WO2022199512A1 - 一种基于碳纳米管的远红外线电热膜及其制备方法 - Google Patents

一种基于碳纳米管的远红外线电热膜及其制备方法 Download PDF

Info

Publication number
WO2022199512A1
WO2022199512A1 PCT/CN2022/081948 CN2022081948W WO2022199512A1 WO 2022199512 A1 WO2022199512 A1 WO 2022199512A1 CN 2022081948 W CN2022081948 W CN 2022081948W WO 2022199512 A1 WO2022199512 A1 WO 2022199512A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
carbon
slurry
electrode
electric heating
Prior art date
Application number
PCT/CN2022/081948
Other languages
English (en)
French (fr)
Inventor
陈新江
李峰
沈珍辉
周红波
袁芳
Original Assignee
苏州汉纳材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汉纳材料科技有限公司 filed Critical 苏州汉纳材料科技有限公司
Priority to EP22740745.9A priority Critical patent/EP4093148A4/en
Publication of WO2022199512A1 publication Critical patent/WO2022199512A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to a far-infrared electric heating film, in particular to a carbon nanotube-based electric heating film and a preparation method thereof.
  • the conductive layer of the electric heating film is usually made by coating conductive ink by screen printing or gravure printing process. Most of the conductive inks use graphite powder or chopped carbon fiber powder as conductive additives, or in graphite powder On the basis of conductive additives, other conductive additives are compounded.
  • the electrothermal film technology of the prior art has the following problems: 1.
  • micron-level conductive agents As far as the product itself is concerned, in order to achieve the set electrical performance, a relatively large amount of micron-sized conductive agent needs to be used, which will cause the adhesion of the coating film to decrease, and The thickness of the coating film is thick and brittle, which limits the application of electrothermal film; at the same time, the electrothermal conversion efficiency of micron-level conductive agents is not as high as that of nano-level conductive agents such as carbon nanotubes and graphene, so carbon nanotubes and other high electrothermal conversion efficiency
  • the use of efficient nanoscale materials can also improve the Tr in the above formula, and further improve the conversion efficiency of electrothermal radiation; 2.
  • each conductive layer must be made into a pattern with a relatively small area (for example, it is usually made into a strip shape or a porous shape), and high electrothermal radiation conversion efficiency cannot be obtained; 3 .
  • the screen printing process has low work efficiency, poor uniformity of printing coating thickness, and at the same time, the screen plate has a limited service life, and the screen plate needs to be replaced regularly, which is costly, and the gravure printing process has ink properties.
  • Narrow properties ink viscosity should be adapted to gravure roll transfer requirements
  • water-based low-viscosity conductive inks cannot be coated; in addition, whether it is screen printing or gravure printing, it is difficult to achieve continuous preparation of large-area coating films; 4.
  • Known micro-concave continuous whole surface coating technology can realize continuous whole surface coating, but using this technology to prepare electric heating film, when the continuously prepared electric heating film is subsequently cut into standard length sheets, may cause cutting edges. It is easy to expose the conductive layer, especially the shielding layer of the electric heating film is easily contacted with the conductive layer for short circuit and ignition, which is not conducive to the overall insulation and packaging of the electric heating film. Reduced service life.
  • the electric heating film technology in the prior art cannot obtain electric heating film products with good film adhesion, small film thickness, good safety and long service life with high production efficiency.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and to provide a far-infrared electric heating film that not only has good coating film adhesion, small coating film thickness, but also has good safety and long service life. Production efficiency preparation.
  • the invention also provides a preparation method of a far-infrared electric heating film with high production efficiency.
  • the electric heating film obtained by the method not only has good coating film adhesion, small coating film thickness, good safety and long service life.
  • a preparation method of far-infrared electric heating film comprising:
  • the electrode slurry is formed on the base film by means of slit coating, and the electrode slurry is dried and solidified to form an electrode;
  • a carbon film slurry is formed on the base film by slit coating, the carbon film slurry covers at least part or all of the electrode, and the carbon film slurry is dried and solidified to form a carbon film, thereby forming the far-infrared electric heating film;
  • the carbon film slurry is intermittently coated on the surface of the base film to form a plurality of carbon films distributed at intervals to form the far-infrared electrothermal film, and the plurality of carbon films cover part or all of the electrode.
  • the far-infrared electric heating film is cut from the area between two adjacent carbon films to form a plurality of electric heating film modules.
  • the electric heating film module of the required size can be obtained without the exposed conductive layer, thereby improving the safety performance and service life of the product.
  • the carbon film slurry is composed of water, dispersant, multi-walled carbon nanotubes, water-based polyurethane and ethylene glycol.
  • the mass ratio of water, dispersant, multi-walled carbon nanotubes, aqueous polyurethane and ethylene glycol is 80-78:2-3:6-7:10:2, and the dispersant is particularly D192 dispersant (ie BYK-192 dispersant) is preferred.
  • the electrothermal film prepared by combining the carbon film slurry with the structure and process of the present invention has excellent adhesion of 5B.
  • the method employs a slot extrusion coating device comprising a first slot extrusion coating head for coating the electrode slurry and Second slot extrusion coating head for coating carbon film slurry.
  • the first slit extrusion coating head includes a first liquid supply system and a first slit extrusion coating head connected with the first liquid supply system
  • the second slit extrusion coating head includes a second A liquid supply system and a second slit extrusion coating head connected to the second liquid supply system
  • the first liquid supply system and the second liquid supply system respectively include a liquid storage tank, a vacuum defoaming tank, a metering pump, an electric A valve and a feeding pipe
  • the method includes the following steps:
  • a plurality of electrodes distributed at intervals are formed on the base film by the slit extrusion equipment, wherein a fixed volume of electrode slurry is periodically and quantitatively output to the first slit extrusion coating head through the first liquid supply system. material;
  • the slit width of the first slit extrusion coating head and the second slit extrusion coating head is 75-77 ⁇ m, particularly preferably 75 ⁇ m.
  • the conveying flow rate of the carbon film slurry is controlled to be 150-500ml/min, particularly preferably 150-300ml/min, which is helpful to accurately control the coating process.
  • the precision of the cloth and the coating are performed smoothly for a long time.
  • step S1 the base film is unwound through a double-station unwinder into a station corresponding to the first slit extrusion coating head in the slit extrusion coating equipment, and is The surface of the base film is coated with electrode slurry, and then the base film coated with the electrode slurry is entered into a first oven, dried and cured at 140-160° C. for 3-10 minutes to form electrodes; in step S2 , the base film formed with electrodes is transported to the station corresponding to the second slit extrusion coating head through the guide rail, and carbon film slurry coating is performed, so that the base film formed with electrodes and carbon slurry coating enters the second oven. and curing and drying at 100-130°C for 3-10min to obtain an electric heating film.
  • the particle size D90 of the carbon film slurry is between 0.5-75 ⁇ m, and the particle size D90 of the electrode slurry is between 1-75 ⁇ m.
  • the carbon film slurry includes carbon nanotubes and an aqueous polyurethane resin.
  • the far-infrared electric heating film includes a stacked base film, an electrode and a carbon film.
  • the electrode is formed by applying an electrode slurry on the base film by a slit coating method and drying and curing the electrode slurry, and the carbon film is formed with an electrode on the aforementioned carbon film by using a slit coating method.
  • the carbon film slurry is coated on the base film, and the carbon film slurry is dried and solidified.
  • the carbon film slurry is made to cover at least part or all of the electrodes, so that part or all of the electrodes are located between the carbon film and the base film.
  • the coating of the carbon film slurry is intermittent coating, so that a plurality of carbon films distributed at intervals are formed on one of the base films.
  • the carbon film slurry contains carbon nanotubes and water-based polyurethane resin.
  • the carbon film has a width of 500-1000 mm and a length of 0.01-6.45 m. In some preferred embodiments, the length of the carbon film is 0.95-6.45m.
  • the sheet resistance of the carbon film can reach 700-1750 ⁇ /sq.
  • the electrothermal radiation conversion efficiency of the electrothermal film can reach 75-85%. In some embodiments according to the present invention, the electro-thermal radiation conversion efficiency of the electrothermal film is above 80%. In other embodiments according to the present invention, the electro-thermal radiation conversion efficiency of the electrothermal film is above 83%.
  • the width of the electrode may be 10-20 mm, and the sheet resistance may be 20-50 m ⁇ /sq.
  • the thickness of the electrode is 3-7 ⁇ m, and the thickness of the carbon film is 5-20 ⁇ m. Further preferably, the thickness of the electrode is smaller than the thickness of the carbon film. Covering the electrode with a carbon film and controlling the thickness helps to improve the adhesion between the electrode and the carbon film.
  • the plurality of carbon films extend along the length direction of the base film, and the distance between two adjacent carbon films is preferably 10-50 mm. In other embodiments, the distance between two adjacent carbon films is preferably 30-50 mm.
  • the coating of the electrode slurry is intermittent coating, so that a plurality of electrodes distributed at intervals along the length direction of the base film are formed on one side of a sheet of the base film, and a plurality of the electrodes are formed on one side of the base film.
