WO2022198679A1 - 拼接显示单元和显示屏 - Google Patents

拼接显示单元和显示屏 Download PDF

Info

Publication number
WO2022198679A1
WO2022198679A1 PCT/CN2021/083428 CN2021083428W WO2022198679A1 WO 2022198679 A1 WO2022198679 A1 WO 2022198679A1 CN 2021083428 W CN2021083428 W CN 2021083428W WO 2022198679 A1 WO2022198679 A1 WO 2022198679A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc surface
display
display module
seam
equal
Prior art date
Application number
PCT/CN2021/083428
Other languages
English (en)
French (fr)
Inventor
付常佳
张恩亮
石海军
董飞
钟维
孙晓娣
屈庆山
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2022573355A priority Critical patent/JP2024510859A/ja
Priority to KR1020237001276A priority patent/KR20230160773A/ko
Priority to PCT/CN2021/083428 priority patent/WO2022198679A1/zh
Priority to EP21932298.9A priority patent/EP4120227A4/en
Priority to US17/767,740 priority patent/US20240094442A1/en
Priority to CN202180000614.8A priority patent/CN115413355A/zh
Publication of WO2022198679A1 publication Critical patent/WO2022198679A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3026Video wall, i.e. stackable semiconductor matrix display modules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays

Definitions

  • the present application relates to the field of display technology, and in particular, to a splicing display unit and a display screen.
  • the present application provides a splicing display unit and a display screen, which can visually eliminate seams, improve the user's visual effect after splicing, and achieve the user's subjective feeling of no visual seams.
  • a display screen includes a plurality of display modules and a plurality of optical structures that are closely arranged, each optical structure is disposed corresponding to one of the display modules, and is disposed On one side of the light-emitting surface of the display module, two adjacent display modules are closely arranged, and the optical structures on the two adjacent display modules are arranged closely;
  • Each of the display modules includes a display area and a black border area arranged around the display area, and the black border areas of two adjacent display modules are spliced together to form a seam;
  • Each of the optical structures includes a first surface and a second surface disposed opposite to each other, and the second surface of the optical structure is attached to the display module;
  • One end of the first surface of the optical structure close to the seam is a first arc surface, and the first arc surface is used to refract the light emitted by the display area of the display module and distribute it to the seam the corresponding viewing area.
  • the first arc surface is a convex arc surface structure.
  • the size of the orthographic projection of the first arc surface on the display module along the width direction of the seam is greater than or equal to the width of the seam, and less than or equal to the width of the seam.
  • the width plus 5mm, the width of the seam is 0.88mm-3.9mm; and/or,
  • the first arc surface includes a first end close to the display module and a second end away from the display module; the horizontal plane where the first end of the first arc surface is located is to the distance between the first arc surface and the first arc surface. The distance from the horizontal plane where the second end is located is less than or equal to one-half the thickness of the optical structure; and/or,
  • the radius of the first arc surface is greater than or equal to the width of the seam, and less than or equal to the width of the seam plus 5mm, and the width of the seam is 0.88mm-3.9mm; and/or,
  • the radius of the first arc surface is 2mm-5mm; and/or,
  • the thickness of the optical structure is 3mm-10mm.
  • one end of the second surface of the optical structure close to the seam is a second arc surface, and the light emitted by the display area of the display module is reflected by the second arc surface to supplement the seam. Corresponding non-frontal area of light.
  • the second arc surface is a concave arc surface structure.
  • the second arc surface includes a third end close to the display module and a fourth end away from the display module; the horizontal plane where the fourth end is located is to the horizontal plane where the third end is located. a distance greater than or equal to one-half the width of the seam and less than or equal to the thickness of the optical structure minus 1 mm; and/or,
  • the distance between the end of the first arc surface that is close to the second surface and the end of the second arc surface that is close to the first surface is greater than or equal to 0.3 mm and less than or equal to 1 mm; and/or ,
  • the radius of the second arc surface is 2mm-8mm.
  • a splicing display unit includes a display module and an optical structure arranged in layers, and the optical structure is arranged on one side of a light emitting surface of the display module;
  • the display module includes a display area and a black border area arranged around the display area;
  • Each of the optical structures includes a first surface and a second surface disposed opposite to each other, and the second surface of the optical structure is attached to the display module;
  • One end of the first surface of the optical structure close to the black border area of the display module is a first arc surface, and the first arc surface is used to refract and distribute the light emitted by the display area of the display module in the front view area corresponding to the black border area.
  • the first arc surface is a convex arc surface structure.
  • the size of the orthographic projection of the first arc surface on the display module along the width direction of the seam is greater than or equal to twice the width of the black border area, and less than or equal to twice the width of the black border area.
  • the width of the black border area plus 5mm, the width of the black border area is 0.44mm-1.95mm; and/or,
  • the first arc surface includes a first end close to the display module and a second end away from the display module; the horizontal plane where the first end of the first arc surface is located is to the distance between the first arc surface and the first arc surface. The distance from the horizontal plane where the second end is located is less than or equal to one-half the thickness of the optical structure; and/or,
  • the radius of the first arc surface is greater than or equal to the twice the width of the black border area, and less than or equal to the twice the width of the black border area plus 5mm, the width of the black border area is 0.44mm-1.95mm; and/or,
  • the radius of the first arc surface is 2mm-5mm; and/or;
  • the thickness of the optical structure is 3mm-10mm.
  • one end of the second surface of the optical structure close to the black border area of the display module is a second arc surface, and the light emitted by the display area of the display module is reflected by the second arc surface. Supplement the light of the non-frontal area corresponding to the black border area.
  • the second arc surface is a concave arc surface structure.
  • the second arc surface includes a third end close to the display module and a fourth end away from the display module; the horizontal plane where the fourth end is located is to the horizontal plane where the third end is located.
  • the distance is greater than or equal to the width of the black border area, and less than or equal to the thickness of the optical structure minus 1mm, and the width of the black border area is 0.44mm-1.95mm; and/or,
  • the distance between the end of the first arc surface that is close to the second surface and the end of the second arc surface that is close to the first surface is greater than or equal to 0.3 mm and less than or equal to 1 mm; and/or ;
  • the radius of the second arc surface is 2mm-8mm.
  • the display screen of the present application by setting the overall structure and setting the first arc surface in the optical structure, the light emitted from the display area of the display module can be refracted and distributed to the front view area corresponding to the seam , which can visually eliminate the seams, improve the user's visual effect after splicing, and achieve the subjective feeling of the user's visual seamlessness.
  • the splicing display unit of the present application is provided with an overall structure and a first arc surface in the optical structure, so that the light emitted from the display area of the display module can be refracted and distributed to the front view corresponding to the black border area It can visually eliminate the black border area, improve the user's visual effect after splicing, and achieve the subjective feeling of the user's visual black border area.
  • FIG. 1 is a front view simulated luminance distribution diagram of a display screen in the prior art.
  • FIG. 2 is a partial cross-sectional structural schematic diagram of the display screen of Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of an optical path emitted by a display module of a display screen according to Embodiment 1 of the present application.
  • FIG. 4 is a partial cross-sectional structural schematic diagram of the optical structure of the display screen of Example 1 of the present application.
  • FIG. 5 is a front view simulated luminance distribution diagram of the display screen of Example 1 of the present application.
  • FIG. 6 is a partial cross-sectional structural schematic diagram of the display screen according to Embodiment 2 of the present application.
  • FIG. 7 is a schematic diagram of an optical path emitted by a display module of a display screen according to Embodiment 2 of the present application.
  • FIG. 8 is a partial cross-sectional structural schematic diagram of the optical structure of the display screen according to the second embodiment of the present application.
  • FIG. 9 is a front view simulated luminance distribution diagram of the display screen of the second embodiment of the present application.
  • FIG. 10 is a 45-degree optical path diagram of the optical structure of the display screen of Example 1 of the present application.
  • FIG. 11 is a schematic structural diagram of an optical structure of another embodiment of the display screen of the present application.
  • FIG. 12 is a front view simulated luminance distribution diagram of the optical structure of another embodiment of the display screen of the present application.
  • FIG. 13 is a 45-degree optical path diagram of the optical structure of another embodiment of the display screen of the present application.
  • FIG. 14 is a schematic structural diagram of an optical structure of another embodiment of the display screen of the present application.
  • FIG. 15 is a front view simulated luminance distribution diagram of the optical structure of another embodiment of the display screen of the present application.
  • FIG. 16 is a 45-degree optical path diagram of the optical structure of still another embodiment of the display screen of the present application.
  • FIG. 17 is a 45-degree optical path diagram of the optical structure of the display screen of Example 2 of the present application.
  • FIG. 18 is a schematic cross-sectional structure diagram of the splicing display unit according to Embodiment 3 of the present application.
  • FIG. 19 is a schematic cross-sectional structure diagram of the splicing display unit according to Embodiment 4 of the present application.
  • this embodiment provides a display screen 1 .
  • the display screen 1 includes a plurality of display modules 10 and a plurality of optical structures 20 that are closely arranged.
  • Each optical structure 20 is arranged corresponding to a display module 10 and is arranged on one side of the light-emitting surface of the display module 10, adjacent to the display module 10.
