光学領域を用いてこれらの焦点ゾーンが得られるように光学ゾーンを変更し、そして仮想開口は、最後の焦点ゾーンの外側に残す。
いくつかの用途では、仮想開口は、環状領域の両側に光学ゾーンを備えた環状領域として現れてもよい。また、環状の仮想開口の形状は、例えば、乱視の光学ゾーンや非対称のハプティック領域を収容するために、自由形状とすることができる。これは、図8に示されている。この図では、レンズAは長円形(または楕円形)の光学ゾーンを示しているので、仮想開口の内側の輪郭はその形状に適合させなければならない。内側のハプティックゾーンの輪郭が円形なので、外側の仮想開口の輪郭は円形になる。この図において、レンズBは光学ゾーンを円形に描いているので、仮想開口の内側の輪郭は円形になる。内側のハプティックの輪郭は長円形(または楕円形)なので、外側の仮想開口の輪郭は長円形(または楕円形)になる。いずれの場合も、各ゾーンの間には遷移領域があり、視覚的なアーチファクトが眼に入らないように、各領域を滑らかに接続する。代わりに、遷移領域の幅を可変にすることができるので、内側と外側の仮想開口の輪郭を所望の形状にできる。
本明細書で考慮されているIOLデザインは、硬質および軟質の材料を含む、IOLに通常使用される任意の生体適合性光学材料から作ることができる。また、それらは、CNCマシンや金型、またはIOLの製造に用いられる他の方法を使用して製造することができる。仮想開口は、方位角方向(azimuthal direction)に対称な1次元プロファイルとして実現(または実装)することも、微小レンズ領域を実現する2次元プロファイルとして実現(または実装)することもできる。
図9では、方位角対称(azimuthally symmetric)な半径方向プロファイル(または放射状プロファイル:radial profiles)が示されている。プロファイルはすべて同じにすることも、方位角方向に調整することもできる。これらのプロファイルは、本質的に屈折性または回折性であってもよい。8つの異なる半径方向プロファイルが図示されているが、半径方向プロファイルは、方位角方向に連続している。半径方向プロファイルは、正と負のパワーを交互に有してもよく、すべて正パワー(またはプラス度数:positive power)、またはすべて負パワー(またはマイナス度数:negative power)のセクションを有してもよい。すべてのパワー領域間の接続は滑らかであり、視覚的なアーチファクトを防いでいる。
図10には、図8に示された高パワー曲線に加えて、またはその代わりに、平面、負パワー、および傾斜(ramp)した基本形状の組み合わせを含む、他の対称的な半径方向プロファイルが示されている。図10を参照すると、要素Aは、単純な平面の基本形状を描いている。図10では、要素Bは、負パワーの基本形状を描いている。この一般的な負パワーの曲線形状は、球形の一部、円錐形、または多項式などの高次曲線で表すことができる。図10の要素Cは、セグメント化された、要素Bの負パワーのプロファイルを描いており、レンズ全体の厚さを薄く保つために、フレネルレンズと同様に曲線をセグメント化している。図10の要素Dは、傾斜した基本形状のプロファイルを示しており、図10の要素Eは、傾斜した基本形状の、セグメント化したバージョンを示している。レンズ全体の厚さを薄く保つために、フレネルレンズと同様に傾斜をセグメント化している。要素CおよびEのセグメント化されたプロファイルは、シャープな不連続性を備えているように図示されているが、実際には、シャープな不連続性に起因する観察可能なアーチファクトを防ぐために、セグメントの境界は、フィレットまたはベジェ曲線などの滑らかな関数を使用して実現(または実装)されている。さらに、本明細書の他の部分に記載されているように、視覚ゾーン(または光学ゾーン)と仮想開口の間には、滑らかな遷移領域が配置されている。これらの基本形状は、高パワー機能と組み合わせて、またはその代わりとして使用することで、仮想開口の効果を向上させることができる。