  • the carbon films are arranged in a one-to-one correspondence with the plurality of electrodes.
  • the corresponding carbon films and electrodes have the same length.
  • the electrodes are respectively disposed on both sides of the base film in the width direction, the carbon film extends between the two electrodes, and the projected area of the carbon film on the base film is larger than that between the two electrodes area of the basement membrane.
  • the far-infrared electric heating film further includes an insulating film that encapsulates the surface of the electric heating film, the insulating film completely covers the electric heating film, and is stacked on the surface of the insulating film shielding layer, and make the electrothermal film and the shielding layer composite on the whole surface.
  • the far-infrared electric heating film includes a first insulating film, a second insulating film, and a shielding layer, and the first insulating film, the electric heating film, the second insulating film, and the shielding layer are laminated.
  • the ratio of the width of the shielding layer to the electrothermal film may be 0.7:1-0.9:1;
  • the thickness of the shielding layer is generally 7-200 ⁇ m, preferably 100-200 ⁇ m, more preferably 150-200 ⁇ m, more preferably 190-200 ⁇ m. In some embodiments, the thickness of the shielding layer is 7-10 ⁇ m.
  • the thicknesses of the first insulating film and the second insulating film are generally 50-250 ⁇ m, respectively.
  • the present invention has the following advantages compared with the prior art:
  • the far-infrared electric heating film of the present invention not only has good coating film adhesion, small coating film thickness, but also has good safety and long service life.
  • the far-infrared electrothermal film of the present invention can be prepared with high production efficiency.
  • the preparation method of the far-infrared electric heating film of the present invention can realize the preparation of the far-infrared electric heating film efficiently and stably, and the prepared electric heating film has good coating film adhesion, small coating film thickness, good safety and long service life.
  • the slit coating extrusion equipment used in the method can be realized by simply modifying the liquid supply system and designing the slit width in the existing slit coating extrusion equipment, and the equipment requirements are not high.
  • Fig. 1 is the schematic diagram of the slit extrusion coating equipment adopted in a typical embodiment of the present invention
  • Fig. 2 is the relative radiation energy spectrum curve diagram of the far-infrared electrothermal film prepared in a typical implementation case of the present invention (the detection environment conditions are: 20° C., 60% RH);
  • FIG. 3 is a schematic diagram of an electrode provided in an exemplary embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an electrode and a carbon film provided in an exemplary embodiment of the present invention.
  • carbon nanotubes Compared with other metal particles or graphite powder, carbon nanotubes have a larger aspect ratio and excellent electrical conductivity, and can form a conductive network by adding a small amount to polymer materials such as resins. By intertwining and linking carbon nanotubes, it is easy to form a 3D conductive network, thereby forming a conductive layer with uniform resistance and isotropy.
  • a metal electrode is arranged on the carbon nanotube conductive layer, and when the electrode is energized, the current passes through the carbon nanotube 3D conductive network to form a surface heating body with a uniform heating temperature.
  • the embodiment of the present invention also provides a method for making a far-infrared electric heating film, which includes:
  • the electrode slurry is formed on the base film by means of slit coating, and the electrode slurry is dried and solidified to form an electrode;
  • a carbon film slurry is formed on the base film by slit coating, the carbon film slurry covers at least part or all of the electrode, and the carbon film slurry is dried and solidified to form a carbon film, thereby The far-infrared electric heating film is formed.
  • the manufacturing method specifically includes: intermittently coating the surface of the base film with electrode slurry to form a plurality of electrodes distributed at intervals.
  • the manufacturing method specifically includes: intermittently coating the surface of the base film with carbon film slurry to form a plurality of carbon films distributed at intervals to form the far-infrared electric heating film, and the plurality of carbon films cover Part or all of the electrodes; the far-infrared electric heating film is cut from the area between two adjacent carbon films to form a plurality of electric heating film modules.
  • the electrode paste also known as silver paste
  • the electrode paste includes the following components: dibasic acid ester, saturated polyester resin, organic bentonite and flake silver powder in a mass ratio of 37-34:12-11:1:50- 55.
  • the particle size D90 of the electrode slurry is 1-75 ⁇ m.
  • the carbon film slurry includes the following components: the mass ratio of water, D192 dispersant, multi-walled carbon nanotubes, water-based polyurethane and ethylene glycol is 80-78:2-3:6-7:10: 2.
  • the particle size D90 of the electrode slurry is 1-75 ⁇ m.
  • the manufacturing method specifically includes: drying the electrode paste at 140-160° C. for 3-10 minutes to form an electrode.
  • the manufacturing method specifically includes: drying the carbon film slurry at 100-130° C. for 3-10 minutes to form a carbon film.
  • the manufacturing method further includes: encapsulating the surface of the electrothermal film with an insulating film, and making the insulating film completely cover the electrothermal film.
  • the manufacturing method further includes: stacking a shielding layer on the surface of the electrothermal film, and compounding the electrothermal film and the shielding layer over the entire surface.
  • the embodiment of the present invention provides a far-infrared electric heating film formed by the above-mentioned production method, and the far-infrared electric heating film comprises: a first insulating film, an electric heating film, a second insulating film and a shielding layer arranged in sequence, so that the The electrothermal film includes stacked carbon films and electrodes.
  • the width of the carbon film is 500-1000mm, the length is 0.01-6.45m, the thickness is 5-20 ⁇ m, and the sheet resistance is 700-1750 ⁇ /sq. In some embodiments, the length of the carbon film is 0.95-6.45 m.
  • the width of the electrode is 10-20 mm
  • the thickness is 3-7 ⁇ m
  • the sheet resistance is 20-50 m ⁇ /sq.
  • the ratio of the width of the shielding layer to the electrothermal film is 0.7:1-0.9:1.
  • the thickness of the shielding layer is 7-200 ⁇ m, preferably 100-200 ⁇ m, further preferably 150-200 ⁇ m, more preferably 190-200 ⁇ m. In some embodiments, the thickness of the shielding layer is 7-10 ⁇ m.
  • the thickness of the first insulating film and the second insulating film is 50-250 ⁇ m.
  • the electrothermal radiation conversion efficiency of the electrothermal film is 75-85%.
  • This example provides a far-infrared electric heating film, which includes a first insulating film, an electric heating film, a second insulating film and a shielding layer that are stacked in sequence, and the electric heating film includes a stacked carbon film and electrodes.
  • the width of the carbon film is 500-1000mm, the length is 0.01-6.45m, the thickness is 5-20 ⁇ m, and the sheet resistance is 700-1750 ⁇ /sq.
  • the electrode is a silver paste electrode, the width of the electrode is 10-20 mm, the thickness is 3-7 ⁇ m, and the sheet resistance is 20-50 m ⁇ /sq.
  • the ratio of the width of the shielding layer to the electrothermal film is 0.7:1-0.9:1, and the thickness of the shielding layer is 7-10 ⁇ m.
  • the thickness of the first insulating film and the second insulating film is 50-250 ⁇ m.
  • the length of the carbon film is 0.95-6.45 m.
  • the above-mentioned far-infrared electric heating film is formed by using the slit extrusion coating equipment shown in FIG. 1 .
  • the slit extrusion coating equipment mainly includes a double-station unwinder C, a first rectifying device (unwinding rectifying device) D, a silver paste slit extrusion coating head E, a second rectifying device H, a first oven G, Carbon pulp slit extrusion coating head F, second oven I, online detection machine J, third deviation correction device K and winder L.
  • the double-station unwinder C includes two unwinding inflatable shafts driven by servo motors, a worm gear motor overturning system and a constant tension system, and the first deviation correction device is provided in the double-station unwinder and the double-station unwinder.
  • the silver paste slit extrusion coating head E includes a first liquid supply system B and a first slit extrusion coating head, and the first slit extrusion coating head The coating head is connected to the first liquid supply system B.
  • the carbon slurry slit extrusion coating head F includes a second liquid supply system A and a second slit extrusion coating head, and the second liquid supply system A and the second slit extrusion coating head are connected.
  • Both the first liquid supply system B and the second liquid supply system A include a liquid storage tank, a vacuum defoaming tank, a metering pump, an electric valve and a feeding pipe, etc.
  • the metering pump in the first liquid supply system B can output fixed time and quantitatively.
  • the slit width of the silver paste slit extrusion coating head E and the carbon paste slit extrusion coating head F is preferably set to 75 ⁇ m. It should be noted that the slit extrusion coating head, liquid storage tank, vacuum defoaming tank, metering pump, electric valve, feeding pipe, deviation correction device, and oven in the slit extrusion coating equipment used in the present invention , inspection machines, unwinders, etc. are all known components/equipment themselves.
  • the electrode paste (or silver paste) includes the following components: dibasic acid ester, saturated polyester resin, organic bentonite and flake silver powder, the mass ratios of the components are sequentially 37-34:12-11:1:50-55.
  • the carbon film slurry includes the following components: water, D192 dispersant (BYK-192 aqueous wetting and dispersing agent), multi-walled carbon nanotubes, water-based polyurethane and ethylene glycol , the mass ratio of each component is 80-78:2-3:6-7:10:2,
  • the particle size D90 of the silver paste is 65 ⁇ m.
  • the carbon film paste D90 is 10 ⁇ m.
  • the manufacturing method of the far-infrared electric heating film in the embodiment of the present invention includes: forming an electrode slurry on the base film 1 by means of slit coating, and drying and curing the electrode slurry to form the electrode 2, as shown in FIG. 3 shown;