  • the two display modules 10 are closely arranged, and the optical structures 20 on the two adjacent display modules 10 are arranged closely.
  • Each display module 10 includes a display area 11 and a black border area 12 arranged around the display area 11, that is, the display area 11 is located in the center of the display module, and the black border area 12 is arranged around the display area 11, so as to be located at the center of the display module. edge.
  • the black border regions 12 of two adjacent display modules 10 are joined together to form a seam 30 .
  • Each optical structure 20 includes a first surface 21 and a second surface 22 disposed opposite to each other, and the second surface 22 of the optical structure 20 is attached to the display module 10 .
  • first arc surface 23 One end of the first surface 21 of the optical structure 20 close to the seam 30 is a first arc surface 23 , and the first arc surface 23 is used to refract the light emitted by the display area 11 of the display module 10 and distribute it to the corresponding seam 30 of the viewing area.
  • the direction of the arrow in the figure is the propagation direction of the light emitted by the display area 11 of the display module 10. In order to better show the propagation direction of the light emitted by the display area 11 of the display module 10, this figure The hatching in is removed.
  • the front view area corresponding to the seam 30 refers to that when the user views the display module 10 from a front view angle (ie, an angle perpendicular to the display module 10 ), in the absence of an optical structure, the seam 30 is surrounded by observed area.
  • the light emitted by the display area 11 of the display module 10 can be refracted and distributed in the front view area corresponding to the seam 30.
  • the seam 30 is visually eliminated, the visual effect of the user after the splicing is improved, and the subjective feeling of the user without the seam 30 is achieved.
  • the light is refracted by the first arc surface 23 of the optical structure 20 , so that the display area 11 of the display module 10 is “enlarged” to the imaging surface, so as to achieve the visual effect that the physical seam 30 of the display screen 1 is eliminated .
  • first arc surface 23 is an external convex arc surface structure.
  • the externally convex arc surface structure means that the arc surface is convex in a direction away from the center of the optical structure.
  • the end surface of the first arc surface 23 is located within the edge of the optical structure 20.
  • the first arc surface 23 extends from the plane where the first surface 21 is located in a direction close to the display module 10 to form an external convex arc structure, thereby forming a structure similar to a convex lens, so as to realize the display module 10
  • the light emitted from the display area 11 is refracted, so that the refracted light is distributed in the front view area corresponding to the seam 30 .
  • the optical path can be deviated from the incident light direction by a specific angle to achieve the effect of magnifying the image, thereby eliminating the seams 30 and improving the user experience.
  • the display screen of the present embodiment has an image magnification effect, which can be suitable for N*N splicing, and is a single structure, so as to avoid the change of the picture effect caused by the offset of the multi-structure assembly.
  • the section line in the figure is removed.
  • the dimension L2 of the orthographic projection of the first arc surface 23 on the display module 10 along the width direction of the seam 30 is greater than or equal to the width W of the seam 30, and less than or equal to the width W of the seam 30 plus 5 mm,
  • the width W of the slit 30 is 0.88mm-3.9mm.
  • the first arc surface 23 includes a first end 231 close to the display module 10 and a second end 232 away from the display module 10 .
  • the distance D3 from the horizontal plane where the first end 231 of the first arc surface 23 is located to the horizontal plane where the second end 232 of the first arc surface 23 is located is less than or equal to half the thickness D1 of the optical structure 20, within this range, The greater the value of the distance D3 from the horizontal plane where the first end 231 of the first arc surface 23 is located to the horizontal plane where the second end 232 of the first arc surface 23 is located, the better the refraction effect and the better the front view effect, but the thickness of the optical structure The larger will increase the weight and material cost; the design needs to be considered comprehensively.
  • the distance D3 from the horizontal plane where the first end 231 of the first arc surface 23 is located to the horizontal plane where the second end 232 of the first arc surface 23 is located is 2 mm-4 mm.
  • the radius R1 of the first arc surface 23 is greater than or equal to the width W of the seam 30 and less than or equal to the width W of the seam 30 plus 5 mm.
  • the radius R1 of the first arc surface 23 is 2mm-5mm.
  • the arc length L1 of the first arc surface 23 has been determined by the orthographic projection of the first arc surface 23 on the display module 10 along the width direction of the seam 30 L2, the horizontal plane where the first end 231 of the first arc surface 23 is located The distance D3 to the horizontal plane where the second end 232 of the first arc surface 23 is located and the radius R1 of the first arc surface 23 are jointly defined.
  • the thickness D1 of the optical structure 20 is 3 mm-10 mm.
  • the material of the optical structure 20 is glass, or PMMA (full name in English: polymethyl methacrylate, Chinese name: polymethyl methacrylate), or PC (polycarbonate).
  • the optical structure 20 is fixed on the display module 10 through the optical adhesive layer 40 .
  • the second surface 22 of the optical structure 20 in this embodiment is an integral flat plane.
  • the front-view simulated brightness distribution diagram of the display screen 1 of the present embodiment is shown in FIG. 5 . It can be seen from FIG. 5 that, at the front-view angle, the user will basically not be able to observe the seam 30 at the front-view angle, so that it can be visually eliminated.
  • the stitching 30 improves the user's visual effect after stitching, so as to achieve the subjective feeling of the user without the stitching 30 visually.
  • the overall structure of the display screen in this embodiment is basically the same as that in Embodiment 1, and the difference lies in that the end of the second surface 22 of the optical structure 20 close to the seam 30 is In the second arc surface 24 , the light emitted by the display area 11 of the display module 10 is reflected by the second arc surface 24 to supplement the light in the non-frontal area corresponding to the seam 30 .
  • the non-frontal view area corresponding to the seam 30 refers to when the user views the display module 10 at a non-frontal angle (ie, an angle that is not perpendicular to the display module 10, that is, an oblique viewing angle or a large viewing angle), when there is no In the case of optical structures, the area where the seam 30 is observed.
  • a non-frontal angle ie, an angle that is not perpendicular to the display module 10, that is, an oblique viewing angle or a large viewing angle
  • the light emitted by the display area 11 of the display module 10 can be reflected, and then the light can be emitted through the first surface 21 of the light structure, so as to supplement the non-face view corresponding to the seam 30.
  • the light in the area, and the non-face area corresponding to the seam 30 can also visually eliminate the seam 30, further improve the user's visual effect after splicing, and achieve the user's subjective feeling of no seam 30 visually.
  • the second arc surface 24 is a concave arc surface structure.
  • the concave arc surface structure means that the arc surface is concave in a direction close to the center of the optical structure.
  • the dimension L4 of the orthographic projection of the second arc surface 24 on the display module 10 along the width direction of the seam 30 is greater than or equal to one half of the width W of the seam 30, and less than or equal to half Add 0.5 mm to the width W of the first seam 30 to be the length of the seam that can be covered from an oblique viewing angle.
  • the second arc surface 24 includes a third end 241 close to the display module 10 and a fourth end 242 away from the display module 10 .
  • the distance D2 from the horizontal plane where the fourth end 242 is located to the horizontal plane where the third end 241 is located is greater than or equal to one-half the width W of the seam 30 plus 0.5mm, the larger the value of D2, the better the oblique viewing angle effect, but the optical
  • the distance D2 from the horizontal plane where the fourth end 242 is located to the horizontal plane where the third end 241 is located is set to be greater than or equal to 1/2
  • the width of the seam is less than or equal to the thickness of the optical structure minus 1mm.
  • the distance D4 is greater than 0.
  • the distance D4 between the first end 231 of the first arc surface 23 and the fourth end 242 of the second arc surface 24 is greater than or equal to 0.3 mm, and less than or equal to 1 mm to avoid sharp corners during assembly. and scratches during operation, and facilitates the processing of materials.
  • the length of the side edge 25 is the first length of the first arc surface 23 .
  • the radius R2 of the second arc surface 24 is 2mm-8mm.
  • the value of 2mm-8mm is the best.
  • the arc length L3 of the second arc surface 24 is determined from the dimension L4 of the orthographic projection of the second arc surface 24 on the display module 10 along the width direction of the seam 30 , the horizontal plane where the fourth end 242 is located to the level where the third end 241 is located.
  • the distance D2 of the horizontal plane and the radius R2 of the second arc surface 24 are jointly defined.
  • the end of the second surface 22 of the optical structure 20 close to the seam 30 is a concave arc structure.
  • the front-view simulated brightness distribution diagram of the display screen 1 in this embodiment is shown in FIG. 9 . It can be seen that at the front view angle, the user will basically not be able to observe the seam 30 at the front view angle, so that the seam 30 can be visually eliminated, the user's visual effect after splicing can be improved, and the user's subjective feeling of no seam 30 can be achieved.
  • end of the second surface 22 close to the seam 30 may also be in other structural forms, but it has different effects on the optical path of the oblique viewing angle.
  • the optical structure 20 in Embodiment 1 when the second surface 22 is an integral flat plane, please refer to FIG. 5 again, the user will not be able to observe the seam 30 at a frontal angle.
  • FIG. 10 when the user views the display module 10 at an oblique angle of 45 degrees, he can observe the structure of part of the seam 30 , that is, the part O in the figure. That is, the optical structure 20 in Embodiment 1 can visually eliminate the seam 30 seen from a frontal viewing angle through the first arc surface 23, but cannot solve the seam 30 seen by a user at an oblique viewing angle or a large viewing angle.
  • the seam 30 when the end of the second surface 22 of the optical structure 20 close to the seam 30 is a flat surface that forms a certain angle with the plane where the display module 10 is located, as shown in FIG. As shown at 12, the seam 30 will be substantially invisible to the user from a frontal angle of view.
  • FIG. 13 when the user watches the display module 10 at an oblique angle of 45 degrees, he can also observe the structure of part of the seam 30, that is, the part P in the figure.
