WO2022197104A1 - 단백질 키나제 억제제로서의 헤테로고리 화합물의 결정형 - Google Patents

단백질 키나제 억제제로서의 헤테로고리 화합물의 결정형 Download PDF

Info

Publication number
WO2022197104A1
WO2022197104A1 PCT/KR2022/003703 KR2022003703W WO2022197104A1 WO 2022197104 A1 WO2022197104 A1 WO 2022197104A1 KR 2022003703 W KR2022003703 W KR 2022003703W WO 2022197104 A1 WO2022197104 A1 WO 2022197104A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline form
cyanoacetyl
tetrahydropyridin
cyclopropanecarboxamide
pyrrolo
Prior art date
Application number
PCT/KR2022/003703
Other languages
English (en)
French (fr)
Inventor
김영주
김준
김한나
권재홍
이예림
황도석
Original Assignee
에이치케이이노엔 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이치케이이노엔 주식회사 filed Critical 에이치케이이노엔 주식회사
Priority to CA3212253A priority Critical patent/CA3212253A1/en
Priority to CN202280021505.9A priority patent/CN117157294A/zh
Priority to EP22771770.9A priority patent/EP4310086A1/en
Priority to US18/282,177 priority patent/US20240051957A1/en
Priority to AU2022237154A priority patent/AU2022237154A1/en
Priority to BR112023018649A priority patent/BR112023018649A2/pt
Priority to MX2023010834A priority patent/MX2023010834A/es
Priority to JP2023556847A priority patent/JP2024511348A/ja
Publication of WO2022197104A1 publication Critical patent/WO2022197104A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a novel crystalline form of a heterocyclic compound as a protein kinase inhibitor and a method for preparing the same.
  • the amorphous form exhibits high solubility and thus has an advantage in enhancing drug efficacy and exhibiting fast-acting properties, but it is unstable and has a short shelf life, and it is difficult to control the release rate and blood concentration of the drug.
  • the crystalline form has low solubility and low bioavailability per unit weight, but has an advantage in securing stability and preparing a formulation capable of continuous release. As described above, the crystalline form is stable compared to the amorphous form, but has low solubility, so solubility must be sacrificed when stability is prioritized. It is very difficult to obtain.
  • Janus kinases are enzymes that regulate various intracellular processes by phosphorylating other proteins to regulate their activity, location and function. Janus kinase is located in the intracellular receptor of inflammatory cytokines, and the inflammatory cytokine binds to the receptor, and after phosphorylation, it transmits the signal of the inflammatory cytokine into the cell through interaction with the STAT molecule. Excessive activation of signal transduction through these various inflammatory cytokines results in the body's immune system attacking the human body, resulting in autoimmune diseases. In recent years, in phase 2 and 3 clinical trials of the selective JAK1 inhibitors, upadacitinib and abrocitinib, it has been reported that JAK1 inhibitors rapidly improve the severity and symptoms of Alzheimer's disease.
  • One object of the present invention is to provide a novel crystalline form of a heterocyclic compound as a protein kinase inhibitor.
  • Another object of the present invention is to provide a method for preparing the crystalline form.
  • the inventors of the present application have made research efforts to discover compounds with improved physicochemical properties that can minimize the generation of related substances by improving stability to heat and moisture while having pharmacological activity equal to or greater than that of existing compounds, The crystal form of the heterocyclic compound according to the present invention was confirmed and the present invention was completed.
  • the heterocyclic compound in the crystalline form of the heterocyclic compound as a protein kinase inhibitor according to the present invention, is represented by the following formula (I).
  • heterocyclic compound represented by the above formula (I) is N-(4-(1-(2-cyanoacetyl)-3-methyl-1,2,3,6-tetrahydropyridin-4-yl)-1H- pyrrolo[2,3-b]pyridin-6-yl)cyclopropanecarboxamide (N-(4-(1-(2-cyanoacetyl)-3-methyl-1,2,3,6-tetrahydropyridin-4) -yl)-1H-pyrrolo[2,3-b]pyridin-6-yl)cyclopropanecarboxamide).
  • the heterocyclic compound represented by the formula (I) is (S)-N-(4-(1-(2-cyanoacetyl)-3-methyl-1,2,3,6-tetrahydropyridin-4-yl)- 1H-pyrrolo[2,3-b]pyridin-6-yl)cyclopropanecarboxamide and (R)-N-(4-(1-(2-cyanoacetyl)-3-methyl-1,2 ,3,6-tetrahydropyridin-4-yl)-1H-pyrrolo[2,3-b]pyridin-6-yl)cyclopropanecarboxamide, respectively, or a mixture thereof .
  • the heterocyclic compound or a pharmaceutically acceptable salt thereof in the present invention may be a compound represented by the following formula (II) or a pharmaceutically acceptable salt thereof.
  • heterocyclic compound represented by the above formula (II) is (S)-N-(4-(1-(2-cyanoacetyl)-3-methyl-1,2,3,6-tetrahydropyridin-4-yl )-1H-pyrrolo[2,3-b]pyridin-6-yl)cyclopropanecarboxamide.
  • the powder X-ray diffraction (XRD) pattern of the crystalline form according to the present invention includes diffraction peaks indicated at diffraction angles 2 ⁇ ( ⁇ 0.2°) values of 4.6°, 8.1° and 11.2°.
  • the powder X-ray diffraction (XRD) pattern may further include at least one of diffraction peaks indicated at diffraction angle 2 ⁇ ( ⁇ 0.2°) values of 8.8°, 15.5°, and 20.3°.
  • the powder X-ray diffraction (XRD) pattern includes diffraction peaks indicated at diffraction angle 2 ⁇ ( ⁇ 0.2°) values of 4.6°, 8.1°, 8.8°, 11.2°, 15.5° and 20.3°.
  • the powder X-ray diffraction (XRD) pattern is represented by diffraction angle 2 ⁇ ( ⁇ 0.2°) values of 4.6°, 8.1°, 8.8°, 11.2°, 12.1°, 15.5°, 20.3° and 22.4°. It may contain diffraction peaks.
  • the crystalline form according to the present invention has a mass loss rate of 1.6% at 150° C. as a result of thermogravimetric analysis (TGA).