  • a carbon film slurry is formed on the base film 1 by slit coating.
  • the carbon film slurry covers at least part or all of the electrode 2, and the carbon film slurry is dried and solidified to form a carbon film 3, thereby forming a far-infrared electric heating film. ,As shown in Figure 4.
  • the relative radiation energy spectrum curve of the electrothermal film prepared according to the above embodiment is shown in FIG. 2 , and the electrothermal radiation conversion efficiency of the electrothermal film provided by the present invention is 75-85%.
  • a manufacturing process of a far-infrared electric heating film may include:
  • Step 1 unwinding the base film through a double-station unwinding machine into the station corresponding to the slit extrusion coating head of the silver paste in the slit extrusion coating equipment, and coating the surface of the base film with silver paste
  • the silver paste includes the following components: the mass ratio of dibasic acid fat, saturated polyester resin, organic bentonite and flake silver powder is 37-34:12-11:1:50-55, the particle size of the silver paste is 37-34:12-11:1:50-55. D90 is 65 ⁇ m;
  • Step 2 making the base film coated with silver paste on the surface enter the first oven, drying and curing at 140-160°C for 3-10min to form silver paste electrodes;
  • step 3 the base film formed with the silver paste electrode is transported to the station corresponding to the carbon paste slit extrusion coating head through the guide rail for carbon film paste (or carbon paste) coating to form a carbon paste coating or Carbon film, and at least make carbon slurry coating cover the electrode, wherein, the carbon film slurry includes the following components: water, D192 dispersant, multi-walled carbon nanotubes, water-based polyurethane and ethylene glycol in a mass ratio of 80-78 :2-3:6-7:10:2, the D90 of the carbon film slurry is 10 ⁇ m;
  • Step 4 enter the base film formed with the silver paste electrode and the carbon paste coating into the second oven, and perform curing and drying treatment at 100-130° C. for 3-10 minutes to obtain an electrothermal film;
  • Step 5 make the electric heating film enter the online detection machine after being cooled by the air cooler, at least detect the thickness and sheet resistance of the electric heating film, correct the deviation by the third deviation correction device, and finally roll up;
  • Step 6 the electrothermal film is covered with PET film on the entire surface, packaged, and wound by a hot melt adhesive coating machine;
  • Step 7 compound the shielding layer on the whole surface of the electric heating film by the roll-to-roll laminating machine, and wind it up.
  • electrode coating is performed through a slit extrusion coating head of silver paste, and after drying and curing in a first oven, it enters the slit extrusion coating head of carbon paste. After carbon paste coating, and then drying and curing in the second oven, it can be detected and wound online.
  • the method for manufacturing a far-infrared electric heating film provided by the embodiment of the present invention can realize the simultaneous and efficient coating of the silver paste electrode and the carbon paste coating (ie, carbon film, the same below), which improves the production efficiency and reduces the product defect rate. ;
  • the hydroxyl groups of saturated polyester resin and water-based polyurethane resin, as well as groups such as urethane bonds, ester bonds, ether bonds and other groups have the polarity of the surface of the PET base film.
  • the group forms a hydrogen bond with a certain strength, so the adhesion between the electrode, the carbon film and the PET base film can reach 5B, which improves the structural stability of the electrothermal film.
  • the prepared electric heating film has a plurality of carbon film units distributed at intervals, and can be cut along the spaced area during cutting, and there is no existing existing In the production process, the cutting edge is prone to leakage.
  • the present invention can periodically and quantitatively deliver the carbon slurry coating by adjusting the opening and closing of the metering pump and the electromagnetic valve of the carbon slurry slit extrusion coating head feeding system, thereby realizing the intermittent coating of the carbon slurry.
  • the electric heating film module is cut along the base film without carbon paste, it can effectively solve the problem of edge leakage.
  • the electric radiation conversion efficiency of the electric far-infrared electric heating film provided by the present invention is much higher than that of the existing electric heating film.
  • the ultra-high far-infrared ray conversion efficiency can realize the ground speed extremely quickly.
  • the instant heating needs of hot and space rapid heating, so as to realize the heating purpose of instant heating, which is beneficial for users to realize intelligent heating, behavioral energy saving, and eliminate energy waste.
  • the raw materials used in the following examples are all known substances themselves, and can be obtained through various ways, one of which is a common way of purchasing from commercial channels.
  • This example provides a manufacturing process of a far-infrared electric heating film, comprising the following steps:
  • Step 1 Unwind the base film through a double-station unwinder into the slot corresponding to the slit extrusion coating head of the silver paste coating equipment, and intermittently carry out silver paste coating on the surface of the base film.
  • the silver paste comprises the following components: dibasic acid ester (nylon methyl ester), saturated polyester resin (SKYBON ES-100), organic bentonite and flake silver powder mass ratio is 37:12:1: 50, the particle size D 90 of the silver paste is 65 ⁇ m; the slit width of the silver paste slit extrusion coating head is 75 ⁇ m;
  • Step 2 The base film coated with the silver paste on the surface enters the first oven, and is dried and cured at about 150° C. for about 5 minutes to obtain a plurality of spaced silver electrodes;
  • Step 3 The base film formed with the silver paste electrode is transported through the guide rail to the station corresponding to the carbon paste slit extrusion coating head for carbon film paste (or carbon paste) coating to form a carbon paste coating or Carbon film, and at least make carbon slurry coating cover the electrode, wherein, the carbon film slurry includes the following components: water, D192 dispersant (BYK-192 water-based wetting and dispersing agent), multi-walled carbon nanotubes, water-based polyurethane
  • the mass ratio to ethylene glycol is 80:2:6:10:2, the carbon film slurry D90 is 10 ⁇ m; the slit width of the carbon slurry slit extrusion coating head is 75 ⁇ m;
  • Step 4 Enter the base film formed with the silver paste electrode and the carbon paste coating into the second oven, and perform curing and drying treatment at about 130° C. for about 3 minutes to obtain an electrothermal film;
  • Step 5 make the electric heating film enter the online detection machine after being cooled by the air cooler, at least detect the thickness and sheet resistance of the electric heating film, correct the deviation by the third deviation correction device, and finally roll up;
  • Step 6 The electric heating film is covered with PET film on the whole surface, packaged and wound by a hot melt adhesive coating machine;
  • Step 7 Laminate the shielding layer on the whole surface of the electric heating film by the roll-to-roll laminating machine, and wind it up.
  • the far-infrared electric heating film obtained in this example has an electrode width of 10mm, a thickness of 3 ⁇ m, and a sheet resistance of 50m ⁇ /sq; the carbon film has a width of 500mm, a length of 0.95m, a thickness of 5 ⁇ m, and a sheet resistance of 1750 ⁇ /sq.
  • the adhesion of electrode, carbon film and PET base film reaches 5B.
  • the electrothermal radiation conversion efficiency of the electrothermal film of this embodiment is 83%.
  • This example provides a manufacturing process of a far-infrared electric heating film, which is basically the same as Embodiment 1, and the difference is:
  • the carbon film slurry includes the following components: water, D192 dispersant (BYK-192 water-based wetting and dispersing agent), multi-walled carbon nanotubes, water-based polyurethane and ethylene glycol in a mass ratio of 79:2:6:10: 2.
  • the far-infrared electric heating film obtained in this example has an electrode width of 15mm, a thickness of 5 ⁇ m, and a sheet resistance of 40m ⁇ /sq; the carbon film has a width of 800mm, a length of 4m, a thickness of 10 ⁇ m, and a sheet resistance of 1000 ⁇ /sq.
  • the adhesion between the electrodes, the carbon film and the PET base film of the electrothermal film provided in this embodiment reaches 5B. According to GB/T7287-2008, the electrothermal radiation conversion efficiency of the electrothermal film of this embodiment is 84%.
  • This example provides a manufacturing process of a far-infrared electric heating film, which is basically the same as Embodiment 1, and the difference is:
  • the carbon film slurry includes the following components: water, D192 dispersant (BYK-192 water-based wetting and dispersing agent), multi-walled carbon nanotubes, water-based polyurethane and ethylene glycol in a mass ratio of 78:3:7:10: 2.
  • D192 dispersant BYK-192 water-based wetting and dispersing agent
  • multi-walled carbon nanotubes water-based polyurethane and ethylene glycol in a mass ratio of 78:3:7:10: 2.
  • the width of the electrode is 20mm, the thickness is 7 ⁇ m, and the sheet resistance is 20m ⁇ /sq; the width of the carbon film is 1000mm, the length is 6.45m, the thickness is 20 ⁇ m, and the sheet resistance is 700 ⁇ /sq. sq.
  • the adhesion between the electrodes, the carbon film and the PET base film of the electrothermal film provided in this embodiment reaches 5B.
  • the electrothermal radiation conversion efficiency of the electrothermal film of this embodiment is 84.5%.
  • This example provides a manufacturing process of a far-infrared electrothermal film, which is similar to that of Example 1, but the order of forming a carbon film and electrodes is opposite to that of Example 1.
  • the adhesion of the electrode, carbon film and PET base film of the prepared electrothermal film is 4B.
  • the electrothermal radiation conversion efficiency of the electrothermal film of this embodiment is 78%.
  • This example provides a manufacturing process of a far-infrared electric heating film, which is basically the same as that of Example 1, except that ethylene glycol is not added to the carbon film slurry.
  • the adhesion of the electrode, carbon film and PET base film of the prepared electrothermal film is 4B.
  • the electrothermal radiation conversion efficiency of the electrothermal film of this embodiment is 75%.