  • the optimal optical structure 20 is when the end of the first surface 21 close to the seam 30 is an outer convex arc structure, and the end of the second surface 22 close to the seam 30 is an inner concave arc structure, It can eliminate the seam problem of front view and large view at the same time.
  • this embodiment provides a mosaic display unit 2 .
  • a plurality of tiled display units 2 are closely arranged to form the display screen in Embodiment 1. That is, the splicing display unit 2 in this embodiment is the smallest splicing unit of the display screen in Embodiment 1.
  • the splicing display unit 2 includes a stacked display module 10 and an optical structure 20 , and the optical structure 20 is arranged on one side of the light emitting surface of the display module 10 . Please refer to FIG. 4 for the structure of the optical structure 20 of this embodiment.
  • the display module 10 includes a display area 11 and a black border area 12 arranged around the display area 11 , that is, the display area 11 is located in the center of the display module 10 , and the black border area 12 is arranged around the display area 11 , so as to be located at the center of the display module 10 . edge.
  • the black border regions 12 of two adjacent display modules 10 are spliced together to form the seam 30 of the display screen in the first embodiment.
  • Each optical structure 20 includes a first surface 21 and a second surface 22 disposed opposite to each other, and the second surface 22 of the optical structure 20 is attached to the display module 10 .
  • One end of the first surface 21 of the optical structure 20 close to the black border area 12 of the display module 10 is a first arc surface 23 , and the first arc surface 23 is used to refract and distribute the light emitted by the display area 11 of the display module 10 In the front view area corresponding to the black border area 12 .
  • the front view area corresponding to the black border area 12 refers to the black border area when the user views the display module 10 from a front view angle (ie, an angle perpendicular to the display module 10 ), in the absence of an optical structure. 12 observed areas.
  • the light emitted by the display area 11 of the display module 10 can be refracted and distributed in the front view area corresponding to the black border area 12.
  • the black border area 12 is visually eliminated, the user's visual effect after splicing is improved, and the user's subjective perception of the black border area 12 is achieved.
  • the light is refracted by the first arc surface 23 of the optical structure 20, so that the display area 11 of the display module 10 is "enlarged" to the imaging surface, so that the physical black border area 12 of the splicing display unit 2 is eliminated.
  • the distance from the first arc surface 23 to the plane where the display module 10 is located gradually decreases from the direction away from the display module 10 to the direction close to the display module 10, and the first arc surface 23 is an external convex arc surface structure.
  • the externally convex arc surface structure means that the arc surface is convex in a direction away from the center of the optical structure.
  • the first arc surface 23 extends from the plane where the first surface 21 is located in a direction close to the display module 10 to form an external convex arc structure, thereby forming a structure similar to a convex lens, so as to realize the display module 10
  • the light emitted by the display area 11 is refracted, so that the refracted light is distributed in the front view area corresponding to the black border area 12 .
  • the optical path can be deviated from the incident light direction by a specific angle to achieve the effect of magnifying the image, thereby eliminating the black border area 12 and improving the user experience.
  • optical structure 20 of the display unit 2 has an image magnification effect, can be suitable for N*N splicing, and is a single structure, so as to avoid the change of the picture effect caused by the assembly offset of the multiple structures.
  • the section line in the figure is removed.
  • the size L2 of the orthographic projection of the first arc surface 23 on the display module 10 along the width direction of the black border area 12 is greater than or equal to twice the width w of the black border area 12, and less than or equal to twice the width of the black border area 12. Adding 5mm to the width w, the width of the black border area 12 is 0.44mm-1.95mm.
  • the first arc surface 23 includes a first end 231 close to the display module 10 and a second end 232 away from the display module 10 .
  • the distance D3 from the horizontal plane where the first end 231 of the first arc surface 23 is located to the horizontal plane where the second end 232 of the first arc surface 23 is located is less than or equal to half the thickness D1 of the optical structure 20, within this range, The greater the value of the distance D3 from the horizontal plane where the first end 231 of the first arc surface 23 is located to the horizontal plane where the second end 232 of the first arc surface 23 is located, the better the refraction effect and the better the front view effect, but the thickness of the optical structure The larger will increase the weight and material cost; the design needs to be considered comprehensively.
  • the distance D3 from the horizontal plane where the first end 231 of the first arc surface 23 is located to the horizontal plane where the second end 232 of the first arc surface 23 is located is 2mm-4mm.
  • the radius R1 of the first arc surface 23 is greater than or equal to twice the width w of the black border area 12 and less than or equal to twice the width w of the black border area 12 plus 5 mm.
  • the radius R1 of the first arc surface 23 is 2mm-5mm.
  • the arc length L1 of the first arc surface 23 has been determined by the orthographic projection of the first arc surface 23 on the display module 10 along the width direction of the black border region 12.
  • the distance D3 from the horizontal plane to the horizontal plane where the second end 232 of the first arc surface 23 is located and the radius R1 of the first arc surface 23 are jointly defined.
  • the larger the arc length L1 of the first arc surface 23 is, the larger the length of the seam that can be covered is, and the design needs to be designed based on the length of the seam.
  • the thickness D1 of the optical structure 20 is 3 mm-10 mm.
  • the material of the optical structure 20 is glass, or PMMA (full name in English: polymethyl methacrylate, Chinese name: polymethyl methacrylate), or PC (polycarbonate).
  • the optical structure 20 is fixed on the display module 10 through the optical adhesive layer 40 .
  • the second surface 22 of the optical structure 20 in this embodiment is an integral flat plane.
  • the splicing display unit 2 of this embodiment can visually eliminate the black border area 12 , improve the user's visual effect after splicing, and achieve the user's subjective feeling of the black border area 12 without visual perception.
  • the overall structure of the splicing display unit in this embodiment is basically the same as that in Embodiment 3, and the difference is that the end of the second surface 22 of the optical structure 20 close to the black border area 12 is the first With two arc surfaces 24 , the light emitted by the display area 11 of the display module 10 is reflected by the second arc surface 24 to supplement the light in the non-front view area corresponding to the black border area 12 .
  • FIG. 8 for the structure of the optical structure 20 in this embodiment.
  • non-frontal view area corresponding to the black border area 12 refers to that when the user views the display module 10 at a non-frontal angle (that is, an angle that is not perpendicular to the display module 10, that is, an oblique viewing angle or a large viewing angle), the The area where the black border area 12 is observed without the optical structure.
  • the light emitted by the display area 11 of the display module 10 can be reflected, and then the light can be emitted through the first surface 21 of the light structure, so that the non-corresponding black border area 12 can be supplemented. It can also visually eliminate the black border area 12 by looking directly at the light in the area and reach the non-face-on area corresponding to the black border area 12 , which further improves the user's visual effect after splicing, and achieves the user's vision without black border area 12 The subjective feeling of the area 12 .
  • the second arc surface 24 is a concave arc surface structure.
  • the concave arc surface structure means that the arc surface is concave in a direction close to the center of the optical structure.
  • the size L4 of the orthographic projection of the second arc surface 24 on the display module 10 along the width direction of the black border area 12 is greater than or equal to the width w of the black border area 12 and less than or equal to the width of the black border area 12 wAdd 0.5mm to the length of the patchwork that can be covered from a strabismus angle.
  • the second arc surface 24 includes a third end 241 close to the display module 10 and a fourth end 242 away from the display module 10 .
  • the distance D2 from the horizontal plane where the fourth end 242 is located to the horizontal plane where the third end 241 is located is greater than or equal to the width w of the black border area 12 plus 0.5mm. It is large, increasing the weight and material cost; the oblique angle and the thickness of the model should be comprehensively considered in the design. Generally, the distance D2 from the horizontal plane where the fourth end 242 is located to the horizontal plane where the third end 241 is located is greater than or equal to the width w of the black border area 12, and less than or equal to the thickness of the optical structure minus 1 mm.
  • the distance D4 is greater than 0.
  • the distance D4 between the first end 231 of the first arc surface 23 and the fourth end 242 of the second arc surface 24 is greater than or equal to 0.3 mm and less than or equal to 1 mm to avoid sharp corners during assembly. and scratches during operation, and facilitates the processing of materials.
  • the length of the side edge 25 is the first length of the first arc surface 23 .
  • the radius R2 of the second arc surface 24 is 2mm-8mm.
  • the value of 2mm-8mm is the best.
  • the arc length L3 of the second arc surface 24 is determined from the dimension L4 of the orthographic projection of the second arc surface 24 on the display module 10 along the width direction of the black border region 12 , the horizontal plane where the fourth end 242 is located to the location where the third end 241 is located.
  • the distance D2 of the horizontal plane and the radius R2 of the second arc surface 24 are jointly defined.
  • the end of the second surface 22 of the optical structure 20 close to the black border area 12 of the present embodiment 2 is a concave arc structure
  • the black border region 12 cannot be observed at all. That is, when the end of the second surface 22 close to the black border area 12 is configured as a concave arc surface structure, all light can exit the optical structure 20 to improve the large viewing angle black border area 12, and the improvement effect is good.
  • the optical structure 20 of the present embodiment by setting the end of the first surface 21 close to the black border region 12 to an outer convex arc structure, and the end of the second surface 22 close to the black border region 12 to an inner concave arc structure, the optical structure 20 can simultaneously Eliminates seam problems with frontal and large viewing angles.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请提供一种拼接显示单元和显示屏,以从视觉上消除拼缝,提升拼接后用户视觉效果,达到用户视觉无拼缝的主观感受。该显示屏包括紧密排列的多个显示模组以及多个光学结构;每一显示模组包括显示区域以及围绕显示区域设置的黑边区域,相邻的两个显示模组的黑边区域拼接在一起形成拼缝;光学结构的第一表面靠近邻接边的一端为第一弧面,第一弧面用于将显示模组的显示区域发出的光进行折射后分布于拼缝所对应的正视区域。