図11は、極性サンプリング(polar sampling)で配向された2次元のレンズ領域を示している。高パワーレンズは、半径方向と方位角方向の両方で、正パワーと負パワーを交互に配置している。図には、2つの正パワーレンズと2つの負パワーレンズが示されている。この2次元の極レンズ(polar lenses)の実際の形状は、半径方向プロファイルに類似している。
代替的に、2次元の高パワーレンズは、すべて正レンズまたはすべて負レンズであってもよい。この場合、高パワーレンズは、視覚的なアーチファクトを防ぐために、小さい滑らかな遷移領域(例えば、ベジェ曲線などの連続的な多項式補間)によって分離される。これは、方位角方向に複数のレンズサンプルレート(lens sample rate)がある場合に、好ましい2次元高パワーレンズ構造である。この場合、個々のレンズは小さな枕のように見えており、枕は、正パワーレンズの場合は基準面より上にあり、負パワーレンズの場合は基準面より下にある。
図12は、2次元の高パワーレンズの1つの形状を示している。図の右上部分には、高パワーレンズの正面図を示している。中央の高パワー光学領域と、それを取り囲む遷移領域がある。この領域の半径方向の広がりをr、遷移領域の幅をt、方位角の対辺(azimuthal subtense)をシータ(θ)とする。図の左下部分には、レンズプロファイルの1つの側面図を示している。中央部分は高パワーの光学ゾーンを表し、2つの側面曲線(サイドカーブ)は遷移ゾーンを表している。光学ゾーンと遷移ゾーンの間の接合部分は、0次および1次の連続性を有している。レンズ境界の縁部では、遷移部は、仮想開口の基本形状(典型的にはIOLの垂直線)と一致する。レンズのエッジにおいても、遷移曲線(典型的には多項式曲線)とエッジとの間に0次および1次の連続性がある。この小さい高パワーレンズ領域の形状は、半径方向の広がりrが領域の中央部分の弧長とほぼ等しくなるように、設定される。
中央光学ゾーンは、標準的なIOLの設計概念を用いて設計されて、球、円柱、および軸の矯正(補正)に加えて、球面収差制御などの高次の矯正(補正)を提供することができる。 これらの設計概念は、当業者に知られている。
図4に示された好ましい仮想開口プロファイルは、焦点距離が+/- 1.5mmのオーダーで交互に配置した正レンズプロファイルと負レンズプロファイル(正負交互レンズプロファイル)である。これらのレンズ表面のプロファイルは、円錐形、多項式(3次ベジェスプラインなど)、有理スプライン、およびこれらと他の曲線の組み合わせを用いて生成することができる。レンズプロファイル形状は、透過光線を網膜上に適切に分散させると同時に、高精度旋盤または金型プロセスで比較的容易に製造できるように選択される。また、一方のプロファイル(例えば前面)に平滑面を配置し、他方のプロファイル(例えば背面)に小さい高パワーレンズのプロファイルを配置することも可能である。
図4に示された好ましい仮想開口プロファイルを使用すると、高パワーIOLであっても、IOLのエッジ厚さおよび中央光学ゾーンの中心厚さをかなり薄くすることができる。レンズ材料は、他の、軟質または硬質のIOLデザインに使用されるものと同じである。