Landscapes

  • Surface Heating Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Resistance Heating (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种基于碳纳米管的远红外线电热膜,电热膜包括基膜、电极和碳膜。电极通过采用狭缝涂布方式在基膜上涂布电极浆料并使电极浆料干燥固化而形成,碳膜通过采用狭缝涂布方式在形成有电极的基膜上涂布碳膜浆料并使碳膜浆料干燥固化形成,在进行碳膜浆料的涂布时,使碳膜浆料至少覆盖电极的部分或全部,从而部分或全部的电极位于碳膜与基膜之间,碳膜浆料的涂布为间歇性涂布,使得在一张基膜上形成多个间隔分布的碳膜,碳膜浆料包含碳纳米管和水性聚氨酯树脂。通过结构设计和狭缝涂布工艺的有机组合,本发明远红外线电热膜不仅涂膜附着力好、涂膜厚度小且安全性好、使用寿命长,并且可以高的生产效率制备。

Description

一种基于碳纳米管的远红外线电热膜及其制备方法 技术领域
本发明涉及远红外线电热膜,尤其是基于碳纳米管的电热膜及其制备方法。
背景技术
随着科技发展,电热膜作为一种舒适、节能的远红外线辐射地面供暖系统,已经获得了越来越多消费者的青睐。作为一种远红外线辐射制热产品,不同发热面积、形状、功率的电热膜,其电热辐射转化效率也有着不同的节能效果。依据GB/T7287-2008中定义的热像测量法,电热辐射转换效率计算公式η=Sσ(T r 4-T 0 4)/P中,相同功率,发热面积越大,平均辐射温度越高,电热辐射转化效率越高。因此整面发热的电热膜从理论上具有极高的电热辐射转化效率。
现有技术中,电热膜的导电层通常是将导电油墨通过丝网印刷或者凹版印刷工艺涂布制成,其中导电油墨多数采用石墨粉或短切碳纤维粉作为导电添加剂,或者在石墨粉这类导电添加剂基础上复合其他导电添加剂。现有技术的电热膜技术存在以下问题:1、就产品本身而言,为了达到设定的电学性能,就需要采用较大量的微米尺寸的导电剂,而这会造成涂膜附着力下降,以及涂膜厚度较厚而发脆,限制了电热膜的应用;同时,微米级别的导电剂不如纳米级别的导电剂如碳纳米管、石墨烯的电热转换效率高,故碳纳米管等高电热转换效率的纳米级材料的使用还能提高上述公式中的T r,进一步提升电热辐射转换效率;2、为了确保涂膜附着力,往往考虑预留空白处,并利用胶膜来固定导电层,以避免电热膜导电层脱层、开胶,但是如此,每个导电层就必须做成面积相对较小的图案(例如通常会做成条幅状或多孔状),无法获得高的电热辐射转化效率;3、就涂膜工艺而言,丝网印刷工艺工作效率较低、印刷涂层厚度均一性较差,同时网版使用寿命有限,需定期更换网版,成本高,而凹版印刷工艺存在油墨物性适用性窄(油墨粘度要适应凹版辊转印要求)及水性低粘性导电油墨无法涂布等缺点;此外,不管是丝网印刷还是凹版印刷,都难以实现大面积涂膜的连续制备;4、已知微凹连续整面涂布技术可以实现连续整面涂布,但用这种技术来制备电热膜,则在后续将连续制备的电热膜裁切成标准长度片材时,或导致裁切边缘容易裸露导电层,尤其是电热膜屏蔽层极易与导电层接触短路、打火,不利于电热膜整体的绝缘和封装,特别是在实际应用时遇到湿气时,会造成电热膜 漏电或使用寿命减短。
综上所述,现有技术的电热膜技术无法以高的生产效率获得不仅涂膜附着力好、涂膜厚度小且安全性好、使用寿命长的电热膜产品。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种不仅涂膜附着力好、涂膜厚度小且安全性好、使用寿命长的远红外线电热膜,且该电热膜可以高的生产效率制备。
本发明同时还提供一种生产效率高的远红外线电热膜的制备方法,该方法获得的电热膜不仅涂膜附着力好、涂膜厚度小且安全性好、使用寿命长。
为解决以上技术问题,本发明采取的一种技术方案是:
一种远红外线电热膜的制备方法,包括:
采用狭缝涂布的方式在基膜上形成电极浆料,使所述电极浆料干燥固化而形成电极;
采用狭缝涂布的方式在所述基膜上形成碳膜浆料,所述碳膜浆料至少覆盖所述电极的部分或全部,使所述碳膜浆料干燥固化而形成碳膜,从而形成所述的远红外线电热膜;
其中,间歇性的在所述基膜表面涂布碳膜浆料而形成多个间隔分布的碳膜而形成所述的远红外线电热膜,多个碳膜覆盖所述电极的部分或全部。
根据本发明的进一步实施方案,自相邻两个碳膜之间的区域将所述远红外线电热膜裁切形成多个电热膜模块。如此可以获得所需大小的电热膜模块,而不会出现裸露导电层的情形,提高产品的安全性能和使用寿命。
在根据本发明的一些优选实施方式中,所述的碳膜浆料由水、分散剂、多壁碳纳米管、水性聚氨酯和乙二醇组成。在一个具体优选实施方式中,水、分散剂、多壁碳纳米管、水性聚氨酯和乙二醇的质量比为80-78:2-3:6-7:10:2,所述分散剂特别优选为D192分散剂(即BYK-192分散剂)。结合该碳膜浆料并配合本发明的结构和工艺所制备的电热膜具有5B的优异附着力。
在根据本发明的一些优选实施方式中,所述方法采用狭缝挤出涂布设备,所述狭缝挤出涂布设备包括用于涂布电极浆料的第一狭缝挤出涂头和用于涂布碳膜浆料的第二狭缝挤出涂头。所述第一狭缝挤出涂头包括第一供液系统和与所述第一供液系统连接的第一狭缝挤出涂布头,所述第二狭缝挤出涂头包括第二供液系统和与第二供液系统连接的第二狭缝挤出涂布头,所述第一供液系统、第二供液系统分别包括储液罐、真空除泡罐、计量泵、电动阀门和输料管,所 述的方法包括以下步骤:
S1、通过所述狭缝挤出设备在基膜上形成多个间隔分布的电极,其中通过第一供液系统向所述的第一狭缝挤出涂布头定时定量输出固定体积的电极浆料;
S2、通过所述狭缝挤出设备在所述形成有电极的基膜上形成多个间隔分布的碳层,并且碳层覆盖部分或全部所述电极,其中通过第二供液系统向第二狭缝挤出涂布头定时定量输出固定体积的碳膜浆料。
优选地,所述第一狭缝挤出涂布头、第二狭缝挤出涂布头的狭缝宽度为75-77μm,特别优选为75μm。经过大量实验研究意外发现,在狭缝宽度为约75μm时可以精确控制涂布的精度,且涂布可以长时间顺畅地进行,而不会出现堵塞等问题。
进一步地,经过大量实验研究表明,涂布所述的碳膜浆料时,控制碳膜浆料的输送流量为150-500ml/min,特别优选为150-300ml/min,有助于精确控制涂布的精度和涂布长时间顺畅进行。
根据本发明的进一步实施方案,步骤S1中,通过双工位放卷机将基膜放卷进入狭缝挤出涂布设备中与第一狭缝挤出涂头对应的工位处,并在基膜表面进行电极浆料涂布,然后使表面涂覆有电极浆料的基膜进入第一烘箱,于140-160℃条件下进行烘干、固化处理3-10min而形成电极;步骤S2中,通过导轨将形成有电极的基膜输送至第二狭缝挤出涂头对应的工位处,进行碳膜浆料涂布,使形成有电极和碳浆涂层的基膜进入第二烘箱中,并于100-130℃条件下进行固化、烘干处理3-10min而得到电热膜。
在根据本发明的一些实施方式中,所述碳膜浆料粒径D90在0.5-75μm之间,所述电极浆料粒径D90在1-75μm之间。
在根据本发明的一些实施方式中,所述碳膜浆料包含碳纳米管和水性聚氨酯树脂。
本发明采取的又一技术方案是:一种基于碳纳米管的远红外线电热膜,远红外线所述电热膜包括叠设的基膜、电极和碳膜。所述电极通过采用狭缝涂布方式在所述基膜上涂布电极浆料并使所述电极浆料干燥固化而形成,所述的碳膜通过采用狭缝涂布方式在前述形成有电极的基膜上涂布碳膜浆料并使所述碳膜浆料干燥固化形成。在进行所述碳膜浆料的涂布时,使所述碳膜浆料至少覆盖所述电极的部分或全部,从而所述部分或全部的电极位于所述碳膜与基膜之间。所述碳膜浆料的涂布为间歇性涂布,使得在一张所述基膜上形成多个间隔分布的碳膜。所述碳 膜浆料包含碳纳米管和水性聚氨酯树脂。
根据本发明的一些具体实施方式,所述碳膜的宽度为500-1000mm、长度为0.01-6.45m。在一些优选实施方式中,所述碳膜的长度为0.95-6.45m。
根据本发明,所述碳膜的方块电阻可以达到700-1750Ω/sq。
根据本发明,所述电热膜的电-热辐射转化效率可达到75-85%。在根据本发明的一些实施方式中,电热膜的电-热辐射转化效率在80%以上。在根据本发明的另一些实施方式中,电热膜的电-热辐射转化效率在83%以上。
根据本发明,所述电极的宽度可以为10-20mm,方块电阻为20-50mΩ/sq。