Description

拼接显示单元和显示屏 技术领域
本申请涉及显示技术领域,尤其涉及一种拼接显示单元和显示屏。
背景技术
随着市场和用户的需求提升,拼接屏在不断追求极窄边框以达到更好的视觉体验。但是,由于液晶屏应用密封封装液晶的结构,其边缘的黑色矩阵与密封区域的技术局限,导致屏幕边缘的黑边无法完全消除,拼接后会有一道明显的黑边,即拼缝,如图1中的B区域,严重影响用户观看显示图像的视觉效果。
因此,如何能够在提升用户视觉效果,达到用户视觉无拼缝的主观感受,是本领域亟待解决的技术难题。
发明内容
本申请提供一种拼接显示单元和显示屏,能够从视觉上消除拼缝,提升拼接后用户视觉效果,达到用户视觉无拼缝的主观感受。
根据本申请实施例的第一方面提供一种显示屏,所述显示屏包括紧密排列的多个显示模组以及多个光学结构,每一光学结构对应于一所述显示模组设置,且设置于所述显示模组的出光面的一侧,相邻的两个所述显示模组紧贴设置,且相邻的两个所述显示模组上的所述光学结构紧贴设置;
每一所述显示模组包括显示区域以及围绕所述显示区域设置的黑边区域,相邻的两个所述显示模组的所述黑边区域拼接在一起形成拼缝;
每一所述光学结构包括相对设置的第一表面和第二表面,所述光学结构的第二表面贴合于所述显示模组上;
所述光学结构的第一表面靠近所述拼缝的一端为第一弧面,所述第一弧面用于将所述显示模组的显示区域发出的光进行折射后分布于所述拼缝所对应的正视区域。
可选的,所述第一弧面为外凸弧面结构。
可选的,所述第一弧面在所述显示模组上的正投影的沿所述拼缝的宽度方向的尺寸大于或等于所述拼缝的宽度,且小于或等于所述拼缝的宽度加上5mm,所述拼缝的宽度为0.88mm-3.9mm;和/或,
所述第一弧面包括靠近所述显示模组的第一端和远离所述显示模组的第二端;所述第一弧面的第一端所在的水平面到所述第一弧面的第二端所在的水平面的距离小于或等于二分之一的所述光学结构的厚度;和/或,
所述第一弧面的半径大于或等于所述拼缝的宽度,且小于或等于所述拼缝的宽度加上5mm,所述拼缝的宽度为0.88mm-3.9mm;和/或,
所述第一弧面的半径为2mm-5mm;和/或,
所述光学结构的厚度为3mm-10mm。
可选的,所述光学结构的第二表面靠近所述拼缝的一端为第二弧面,所述显示模组的显示区域发出的光在所述第二弧面反射后补充所述拼缝所对应的非正视区域的光线。
可选的,所述第二弧面为内凹弧面结构。
可选的,所述第二弧面包括靠近所述显示模组的第三端和远离所述显示模组的第四端;所述第四端所在的水平面到所述第三端所在的水平面的距离大于或等于二分之一的所述拼缝的宽度,且小于或等于所述光学结构的厚度减去1mm;和/或,
所述第一弧面中靠近所述第二表面的一端与所述第二弧面中靠近所述第一表面的一端之间的距离大于或等于0.3mm,且小于或等于1mm;和/或,
所述第二弧面的半径为2mm-8mm。
根据本申请实施例的第二个方面提供一种拼接显示单元,该拼接显示单元包括层叠设置的显示模组和光学结构,所述光学结构设置于所述显示模组的出光面的一侧;
所述显示模组包括显示区域以及围绕所述显示区域设置的黑边区域;
每一所述光学结构包括相对设置的第一表面和第二表面,所述光学结构的第二表面贴合于所述显示模组上;
所述光学结构的第一表面靠近所述显示模组的黑边区域的一端为第一弧面,所述第一弧面用于将所述显示模组的显示区域发出的光进行折射后分布于所述黑边区域所对应的正视区域。
可选的,所述第一弧面为外凸弧面结构。
可选的,所述第一弧面在所述显示模组上的正投影的沿所述拼缝的宽度方向的尺寸大于或等于两倍所述黑边区域的宽度,且小于或等于两倍所述黑边区域的宽度加上5mm,所述黑边区域的宽度为0.44mm-1.95mm;和/或,
所述第一弧面包括靠近所述显示模组的第一端和远离所述显示模组的第二端;所述第一弧面的第一端所在的水平面到所述第一弧面的第二端所在的水平面的距离小于或等于二分之一的所述光学结构的厚度;和/或,
所述第一弧面的半径大于或等于所述两倍所述黑边区域的宽度,且小于或等于所述两倍所述黑边区域的宽度加上5mm,所述黑边区域的宽度为0.44mm-1.95mm;和/或,
所述第一弧面的半径为2mm-5mm;和/或;
所述光学结构的厚度为3mm-10mm。
可选的,所述光学结构的第二表面靠近所述显示模组的黑边区域的一端为第二弧面,所述显示模组的显示区域发出的光在所述第二弧面反射后补充所述黑边区域所对应的非正视区域的光线。
可选的,所述第二弧面为内凹弧面结构。
可选的,所述第二弧面包括靠近所述显示模组的第三端和远离所述显示模组的第四端;所述第四端所在的水平面到所述第三端所在的水平面的距离大于或等于所述黑边区域的宽度,且小于或等于所述光学结构的厚度减去1mm,所述黑边区域的宽度为0.44mm-1.95mm;和/或,
所述第一弧面中靠近所述第二表面的一端与所述第二弧面中靠近所述第一表面的一端之间的距离大于或等于0.3mm,且小于或等于1mm;和/或;
所述第二弧面的半径为2mm-8mm。
本申请的显示屏,通过设置整体结构,并在光学结构中设置第一弧面,从而能够将所述显示模组的显示区域发出的光进行折射后分布于所述拼缝所对应的正视区域,能够从视觉上消除拼缝,提升拼接后用户视觉效果,达到用户视觉无拼缝的主观感受。
本申请的拼接显示单元通过设置整体结构,并在光学结构中设置第一弧面,从而能够将所述显示模组的显示区域发出的光进行折射后分布于所述黑边区域所对应的正视区域,能够从视觉上消除黑边区域,提升拼接后用户视觉效果,达到用户视觉无黑边区域的主观感受。
附图说明
图1是现有技术中显示屏的正视仿真亮度分布图。
图2是本申请的实施例1的显示屏的部分截面结构示意图。
图3是本申请的实施例1的显示屏的显示模组发出的光路的示意图。
图4是本申请的实施例1的显示屏的光学结构的部分截面结构示意图。
图5是本申请的实施例1的显示屏的正视仿真亮度分布图。
图6是本申请的实施例2的显示屏的部分截面结构示意图。
图7是本申请的实施例2的显示屏的显示模组发出的光路的示意图。
图8是本申请的实施例2的显示屏的光学结构的部分截面结构示意图。
图9是本申请的实施例2的显示屏的正视仿真亮度分布图。
图10是本申请的实施例1的显示屏的光学结构的45度光路图。
图11是本申请的显示屏的另一实施方式的光学结构的结构示意图。
图12是本申请的显示屏的另一实施方式的光学结构的正视仿真亮度分布图。
图13是本申请的显示屏的另一实施方式的光学结构的45度光路图。
图14是本申请的显示屏的又一实施方式的光学结构的结构示意图。
图15是本申请的显示屏的又一实施方式的光学结构的正视仿真亮度分布图。
图16是本申请的显示屏的又一实施方式的光学结构的45度光路图。
图17是本申请的实施例2的显示屏的光学结构的45度光路图。
图18是本申请的实施例3的拼接显示单元的截面结构示意图。
图19是本申请的实施例4的拼接显示单元的截面结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。除非另作定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请说明书以及权利要求书中使用的“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“多个”包括两个,相当于至少两个。在本申请说明书和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
实施例1
如图2至图4所示,本实施例提供一种显示屏1。显示屏1包括紧密排列的多个显示模组10以及多个光学结构20,每一光学结构20对应于 一显示模组10设置,且设置于显示模组10的出光面的一侧,相邻的两个显示模组10紧贴设置,且相邻的两个显示模组10上的光学结构20紧贴设置。
每一显示模组10包括显示区域11以及围绕显示区域11设置的黑边区域12,即显示区域11位于显示模组的中心,黑边区域12围绕显示区域11的设置,从而位于显示模组的边缘。相邻的两个显示模组10的黑边区域12拼接在一起形成拼缝30。
每一光学结构20包括相对设置的第一表面21和第二表面22,光学结构20的第二表面22贴合于显示模组10上。
光学结构20的第一表面21靠近拼缝30的一端为第一弧面23,第一弧面23用于将显示模组10的显示区域11发出的光进行折射后分布于拼缝30所对应的正视区域。如图2所示,图中的箭头方向为显示模组10的显示区域11发出的光的传播方向,为了更好地展示显示模组10的显示区域11发出的光的传播方向,将该图中的剖面线去除。
需要说明的是,拼缝30所对应的正视区域是指,用户在正视角度(即垂直于显示模组10的角度)观看显示模组10时,在没有光学结构的情况下,拼缝30被观察到的区域。
