WO2022198387A1 - 智能控制方法、零信任控制设备、网关及系统 - Google Patents

智能控制方法、零信任控制设备、网关及系统 Download PDF

Info

Publication number
WO2022198387A1
WO2022198387A1 PCT/CN2021/082099 CN2021082099W WO2022198387A1 WO 2022198387 A1 WO2022198387 A1 WO 2022198387A1 CN 2021082099 W CN2021082099 W CN 2021082099W WO 2022198387 A1 WO2022198387 A1 WO 2022198387A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
power consumption
smart device
signal
target smart
Prior art date
Application number
PCT/CN2021/082099
Other languages
English (en)
French (fr)
Inventor
邵帅
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180025158.2A priority Critical patent/CN115398562B/zh
Priority to PCT/CN2021/082099 priority patent/WO2022198387A1/zh
Publication of WO2022198387A1 publication Critical patent/WO2022198387A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y30/00IoT infrastructure
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/30Control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/59Responders; Transponders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the embodiments of the present application relate to the field of communications, and more particularly, to an intelligent control method, a zero-trust control device, a gateway, and a system.
  • IoT Internet of Things
  • the embodiments of the present application provide an intelligent control method, a zero-trust control device, a gateway, and a system, so as to introduce a zero-power consumption technology to realize the control of the intelligent device.
  • an intelligent control method including: a zero-power control device receives a detection signal sent by a zero-power gateway; the zero-power control device uses the detection signal as a carrier, and sends the detection signal to the zero-power gateway by backscattering Backscattered signal; wherein, the backscattered signal is used to generate a control signal to the target smart device to control the switch state of the target smart device.
  • an intelligent control method including: a zero power consumption gateway sends a detection signal to a zero power consumption control device; the zero power consumption gateway receives a backscattered signal sent by the zero power consumption control device; Generate a control signal to the target smart device to the scattered signal; the zero-power gateway sends a control signal to the target smart device to control the switch state of the target smart device; wherein, the backscattered signal is the zero-power control device that uses the detection signal as a carrier wave , the backscattered signal sent by backscattering.
  • an intelligent control method is provided, where the method is applied to a first zero-power consumption control device, the first zero-power consumption control device is set on a target intelligent device, and the method includes: the first zero-power consumption control device receives zero-power consumption The first detection signal sent by the gateway; the first zero-power consumption control device uses the first detection signal as a carrier, and sends the first backscattered signal to the zero-power consumption gateway by backscattering; wherein, the first backscattered signal uses It is used to generate a control signal to the target smart device to control the switch state of the target smart device.
  • an intelligent control method is provided, the method is applied to a second zero-power consumption control device, and the second zero-power consumption control device is carried on a user, and the method includes: the second zero-power consumption control device receives a zero-power consumption gateway sending The second detection signal of the zero-power consumption control device uses the second detection signal as a carrier, and sends the second backscattered signal to the zero-power consumption gateway through backscattering; wherein, the second backscattered signal is used to generate A control signal to the target smart device to control the switch state of the target smart device.
  • an intelligent control method comprising: a zero-power consumption gateway sending a first detection signal to a first zero-power consumption control device, and sending a second detection signal to a second zero-power consumption control device; the zero-power consumption gateway Receive the first backscattered signal sent by the first zero power consumption control device, and receive the second backscattered signal sent by the second zero power consumption control device; the zero power consumption gateway is based on the first backscattered signal and the second backscattered signal.
  • a control signal for the target smart device is generated to the scattering signal; the zero-power consumption gateway sends a control signal to the target smart device to control the switch state of the target smart device.
  • the first backscattered signal is a backscattered signal sent by the first zero-power consumption control device using the first detection signal as a carrier wave by backscattering;
  • the second backscattered signal is the second zero-power consumption control device
  • the second detection signal is used as a carrier wave, and the backscattered signal is sent by means of backscattering.
  • a zero-power consumption control device comprising: a radio frequency front-end chip for: receiving a detection signal sent by a zero-power consumption gateway; Backscattered signal; wherein, the backscattered signal is used to generate a control signal to the target smart device to control the switch state of the target smart device.
  • a zero-power consumption gateway comprising: a transceiver and a processor; the transceiver is configured to send a detection signal to a zero-power consumption control device; the transceiver is further configured to receive a backscattered signal sent by the zero-power consumption control device
  • the processor is used to generate a control signal for the target smart device according to the backscattered signal; the transceiver is also used to send a control signal to the target smart device to control the switch state of the target smart device; wherein the backscattered signal is zero power consumption
  • the control device regards the detection signal as a carrier wave and sends the backscattered signal by means of backscattering.
  • a zero power consumption control device is provided.
  • the zero power consumption control device is a first zero power consumption control device, the first zero power consumption control device is set on a target smart device, and the first zero power consumption control device includes:
  • the radio frequency front-end chip is used for: receiving the first detection signal sent by the zero-power consumption gateway; using the first detection signal as a carrier, and sending the first backscattering signal to the zero-power consumption gateway by backscattering; wherein the first backscattering signal is The backscattered signal is used to generate a control signal to the target smart device to control the switch state of the target smart device.
  • a ninth aspect provides a zero power consumption control device, the zero power consumption control device is a second zero power consumption control device, the second zero power consumption control device is carried on a user, and the second zero power consumption control device includes: a radio frequency front end The chip is used for: receiving the second detection signal sent by the zero-power consumption gateway; using the second detection signal as a carrier, and sending the second backscattering signal to the zero-power consumption gateway by backscattering; wherein, the second backscattering The signal is used to generate a control signal to the target smart device to control the switch state of the target smart device.
  • a zero-power consumption gateway comprising: a transceiver and a processor; the transceiver is configured to send a first detection signal to a first zero-power consumption control device, and send a second detection signal to a second zero-power consumption control device signal; the transceiver is further configured to receive the first backscattered signal sent by the first zero power consumption control device, and receive the second backscattered signal sent by the second zero power consumption control device; the processor is configured to receive the first backscattered signal according to the first The scattered signal and the second backscattered signal generate a control signal for the target smart device; the transceiver is also used for sending a control signal to the target smart device to control the switch state of the target smart device.
  • the first backscattered signal is a backscattered signal sent by the first zero-power consumption control device using the first detection signal as a carrier wave by backscattering;
  • the second backscattered signal is the second zero-power consumption control device
  • the second detection signal is used as a carrier wave, and the backscattered signal is sent by means of backscattering.
  • an intelligent control system including: a zero-power consumption control device as in the sixth aspect, a zero-power consumption gateway as in the seventh aspect, and at least one intelligent device.
  • a twelfth aspect provides an intelligent control system, comprising: the first zero-power consumption control device of the eighth aspect, the second zero-power consumption control device of the ninth aspect, and the zero-power consumption gateway of the tenth aspect and at least one smart device.
  • an apparatus for implementing the method in any one of the above-mentioned first aspect to the fifth aspect or each implementation manner thereof.
  • the apparatus includes: a processor for invoking and running a computer program from a memory, so that a device installed with the apparatus executes the method in any one of the above-mentioned first to fifth aspects or their respective implementations .
  • a fourteenth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first to fifth aspects or the respective implementations thereof.
  • a fifteenth aspect provides a computer program product, comprising computer program instructions, the computer program instructions cause a computer to execute the method in any one of the above-mentioned first to fifth aspects or the implementations thereof.
  • a sixteenth aspect provides a computer program that, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to fifth aspects or each of its implementations.
  • FIG. 1 is a schematic structural diagram of an intelligent control system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of interconnection between a zero-power consumption gateway and other gateways provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of multiple zero-power consumption gateway systems provided by an embodiment of the present application.
  • FIG. 4 is a system schematic diagram of multiple zero-power consumption gateways and multiple other gateways provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of an intelligent control method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a gesture control scenario provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the connection between a microprocessor and a sensor in a zero-power-consumption control device provided by an embodiment of the present application;
  • FIG. 8 is a schematic flowchart of an intelligent control method according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of an intelligent control system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a zero-power consumption control device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another zero-power consumption control device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a zero-power-consumption gateway provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an intelligent control system provided by an embodiment of the present application. As shown in Figure 1, it includes: a zero-power control device, a zero-power gateway, and a smart device, wherein wireless communication can be performed between the zero-power control device and the zero-power gateway, and the zero-power gateway and the smart device Wireless communication is possible.
  • the zero power consumption control device is also referred to as a controller, which can be understood as a smart switch.
  • the zero-power control device does not carry a power supply, is light in size, and is easy to install; there can be one or more zero-power control devices in the intelligent control system, as shown in Figure 1, here to include three zero-power control devices. Exemplary illustration.
  • one zero-power control device can control at most one smart device, and one smart device can be controlled by at least one zero-power control device, as shown in Table 1:
  • the smart devices 1, 2 and N can all be controlled by one zero-power consumption control device, and the smart device 3 can be controlled by two zero-power consumption control devices.
  • the above-mentioned correspondence between the smart device and the zero-power consumption control device may be stored in the zero-trust gateway, which is not limited in this application.
  • the zero-power gateway acts as a bridge between zero-power communication and other wireless communications.
  • the zero-power gateway can send a detection signal to the zero-power control device, and the zero-power control device uses the detection signal as a carrier, and sends the backscatter signal to the zero-power gateway through backscattering, so that the zero-power gateway generates a control signal , and send the control signal in the wireless transmission mode supported by the smart device,
  • the wireless transmission mode can be Bluetooth transmission mode, Wireless Fidelity (WiFi) mode, cellular transmission mode, Customer Premise Equipment (CPE) , Zigbee, etc., which are not limited in this application.
  • zero-power-consumption gateways there may be one or more zero-power-consumption gateways in the intelligent control system, as shown in FIG. 1 , and it is exemplified by including one zero-power-consumption gateway here.
  • One zero-power consumption gateway may correspond to one zero-power consumption control device, or may correspond to multiple zero-power consumption control devices.
  • a zero-power gateway can correspond to one smart device, or it can correspond to multiple smart devices. In this application, the corresponding relationship between a zero-power gateway and a zero-power control device, and the corresponding relationship between a zero-power gateway and a smart device are not the same. make restrictions.
  • a smart device can be a device that supports wireless communication technologies such as Bluetooth transmission, WiFi, cellular transmission, CPE, Zigbee, etc. It can be a smart light, smart air conditioner, smart curtain, etc.
  • FIG. 2 is a schematic diagram of the interconnection between a zero-power consumption gateway and other gateways provided by an embodiment of the present application.
  • the The zero-power gateway can not directly control the smart device, but is connected to the existing gateway of the smart device, which is referred to as other gateways to control the smart device through wired or wireless connections.
  • the zero-power gateway converts the backscattered signal sent by the zero-power control device into information identifiable by other gateways, and transmits this information to other gateways, and finally the other gateways complete the control operation on the smart device.
  • FIG. 3 is a schematic diagram of multiple zero-power consumption gateway systems provided by an embodiment of the present application. As shown in FIG. The power consumption gateway can communicate with one other gateway, wherein each zero power consumption gateway can receive and transmit the backscattered signal sent by the zero power consumption control device, and send this signal to other gateways to finally realize the control of the smart device .
  • the non-main zero-power gateway can first send the collected backscattered signal to the main zero-power gateway, and then the main zero-power gateway can pass wired or wireless to interact with other corresponding gateways.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • FIG. 5 is a schematic flowchart of an intelligent control method according to an embodiment of the present application. Specifically, as shown in FIG. 5 , the method may include the following steps:
  • the zero-power consumption gateway sends a detection signal to the zero-power consumption control device.
  • the zero-power consumption control device uses the detection signal as a carrier wave, and sends the backscattered signal to the zero-power consumption gateway by means of backscattering.