根据本发明的一个优选实施方式,所述电极的厚度为3-7μm,所述碳膜的厚度为5-20μm。进一步优选地,所述电极的厚度小于所述碳膜的厚度。使碳膜覆盖于电极之上并控制厚度有助于提高电极和碳膜的附着力。
在根据本发明的一些优选实施方式中,所述多个碳膜沿着所述基膜的长度方向延伸,且相邻二个碳膜之间的间距优选为10-50mm。在另一些实施方式中,相邻二个碳膜之间的间距优选为30-50mm。
优选地,所述电极浆料的涂布为间歇性涂布,使得在一张所述基膜的一侧上形成多个沿着所述基膜的长度方向间隔分布的电极,多个所述碳膜与所述多个电极一一对应设置。在一个优选实施例中,相对应设置的碳膜和电极,它们的长度相同。
优选地,在所述基膜的宽度方向的两侧边分别设置所述的电极,所述的碳膜在两电极之间延伸且碳膜在所述基膜上的投影面积大于两电极之间的基膜面积。
在根据本发明的一些实施方式中,所述远红外线电热膜进一步包括对所述电热膜表面进行封装的绝缘膜,所述绝缘膜完全包覆所述电热膜,在所述绝缘膜表面叠设屏蔽层,并使所述电热膜与所述屏蔽层整面复合。
在根据本发明的另一些实施方式中,所述远红外线电热膜包括第一绝缘膜、第二绝缘膜、屏蔽层,所述一绝缘膜、电热膜、第二绝缘膜和屏蔽层叠层设置。
进一步地,所述屏蔽层与电热膜的宽度之比可以为0.7:1-0.9:1;
进一步地,所述屏蔽层的厚度一般为7-200μm,优选为100-200μm,进一步优选为150-200μm,更优选为190-200μm。在一些实施例中,所述屏蔽层的厚度为7-10μm。
进一步地,所述第一绝缘膜和第二绝缘膜的厚度一般分别为50-250μm。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
通过结构设计和狭缝涂布工艺的有机组合,本发明远红外线电热膜不仅涂膜附着力好、涂膜厚度小且安全性好、使用寿命长。此外,本发明远红外线电热膜可以高的生产效率制备。
本发明的远红外线电热膜的制备方法,可以高效稳定实现远红外线电热膜的制备,所制备的电热膜涂膜附着力好、涂膜厚度小且安全性好、使用寿命长。此外,该方法所采用的狭缝涂布挤出设备,可在现有狭缝涂布挤出设备通过简单改造供液系统和设计狭缝宽度即可实现,设备要求不高。
附图说明
图1是本发明一典型实施案例中采用的狭缝挤出涂布设备示意图;
图2是本发明一典型实施案例中制备的远红外线电热膜的相对辐射能谱曲线图(检测环境条件为:20℃,60%RH);
图3是本发明一典型实施例中提供的电极的示意图;
图4是本发明一典型实施例中提供的电极与碳膜的示意图。
具体实施方式
与其他的金属粒子或石墨粉相比,碳纳米管具有较大的长径比以及优异的导电性能,在树脂等高分子材料中添加少量就能形成导电网络。通过碳纳米管之间相互缠绕、链接,极易形成3D导电网络,从而形成了电阻均匀、各向同性的导电层。在碳纳米管导电层上设置金属电极,并对电极通电时,电流经过碳纳米管3D导电网络,形成了发热温度均匀的面发热体。然而,依靠现有技术,无法高效率制备安全性好的整面碳纳米管基电热膜。
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本发明实施例还提供了一种远红外线电热膜的制作方法,其包括:
采用狭缝涂布的方式在基膜上形成电极浆料,使所述电极浆料干燥固化而形成电极;
采用狭缝涂布的方式在所述基膜上形成碳膜浆料,所述碳膜浆料至少覆盖所述电极的部分或全部,使所述碳膜浆料干燥固化而形成碳膜,从而形成所述的远红外线电热膜。
进一步的,所述的制作方法具体包括:间歇性的在所述基膜表面涂布电极浆料而形成多个 间隔分布的电极。
进一步的,所述的制作方法具体包括:间歇性的在所述基膜表面涂布碳膜浆料而形成多个间隔分布的碳膜而形成所述的远红外线电热膜,多个碳膜覆盖所述电极的部分或全部;自相邻两个碳膜之间的区域将所述远红外线电热膜裁切形成多个电热膜模块。
进一步的,所述电极浆料(又称银浆)包括如下组分:二价酸脂、饱和聚酯树脂、有机膨润土和片状银粉质量比为37-34:12-11:1:50-55。
进一步的,所述电极浆料粒径D90为1-75μm。
进一步的,所述碳膜浆料包括如下组分:水、D192分散剂、多壁碳纳米管、水性聚氨酯和乙二醇的质量比为80-78:2-3:6-7:10:2。
进一步的,所述电极浆料粒径D90为1-75μm。
进一步的,所述的制作方法具体包括:使所述电极浆料于140-160℃条件下干燥处理3-10min而形成电极。
进一步的,所述的制作方法具体包括:使所述碳膜浆料于100-130℃条件下干燥处理3-10min而形成碳膜。
进一步的,所述的制作方法还包括:采用绝缘膜对所述电热膜表面封装,并使所述绝缘膜完全包覆所述电热膜。
进一步的,所述的制作方法还包括:在所述电热膜表面叠设屏蔽层,并使所述电热膜与所述屏蔽层整面复合。
本发明实施例提供了由所述的制作方法制作形成的远红外线电热膜,所述远红外线电热膜包括:依次叠层设置的第一绝缘膜、电热膜、第二绝缘膜和屏蔽层,所述电热膜包括叠设的碳膜和电极。
进一步的,所述碳膜的宽度为500-1000mm,长度为0.01-6.45m,厚度为5-20μm,方块电阻为700-1750Ω/sq。在一些实施方式中,所述碳膜的长度为0.95-6.45m。
进一步的,所述电极的宽度为10-20mm,厚度为3-7μm,方块电阻为20-50mΩ/sq。
进一步的,所述屏蔽层与电热膜的宽度之比为0.7:1-0.9:1。
进一步的,所述屏蔽层的厚度为7-200μm,优选为100-200μm,进一步优选为150-200μm,更优选为190-200μm。在一些实施例中,所述屏蔽层的厚度为7-10μm。
进一步的,所述第一绝缘膜和第二绝缘膜的厚度为50-250μm。
进一步的,所述电热膜的电热辐射转化效率为75-85%。
如下将结合具体实施例对该技术方案、其实施过程及原理等作进一步的解释说明,除非特别说明的之外,本发明所采用的制作原料等均可以采用本领域技术人员已知的。
本例提供一种远红外线电热膜,包括依次叠层设置的第一绝缘膜、电热膜、第二绝缘膜和屏蔽层,所述电热膜包括叠设的碳膜和电极。
具体的,所述碳膜的宽度为500-1000mm,长度为0.01-6.45m,厚度为5-20μm,方块电阻为700-1750Ω/sq。所述电极为银浆电极,所述电极的宽度为10-20mm,厚度为3-7μm,方块电阻为20-50mΩ/sq。所述屏蔽层与电热膜的宽度之比为0.7:1-0.9:1,所述屏蔽层的厚度为7-10μm。所述第一绝缘膜和第二绝缘膜的厚度为50-250μm。在一些实施方式中,所述碳膜的长度为0.95-6.45m。
本文中用于描述实施例的术语并不旨在限制范围。冠词“一”和“该”是具有一个指示物的单数形式,但是在本文中使用单数形式不应排除存在多个指示物。换言之,单数形式提及的元件可以有一个或多个,除非上下文另外明确指出。将进一步理解的是,当在本文中使用时,术语“包括”列举所阐明的特征、项目、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、项目、步骤、操作、元素、部件和/或其组的存在或添加。
除非另有定义,否则本文所用的所有术语(包括技术术语和科学术语)都应按照本领域的惯例进行理解。还要理解的是,除非在本文中明确地定义,否则通用用法的术语也应按照相关领域的惯例进行理解,而不是理想化或过度形式化的含义。
上述远红外线电热膜,采用如图1所示的狭缝挤出涂布设备制作形成。狭缝挤出涂布设备主要包括双工位放卷机C、第一纠偏装置(放料纠偏装置)D、银浆狭缝挤出涂头E、第二纠偏装置H、第一烘箱G、碳浆狭缝挤出涂头F、第二烘箱I、在线检测机J、第三纠偏装置K和收卷机L。
具体的,所述双工位放卷机C包括两根由伺服电机驱动的放料气胀轴、蜗轮蜗杆电机翻转系统和恒张力系统,所述第一纠偏装置设置于双工位放卷机和银浆狭缝挤出涂头之间;其中,所述银浆狭缝挤出涂头E包括第一供液系统B和第一狭缝挤出涂布头,所述第一狭缝挤出涂布头与第一供液系统B连接。所述碳浆狭缝挤出涂头F包括第二供液系统A和第二狭缝挤出涂 布头,第二供液系统A和第二狭缝挤出涂布头连接。第一供液系统B和第二供液系统A均包含储液罐、真空除泡罐、计量泵、电动阀门和输料管等,第一供液系统B中的计量泵可以定时定量输出固定体积的银浆,配合电动阀门的开闭,实现狭缝挤出涂布头的间歇性涂布;第二供液系统B中的计量泵可以按照流量150-300ml/min输出固定体积碳浆,配合电动阀门的开闭,实现狭缝挤出涂布头的间歇性涂布,调节收放卷机基材线速度5-10m/min,从而在基材上实现碳膜图案化。为了使获得的银浆电极及碳浆成膜薄且具有好的柔性,银浆狭缝挤出涂头E和碳浆狭缝挤出涂头F的狭缝宽度优选设为75μm。需要说明的是,本发明所采用的狭缝挤出涂布设备中的狭缝挤出涂布头、储液罐、真空除泡罐、计量泵、电动阀门、输料管、纠偏装置、烘箱、检测机、放卷机等本身均是已知的部件/设备。