这样,通过设置整体结构,并在光学结构20中设置第一弧面23,从而能够将显示模组10的显示区域11发出的光进行折射后分布于拼缝30所对应的正视区域,能够从视觉上消除拼缝30,提升拼接后用户视觉效果,达到用户视觉无拼缝30的主观感受。具体地,通过光学结构20的第一弧面23对光线的进行折射,从而将显示模组10的显示区域11“放大”至成像面,达到显示屏1的物理拼缝30被消除的视觉效果。
进一步,第一弧面23为外凸弧面结构。其中,外凸弧面结构是指弧面向远离光学结构的中心方向凸出。且第一弧面23的端面位于光学结构 20的边缘以内。
也就是说,第一弧面23由第一表面21所在的平面向靠近显示模组10的方向延伸,以形成外凸弧面结构,从而形成类似于凸透镜的结构,以实现将显示模组10的显示区域11发出的光进行折射,使折射后的光分布于拼缝30所对应的正视区域。进一步,通过定义凸透镜的结构的参数,能够将光路偏离入射光方向特定的角度,达到将图像放大的效果,从而消除拼缝30,提升用户体验。
并且,相对于现有技术中一些通过几组棱镜结构搭接而成的光学结构20,以及通过设置几组棱镜结构以将图像平移至拼缝30的区域的技术方案,本实施例的显示屏1的光学结构20具有图像放大效果,可以适合于N*N拼接,且为单一结构,避免多结构组装偏移造成的画面效果变化情况。
具体地,如图3所示,为了更好地展示光学结构20中的第一弧面23的设置情况,将图中的剖面线去除。第一弧面23在显示模组10上的正投影的沿拼缝30的宽度方向的尺寸L2大于或等于拼缝30的宽度W,且小于或等于拼缝30的宽度W加上5mm,拼缝30的宽度W为0.88mm-3.9mm。通过设置第一弧面23在显示模组10上的正投影的沿拼缝30的宽度方向的尺寸L2大于或等于拼缝30的宽度W以挡住拼缝30,但是如果太大会降低折射的效果。
第一弧面23包括靠近显示模组10的第一端231和远离显示模组10的第二端232。第一弧面23的第一端231所在的水平面到第一弧面23的第二端232所在的水平面的距离D3小于或等于二分之一的光学结构20的厚度D1,在该范围内,第一弧面23的第一端231所在的水平面到第一弧面23的第二端232所在的水平面的距离D3的数值越大,折射效果越好,正视效果越好,但是光学结构的厚度将越大,增加重量和材料成本;设计时需综合考量。较佳地,第一弧面23的第一端231所在的水平面到第一弧面23的第二端232所在的水平面的距离D3为2mm-4mm。
第一弧面23的半径R1大于或等于拼缝30的宽度W,且小于或等于拼缝30的宽度W加上5mm。较佳地,第一弧面23的半径R1为2mm-5mm。
第一弧面23的弧长L1已经由第一弧面23在显示模组10上的正投影的沿拼缝30的宽度方向的尺寸L2、第一弧面23的第一端231所在的水平面到第一弧面23的第二端232所在的水平面的距离D3、以及第一弧面23的半径R1共同限定。第一弧面23的弧长L1越大,可以遮盖的拼缝的长度越大,需要综合拼缝长度进行设计。
在本实施例中,光学结构20的厚度D1为3mm-10mm。光学结构20的材料为玻璃,或PMMA(英文全称:polymethyl methacrylate,中文名称:聚甲基丙烯酸甲酯),或PC(聚碳酸酯)等。光学结构20通过光学胶层40固定于显示模组10上。
本实施例中的光学结构20的第二表面22为一整体的平直平面。
本实施例的显示屏1的正视仿真亮度分布图如图5所示,从图5中可以看到,在正视角度,用户在正视角度将基本观察不到拼缝30,从而能够从视觉上消除拼缝30,提升拼接后用户视觉效果,达到用户视觉无拼缝30的主观感受。
实施例2
如图6-图9所示,本实施例的显示屏的整体结构基本和实施例1中的结构相同,其不同的之处在于,光学结构20的第二表面22靠近拼缝30的一端为第二弧面24,显示模组10的显示区域11发出的光在第二弧面24反射后补充拼缝30所对应的非正视区域的光线。
需要说明的是,拼缝30所对应的非正视区域是指,用户在非正视角度(即非垂直于显示模组10的角度,即斜视角或者大视角)观看显示模组10时,在没有光学结构的情况下,拼缝30被观察到的区域。
这样,通过设置第二弧面24,从而能够将显示模组10的显示区域11发出的光进行反射,光线再经过光线结构的第一表面21射出,从而能够补充拼缝30所对应的非正视区域的光线,而达到在拼缝30所对应的非正视区域也能够从视觉上消除拼缝30,进一步提升拼接后用户视觉效果,达到用户视觉无拼缝30的主观感受。
进一步,第二弧面24为内凹弧面结构。其中,内凹弧面结构是指弧面向靠近光学结构的中心方向凹陷。
具体地,第二弧面24在显示模组10上的正投影的沿拼缝30的宽度方向的尺寸L4大于或等于二分之一的拼缝30的宽度W,且小于或等于二分之一的拼缝30的宽度W加上0.5mm,以能从斜视角度遮盖的拼缝的长度。
第二弧面24包括靠近显示模组10的第三端241和远离显示模组10的第四端242。
第四端242所在的水平面到第三端241所在的水平面的距离D2大于或等于二分之一的拼缝30的宽度W加上0.5mm,D2的数值越大斜视角效果越好,但光学结构的厚度越大,增加重量和材料成本;设计时需综合考量斜视角和模型厚度,一般设置第四端242所在的水平面到第三端241所在的水平面的距离D2大于或等于二分之一的拼缝的宽度,且小于或等于光学结构的厚度减去1mm。
第一弧面23最靠近第二表面22的一端(第一弧面23的第一端231)与第二弧面24最靠近第一表面21的一端(第二弧面24的第四端242)之间的距离D4大于0。较佳地,第一弧面23的第一端231与第二弧面24的第四端242之间的距离D4大于或等于0.3mm,且小于或等于1mm,以避免出现尖角而在组装和作业中造成划伤,并且方便材料的加工。需要说明的是,当连接于第一表面21和第二表面22之间的侧边25为垂直于显示 模组10设置的情况下,侧边25的长度即为第一弧面23的第一端231与第二弧面24的第四端242之间的距离D4。
第二弧面24的半径R2为2mm-8mm。第二弧面24的半径R2的值越小,斜视角效果越好,但正视角效果越差;反之亦然;故设计上需平衡正视和斜视角效果,第二弧面24的半径R2的取值为2mm-8mm效果最佳。第二弧面24的弧长L3由第二弧面24在显示模组10上的正投影的沿拼缝30的宽度方向的尺寸L4、第四端242所在的水平面到第三端241所在的水平面的距离D2以及第二弧面24的半径R2共同限定。
本实施例中的光学结构20的第二表面22靠近拼缝30的一端为内凹弧面结构,本实施例的显示屏1的正视仿真亮度分布图如图9所示,从图9中可以看到,在正视角度,用户在正视角度将基本观察不到拼缝30,从而能够从视觉上消除拼缝30,提升拼接后用户视觉效果,达到用户视觉无拼缝30的主观感受。
需要说明的是,第二表面22靠近拼缝30的一端也可以是其他结构形式,但对斜视角的光路有不同影响。
如在实施例1中的光学结构20中,第二表面22为一整体的平直平面时,请复参阅图5,用户在正视角度将基本观察不到拼缝30。但是,如图10所示,用户在45度的斜视角度观看显示模组10时,能观察到部分拼缝30的结构,即图中的部分O。即,实施例1中的光学结构20通过第一弧面23能够从视觉上消除正视角所见到的拼缝30,但不能解决用户在斜视角或者大视角所见到的拼缝30。
同样,在另一实施方式中,如图11所示,在光学结构20的第二表面22靠近拼缝30的一端为与显示模组10所在平面形成有一定夹角的平直面时,如图12所示,用户在正视角度将基本观察不到拼缝30。但是,如图13所示,用户在45度的斜视角观看显示模组10时,亦能观察到部分拼 缝30的结构,即图中的部分P。即将第二表面22靠近拼缝30的一端设置为与显示模组10所在平面形成有一定夹角的平直面时,仅有部分光线可以射出光学结构20来改善用户在斜视角或者大视角所见到的拼缝30,且改善效果一般。
在又一实施方式中,如图14所示,在光学结构20的第二表面22靠近拼缝30的一端为外凸弧面结构时,如图15所示,用户在正视角度将基本观察不到拼缝30。但是,如图16所示,用户在45度的斜视角观看显示模组10时,还是能观察到部分拼缝30的结构,即图中的部分Q。即通将第二表面22靠近拼缝30的一端设置为外凸弧面结构时,仅有极少部分光线可以射出光学结构20来改善用户在斜视角或者大视角所见到的拼缝30,且改善效果不佳。
只有在本实施例2的光学结构20的第二表面22靠近拼缝30的一端为内凹弧面结构的设置条件下,不仅用户在正视角度将基本观察不到拼缝30(请复参阅图9);而且,用户在45度的斜视角观看显示模组10时(如图17所示),完全观察不到拼缝30。即,通过将第二表面22靠近拼缝30的一端设置为内凹弧面结构时,光线均可射出光学结构20来改善大视角拼缝30,改善效果良好。