IOL設計は、非常に良好で高精細な遠方視を提供し、「クリアな視界」の範囲は、「クリアな視界」が意味するもの(例えば、20/40 視力)の仕様によって、そして中央視覚ゾーン(または光学ゾーン)の相対的なサイズと仮想開口幅とによって、制御することができる。瞳孔径と球面屈折誤差を与えることで視力を推定するための簡単な式[Smith G 著、「球面屈折異常と視力の関係(Relation between spherical refractive error and visual acuity)」, Optometry Vis. Sci. 68, 591-8, 1991]は、式(1a)、(1b)で与えられる。
Figure 2022527224000002
ここで、
A = 視力(単位:弧の分)(A = Sd/20)、つまり、最小視角(minimum angle of resolution)である。
k = 臨床研究から決定された定数であり、平均値は0.65である。
D = 瞳孔の直径(単位:mm)
E = 球面屈折誤差(単位:ディオプター)
Sd = スネレン分母(Snellen denominator)
である。
第2の式は、低レベルの屈折誤差に対してより正確であると仮定(前提)されており、妥当な結果を与えている。
E=0の場合、A=1分弧または20/20である。
Eについて式(1b)を解くと、式(2)が得られる。
Figure 2022527224000003
式(1b)は、焦点深度(E×2)の範囲(単位:ジオプター)と瞳孔径Dが与えられたときの視力Aを表している。
式(2)は、視力Aと瞳孔径Dが与えられたときの焦点深度の範囲(単位:ジオプター)を表したものである。例えば、以下の通りである。
視力20/40の場合、A=40/20=2分弧
D=3.0mm
k = 0.65
Figure 2022527224000004
焦点深度=2E=1.8Dである。
(1b)を用いると、以下の式になる。
Figure 2022527224000005
仮想開口の概念を、フェイキックまたはアフェイキックIOL、角膜移植、コンタクトレンズに採用して、または角膜レーザー手術(LASIK、PRKなど)の手技で使用して、拡張焦点深度を提供および/または高精細な視え方を提供することができる。また、仮想開口を、実際の不透明な開口に置き換えて、仮想開口と同様の光学的利点を実現することも可能であろう。
本発明の特定の形態が示されているが、本明細書で説明され、示された特定の形態または配置に限定されるものではないことを理解されたい。本発明の範囲から逸脱することなく様々な変更を行うことができることは、当業者とって明らかであり、本発明は、本明細書および本明細書に含まれる任意の図面/図に示され、説明されるものに限定されると見なされるべきではない。
当業者であれば、本発明が、目的を実行し、言及された目的および利点、ならびにそこに内在するものを得るために十分に適合されていることを容易に理解するであろう。本明細書に記載された実施形態、方法、手順、および技術は、現在、好ましい実施形態を代表するものであり、例示を意図したものであり、範囲の制限を意図したものではない。そこでの変更や他の使用は、当業者に起こるであろうし、それらは本発明の精神に包含され、添付の特許請求項の範囲によって定義される。本発明を、特定の好ましい実施形態に関連して説明してきたが、特許請求項の範囲に記載された本発明は、そのような特定の実施形態に不当に限定されるべきではないことを理解されたい。実際、当業者には明らかな、本発明を実施するための記載された態様の様々な変更は、以下の特許請求項の範囲内にあることが意図されている。

Claims (25)

  1. 個人の眼における光の影響による収差によって生じるデフォーカスの光線を、個人の網膜上に均等に広げることによって、視力の向上を提供する眼内レンズであって、
    前記眼内レンズの第1の周辺部に配置され、遷移領域によって光学ゾーンに接続された仮想開口と、第2の周辺部に配置され、前記遷移領域によって前記仮想開口に接続されたハプティックと、を有する眼内レンズを含み、
    前記遷移領域は、0次および1次の連続性を有しており、
    前記仮想開口は、高パワーの正レンズおよび負レンズとして実現することができ、
    前記遷移領域および前記仮想開口と交差する光線は、屈折を利用して網膜上に均等に分布されて、焦点距離の変化に起因する単色収差および色収差ならびにデフォーカスが低減され、それにより個人の焦点深度を改善する、眼内レンズ。
  2. 前記仮想開口は、Nd:YAGレーザーを用いた後嚢混濁治療が可能となるように構成および配置されている、請求項1に記載の眼内レンズ。
  3. 前記光学ゾーンは、球面収差を矯正するように構成および配置されている、請求項1に記載の眼内レンズ。
  4. 前記光学ゾーンのレンズ表面形状は、乱視を矯正するように構成および配置された双円錐形である、請求項1に記載の眼内レンズ。
  5. 前記仮想開口は、選択された距離範囲における像の解像度のためにコントラストを提供する、請求項1に記載の眼内レンズ。
  6. 前記仮想開口は、1次元または2次元の光学プロファイルを用いて実現することができる、請求項1に記載の眼内レンズ。
  7. 前記眼内レンズの少なくとも片側に配置された光学プロファイルを有する、請求項1に記載の眼内レンズ。
  8. 前記光学プロファイルは正のパワーを有する、請求項7に記載の眼内レンズ。
  9. 前記光学プロファイルは負のパワーを有する、請求項7に記載の眼内レンズ。
  10. 前記光学プロファイルは、正と負のパワーを交互に有する、請求項7に記載の眼内レンズ。
  11. 仮想開口領域は、光散乱を改善する形状にされている、請求項1に記載の眼内レンズ。
  12. 前記光学ゾーンは、1つ以上の焦点屈折力を提供する、請求項1に記載の眼内レンズ。
  13. 前記仮想開口は可変形状の遷移ゾーンを含む、請求項1に記載の眼内レンズ。
  14. 前記眼内レンズは生体適合性材料から構成されている、請求項1に記載の眼内レンズ。
  15. 個人の眼における光の影響による収差によって生じるデフォーカスの光線を、個人の網膜上に均等に広げることによって、視力を向上させる眼内レンズであって、
    生体適合性材料から構成された眼内レンズであって、
    前記眼内レンズの第1の周辺部に配置され、遷移領域によって光学ゾーンに接続された仮想開口と、第2の周辺部に配置され、前記遷移領域によって前記仮想開口に接続されたハプティックと、を有する眼内レンズを含み、
    前記遷移領域は、0次および1次の連続性を有しており、
    前記仮想開口は、一連の円錐形、多項式、有理スプライン、および回折プロファイルからなる群から選択された、高パワーの正と負のレンズを交互に有するレンズプロファイルと組み合わせた光学プロファイルを有し、
    前記遷移領域および前記仮想開口と交差する光線は、屈折を利用して網膜上に均等に分布されて、焦点距離の変化に起因する単色収差および色収差ならびにデフォーカスが低減され、それにより個人の焦点深度を改善する、眼内レンズ。
  16. 前記仮想開口は、Nd:YAGレーザーを用いた後嚢混濁治療が可能となるように構成および配置されている、請求項15に記載の眼内レンズ。
  17. 前記光学ゾーンは、球面収差を矯正するように構成および配置されている、請求項15に記載の眼内レンズ。
  18. 前記光学ゾーンのレンズ表面形状は、乱視を矯正するように構成および配置された双円錐形である、請求項15に記載の眼内レンズ。
  19. 前記仮想開口は、選択された距離範囲における像の解像度のためにコントラストを提供する、請求項15に記載の眼内レンズ。
  20. 前記光学プロファイルは1次元または2次元である、請求項15に記載の眼内レンズ。
  21. 前記光学プロファイルは、前記眼内レンズの片側に配置されている、請求項15に記載の眼内レンズ。
  22. 前記光学プロファイルは、前記眼内レンズの両側に配置されている、請求項15に記載の眼内レンズ。
  23. 前記仮想開口領域は、光散乱を改善する形状にされている、請求項15に記載の眼内レンズ。
  24. 前記仮想開口は可変形状の遷移ゾーンを含む、請求項15に記載の眼内レンズ。
  25. 前記光学ゾーンは、1つ以上の焦点屈折力を提供する、請求項15に記載の眼内レンズ。
JP2021560613A 2019-04-10 2020-04-08 高精細および焦点深度拡張型の眼内レンズ Pending JP2022527224A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/380,622 US11547554B2 (en) 2015-04-14 2019-04-10 High definition and extended depth of field intraocular lens
US16/380,622 2019-04-10
PCT/US2020/027197 WO2020210305A1 (en) 2019-04-10 2020-04-08 High definition and extended depth of field intraocular lens

Publications (1)

Publication Number Publication Date
JP2022527224A true JP2022527224A (ja) 2022-05-31

Family

ID=72751478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021560613A Pending JP2022527224A (ja) 2019-04-10 2020-04-08 高精細および焦点深度拡張型の眼内レンズ

Country Status (7)

Country Link
EP (1) EP3934580A4 (ja)
JP (1) JP2022527224A (ja)
KR (1) KR20210151875A (ja)
CN (1) CN113873968A (ja)
AU (1) AU2020273147A1 (ja)
CA (1) CA3136321A1 (ja)
WO (1) WO2020210305A1 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204849B2 (en) * 2001-03-15 2007-04-17 Valdemar Portney Narrow profile intraocular lens
US20120330415A1 (en) * 2011-06-23 2012-12-27 Anew Optics, Inc. Haptic devices for intraocular lens
US20080269886A1 (en) * 2007-04-30 2008-10-30 Simpson Michael J IOL Peripheral Surface Designs to Reduce Negative Dysphotopsia
US20080269890A1 (en) * 2007-04-30 2008-10-30 Alcon Universal Ltd. Intraocular lens with peripheral region designed to reduce negative dysphotopsia
US8231219B2 (en) * 2008-04-24 2012-07-31 Amo Groningen B.V. Diffractive lens exhibiting enhanced optical performance
MX2013002375A (es) * 2010-08-31 2013-10-07 Univ Cornell Protesis de retina.
DE102013216020A1 (de) * 2013-08-13 2015-02-19 Carl Zeiss Meditec Ag Augenlinse mit einem torisch brechenden Oberflächenprofil und eine in radialer Richtung gestufte Oberflächenstruktur
BR112017004765B1 (pt) * 2014-09-09 2022-08-23 Staar Surgical Company Lente configurada para implantação em um olho de um humano
EP3267943A1 (en) * 2015-03-10 2018-01-17 Amo Groningen B.V. Fresnel piggyback intraocular lens that improves overall vision where there is a local loss of retinal function
US10285807B2 (en) 2015-04-14 2019-05-14 Z Optics LLC High definition and extended depth of field intraocular lens
AU2018226512B2 (en) * 2017-09-08 2024-02-08 Staar Surgical Company Methods of providing extended depth of field and/or enhanced distance visual acuity

Also Published As

Publication number Publication date
WO2020210305A1 (en) 2020-10-15
EP3934580A4 (en) 2022-11-30
AU2020273147A1 (en) 2021-12-02
KR20210151875A (ko) 2021-12-14
CA3136321A1 (en) 2020-10-15
CN113873968A (zh) 2021-12-31
EP3934580A1 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
US11022815B2 (en) Multi-ring lens, systems and methods for extended depth of focus
KR102140425B1 (ko) 근시 진행을 예방하고/하거나 늦추기 위한 비대칭 렌즈 설계 및 방법
US11696823B2 (en) High definition and extended depth of field intraocular lens
JP4808159B2 (ja) 光学収差補正のためのマルチゾーン眼内レンズ
AU2020203170B2 (en) High definition and extended depth of field intraocular lens
KR20170110037A (ko) 근시 진행을 예방하고/하거나 늦추기 위한 다초점 렌즈 설계 및 방법
KR20160026725A (ko) 근시 진행을 예방하고/하거나 늦추기 위한 자유 형태 렌즈 설계 및 방법
JP2013515284A (ja) 単一微細構造のレンズ、システム及び方法
JP2013514833A5 (ja)
JP2013515284A5 (ja)
KR20150015046A (ko) 광학적으로 조절되는 주변 부분을 갖는 렌즈 및 상기 렌즈의 설계 및 제조 방법
KR20160026781A (ko) 근시 진행을 예방하고/하거나 늦추기 위한 다초점 렌즈 설계 및 방법
JP2022545506A (ja) ピントずれした光によるピントの合った像への干渉を低減、最小化、および/または除去するための眼用レンズ
CN116745688A (zh) 眼镜镜片设计、制造眼镜镜片的方法和提供用于至少延缓近视进展的眼镜镜片的方法
US11547554B2 (en) High definition and extended depth of field intraocular lens
US20230010847A1 (en) High definition and extended depth of field intraocular lens
US20120033177A1 (en) Aspheric, astigmatic, multi-focal contact lens with asymmetric point spread function
JP2022527224A (ja) 高精細および焦点深度拡張型の眼内レンズ
TWI823364B (zh) 用於預防或減緩近視之發展或惡化之隱形眼鏡及相關方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240502