  • the zero-power-consumption gateway generates a control signal for the target smart device according to the backscattered signal.
  • the zero-power consumption gateway sends a control signal to the target smart device to control the switch state of the target smart device.
  • the backscattered signal is used to generate a control signal to the target smart device, so as to control the switch state of the target smart device.
  • the backscattered signal includes: an identifier of the target smart device, so that the zero-power consumption gateway knows that the backscattered signal is a backscattered signal corresponding to the target smart device.
  • the zero-power control device does not actively transmit signals, but reflects the detection signal of the zero-power gateway and modulates the signal, thereby realizing wireless communication with the zero-power gateway. communication.
  • the zero-power gateway transmits a detection signal according to a certain period t; the zero-power control device receives this signal, and extracts energy from the signal as the energy source of the zero-power control device, that is, the zero-power control device will The detection signal is used as a carrier, and the backscattered signal is sent to the zero-power-consumption gateway through backscattering.
  • the zero-power gateway receives this signal and parses it, and generates a control signal to the target smart device to control the switch state of the target smart device, such as turning on smart lights, opening smart curtains, turning off smart air conditioners, and so on.
  • the backscattered signal may exist in the following three situations, but not limited to this:
  • Case 1 The backscattered signal only includes the identification of the target smart device.
  • the backscattered signal includes the identification and control information of the target smart device.
  • the control information is used to indicate that the target smart device needs to be switched from an open state to an off state, or to switch from an off state to an open state.
  • Case 3 A sensor is installed on the zero-power control device; the backscattered signal also includes: the current state of the sensor.
  • Implementation mode 1 The zero-power-consumption gateway generates a control signal for the target smart device according to the Received Signal Strength Indication (RSSI) of the backscattered signal and the RSSI of the historical backscattered signal.
  • RSSI Received Signal Strength Indication
  • the historical backscattered signal is the backscattered signal used for generating the control signal to the target smart device for the last time in history.
  • Implementation mode 2 The zero-power consumption gateway generates a control signal for the target smart device according to the phase of the backscattered signal and the phase of the historical backscattered signal.
  • the historical backscattered signal is the backscattered signal used for generating the control signal to the target smart device for the last time in history.
  • the application scenario that can be implemented in the first mode may be a gesture control scenario.
  • FIG. 6 is a schematic diagram of a gesture control scenario provided by an embodiment of the present application.
  • the RSSI of the backscattered signal obtained by the zero-power-consumption gateway is weaker than that of the backscattered signal obtained when there is no gesture occlusion.
  • the zero-power gateway transmits detection signals according to a certain period t. Therefore, it is assumed that the RSSI of the backscattered signal obtained by the zero-power gateway in the i+1th cycle is relative to that obtained by the zero-power gateway in the i-th cycle.
  • the resulting backscattered signal is weak, indicating that in the i+1th cycle, the hand is occluding between the zero-power control device and the zero-power gateway.
  • the zero-power gateway can determine that the target smart device needs to switch the switch state.
  • the smart device and the zero-power-consumption gateway can exchange data according to a certain period.
  • the data exchange contains the switch states of smart devices, and the zero-power gateway can record these states in the local memory, for example, as shown in Table 2:
  • the zero-power gateway determines that the target smart device needs to switch the switch state, it can look up the current switch state of the target smart device in Table 2. For example, if the current switch state of smart device 1 is on, it means that the zero-power gateway needs to Switch the switch state of smart device 1 from on to off. For another example, if the current switch state of the smart device 3 is the off state, it means that the zero power consumption gateway needs to switch the switch state of the smart device 3 from the off state to the on state.
  • the zero-power gateway can set a preset duration, and the preset duration is used to limit the current response only obtained by the zero-power gateway.
  • the RSSI of the backscattered signal becomes weaker than the RSSI of the historical backscattered signal, and when the RSSI of the current backscattered signal lasts for the preset duration, the zero-power gateway confirms that the current gesture operation is a normal hand-held operation, that is It is not a misoperation or miscontrol. Further, if the zero-power gateway confirms that the current gesture operation is a normal hand-held operation, the zero-power gateway can determine the current state of the target smart device. The zero-power gateway performs state switching according to the current state of the target smart device.
  • the hand performs the occlusion operation between the zero-power control device and the zero-power gateway.
  • the zero-power gateway needs to determine the duration of the RSSI of the currently obtained backscattered signal. If the duration reaches the preset duration, the zero-power gateway determines that the target smart device needs to switch the switch state. Among them, the smart device and the zero-power-consumption gateway can exchange data according to a certain period.
  • the data exchange includes the switch state of the smart device, and the zero-power gateway can record these states in the local memory.
  • Find the current switch state of the target smart device in , for example, if the current switch state of smart device 1 is on, it means that the zero-power gateway needs to switch the switch state of smart device 1 from on to off.
  • the current switch state of the smart device 3 is the off state, it means that the zero power consumption gateway needs to switch the switch state of the smart device 3 from the off state to the on state.
  • the application scenario that can implement the second mode may be a gesture control scenario, in which there may be multiple communication channels between the zero-power consumption control device and the zero-power consumption gateway, such as CH1, CH2...CHN, each communication channel
  • the center frequencies are f1, f2...fN
  • the zero-power gateway can calculate the phase phase1, phase2...phaseN of each communication channel according to the received backscattered signal, where the phase information of the signal is related to the signal from the transmitter to the The path of the receiving end is related.
  • the zero-power-consumption gateway transmits detection signals at a certain period t, and records each communication channel and corresponding phase information of the control device in the local memory.
  • the phase of the backscattered signal obtained by the zero-power gateway is relative to that obtained when there is no gesture blocking.
  • the phase of the resulting backscattered signal changes.
  • the zero-power gateway transmits the detection signal according to a certain period t. Therefore, it is assumed that the phase of the backscattered signal obtained by the zero-power gateway in the i+1th cycle is relative to that obtained by the zero-power gateway in the i-th cycle.
  • the received backscattered signal changes, indicating that in the i+1th cycle, the hand is blocking the operation between the zero-power control device and the zero-power gateway.
  • the zero-power gateway can determine that the target smart device needs to switch the switch state.
  • the smart device and the zero-power-consumption gateway can exchange data according to a certain period.
  • the data exchange includes the switch state of the smart device, and the zero-power gateway can record these states in the local memory, for example, as shown in Table 2:
  • the zero-power gateway determines that the target smart device needs to switch the switch state, it can record the state in Table 2.
  • Find the current switch state of the target smart device in for example, if the current switch state of smart device 1 is on, it means that the zero-power gateway needs to switch the switch state of smart device 1 from on to off.
  • the current switch state of the smart device 3 is the off state, it means that the zero power consumption gateway needs to switch the switch state of the smart device 3 from the off state to the on state.
  • the zero-power gateway can set a preset duration, and the preset duration is used to limit the current response only obtained by the zero-power gateway.
  • the zero-power gateway will confirm that the current gesture operation is a normal hand-held operation, that is, It is not a misoperation or miscontrol. Further, if the zero-power gateway confirms that the current gesture operation is a normal hand-held operation, the zero-power gateway can determine the current state of the target smart device. The zero-power gateway performs state switching according to the current state of the target smart device.
  • the hand performs the occlusion operation between the zero-power control device and the zero-power gateway.
  • the zero-power gateway needs to determine the duration of the phase of the currently acquired backscattered signal. If the duration reaches the preset duration, the zero-power gateway determines that the target smart device needs to switch the switch state. Among them, the smart device and the zero-power-consumption gateway can exchange data according to a certain period.
  • the data exchange includes the switch state of the smart device, and the zero-power gateway can record these states in the local memory.
  • Find the current switch state of the target smart device in , for example, if the current switch state of smart device 1 is on, it means that the zero-power gateway needs to switch the switch state of smart device 1 from on to off.
  • the current switch state of the smart device 3 is the off state, it means that the zero power consumption gateway needs to switch the switch state of the smart device 3 from the off state to the on state.
  • the control information is used to indicate that the target smart device needs to be switched from the open state to the closed state, or to be switched from the closed state to the open state. Therefore, the control signal generated by the zero-power consumption gateway may directly include: the control information and the identifier of the target smart device.
  • the zero-power consumption gateway sends a control signal to the smart device 1 as shown in Table 2, so as to control the smart device 1 to switch from an on state to an off state.
  • the zero-power consumption gateway sends a control signal to the smart device 3 shown in Table 2 to control the smart device 3 to switch from the off state to the on state.
  • FIG. 7 is a schematic diagram of the connection between a microprocessor and a sensor in a zero-power-consumption control device provided by an embodiment of the present application.
  • the sensor may be a switch device.
  • the sensor is connected to a micro-controller in the zero-power-consumption control device.
  • the zero-power control device when the zero-power control device receives the detection signal, its internal microprocessor obtains energy and detects the state between Pn and Pm.
  • the microprocessor carries the current state of the sensor in the backscattered signal.
  • the zero-power gateway After the zero-power gateway receives the backscattered signal, it decodes to obtain the current state of the sensor, and compares the current state with the previous state to determine whether the state of the sensor has changed. current state.
  • the zero-power gateway performs state switching according to the current state of the target smart device. For example: the current state of the sensor obtained by the zero-power gateway is Pn, and the Pm is in the on-state, and the current state is Pn, and the Pm is in the open state. Based on this, the zero-power gateway can determine the current state of the target smart device .
  • the zero-power gateway performs state switching according to the current state of the target smart device.
  • the zero-power consumption gateway determines the current state of the target smart device and how to perform state switching, reference may be made to the above, which will not be repeated in this application.
  • the zero-power consumption gateway controls the target smart device according to the state change of the sensor. In fact, it can also control the target smart device according to the speed change measured by the sensor, etc., which is not covered in this application. make restrictions.
  • the backscattered signal has the above three situations, and based on this, the zero-power-consumption gateway can control the target smart device in these three situations.
  • FIG. 8 is a schematic flowchart of an intelligent control method according to another embodiment of the present application. Specifically, as shown in FIG. 8 , the method may include the following steps:
  • the zero-power consumption gateway sends a first detection signal to the first zero-power consumption control device.
  • the zero-power consumption gateway sends a second detection signal to the second zero-power consumption control device.
  • the first zero-power consumption control device uses the first detection signal as a carrier, and sends the first backscattered signal to the zero-power consumption gateway in a backscattering manner.
  • the second zero-power consumption control device uses the second detection signal as a carrier wave, and sends the second backscattered signal to the zero-power consumption gateway by means of backscattering.
  • the zero-power consumption gateway generates a control signal for the target smart device according to the first backscattered signal and the second backscattered signal.
  • the zero-power consumption gateway sends a control signal to the target smart device to control the switch state of the target smart device.
  • FIG. 9 is a schematic diagram of an intelligent control system provided by an embodiment of the present application. As shown in FIG. 9 , the first zero-power consumption control device is set on the target intelligent device, the second zero-power consumption control device is carried on the user, and the first zero-power consumption control device is carried on the user.
  • a zero-power control device may also be referred to as a zero-power tag.
  • the first backscattered signal is a backscattered signal sent by the first zero-power-consumption control device using the first detection signal as a carrier wave in a backscattered manner; the first backscattered signal is used to generate a signal to the target smart device. Control signal to control the switch state of the target smart device.
  • the second backscattered signal is a backscattered signal sent by the second zero-power consumption control device using the second detection signal as a carrier wave in a backscattered manner.
  • the second backscattered signal is used to generate a control signal for the target smart device, so as to control the switch state of the target smart device.
  • the zero-power consumption gateway may determine the RSSI of the first backscattered signal and the RSSI of the second backscattered signal; according to the RSSI of the first backscattered signal and the RSSI of the second backscattered signal, determine the user and The distance of the target smart device; the control signal to the target smart device is generated according to the distance between the user and the target smart device.
  • the zero-power gateway if the distance between the user and the target smart device is less than the preset distance, and the current state of the target smart device is off, the zero-power gateway generates a control signal for the target smart device to control the target smart device from the off state.
