WO2021184772A1 - 一种配网方法、装置、电子设备及计算机可读介质 - Google Patents

一种配网方法、装置、电子设备及计算机可读介质 Download PDF

Info

Publication number
WO2021184772A1
WO2021184772A1 PCT/CN2020/125926 CN2020125926W WO2021184772A1 WO 2021184772 A1 WO2021184772 A1 WO 2021184772A1 CN 2020125926 W CN2020125926 W CN 2020125926W WO 2021184772 A1 WO2021184772 A1 WO 2021184772A1
Authority
WO
WIPO (PCT)
Prior art keywords
smart home
power
smart
preset
network distribution
Prior art date
Application number
PCT/CN2020/125926
Other languages
English (en)
French (fr)
Inventor
薛凡
王思仪
杨舒
赵杰磊
Original Assignee
珠海格力电器股份有限公司
珠海联云科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司, 珠海联云科技有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021184772A1 publication Critical patent/WO2021184772A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of smart home technology, and in particular to a network distribution method, device, electronic equipment, and computer-readable medium.
  • the smart terminal can control the smart home after it is connected to the smart home.
  • smart terminal and smart home distribution network can be divided into two ways: one is manual network configuration, users need to switch hotspots back and forth to successfully configure the network, the operation is complicated; the other is automatic network configuration, but smart terminals may be A variety of smart home network distribution requests are recognized, resulting in network configuration with unnecessary smart homes, and network configuration errors occur, which brings inconvenience to users.
  • At least some of the embodiments of the present disclosure provide a network distribution method to at least partially solve the problem of network distribution errors prone to occur in related technologies.
  • a network distribution method is provided, the method is applied to a smart terminal, and the method includes:
  • the determining the preset threshold corresponding to the smart home includes:
  • a preset threshold is calculated according to the reference received power.
  • the calculated energy flow density includes:
  • S is the energy flow density
  • Pt is the preset radiant power of the smart home
  • d is the preset distance from the smart home.
  • the calculating the effective receiving area of the antenna includes:
  • A is the effective receiving area
  • is the preset working wavelength of WiFi
  • D is the preset directivity coefficient of the antenna.
  • performing network configuration with the smart home includes:
  • another network distribution method is also provided.
  • the method is applied to a smart home, and the method includes:
  • performing network configuration with the smart terminal includes:
  • a wireless communication connection is established with the smart terminal.
  • a network distribution system including smart homes and smart terminals;
  • the smart home is configured to send a low-power Bluetooth signal to the smart terminal, wherein the low power is determined according to the smart home standard power and a preset low-power coefficient;
  • the smart terminal is configured to receive a low-power Bluetooth signal sent by the smart home, and calculate the received power according to the Bluetooth signal, and if the received power is greater than a preset threshold, it will perform network configuration with the smart home, Wherein, the low power is determined according to the standard power of the smart home and a preset low power coefficient.
  • a network distribution device is also provided, the device is applied to a smart terminal, and the device includes:
  • a receiving module configured to receive a low-power Bluetooth signal sent by a smart home, wherein the low power is determined according to the smart home standard power and a preset low-power coefficient;
  • a calculation module configured to determine the received power of the Bluetooth signal and determine a preset threshold corresponding to the smart home
  • the first network distribution module is configured to perform network distribution with the smart home if the received power is greater than the preset threshold.
  • another network distribution device is also provided, the device is applied to a smart home, and the device includes:
  • a sending module configured to send a low-power Bluetooth signal to a smart terminal, wherein the low power is determined according to the smart home standard power and a preset low power coefficient;
  • the second network distribution module is configured to perform network distribution with the smart terminal.
  • an electronic device including a processor, a communication interface, a memory, and a communication bus, where the processor, the communication interface, and the memory complete mutual communication through the communication bus;
  • Memory set to store computer programs
  • the processor is configured to implement any of the steps of the method when executing the program stored in the memory.
  • a computer-readable storage medium is also provided, wherein a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any one of the methods described above is implemented. step.
  • the smart home sends a low-power Bluetooth signal to the smart terminal, and the smart terminal receives the Bluetooth signal and calculates the received power. If the smart terminal determines that the received power is greater than the preset threshold, then The smart home performs network distribution. Therefore, the low-power Bluetooth signal can reduce the coverage of the Bluetooth signal, thereby reducing the number of smart terminals receiving the Bluetooth signal, and also preventing the smart terminal from receiving unwanted Bluetooth signals, and the smart terminal determines that the received power is greater than When the threshold is preset, the network will be distributed with the smart home. In this way, the smart terminal selects the smart home with a strong Bluetooth signal from the received Bluetooth signals for network configuration, thereby preventing network configuration errors.
  • FIG. 1 is a schematic diagram of a network distribution system provided by one of the embodiments of the present disclosure.
  • FIG. 2 is a flowchart of a network distribution method applied to smart terminals according to one of the embodiments of the present disclosure.
  • FIG. 3 is a flowchart of a method for calculating a preset threshold provided by one of the embodiments of the present disclosure.
  • FIG. 4 is a flowchart of a network distribution method applied to smart homes according to one of the embodiments of the present disclosure.
  • Fig. 5 is a flowchart of a network distribution process method provided by one of the embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network distribution device applied to a smart terminal according to one of the embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network distribution device applied to a smart home according to one of the embodiments of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by one of the embodiments of the present disclosure.
  • a network distribution system is provided for some disclosed embodiments, and the system includes a smart terminal and a smart home.
  • the smart home sends a low-power Bluetooth signal to the smart terminal.
  • the smart terminal located outside the radiation range of the Bluetooth signal cannot receive the Bluetooth signal, and the smart terminal located within the radiation range of the Bluetooth signal receives the low-power Bluetooth signal sent by the smart home, and Calculate the received power according to the Bluetooth signal, and if the smart terminal determines that the received power is greater than the preset threshold, it will perform network distribution with the smart home.
  • the low power is determined according to the smart home standard power and the preset low power coefficient.
  • the low-power Bluetooth signal can reduce the coverage of the Bluetooth signal, thereby reducing the number of smart terminals receiving the Bluetooth signal, and also preventing the smart terminal from receiving unwanted Bluetooth signals, and the smart terminal determines that the received power is greater than the preset threshold
  • the smart home will be networked with the smart home only when it is time. In this way, the smart terminal selects the smart home with a strong Bluetooth signal for network configuration among the Bluetooth signals that can be received, so as to prevent network configuration errors.
  • Some disclosed embodiments also provide a network distribution method, which can be applied to smart terminals.
  • the following will describe in detail a network distribution method provided by some disclosed embodiments in conjunction with specific implementations, as shown in Figure 2. The specific steps are as follows:
  • Step 201 Receive a low-power Bluetooth signal sent by the smart home.
  • the low power is determined according to the smart home standard power and the preset low power coefficient.
  • the smart home sends a low-power Bluetooth signal to the smart terminal, and the smart terminal receives the low-power Bluetooth signal sent by the smart home.
  • the lower the transmission power of the Bluetooth signal the weaker the signal strength, the shorter the transmission distance, and the smaller the coverage. Only smart terminals within the coverage of the Bluetooth signal can receive the Bluetooth signal. Therefore, The use of low-power Bluetooth signals can reduce the coverage of the Bluetooth signals, thereby reducing the number of smart terminals receiving the Bluetooth signals, and also preventing the smart terminals from receiving unwanted Bluetooth signals.
  • Bluetooth generally uses a point-to-point connection, which prevents the smart terminal from receiving unwanted Bluetooth signals.
  • the low power is determined by the product of the smart home standard power and a preset low power coefficient, where the preset low power coefficient is preset by a technician, and the preset low power coefficient is positively correlated with the Bluetooth signal radiation range.
  • the low power range is 20-30Kw.
  • Step 202 Determine the received power of the Bluetooth signal, and determine a preset threshold corresponding to the smart home.
  • the smart terminal determines the preset threshold corresponding to the smart home. After the smart terminal receives the low-power Bluetooth signal sent by the smart home, the smart terminal determines the received power of the Bluetooth signal. The smart terminal determines whether the received power is greater than the preset threshold. If the smart terminal determines that the received power is greater than the preset threshold, step 203 is executed; if the smart terminal determines that the received power is not greater than the preset threshold, it means that the Bluetooth signal is weak, and the Bluetooth signal cannot be recognized .
  • the preset threshold is 15Kw. If the received power of the smart terminal is 20Kw and the received power is greater than the preset threshold, then the smart terminal and the smart home will be connected to the network; if the received power of the smart terminal is 13Kw, the received power is less than the preset threshold, Then the smart terminal will not be networked with the smart home.
  • Step 203 If the received power is greater than the preset threshold, perform network distribution with the smart home.
  • the smart terminal determines that the received power is greater than the preset threshold, which indicates that the Bluetooth signal is strong, and the smart terminal and the smart home perform network configuration. Specifically, the smart terminal receives a Bluetooth signal, and the Bluetooth signal contains identification information of the smart home, where the identification information includes the type and model of the smart home. If the smart terminal determines that the received power of the Bluetooth signal is greater than the preset threshold, the smart terminal displays the smart home according to the identification information, and the user selects the smart home that needs to be networked. The smart home receives the user's choice and matches the selected smart home. net.
  • the process of determining the preset threshold corresponding to the smart home is:
  • Step 301 Obtain the preset radiation power of the smart home, the preset distance between the smart terminal and the smart home, the preset working wavelength of WiFi, and the preset directivity coefficient of the antenna of the smart terminal.
  • the smart terminal obtains the preset radiation power of the smart home, obtains the preset working wavelength of WiFi in the working frequency band of 2.4GHZ, the preset directivity coefficient of the antenna of the smart terminal, and the smart terminal determines the distance from the smart home. The preset distance.
  • Step 302 Calculate the energy flow density according to the preset radiation power of the smart home and the preset distance between the smart terminal and the smart home.
  • the smart terminal calculates the energy flow density according to the preset radiation power of the smart home and the preset distance between the smart terminal and the smart home.
  • the process of calculating the energy flow density is:
  • S is the energy flow density
  • Pt is the preset radiant power of the smart home
  • d is the preset distance from the smart home.
  • Step 303 Calculate the effective receiving area of the antenna according to the preset working wavelength of WiFi and the preset directivity coefficient of the antenna.
  • the smart terminal calculates the effective receiving area of the antenna according to the preset working wavelength of WiFi and the preset directivity coefficient of the antenna.
  • the process of determining the effective receiving area of the antenna is:
  • A is the effective receiving area
  • is the preset working wavelength of WiFi
  • D is the preset directivity coefficient of the antenna.
  • Step 304 Calculate the reference received power according to the energy flow density and the effective receiving area.
  • Step 305 Calculate a preset threshold according to the reference received power.
  • RSSI Receiveived Signal Strength Indication, received signal strength indication
  • Pr I the reference radiated power.
  • the smart terminal can use the reference received power as the preset threshold.
  • network configuration with smart home includes:
  • AP AccessPoint, wireless access point
  • the smart terminal sends the AP connection credential to the smart home, and the smart home parses the configuration information in the AP connection credential, and establishes a wireless communication connection with the smart terminal according to the configuration.
  • the configuration information is specifically the SSID (Service Set Identifier, Service Set Identifier) and Key of the AP connection credential.
  • the smart home and the smart terminal can be configured to network through WiFi, and the present disclosure does not limit the specific network distribution method.
  • Some disclosed embodiments also provide a network distribution method, which can be applied to smart homes.
  • the following will describe in detail a network distribution method provided by some disclosed embodiments in conjunction with specific implementations, as shown in FIG. 4 The specific steps are as follows:
  • Step 401 Send a low-power Bluetooth signal to the smart terminal, where the low-power is determined according to the smart home standard power and a preset low-power coefficient.
  • the smart home sends a low-power Bluetooth signal to the smart terminal, and the smart terminal receives the low-power Bluetooth signal sent by the smart home.
  • the low power is determined according to the smart home standard power and the preset low power coefficient.
  • Step 402 Perform network configuration with the smart terminal.
  • the smart terminal calculates the received power according to the Bluetooth signal, and if the smart terminal determines that the received power is greater than a preset threshold, it will perform network configuration with the smart home and perform network configuration with the smart terminal.
  • the network configuration with the smart terminal includes:
  • Step 501 Receive the AP connection credential sent by the smart terminal.
  • the smart terminal sends the AP connection credential to the smart home, and the smart home receives the AP connection credential sent by the smart terminal.
  • Step 502 Parse the configuration information in the AP connection credential.
  • the smart home after the smart home receives the AP connection credential sent by the smart terminal, it parses the configuration information contained in the AP connection credential according to the AP connection credential, where the configuration information is specifically the SSID and Key of the AP connection credential.
  • Step 503 According to the configuration, establish a wireless communication connection with the smart terminal.
  • the smart home establishes a wireless communication connection with the smart terminal according to the configuration.
  • the smart home can configure the network with the smart terminal via WiFi. This disclosure does not deal with specific network distribution methods. limited.
  • some disclosed embodiments also provide a network distribution device, which is applied to a smart terminal. As shown in FIG. 6, the device includes:
  • the receiving module 601 is configured to receive low-power Bluetooth signals sent by the smart home, where the low power is determined according to the smart home standard power and a preset low-power coefficient;
  • the determining module 602 is configured to determine the received power of the Bluetooth signal and determine the preset threshold corresponding to the smart home;
  • the first network distribution module 603 is configured to perform network distribution with the smart home if the received power is greater than the preset threshold.
  • the determining module 602 includes:
  • the acquiring unit is configured to acquire the preset radiation power of the smart home, the preset distance between the smart terminal and the smart home, the preset working wavelength of WiFi, and the preset directivity coefficient of the antenna of the smart terminal;
  • the first calculation unit is configured to calculate the energy flow density according to the preset radiation power of the smart home and the preset distance between the smart terminal and the smart home;
  • the second calculation unit is configured to calculate the effective receiving area of the antenna according to the preset working wavelength of WiFi and the preset directivity coefficient of the antenna;
  • the third calculation unit is configured to calculate the reference received power according to the energy flow density and the effective receiving area
  • the fourth calculation unit is configured to calculate the preset threshold value according to the reference received power.
  • the first calculation unit includes:
  • S is the energy flow density
  • Pt is the preset radiant power of the smart home
  • d is the preset distance from the smart home.
  • the second calculation unit includes:
  • A is the effective receiving area
  • is the preset working wavelength of WiFi
  • D is the preset directivity coefficient of the antenna.
  • the first network distribution module 603 includes:
  • the sending unit is configured to send the AP connection credential to the smart home, so that the smart home parses the configuration information in the AP connection credential, and establishes a wireless communication connection with the smart terminal according to the configuration.
  • some disclosed embodiments also provide a network distribution device, which is applied to a smart home. As shown in FIG. 7, the device includes:
  • the sending module 701 is configured to send a low-power Bluetooth signal to the smart terminal, where the low power is determined according to the smart home standard power and a preset low-power coefficient;
  • the second network distribution module 702 is configured to perform network distribution with the smart terminal.
  • the second network distribution module 702 includes:
  • the accepting unit is set to receive the AP connection credential sent by the smart terminal;
  • the parsing unit is set to analyze the configuration information in the AP connection credential
  • the communication unit is set to establish a wireless communication connection with the smart terminal according to the configuration.
  • the smart home sends a low-power Bluetooth signal to a smart terminal.
  • the smart terminal receives the Bluetooth signal and calculates the received power. If the smart terminal determines that the received power is greater than a preset threshold , It will be networked with the smart home.
  • the low-power Bluetooth signal can reduce the coverage of the Bluetooth signal, thereby reducing the number of smart terminals receiving the Bluetooth signal, preventing the smart terminal from receiving unnecessary Bluetooth signals, and preventing network distribution errors.
  • the embodiment of the present invention also provides an electronic device, as shown in FIG.
  • the memory 803 completes mutual communication through the communication bus 804,
  • the memory 803 is set to store computer programs
  • the processor 801 is configured to execute the program stored in the memory 803 to implement the above steps:
  • the communication bus mentioned in the above electronic device may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used for communication between the above-mentioned electronic device and other devices.
  • the memory may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk storage.
  • NVM non-Volatile Memory
  • the memory may also be at least one storage device located far away from the foregoing processor.
  • the above-mentioned processor may be a general-purpose processor, including a central processing unit (CPU), a network processor (Network Processor, NP), etc.; it may also be a digital signal processor (Digital Signal Processing, DSP), a dedicated integrated Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium stores a computer program, which when executed by a processor, implements the steps of any of the above methods. .
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种配网方法,该方法包括:接收智能家居发送的低功率的蓝牙信号,其中,低功率根据智能家居标准功率和预设低功率系数确定;确定所述蓝牙信号的接收功率,并确定与所述智能家居对应的预设阈值;若所述接收功率大于所述预设阈值,则与所述智能家居进行配网。低功率的蓝牙信号可以减小蓝牙信号的覆盖范围,从而减少接收到蓝牙信号的智能终端的数量,也防止智能终端接收到不需要的蓝牙信号,防止配网错误。

Description

一种配网方法、装置、电子设备及计算机可读介质 技术领域
本公开涉及智能家居技术领域,尤其涉及一种配网方法、装置、电子设备及计算机可读介质。
背景技术
目前的智能生活过程中,智能终端在与智能家居配网后可以操控智能家居。一般来说,智能终端与智能家居配网可以分为两种方式:一种是手动配网,用户需来回切换热点才能配网成功,操作复杂;一种是自动配网,但智能终端可能会识别到多种智能家居的配网请求,导致与不需要的智能家居进行配网,发生配网错误的情况,给用户带来不便。
发明内容
本公开至少部分实施例提供了一种配网方法,以至少部分地解决相关技术中容易发生配网错误的问题。
在公开的一些实施例中,提供了一种配网方法,所述方法应用于智能终端,所述方法包括:
接收智能家居发送的低功率的蓝牙信号,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
确定所述蓝牙信号的接收功率,并确定与所述智能家居对应的预设阈值;
若所述接收功率大于所述预设阈值,则与所述智能家居进行配网。
在公开的一些实施例中,所述确定与所述智能家居对应的预设阈值包括:
获取所述智能家居的预设辐射功率、所述智能终端距所述智能家居的预设距离、WiFi的预设工作波长和所述智能终端的天线的预设方向性系数;
根据所述智能家居的预设辐射功率和所述智能终端距智能家居的预设距离,计算能流密度;
根据所述WiFi的预设工作波长和所述天线的预设方向性系数,计算天线的有效接收面积;
根据所述能流密度和所述有效接收面积计算基准接收功率;
根据所述基准接收功率计算预设阈值。
在公开的一些实施例中,所述计算能流密度包括:
通过公式S=Pt/(4πd*d)计算能流密度;
其中,S为能流密度,Pt为智能家居的预设辐射功率,d为距智能家居的预设距离。
在公开的一些实施例中,所述计算天线的有效接收面积包括:
通过公式A=λ*λ*D/4π计算有效接收面积;
其中,A为有效接收面积,λ为WiFi的预设工作波长,D为天线的预设方向性系数。
在公开的一些实施例中,与所述智能家居进行配网包括:
发送AP连接凭证至所述智能家居,以使所述智能家居解析所述AP连接凭证中的配置信息,并根据所述配置与所述智能终端建立无线通信连接。
在公开的一些实施例中,还提供了另一种配网方法,所述方法应用于智能家居,所述方法包括:
发送低功率的蓝牙信号至智能终端,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
与所述智能终端进行配网。
在公开的一些实施例中,与所述智能终端进行配网包括:
接收所述智能终端发送的AP连接凭证;
解析所述AP连接凭证中的配置信息;
根据所述配置,与所述智能终端建立无线通信连接。
在公开的一些实施例中,还提供了一种配网系统,包括智能家居和智能终端;
所述智能家居,设置为发送低功率的蓝牙信号至所述智能终端,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
所述智能终端,设置为接收所述智能家居发送的低功率的蓝牙信号,并根据所述蓝牙信号计算接收功率,若所述接收功率大于预设阈值,则与所述智能家居进行配网,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定。
在公开的一些实施例中,还提供了一种配网装置,所述装置应用于智能终端,所述装置包括:
接收模块,设置为接收智能家居发送的低功率的蓝牙信号,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
计算模块,设置为确定所述蓝牙信号的接收功率,并确定与所述智能家居对应的预设阈值;
第一配网模块,设置为若所述接收功率大于所述预设阈值,则与所述智能家居进行配网。
在公开的一些实施例中,还提供了另一种配网装置,所述装置应用于智能家居,所述装置包括:
发送模块,设置为发送低功率的蓝牙信号至智能终端,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
第二配网模块,设置为与所述智能终端进行配网。
在公开的一些实施例中,还提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
存储器,设置为存放计算机程序;
处理器,设置为执行存储器上所存放的程序时,实现任一所述的方法步骤。
在公开的一些实施例中,还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现任一所述的方法步骤。
本公开至少部分实施例有益效果:
通过本公开至少部分实施例提供的配网方法,智能家居发送低功率的蓝牙信号至智能终端,智能终端接收该蓝牙信号,并计算接收功率,若智能终端判断接收功率大于预设阈值,则与所述智能家居进行配网。由此,低功率的蓝牙信号可以减小蓝牙信号的覆盖范围,从而减少接收到蓝牙信号的智能终端的数量,也防止智能终端接收到不需要的蓝牙信号,并且,智能终端在确定接收功率大于预设阈值时,才会与智能家居进行配网,这样,智能终端在可接收到的蓝牙信号中选择发射的蓝牙信号强的智能家居进行配网,从而防止配网错误。
附图说明
为了更清楚地说明公开的一些实施例或现有技术中的技术方案, 下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开其中一实施例提供的一种配网系统的示意图。
图2为本公开其中一实施例提供的一种应用于智能终端的配网方法的流程图。
图3为本公开其中一实施例提供的一种计算预设阈值方法的流程图。
图4为本公开其中一实施例提供的一种应用于智能家居的配网方法的流程图。
图5为本公开其中一实施例提供的配网过程方法的流程图。
图6为本公开其中一实施例提供的一种应用于智能终端的配网装置的结构示意图。
图7为本公开其中一实施例提供的一种应用于智能家居的配网装置的结构示意图。
图8为本公开其中一实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
公开的一些实施例提供了一种配网方法,可以应用于一种配网系统,具体的可以由一种配网系统中的智能终端或智能家居执行。如图1所示,为公开的一些实施例提供了一种配网系统,该系统包括智能终端和智能家居。智能家居发送低功率的蓝牙信号至智能终端,位于蓝牙信号辐射范围外的智能终端无法接收到该蓝牙信号,位于蓝牙信号 辐射范围内的智能终端接收该智能家居发送的低功率的蓝牙信号,并根据蓝牙信号计算接收功率,若智能终端判定接收功率大于预设阈值,则与智能家居进行配网。其中,低功率根据智能家居标准功率和预设低功率系数确定。低功率的蓝牙信号可以减小蓝牙信号的覆盖范围,从而减少接收到蓝牙信号的智能终端的数量,也防止智能终端接收到不需要的蓝牙信号,并且,智能终端在确定接收功率大于预设阈值时,才会与智能家居进行配网,这样,智能终端在可接收到的蓝牙信号中选择蓝牙信号强的智能家居进行配网,从而防止配网错误。
公开的一些实施例还提供了一种配网方法,该方法可以应用于智能终端,下面将结合具体实现方式对公开的一些实施例提供的一种配网方法进行详细的说明,如图2所示,具体步骤如下:
步骤201:接收智能家居发送的低功率的蓝牙信号。
其中,低功率根据智能家居标准功率和预设低功率系数确定。
在公开的一些实施例中,智能家居发送低功率的蓝牙信号至智能终端,智能终端接收智能家居发送的低功率的蓝牙信号。一般情况下,蓝牙信号的发射功率越低,信号强度就越弱,发射传输距离就越近,覆盖范围就越小,只有在蓝牙信号覆盖范围内的智能终端才可以接收到蓝牙信号,因此,采用低功率的蓝牙信号可以减小蓝牙信号的覆盖范围,从而减少接收到蓝牙信号的智能终端的数量,也防止智能终端接收到不需要的蓝牙信号。另外,蓝牙一般都采用点对点连接,也避免智能终端接收到不需要的蓝牙信号。
其中,低功率由智能家居标准功率和预设低功率系数的乘积确定,其中,预设低功率系数是技术人员预先设置的,预设低功率系数与蓝牙信号辐射范围正相关。
举例来说,空调的标准功率为100Kw,预设低功率系数为20%-30%,那么低功率范围为20-30Kw。
步骤202:确定所述蓝牙信号的接收功率,并确定与所述智能家居对应的预设阈值。
在公开的一些实施例中,智能终端确定与智能家居对应的预设阈值。智能终端接收智能家居发送的低功率的蓝牙信号后,智能终端确定所述蓝牙信号的接收功率。智能终端判断接收功率是否大于预设阈值,若智能终端判定接收功率大于预设阈值,则执行步骤203;若智能终端判定接收功率不大于预设阈值,表示蓝牙信号弱,则不能识别该蓝牙信号。
举例来说,预设阈值为15Kw,若智能终端接收功率为20Kw,接收功率大于预设阈值,那么智能终端与智能家居进行配网;若智能终端接收功率为13Kw,接收功率小于预设阈值,那么智能终端不与智能家居进行配网。
步骤203:若接收功率大于预设阈值,则与智能家居进行配网。
在公开的一些实施例中,智能终端判定接收功率大于预设阈值,则表示蓝牙信号强,则智能终端与智能家居进行配网。具体的,智能终端接收蓝牙信号,该蓝牙信号包含智能家居的标识信息,其中,标识信息包括智能家居类型和型号。智能终端若判定该蓝牙信号的接收功率大于预设阈值,则智能终端根据标识信息显示智能家居,用户选择需要配网的智能家居,智能家居接收用户的选择,并与选择好的智能家居进行配网。
可选的,如图3所示,确定与智能家居对应的预设阈值的过程为:
步骤301:获取智能家居的预设辐射功率、智能终端距智能家居的预设距离、WiFi的预设工作波长和智能终端的天线的预设方向性系数。
在公开的一些实施例中,智能终端获取智能家居的预设辐射功率,获取WiFi在工作频段2.4GHZ时的预设工作波长,智能终端的天线的 预设方向性系数和智能终端确定距智能家居的预设距离。
步骤302:根据智能家居的预设辐射功率和智能终端距智能家居的预设距离,计算能流密度。
在公开的一些实施例中,智能终端根据智能家居的预设辐射功率和智能终端距智能家居的预设距离,计算能流密度。
可选的,计算能流密度的过程为:
通过公式S=Pt/(4πd*d)计算能流密度。
其中,S为能流密度,Pt为智能家居的预设辐射功率,d为距智能家居的预设距离。
步骤303:根据WiFi的预设工作波长和天线的预设方向性系数,计算天线的有效接收面积。
在公开的一些实施例中,智能终端根据WiFi的预设工作波长和天线的预设方向性系数,计算天线的有效接收面积。
可选的,确定天线的有效接收面积的过程为:
通过公式A=λ*λ*D/4π计算有效接收面积;
其中,A为有效接收面积,λ为WiFi的预设工作波长,D为天线的预设方向性系数。
步骤304:根据能流密度和有效接收面积计算基准接收功率。
在公开的一些实施例中,智能终端根据能流密度和有效接收面积的乘积计算基准接收功率,具体的,Pr=S*A=Pt*λ*λ*D/(4πd)^2。
步骤305:根据基准接收功率计算预设阈值。
在公开的一些实施例中,智能终端一方面可以根据公式RSSI=10×logPr来计算预设阈值,其中,RSSI(Received Signal Strength  Indication,接收的信号强度指示)为预设接收信号强度阈值,Pr为基准辐射功率。另一方面,智能终端可以将基准接收功率作为预设阈值。
可选的,与智能家居进行配网包括:
发送AP(AccessPoint,无线访问接入点)连接凭证至智能家居,以使智能家居解析AP连接凭证中的配置信息,并根据配置与智能终端建立无线通信连接。
在公开的一些实施例中,智能终端发送AP连接凭证至智能家居,智能家居解析AP连接凭证中的配置信息,并根据配置与智能终端建立无线通信连接。其中,配置信息具体为AP连接凭证的SSID(Service Set Identifier,服务集标识)和Key。在公开的一些实施例中,智能家居可以与智能终端通过WiFi配网,本公开对具体的配网方式不做限定。
公开的一些实施例还提供了一种配网方法,该方法可以应用于智能家居,下面将结合具体实现方式对公开的一些实施例提供的一种配网方法进行详细的说明,如图4所示,具体步骤如下:
步骤401:发送低功率的蓝牙信号至智能终端,其中,低功率根据智能家居标准功率和预设低功率系数确定。
在公开的一些实施例中,智能家居发送低功率的蓝牙信号至智能终端,智能终端接收智能家居发送的低功率的蓝牙信号。其中,低功率根据智能家居标准功率和预设低功率系数确定。
步骤402:与智能终端进行配网。
在公开的一些实施例中,智能终端根据蓝牙信号计算接收功率,若智能终端判定接收功率大于预设阈值,则与智能家居进行配网并与智能终端进行配网。
可选的,如图5所示,与智能终端进行配网包括:
步骤501:接收智能终端发送的AP连接凭证。
在公开的一些实施例中,智能终端发送AP连接凭证至智能家居,智能家居接收智能终端发送的AP连接凭证。
步骤502:解析AP连接凭证中的配置信息。
在公开的一些实施例中,智能家居接收智能终端发送的AP连接凭证后,根据AP连接凭证解析其中包含的配置信息,其中,配置信息具体为AP连接凭证的SSID和Key。
步骤503:根据配置,与智能终端建立无线通信连接。
在公开的一些实施例中,智能家居根据配置,与智能终端建立无线通信连接,在公开的一些实施例中,智能家居可以与智能终端通过WiFi配网,本公开对具体的配网方式不做限定。
基于相同的技术构思,公开的一些实施例还提供了一种配网装置,装置应用于智能终端,如图6所示,该装置包括:
接收模块601,设置为接收智能家居发送的低功率的蓝牙信号,其中,低功率根据智能家居标准功率和预设低功率系数确定;
确定模块602,设置为确定蓝牙信号的接收功率,并确定与智能家居对应的预设阈值;
第一配网模块603,设置为若接收功率大于预设阈值,则与智能家居进行配网。
在公开的一些实施例中,确定模块602包括:
获取单元,设置为获取智能家居的预设辐射功率、智能终端距智能家居的预设距离、WiFi的预设工作波长和智能终端的天线的预设方向性系数;
第一计算单元,设置为根据智能家居的预设辐射功率和智能终端距智能家居的预设距离,计算能流密度;
第二计算单元,设置为根据WiFi的预设工作波长和天线的预设方向性系数,计算天线的有效接收面积;
第三计算单元,设置为根据能流密度和有效接收面积计算基准接收功率;
第四计算单元,设置为根据基准接收功率计算预设阈值。
在公开的一些实施例中,第一计算单元包括:
通过公式S=Pt/(4πd*d)计算能流密度;
其中,S为能流密度,Pt为智能家居的预设辐射功率,d为距智能家居的预设距离。
在公开的一些实施例中,第二计算单元包括:
通过公式A=λ*λ*D/4π计算有效接收面积;
其中,A为有效接收面积,λ为WiFi的预设工作波长,D为天线的预设方向性系数。
在公开的一些实施例中,第一配网模块603包括:
发送单元,设置为发送AP连接凭证至智能家居,以使智能家居解析AP连接凭证中的配置信息,并根据配置与智能终端建立无线通信连接。
基于相同的技术构思,公开的一些实施例还提供了一种配网装置,装置应用于智能家居,如图7所示,该装置包括:
发送模块701,设置为发送低功率的蓝牙信号至智能终端,其中,低功率根据智能家居标准功率和预设低功率系数确定;
第二配网模块702,设置为与智能终端进行配网。
在公开的一些实施例中,第二配网模块702包括:
接受单元,设置为接收智能终端发送的AP连接凭证;
解析单元,设置为解析AP连接凭证中的配置信息;
通信单元,设置为根据配置,与智能终端建立无线通信连接。
公开的一些实施例提供了一种配网方法,本公开中智能家居发送低功率的蓝牙信号至智能终端,智能终端接收该蓝牙信号,并计算接收功率,若智能终端判断接收功率大于预设阈值,则与智能家居进行配网。由此,低功率的蓝牙信号可以减小蓝牙信号的覆盖范围,从而减少接收到蓝牙信号的智能终端的数量,也防止智能终端接收到不需要的蓝牙信号,防止配网错误。
基于相同的技术构思,本发明实施例还提供了一种电子设备,如图8所示,包括处理器801、通信接口802、存储器803和通信总线804,其中,处理器801,通信接口802,存储器803通过通信总线804完成相互间的通信,
存储器803,设置为存放计算机程序;
处理器801,设置为执行存储器803上所存放的程序时,实现以上步骤:
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口用于上述电子设备与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远 离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
在本发明提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一方法的步骤。
在本发明提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可 用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种配网方法,所述方法应用于智能终端,所述方法包括:
    接收智能家居发送的低功率的蓝牙信号,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
    确定所述蓝牙信号的接收功率,并确定与所述智能家居对应的预设阈值;
    若所述接收功率大于所述预设阈值,则与所述智能家居进行配网。
  2. 根据权利要求1所述的方法,其中,确定与所述智能家居对应的所述预设阈值包括:
    获取所述智能家居的预设辐射功率、所述智能终端距所述智能家居的预设距离、WiFi的预设工作波长和所述智能终端的天线的预设方向性系数;
    根据所述智能家居的预设辐射功率和所述智能终端距智能家居的预设距离,计算能流密度;
    根据所述WiFi的预设工作波长和所述天线的预设方向性系数,计算天线的有效接收面积;
    根据所述能流密度和所述有效接收面积计算基准接收功率;
    根据所述基准接收功率计算所述预设阈值。
  3. 根据权利要求2所述的方法,其中,计算所述能流密度包括:
    通过公式S=Pt/(4πd*d)计算所述能流密度;
    其中,S为能流密度,Pt为智能家居的预设辐射功率,d为距智能家居的预设距离。
  4. 根据权利要求2所述的方法,其中,计算所述天线的所述有效接 收面积包括:
    通过公式A=λ*λ*D/4π计算所述有效接收面积;
    其中,A为所述有效接收面积,λ为所述WiFi的预设工作波长,D为所述天线的预设方向性系数。
  5. 根据权利要求1所述的方法,其特征在,与所述智能家居进行配网包括:
    发送AP连接凭证至所述智能家居,以使所述智能家居解析所述AP连接凭证中的配置信息,并根据所述配置与所述智能终端建立无线通信连接。
  6. 一种配网方法,所述方法应用于智能家居,所述方法包括:
    发送低功率的蓝牙信号至智能终端,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
    与所述智能终端进行配网。
  7. 根据权利要求6所述的方法,其特征在,与所述智能终端进行配网包括:
    接收所述智能终端发送的AP连接凭证;
    解析所述AP连接凭证中的配置信息;
    根据所述配置,与所述智能终端建立无线通信连接。
  8. 一种配网系统,包括智能家居和智能终端;
    所述智能家居,设置为发送低功率的蓝牙信号至所述智能终端,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
    所述智能终端,设置为接收所述智能家居发送的低功率的蓝牙信号,并根据所述蓝牙信号计算接收功率,若所述接收功率大于预设阈 值,则与所述智能家居进行配网。
  9. 一种配网装置,所述装置应用于智能终端,所述装置包括:
    接收模块,设置为接收智能家居发送的低功率的蓝牙信号,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
    计算模块,设置为确定所述蓝牙信号的接收功率,并确定与所述智能家居对应的预设阈值;
    第一配网模块,设置为若所述接收功率大于所述预设阈值,则与所述智能家居进行配网。
  10. 一种配网装置,所述装置应用于智能家居,所述装置包括:
    发送模块,设置为发送低功率的蓝牙信号至智能终端,其中,所述低功率根据所述智能家居标准功率和预设低功率系数确定;
    第二配网模块,设置为与所述智能终端进行配网。
  11. 一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
    存储器,设置为存放计算机程序;
    处理器,设置为执行存储器上所存放的程序时,实现权利要求1-7任一所述的方法步骤。
  12. 一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-7任一所述的方法步骤。
PCT/CN2020/125926 2020-03-16 2020-11-02 一种配网方法、装置、电子设备及计算机可读介质 WO2021184772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010183823.8A CN111479247A (zh) 2020-03-16 2020-03-16 一种配网方法、装置、电子设备及计算机可读介质
CN202010183823.8 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021184772A1 true WO2021184772A1 (zh) 2021-09-23

Family

ID=71747482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125926 WO2021184772A1 (zh) 2020-03-16 2020-11-02 一种配网方法、装置、电子设备及计算机可读介质

Country Status (2)

Country Link
CN (1) CN111479247A (zh)
WO (1) WO2021184772A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006810A (zh) * 2021-10-25 2022-02-01 珠海格力电器股份有限公司 设备配网方法、系统、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479247A (zh) * 2020-03-16 2020-07-31 珠海格力电器股份有限公司 一种配网方法、装置、电子设备及计算机可读介质
CN111954238A (zh) * 2020-08-24 2020-11-17 珠海格力电器股份有限公司 一种配网方法、配网装置及家用电器
CN112637827A (zh) * 2020-12-22 2021-04-09 珠海格力电器股份有限公司 配网方法、装置、计算机设备和存储介质
CN112804697B (zh) * 2021-01-04 2022-04-15 珠海格力电器股份有限公司 待联网设备配网方法、装置、电子设备和计算机可读介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180184472A1 (en) * 2016-12-27 2018-06-28 Fujitsu Limited Communication apparatus, communication system, and communication control method
CN108370599A (zh) * 2015-12-24 2018-08-03 索尼公司 信息处理方法、程序和信息处理系统
CN108513283A (zh) * 2018-03-13 2018-09-07 青岛海尔科技有限公司 一种配网方法、设备、终端、介质及计算机设备
CN109983794A (zh) * 2016-12-21 2019-07-05 英特尔Ip公司 范围受约束的设备配置
CN111479247A (zh) * 2020-03-16 2020-07-31 珠海格力电器股份有限公司 一种配网方法、装置、电子设备及计算机可读介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201689451U (zh) * 2010-05-20 2010-12-29 中兴通讯股份有限公司 近场标签
CN105516896A (zh) * 2015-12-02 2016-04-20 惠州Tcl移动通信有限公司 一种可穿戴设备与移动终端的蓝牙互连方法及系统
US10367540B1 (en) * 2018-02-20 2019-07-30 Cypress Semiconductor Corporation System and methods for low power consumption by a wireless sensor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370599A (zh) * 2015-12-24 2018-08-03 索尼公司 信息处理方法、程序和信息处理系统
CN109983794A (zh) * 2016-12-21 2019-07-05 英特尔Ip公司 范围受约束的设备配置
US20180184472A1 (en) * 2016-12-27 2018-06-28 Fujitsu Limited Communication apparatus, communication system, and communication control method
CN108513283A (zh) * 2018-03-13 2018-09-07 青岛海尔科技有限公司 一种配网方法、设备、终端、介质及计算机设备
CN111479247A (zh) * 2020-03-16 2020-07-31 珠海格力电器股份有限公司 一种配网方法、装置、电子设备及计算机可读介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN NA: "Research and Design of Low Power Consumption and Low Cost Passive RFID Tag Chip", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 10 April 2007 (2007-04-10), pages 1 - 124, XP009530707 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006810A (zh) * 2021-10-25 2022-02-01 珠海格力电器股份有限公司 设备配网方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN111479247A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021184772A1 (zh) 一种配网方法、装置、电子设备及计算机可读介质
US9794889B2 (en) Power adjustment method and apparatus
US7652635B2 (en) Antenna with integrated parameter storage
CN110972233B (zh) 一种智能设备配网状态显示方法及装置
CN111277294B (zh) 天线选择方法及相关产品
WO2023024820A1 (zh) 调整电磁波比吸收率的方法及装置、介质和电子设备
CN112804697B (zh) 待联网设备配网方法、装置、电子设备和计算机可读介质
WO2021212906A1 (zh) 网络端口分配方法、装置、电子设备和计算机可用介质
WO2015154248A1 (zh) 一种系统信息的传输方法及基站、用户设备
CN112770308A (zh) 智能设备的配网方法、装置、电子设备和计算机可读介质
WO2022027480A1 (zh) 数据采集方法、装置、Modbus系统及存储介质
WO2017211198A1 (zh) 无线局域网接入控制方法及装置
US20230063202A1 (en) Method and Apparatus for Scheduling Service, Electronic Device, and Storage Medium
CN107708141B (zh) 一种无线网络的扫描方法、移动终端及存储介质
CN108307485A (zh) 无线网络扫描方法、装置、终端设备及存储介质
WO2020097919A1 (zh) 一种功率回退方法、终端设备及存储介质
CN111918252A (zh) 一种智能设备接入无线局域网的方法、系统及装置
CN103428815A (zh) 无线局域网的接入方法、装置及系统
WO2018166439A1 (zh) 发送功率的配置方法、终端、基站和基带芯片
CN115103359A (zh) 配网方法、装置、待配网设备、电子装置及可读存储介质
CN104038939A (zh) 一种无线ap的身份识别方法及终端
CN112218278A (zh) zigbee信道选择方法及切换系统
WO2023116048A1 (zh) 发射功率的调节方法、毫米波终端和存储介质
CN111030767B (zh) 无线mesh回传性能的优化方法、无线设备和存储介质
EP3182792B1 (en) Method for adjusting clear channel assessment threshold, and access point

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925040

Country of ref document: EP

Kind code of ref document: A1