WO2022198343A1 - Sistema para la producción de hidróxido de litio (lioh) directamente a partir de cloruro de litio (licl), sin necesidad de una producción intermedia de carbonato de litio o similar - Google Patents

Sistema para la producción de hidróxido de litio (lioh) directamente a partir de cloruro de litio (licl), sin necesidad de una producción intermedia de carbonato de litio o similar Download PDF

Info

Publication number
WO2022198343A1
WO2022198343A1 PCT/CL2021/050016 CL2021050016W WO2022198343A1 WO 2022198343 A1 WO2022198343 A1 WO 2022198343A1 CL 2021050016 W CL2021050016 W CL 2021050016W WO 2022198343 A1 WO2022198343 A1 WO 2022198343A1
Authority
WO
WIPO (PCT)
Prior art keywords
lioh
production
equipment
lithium
nacl
Prior art date
Application number
PCT/CL2021/050016
Other languages
English (en)
French (fr)
Inventor
Pablo MELIPILLAN
Gabriel MERUANE
Original Assignee
Sociedad Quimica Y Minera De Chile S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US18/283,388 priority Critical patent/US20240174527A1/en
Application filed by Sociedad Quimica Y Minera De Chile S.A. filed Critical Sociedad Quimica Y Minera De Chile S.A.
Priority to PCT/CL2021/050016 priority patent/WO2022198343A1/es
Priority to EP21931978.7A priority patent/EP4316632A1/en
Priority to CN202180097724.0A priority patent/CN117917967A/zh
Priority to CA3213084A priority patent/CA3213084A1/en
Priority to AU2021435424A priority patent/AU2021435424A1/en
Publication of WO2022198343A1 publication Critical patent/WO2022198343A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • C01D1/30Purification; Separation by crystallisation