在根据本发明的一个具体实施例中,所述电极浆料(或称银浆)包括如下组分:二价酸脂、饱和聚酯树脂、有机膨润土和片状银粉,各组分质量比依次为37-34:12-11:1:50-55。
在根据本发明的一个具体实施例中,所述碳膜浆料包括如下组分:水、D192分散剂(BYK-192水性润湿分散剂)、多壁碳纳米管、水性聚氨酯和乙二醇,各组分质量比依次为80-78:2-3:6-7:10:2,
在一些具体实施例中,银浆粒径D90为65μm。
在一些具体实施例中,碳膜浆料D90为10μm。
具体的,本发明实施例中的远红外线电热膜的制作方法包括:采用狭缝涂布的方式在基膜1上形成电极浆料,使所述电极浆料干燥固化而形成电极2,如图3所示;
采用狭缝涂布的方式在基膜1上形成碳膜浆料,碳膜浆料至少覆盖电极2的部分或全部,使碳膜浆料干燥固化而形成碳膜3,从而形成远红外线电热膜,如图4所示。
按照上述实施例制备的电热膜的相对辐射能谱曲线如图2所示,本发明所提供的一种电热膜的电热辐射转化效率为75-85%。
具体的,一种远红外线电热膜的制作工艺可以包括:
步骤1,通过双工位放卷机将基膜放卷进入狭缝挤出涂布设备中与银浆狭缝挤出涂头对应的工位处,并在基膜表面进行银浆涂布,其中,所述银浆包括如下组分:二价酸脂、饱和聚酯树脂、有机膨润土和片状银粉质量比为37-34:12-11:1:50-55,所述银浆粒径D90为65μm;
步骤2,使表面涂覆有银浆的基膜进入第一烘箱,于140-160℃条件下进行烘干、固化处 理3-10min而形成银浆电极;
步骤3,通过导轨将形成有银浆电极的基膜输送至碳浆狭缝挤出涂头对应的工位处进行碳膜浆料(或称之为碳浆)涂布形成碳浆涂层或碳膜,并至少使碳浆涂层覆盖电极,其中,所述碳膜浆料包括如下组分:水、D192分散剂、多壁碳纳米管、水性聚氨酯和乙二醇质量比为80-78:2-3:6-7:10:2,所述碳膜浆料D90为10μm;
步骤4,使形成有银浆电极和碳浆涂层的基膜进入第二烘箱中,并于100-130℃条件下进行固化、烘干处理3-10min而得到电热膜;
步骤5,使电热膜经过风冷机冷却处理后进入在线检测机,至少对所述电热膜的厚度、方块电阻进行检测,通过第三纠偏装置纠偏,最后进行收卷;
步骤6,通过热熔胶涂布机对电热膜进行整面PET覆膜、封装,收卷;
步骤7,通过卷对卷复合机在电热膜的整面复合屏蔽层,收卷。
本发明实施例提供的一种远红外线电热膜的制作方法,通过银浆狭缝挤出涂布头进行电极涂布,经过第一烘箱烘干固化后,进入碳浆狭缝挤出涂布头进行碳浆涂布,再经过第二烘箱烘干固化后,即可在线检测、收卷。
本发明实施例提供的一种远红外线电热膜的制作方法,可以实现银浆电极和碳浆涂层(即碳膜,下同)的同步高效涂布,提高了生产效率,降低了产品不良率;
本发明实施例提供的电极浆料、碳膜浆料配方,其中饱和聚酯树脂、水性聚氨酯树脂的羟基基团以及氨脂键、酯键、醚键等基团与PET基膜表面的极性基团形成具有一定强度的氢键,因此电极、碳膜与PET基膜的附着力可达5B,提高了电热膜的结构稳定性。
此外,本发明实施例提供的远红外线电热膜的制作方法,所制备的电热膜具有多个间隔分布的碳膜单元,在进行裁切时,可沿着间隔区进行裁切,不存在现有生产工艺中裁切边缘容易漏电的问题。
进一步地,本发明可以通过调节碳浆狭缝挤出涂布头供料系统的计量泵及电磁阀门开闭来定时定量输送碳浆涂布,从而实现碳浆的间歇式涂布,在制作标准电热膜模块时沿着无碳浆的基膜部分裁切,可以有效解决边缘漏电的问题。
本发明提供的电远红外线电热膜的电辐射转化效率远高于现有的电热膜,在将其应用于远红外线辐射地面供暖时,超高的远红外线线转化效率可以极快的实现地面速热、空间速热的即 时取暖需求,从而实现即开即热的采暖目的,有利于用户实现智慧采暖、行为节能,杜绝能源浪费。
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
以下实施例中所用的原料,它们本身均是已知的物质,可通过多种途径获取,其中一种常见的途径为商业渠道购买。
实施例1
本例提供一种远红外线电热膜的制作工艺,包括如下步骤:
步骤1、通过双工位放卷机将基膜放卷进入狭缝挤出涂布设备中与银浆狭缝挤出涂头对应的工位处,并在基膜表面间歇性进行银浆涂布,其中,所述银浆包括如下组分:二价酸脂(尼龙酸甲酯)、饱和聚酯树脂(SKYBON ES-100)、有机膨润土和片状银粉质量比为37:12:1:50,所述银浆粒径D 90为65μm;银浆狭缝挤出涂头的狭缝宽度为75μm;
步骤2、使表面涂覆有银浆的基膜进入第一烘箱,于150℃左右进行烘干、固化处理5min左右,得到多个间隔分布的银电极;
步骤3、通过导轨将形成有银浆电极的基膜输送至碳浆狭缝挤出涂头对应的工位处进行碳膜浆料(或称之为碳浆)涂布形成碳浆涂层或碳膜,并至少使碳浆涂层覆盖电极,其中,所述碳膜浆料包括如下组分:水、D192分散剂(BYK-192水性润湿分散剂)、多壁碳纳米管、水性聚氨酯和乙二醇质量比为80:2:6:10:2,所述碳膜浆料D90为10μm;碳浆狭缝挤出涂头的狭缝宽度为75μm;
步骤4、使形成有银浆电极和碳浆涂层的基膜进入第二烘箱中,并于130℃左右进行固化、烘干处理3min左右而得到电热膜;
步骤5、使电热膜经过风冷机冷却处理后进入在线检测机,至少对所述电热膜的厚度、方块电阻进行检测,通过第三纠偏装置纠偏,最后进行收卷;
步骤6、通过热熔胶涂布机对电热膜进行整面PET覆膜、封装,收卷;
步骤7、通过卷对卷复合机在电热膜的整面复合屏蔽层,收卷。
本例所得远红外线电热膜,电极的宽度为10mm,厚度为3μm,方块电阻为50mΩ/sq;碳膜的宽度为500mm,长度为0.95m,厚度为5μm,方块电阻为1750Ω/sq。电极、碳膜与PET基膜的附着力达到5B。按照GB/T7287-2008进行检测,本实施例的电热膜的电热辐射转化效率为83%。
实施例2
本例提供一种远红外线电热膜的制作工艺,其与实施例1基本相同,不同之处在于:
所述碳膜浆料包括如下组分:水、D192分散剂(BYK-192水性润湿分散剂)、多壁碳纳米管、水性聚氨酯和乙二醇质量比为79:2:6:10:2。
本例所得远红外线电热膜,电极的宽度为15mm,厚度为5μm,方块电阻为40mΩ/sq;所述碳膜的宽度为800mm,长度为4m,厚度为10μm,方块电阻为1000Ω/sq。本实施例提供的电热膜的电极、碳膜与PET基膜的附着力达到5B。按照GB/T7287-2008进行检测,本实施例的电热膜的电热辐射转化效率为84%。
实施例3
本例提供一种远红外线电热膜的制作工艺,其与实施例1基本相同,不同之处在于:
所述碳膜浆料包括如下组分:水、D192分散剂(BYK-192水性润湿分散剂)、多壁碳纳米管、水性聚氨酯和乙二醇质量比为78:3:7:10:2。
本例所得远红外线电热膜,所述电极的宽度为20mm,厚度为7μm,方块电阻为20mΩ/sq;所述碳膜的宽度为1000mm,长度为6.45m,厚度为20μm,方块电阻为700Ω/sq。本实施例提供的电热膜的电极、碳膜与PET基膜的附着力达到5B。按照GB/T7287-2008进行检测,本实施例的电热膜的电热辐射转化效率为84.5%。
对比例1
本例提供一种远红外线电热膜的制作工艺,其与实施例1相似,但形成碳膜和电极的顺序与实施例1相反。
在其他条件保持相同的情况下,所制备的电热膜,其电极、碳膜与PET基膜的附着力为4B。按照GB/T7287-2008进行检测,本实施例的电热膜的电热辐射转化效率为78%。
对比例2
本例提供一种远红外线电热膜的制作工艺,其与实施例1基本相同,不同的是,碳膜浆料中未添加乙二醇。
在其他条件保持相同的情况下,所制备的电热膜,其电极、碳膜与PET基膜的附着力为4B。按照GB/T7287-2008进行检测,本实施例的电热膜的电热辐射转化效率为75%。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (15)