  • the crystalline form according to the present invention exhibits a differential scanning calorimetry (DSC) endothermic peak at 142.07 to 157.29°C. At this time, the differential scanning calorimetry endothermic peak appears when the temperature increase rate is 10 °C/min.
  • DSC differential scanning calorimetry
  • the crystalline form of ]pyridin-6-yl) cyclopropanecarboxamide contains diffraction peaks exhibited by an X-ray powder diffraction pattern at diffraction angle 2 ⁇ ( ⁇ 0.2°) values of 4.6°, 8.1° and 11.2°.
  • the crystalline form according to (1) above may further include at least one of diffraction peaks indicated by the X-ray powder diffraction pattern at diffraction angle 2 ⁇ ( ⁇ 0.2°) values of 8.8°, 15.5°, and 20.3° .
  • the X-ray powder diffraction pattern may contain diffraction peaks represented at diffraction angle 2 ⁇ ( ⁇ 0.2°) values of 4.6°, 8.1°, 8.8° and 11.2°.
  • the crystalline form according to (1) , (2) or (3) above may have a mass reduction rate of 1.6% at 150°C as a result of thermogravimetric analysis (TGA).
  • the crystalline form according to (1) , (2) , (3) or (4) may exhibit a differential scanning calorimetry (DSC) endothermic peak at 142.07 to 157.29°C.
  • the crystalline form of the heterocyclic compound according to the present invention can be prepared according to the following method.
  • step (B) stirring the resultant obtained in step (A) to precipitate crystals.
  • step (A) is N-(4-(1-(2-cyanoacetyl)-3-methyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-p Rolo[2,3-b]pyridin-6-yl) cyclopropanecarboxamide may be a solution in an organic solvent, water, or a mixture thereof, or a suspended suspension.
  • the organic solvent used in step (A) may be ethyl acetate, ethyl formate, dichloromethane, acetone, methanol, ethanol, isopropanol, acetonitrile, toluene, tert-butylmethyl ether, 2-butanone, or a mixture thereof.
  • Step (B) may be performed to stir the mixed solution by cooling or heating.
  • the manufacturing method after the step of precipitating the crystal of (B), (C) may further include the step of aging the crystal by adding an anti-solvent.
  • the anti-solvent may be water, hexane, heptane, tert-butylmethyl ether, isopropyl ether, cyclohexane, or a mixture thereof.
  • the crystalline form of the heterocyclic compound represented by Formula I according to the present invention has excellent physical stability and thus can be usefully utilized in the formulation of pharmaceuticals.
  • FIG. 1 is a diagram showing the XRPD analysis result graph before and after exposure to severe conditions of the crystalline form of the present invention.
  • FIG. 2 is a diagram showing the results of DSC analysis of the crystalline form of the present invention.
  • FIG. 3 is a view showing the results of TGMS analysis of the crystalline form of the present invention.
  • the title compound was prepared according to the method disclosed in Korean Patent Application Laid-Open No. 2019-0043437.
  • XRPD plates for obtaining XRPD patterns were mounted on a Bruker General Area Detector Diffraction System (GADDS) equipped with a V ⁇ NTEC-500 gas area detector calibrated for intensity and geometric variations. Calibration of measurement accuracy (peak position) was performed using the NIST SRM1976 standard (Corundum). Data collection was performed at room temperature using monochromatic CuK ⁇ radiation in the diffraction angle (2 ⁇ ) region of 1.5° to 41.5°, the most distinct part of the XRPD pattern. Diffraction patterns for each well were collected in two 2 ⁇ ranges (1.5° ⁇ 2 ⁇ ⁇ 21.5° for the first frame and 9.5° ⁇ 2 ⁇ ⁇ 41.5° for the second frame) with an exposure time of 90 s for each frame. . No background subtraction or curve smoothing was applied to the XRPD pattern. The carrier material used in the XRPD analysis was transparent to X-rays.
  • Mass loss due to solvent or water loss from crystals was determined by Thermogravimetric analysis/Simultaneous Differential thermal analysis (TGA/SDTA). Weight versus temperature curves were generated by monitoring the weight of the sample during heating in a TGA/SDTA851e apparatus (product name, Mettler-Toledo GmbH, Switzerland). TGA/SDTA851e was calibrated with indium and aluminum samples. Samples were placed in 100 ⁇ L aluminum crucibles, sealed, and pin-hole drilled. The crucible was heated from 25°C to 300°C in TGA at a heating rate of 10°C/min. Dry N 2 gas was used for purging. Gases from the TGA samples were analyzed with an Omnistar GSD 301 T2 (product name, Pfeiffer Vacuum GmbH, Germany), a quadrupole mass spectrometer that analyzes masses in the 0-200 amu range.
  • TGA/SDTA Thermogravimetric analysis/Simultaneous Differential thermal analysis
  • the sample was packaged in the form of ((LPDE+N2)+Silica gel 1g+LDPE)+Al-Bag and stored for 2 days under severe conditions (60°C ⁇ 2°C/80% RH ⁇ 5%) before evaluation. .
  • a DSC analysis graph was obtained for the crystalline forms obtained according to Examples 1 and 2 according to the DSC analysis method described above. The results are shown in FIG. 2 .
  • the crystalline form according to the present invention exhibits a differential scanning calorimetry (DSC) endothermic peak at 142.07 to 157.29°C.
  • TGMS analysis graphs were obtained for the crystalline forms obtained according to Examples 1 and 2 according to the TGA/SDTA and TGMS analysis methods described above. The results are shown in FIG. 3 .
  • thermogravimetric analysis TGA
  • the crystalline form of the present invention is a non-solvated and anhydrous form.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 단백질 키나제 억제제로서의 헤테로고리 화합물인 N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형에 관한 것이다.