通过上述推演,可以得到最优的光学结构20为第一表面21的靠近拼缝30的一端为外凸弧面结构,且第二表面22靠近拼缝30的一端为内凹弧面结构时,能够同时消除正视角和大视角的拼缝问题。
实施例3
如图18所示,本实施例提供一种拼接显示单元2。多个拼接显示单元2紧密排列形成实施例1中的显示屏。即,本实施例中的拼接显示单元2为实施例1中的显示屏的最小拼接单元。
拼接显示单元2包括层叠设置的显示模组10和光学结构20,光学结构20设置于显示模组10的出光面的一侧。本实施例的光学结构20的结构请复参阅图4。
显示模组10包括显示区域11以及围绕显示区域11设置的黑边区域12,即显示区域11位于显示模组10的中心,黑边区域12围绕显示区域11的设置,从而位于显示模组10的边缘。当多个拼接显示单元2紧密排列时,相邻的两个显示模组10的黑边区域12拼接在一起就形成了实施例1中的显示屏的拼缝30。
每一光学结构20包括相对设置的第一表面21和第二表面22,光学结构20的第二表面22贴合于显示模组10上。
光学结构20的第一表面21靠近显示模组10的黑边区域12的一端为第一弧面23,第一弧面23用于将显示模组10的显示区域11发出的光进行折射后分布于黑边区域12所对应的正视区域。
需要说明的是,黑边区域12所对应的正视区域是指,用户在正视角度(即垂直于显示模组10的角度)观看显示模组10时,在没有光学结构的情况下,黑边区域12被观察到的区域。
这样,通过设置整体结构,并在光学结构20中设置第一弧面23,从而能够将显示模组10的显示区域11发出的光进行折射后分布于黑边区域12所对应的正视区域,能够从视觉上消除黑边区域12,提升拼接后用户视觉效果,达到用户视觉无黑边区域12的主观感受。具体地,通过光学结构20的第一弧面23对光线的进行折射,从而将显示模组10的显示区域11“放大”至成像面,达到拼接显示单元2的物理黑边区域12被消除的视觉效果。
进一步,第一弧面23到显示模组10所在的平面的距离,由远离显示模组10至靠近显示模组10的方向逐渐递减,且第一弧面23为外凸弧面 结构。其中,外凸弧面结构是指弧面向远离光学结构的中心方向凸出。
也就是说,第一弧面23由第一表面21所在的平面向靠近显示模组10的方向延伸,以形成外凸弧面结构,从而形成类似于凸透镜的结构,以实现将显示模组10的显示区域11发出的光进行折射,使折射后的光分布于黑边区域12所对应的正视区域。进一步,通过定义凸透镜的结构的参数,能够将光路偏离入射光方向特定的角度,达到将图像放大的效果,从而消除黑边区域12,提升用户体验。
并且,相对于现有技术中一些通过几组棱镜结构搭接而成的光学结构20,以及通过设置几组棱镜结构以将图像平移至黑边区域12的区域的技术方案,本实施例的拼接显示单元2的光学结构20具有图像放大效果,可以适合于N*N拼接,且为单一结构,避免多结构组装偏移造成的画面效果变化情况。
具体地,如图3所示,为了更好地展示光学结构20中的第一弧面23的设置情况,将图中的剖面线去除。第一弧面23在显示模组10上的正投影的沿黑边区域12的宽度方向的尺寸L2大于或等于两倍黑边区域12的宽度w,且小于或等于两倍黑边区域12的宽度w加上5mm,黑边区域12的宽度为0.44mm-1.95mm。通过设置第一弧面23在显示模组10上的正投影的沿黑边区域12的宽度方向的尺寸L2大于或等于两倍黑边区域12的宽度w以挡住黑边区域12,但是如果太大会降低折射的效果。
第一弧面23包括靠近显示模组10的第一端231和远离显示模组10的第二端232。第一弧面23的第一端231所在的水平面到第一弧面23的第二端232所在的水平面的距离D3小于或等于二分之一的光学结构20的厚度D1,在该范围内,第一弧面23的第一端231所在的水平面到第一弧面23的第二端232所在的水平面的距离D3的数值越大,折射效果越好,正视效果越好,但是光学结构的厚度将越大,增加重量和材料成本;设计时需综合考量。较佳地,第一弧面23的第一端231所在的水平面到第一弧 面23的第二端232所在的水平面的距离D3为2mm-4mm。
第一弧面23的半径R1大于或等于两倍黑边区域12的宽度w,且小于或等于两倍黑边区域12的宽度w加上5mm。较佳地,第一弧面23的半径R1为2mm-5mm。
第一弧面23的弧长L1已经由第一弧面23在显示模组10上的正投影的沿黑边区域12的宽度方向的尺寸L2、第一弧面23的第一端231所在的水平面到第一弧面23的第二端232所在的水平面的距离D3、以及第一弧面23的半径R1共同限定。第一弧面23的弧长L1越大,可以遮盖的拼缝的长度越大,需要综合拼缝长度进行设计。
在本实施例中,光学结构20的厚度D1为3mm-10mm。光学结构20的材料为玻璃,或PMMA(英文全称:polymethyl methacrylate,中文名称:聚甲基丙烯酸甲酯),或PC(聚碳酸酯)等。光学结构20通过光学胶层40固定于显示模组10上。
本实施例中的光学结构20的第二表面22为一整体的平直平面。
本实施例的拼接显示单元2能够从视觉上消除黑边区域12,提升拼接后用户视觉效果,达到用户视觉无黑边区域12的主观感受。
实施例4
如图19所示,本实施例的拼接显示单元的整体结构基本和实施例3中的结构相同,其不同的之处在于,光学结构20的第二表面22靠近黑边区域12的一端为第二弧面24,显示模组10的显示区域11发出的光在第二弧面24反射后补充黑边区域12所对应的非正视区域的光线。本实施例的光学结构20的结构请复参阅图8。
需要说明的是,黑边区域12所对应的非正视区域是指,用户在非正视角度(即非垂直于显示模组10的角度,即斜视角或者大视角)观看显示 模组10时,在没有光学结构的情况下,黑边区域12被观察到的区域。
这样,通过设置第二弧面24,从而能够将显示模组10的显示区域11发出的光进行反射,光线再经过光线结构的第一表面21射出,从而能够补充黑边区域12所对应的非正视区域的光线,而达到在黑边区域12所对应的非正视区域也能够从视觉上消除黑边区域12,进一步提升拼接后用户视觉效果,达到用户视觉无黑边区域12的主观感受。
进一步,第二弧面24为内凹弧面结构。其中,内凹弧面结构是指弧面向靠近光学结构的中心方向凹陷。
具体地,第二弧面24在显示模组10上的正投影的沿黑边区域12的宽度方向的尺寸L4大于或等于黑边区域12的宽度w,且小于或等于黑边区域12的宽度w加上0.5mm,以能从斜视角度遮盖的拼缝的长度。
第二弧面24包括靠近显示模组10的第三端241和远离显示模组10的第四端242。
第四端242所在的水平面到第三端241所在的水平面的距离D2大于或等于黑边区域12的宽度w加上0.5mm,D2的数值越大斜视角效果越好,但光学结构的厚度越大,增加重量和材料成本;设计时需综合考量斜视角和模型厚度,一般设置第四端242所在的水平面到第三端241所在的水平面的距离D2大于或等于黑边区域12的宽度w,且小于或等于光学结构的厚度减去1mm。
第一弧面23最靠近第二表面22的一端(第一弧面23的第一端231)与第二弧面24最靠近第一表面21的一端(第二弧面24的第四端242)之间的距离D4大于0。较佳地,第一弧面23的第一端231与第二弧面24的第四端242之间的距离D4大于或等于0.3mm,且小于或等于1mm,以避免出现尖角而在组装和作业中造成划伤,并且方便材料的加工。需要说明的是,当连接于第一表面21和第二表面22之间的侧边25为垂直于显示 模组10设置的情况下,侧边25的长度即为第一弧面23的第一端231与第二弧面24的第四端242之间的距离D4。
第二弧面24的半径R2为2mm-8mm。第二弧面24的半径R2的值越小,斜视角效果越好,但正视角效果越差;反之亦然;故设计上需平衡正视和斜视角效果,第二弧面24的半径R2的取值为2mm-8mm效果最佳。第二弧面24的弧长L3由第二弧面24在显示模组10上的正投影的沿黑边区域12的宽度方向的尺寸L4、第四端242所在的水平面到第三端241所在的水平面的距离D2以及第二弧面24的半径R2共同限定。
在本实施例2的光学结构20的第二表面22靠近黑边区域12的一端为内凹弧面结构的设置条件下,不仅用户在正视角度将基本观察不到黑边区域12;而且,用户在45度的斜视角观看显示模组10时,也完全观察不到黑边区域12。即,通过将第二表面22靠近黑边区域12的一端设置为内凹弧面结构时,光线均可射出光学结构20来改善大视角黑边区域12,改善效果良好。
本实施例的光学结构20通过设置第一表面21的靠近黑边区域12的一端为外凸弧面结构,且第二表面22靠近黑边区域12的一端为内凹弧面结构时,能够同时消除正视角和大视角的拼缝问题。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (12)