  1. 一种远红外线电热膜的制备方法,其特征在于:包括
    采用狭缝涂布的方式在基膜上形成电极浆料,使所述电极浆料干燥固化而形成电极;
    采用狭缝涂布的方式在所述基膜上形成碳膜浆料,所述碳膜浆料至少覆盖所述电极的部分或全部,使所述碳膜浆料干燥固化而形成碳膜,从而形成所述的远红外线电热膜;
    其中,间歇性的在所述基膜表面涂布碳膜浆料而形成多个间隔分布的碳膜而形成所述的远红外线电热膜,多个碳膜覆盖所述电极的部分或全部。
  2. 根据权利要求1所述的制备方法,其特征在于:自相邻两个碳膜之间的区域将所述远红外线电热膜裁切形成多个电热膜模块。
  3. 根据权利要求1所述的制备方法,其特征在于:所述碳膜浆料包括如下组分:水、D192分散剂、多壁碳纳米管、水性聚氨酯和乙二醇质量比为80-78:2-3:6-7:10:2。
  4. 根据权利要求1所述的制备方法,其特征在于:所述方法采用狭缝挤出涂布设备,所述狭缝挤出涂布设备包括用于涂布电极浆料的第一狭缝挤出涂头和用于涂布碳膜浆料的第二狭缝挤出涂头,所述第一狭缝挤出涂头包括第一供液系统和与所述第一供液系统连接的第一狭缝挤出涂布头,所述第二狭缝挤出涂头包括第二供液系统和与第二供液系统连接的第二狭缝挤出涂布头,所述第一供液系统、第二供液系统分别包括储液罐、真空除泡罐、计量泵、电动阀门和输料管,所述的方法包括以下步骤:
    S1、通过所述狭缝挤出设备在基膜上形成多个间隔分布的电极,其中通过第一供液系统向所述的第一狭缝挤出涂布头定时定量输出固定体积的电极浆料;
    S2、通过所述狭缝挤出设备在所述形成有电极的基膜上形成多个间隔分布的碳层,并且碳层覆盖部分或全部所述电极,其中通过第二供液系统向第二狭缝挤出涂布头定时定量输出固定体积的碳膜浆料。
  5. 根据权利要求4所述的制备方法,其特征在于,所述第一狭缝挤出涂布头、第二狭缝挤出涂布头的狭缝宽度为75-77μm;和/或,涂布所述的碳膜浆料时,控 制碳膜浆料的输送流量为150-500ml/min。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤S1中,通过双工位放卷机将基膜放卷进入狭缝挤出涂布设备中与第一狭缝挤出涂头对应的工位处,并在基膜表面进行电极浆料涂布,然后使表面涂覆有电极浆料的基膜进入第一烘箱,于140-160℃条件下进行烘干、固化处理3-10min而形成电极;步骤S2中,通过导轨将形成有电极的基膜输送至第二狭缝挤出涂头对应的工位处,进行碳膜浆料涂布,使形成有电极和碳浆涂层的基膜进入第二烘箱中,并于100-130℃条件下进行固化、烘干处理3-10min而得到电热膜。
  7. 根据权利要求1所述的制备方法,其特征在于:所述碳膜浆料粒径D 90在0.5-75μm之间,所述电极浆料粒径D 90在1-75μm之间。
  8. 根据权利要求1所述的制备方法,其特征在于:所述碳膜浆料包含碳纳米管和水性聚氨酯树脂。
  9. 一种远红外线电热膜,其特征在于:远红外线远红外线所述电热膜包括叠设的基膜、电极和碳膜,所述电极通过采用狭缝涂布方式在所述基膜上涂布电极浆料并使所述电极浆料干燥固化而形成,所述的碳膜通过采用狭缝涂布方式在前述形成有电极的基膜上涂布碳膜浆料并使所述碳膜浆料干燥固化形成,在进行所述碳膜浆料的涂布时,使所述碳膜浆料至少覆盖所述电极的部分或全部,从而所述部分或全部的电极位于所述碳膜与基膜之间,
    所述碳膜浆料的涂布为间歇性涂布,使得在一张所述基膜上形成多个间隔分布的碳膜,所述碳膜浆料包含碳纳米管和水性聚氨酯树脂。
  10. 根据权利要求9所述的远红外线电热膜,其特征在于:各所述碳膜的宽度为500-1000mm、长度为0.01-6.45m;和/或,远红外线所述碳膜的方块电阻为700-1750Ω/sq;和/或,所述电热膜的电-热辐射转化效率为75-85%;和/或远红外线,所述电极的宽度为10-20mm,方块电阻为20-50mΩ/sq;和/或,远红外线所述电极的厚度为3-7μm,所述碳膜的厚度为5-20μm;和/或,所述多个碳膜沿着所述基膜的长度方向延伸,相邻二个碳膜之间的间距为10-50mm。
  11. 根据权利要求10所述的远红外线电热膜,其特征在于:各所述碳膜的长度为 0.95-6.45m;和/或,相邻二个碳膜之间的间距为30-50mm。
  12. 根据权利要求11所述的远红外线电热膜,其特征在于:所述电极浆料的涂布为间歇性涂布,使得在一张所述基膜的一侧上形成多个沿着所述基膜的长度方向间隔分布的电极,多个所述碳膜与所述多个电极一一对应设置。
  13. 根据权利要求9至12中任一项权利要求所述的远红外线电热膜,其特征在于:在所述基膜的宽度方向的两侧边分别设置所述的电极,所述的碳膜在两电极之间延伸且碳膜在所述基膜上的投影面积大于两电极之间的基膜面积。
  14. 根据权利要求9所述的远红外线电热膜,其特征在于:所述远红外线电热膜包括对所述电热膜表面进行封装的绝缘膜,所述绝缘膜完全包覆所述电热膜,在所述绝缘膜表面叠设屏蔽层,并使所述电热膜与所述屏蔽层整面复合;或者,所述远红外线电热膜包括第一绝缘膜、第二绝缘膜、屏蔽层,所述第一绝缘膜、电热膜、第二绝缘膜和屏蔽层叠层设置。
  15. 根据权利要求14所述的远红外线电热膜,其特征在于:所述屏蔽层与电热膜的宽度之比为0.7:1-0.9:1;和/或,所述屏蔽层的厚度为7-200μm;和/或,所述第一绝缘膜和第二绝缘膜的厚度分别为50-250μm。
PCT/CN2022/081948 2021-03-23 2022-03-21 一种基于碳纳米管的远红外线电热膜及其制备方法 WO2022199512A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22740745.9A EP4093148A4 (en) 2021-03-23 2022-03-21 CARBON NANOTUBE-BASED ELECTROTHERMAL FAR-INFRARED FILM AND METHOD FOR PRODUCTION THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110308452.6 2021-03-23
CN202110308452.6A CN112969247A (zh) 2021-03-23 2021-03-23 远红外电热膜及其制作方法
CN202110837262.3A CN113453387B (zh) 2021-03-23 2021-07-23 一种基于碳纳米管的远红外电热膜及其制备方法
CN202110837262.3 2021-07-23