Description

단백질 키나제 억제제로서의 헤테로고리 화합물의 결정형
본 발명은 단백질 키나제 억제제로서의 헤테로고리 화합물의 신규 결정형 및 이의 제조 방법에 관한 것이다.
일반적으로, 동일한 약물에 있어서, 비결정질, 하나 이상의 결정형, 염 등 각각의 형태에 있어서 용해도나 용출 특성 및 생체이용률과 같은 약학적으로 중요한 성질에서 차이를 나타낼 수 있음은 자명한 사실이다. 비결정질과 결정형을 선택함에 있어서, 비결정질의 경우 높은 용해도를 나타내므로 약효를 높이고 속효성을 나타내는데 장점이 있지만, 불안정하여 유통기간이 짧고 약물의 방출속도 및 혈중농도를 조절하기 어려운 단점이 있다. 반대로, 결정형의 경우 용해도가 낮아 단위 중량 당 생체 이용률이 낮으나, 안정성을 확보하고 지속적인 방출이 가능한 제형을 제조하는데 장점이 있다. 이와 같이 결정형은 비결정질에 비해 안정하지만 용해도가 낮으므로 안정성을 우선적으로 고려할 경우 용해도를 희생해야 하며, 반대로 용해도를 우선적으로 고려할 경우에는 안정성을 희생해야 하는 딜레마가 있어 안정성과 용해도를 동시에 만족시키는 결정을 얻는 것에는 매우 어려움이 있다.
야누스 키나제(JAKs)는 다른 단백질을 인산화시켜 단백질의 활성, 위치 및 기능을 조절하여 다양한 세포내 과정을 제어하는 효소이다. 야누스 키나제는 염증성 사이토카인의 세포내 수용체에 위치하며, 염증성 사이토카인이 수용체와 결합하고, 인산화 후, STAT 분자와 작용을 통해 염증성 사이토카인의 신호를 세포내로 전달한다. 이러한 다양한 염증성 사이토카인을 통한 신호 전달의 과도한 활성화는 우리 몸의 면역체계가 인체를 공격하는 결과를 나타내며, 이러한 결과로 자가면역질환이 발생한다. 최근 몇 년간 선택적 JAK1 억제제, 우파다시티닙 및 아브로시티닙의 임상 2상 및 3상 시험에서 JAK1 억제제가 알츠하이머병의 중증도와 증상을 빠르게 개선시키는 것으로 보고된 바 있다.
본 발명의 일 목적은 단백질 키나제 억제제로서의 헤테로고리 화합물의 신규한 결정형을 제공하는 것이다.
본 발명의 다른 목적은 상기 결정형의 제조 방법을 제공하는 것이다.
본 출원의 발명자들은 기존의 화합물과 동등 이상의 약리학적 활성을 가지면서, 열 및 수분에 대한 안정성을 향상시켜 유연물질 발생을 최소화할 수 있는 물리화학적 성질이 개선된 화합물을 발굴하기 위해 연구 노력한 결과, 본 발명에 따른 헤테로고리 화합물의 결정형을 확인하고 본 발명을 완성하였다.
본 발명에 따른 단백질 키나제 억제제로서의 헤테로고리 화합물의 결정형에서, 헤테로고리 화합물은 하기 화학식 I로 나타낸다.
[화학식I]
Figure PCTKR2022003703-appb-img-000001
상기 화학식 I로 나타내는 헤테로고리 화합물의 명칭은 N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드 (N-(4-(1-(2-cyanoacetyl)-3-methyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-pyrrolo[2,3-b]pyridin-6-yl)cyclopropanecarboxamide)이다.
상기 화학식 I로 나타내는 헤테로고리 화합물은 (S)-N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일)시클로프로판카르복사미드 및 (R)-N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일)시클로프로판카르복사미드 각각을 나타내는 것일 수 있고, 또는 이들의 혼합물일 수도 있다.
일 실시예에서, 본 발명에서의 헤테로고리 화합물 또는 이의 약학적으로 허용 가능한 염은, 하기 화학식 II로 나타내는 화합물 또는 이의 약학적으로 허용 가능한 염일 수 있다.
[화학식 II]
Figure PCTKR2022003703-appb-img-000002
상기 화학식 II로 나타내는 헤테로고리 화합물의 명칭은 (S)-N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일)시클로프로판카르복사미드이다.
본 발명에 따른 결정형의 분말 X선 회절(XRD) 패턴은 4.6°, 8.1° 및 11.2°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크를 포함한다.
상기 분말 X선 회절(XRD) 패턴은 8.8°, 15.5° 및 20.3°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크들 중 적어도 하나를 더 포함할 수 있다.
상기 분말 X선 회절(XRD) 패턴은 4.6°, 8.1°, 8.8°, 11.2°, 15.5° 및 20.3°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크를 포함한다.
일 실시예에서, 상기 분말 X선 회절(XRD) 패턴은 4.6°, 8.1°, 8.8°, 11.2°, 12.1°, 15.5°, 20.3° 및 22.4°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크를 포함할 수 있다.
본 발명에 따른 결정형은 열중량 분석 (TGA) 결과로 150℃에서 1.6 %의 질량감소율을 갖는다.
본 발명에 따른 결정형은 142.07 내지 157.29℃에서 시차주사열량 (DSC) 흡열 피크를 나타낸다. 이때, 시차주사열량 흡열 피크는 승온속도가 10 ℃/min인 경우에 나타나는 것이다.
(1) N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형은 X-선 분말 회절 패턴이 4.6°, 8.1° 및 11.2°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크를 포함한다.
(2) 상기 (1)에 따른 결정형은 X-선 분말 회절 패턴이 8.8°, 15.5° 및 20.3°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크들 중 적어도 하나를 더 포함할 수 있다.
(3) 상기 (1) 또는 (2)에 따른 결정형은 X-선 분말 회절 패턴이 4.6°, 8.1°, 8.8° 및 11.2°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크를 포함할 수 있다.
(4) 상기 (1), (2) 또는 (3)에 따른 결정형은 열중량 분석 (TGA) 결과로 150℃에서 1.6 %의 질량감소율을 가질 수 있다.
(5) 상기 (1), (2), (3) 또는 (4)에 따른 결정형은 142.07 내지 157.29℃에서 시차주사열량 (DSC) 흡열 피크를 나타낼 수 있다.
본 발명에 따른 헤테로고리 화합물의 결정형은 다음과 같은 방법에 따라 제조될 수 있다.
(A) 본 발명에 따른 화학식 I로 나타내는 헤테로고리 화합물인 N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드를 유기용매, 물 또는 이들의 혼합물과 혼합하는 단계; 및
(B) 상기 (A) 단계에서 얻은 결과물을 교반하여 결정을 석출시키는 단계를 포함한다.
상기 (A) 단계에서 얻은 결과물은, N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드가 유기용매, 물 또는 이들의 혼합물에 용해된 용액이거나, 현탁된 현탁액일 수 있다.
상기 (A) 단계에서 이용되는 상기 유기용매는 에틸아세테이트, 에틸포르메이트, 디클로로메탄, 아세톤, 메탄올, 에탄올, 이소프로판올, 아세토니트릴, 톨루엔, tert-부틸메틸에테르, 2-부탄온 또는 이들의 혼합물일 수 있다.
상기 (B) 단계는 상기 혼합된 용액을 냉각시키거나 가열하여 교반하도록 수행될 수 있다.
상기 제조 방법은, 상기 (B)의 결정을 석출시키는 단계 이후에, (C) 반용매를 가하여 결정을 숙성시키는 단계를 더 포함할 수 있다. 이때, 상기 반용매는 물, 헥산, 헵탄, tert-부틸메틸에테르, 이소프로필에테르, 시클로헥산 또는 이들의 혼합물일 수 있다.
본 발명에 따른 화학식 I로 나타내는 헤테로고리 화합물의 결정형은 물리적 안정성이 우수하여 의약품의 제제화에 유용하게 활용될 수 있다.
도 1은 본 발명의 결정형의 가혹 조건 노출 전후의 XRPD 분석 결과 그래프를 나타낸 도면이다.
도 2는 본 발명의 결정형의 DSC 분석 결과를 나타낸 도면이다.
도 3은 본 발명의 결정형의 TGMS 분석 결과를 나타낸 도면이다.
이하, 본 발명의 실시예에 대해 상세히 설명한다. 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
제조예 1: (S)-N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일)시클로프로판카르복사미드의 합성
한국공개특허 제2019-0043437호에서 개시하고 있는 방법에 따라 표제의 화합물을 제조하였다.
1H NMR (400 MHz, DMSO-d6) δ 11.44 (s, 1H), 10.57 (s, 1H), 7.84 (d, J = 10.2 Hz, 1H), 7.34 (d, J = 3.1 Hz, 1H), 6.48 (dd, J = 1.8, 3.7 Hz, 1H), 6.17 - 6.03 (m, 1H), 4.31 - 4.01 (m, 6H), 3.96 - 3.62 (m, 2H), 3.02 (m J = 36.6 Hz, 1H), 2.02 (s, 1H), 0.88 (s, 3H), 0.84 - 0.73 (m, 4H); MS(ESI+) m/z 364 (M+H)+
실시예 1: 결정형 A의 제조
제조예 1에서 얻은 화학식 II에 따른 화합물 32 mg을 100 mL의 에틸 포르메이트와 혼합하여 현탁액을 얻었다. 상기 현탁액을 24시간 동안 실온에서 계속하여 교반한 후 원심분리 하여 고체로 얻고 진공 건조(30℃, 10 mbar)하여 고체 생성물을 얻었다.
실시예 2: 결정형 A의 제조
또한, 제조예 1에서 얻은 화학식 II에 따른 화합물 32 mg을 100 mL의 아세토니트릴과 혼합하여 현탁액을 얻었다. 상기 현탁액을 24시간 동안 실온에서 계속하여 교반한 후 원심분리 하여 고체로 얻고 진공 건조(30℃, 10 mbar)하여 고체 생성물을 얻었다.
분석 및 측정 방법
1. XRPD 분석
XRPD 패턴을 얻기 위한 플레이트는 강도 및 기하학적 변화에 대해서 보정된 VÅNTEC-500 기체 영역 검출기가 설치된 Bruker General Area Detector Diffraction System (GADDS)에 장착되었다. 측정 정확도(피크 위치)의 보정은 NIST SRM1976 standard (Corundum)를 사용하여 수행하였다. 데이터 수집은 XRPD 패턴의 가장 구분되는 부분인 1.5°내지 41.5°의 회절각(2θ) 영역에서 단색 CuKα 방사선을 사용하여 실온에서 수행되었다. 각 웰(well)의 회절 패턴은 각 프레임에 대해 90초의 노출 시간으로 2개의 2θ 범위 (첫번째 프레임의 경우 1.5°≤ 2θ ≤ 21.5°, 두번째 프레임의 경우 9.5°≤ 2θ ≤ 41.5°)에서 수집되었다. XRPD 패턴에는 백그라운드 제거(background subtraction) 또는 고선 평활화(curve smoothing)가 적용되지 않았다. XRPD 분석에서 사용된 캐리어 물질은 X선에 대해 투명하였다.
2. DSC 분석
용융 특성은 열 유속(heat flux) DSC822e 장치 (제품명, Mettler-Toledo GmbH, Switzerland)로 기록된 DSC 온도기록도(DSC thermograms)로부터 얻었다. DSC822e는 작은 인듐 피스로 온도 및 엔탈피를 보정하였다 (melting point at 156.6℃; ΔHf = 28.45 J/g). 샘플은 스탠다드40 μL 알루미늄 팬에 밀봉하고 핀-홀로 구멍을 뚫은 후 10 ℃/분의 가열 속도로 DSC에서 25℃에서 300℃로 가열하였다. 측정하는 동안 DSC 장비를 퍼지하기 위해 50 mL/분의 유속으로 드라이 N2 가스를 사용하였다.
3. TGA/SDTA 및 TGMS 분석
용매로 인한 질량 손실 또는 결정으로부터의 수분 손실은 TGA/SDTA(Thermogravimetric analysis/Simultaneous Differential thermal analysis)에 의해 결정되었다. TGA/SDTA851e 장치 (제품명, Mettler-Toledo GmbH, Switzerland)에서 가열하는 동안 샘플의 중량을 모니터링하여 중량 대 온도 곡선을 생성하였다. TGA/SDTA851e는 인듐 및 알루미늄 샘플로 보정되었다. 샘플을 100 μL 알루미늄 도가니에 넣고 밀봉하였고, 핀-홀을 뚫었다. 도가니는 10 ℃/분의 가열 속도로 TGA에서 25℃에서 300℃로 가열되었다. 퍼징을 위해서 드라이 N2 가스를 사용하였다. TGA 샘플에서 나오는 가스는 0-200 amu 범위의 질량을 분석하는 사중 극자 질량 분석기인, Omnistar GSD 301 T2(제품명, Pfeiffer Vacuum GmbH, Germany)로 분석되었다.
4. 물리적 안정성 평가 실험
검체를 ((LPDE+N2)+Silica gel 1g+LDPE)+Al-Bag의 형태로 포장한 후 가혹조건(60℃±2℃/80% RH±5%)에서 2일 동안 보관한 후 평가하였다.
분석/측정/평가 결과
1. 결정형의 XPRD 분석 결과 및 안정성 평가 결과
실시예 1 및 실시예 2에 따라 얻은 결정형을 상기에서 설명한 XPRD 분석 방법에 따라 XPRD 분석 그래프를 얻었다. 그 결과를 도 1에 나타낸다. 도 1에서 얻어진 XPRD 결과 회절각은 하기 표 1에 나타낸다.
[표 1]
Figure PCTKR2022003703-appb-img-000003
도 1 및 표 1을 참조하면, 실시예 1 및 실시예 2에 따라 얻어진 결정형이 특정 회절각들에서 강도가 우세한 회절 피크를 나타내는 것을 확인할 수 있고, 이를 통해서 비정질이 아니라 결정형인 것이 증명된다.
특히, 도 1을 참조하면, 실시예 1 및 실시예 2에 따라 얻어진 결정형이 가혹 조건 하에 놓이더라도, 가혹 조건 전/후의 XPRD 패턴의 변화가 실질적으로 없는 것을 확인할 수 있다. 이를 통해서, 본 발명에 따른 결정형은 물리적 안정성이 우수하여 장기간 보관 안정성이 확보된다는 것을 알 수 있다.
2. 결정형의 DSC 분석 결과
실시예 1 및 실시예 2에 따라 얻은 결정형을 상기에서 설명한 DSC 분석 방법에 따라 DSC 분석 그래프를 얻었다. 그 결과를 도 2에 나타낸다.
도 2를 참조하면, 본 발명에 따른 결정형은 142.07 내지 157.29℃에서 시차주사열량 (DSC) 흡열 피크를 나타내는 것을 확인할 수 있다.
3. 결정형의 TGMS 분석 결과
실시예 1 및 실시예 2에 따라 얻은 결정형을 상기에서 설명한 TGA/SDTA 및 TGMS 분석 방법에 따라 TGMS 분석 그래프를 얻었다. 그 결과를 도 3에 나타낸다.
도 3을 참조하면, 열중량 분석 (TGA) 결과로 본 발명의 결정형은 150℃에서 1.6 %의 질량감소율을 갖는 것을 확인할 수 있다. 본 발명의 결정형은 약 260℃에서 열분해가 시작되는 것을 확인할 수 있다.
또한, 본 발명의 결정형은 비용매화물(non-solvated)이고, 무수화물(anhydrous form)인 것을 확인할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (8)

  1. X-선 분말 회절 패턴이 4.6°, 8.1° 및 11.2°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크를 포함하는,
    N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형.
  2. 제1항에 있어서,
    X-선 분말 회절 패턴이 8.8°, 15.5° 및 20.3°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크들 중 적어도 하나를 더 포함하는 것인,
    N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형.
  3. 제1항에 있어서,
    X-선 분말 회절 패턴이 4.6°, 8.1°, 8.8° 및 11.2°의 회절각 2θ (±0.2°) 값에서 나타내는 회절 피크를 포함하는,
    N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형.
  4. 제1항에 있어서,
    열중량 분석 (TGA) 결과로 150℃에서 1.6 %의 질량감소율을 갖는,
    N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형.
  5. 제1항에 있어서,
    142.07 내지 157.29℃에서 시차주사열량 (DSC) 흡열 피크를 나타내는,
    N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형.
  6. (A) N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드를 유기용매, 물 또는 이들의 혼합물과 혼합하는 단계; 및
    (B) 상기 (A) 단계에서 얻은 결과물을 교반하여 결정을 석출시키는 단계를 포함하는,
    제1항에 따른 N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형의 제조 방법.
  7. 제6항에 있어서,
    상기 (A) 단계에서 얻은 결과물은 N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드가 용해된 용액이거나, 현탁된 현탁액인,
    제1항에 따른 N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형의 제조 방법.
  8. 제6항에 있어서,
    상기 유기용매는
    에틸아세테이트, 에틸포르메이트, 디클로로메탄, 아세톤, 메탄올, 에탄올, 이소프로판올, 아세토니트릴, 톨루엔, tert-부틸메틸에테르, 2-부탄온 또는 이들의 혼합물인,
    제1항에 따른 N-(4-(1-(2-시아노아세틸)-3-메틸-1,2,3,6-테트라히드로피리딘-4-일)-1H-피롤로[2,3-b]피리딘-6-일) 시클로프로판카복사마이드의 결정형의 제조 방법.
PCT/KR2022/003703 2021-03-16 2022-03-16 단백질 키나제 억제제로서의 헤테로고리 화합물의 결정형 WO2022197104A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3212253A CA3212253A1 (en) 2021-03-16 2022-03-16 Crystalline form of heterocyclic compound as protein kinase inhibitor
CN202280021505.9A CN117157294A (zh) 2021-03-16 2022-03-16 作为蛋白激酶抑制剂的杂环化合物的结晶形式
EP22771770.9A EP4310086A1 (en) 2021-03-16 2022-03-16 Crystalline form of heterocyclic compound as protein kinase inhibitor
US18/282,177 US20240051957A1 (en) 2021-03-16 2022-03-16 Crystalline form of heterocyclic compound as protein kinase inhibitor
AU2022237154A AU2022237154A1 (en) 2021-03-16 2022-03-16 Crystalline form of heterocyclic compound as protein kinase inhibitor
BR112023018649A BR112023018649A2 (pt) 2021-03-16 2022-03-16 Forma cristalina e método para preparar uma forma cristalina
MX2023010834A MX2023010834A (es) 2021-03-16 2022-03-16 Forma cristalina de un compuesto heterocíclico como inhibidor de la proteína quinasa.
JP2023556847A JP2024511348A (ja) 2021-03-16 2022-03-16 タンパク質キナーゼ阻害剤としてのヘテロ環化合物の結晶形

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0034296 2021-03-16
KR20210034296 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022197104A1 true WO2022197104A1 (ko) 2022-09-22

Family

ID=83321185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003703 WO2022197104A1 (ko) 2021-03-16 2022-03-16 단백질 키나제 억제제로서의 헤테로고리 화합물의 결정형

Country Status (10)

Country Link
US (1) US20240051957A1 (ko)
EP (1) EP4310086A1 (ko)
JP (1) JP2024511348A (ko)
KR (1) KR20220129495A (ko)
CN (1) CN117157294A (ko)
AU (1) AU2022237154A1 (ko)
BR (1) BR112023018649A2 (ko)
CA (1) CA3212253A1 (ko)
MX (1) MX2023010834A (ko)
WO (1) WO2022197104A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140004637A (ko) * 2010-11-26 2014-01-13 알미랄, 에스.에이. Jak 억제제로서의 이미다조[1,2-b]피리다진 및 이미다조[4,5-b]피리딘 유도체
KR20140027318A (ko) * 2011-05-25 2014-03-06 알미랄, 에스.에이. 골수증식성 장애, 이식 거부, 면역 매개성 및 염증성 질환의 치료용 약제로서 유용한 피리딘-2(1h)-온 유도체
KR20190039823A (ko) * 2016-09-29 2019-04-15 이쿼녹스 사이언시스, 엘엘씨 키나아제 억제제 화합물의 다결정형(polymorphic form), 이를 함유한 약물 조성물 및 그의 제조방법과 응용
KR20190043437A (ko) 2017-10-18 2019-04-26 씨제이헬스케어 주식회사 단백질 키나제 억제제로서의 헤테로고리 화합물
KR20190068626A (ko) * 2016-12-13 2019-06-18 난징 트렌스테라 바이오사이언스즈 컴퍼니 리미티드 멀티키나아제 억제제 화합물, 그의 결정형 및 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140004637A (ko) * 2010-11-26 2014-01-13 알미랄, 에스.에이. Jak 억제제로서의 이미다조[1,2-b]피리다진 및 이미다조[4,5-b]피리딘 유도체
KR20140027318A (ko) * 2011-05-25 2014-03-06 알미랄, 에스.에이. 골수증식성 장애, 이식 거부, 면역 매개성 및 염증성 질환의 치료용 약제로서 유용한 피리딘-2(1h)-온 유도체
KR20190039823A (ko) * 2016-09-29 2019-04-15 이쿼녹스 사이언시스, 엘엘씨 키나아제 억제제 화합물의 다결정형(polymorphic form), 이를 함유한 약물 조성물 및 그의 제조방법과 응용
KR20190068626A (ko) * 2016-12-13 2019-06-18 난징 트렌스테라 바이오사이언스즈 컴퍼니 리미티드 멀티키나아제 억제제 화합물, 그의 결정형 및 용도
KR20190043437A (ko) 2017-10-18 2019-04-26 씨제이헬스케어 주식회사 단백질 키나제 억제제로서의 헤테로고리 화합물

Also Published As

Publication number Publication date
MX2023010834A (es) 2023-09-28
CA3212253A1 (en) 2022-09-22
US20240051957A1 (en) 2024-02-15
EP4310086A1 (en) 2024-01-24
KR20220129495A (ko) 2022-09-23
AU2022237154A1 (en) 2023-11-02
CN117157294A (zh) 2023-12-01
JP2024511348A (ja) 2024-03-13
BR112023018649A2 (pt) 2023-10-10

Similar Documents

Publication Publication Date Title
EP1910370B1 (en) A pyridin quinolin substituted pyrrolo [1,2-b] pyrazole monohydrate as tgf-beta inhibitor
AU2020202181A1 (en) Naphthyridine compounds as jak kinase inhibitors
US5990113A (en) Monohydrates of aminobenzenesulfonic acid derivatives and method for preparing thereof
US10017513B2 (en) Crystalline forms of sodium 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5H-pyrimido [5,4-D][2]benzazepin-2-YL]amino}-2-methoxybenzoate
EP3190102B1 (en) CRYSTAL OF (S)-1-(2-HYDROXYETHYL)-4-METHYL-N- [4-(METHYLSULFONYL)PHENYL]-5-[2-(TRIFLUOROMETHYL)& xA;PHENYL]- 1H-PYRROLE-3-CARBOXAMIDE
WO2011095059A1 (zh) 达沙替尼多晶型物及其制备方法和药物组合物
TWI675839B (zh) 一種jak激酶抑制劑的硫酸氫鹽的結晶形式及其製備方法
US20210147423A1 (en) Crystal form of baricitinib and preparation method thereof
WO2017047970A1 (ko) 리나글립틴 결정형 및 이의 제조방법
WO2022197104A1 (ko) 단백질 키나제 억제제로서의 헤테로고리 화합물의 결정형
EP3322709B1 (en) Crystalline forms of (3r)-3-cyclopentyl-3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)pyrazol-1-yl]propanenitrile salts and preparation thereof
US20150322084A1 (en) 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene citrate salt
AU2020287139A1 (en) Method for synthesizing furoimidazopyridine compound, polymorphic substance and polymorphic substance of salt
US20110263616A1 (en) 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene maleate salt
CN116496247A (zh) 6-(1-丙烯酰基哌啶-4-基)-2-(4-苯氧基苯基)尼克酰胺的晶型
US7521472B2 (en) Crystal of two-ring heterocyclic sulfonamide compound
CN111601791A (zh) Ezh2抑制剂及其药学上可接受的盐和多晶型物及其应用
CN114716410A (zh) 喹啉衍生物的结晶
WO2010110506A1 (en) Dh-type crystalline form of adefovir dipivoxil, preparing method thereof, and pharmaceutical composition for antiviral agent comprising the same
WO2024090917A1 (en) Novel salt of dimethyl-2,3-dihydro-1h-indene derivative and processes for preparing the same
US20040097528A1 (en) Crystalline solid famciclovir forms I, II, III and preparation thereof
WO2022220600A1 (ko) 스핑고신-1-인산 수용체 효능제의 결정형
CN115427413A (zh) 磺酰胺类化合物的晶型及其制备方法
CN116283714A (zh) S-吲哚布芬晶型及其制备方法
WO2020123730A1 (en) Solid state forms of reproxalap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010834

Country of ref document: MX

Ref document number: 2023556847

Country of ref document: JP

Ref document number: 18282177

Country of ref document: US

Ref document number: 3212253

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023018649

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023018649

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230914

WWE Wipo information: entry into national phase

Ref document number: 2022237154

Country of ref document: AU

Ref document number: AU2022237154

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2023126280

Country of ref document: RU

Ref document number: 2022771770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022237154

Country of ref document: AU

Date of ref document: 20220316

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022771770

Country of ref document: EP

Effective date: 20231016