  • the zero-power gateway switches to the open state; if the distance between the user and the target smart device is greater than or equal to the preset distance, and the current state of the target smart device is the open state, the zero-power gateway generates a control signal for the target smart device to control the target smart device Switch from on to off.
  • the preset distance can be set according to actual conditions, for example, the preset distance is set to 1 meter.
  • FIG. 10 is a schematic structural diagram of a zero power consumption control device provided by an embodiment of the present application.
  • the device includes: a radio frequency front-end chip 1010 for receiving a detection signal sent by a zero-power consumption gateway.
  • the detection signal is used as a carrier wave, and the backscattered signal is sent to the zero-power-consumption gateway through backscattering.
  • the backscattered signal is used to generate a control signal to the target smart device, so as to control the switch state of the target smart device.
  • the backscattered signal includes: an identifier of the target smart device.
  • the backscattered signal further includes: control information.
  • control information is used to indicate that the target smart device needs to be switched from an open state to an off state, or to switch from an off state to an open state.
  • the device further includes: an antenna 1020 , the number of which can be one or more, a power management module 1030 and a microprocessor 1040 .
  • FIG. 11 is a schematic structural diagram of another zero power consumption control device provided by an embodiment of the present application.
  • a sensor 1050 is installed on the zero power consumption control device.
  • the backscattered signal also includes: the current state of the sensor.
  • the zero-power consumption control device may implement the corresponding processes implemented by the zero-power consumption control device in each method in the embodiments of the present application, which will not be repeated here for brevity.
  • FIG. 12 is a schematic structural diagram of a zero-power consumption gateway provided by an embodiment of the present application.
  • the zero-power consumption gateway includes: a transceiver 1210 and a processor 1220 .
  • the transceiver 1210 is used for sending a detection signal to the zero power consumption control device.
  • the transceiver 1210 is also used for receiving the backscattered signal sent by the zero power consumption control device.
  • the processor 1220 is configured to generate a control signal for the target smart device according to the backscattered signal.
  • the transceiver 1210 is further configured to send a control signal to the target smart device to control the switch state of the target smart device.
  • the backscattered signal is a backscattered signal sent by the zero-power consumption control device using the detection signal as a carrier wave by means of backscattering.
  • the backscattered signal includes: an identifier of the target smart device.
  • the processor 1220 is specifically configured to: generate a control signal for the target smart device according to the RSSI of the backscattered signal and the RSSI of the historical backscattered signal.
  • the historical backscattered signal is the backscattered signal used for generating the control signal to the target smart device for the last time in history.
  • the processor 1220 is specifically configured to: determine whether the RSSI of the backscattered signal changes relative to the RSSI of the historical backscattered signal. If the zero-power-consumption gateway determines that the RSSI of the backscattered signal changes relative to the RSSI of the historical backscattered signal, it is determined that the target smart device needs to switch the switch state. Determine the current state of the target smart device. A control signal is generated to control the target smart device to switch from the current state to another state.
  • the processor 1220 is specifically configured to: determine whether the RSSI of the backscattered signal changes relative to the RSSI of the historical backscattered signal. If the zero-power gateway determines that the RSSI of the backscattered signal changes relative to the RSSI of the historical backscattered signal, and the duration of the RSSI of the backscattered signal reaches the preset time, it is determined that the target smart device needs to switch the switch state. Determine the current state of the target smart device. A control signal is generated to control the target smart device to switch from the current state to another state.
  • the processor 1220 is specifically configured to: generate a control signal for the target smart device according to the phase of the backscattered signal and the phase of the historical backscattered signal.
  • the historical backscattered signal is the backscattered signal used for generating the control signal to the target smart device for the last time in history.
  • the processor 1220 is specifically configured to: determine whether the phase of the backscattered signal changes relative to the phase of the historical backscattered signal. If the zero-power consumption gateway determines that the phase of the backscattered signal changes with respect to the phase of the historical backscattered signal, it is determined that the target smart device needs to switch the switch state. Determine the current state of the target smart device. A control signal is generated to control the target smart device to switch from the current state to another state.
  • the processor 1220 is specifically configured to: determine whether the phase of the backscattered signal changes relative to the phase of the historical backscattered signal. If the zero-power-consumption gateway determines that the phase of the backscattered signal changes relative to the phase of the historical backscattered signal, and the duration of the phase of the backscattered signal reaches a preset duration, it is determined that the target smart device needs to switch the switch state. Determine the current state of the target smart device. A control signal is generated to control the target smart device to switch from the current state to another state.
  • the backscattered signal further includes: control information.
  • the control information is used to indicate that the target smart device needs to be switched from an open state to an off state, or to switch from an off state to an open state.
  • sensors are installed on the zero-power control device.
  • the backscattered signal also includes: the current state of the sensor.
  • the processor 1220 is specifically configured to: if it is determined that the current state of the sensor has changed relative to the previous state of the sensor, determine that the target smart device needs to switch the switch state. Determine the current state of the target smart device. A control signal is generated to control the target smart device to switch from the current state to another state.
  • the processor 1220 is specifically configured to: if the current state of the target smart device is the on state, generate a control signal to control the target smart device to switch from the on state to the off state. If the current state of the target smart device is the off state, a control signal is generated to control the target smart device to switch from the off state to the on state.
  • the zero-power gateway is directly connected to the target smart device, or the zero-power gateway is connected to the target smart device through other gateways.
  • the zero-power-consumption gateway further includes: a modem 1230 (including devices used for zero-power-consumption signal modulation and demodulation and conventional devices such as WIFI and Bluetooth signal modulation and demodulation), and a power controller 1240 for power management of the entire system .
  • the memory 1250 contains wireless signal codec information, special signals (such as zero power consumption detection signal code information) and other electronic equipment modules, such as indicator lights, operation switches, and the like.
  • the memory 1250 may be a separate device independent of the processor 1220, or may be integrated in the processor 1220.
  • the transceiver 1210 may include a transmitter and a receiver, one or more antennas, and the like.
  • the zero-power consumption gateway may implement the corresponding processes implemented by the zero-power consumption gateway in each method of the embodiments of the present application, which will not be repeated here for brevity.
  • the present application also provides a zero power consumption control device, the zero power consumption control device is a first zero power consumption control device, the first zero power consumption control device is set on a target smart device, and the first zero power consumption control device includes: a radio frequency
  • the front-end chip is used for: receiving the first detection signal sent by the zero-power consumption gateway.
  • the first detection signal is used as a carrier wave, and the first backscattered signal is sent to the zero-power consumption gateway by means of backscattering.
  • the first backscattered signal is used to generate a control signal for the target smart device, so as to control the switch state of the target smart device.
  • the device further includes: an antenna, the number of which can be one or more, a power management module and a microprocessor.
  • the first zero-power consumption control device may implement the corresponding processes implemented by the first zero-power consumption control device in each method of the embodiments of the present application, which is not repeated here for brevity.
  • the present application also provides a zero power consumption control device, the zero power consumption control device is a second zero power consumption control device, the second zero power consumption control device is carried on the user, and the second zero power consumption control device includes: a radio frequency front-end chip , used for: receiving the second detection signal sent by the zero-power consumption gateway. Using the second detection signal as a carrier, the second backscattered signal is sent to the zero-power consumption gateway by means of backscattering. Wherein, the second backscattered signal is used to generate a control signal for the target smart device, so as to control the switch state of the target smart device.
  • the device further includes: an antenna, the number of which can be one or more, a power management module and a microprocessor.
  • the second zero-power consumption control device may implement the corresponding processes implemented by the second zero-power consumption control device in each method of the embodiments of the present application, which is not repeated here for brevity.
  • the present application also provides a zero-power consumption gateway, including: a transceiver and a processor.
  • the transceiver is configured to send the first detection signal to the first zero-power consumption control device, and to send the second detection signal to the second zero-power consumption control device.
  • the transceiver is further configured to receive the first backscattered signal sent by the first zero-power consumption control device, and receive the second backscattered signal sent by the second zero-power consumption control device.
  • the processor is configured to generate a control signal for the target smart device according to the first backscattered signal and the second backscattered signal.
  • the transceiver is also used for sending a control signal to the target smart device to control the switch state of the target smart device.
  • the first backscattered signal is a backscattered signal sent by the first zero-power consumption control device using the first detection signal as a carrier wave in a backscattered manner.
  • the second backscattered signal is a backscattered signal sent by the second zero-power consumption control device using the second detection signal as a carrier wave in a backscattered manner.
  • the processor is specifically configured to: determine the RSSI of the first backscattered signal and the RSSI of the second backscattered signal. According to the RSSI of the first backscattered signal and the RSSI of the second backscattered signal, the distance between the user and the target smart device is determined. A control signal to the target smart device is generated according to the distance between the user and the target smart device.
  • the processor is specifically used to: if the distance between the user and the target smart device is less than the preset distance, and the current state of the target smart device is the off state, then generate a control signal to the target smart device to control the target smart device from The closed state switches to the open state. If the distance between the user and the target smart device is greater than or equal to the preset distance, and the current state of the target smart device is on, a control signal to the target smart device is generated to control the target smart device to switch from the on state to the off state.
  • the zero-power gateway also includes: a modem (including devices used for zero-power signal modulation and demodulation and traditional such as WIFI, Bluetooth signal modulation and demodulation), a power controller, used for power management of the entire system, memory 1050 includes wireless signal coding and decoding information, and special signals (such as zero power consumption detection signal coding information) and other electronic equipment modules, such as indicator lights, operation switches, etc.
  • a modem including devices used for zero-power signal modulation and demodulation and traditional such as WIFI, Bluetooth signal modulation and demodulation
  • a power controller used for power management of the entire system
  • memory 1050 includes wireless signal coding and decoding information, and special signals (such as zero power consumption detection signal coding information) and other electronic equipment modules, such as indicator lights, operation switches, etc.
  • the memory may be a separate device independent of the processor, or may be integrated in the processor.
  • the transceiver may include a transmitter and a receiver, one or more antennas, and the like.
  • the zero-power consumption gateway may implement the corresponding processes implemented by the zero-power consumption gateway in each method of the embodiments of the present application, which will not be repeated here for brevity.
  • FIG. 13 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the apparatus 1300 may further include a memory 1320 .
  • the processor 1310 may call and run a computer program from the memory 1320 to implement the methods in the embodiments of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310, or may be integrated in the processor 1310.
  • the apparatus 1300 may further include an input interface 1330 .
  • the processor 1310 can control the input interface 1330 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the apparatus 1300 may further include an output interface 1340 .
  • the processor 1310 may control the output interface 1340 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the device can be applied to the zero-power consumption control device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the zero-power-consumption control device in each method of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the zero-power-consumption control device in each method of the embodiments of the present application.
  • the apparatus can be applied to the zero-power consumption gateway in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the zero-power consumption gateway in each method of the embodiments of the present application, which is not repeated here for brevity. Repeat.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device or the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device or the base station in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device or the base station in the embodiments of the present application, and when the computer program runs on the computer, the computer can execute the corresponding methods implemented by the network device or the base station in each method of the embodiments of the present application.
  • the process for the sake of brevity, will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer program is implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本申请实施例提供了一种智能控制方法、零信任控制设备、网关及系统,该方法包括:零功耗控制设备接收零功耗网关发送的检测信号;零功耗控制设备将检测信号作为载波,通过反向散射方式向零功耗网关发送反向散射信号;其中,反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态,以引入零功耗技术来实现对智能设备的控制。

Description

智能控制方法、零信任控制设备、网关及系统 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种智能控制方法、零信任控制设备、网关及系统。
背景技术
随着智能互联的下沉,市场上出现了越来越多的物联网(Internet of Things,IOT)设备,如智能窗帘、智能空调、智能灯等。控制这些智能设备的控制设备至关重要,目前存在两种控制设备:一种是智能手机,另一种是专用控制设备,如遥控。
然而,上述两种控制设备存在控制成本高、体积大、安装维护成本高等问题,因此,在本申请中将引入零功耗技术来实现对智能设备的控制。
发明内容
本申请实施例提供了种智能控制方法、零信任控制设备、网关及系统,以引入零功耗技术来实现对智能设备的控制。
第一方面,提供一种智能控制方法,包括:零功耗控制设备接收零功耗网关发送的检测信号;零功耗控制设备将检测信号作为载波,通过反向散射方式向零功耗网关发送反向散射信号;其中,反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
第二方面,提供一种智能控制方法,包括:零功耗网关向零功耗控制设备发送检测信号;零功耗网关接收零功耗控制设备发送的反向散射信号;零功耗网关根据反向散射信号产生对目标智能设备的控制信号;零功耗网关向目标智能设备发送控制信号,以控制目标智能设备的开关状态;其中,反向散射信号是零功耗控制设备将检测信号作为载波,通过反向散射方式发送的反向散射信号。
第三方面,提供一种智能控制方法,方法应用于第一零功耗控制设备,第一零功耗控制设备设置在目标智能设备上,方法包括:第一零功耗控制设备接收零功耗网关发送的第一检测信号;第一零功耗控制设备将第一检测信号作为载波,通过反向散射方式向零功耗网关发送第一反向散射信号;其中,第一反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
第四方面,提供一种智能控制方法,方法应用于第二零功耗控制设备,第二零功耗控制设备携带在用户身上,方法包括:第二零功耗控制设备接收零功耗网关发送的第二检测信号;第二零功耗控制设备将第二检测信号作为载波,通过反向散射方式向零功耗网关发送第二反向散射信号;其中,第二反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
第五方面,提供一种智能控制方法,包括:零功耗网关向第一零功耗控制设备发送第一检测信号,并向第二零功耗控制设备发送第二检测信号;零功耗网关接收第一零功耗控制设备发送的第一反向散射信号,并接收第二零功耗控制设备发送的第二反向散射信号;零功耗网关根据第一反向散射信号和第二反向散射信号产生对目标智能设备的控制信号;零功耗网关向目标智能设备发送控制信号,以控制目标智能设备的开关状态。其中,第一反向散射信号是第一零功耗控制设备将第一检测信号作为载波,通过反向散射方式发送的反向散射信号;第二反向散射信号是第二零功耗控制设备将第二检测信号作为载波,通过反向散射方式发送的反向散射信号。
第六方面,提供一种零功耗控制设备,包括:射频前端芯片,用于:接收零功耗网关发送的检测信号;将检测信号作为载波,通过反向散射方式向零功耗网关发送反向散射信号;其中,反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
第七方面,提供一种零功耗网关,包括:收发器和处理器;收发器用于向零功耗控制设备发送检测信号;收发器还用于接收零功耗控制设备发送的反向散射信号;处理器用于根据反向散射信号产生对目标智能设备的控制信号;收发器还用于向目标智能设备发送控制信号,以控制目标智能设备的开关状态;其中,反向散射信号是零功耗控制设备将检测信号作为载波,通过反向散射方式发送的反向散射信号。
第八方面,提供一种零功耗控制设备,零功耗控制设备为第一零功耗控制设备,第一零功耗控制设备设置在目标智能设备上,第一零功耗控制设备包括:射频前端芯片,用于:接收零功耗网关发送的第一检测信号;将第一检测信号作为载波,通过反向散射方式向零功耗网关发送第一反向散射信号;其中,第一反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
第九方面,提供一种零功耗控制设备,零功耗控制设备为第二零功耗控制设备,第二零功耗控制设备携带在用户身上,第二零功耗控制设备包括:射频前端芯片,用于:接收零功耗网关发送的第二检测信号;将第二检测信号作为载波,通过反向散射方式向零功耗网关发送第二反向散射信号;其中, 第二反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
第十方面,提供一种零功耗网关,包括:收发器和处理器;收发器用于向第一零功耗控制设备发送第一检测信号,并向第二零功耗控制设备发送第二检测信号;收发器还用于接收第一零功耗控制设备发送的第一反向散射信号,并接收第二零功耗控制设备发送的第二反向散射信号;处理器用于根据第一反向散射信号和第二反向散射信号产生对目标智能设备的控制信号;收发器还用于向目标智能设备发送控制信号,以控制目标智能设备的开关状态。其中,第一反向散射信号是第一零功耗控制设备将第一检测信号作为载波,通过反向散射方式发送的反向散射信号;第二反向散射信号是第二零功耗控制设备将第二检测信号作为载波,通过反向散射方式发送的反向散射信号。
第十一方面,提供了一种智能控制系统,包括:如第六方面的零功耗控制设备、如第七方面的零功耗网关以及至少一个智能设备。
第十二方面,提供了一种智能控制系统,包括:如第八方面的第一零功耗控制设备、如第九方面的第二零功耗控制设备、如第十方面的零功耗网关以及至少一个智能设备。
第十三方面,提供了一种装置,用于实现上述第一方面至第五方面中任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第五方面中任一方面或其各实现方式中的方法。
第十四方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第五方面中任一方面或其各实现方式中的方法。
第十五方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面至第五方面中任一方面或其各实现方式中的方法。
第十六方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第五方面中任一方面中任一方面或其各实现方式中的方法。
综上,在本申请中引入了零功耗技术,来实现对智能设备的控制,从而可以降低控制成本、安装维护成本等。
附图说明
图1为本申请实施例提供的一种智能控制系统的架构示意图;
图2为本申请实施例提供的零功耗网关与其他网关互联的示意图;
图3为本申请实施例提供的多个零功耗网关系统的示意图;
图4为本申请实施例提供的多个零功耗网关和多其他网关的系统示意图;
图5为根据本申请一实施例的智能控制方法的示意性流程图;
图6为本申请实施例提供的手势控制场景示意图;
图7为本申请实施例提供的零功耗控制设备中微处理器与传感器的连接示意图;
图8为根据本申请另一实施例的智能控制方法的示意性流程图;
图9为本申请实施例提供的一种智能控制系统示意图;
图10为本申请实施例提供的一种零功耗控制设备示意性结构图;
图11为本申请实施例提供的另一种零功耗控制设备示意性结构图;
图12为本申请实施例提供的一种零功耗网关示意性结构图;
图13是本申请实施例的装置的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
示例性地,下面结合图1至图4,对本申请中的智能控制系统的架构进行说明。
图1为本申请实施例提供的一种智能控制系统的架构示意图。如图1所示,包括:零功耗控制设备、零功耗网关和智能设备,其中,零功耗控制设备和零功耗网关之间可以进行无线通信,零功耗网关和智能设备之间可以进行无线通信。
应理解的是,零功耗控制设备也被称为控制器,其可以被理解为智能开关。零功耗控制设备不携带电源,体积轻便,易与安装;在智能控制系统中可以有一个或多个零功耗控制设备,如图1所示,这里以包括三个零功耗控制设备进行示例性说明。
应理解的是,一个零功耗控制设备可以最多控制一个智能设备,而一个智能设备可以被至少一个零功耗控制设备控制,如表1所示:
表1
Figure PCTCN2021082099-appb-000001
其中,智能设备1、2和N均可以被一个零功耗控制设备控制,而智能设备3可以被两个零功耗控制设备控制。
应理解的是,上述智能设备与零功耗控制设备之间的对应关系可以存储在零信任网关中,本申请对此不做限制。
应理解的是,零功耗网关作为零功耗通信与其他无线通信的桥梁。零功耗网关可以向零功耗控制设备发送检测信号,零功耗控制设备将检测信号作为载波,通过反向散射方式向零功耗网关发送反向散射信号,使得零功耗网关产生控制信号,并以智能设备支持的无线传输方式发送该控制信号,该无线传输方式可以是蓝牙传输方式、无线保真(Wireless Fidelity,WiFi)方式、蜂窝传输方式、客户终端设备(Customer Premise Equipment,CPE)、Zigbee等,本申请对此不做限制。
应理解的是,在智能控制系统中可以有一个或多个零功耗网关,如图1所示,这里以包括一个零功耗网关进行示例性说明。其中,一个零功耗网关可以对应一个零功耗控制设备,也可以对应多个零功耗控制设备。而一个零功耗网关可以对应一个智能设备,也可以对应多个智能设备,本申请对零功耗网关与零功耗控制设备的对应关系,以及,零功耗网关与智能设备的对应关系不做限制。
应理解的是,智能设备可以是支持蓝牙传输方式、WiFi方式、蜂窝传输方式、CPE、Zigbee等无线通信技术的设备,其可以是如图1所示的智能灯,智能空调,智能窗帘等。
可选的,图2为本申请实施例提供的零功耗网关与其他网关互联的示意图,如图2所示,当有些智能设备已经具有自己的网关时,这种情况下,本申请提供的零功耗网关可以不起到直接控制智能设备的功能,而是与智能设备已有的网关连接,这里称为其他网关通过有线或无线的连接进行对智能设备的控制,其中,该其他网关可以支持蓝牙传输方式、WiFi方式、蜂窝传输方式、CPE、Zigbee等无线通信技术。
其中,零功耗网关将从零功耗控制设备发出的反向散射信号转化为其他网关可识别的信息,并将此信息传递给其他网关,最终由其他网关完成对智能设备的控制操作。
可选的,如上所述,在智能控制系统中可以存在多个零功耗网关,图3为本申请实施例提供的多个零功耗网关系统的示意图,如图3所示,多个零功耗网关可以与一个其他网关通信,其中,每个零功耗网关均可以收到并传输零功耗控制设备发出的反向散射信号,并将此信号发送于其他网关最终实现智能设备的控制。
可选的,如上所述,在智能控制系统中可以存在多个零功耗网关和多个其他网关,其中,多个零功耗网关可以与其对应的其他网关通信。
可选的,在存在多个零功耗网关和多个其他网关的情况下,多个零功耗网关中可以有一个主零信任网关,图4为本申请实施例提供的多个零功耗网关和多其他网关的系统示意图,如图4所示,非主零功耗网关可以先将收集到的反向散射信号发送给主零功耗网关,再由主零功耗网关通过有线或无线的方式与对应的其他网关进行交互。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
以下通过具体实施例详述本申请的技术方案。
图5为根据本申请一实施例的智能控制方法的示意性流程图,具体地,如图5所示,该方法可以包括如下步骤:
S510:零功耗网关向零功耗控制设备发送检测信号。
S520:零功耗控制设备将检测信号作为载波,通过反向散射方式向零功耗网关发送反向散射信号。
S530:零功耗网关根据反向散射信号产生对目标智能设备的控制信号。
S540:零功耗网关向目标智能设备发送控制信号,以控制目标智能设备的开关状态。
其中,反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
可选的,反向散射信号包括:目标智能设备的标识,以使零功耗网关获知该反向散射信号是用于目标智能设备对应的反向散射信号。
应理解的是,智能控制系统的最大特点是零功耗控制设备不主动发射信号,而是通过反射零功耗网关的检测信号,并对此信号进行调制,从而实现与零功耗网关的无线通信。
可选的,零功耗网关按一定周期t发射检测信号;零功耗控制设备接收到此信号,并从此信号中提炼出能量作为零功耗控制设备的能量源,即零功耗控制设备将检测信号作为载波,通过反向散射方式向零功耗网关发送反向散射信号。零功耗网关接收到此信号并进行解析,并产生对目标智能设备的控制信号,以控制目标智能设备的开关状态,如打开智能灯,打开智能窗帘,关闭智能空调等等。
综上,在本申请中引入了零功耗技术,来实现对智能设备的控制,从而可以降低控制成本、安装维护成本等。
可选的,反向散射信号可以存在以下三种情况,但不限于此:
情况一:反向散射信号仅包括目标智能设备的标识。
情况二:反向散射信号包括目标智能设备的标识和控制信息。其中,控制信息用于指示目标智能设备需要由打开状态切换为关闭状态,或者,由关闭状态切换为打开状态。
情况三:零功耗控制设备上安装有传感器;反向散射信号还包括:传感器的当前状态。
下面将针对三种情况,分别说明零功耗网关如何控制目标智能设备。
针对情况一,说明零功耗网关如何控制目标智能设备:
可实现方式一:零功耗网关根据反向散射信号的接收信号强度指示(Received Signal Strength Indication,RSSI)和历史反向散射信号的RSSI,产生对目标智能设备的控制信号。其中,历史反向散射信号是历史最近一次用于产生对目标智能设备的控制信号的反向散射信号。
可实现方式二:零功耗网关根据反向散射信号的相位和历史反向散射信号的相位,产生对目标智能设备的控制信号。其中,历史反向散射信号是历史最近一次用于产生对目标智能设备的控制信号的反向散射信号。
下面针对可实现方式一进行说明:
可选的,可实现方式一的应用场景可以是手势控制场景,例如:图6为本申请实施例提供的手势控制场景示意图,如图6所示,当手在零功耗控制设备与零功耗网关之间进行遮挡操作时,这时零功耗网关获取到的反向散射信号的RSSI相对于没有手势遮挡时获取到的反向散射信号的RSSI要弱。如上所述,零功耗网关按一定周期t发射检测信号,因此,假设在第i+1个周期零功耗网关获取到的反向散射信号的RSSI相对于第i个周期零功耗网关获取到的反向散射信号要弱,说明在第i+1个周期,手在零功耗控制设备与零功耗网关之间进行遮挡操作。这种情况,零功耗网关可以判定目标智能设备需要进行开关状态切换。其中,智能设备与零功耗网关可以按照按一定周期进行数据交换。数据交换包含智能设备的开关状态,零功耗网关可以将这些状态记录在本地内存内,例如如表2所示:
表2
智能设备 当前开关状态
智能设备1 打开状态
智能设备2 打开状态
智能设备3 关闭状态
…… ……
智能设备N 关闭状态
零功耗网关在判定目标智能设备需要进行开关状态切换时,可以在表2中查找目标智能设备的当前开关状态,例如:智能设备1的当前开关状态为打开状态,那么说明零功耗网关需要将智能设备1的开关状态从打开状态切换为关闭状态。再例如:智能设备3的当前开关状态为关闭状态,那么说明零功耗网关需要将智能设备3的开关状态从关闭状态切换为打开状态。
需要说明的是,为了防止对智能设备的误控制,在手势控制场景下,零功耗网关可以设置一个预设时长,该预设时长用于限制只有当零功耗网关获取到的当前的反向散射信号的RSSI相对于历史反向散射信号的RSSI变弱,并且当前的反向散射信号的RSSI持续时长达到该预设时长时,零功耗网关才确认当前手势操作是正常手持操作,即不是误操作或者误控制。进一步的,如果零功耗网关确认当前手势操作是正常手持操作,那么零功耗网关可以确定目标智能设备的当前状态。零功耗网关根据目标智能设备的当前状态进行状态切换。
示例性的,假设在第i+1个周期零功耗网关获取到的反向散射信号的RSSI相对于第i个周期零功耗网关获取到的反向散射信号要弱,说明在第i+1个周期,手在零功耗控制设备与零功耗网关之间进行遮挡操作。这种情况,零功耗网关需要判断当前获取到的反向散射信号的RSSI的持续时长,若该 时长达到预设时长,则零功耗网关判定目标智能设备需要进行开关状态切换。其中,智能设备与零功耗网关可以按照按一定周期进行数据交换。数据交换包含智能设备的开关状态,零功耗网关可以将这些状态记录在本地内存内,例如如表2所示,零功耗网关在判定目标智能设备需要进行开关状态切换时,可以在表2中查找目标智能设备的当前开关状态,例如:智能设备1的当前开关状态为打开状态,那么说明零功耗网关需要将智能设备1的开关状态从打开状态切换为关闭状态。再例如:智能设备3的当前开关状态为关闭状态,那么说明零功耗网关需要将智能设备3的开关状态从关闭状态切换为打开状态。
下面针对可实现方式二进行说明:
可选的,可实现方式二的应用场景可以是手势控制场景,其中,零功耗控制设备与零功耗网关之间可以存在多个通信信道,如CH1,CH2……CHN,每个通信信道的中心频率为f1,f2……fN,零功耗网关可以根据接收到的反向散射信号计算出各个通信信道的相位phase1,phase2……phaseN,其中,信号的相位信息与信号从发射端到接受端的路径有关。当接收端与发射端之间存在遮蔽物,则会因反射与折射改变信号路径,导致信号相位的变化。在此实施中,零功耗网关按一定周期t发射检测信号,并将控制设备的每一个通信信道与对应的相位信息记录在本地内存中。
例如:如图6所示,当手在零功耗控制设备与零功耗网关之间进行遮挡操作时,这时零功耗网关获取到的反向散射信号的相位相对于没有手势遮挡时获取到的反向散射信号的相位发生变化。如上所述,零功耗网关按一定周期t发射检测信号,因此,假设在第i+1个周期零功耗网关获取到的反向散射信号的相位相对于第i个周期零功耗网关获取到的反向散射信号发生变化,说明在第i+1个周期,手在零功耗控制设备与零功耗网关之间进行遮挡操作。这种情况,零功耗网关可以判定目标智能设备需要进行开关状态切换。其中,智能设备与零功耗网关可以按照按一定周期进行数据交换。数据交换包含智能设备的开关状态,零功耗网关可以将这些状态记录在本地内存内,例如如表2所示:零功耗网关在判定目标智能设备需要进行开关状态切换时,可以在表2中查找目标智能设备的当前开关状态,例如:智能设备1的当前开关状态为打开状态,那么说明零功耗网关需要将智能设备1的开关状态从打开状态切换为关闭状态。再例如:智能设备3的当前开关状态为关闭状态,那么说明零功耗网关需要将智能设备3的开关状态从关闭状态切换为打开状态。
需要说明的是,为了防止对智能设备的误控制,在手势控制场景下,零功耗网关可以设置一个预设时长,该预设时长用于限制只有当零功耗网关获取到的当前的反向散射信号的相位相对于历史反向散射信号的相位发送变化,并且当前的反向散射信号的相位持续时长达到该预设时长时,零功耗网关才确认当前手势操作是正常手持操作,即不是误操作或者误控制。进一步的,如果零功耗网关确认当前手势操作是正常手持操作,那么零功耗网关可以确定目标智能设备的当前状态。零功耗网关根据目标智能设备的当前状态进行状态切换。
示例性的,假设在第i+1个周期零功耗网关获取到的反向散射信号的相位相对于第i个周期零功耗网关获取到的反向散射信号发生变化,说明在第i+1个周期,手在零功耗控制设备与零功耗网关之间进行遮挡操作。这种情况,零功耗网关需要判断当前获取到的反向散射信号的相位的持续时长,若该时长达到预设时长,则零功耗网关判定目标智能设备需要进行开关状态切换。其中,智能设备与零功耗网关可以按照按一定周期进行数据交换。数据交换包含智能设备的开关状态,零功耗网关可以将这些状态记录在本地内存内,例如如表2所示,零功耗网关在判定目标智能设备需要进行开关状态切换时,可以在表2中查找目标智能设备的当前开关状态,例如:智能设备1的当前开关状态为打开状态,那么说明零功耗网关需要将智能设备1的开关状态从打开状态切换为关闭状态。再例如:智能设备3的当前开关状态为关闭状态,那么说明零功耗网关需要将智能设备3的开关状态从关闭状态切换为打开状态。
针对情况二,说明零功耗网关如何控制目标智能设备:
其中,如上所述,控制信息用于指示目标智能设备需要由打开状态切换为关闭状态,或者,由关闭状态切换为打开状态。因此,零功耗网关产生的控制信号可以直接包括:该控制信息和目标智能设备的标识。例如:零功耗网关向如表2所示的智能设备1发送控制信号,以控制智能设备1从打开状态切换为关闭状态。再例如:零功耗网关向如表2所示的智能设备3发送控制信号,以控制智能设备3从关闭状态切换为打开状态。
针对情况三,说明零功耗网关如何控制目标智能设备:
可选的,零功耗控制设备上安装有传感器。其中,反向散射信号包括该传感器的当前状态。例如:图7为本申请实施例提供的零功耗控制设备中微处理器与传感器的连接示意图,该传感器可以是一个开关设备,如图7所示,该传感器连接零功耗控制设备内微处理器的脚线Pn,Pm,触碰一次此传感器会造成Pn,Pm间的通路或断路,在第二次触碰前,Pn,Pm维持第一次触碰后的状态。在此实施 中,当零功耗控制设备接收到检测信号后,其内部微处理器获得能量,并检测Pn,Pm之间的状态。微处理器将传感器的当前状态携带在反向散射信号中。零功耗网关接收到反向散射信号之后,解码获得传感器的当前状态,并对当前状态和前一次状态进行比较,判断传感器的状态是否发生变化,如果发生了变化,则可以确定目标智能设备的当前状态。零功耗网关根据目标智能设备的当前状态进行状态切换。例如:零功耗网关获取到的传感器的当前状态为Pn,Pm间处于通路状态,而该当前状态为Pn,Pm间处于断路状态,基于此,零功耗网关可以确定目标智能设备的当前状态。零功耗网关根据目标智能设备的当前状态进行状态切换。
需要说明的是,关于零功耗网关如何确定目标智能设备的当前状态,以及如何进行状态切换可参考上文,本申请对此不再赘述。
需要说明的是,上述实施例中,零功耗网关是根据传感器的状态变化来控制目标智能设备,实际上,还可以根据传感器测得的速度变化等来控制目标智能设备,本申请对此不做限制。
综上,在本申请中,反向散射信号存在如上三种情况,基于此,零功耗网关可以在这三种情况下控制目标智能设备。
图8为根据本申请另一实施例的智能控制方法的示意性流程图,具体地,如图8所示,该方法可以包括如下步骤:
S810:零功耗网关向第一零功耗控制设备发送第一检测信号。
S820:零功耗网关向第二零功耗控制设备发送第二检测信号。
S830:第一零功耗控制设备将第一检测信号作为载波,通过反向散射方式向零功耗网关发送第一反向散射信号。
S840:第二零功耗控制设备将第二检测信号作为载波,通过反向散射方式向零功耗网关发送第二反向散射信号。
S850:零功耗网关根据第一反向散射信号和第二反向散射信号产生对目标智能设备的控制信号。
S860:零功耗网关向目标智能设备发送控制信号,以控制目标智能设备的开关状态。
图9为本申请实施例提供的一种智能控制系统示意图,如图9所示,第一零功耗控制设备设置在目标智能设备上,第二零功耗控制设备携带在用户身上,该第一零功耗控制设备也可以被称为零功耗标签。
其中,第一反向散射信号是第一零功耗控制设备将第一检测信号作为载波,通过反向散射方式发送的反向散射信号;第一反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
第二反向散射信号是第二零功耗控制设备将第二检测信号作为载波,通过反向散射方式发送的反向散射信号。第二反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
需要说明的是,本申请对S810和S820的先后顺序不做限制,对S830和S840的先后顺序也不做限制。
可选的,零功耗网关可以确定第一反向散射信号的RSSI和第二反向散射信号的RSSI;根据第一反向散射信号的RSSI和第二反向散射信号的RSSI,确定用户和目标智能设备的距离;根据用户和目标智能设备的距离产生对目标智能设备的控制信号。
可选的,任一个反向散射信号的RSSI,与,零功耗网关与发送反向散射信号的零功耗控制设备的距离R具有如下关系:RSSI=1/R^4。
可选的,若用户和目标智能设备的距离小于预设距离,且目标智能设备的当前状态为关闭状态,则零功耗网关产生对目标智能设备的控制信号,以控制目标智能设备由关闭状态切换至打开状态;若用户和目标智能设备的距离大于或等于预设距离,且目标智能设备的当前状态为打开状态,则零功耗网关产生对目标智能设备的控制信号,以控制目标智能设备由打开状态切换至关闭状态。
应理解的是,该预设距离可以根据实际情况设置,例如:设置该预设距离为1米。
综上,在本申请中引入了零功耗技术,来实现对智能设备的控制,从而可以降低控制成本、安装维护成本等。
图10为本申请实施例提供的一种零功耗控制设备示意性结构图。如图10所示,该设备包括:射频前端芯片1010,用于:接收零功耗网关发送的检测信号。将检测信号作为载波,通过反向散射方式向零功耗网关发送反向散射信号。其中,反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
可选的,反向散射信号包括:目标智能设备的标识。
可选的,反向散射信号还包括:控制信息。其中,控制信息用于指示目标智能设备需要由打开状 态切换为关闭状态,或者,由关闭状态切换为打开状态。
可选的,该设备还包括:天线1020,天线的数量可以为一个或多个、电源管理模组1030以及微处理器1040。
可选的,图11为本申请实施例提供的另一种零功耗控制设备示意性结构图。如图11所示,零功耗控制设备上安装有传感器1050。反向散射信号还包括:传感器的当前状态。
可选的,该零功耗控制设备可以实现本申请实施例的各个方法中由零功耗控制设备实现的相应流程,为了简洁,在此不再赘述。
图12为本申请实施例提供的一种零功耗网关示意性结构图。如图12所示,该零功耗网关包括:收发器1210和处理器1220。其中,收发器1210用于向零功耗控制设备发送检测信号。收发器1210还用于接收零功耗控制设备发送的反向散射信号。处理器1220用于根据反向散射信号产生对目标智能设备的控制信号。收发器1210还用于向目标智能设备发送控制信号,以控制目标智能设备的开关状态。其中,反向散射信号是零功耗控制设备将检测信号作为载波,通过反向散射方式发送的反向散射信号。
可选的,反向散射信号包括:目标智能设备的标识。
可选的,处理器1220具体用于:根据反向散射信号的RSSI和历史反向散射信号的RSSI,产生对目标智能设备的控制信号。其中,历史反向散射信号是历史最近一次用于产生对目标智能设备的控制信号的反向散射信号。
可选的,处理器1220具体用于:确定反向散射信号的RSSI相对于历史反向散射信号的RSSI是否发生变化。若零功耗网关确定反向散射信号的RSSI相对于历史反向散射信号的RSSI发生变化,则确定目标智能设备需要进行开关状态切换。确定目标智能设备的当前状态。产生控制信号,以控制目标智能设备从当前状态切换至另一个状态。
可选的,处理器1220具体用于:确定反向散射信号的RSSI相对于历史反向散射信号的RSSI是否发生变化。若零功耗网关确定反向散射信号的RSSI相对于历史反向散射信号的RSSI发生变化,且反向散射信号的RSSI的持续时长达到预设时长,则确定目标智能设备需要进行开关状态切换。确定目标智能设备的当前状态。产生控制信号,以控制目标智能设备从当前状态切换至另一个状态。
可选的,处理器1220具体用于:根据反向散射信号的相位和历史反向散射信号的相位,产生对目标智能设备的控制信号。其中,历史反向散射信号是历史最近一次用于产生对目标智能设备的控制信号的反向散射信号。
可选的,处理器1220具体用于:确定反向散射信号的相位相对于历史反向散射信号的相位是否发生变化。若零功耗网关确定反向散射信号的相位相对于历史反向散射信号的相位发生变化,则确定目标智能设备需要进行开关状态切换。确定目标智能设备的当前状态。产生控制信号,以控制目标智能设备从当前状态切换至另一个状态。
可选的,处理器1220具体用于:确定反向散射信号的相位相对于历史反向散射信号的相位是否发生变化。若零功耗网关确定反向散射信号的相位相对于历史反向散射信号的相位发生变化,且反向散射信号的相位的持续时长达到预设时长,则确定目标智能设备需要进行开关状态切换。确定目标智能设备的当前状态。产生控制信号,以控制目标智能设备从当前状态切换至另一个状态。
可选的,反向散射信号还包括:控制信息。其中,控制信息用于指示目标智能设备需要由打开状态切换为关闭状态,或者,由关闭状态切换为打开状态。
可选的,零功耗控制设备上安装有传感器。反向散射信号还包括:传感器的当前状态。
可选的,处理器1220具体用于:若确定传感器的当前状态相对于传感器的前一次状态发生了变化,则确定目标智能设备需要进行开关状态切换。确定目标智能设备的当前状态。产生控制信号,以控制目标智能设备从当前状态切换至另一个状态。
可选的,处理器1220具体用于:若目标智能设备的当前状态为打开状态,则产生控制信号,以控制目标智能设备由打开状态切换至关闭状态。若目标智能设备的当前状态为关闭状态,则产生控制信号,以控制目标智能设备由关闭状态切换至打开状态。
可选的,零功耗网关与目标智能设备直连,或者,零功耗网关通过其他网关与目标智能设备连接。
可选的,零功耗网关还包括:调制解调器1230(包含用于零功耗信号调制解调与传统如WIFI,蓝牙信号调制解调的设备)、电源控制器1240,用于整个系统的电源管理、存储器1250包含无线信号编解码信息,与特殊信号(如零功耗检测信号编码信息)以及其他电子设备模块,如指示灯,操作开关等。
其中,存储器1250可以是独立于处理器1220的一个单独的器件,也可以集成在处理器1220中。
其中,收发器1210可以包括发射机和接收机,一个或多个天线等。
可选的,该零功耗网关可以实现本申请实施例的各个方法中由零功耗网关实现的相应流程,为了简洁,在此不再赘述。
本申请还提供一种零功耗控制设备,零功耗控制设备为第一零功耗控制设备,第一零功耗控制设备设置在目标智能设备上,第一零功耗控制设备包括:射频前端芯片,用于:接收零功耗网关发送的第一检测信号。将第一检测信号作为载波,通过反向散射方式向零功耗网关发送第一反向散射信号。其中,第一反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
可选的,该设备还包括:天线,天线的数量可以为一个或多个、电源管理模组以及微处理器。
可选的,该第一零功耗控制设备可以实现本申请实施例的各个方法中由第一零功耗控制设备实现的相应流程,为了简洁,在此不再赘述。
本申请还提供一种零功耗控制设备,零功耗控制设备为第二零功耗控制设备,第二零功耗控制设备携带在用户身上,第二零功耗控制设备包括:射频前端芯片,用于:接收零功耗网关发送的第二检测信号。将第二检测信号作为载波,通过反向散射方式向零功耗网关发送第二反向散射信号。其中,第二反向散射信号用于产生对目标智能设备的控制信号,以控制目标智能设备的开关状态。
可选的,该设备还包括:天线,天线的数量可以为一个或多个、电源管理模组以及微处理器。
可选的,该第二零功耗控制设备可以实现本申请实施例的各个方法中由第二零功耗控制设备实现的相应流程,为了简洁,在此不再赘述。
本申请还提供一种零功耗网关,包括:收发器和处理器。收发器用于向第一零功耗控制设备发送第一检测信号,并向第二零功耗控制设备发送第二检测信号。收发器还用于接收第一零功耗控制设备发送的第一反向散射信号,并接收第二零功耗控制设备发送的第二反向散射信号。处理器用于根据第一反向散射信号和第二反向散射信号产生对目标智能设备的控制信号。收发器还用于向目标智能设备发送控制信号,以控制目标智能设备的开关状态。其中,第一反向散射信号是第一零功耗控制设备将第一检测信号作为载波,通过反向散射方式发送的反向散射信号。第二反向散射信号是第二零功耗控制设备将第二检测信号作为载波,通过反向散射方式发送的反向散射信号。
可选的,处理器具体用于:确定第一反向散射信号的RSSI和第二反向散射信号的RSSI。根据第一反向散射信号的RSSI和第二反向散射信号的RSSI,确定用户和目标智能设备的距离。根据用户和目标智能设备的距离产生对目标智能设备的控制信号。
可选的,处理器具体用于:若用户和目标智能设备的距离小于预设距离,且目标智能设备的当前状态为关闭状态,则产生对目标智能设备的控制信号,以控制目标智能设备由关闭状态切换至打开状态。若用户和目标智能设备的距离大于或等于预设距离,且目标智能设备的当前状态为打开状态,则产生对目标智能设备的控制信号,以控制目标智能设备由打开状态切换至关闭状态。
可选的,零功耗网关还包括:调制解调器(包含用于零功耗信号调制解调与传统如WIFI,蓝牙信号调制解调的设备)、电源控制器,用于整个系统的电源管理、存储器1050包含无线信号编解码信息,与特殊信号(如零功耗检测信号编码信息)以及其他电子设备模块,如指示灯,操作开关等。
其中,存储器可以是独立于处理器的一个单独的器件,也可以集成在处理器中。
其中,收发器可以包括发射机和接收机,一个或多个天线等。
可选的,该零功耗网关可以实现本申请实施例的各个方法中由零功耗网关实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的装置的示意性结构图。图13所示的装置1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选的,如图13所示,装置1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选的,该装置1300还可以包括输入接口1330。其中,处理器1310可以控制该输入接口1330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选的,该装置1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选的,该装置可应用于本申请实施例中的零功耗控制设备,并且该装置可以实现本申请实施例的各个方法中由零功耗控制设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该装置可应用于本申请实施例中的零功耗网关,并且该装置可以实现本申请实施例的各个方法中由零功耗网关实现的相应流程,为了简洁,在此不再赘述。
可选的,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (54)

  1. 一种智能控制方法,其特征在于,包括:
    零功耗控制设备接收零功耗网关发送的检测信号;
    所述零功耗控制设备将所述检测信号作为载波,通过反向散射方式向所述零功耗网关发送反向散射信号;
    其中,所述反向散射信号用于产生对目标智能设备的控制信号,以控制所述目标智能设备的开关状态。
  2. 根据权利要求1所述的方法,其特征在于,所述反向散射信号包括:所述目标智能设备的标识。
  3. 根据权利要求2所述的方法,其特征在于,所述反向散射信号还包括:控制信息;
    其中,所述控制信息用于指示所述目标智能设备需要由打开状态切换为关闭状态,或者,由关闭状态切换为打开状态。
  4. 根据权利要求2所述的方法,其特征在于,所述零功耗控制设备上安装有传感器;所述反向散射信号还包括:所述传感器的当前状态。
  5. 一种智能控制方法,其特征在于,包括:
    零功耗网关向零功耗控制设备发送检测信号;
    所述零功耗网关接收所述零功耗控制设备发送的反向散射信号;
    所述零功耗网关根据所述反向散射信号产生对目标智能设备的控制信号;
    所述零功耗网关向所述目标智能设备发送所述控制信号,以控制所述目标智能设备的开关状态;
    其中,所述反向散射信号是所述零功耗控制设备将所述检测信号作为载波,通过反向散射方式发送的反向散射信号。
  6. 根据权利要求5所述的方法,其特征在于,所述反向散射信号包括:所述目标智能设备的标识。
  7. 根据权利要求6所述的方法,其特征在于,所述零功耗网关根据所述反向散射信号产生对目标智能设备的控制信号,包括:
    所述零功耗网关根据所述反向散射信号的接收信号强度指示RSSI和历史反向散射信号的RSSI,产生对目标智能设备的控制信号;
    其中,所述历史反向散射信号是历史最近一次用于产生对所述目标智能设备的控制信号的反向散射信号。
  8. 根据权利要求7所述的方法,其特征在于,所述零功耗网关根据所述反向散射信号的RSSI和历史反向散射信号的RSSI,产生对目标智能设备的控制信号,包括:
    所述零功耗网关确定所述反向散射信号的RSSI相对于所述历史反向散射信号的RSSI是否发生变化;
    若所述零功耗网关确定所述反向散射信号的RSSI相对于所述历史反向散射信号的RSSI发生变化,则确定所述目标智能设备需要进行开关状态切换;
    所述零功耗网关确定所述目标智能设备的当前状态;
    所述零功耗网关产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  9. 根据权利要求7所述的方法,其特征在于,所述零功耗网关根据所述反向散射信号的RSSI和历史反向散射信号的RSSI,产生对目标智能设备的控制信号,包括:
    所述零功耗网关确定所述反向散射信号的RSSI相对于所述历史反向散射信号的RSSI是否发生变化;
    若所述零功耗网关确定所述反向散射信号的RSSI相对于所述历史反向散射信号的RSSI发生变化,且所述反向散射信号的RSSI的持续时长达到预设时长,则确定所述目标智能设备需要进行开关状态切换;
    所述零功耗网关确定所述目标智能设备的当前状态;
    所述零功耗网关产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  10. 根据权利要求6所述的方法,其特征在于,所述零功耗网关根据所述反向散射信号产生对目标智能设备的控制信号,包括:
    所述零功耗网关根据所述反向散射信号的相位和历史反向散射信号的相位,产生对目标智能设备的控制信号;
    其中,所述历史反向散射信号是历史最近一次用于产生对所述目标智能设备的控制信号的反向散射信号。
  11. 根据权利要求10所述的方法,其特征在于,所述零功耗网关根据所述反向散射信号的相位和历史反向散射信号的相位,产生对目标智能设备的控制信号,包括:
    所述零功耗网关确定所述反向散射信号的相位相对于所述历史反向散射信号的相位是否发生变化;
    若所述零功耗网关确定所述反向散射信号的相位相对于所述历史反向散射信号的相位发生变化,则确定所述目标智能设备需要进行开关状态切换;
    所述零功耗网关确定所述目标智能设备的当前状态;
    所述零功耗网关产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  12. 根据权利要求10所述的方法,其特征在于,所述零功耗网关根据所述反向散射信号的相位和历史反向散射信号的相位,产生对目标智能设备的控制信号,包括:
    所述零功耗网关确定所述反向散射信号的相位相对于所述历史反向散射信号的相位是否发生变化;
    若所述零功耗网关确定所述反向散射信号的相位相对于所述历史反向散射信号的相位发生变化,且所述反向散射信号的相位的持续时长达到预设时长,则确定所述目标智能设备需要进行开关状态切换;
    所述零功耗网关确定所述目标智能设备的当前状态;
    所述零功耗网关产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  13. 根据权利要求6所述的方法,其特征在于,所述反向散射信号还包括:控制信息;
    其中,所述控制信息用于指示所述目标智能设备需要由打开状态切换为关闭状态,或者,由关闭状态切换为打开状态。
  14. 根据权利要求6所述的方法,其特征在于,所述零功耗控制设备上安装有传感器;所述反向散射信号还包括:所述传感器的当前状态。
  15. 根据权利要求14所述的方法,其特征在于,所述零功耗网关根据所述反向散射信号产生对目标智能设备的控制信号,包括:
    若所述零功耗网关确定所述传感器的当前状态相对于所述传感器的前一次状态发生了变化,则确定所述目标智能设备需要进行开关状态切换;
    所述零功耗网关确定所述目标智能设备的当前状态;
    所述零功耗网关产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  16. 根据权利要求8、9、11、12、15中任一项所述的方法,其特征在于,所述零功耗网关产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态,包括:
    若所述目标智能设备的当前状态为打开状态,则所述零功耗网关产生所述控制信号,以控制所述目标智能设备由打开状态切换至关闭状态;
    若所述目标智能设备的当前状态为关闭状态,则所述零功耗网关产生所述控制信号,以控制所述目标智能设备由关闭状态切换至打开状态。
  17. 根据权利要求5-16任一项所述的方法,其特征在于,所述零功耗网关与所述目标智能设备直连,或者,所述零功耗网关通过其他网关与所述目标智能设备连接。
  18. 一种智能控制方法,其特征在于,所述方法应用于第一零功耗控制设备,所述第一零功耗控制设备设置在目标智能设备上,所述方法包括:
    所述第一零功耗控制设备接收零功耗网关发送的第一检测信号;
    所述第一零功耗控制设备将所述第一检测信号作为载波,通过反向散射方式向所述零功耗网关发送第一反向散射信号;
    其中,所述第一反向散射信号用于产生对目标智能设备的控制信号,以控制所述目标智能设备的开关状态。
  19. 一种智能控制方法,其特征在于,所述方法应用于第二零功耗控制设备,所述第二零功耗控制设备携带在用户身上,所述方法包括:
    第二零功耗控制设备接收零功耗网关发送的第二检测信号;
    所述第二零功耗控制设备将所述第二检测信号作为载波,通过反向散射方式向所述零功耗网关发 送第二反向散射信号;
    其中,所述第二反向散射信号用于产生对目标智能设备的控制信号,以控制所述目标智能设备的开关状态。
  20. 一种智能控制方法,其特征在于,包括:
    零功耗网关向第一零功耗控制设备发送第一检测信号,并向第二零功耗控制设备发送第二检测信号;
    所述零功耗网关接收所述第一零功耗控制设备发送的第一反向散射信号,并接收所述第二零功耗控制设备发送的第二反向散射信号;
    所述零功耗网关根据所述第一反向散射信号和所述第二反向散射信号产生对目标智能设备的控制信号;
    所述零功耗网关向所述目标智能设备发送所述控制信号,以控制所述目标智能设备的开关状态;
    其中,所述第一反向散射信号是所述第一零功耗控制设备将所述第一检测信号作为载波,通过反向散射方式发送的反向散射信号;所述第二反向散射信号是所述第二零功耗控制设备将所述第二检测信号作为载波,通过反向散射方式发送的反向散射信号;
    所述第一零功耗控制设备设置在目标智能设备上,所述第二零功耗控制设备携带在用户身上。
  21. 根据权利要求20所述的方法,其特征在于,所述零功耗网关根据所述第一反向散射信号和所述第二反向散射信号产生对目标智能设备的控制信号,包括:
    所述零功耗网关确定所述第一反向散射信号的RSSI和所述第二反向散射信号的RSSI;
    所述零功耗网关根据所述第一反向散射信号的RSSI和所述第二反向散射信号的RSSI,确定所述用户和所述目标智能设备的距离;
    所述零功耗网关根据所述用户和所述目标智能设备的距离产生对所述目标智能设备的控制信号。
  22. 根据权利要求21所述的方法,其特征在于,所述零功耗网关根据所述用户和所述目标智能设备的距离产生对所述目标智能设备的控制信号,包括:
    若所述用户和所述目标智能设备的距离小于预设距离,且所述目标智能设备的当前状态为关闭状态,则所述零功耗网关产生对目标智能设备的控制信号,以控制所述目标智能设备由关闭状态切换至打开状态;
    若所述用户和所述目标智能设备的距离大于或等于所述预设距离,且所述目标智能设备的当前状态为打开状态,则所述零功耗网关产生对目标智能设备的控制信号,以控制所述目标智能设备由打开状态切换至关闭状态。
  23. 一种零功耗控制设备,其特征在于,包括:射频前端芯片,用于:
    接收零功耗网关发送的检测信号;
    将所述检测信号作为载波,通过反向散射方式向所述零功耗网关发送反向散射信号;
    其中,所述反向散射信号用于产生对目标智能设备的控制信号,以控制所述目标智能设备的开关状态。
  24. 根据权利要求23所述的零功耗控制设备,其特征在于,所述反向散射信号包括:所述目标智能设备的标识。
  25. 根据权利要求24所述的零功耗控制设备,其特征在于,所述反向散射信号还包括:控制信息;
    其中,所述控制信息用于指示所述目标智能设备需要由打开状态切换为关闭状态,或者,由关闭状态切换为打开状态。
  26. 根据权利要求24所述的零功耗控制设备,其特征在于,所述零功耗控制设备上安装有传感器;所述反向散射信号还包括:所述传感器的当前状态。
  27. 一种零功耗网关,其特征在于,包括:收发器和处理器;
    所述收发器用于向零功耗控制设备发送检测信号;
    所述收发器还用于接收所述零功耗控制设备发送的反向散射信号;
    所述处理器用于根据所述反向散射信号产生对目标智能设备的控制信号;
    所述收发器还用于向所述目标智能设备发送所述控制信号,以控制所述目标智能设备的开关状态;
    其中,所述反向散射信号是所述零功耗控制设备将所述检测信号作为载波,通过反向散射方式发送的反向散射信号。
  28. 根据权利要求27所述的零功耗网关,其特征在于,所述反向散射信号包括:所述目标智能设备的标识。
  29. 根据权利要求28所述的零功耗网关,其特征在于,所述处理器具体用于:
    根据所述反向散射信号的RSSI和历史反向散射信号的RSSI,产生对目标智能设备的控制信号;
    其中,所述历史反向散射信号是历史最近一次用于产生对所述目标智能设备的控制信号的反向散射信号。
  30. 根据权利要求29所述的零功耗网关,其特征在于,所述处理器具体用于:
    确定所述反向散射信号的RSSI相对于所述历史反向散射信号的RSSI是否发生变化;
    若所述零功耗网关确定所述反向散射信号的RSSI相对于所述历史反向散射信号的RSSI发生变化,则确定所述目标智能设备需要进行开关状态切换;
    确定所述目标智能设备的当前状态;
    产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  31. 根据权利要求29所述的零功耗网关,其特征在于,所述处理器具体用于:
    确定所述反向散射信号的RSSI相对于所述历史反向散射信号的RSSI是否发生变化;
    若所述零功耗网关确定所述反向散射信号的RSSI相对于所述历史反向散射信号的RSSI发生变化,且所述反向散射信号的RSSI的持续时长达到预设时长,则确定所述目标智能设备需要进行开关状态切换;
    确定所述目标智能设备的当前状态;
    产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  32. 根据权利要求28所述的零功耗网关,其特征在于,所述处理器具体用于:
    根据所述反向散射信号的相位和历史反向散射信号的相位,产生对目标智能设备的控制信号;
    其中,所述历史反向散射信号是历史最近一次用于产生对所述目标智能设备的控制信号的反向散射信号。
  33. 根据权利要求32所述的零功耗网关,其特征在于,所述处理器具体用于:
    确定所述反向散射信号的相位相对于所述历史反向散射信号的相位是否发生变化;
    若所述零功耗网关确定所述反向散射信号的相位相对于所述历史反向散射信号的相位发生变化,则确定所述目标智能设备需要进行开关状态切换;
    确定所述目标智能设备的当前状态;
    产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  34. 根据权利要求32所述的零功耗网关,其特征在于,所述处理器具体用于:
    确定所述反向散射信号的相位相对于所述历史反向散射信号的相位是否发生变化;
    若所述零功耗网关确定所述反向散射信号的相位相对于所述历史反向散射信号的相位发生变化,且所述反向散射信号的相位的持续时长达到预设时长,则确定所述目标智能设备需要进行开关状态切换;
    确定所述目标智能设备的当前状态;
    产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  35. 根据权利要求28所述的零功耗网关,其特征在于,所述反向散射信号还包括:控制信息;
    其中,所述控制信息用于指示所述目标智能设备需要由打开状态切换为关闭状态,或者,由关闭状态切换为打开状态。
  36. 根据权利要求28所述的零功耗网关,其特征在于,所述零功耗控制设备上安装有传感器;所述反向散射信号还包括:所述传感器的当前状态。
  37. 根据权利要求36所述的零功耗网关,其特征在于,所述处理器具体用于:
    若确定所述传感器的当前状态相对于所述传感器的前一次状态发生了变化,则确定所述目标智能设备需要进行开关状态切换;
    确定所述目标智能设备的当前状态;
    产生所述控制信号,以控制所述目标智能设备从所述当前状态切换至另一个状态。
  38. 根据权利要求30、31、33、34、37中任一项所述的零功耗网关,其特征在于,所述处理器具体用于:
    若所述目标智能设备的当前状态为打开状态,则产生所述控制信号,以控制所述目标智能设备由打开状态切换至关闭状态;
    若所述目标智能设备的当前状态为关闭状态,则产生所述控制信号,以控制所述目标智能设备由关闭状态切换至打开状态。
  39. 根据权利要求27-38任一项所述的零功耗网关,其特征在于,所述零功耗网关与所述目标智能设备直连,或者,所述零功耗网关通过其他网关与所述目标智能设备连接。
  40. 一种零功耗控制设备,其特征在于,所述零功耗控制设备为第一零功耗控制设备,所述第一零功耗控制设备设置在目标智能设备上,所述第一零功耗控制设备包括:射频前端芯片,用于:
    接收零功耗网关发送的第一检测信号;
    将所述第一检测信号作为载波,通过反向散射方式向所述零功耗网关发送第一反向散射信号;
    其中,所述第一反向散射信号用于产生对目标智能设备的控制信号,以控制所述目标智能设备的开关状态。
  41. 一种零功耗控制设备,其特征在于,所述零功耗控制设备为第二零功耗控制设备,所述第二零功耗控制设备携带在用户身上,所述第二零功耗控制设备包括:射频前端芯片,用于:
    接收零功耗网关发送的第二检测信号;
    将所述第二检测信号作为载波,通过反向散射方式向所述零功耗网关发送第二反向散射信号;
    其中,所述第二反向散射信号用于产生对目标智能设备的控制信号,以控制所述目标智能设备的开关状态。
  42. 一种零功耗网关,其特征在于,包括:收发器和处理器;
    所述收发器用于向第一零功耗控制设备发送第一检测信号,并向第二零功耗控制设备发送第二检测信号;
    所述收发器还用于接收所述第一零功耗控制设备发送的第一反向散射信号,并接收所述第二零功耗控制设备发送的第二反向散射信号;
    所述处理器用于根据所述第一反向散射信号和所述第二反向散射信号产生对目标智能设备的控制信号;
    所述收发器还用于向所述目标智能设备发送所述控制信号,以控制所述目标智能设备的开关状态;
    其中,所述第一反向散射信号是所述第一零功耗控制设备将所述第一检测信号作为载波,通过反向散射方式发送的反向散射信号;所述第二反向散射信号是所述第二零功耗控制设备将所述第二检测信号作为载波,通过反向散射方式发送的反向散射信号;
    所述第一零功耗控制设备设置在目标智能设备上,所述第二零功耗控制设备携带在用户身上。
  43. 根据权利要求42所述的零功耗网关,其特征在于,所述处理器具体用于:
    确定所述第一反向散射信号的RSSI和所述第二反向散射信号的RSSI;
    根据所述第一反向散射信号的RSSI和所述第二反向散射信号的RSSI,确定所述用户和所述目标智能设备的距离;
    根据所述用户和所述目标智能设备的距离产生对所述目标智能设备的控制信号。
  44. 根据权利要求43所述的零功耗网关,其特征在于,所述处理器具体用于:
    若所述用户和所述目标智能设备的距离小于预设距离,且所述目标智能设备的当前状态为关闭状态,则产生对目标智能设备的控制信号,以控制所述目标智能设备由关闭状态切换至打开状态;
    若所述用户和所述目标智能设备的距离大于或等于所述预设距离,且所述目标智能设备的当前状态为打开状态,则产生对目标智能设备的控制信号,以控制所述目标智能设备由打开状态切换至关闭状态。
  45. 一种智能控制系统,其特征在于,包括:如权利要求23-26任一项所述的零功耗控制设备、如权利要求27-39任一项所述的零功耗网关以及至少一个智能设备。
  46. 一种智能控制系统,其特征在于,包括:如权利要求40所述的第一零功耗控制设备、如权利要求41所述的第二零功耗控制设备、如权利要求42-44任一项所述的零功耗网关以及至少一个智能设备。
  47. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至4中任一项所述的方法。
  48. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求5至17中任一项所述的方法。
  49. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求18所述的方法。
  50. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求19所述的方法。
  51. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求20至22中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机 执行如权利要求1至22中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
  54. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
PCT/CN2021/082099 2021-03-22 2021-03-22 智能控制方法、零信任控制设备、网关及系统 WO2022198387A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180025158.2A CN115398562B (zh) 2021-03-22 2021-03-22 智能控制方法、零信任控制设备、网关及系统
PCT/CN2021/082099 WO2022198387A1 (zh) 2021-03-22 2021-03-22 智能控制方法、零信任控制设备、网关及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082099 WO2022198387A1 (zh) 2021-03-22 2021-03-22 智能控制方法、零信任控制设备、网关及系统

Publications (1)

Publication Number Publication Date
WO2022198387A1 true WO2022198387A1 (zh) 2022-09-29

Family

ID=83395026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082099 WO2022198387A1 (zh) 2021-03-22 2021-03-22 智能控制方法、零信任控制设备、网关及系统

Country Status (2)

Country Link
CN (1) CN115398562B (zh)
WO (1) WO2022198387A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900856A (zh) * 2006-07-26 2007-01-24 中山大学 一种家电设备的非接触式自适应控制方法及其控制系统
CN102289637A (zh) * 2010-05-20 2011-12-21 Ls产电株式会社 利用rfid的远程控制装置及其方法
US20120309454A1 (en) * 2011-05-31 2012-12-06 Yael Maguire Methods and devices for identifying selected objects
US20170328997A1 (en) * 2016-05-13 2017-11-16 Google Inc. Systems, Methods, and Devices for Utilizing Radar with Smart Devices
CN109462430A (zh) * 2019-01-04 2019-03-12 电子科技大学 多天线共生无线通信系统、信号传输及波束赋形优化方法
CN111344596A (zh) * 2018-03-24 2020-06-26 布莱登·李 Rfid标签定位和rfid标签的关联
CN111385000A (zh) * 2018-12-12 2020-07-07 福特全球技术公司 用于车辆远程控制的周围rf反向散射通信
CN111949595A (zh) * 2020-08-28 2020-11-17 电子科技大学 免编程无处理器的物联网终端架构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498569B2 (en) * 2016-06-23 2019-12-03 University Of Massachusetts Systems and methods for backscatter communication
CN112039744B (zh) * 2020-08-28 2021-10-01 电子科技大学 基于反向散射的无线总线通信方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900856A (zh) * 2006-07-26 2007-01-24 中山大学 一种家电设备的非接触式自适应控制方法及其控制系统
CN102289637A (zh) * 2010-05-20 2011-12-21 Ls产电株式会社 利用rfid的远程控制装置及其方法
US20120309454A1 (en) * 2011-05-31 2012-12-06 Yael Maguire Methods and devices for identifying selected objects
US20170328997A1 (en) * 2016-05-13 2017-11-16 Google Inc. Systems, Methods, and Devices for Utilizing Radar with Smart Devices
CN111344596A (zh) * 2018-03-24 2020-06-26 布莱登·李 Rfid标签定位和rfid标签的关联
CN111385000A (zh) * 2018-12-12 2020-07-07 福特全球技术公司 用于车辆远程控制的周围rf反向散射通信
CN109462430A (zh) * 2019-01-04 2019-03-12 电子科技大学 多天线共生无线通信系统、信号传输及波束赋形优化方法
CN111949595A (zh) * 2020-08-28 2020-11-17 电子科技大学 免编程无处理器的物联网终端架构

Also Published As

Publication number Publication date
CN115398562A (zh) 2022-11-25
CN115398562B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US9930619B2 (en) Method for selecting communication method and electronic device thereof
US10856102B2 (en) Sharing of environmental data for client device usage
EP2922261B1 (en) A method and technical equipment for short range data transmission
CN113286352A (zh) 用于控制传输功率的方法和设备
WO2021184772A1 (zh) 一种配网方法、装置、电子设备及计算机可读介质
WO2012149863A1 (zh) 分布式天线系统的监测系统、设备和方法
EP2852101A1 (en) Method and device for data transmission in wireless local area network
US20230261781A1 (en) Communication method and related device
CN104506645A (zh) 物联网数据采集端及其通信方法和系统
CN108260073B (zh) 闸道器、闸道器的安装方法以及物联网装置的安装方法
WO2019019285A1 (zh) 一种资源控制方法及装置
US10492050B2 (en) Multiple link layers and advertisement policies for wireless communication
WO2019015051A1 (zh) 一种工作模式的切换方法及装置
WO2022198387A1 (zh) 智能控制方法、零信任控制设备、网关及系统
US20240057127A1 (en) Pscch detection method and communication apparatus
CN110798815A (zh) 智能家居系统、电器设备控制方法及装置、路由器
US10193704B2 (en) Device control method and apparatus in home network system
CN105135634A (zh) 一种多模式空调组网控制装置
US9877355B2 (en) Wireless communicator connectable to different types of wireless communication networks
WO2019024173A1 (zh) 一种批量管理物联网终端设备省电的方法、及中继设备
CN112882393A (zh) 电气设备、控制电气设备的方法和控制器
US20200280619A1 (en) Electronic device control system for controlling electronic device, and method for controlling electronic device
EP4307774A1 (en) Power consumption control method, and wireless local area network communication apparatus
US11658736B2 (en) Keypad with repeater mode
CN110809230A (zh) 定位信息获取方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932021

Country of ref document: EP

Kind code of ref document: A1