Definitions

  • TITLE SYSTEM FOR THE PRODUCTION OF LITHIUM HYDROXIDE (LIOH) DIRECTLY FROM LITHIUM CHLORIDE (LICL), WITHOUT THE NEED FOR AN INTERMEDIATE PRODUCTION OF LITHIUM CARBONATE OR
  • This invention patent application is directed to a system for the production of lithium hydroxide (LiOH) directly from lithium chloride (LiCI), without the need for an intermediate production of lithium carbonate or the like.
  • the invention is directed to a system comprising the necessary equipment for the direct production of lithium hydroxide from lithium chloride.
  • the system comprises main interconnected sub-systems, a high-purity U0H.H20 production sub-system, which includes conversion and crystallization units, and a NaCl production sub-system that includes NaCl causticization and crystallization units, all of which allow obtaining lithium hydroxide monohydrate of high purity and sodium chloride as a by-product of the system.
  • lithium hydroxide which is mainly used in the production of lubricating greases capable of operating under extreme conditions of temperature and load. About 70% of the Lubricating greases produced in the world contain lithium. Lithium hydroxide is also used in batteries and dyes.
  • Lithium is a metal with highly valued properties in the present, highlighting a high electrical conductivity, low viscosity, very lightweight and low coefficient of thermal expansion. These qualities favor that it has multiple applications in the industrial sector and especially in the field of batteries, given the current technological trend.
  • the significant growth projected for electric cars that use rechargeable batteries as an energy source has boosted the projected demand for lithium, taking into account the higher charge density of lithium-ion batteries and the fact that these have significantly decreased in value.
  • lithium is usually extracted by pumping the brine to the surface to concentrate it in evaporation ponds in a series of solar ponds (conventional method), finally producing a concentrated solution in lithium chloride (LiCI). This lithium-rich solution is then processed to produce lithium carbonate or lithium hydroxide.
  • the main lithium compounds marketed and produced are lithium carbonate (U2C03), lithium hydroxide monohydrate (U0H.H20) and lithium chloride (LiCI), with carbonate accounting for the largest production .
  • LiOH lithium hydroxide
  • LiC Lithium Chloride
  • patent publication US10648090 describes a system integrated to generate a lithium salt from a liquid resource, comprising:
  • step (d) optionally providing a first crystallizer for treating said lithium eluate from step (c) with a precipitant to precipitate said lithium salt and create a residual eluate;
  • electrolysis system in fluid communication with said ion exchange unit or in fluid communication with said first crystallizer, wherein said electrolysis system comprises (A) one or more electrochemically reducing electrodes, (B) one or more electrochemically oxidizing electrodes, and (C) one or more ion-conducting membranes;
  • step (i) subjecting said lithium eluate of step (c) in said electrolysis system of step (e) to an electrical current, wherein said electrical current causes electrolysis of said lithium eluate of step (c) to produce a acidified solution and a lithium salt solution, or
  • step (ii) subjecting said residual eluate of step (d) to said electrolysis system of step (e) to an electrical current, wherein said electrical current causes electrolysis of said residual eluate to produce an acidified solution and a basified solution;
  • step (g) optionally providing a second crystallizer to crystallize said lithium salt solution from step (i) to form said lithium salt; wherein said ion exchange particles comprise coated ion exchange particles and said coated ion exchange particles comprise an ion exchange material and a coating material comprising a chloro-polymer, a fluoro-polymer, a chloro-fluoro-polymer, a hydrophilic polymer, a hydrophobic polymer, copolymers thereof, mixtures thereof, or combinations thereof.
  • publication RU2016103702 describes a facility for obtaining high-purity monohydrate lithium hydroxide from natural brines containing lithium, which includes a device for obtaining primary lithium concentrate, connected by pipes and accessories with a natural brine source, a mother brine receiver, a primary lithium concentrate collection vessel and a fresh water source; a electrolysis unit containing a membrane electrolyser with a power supply; catholyte and anolyte tanks; catholyte and anolyte circulation pumps; gas separators for cathodic hydrogen and anodic chlorine; an evaporation unit to evaporate the lithium hydroxide solution and separate the U0H.H20 crystals, including an evaporator, a crystallizer, a condenser for condensate vapor, a centrifuge to separate the L ⁇ 0H-H20 crystals from the mother liquor , a pump to supply catholyte for evaporation; an evaporator for concentrating a lithium chloride solution purified from
  • the system of the invention does not carry out concentration processes such as electrodialysis, or reverse osmosis, nor electrochemical processes, such as electrolysis for the conversion of LiCI into LiOH. Therefore, it is possible to have a system that operates under completely different principles of LiOH formation and its conversion from LiCI, based on the concept of fractional crystallization.
  • the Conversion stage from LiCI to LiOH the conversion occurs by chemical reaction of LiCl with NaOH and its separation occurs by fractional crystallization.
  • the document RU2016103702 they use an electrochemical method where the process is carried out by applying a current to an electrochemical system that uses a separating membrane of cations and anions
  • FIGURES Figure 1 represents an isometric view of the general system of the invention, where all the equipment that makes up the system for the direct production of LiOH from LiCI is shown.
  • Figure 2 represents an isometric view of a preferred embodiment of the system of the invention in which the high purity L ⁇ 0H.H20 production sub-system is composed of at least two crude LiOH crystallizers and at least one LiOH crystallizer of high purity.
  • Figure 3 corresponds to an isometric view and shows the high purity LiOH production sub-system
  • Figure 4 represents an isometric view of a preferred embodiment of the system of the invention in which the NaCl production sub-system is illustrated, comprising an evaporation or water removal system and at least one NaCL crystallizer.
  • Each sub system can include a purge for the benefit of the quality of the final product.
  • the system for the production of lithium hydroxide (LiOH) directly from lithium chloride (LiCI), without the need for an intermediate production of lithium carbonate or similar, is made up of two sub-systems, a sub-system for the production of High purity LiOH and a NaCl production sub-system.
  • the system comprises a LiCI brine tank (1) and a mother liquor tank from the NaCI sub-system (2), which are connected to the high purity LiOH production sub-system, which in turn This time comprises a conversion kit (3) from LiCl to crude LiOH.
  • the conversion unit (3) is a crystallizer unit that generates a stream of crude LiOH.
  • the conversion unit (3) is connected to a solid-liquid separation unit (4) from which two streams are generated: a liquid solution (LM1) corresponding to a mother liquor 1 that is fed from the solid separation unit - centrifugation liquid (4) to a reception tank (9) of mother liquor 1 at the entrance of the NaCl production sub-system; and a second stream corresponding to crude LiOH crystals that is fed from the same solid-liquid separation equipment (4) to a crude LiOH dissolution tank (5).
  • Equipment (4) can be, for example, a centrifugal equipment.
  • This dissolution tank (5) is connected to at least one crystallizer unit (6) where high purity LiOH is produced.
  • the tank (A) provides the necessary water to the dissolution tank (5) to dissolve crude LiOH.
  • the U0H.H20 crystallizer equipment is connected to a second solid-liquid separation equipment (7) that has two outlets from which two products are generated: one outlet with a solid stream of high purity U0H.H20 crystals that is sent to a crystal drying unit (8) ; and another outlet with a liquid stream with pure LiOH liquor that can be fed to the crude LiOH dissolution tank (5), as well as to the conversion equipment (3).
  • the NaCl production sub-system is made up of said receiving tank (9) for mother liquor 1 and a NaOH tank (16), in which both tanks are in turn connected to causticizing equipment (10), the which is connected to a system for evaporation or removal of water from the fed solution, and a NaCl crystallizer unit (17).
  • Two outputs are generated from the latter, one corresponds to NaCI liquor that is connected to the NaCI liquor tank (13), this NaCI liquor being the mother liquor 2 (LM2) that is fed to the LM2 tank; and the other output corresponds to a NaCl pulp that is connected to a third solid-liquid separation equipment (11) from where the NaCl crystals are separated and stored in the NaCl crystal unit (12).
  • the NaCI or LM2 liquor tank (13) is connected to the initial NaCI liquor tank (2), thus leaving both sub-systems, the one for the production of high purity LiOH and the one for the production of NaCl, connected by means of of the mother liquor 1 and mother liquor 2 circuits, generating a circular system that allows the production of high purity UOH.H2O directly from LiCI brines, without co-precipitation of NaCI.
  • the high purity UOH.H2O production sub-system comprises at least two crude LiOH crystallization equipment (21 and 22).
  • the LiOH crystallization ponds may be arranged in series (as illustrated in Figure 2).
  • the crystallization equipment (22) is connected to the centrifugation equipment (4) from which the output of mother liquor 1 (LM1) is connected to the tank (9) for receiving said LM1.
  • the high purity LiOH production sub-system also comprises at least one high purity LiOH crystallization equipment (23).
  • the crystallization equipment (23) is connected to a solid-liquid separation equipment (7) from which two outputs are generated, one corresponds to the high purity LiOH liquor output that goes to the tank (14), the which is connected to the dissolution tank (5) and to the conversion equipment (3); and the other outlet corresponds to the high purity UOH.H2O crystals, which is connected to the crystal drying unit (8).
  • the NaCl production sub-system comprises multiple evaporator units and a crystallizer unit as illustrated in Figure 4.
  • the NaCl crystallization sub-system comprises evaporator and crystallizer equipment (17), (18) and (19) connected in series, where the causticizing equipment (10) - which in turn is connected to the reception tank (9) of the mother liquor 1 (LM1 ) and to the NaOH tank (16) that feed the equipment causticizing unit (10) - is connected to the NaCl evaporation and crystallization system that starts with unit (17).
  • the last equipment of the NaCl evaporation and crystallization system (19) is connected to a solid-liquid separation equipment (21) from which a solid stream leaves that goes to the NaCI crystal storage equipment. (12), since the NaCl liquor outlet of the solid-liquid separation equipment (21) can be directly connected to the NaCl liquor tank (13) and from there directly feed the mother liquor 2 (LM2) to the tank of NaCl liquor (2) at the beginning of the system.
  • the evaporation and crystallization unit (17) has an inlet from a steam generator (V). The cycle is closed with the exit of steam from the crystallizing evaporator unit (19) through the outlet (S).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

La presente solicitud de patente de invención se dirige a un sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCl), sin necesidad de una producción intermedia de carbonato de litio o similar. Específicamente, la invención se dirige a un sistema que comprende los equipos necesarios para la producción directa de hidróxido de litio a partir de cloruro de litio. El sistema comprende sub-sistemas principales interconectados, un sub- sistema de producción de LiOH.H2O de alta pureza, el cual comprende unidades de conversión y cristalización, y un sub-sistema de producción de NaCl que comprende unidades de caustificación y cristalización de NaCl, todos los cuales permiten obtener hidróxido de litio monohidratado de alta pureza y cloruro de sodio como un subproducto del sistema.

Description

TÍTULO: SISTEMA PARA LA PRODUCCIÓN DE HIDRÓXIDO DE LITIO (LIOH) DIRECTAMENTE A PARTIR DE CLORURO DE LITIO (LICL), SIN NECESIDAD DE UNA PRODUCCIÓN INTERMEDIA DE CARBONATO DE LITIO O
SIMILAR
MEMORIA DESCRIPTIVA
La presente solicitud de patente de invención se dirige a un sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI), sin necesidad de una producción intermedia de carbonato de litio o similar. Específicamente, la invención se dirige a un sistema que comprende los equipos necesarios para la producción directa de hidróxido de litio a partir de cloruro de litio. El sistema comprende sub-sistemas principales interconectados, un sub sistema de producción de U0H.H20 de alta pureza, el cual comprende unidades de conversión y cristalización, y un sub-sistema de producción de NaCI que comprende unidades de caustificación y cristalización de NaCI, todos los cuales permiten obtener hidróxido de litio monohidratado de alta pureza y cloruro de sodio como un subproducto del sistema.
ARTE PREVIO
La utilización de litio en sus múltiples formulaciones químicas ha tomado en los últimos años una importancia relevante en el mundo tecnológico en general. Dentro de las formulaciones se encuentra el hidróxido de litio, el cual se utiliza principalmente en la producción de grasas lubricantes capaces de funcionar en condiciones extremas de temperatura y carga. Aproximadamente el 70% de las grasas lubricantes producidas en el mundo contiene litio. El hidróxido de litio se utiliza también en baterías y colorantes.
De acuerdo a la publicación de la Comisión Chilena del Cobre “MERCADO INTERNACIONAL DEL LITIO Y SU POTENCIAL EN CHILE”, del año 2017, El litio es un metal con propiedades altamente valoradas en el presente, destacando una elevada conductividad eléctrica, baja viscosidad, muy liviano y bajo coeficiente de expansión térmica. Estas cualidades favorecen que tenga múltiples aplicaciones en el sector industrial y especialmente en el ámbito de las baterías, dada la tendencia tecnológica actual.
La electromovilidad impulsada por las campañas ambientales y por las regulaciones para disminuir la utilización de combustibles fósiles, sumado al desarrollo tecnológico de dispositivos electrónicos y sistemas de almacenamiento de energía son los factores que presionan al alza la demanda del litio futura. El significativo crecimiento que se proyecta para los automóviles eléctricos que utilizan baterías recargables como fuente de energía ha impulsado la demanda proyectada de litio, atendiendo la mayor densidad de carga de las baterías ion-litio y a que éstas han disminuido significativamente su valor.
A partir de fuentes de salmuera, usualmente, el litio es extraído bombeando la salmuera a la superficie para concentrarlo en pozas de evaporación en una serie de estanques solares (método convencional), produciendo finalmente una solución concentrada en cloruro de litio (LiCI). Esta solución rica en litio luego se procesa para producir carbonato de litio o hidróxido de litio.
En cuanto a productos, los principales compuestos de litio comercializados y producidos son el carbonato de litio (U2C03), hidróxido de litio monohidratado (U0H.H20) y cloruro de litio (LiCI), siendo el carbonato el que da cuenta de la mayor producción.
Unas de las ventajas de las operaciones de litio en salares es que el costo de bombear la salmuera, concentrarla en pozas de evaporación y procesarla en una planta para obtener carbonato o hidróxido de litio es menor que explotarlo de minerales. Este último tipo de explotación da cuenta de procesos similares al de una minería de roca que involucra perforación, tronadura, concentración de mineral y transporte.
En lo que respecta al hidróxido de litio (LiOH), es producido a partir de Carbonato de Litio o Sulfato de Litio, no existiendo alternativas comerciales de manufactura a partir de Cloruro de Litio (LiCI).
En general, en el arte previo los sistemas o plantas que se encuentran descritos corresponden a aquellos destinados a la producción de carbonato de litio y, a partir de este, obtener LiOH. Por lo tanto, no es posible encontrar un proceso que produzca LiOH a partir de LiCI evitando la producción de Carbonato de Litio. Así por ejemplo, La publicación de patente US10648090 describe un sistema integrado para generar una sal de litio a partir de un recurso líquido, que comprende:
(a) proporcionar una unidad de intercambio iónico, en el que dicha unidad de intercambio iónico comprende partículas de intercambio iónico que comprenden iones hidrógeno;
(b) poner en contacto dichas partículas de intercambio iónico en dicha unidad de intercambio iónico con dicho recurso líquido, en el que los iones de hidrógeno de dichas partículas de intercambio iónico se intercambian con iones de litio de dicho recurso líquido para producir partículas de intercambio iónico enriquecidas con litio en dicha unidad de intercambio iónico;
(c) tratar dichas partículas de intercambio iónico enriquecidas con litio con una solución ácida, en el que los iones de litio de dichas partículas de intercambio iónico enriquecidas con litio se intercambian con iones hidrógeno de dicha solución ácida para producir un eluato de litio;
(d) proporcionar opcionalmente un primer cristalizador para tratar dicho eluato de litio de la etapa (c) con un precipitante para precipitar dicha sal de litio y crear un eluato residual;
(e) proporcionar un sistema de electrólisis en comunicación fluida con dicha unidad de intercambio iónico o en comunicación fluida con dicho primer cristalizador, en el que dicho sistema de electrólisis comprende (A) uno o más electrodos reductores electroquímicamente, (B) uno o más electrodos oxidantes electroquímicamente, y (C) una o más membranas conductoras de iones;
(f) (i) pasar dicho eluato de litio del paso (c) a dicho sistema de electrólisis, o (ii) pasar dicho eluido residual de la etapa (d) a dicho sistema de electrólisis; (g)
(i) someter dicho eluato de litio del paso (c) en dicho sistema de electrólisis del paso (e) a una corriente eléctrica, en el que dicha corriente eléctrica provoca la electrólisis de dicho eluato de litio del paso (c) para producir una solución acidificada y una solución de sal de litio, o
(ii) someter dicho eluato residual del paso (d) a dicho sistema de electrólisis del paso (e) a una corriente eléctrica, en el que dicha corriente eléctrica provoca la electrólisis de dicho eluato residual para producir una solución acidificada y una solución basificada; y
(g) proporcionar opcionalmente un segundo cristalizador para cristalizar dicha solución de sal de litio de la etapa (i) para formar dicha sal de litio; donde dichas partículas de intercambio iónico comprenden partículas de intercambio iónico revestidas y dichas partículas de intercambio iónico revestidas comprenden un material de intercambio iónico y un material de revestimiento que comprende un cloro-polímero, un fluoro-polímero, un cloro-fluoro-polímero, un polímero hidrofílico, un polímero hidrofóbico, copolímeros de los mismos, mezclas de los mismos o combinaciones de los mismos.
Por su parte, la publicación RU2016103702 describe una Instalación para la obtención de hidróxido de litio monohidrato de alta pureza a partir de salmueras naturales que contienen litio, que incluye un dispositivo para la obtención de concentrado de litio primario, conectado por tuberías y accesorios con una fuente de salmuera natural, un receptor de salmuera madre, un recipiente para la recolección de concentrado de litio primario y una fuente de agua dulce; una unidad de electrólisis que contiene un electrolizador de membrana con una fuente de alimentación; tanques de católito y anolito; bombas de circulación de catolitos y anolitos; separadores de gas para hidrógeno catódico y cloro anódico; una unidad de evaporación para evaporar la solución de hidróxido de litio y separar los cristales de U0H.H20, que incluye un evaporador, un cristalizador, un condensador para vapor de condensado, una centrífuga para separar los cristales de LÍ0H-H20 de las aguas madres, una bomba para suministrar catolito para la evaporación; un evaporador para concentrar una solución de cloruro de litio purificada de impurezas, un recipiente para recoger una solución de cloruro de litio despojada con una bomba para transportarla, un absorbedor para utilizar el cloro del ánodo por absorción con una solución acuosa que contiene urea, con un tanque, una circulación bomba y una unidad de ventilación, un absorbedor para aprovechar el exceso de cloro anódico con una unidad de ventilación, un tanque para recoger el condensado, una fuente de vapor de calefacción, una fuente de agua de refrigeración, caracterizada porque la instalación para implementar el método contiene adicionalmente una osmosis inversa concentrador-desalador, un reactor con agitador para la purificación de reactivos de un concentrado de osmosis inversa, un filtro prensa para la separación de sedimentos y un recipiente para la recogida del concentrado de osmosis inversa purificado; concentrador de electrodiálisis para concentrar el concentrado de osmosis inversa purificado de impurezas, dos columnas de intercambio iónico para la purificación profunda del concentrado de electrodiálisis, un recipiente con solución de ácido clorhídrico, un recipiente con solución de hidróxido de litio, un evaporador para la evaporación profunda del concentrado de electrodiálisis, un recipiente refrigerado con un agitador para la cristalización de las sales de NaCI precipitadas de K y un filtro para su separación, un mezclador para preparar una solución de relleno en anolito para la conversión electroquímica de cloruro en hidróxido de litio; arandela de tornillo a contracorriente para cristales de U0H-H20; un secador de vacío y una máquina de llenado de hidróxido de litio monohidrato y un absorbedor para la absorción de cloruro de sodio.
A diferencia de los sistemas antes descritos del arte previo, el sistema de la invención no lleva a cabo procesos concentración como electrodiálisis, ni osmosis inversa, así como tampoco procesos electroquímicos, como electrólisis para conversión de LiCI en LiOH. Por lo tanto, se logra contar con un sistema que opera bajo principios de formación de LiOH y su conversión desde LiCI completamente distintos, fundamentado en el concepto de cristalización fraccionada.
De forma particular, la principal diferencia con la patente Rusa es la etapa de Conversión de LiCI a LiOH. En la presente invención la conversión ocurre por reacción química de LiCI con NaOH y su separación ocurre por cristalización fraccionada. En el documento RU2016103702 usan método electroquímico donde el proceso se efectúa por la aplicación de una corriente a un sistema electroquímico que utiliza una membrana separadora de cationes y aniones
B R EV E D E S C R I P C I O N D E LAS F I G U RAS Figura 1 : representa una vista isométrica del sistema general de la invención, en donde se muestran todos los equipos que componen el sistema para la producción directa de LiOH a partir de LiCI.
Figura 2: representa una vista isométrica de una modalidad preferida del sistema de la invención en el cual el sub-sistema de producción de LÍ0H.H20 de alta pureza está compuesto por al menos dos cristalizadores de LiOH crudo y al menos un cristalizador de LiOH de alta pureza.
Figura 3: corresponde a una vista isométrica y muestra el sub-sistema de producción de LiOH de alta pureza
Figura 4: representa una vista isométrica de una modalidad preferida del sistema de la invención en el cual se ilustra el sub-sistema de producción de NaCI que comprende un sistema de evaporación o de retiro de agua y al menos un cristalizador de NaCL.
Las figuras son meramente ilustrativas y cualquier extensión de componentes del sistema se entenderá incluido dentro del alcance de la protección.
Cada sub sistema puede incluir una purga en beneficio de la calidad del producto final. D E S C R I P C I O N D E LA I NV E N C I O N
El sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI), sin necesidad de una producción intermedia de carbonato de litio o similar, está conformado por dos sub-sistemas, un sub sistema de producción de LiOH de alta pureza y un sub-sistema de producción de NaCI.
El sistema comprende un estanque de salmuera LiCI (1) y un estanque de un licor madre proveniente del sub-sistema de NaCI (2), los cuales se encuentran conectados al sub-sistema de producción de LiOH de alta pureza, el que a su vez comprende un equipo de conversión (3) de LiCI a LiOH crudo. El equipo de conversión (3) es un equipo cristalizador que genera una corriente de LiOH crudo. El equipo de conversión (3) está conectado a un equipo de separación solido-líquido (4) desde el cual se generan dos corrientes: una solución líquida (LM1) que corresponde a un licor madre 1 que se alimenta desde el equipo de separación solido-líquido centrifugación (4) hasta un estanque de recepción (9) de licor madre 1 en la entrada del sub-sistema de producción de NaCI; y una segunda corriente que corresponde a cristales de LiOH crudo que se alimenta del mismo equipo de separación sólido-líquido (4)hasta un estanque de disolución (5) de LiOH crudo. Equipo (4) puede ser por ejemplo un equipo centrifugo. Este estanque de disolución (5) está conectado al menos a un equipo cristalizador (6) en donde se produce el LiOH de alta pureza. Del mismo modo, el estanque (A) proporciona el agua necesaria al estanque de disolución (5) para disolver LiOH crudo. El equipo cristalizador de U0H.H20 está conectado a un segundo equipo de separación sólido-liquido (7) que posee dos salidas desde la cual se generan dos productos: una salida con una corriente sólida de cristales de U0H.H20 de alta pureza que se envía a una unidad de secado de cristales (8); y otra salida con una corriente líquida con licor de LiOH puro que puede ser alimentada al estanque de disolución (5) de LiOH crudo, así como también al equipo de conversión (3).
El sub-sistema de producción de NaCI está conformado por dicho estanque de recepción (9) de licor madre 1 y un estanque de NaOH (16), en que ambos estanques a su vez están conectados a un equipo de caustificación (10), el cual está conectado a un sistema de evaporación o retiro de agua desde la solución alimentada, y una unidad cristalizadora de NaCI (17). Desde este último se generan dos salidas, una corresponde a licor de NaCI que se encuentra conectado a estanque de licor de NaCI (13), siendo este licor de NaCI el licor madre 2 (LM2) que es alimentado al estanque de LM2; y la otra salida corresponde a una pulpa de NaCI que se conecta a un tercer equipo de separación sólido-liquido (11) desde donde se produce la separación de cristales de NaCI que son almacenados en el unidad de cristales de NaCI (12). El estanque de licor NaCI o LM2 (13) está conectado al estanque inicial de licor de NaCI (2), quedando de esta forma ambos sub-sistemas , el de producción de LiOH de alta pureza y el de producción de NaCI, conectados por medio de los circuitos de licor madre 1 y licor madre 2, generando un sistema circular que permite la producción de UOH.H2O de alta pureza directamente a partir de salmueras de LiCI, sin co-precipitacion de NaCI. En una modalidad preferida de ejecución de la invención, el sub-sistema de producción de UOH.H2O de alta pureza comprende al menos dos equipos de cristalización de LiOH crudo (21 y 22). Los estanques de cristalización de LiOH pueden estar dispuestos en serie (como se ilustra en la figura 2). En el caso de la modalidad ilustrada, el equipo de cristalización (22) está conectado al equipo de centrifugación (4) desde el cual se conecta la salida de licor madre 1 (LM1 ) con el estanque (9) de recepción de dicho LM1 . En esta modalidad preferida de la invención, el sub-sistema de producción de LiOH de alta pureza comprende, además, al menos un equipo de cristalización de LiOH de alta pureza (23). El equipo de cristalización (23) está conectado a un equipo de separación sólido- liquido (7) desde el cual se generan dos salidas, una corresponde a la salida de licor de LiOH de alta pureza que se dirige a estanque (14), el cual está conectada al estanque de disolución (5) y al equipo de conversión (3); y la otra salida corresponde a los cristales de UOH.H2O de alta pureza, que está conectada a unidad de secado de cristales (8).
En otra modalidad preferida de la invención, el sub-sistema de producción de NaCI, comprende múltiples equipos evaporadores y un equipo cristalizador tal como se ilustra en la figura 4. En esta modalidad preferida de la invención, el sub-sistema de cristalización de NaCI comprende equipos evaporadores y cristalizadores (17), (18) y (19) conectados en serie, en donde el equipo de caustificación (10) - el que a su vez está conectado al estanque de recepción (9) del licor madre 1 (LM1 ) y al estanque de NaOH (16) que alimentan al equipo de caustificación (10) - está conectado al sistema de evaporación y cristalización de NaCI que inicia con unidad (17). Por otra parte, el último equipo del sistema de evaporación y cristalización de NaCI (19) se encuentra conectado a un equipo de separación sólido-liquido (21 ) desde el cual sale una corriente sólida que se dirige al equipo de almacenamiento de cristales de NaCI (12), puesto que la salida de licor de NaCI del equipo de separación sólido-liquido (21 ) puede estar conectada directamente al estanque de licor de NaCI (13) y desde ahí alimentar directamente el licor madre 2 (LM2) hasta el estanque de licor de NaCI (2) al inicio del sistema. De igual forma, para llevar a cabo la evaporación, la unidad de evaporación y cristalización (17) cuenta con una entrada desde un generador de vapor (V). El ciclo se cierra con la salida de vapor desde la unidad evaporadora cristalizadora (19) por medio de la salida (S).

Claims

R E IV I N D I CAC I O N E S
1. Sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI), sin necesidad de una producción intermedia de carbonato de litio o similar, CARACTERIZADO porque está conformado por dos sub-sistemas, un sub-sistema de producción de LiOH de alta pureza y un sub-sistema de producción de NaCI, en que dicho sistema comprende un estanque de salmuera de LiCI y un estanque de un licor de NaCI, los cuales se encuentran conectados al sub-sistema de producción de LiOH de alta pureza, el que a su vez comprende un equipo de conversión de LiCI a LiOH crudo; en donde el equipo de conversión está conectado a un equipo de separación sólido-líquido y éste a un estanque de recepción, y en donde el equipo de separación sólido-líquido además está conectado a un estanque de disolución de LiOH crudo, estando este estanque de disolución conectado al menos a un equipo cristalizador de LiOH en donde se produce el LiOH de alta pureza; en que el equipo cristalizador de LiOH de alta pureza está conectado a un segundo equipo de separación sólido-líquido el cual está conectado a un secador de cristales; y un estanque con licor de LiOH puro que está conectado a dicho estanque de disolución de LiOH crudo; en donde el sub-sistema de producción de NaCI está conformado por un estanque de recepción y un estanque de NaOH, en que ambos estanques a su vez están conectados a un equipo de caustificación, el cual está conectado al menos un sistema de evaporación cristalización de NaCI desde el cual están conectados un ducto de licor de NaCI que se encuentra conectado
1 a un estanque de licor de NaCI, estando conectado dicho estanque de licor de NaCI a dicho estanque inicial de licor de NaCI; y una segunda conexión a una tubería de NaCI concentrado que se conecta a al menos un equipo de separación sólido-líquido desde donde se produce la separación de los cristales de NaCI y son almacenados en un estanque de cristales de NaCI; en donde dicho estanque de licor NaCI está conectado a dicho estanque inicial de licor de NaCI, quedando de esta forma ambos sub-sistemas, el de producción de LiOH de alta pureza y el de producción de NaCI, conectados.
2. Sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI) de acuerdo a la reivindicación 1 ,
CARACTERIZADO porque dicho equipo de conversión es un equipo cristalizador que genera una corriente de LiOH crudo.
3. Sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI) de acuerdo a la reivindicación 1 ,
CARACTERIZADO porque dicho sub-sistema de producción de LiOH de alta pureza además comprende al menos un equipo de cristalización de LiOH crudo.
4. Sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI) de acuerdo a la reivindicación 3,
CARACTERIZADO porque dicho equipo de cristalización de LiOH crudo puede estar dispuesto en serie con otro equipo cristalizador.
2
5. Sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI) de acuerdo a la reivindicación 4,
CARACTERIZADO porque uno de dichos equipos de cristalización de LiOH crudo está conectado a dicho equipo de separtación sólido-líquido desde el cual se conecta al estanque de recepción.
6. Sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI) de acuerdo a la reivindicación 1 ,
CARACTERIZADO porque dicho sub-sistema de producción de LiOH de alta pureza comprende, además, al menos un equipo de cristalización de LiOH de alta pureza.
7. Sistema para la producción de hidróxido de litio (LiOH) directamente a partir de cloruro de litio (LiCI) de acuerdo a la reivindicación 1 ,
CARACTERIZADO porque dicho sub-sistema de producción de NaCI además comprende múltiples equipos cristalizadores conectados en serie donde dicho equipo de caustificación- el que a su vez está conectado al estanque de recepción y al estanque de NaOH que alimentan a dicho equipo de caustificación - está conectado al equipo de cristalización de
NaCI.
3
PCT/CL2021/050016 2021-03-22 2021-03-22 Sistema para la producción de hidróxido de litio (lioh) directamente a partir de cloruro de litio (licl), sin necesidad de una producción intermedia de carbonato de litio o similar WO2022198343A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/283,388 US20240174527A1 (en) 2021-03-22 2021-03-20 System for the production of lithium hydroxide (lioh) directly from lithium chloride (lici), without the need for the intermediate production of lithium carbonate or the like
PCT/CL2021/050016 WO2022198343A1 (es) 2021-03-22 2021-03-22 Sistema para la producción de hidróxido de litio (lioh) directamente a partir de cloruro de litio (licl), sin necesidad de una producción intermedia de carbonato de litio o similar
EP21931978.7A EP4316632A1 (en) 2021-03-22 2021-03-22 System for the production of lithium hydroxide (lioh) directly from lithium chloride (lici), without the need for the intermediate production of lithium carbonate or the like
CN202180097724.0A CN117917967A (zh) 2021-03-22 2021-03-22 直接由氯化锂(LiCl)生产氢氧化锂(LiOH)而不需要中间生产碳酸锂等的系统
CA3213084A CA3213084A1 (en) 2021-03-22 2021-03-22 System for the production of lithium hydroxide (lioh) directly from lithium chloride (lici), without the need for the intermediate production of lithium carbonate or the like
AU2021435424A AU2021435424A1 (en) 2021-03-22 2021-03-22 System for the production of lithium hydroxide (lioh) directly from lithium chloride (lici), without the need for the intermediate production of lithium carbonate or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2021/050016 WO2022198343A1 (es) 2021-03-22 2021-03-22 Sistema para la producción de hidróxido de litio (lioh) directamente a partir de cloruro de litio (licl), sin necesidad de una producción intermedia de carbonato de litio o similar

Publications (1)

Publication Number Publication Date
WO2022198343A1 true WO2022198343A1 (es) 2022-09-29

Family

ID=83394973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050016 WO2022198343A1 (es) 2021-03-22 2021-03-22 Sistema para la producción de hidróxido de litio (lioh) directamente a partir de cloruro de litio (licl), sin necesidad de una producción intermedia de carbonato de litio o similar

Country Status (6)

Country Link
US (1) US20240174527A1 (es)
EP (1) EP4316632A1 (es)
CN (1) CN117917967A (es)
AU (1) AU2021435424A1 (es)
CA (1) CA3213084A1 (es)
WO (1) WO2022198343A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036713A (en) * 1976-03-04 1977-07-19 Foote Mineral Company Process for the production of high purity lithium hydroxide
US20110044882A1 (en) * 2008-04-22 2011-02-24 David Buckley Method of making high purity lithium hydroxide and hydrochloric acid
US20150086452A1 (en) * 2013-07-09 2015-03-26 John Hugh Worsley Process for manufacture of sodium hydroxide and sodium chloride products from waste brine
RU2016103702A (ru) 2016-02-04 2017-08-10 Общество с ограниченной ответственностью "Экостар-Наутех" (ООО) "Экостар-Наутех" Способ получения моногидрата гидроксида лития из рассолов и установка для его осуществления
US20170233261A1 (en) * 2014-11-05 2017-08-17 Reed Advanced Materials Pty Ltd Production of lithium hydroxide
US20180111840A1 (en) * 2016-10-25 2018-04-26 Malvi Technologies, Llc Methods and equipment to make lithium hydroxide monohydrate from lithium salts
US10648090B2 (en) 2018-02-17 2020-05-12 Lilac Solutions, Inc. Integrated system for lithium extraction and conversion
US20210087697A1 (en) * 2019-09-25 2021-03-25 Ecostar-Nautech Co., Ltd. Method for producing lithium hydroxide monohydrate from brines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036713A (en) * 1976-03-04 1977-07-19 Foote Mineral Company Process for the production of high purity lithium hydroxide
US20110044882A1 (en) * 2008-04-22 2011-02-24 David Buckley Method of making high purity lithium hydroxide and hydrochloric acid
US20150086452A1 (en) * 2013-07-09 2015-03-26 John Hugh Worsley Process for manufacture of sodium hydroxide and sodium chloride products from waste brine
US20170233261A1 (en) * 2014-11-05 2017-08-17 Reed Advanced Materials Pty Ltd Production of lithium hydroxide
RU2016103702A (ru) 2016-02-04 2017-08-10 Общество с ограниченной ответственностью "Экостар-Наутех" (ООО) "Экостар-Наутех" Способ получения моногидрата гидроксида лития из рассолов и установка для его осуществления
US20180111840A1 (en) * 2016-10-25 2018-04-26 Malvi Technologies, Llc Methods and equipment to make lithium hydroxide monohydrate from lithium salts
US10648090B2 (en) 2018-02-17 2020-05-12 Lilac Solutions, Inc. Integrated system for lithium extraction and conversion
US20210087697A1 (en) * 2019-09-25 2021-03-25 Ecostar-Nautech Co., Ltd. Method for producing lithium hydroxide monohydrate from brines

Also Published As

Publication number Publication date
EP4316632A1 (en) 2024-02-07
US20240174527A1 (en) 2024-05-30
AU2021435424A1 (en) 2023-10-05
CN117917967A (zh) 2024-04-23
CA3213084A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
RU2684384C1 (ru) Способ и устройство для производства гидроксида лития и карбоната лития
CN108341420B (zh) 从高镁锂比盐湖卤水中直接制取氢氧化锂和碳酸锂的方法
Rioyo et al. Lithium extraction from spodumene by the traditional sulfuric acid process: A review
ES2826975T3 (es) Un proceso para fabricar carbonato de litio a partir del cloruro de litio
US8641992B2 (en) Process for recovering lithium from a brine
CA3132970C (en) Method for concentrating and purifying eluate brine for the production of a purified lithium compound
US4636295A (en) Method for the recovery of lithium from solutions by electrodialysis
US3835001A (en) Ion exchange removal of dichromates from electrolytically produced alkali metal chlorate-chloride solutions
WO2014007033A1 (ja) 塩排水の処理方法及びその処理装置
US20230019776A1 (en) Ion exchange system and method for conversion of aqueous lithium solution
WO2013023249A1 (en) Process and system for producing sodium chloride brine
TWI619676B (zh) 製造氯化鈉鹽水之方法及系統
BR112019011795B1 (pt) Método para produção de sulfato de potássio a partir de uma corrente de resíduos
JP2012213767A (ja) K及びMgの回収方法及び装置
CA2039881C (en) Purification of chlor-alkali membrane cell brine
CN113165894A (zh) 含锂盐水的处理
JPS62161973A (ja) 高純度炭酸リチウムの製造方法
US20240051837A1 (en) Method for the production of lithium hydroxide (lioh) directly from lithium chloride (lici), without the need for an intermediate production of lithium carbonate or similar
CN102092880B (zh) 聚氯乙烯生产中一次盐水膜法冷冻除硝工艺
CN106185998A (zh) 一种膜法脱硝工艺
WO2022198343A1 (es) Sistema para la producción de hidróxido de litio (lioh) directamente a partir de cloruro de litio (licl), sin necesidad de una producción intermedia de carbonato de litio o similar
WO2014006742A1 (ja) 塩排水の処理装置及びその処理方法
JP7236775B2 (ja) 水酸化リチウムおよび炭酸リチウムの生産
CN108910918A (zh) 一种硝酸钾制备的系统
US20240084461A1 (en) Method for Preparing Lithium Hydroxide, and Facility for Implementing the Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18283388

Country of ref document: US

Ref document number: 2021435424

Country of ref document: AU

Ref document number: AU2021435424

Country of ref document: AU

Ref document number: 3213084

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021435424

Country of ref document: AU

Date of ref document: 20210322

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021931978

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180097724.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021931978

Country of ref document: EP

Effective date: 20231023