  1. 一种显示屏,其特征在于,所述显示屏包括紧密排列的多个显示模组以及多个光学结构,每一光学结构对应于一所述显示模组设置,且设置于所述显示模组的出光面的一侧,相邻的两个所述显示模组紧贴设置,且相邻的两个所述显示模组上的所述光学结构紧贴设置;
    每一所述显示模组包括显示区域以及围绕所述显示区域设置的黑边区域,相邻的两个所述显示模组的所述黑边区域拼接在一起形成拼缝;
    每一所述光学结构包括相对设置的第一表面和第二表面,所述光学结构的第二表面贴合于所述显示模组上;
    所述光学结构的第一表面靠近所述拼缝的一端为第一弧面,所述第一弧面用于将所述显示模组的显示区域发出的光进行折射后分布于所述拼缝所对应的正视区域。
  2. 如权利要求1所述的显示屏,其特征在于,所述第一弧面为外凸弧面结构。
  3. 如权利要求1所述的显示屏,其特征在于,所述第一弧面在所述显示模组上的正投影的沿所述拼缝的宽度方向的尺寸大于或等于所述拼缝的宽度,且小于或等于所述拼缝的宽度加上5mm,所述拼缝的宽度为0.88mm-3.9mm;和/或,
    所述第一弧面包括靠近所述显示模组的第一端和远离所述显示模组的第二端;所述第一弧面的第一端所在的水平面到所述第一弧面的第二端所在的水平面的距离小于或等于二分之一的所述光学结构的厚度和/或,所述第一弧面的半径大于或等于所述拼缝的宽度,且小于或等于所述拼缝的宽度加上5mm,所述拼缝的宽度为0.88mm-3.9mm;和/或,
    所述第一弧面的半径为2mm-5mm;和/或,
    所述光学结构的厚度为3mm-10mm。
  4. 如权利要求1-3中任意一项所述的显示屏,其特征在于,所述光学 结构的第二表面靠近所述拼缝的一端为第二弧面,所述显示模组的显示区域发出的光在所述第二弧面反射后补充所述拼缝所对应的非正视区域的光线。
  5. 如权利要求4所述的显示屏,其特征在于,所述第二弧面为内凹弧面结构。
  6. 如权利要求4所述的显示屏,其特征在于,所述第二弧面包括靠近所述显示模组的第三端和远离所述显示模组的第四端;所述第四端所在的水平面到所述第三端所在的水平面的距离大于或等于二分之一的所述拼缝的宽度,且小于或等于所述光学结构的厚度减去1mm;和/或,
    所述第一弧面中靠近所述第二表面的一端与所述第二弧面中靠近所述第一表面的一端之间的距离大于或等于0.3mm,且小于或等于1mm;和/或,
    所述第二弧面的半径为2mm-8mm。
  7. 一种拼接显示单元,其特征在于,包括层叠设置的显示模组和光学结构,所述光学结构设置于所述显示模组的出光面的一侧;
    所述显示模组包括显示区域以及围绕所述显示区域设置的黑边区域;
    每一所述光学结构包括相对设置的第一表面和第二表面,所述光学结构的第二表面贴合于所述显示模组上;
    所述光学结构的第一表面靠近所述显示模组的黑边区域的一端为第一弧面,所述第一弧面用于将所述显示模组的显示区域发出的光进行折射后分布于所述黑边区域所对应的正视区域。
  8. 如权利要求7所述的拼接显示单元,其特征在于,所述第一弧面为外凸弧面结构。
  9. 如权利要求7所述的拼接显示单元,其特征在于,所述第一弧面在所述显示模组上的正投影的沿所述黑边区域的宽度方向的尺寸大于或等于两倍所述黑边区域的宽度,且小于或等于两倍所述黑边区域的宽度加上5mm,所述黑边区域的宽度为0.44mm-1.95mm;和/或,
    所述第一弧面包括靠近所述显示模组的第一端和远离所述显示模组的第二端;所述第一弧面的第一端所在的水平面到所述第一弧面的第二端所在的水平面的距离小于或等于二分之一的所述光学结构的厚度;和/或,
    所述第一弧面的半径大于或等于所述两倍所述黑边区域的宽度,且小于或等于所述两倍所述黑边区域的宽度加上5mm,所述黑边区域的宽度为0.44mm-1.95mm;和/或,
    所述第一弧面的半径为2mm-5mm;和/或;
    所述光学结构的厚度为3mm-10mm。
  10. 如权利要求7-9中任意一项所述的拼接显示单元,其特征在于,所述光学结构的第二表面靠近所述显示模组的黑边区域的一端为第二弧面,所述显示模组的显示区域发出的光在所述第二弧面反射后补充所述黑边区域所对应的非正视区域的光线。
  11. 如权利要求10所述的拼接显示单元,其特征在于,所述第二弧面为内凹弧面结构。
  12. 如权利要求10所述的拼接显示单元,其特征在于,所述第二弧面包括靠近所述显示模组的第三端和远离所述显示模组的第四端;所述第四端所在的水平面到所述第三端所在的水平面的距离大于或等于所述黑边区域的宽度,且小于或等于所述光学结构的厚度减去1mm,所述黑边区域的宽度为0.44mm-1.95mm;和/或,
    所述第一弧面中靠近所述第二表面的一端与所述第二弧面中靠近所述第一表面的一端之间的距离大于或等于0.3mm,且小于或等于1mm;和/或;
    所述第二弧面的半径为2mm-8mm。
PCT/CN2021/083428 2021-03-26 2021-03-26 拼接显示单元和显示屏 WO2022198679A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022573355A JP2024510859A (ja) 2021-03-26 2021-03-26 スプライシング表示ユニット及び表示スクリーン
KR1020237001276A KR20230160773A (ko) 2021-03-26 2021-03-26 스플라이싱 디스플레이 유닛 및 디스플레이 스크린
PCT/CN2021/083428 WO2022198679A1 (zh) 2021-03-26 2021-03-26 拼接显示单元和显示屏
EP21932298.9A EP4120227A4 (en) 2021-03-26 2021-03-26 SPLICE DISPLAY UNIT AND DISPLAY SCREEN
US17/767,740 US20240094442A1 (en) 2021-03-26 2021-03-26 Splicing display unit and display screen
CN202180000614.8A CN115413355A (zh) 2021-03-26 2021-03-26 一种拼接显示单元和显示屏