Publications (1)

Publication Number Publication Date
WO2022199512A1 true WO2022199512A1 (zh) 2022-09-29

Family

ID=76278097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081948 WO2022199512A1 (zh) 2021-03-23 2022-03-21 一种基于碳纳米管的远红外线电热膜及其制备方法

Country Status (3)

Country Link
EP (1) EP4093148A4 (zh)
CN (2) CN112969247A (zh)
WO (1) WO2022199512A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969247A (zh) * 2021-03-23 2021-06-15 苏州汉纳材料科技有限公司 远红外电热膜及其制作方法
CN115257208B (zh) * 2021-12-29 2023-12-05 山东华滋自动化技术股份有限公司 一种低温电热膜的制造方法及制造装置
CN114375075A (zh) * 2021-12-31 2022-04-19 苏州汉纳材料科技有限公司 适用于潮湿环境的电热膜、封装地暖结构及低压电地暖系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3108350U (ja) * 2004-10-21 2005-04-14 正平 林 電熱膜を加熱源とする加熱装置
JP2008218350A (ja) * 2007-03-07 2008-09-18 Fukuju Sangyo Kk 面状発熱体及びその製造方法
CN104244474A (zh) * 2014-09-15 2014-12-24 王宇 一种发热碳浆及基于其的远红外电热膜
CN107113920A (zh) * 2014-12-31 2017-08-29 可隆工业株式会社 透明面状发热体
CN112312594A (zh) * 2019-08-26 2021-02-02 江苏烯泰石墨烯应用技术研究院有限公司 电热膜及其制造方法
CN212702776U (zh) * 2019-05-27 2021-03-16 苏州威格尔纳米科技有限公司 一种用于间歇涂布的供液装置
CN112969247A (zh) * 2021-03-23 2021-06-15 苏州汉纳材料科技有限公司 远红外电热膜及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6564047B2 (ja) * 2015-02-11 2019-08-21 佛山市▲順▼▲徳▼区美的▲電▼▲熱▼▲電▼器制造有限公司Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co.,Limited 電熱膜層の製造方法、電熱膜層、電気加熱プレート及び調理器具
WO2017176208A1 (en) * 2016-04-05 2017-10-12 Dou Yee Enterprises (S) Pte Ltd Self adhesive heating tape and manufacturing process thereof
KR101843400B1 (ko) * 2017-02-28 2018-05-15 전자부품연구원 필름 히터용 전극 조성물, 필름 히터용 배선 기판, 이를 이용한 필름 히터 및 이의 제조 방법
KR102297722B1 (ko) * 2017-12-08 2021-09-03 주식회사 엘지화학 발열필름 및 이의 제조방법
CN108156676B (zh) * 2017-12-21 2021-03-30 乐福之家纳米材料有限责任公司 一种阻燃石墨烯改性远红外电热膜的生产方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3108350U (ja) * 2004-10-21 2005-04-14 正平 林 電熱膜を加熱源とする加熱装置
JP2008218350A (ja) * 2007-03-07 2008-09-18 Fukuju Sangyo Kk 面状発熱体及びその製造方法
CN104244474A (zh) * 2014-09-15 2014-12-24 王宇 一种发热碳浆及基于其的远红外电热膜
CN107113920A (zh) * 2014-12-31 2017-08-29 可隆工业株式会社 透明面状发热体
CN212702776U (zh) * 2019-05-27 2021-03-16 苏州威格尔纳米科技有限公司 一种用于间歇涂布的供液装置
CN112312594A (zh) * 2019-08-26 2021-02-02 江苏烯泰石墨烯应用技术研究院有限公司 电热膜及其制造方法
CN112969247A (zh) * 2021-03-23 2021-06-15 苏州汉纳材料科技有限公司 远红外电热膜及其制作方法
CN113453387A (zh) * 2021-03-23 2021-09-28 苏州汉纳材料科技有限公司 一种基于碳纳米管的远红外电热膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4093148A4 *

Also Published As

Publication number Publication date
CN113453387A (zh) 2021-09-28
EP4093148A1 (en) 2022-11-23
CN113453387B (zh) 2022-06-21
EP4093148A4 (en) 2024-06-19
CN112969247A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022199512A1 (zh) 一种基于碳纳米管的远红外线电热膜及其制备方法
US20070190253A1 (en) Method of applying and drying liquid
WO2022151848A1 (zh) 一种燃料电池的膜电极制备系统
WO2022127159A1 (zh) 一种用保护背膜实现抗溶胀的ccm涂布工艺
CN107171008A (zh) 膜电极的制备系统、膜电极的制备方法及燃料电池
CN103022170A (zh) 一种光伏组件反光带及其使用方法
CN106876723A (zh) 一种燃料电池用柔性石墨板单电池的连续生产方法
CN107160812B (zh) 实现复合板材生产工艺的生产设备
CN110708776B (zh) 一种柔性电热贴片、电热装置及其制备方法
KR101845784B1 (ko) 연료전지용 전극막 접합체의 제조장치 및 그 제조방법
WO2019035424A1 (ja) Pefc型燃料電池用触媒形成電解質膜の製造方法
CN104638282A (zh) 一种用于低接触电阻双极板的加工装置、系统、方法及其双极板
JP2018022663A (ja) 触媒層付き基材の製造装置、膜電極接合体の製造装置、触媒層付き樹脂基材の製造方法、膜電極接合体の製造方法
CN201857424U (zh) 一种新型真空镀膜机
CN205282569U (zh) 一种燃料电池用柔性石墨板单电池的连续生产流水线
CN108067375A (zh) 一种石墨烯自动喷料设备及喷料工艺
CN212315021U (zh) 一种纳米吸波材料的制作装置
JP2014082049A (ja) 燃料電池用の膜電極接合体の製造方法と製造装置
CN210629884U (zh) 一种石墨烯红外加热板
CN206999824U (zh) 复合板材生产线
WO2020252606A1 (zh) 一种燃料电池用膜电极结构、燃料电池膜电极的制备方法及质子交换膜燃料电池系统
CN207156184U (zh) 瓷砖切割机
CN111609454A (zh) 一种电热画及其制备方法
JP5481922B2 (ja) 鉛蓄電池用支持体付キャパシタ電極組成物層及び鉛蓄電池用電極の製造方法
CN112289578B (zh) 一种磁条状纳米晶隔磁片及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022740745

Country of ref document: EP

Effective date: 20220810

NENP Non-entry into the national phase

Ref country code: DE