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083428 WO2022198679A1 (zh) 2021-03-26 2021-03-26 拼接显示单元和显示屏

Publications (1)

Publication Number Publication Date
WO2022198679A1 true WO2022198679A1 (zh) 2022-09-29

Family

ID=83395082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083428 WO2022198679A1 (zh) 2021-03-26 2021-03-26 拼接显示单元和显示屏

Country Status (6)

Country Link
US (1) US20240094442A1 (zh)
EP (1) EP4120227A4 (zh)
JP (1) JP2024510859A (zh)
KR (1) KR20230160773A (zh)
CN (1) CN115413355A (zh)
WO (1) WO2022198679A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114973987A (zh) * 2022-06-16 2022-08-30 Tcl华星光电技术有限公司 拼接显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770732A (zh) * 2009-01-07 2010-07-07 曹嘉灿 无缝拼接显示装置
CN102067196A (zh) * 2008-06-25 2011-05-18 夏普株式会社 显示装置
CN203689856U (zh) * 2014-01-26 2014-07-02 京东方科技集团股份有限公司 一种显示面板和显示装置
CN104123885A (zh) * 2014-07-15 2014-10-29 青岛海信电器股份有限公司 一种无缝拼接显示设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157161A1 (ja) * 2008-06-26 2009-12-30 シャープ株式会社 表示装置及び電子機器
EP2728570B1 (en) * 2012-03-26 2016-09-07 Dai Nippon Printing Co., Ltd. Array-type display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067196A (zh) * 2008-06-25 2011-05-18 夏普株式会社 显示装置
CN101770732A (zh) * 2009-01-07 2010-07-07 曹嘉灿 无缝拼接显示装置
CN203689856U (zh) * 2014-01-26 2014-07-02 京东方科技集团股份有限公司 一种显示面板和显示装置
CN104123885A (zh) * 2014-07-15 2014-10-29 青岛海信电器股份有限公司 一种无缝拼接显示设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120227A4 *

Also Published As

Publication number Publication date
JP2024510859A (ja) 2024-03-12
KR20230160773A (ko) 2023-11-24
US20240094442A1 (en) 2024-03-21
EP4120227A4 (en) 2023-04-26
EP4120227A1 (en) 2023-01-18
CN115413355A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
JP5269983B2 (ja) 表示装置
US9110326B2 (en) Liquid crystal display device and multi-display system
JP5349591B2 (ja) 表示装置
EP2851741B1 (en) Prism sheet member and multivision display apparatus having the same
US10895748B2 (en) Display device including optical member including light refracting portion and head-mounted display including the same
EP3242155B1 (en) Prism module and display device
US10649131B2 (en) Display device and head-mounted display
US10929086B2 (en) Multi-screen display apparatus and display method thereof
JP2004029785A (ja) 光路移動手段を有する多重表示装置
US10955874B2 (en) Multi-screen display device
WO2018045832A1 (zh) 虚拟曲面显示面板、显示装置及显示方法
WO2016197519A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
US10768430B2 (en) Display device and head-mounted display
US10809959B2 (en) Multi-screen display device
US20210294018A1 (en) Display device and head-mounted display
WO2022198679A1 (zh) 拼接显示单元和显示屏
TWI650598B (zh) 光學膜片模組及其應用的裝置
JP2009163245A (ja) 光学シート及びこれを有する表示装置
JP5622498B2 (ja) マルチディスプレイ装置
JP6727054B2 (ja) マルチディスプレイ装置
WO2021259083A1 (zh) 背光模组以及显示装置
KR102344296B1 (ko) 다중 패널 표시장치 및 그를 위한 판상 광학 부재
WO2019095215A1 (zh) 近眼显示装置
TWM560025U (zh) 光學膜片模組及其應用的裝置
US20230337508A1 (en) Display device and wearable device including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17767740

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021932298

Country of ref document: EP

Effective date: 20221012

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022573355

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE