WO2022196950A1 - Cooling device for superconducting fault current limiter, including condensing surface - Google Patents

Cooling device for superconducting fault current limiter, including condensing surface Download PDF

Info

Publication number
WO2022196950A1
WO2022196950A1 PCT/KR2022/002149 KR2022002149W WO2022196950A1 WO 2022196950 A1 WO2022196950 A1 WO 2022196950A1 KR 2022002149 W KR2022002149 W KR 2022002149W WO 2022196950 A1 WO2022196950 A1 WO 2022196950A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
liquid coolant
current limiter
superconducting
supercooled liquid
Prior art date
Application number
PCT/KR2022/002149
Other languages
French (fr)
Korean (ko)
Inventor
유기남
이경호
Original Assignee
엘에스일렉트릭 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭 주식회사 filed Critical 엘에스일렉트릭 주식회사
Publication of WO2022196950A1 publication Critical patent/WO2022196950A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • F25D3/102Stationary cabinets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current

Definitions

  • the present invention relates to a cooling device for a superconducting fault current limiter including a condensing surface, and more particularly, to a cooling device for a superconducting fault current limiter that is easy to maintain pressure.
  • the superconducting fault current limiter refers to a device that uses the superconductivity of a superconductor to input impedance to the system, thereby limiting the circuit breaker to a capacity that can be interrupted when a fault current occurs.
  • the superconductor applied to the superconducting current limiter exhibits zero resistance at a specific temperature and below a specific current, and when an unexpected accident occurs in the power system, the superconducting property is destroyed and transitions to a normal conduction state, showing high resistance.
  • the superconductor of the superconducting current limiter must be cooled by a cooling device to maintain the superconducting state.
  • the above publication includes a cooling bath for cooling the superconductor and a shield bath surrounding the cooling bath, and the cooling bath is supercooled, and the pressure of the shield bath is adjusted to maintain a saturated state.
  • the conventional superconducting current limiter uses a refrigerator to cool liquid nitrogen in which the superconducting element is immersed to maintain the temperature, but a typical method is to use a conductive cooling copper band or a shield bath.
  • the liquid coolant in which the superconducting element is immersed is supercooled, and since vaporization does not occur, the internal pressure is kept constant at 3pa.
  • the above example of maintaining pressure is an ideal condition, and during the operation of the superconducting fault current limiter, the liquid coolant in which the superconducting element is immersed due to the action of various variables may vaporize from the supercooled state to the saturated state or to pass the saturated state.
  • An object of the present invention to be solved in view of the above problems is to provide a cooling device for a superconducting current limiter capable of maintaining a constant internal pressure of a container accommodating a superconducting element.
  • Another object of the present invention is to provide a cooling control device for a superconducting fault current limiter that can ensure uniformity of cooling temperature of a superconducting element by activating circulation of a supercooled liquid coolant to secure temperature uniformity.
  • the cooling device of the superconducting current limiter including the condensing surface of the present invention includes a first container accommodating a supercooled liquid coolant, and the temperature is maintained by being immersed in the supercooled liquid coolant in the first container.
  • a superconducting element which is generated on a part of the outer wall of the first container by cooling heat at a temperature lower than the temperature of the supercooled liquid coolant from the outside of the first container, and a condensation surface for condensing again when the supercooled liquid coolant is vaporized may include
  • the condensing surface may be formed by a saturated liquid coolant that is filled in the second container surrounding the outer surface of the first container, and the temperature is maintained by a refrigerator.
  • the level of the saturated liquid coolant is higher than the level of the supercooled liquid coolant, and the condensation surface may be formed upward from the level of the supercooled liquid coolant.
  • the condensing surface may be formed by a metal heat conductor connecting the cold head of the refrigerator and the outer wall of the first container.
  • the contact surface of the metal heat conductor in contact with the first container includes a lower contact surface in contact with the outer surface of the first container on the lower side from the liquid level of the supercooled liquid coolant, and an upper portion of the liquid level of the supercooled liquid coolant It may include an upper contact surface in contact with the outer surface of the first container side.
  • the lower contact surface and the upper contact surface may be integrally formed or separated from each other.
  • the condensing surface may be formed by the liquid coolant circulated and introduced into the second container surrounding the outside of the first container.
  • the second container includes an inlet pipe through which the liquid coolant is introduced and an outlet pipe through which the liquid coolant is discharged, wherein the inlet pipe and the outlet pipe are positioned higher than the liquid level of the supercooled liquid coolant. can do.
  • the present invention uses a portion of the wall surface of the container for accommodating the superconducting element as a condensation surface, and by re-condensing the vaporized liquid coolant, the internal pressure of the container is prevented from being changed, thereby enabling stable control and operation.
  • the present invention has an effect that the temperature uniformity of the superconducting element can be ensured by generating a partial temperature difference of the supercooled liquid coolant in which the superconducting element is immersed, thereby activating the circulation of the supercooled liquid coolant in the container.
  • FIG. 1 is a block diagram of a cooling device for a superconducting fault current limiter according to a preferred embodiment of the present invention.
  • FIGS. 2 to 4 are diagrams of a cooling device for a superconducting fault current limiter according to another embodiment of the present invention, respectively.
  • FIG. 1 is a block diagram of a cooling device for a superconducting fault current limiter including a condensing surface according to a preferred embodiment of the present invention.
  • the present invention provides a first container 10 accommodating a supercooled liquid coolant 12 in which a superconducting element 11 is immersed, and a first container 10 to cover the side and bottom surfaces of the first container 10 .
  • a second container 20 positioned in contact with the outer surface of the container 10 and accommodating the saturated liquid coolant 21 , and a third container in contact with side surfaces and bottom surfaces of the first container 10 and the second container 20 .
  • the first container 10 provides a cylindrical accommodation space, the superconducting element 11 is provided inside.
  • the superconducting element 11 may be provided with the same number as the constant number of the power system.
  • three superconducting elements 11 may be used in the three-phase power system.
  • the superconducting element 11 is immersed in the supercooled liquid coolant 12 in the first container 10, and the temperature is maintained by the supercooled liquid coolant 12 so that the resistance is close to zero in the state before the fault current is generated. keep the status
  • the supercooled liquid coolant 12 may be liquid nitrogen.
  • the internal pressure P1 of the first container 10 is 3 bar, and the temperature of the supercooled liquid coolant 12 is 77K as a normal reference temperature.
  • a non-condensable gas is injected in order to maintain the internal pressure P1 of the first container 10 .
  • the non-condensable gas include gaseous neon and helium, and the space above the supercooled liquid coolant 12 of the first container 10 is filled with a gas mixture of gaseous neon and gaseous helium to maintain the pressure.
  • the supercooled liquid coolant 12 accommodated in the first container 10 is not exchanged unless there is a special reason, and the temperature is maintained while maintaining the installed state.
  • the temperature of the supercooled liquid coolant 12 in the first container 10 is maintained by the action of the saturated liquid coolant 21 in the second container 20 and the freezer 40 .
  • the pressure P2 in the second vessel 20 is maintained below 1 bar, and the temperature of the saturated liquid coolant 21 should be maintained at a temperature below 77K.
  • the saturated liquid coolant 21 may also use liquid nitrogen.
  • the temperature of the saturated liquid coolant 21 is preferably 75 to 76K.
  • the inner wall of the second container 20 may be advantageous for heat exchange by using a portion of the outer wall of the first container 10 as it is.
  • the liquid level L2 of the saturated liquid coolant 21 accommodated in the second container 20 is higher than the liquid level L1 of the supercooled liquid coolant 12 accommodated in the first container 10, and the saturated liquid A portion of the outer wall of the first container 10 corresponding to the difference (L2-L1) between the liquid level L2 of the coolant 21 and the liquid level L1 of the supercooled liquid coolant 12 has a higher temperature than the other outer wall areas. It becomes a low region, which is called the condensation surface 13 .
  • a plurality of refrigerators 40 are coupled to one surface, for example, an upper surface of the second container 20 , and the cold head of the refrigerator 40 is drawn into the inside of the second container 20 .
  • heat exchange is made between the saturated liquid coolant 21 in the second container 20 and the supercooled liquid coolant 12 in the first container 10, wherein the heat exchange is between the saturated liquid coolant 21 and the supercooled liquid coolant (12) is made through a portion of the outer wall of the first container (10) between.
  • a portion of the saturated liquid coolant 21 is vaporized by heat exchange, and the supercooled liquid coolant 12 maintains its temperature.
  • the vaporized saturated liquid coolant 21 is again condensed and liquefied by the refrigerator 40 , and the liquefied liquid falls by gravity and mixes with the saturated liquid coolant 21 repeatedly.
  • the present invention can maintain the temperature of the supercooled liquid coolant 12 and the superconducting element 11 without circulating the saturated liquid coolant 21 .
  • the condensation surface 13 formed by a temperature difference on a part of the outer wall of the first container 10 serves to prevent an increase in the internal pressure of the first container 10 .
  • the temperature of the cooling liquid coolant 12 is maintained at 77 K, and when the pressure is 3 bar, in theory, the supercooled liquid coolant 12 is not vaporized, but the supercooled liquid coolant 12 is vaporized due to temperature deviation or other reasons. An increase in the pressure of the first container 10 may occur.
  • the change in pressure inside the first container 10 becomes a factor that changes the overall phase equilibrium, and it is necessary to keep the pressure constant.
  • the liquid level L2 of the saturated liquid coolant 21 inside the second container 20 is set to be higher than the liquid level L1 of the supercooled liquid coolant 12 of the first container 10, so that the condensing surface
  • the temperature of (13) is made to be lower than that of the other regions of the first container (10).
  • the height of the condensation surface 13, that is, the difference in height between the liquid level L2 of the liquid coolant 21 and the level L2 of the supercooled liquid coolant 12 is 5 to 30 cm.
  • the condensation effect is low, and when it exceeds 30 cm, unnecessary waste of energy may occur.
  • the gaseous nitrogen as the supercooled liquid coolant 21 vaporized in the first vessel 10 by the formation of the condensing face 13 is condensed at the condensing face 13 where the temperature is below the condensing temperature, liquefied again, and supercooled by gravity It flows into the liquid coolant (21).
  • This process is continuously repeated, and thus, by condensing the supercooled liquid coolant 21 vaporized for other reasons again, it is possible to maintain a constant internal pressure of the first container 10 .
  • the saturated liquid coolant 21 contained in the second container 20 exchanges heat with the supercooled liquid coolant 12 in the first container 10 and the supercooled liquid coolant vaporized in the condensing surface 13 ( 12) is condensed, and the temperature rises to vaporize.
  • the vaporized saturated liquid coolant 21 repeats the process of being condensed by the cold head of the refrigerator 40 to maintain the temperature of the saturated liquid coolant 21 and the supercooled liquid coolant 12 and the first container 10 pressure can be maintained within the
  • the internal pressure of the first container 10 can be constantly maintained.
  • the maintenance of the internal pressure of the first container 10 is advantageous for maintaining the temperature of the supercooled liquid coolant 12 of the first container 10, and the superconducting current limiter can be stably operated.
  • the third container 30 has a structure that surrounds both the side and bottom surfaces of the second container 20 and the exposed side and bottom surfaces of the first container 10, and the inner side blocks heat transfer in a vacuum 31 state. It is advantageous for maintaining the temperature of the supercooled liquid coolant 12 and the saturated liquid coolant 21 in the first container 10 and the second container 20 .
  • FIG. 2 is a block diagram of a cooling device for a superconducting fault current limiter including a condensing surface according to another embodiment of the present invention.
  • the present invention uses a metal heat conductor 50 that transfers the cooling heat of the refrigerator 40, unlike the example with reference to FIG. 1 above, to supercool the liquid coolant 12 in the first container 10. It's a cooling system.
  • the first container 10 is surrounded by an insulated vacuum container 60 using a vacuum 61 , and the refrigerator 40 is disposed so that a cold head is located inside the insulated vacuum container 60 from the upper side.
  • the metal heat conductor 50 connects the refrigerator 40 and the wall surface of the first container 10 so that the cooling heat of the refrigerator 40 is transferred to the supercooled liquid coolant 12 of the first container 10. do.
  • the metal heat conductor 50 may use copper.
  • the contact surface of the first container 10 of the metal heat conductor 50 may be divided into an upper contact surface 51 and a lower contact surface 52 .
  • the upper contact surface 51 and the lower contact surface 52 may be integrally formed or separated from each other.
  • the upper contact surface 51 is in contact with the outer surface of the first container 10 on the upper side based on the liquid level L1 of the supercooled liquid coolant 12, and the lower contact surface 52 is the liquid level L1 of the supercooled liquid coolant 12 ) and in contact with the outer surface of the first container 10 on the lower side from the same height.
  • the cooling heat of the refrigerator 40 is mainly transmitted to the supercooled liquid coolant 12 of the first container 10 through the lower contact surface 51, and the upper contact surface 51 is the liquid level L1 of the supercooled liquid coolant 12.
  • a condensing surface 13 is formed by cooling a partial surface of the first container 10 positioned at the above height.
  • the condensation surface 13 was formed using the level of the saturated liquid coolant, and in the configuration of FIG. 2 , the condensation surface 13 was formed using the metal heat conductor 50 . indicates
  • the action of the condensation surface 13 formed by using the metal heat conductor 50 is the same as in the above-described example, and the internal pressure of the first container 10 can be maintained at a constant level.
  • FIG. 3 is a block diagram of a superconducting current limiter cooling device including a condensing surface according to another embodiment of the present invention.
  • the second container 20 may be configured to be positioned only on the upper side of the side of the first container 10 .
  • the second container 20 is positioned to expose the side lower side and the bottom of the first container 10, so that heat exchange with the saturated liquid coolant 21 is performed with the supercooled liquid coolant ( 12) occurs on the lateral side.
  • the second container 20 may cover about 50% of the height of the side surface downward from the upper end of the side surface of the first container 10 . More specifically, 40 to 60% may be covered.
  • the second container 20 has a ring-type structure exposing the lower side and the bottom of the first container 10, and provides an internal space of the same shape.
  • the inner wall of the second container 20 may be advantageous for heat exchange by using a portion of the outer wall of the first container 10 as it is.
  • a plurality of refrigerators 40 are coupled to one surface, for example, an upper surface of the second container 20 , and the cold head of the refrigerator 40 is drawn into the inside of the second container 20 .
  • heat exchange is made between the saturated liquid coolant 21 in the second container 20 and the supercooled liquid coolant 12 in the first container 10, wherein the heat exchange is between the saturated liquid coolant 21 and the supercooled liquid coolant (12) is made through a portion of the outer wall of the first container (10) between.
  • a portion of the saturated liquid coolant 21 is vaporized by heat exchange, and the supercooled liquid coolant 12 maintains its temperature.
  • the vaporized saturated liquid coolant 21 is again condensed and liquefied by the refrigerator 40 , and the liquefied liquid falls by gravity and mixes with the saturated liquid coolant 21 repeatedly.
  • the supercooled liquid coolant 12 of the first container 10 mainly undergoes heat exchange at the upper side where the second container 20 is covered.
  • area A is an upper layer area where heat exchange occurs with the saturated liquid coolant 21 of the second container 20 , and heat exchange does not occur in the lower layer area B .
  • the present invention limits the contact surface between the second container 20 and the first container 10 to a part, and induces a partial thermal imbalance in the supercooled liquid coolant 12 inside the first container 10 according to heat exchange. , form convection.
  • the supercooled liquid coolant 12 in the first container 10 circulates by itself to achieve temperature equilibrium, and thus has a feature of increasing temperature uniformity.
  • Such temperature uniformity can cool the superconducting element 11 to a uniform temperature as a whole, and the resistance uniformity of the superconducting element 11 itself can also be ensured by ensuring the temperature uniformity of the superconducting element 11 .
  • the liquid level L2 of the saturated liquid coolant 21 in the second container 20 is higher than the liquid level L1 of the supercooled liquid coolant 12 in the first container 10, and the Condensation surface 13 is formed in a portion of the first container 10 by the height difference (L2-L1).
  • the internal pressure of the first container may be constantly maintained by the action of the condensing surface 13 .
  • FIG. 4 is a block diagram of a superconducting current limiter cooling device including a condensing surface according to another embodiment of the present invention.
  • a first container 10 accommodating a supercooled liquid coolant 12 in which the superconducting element 11 is immersed, and a liquid that surrounds the side and bottom surfaces of the first container 10, and is recovered from the superconducting cable of the superconducting power supply system
  • a second container (20) including an inlet pipe (22) through which the coolant (24) flows and an outlet pipe (23) through which the introduced liquid coolant (24) flows out, and side and bottom surfaces of the second container (20) It is configured to include a third container (30) that surrounds the inner vacuum (31).
  • the height of the inlet pipe 22 and the outlet pipe 23 of the second container 20 is at least higher than the liquid level L1 of the supercooled liquid coolant 12 of the first container 10, so that the second The level L2 of the liquid coolant 24 in the container 20 is positioned higher than the level L1 of the supercooled liquid coolant 12 .
  • a condensation surface 13 is formed in the first container 10 by the level of the liquid coolant 24 .
  • the liquid coolant 24 above is the liquid coolant 24 used to cool the superconducting cable while passing through the superconducting cable and may be supercooled liquid nitrogen that is not saturated. At this time, it is assumed that the liquid coolant 24 has a temperature lower than the temperature of the supercooled liquid coolant 12 in the first container 10 .
  • the temperature of the superconducting element 11 can be maintained without using a separate refrigerator for the superconducting current limiter.
  • the second container 20 may have a structure surrounding the entire first container 10, and as shown in FIG. 4, by extending the side surface of the first container 10 downward from the upper side to a predetermined height, It can be set as the structure in which the side lower side and the bottom side of one container 10 are exposed.
  • the supercooled liquid coolant 12 Due to the occurrence of convection, the supercooled liquid coolant 12 has a uniform temperature as a whole, and thus the immersed superconducting element 11 can also be maintained at a uniform temperature as a whole.
  • the present invention relates to a technology for preventing a change in internal pressure of a superconducting current limiter using a natural law, and has potential for industrial application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

The present invention relates to a cooling device for a superconducting fault current limiter, using a condensing surface, and may comprise: a first container for accommodating a supercooled liquid coolant; a superconducting element immersed in the supercooled liquid coolant in the first container to maintain the temperature; and a condensing surface, which is generated on a part of the outer wall of the first container by means of cooling heat at a temperature lower than that of the supercooled liquid coolant from the outside of the first container, so as to re-condense the supercooled liquid coolant if same is vaporized.

Description

응축면을 포함하는 초전도 한류기의 냉각 장치Cooling device of superconducting current limiter with condensing surface
본 발명은 응축면을 포함하는 초전도 한류기의 냉각 장치에 관한 것으로, 더 상세하게는 압력의 유지에 용이한 초전도 한류기의 냉각 장치에 관한 것이다.The present invention relates to a cooling device for a superconducting fault current limiter including a condensing surface, and more particularly, to a cooling device for a superconducting fault current limiter that is easy to maintain pressure.
일반적으로, 고장전류에 대한 제어를 수행하는 다양한 전력 계통 안정화 장치들이 제안되었다.In general, various power system stabilization devices for controlling fault current have been proposed.
그 중 초전도 한류기는 초전도체의 초전도성을 이용하여 계통에 임피던스를 투입함으로써, 고장전류의 발생시 차단기가 차단 가능한 용량으로 제한하는 장치를 뜻한다.Among them, the superconducting fault current limiter refers to a device that uses the superconductivity of a superconductor to input impedance to the system, thereby limiting the circuit breaker to a capacity that can be interrupted when a fault current occurs.
초전도 한류기에 적용되는 초전도체는 특정 온도 및 특정 전류 이하에서 저항 제로 특성을 나타내며, 전력계통에 예상치 못한 사고가 발생했을 때 초전도 특성이 파괴되어 상전도 상태로 전이되면서 높은 저항을 나타낸다.The superconductor applied to the superconducting current limiter exhibits zero resistance at a specific temperature and below a specific current, and when an unexpected accident occurs in the power system, the superconducting property is destroyed and transitions to a normal conduction state, showing high resistance.
따라서 온도 또는 전류량에 따른 초전도체의 저항 특성 변화에 의하여 고장전류를 낮출 수 있다.Therefore, it is possible to lower the fault current by changing the resistance characteristics of the superconductor according to the temperature or the amount of current.
위의 설명과 같은 기본적인 초전도 한류기의 동작을 위하여 초전도 한류기의 초전도체는 평상시 냉각장치에 의하여 냉각되어 초전도 상태를 유지하여야 한다.For the basic operation of the superconducting current limiter as described above, the superconductor of the superconducting current limiter must be cooled by a cooling device to maintain the superconducting state.
등록특허 10-1104234호(2012년 1월 10일, 초전도 한류기 내부 온도 제어 장치 및 방법, 2012년 1월 3일 등록)에는 냉동기와 전도 냉각 구리 밴드를 사용하여 초전도 소자가 침지된 액체 질소를 냉각시켜 온도를 유지하는 구성이 기재되어 있다.In Registered Patent No. 10-1104234 (January 10, 2012, internal temperature control device and method of superconducting current limiter, registered on January 3, 2012), liquid nitrogen in which a superconducting element is immersed using a refrigerator and a conduction cooling copper band is used. A configuration in which the temperature is maintained by cooling is described.
다른 방식의 초전도 한류기로서 공개특허 10-2008-0102157호(초전도체 냉각용 멀티 배쓰 장치 및 초전도체 냉각 방법, 2008년 11월 24일 공개)가 있다.As another type of superconducting fault current limiter, there is Korean Patent Application Laid-Open No. 10-2008-0102157 (Multi-bath device for cooling superconductor and method of cooling superconductor, published on November 24, 2008).
위의 공개특허에는 초전도체를 냉각하는 냉각 배쓰와 냉각 배쓰를 감싸는 쉴드 배쓰를 포함하고, 냉각 배쓰는 과냉각, 쉴드 배쓰는 포화상태가 유지되도록 압력을 조절한다.The above publication includes a cooling bath for cooling the superconductor and a shield bath surrounding the cooling bath, and the cooling bath is supercooled, and the pressure of the shield bath is adjusted to maintain a saturated state.
위에서 살펴본 바와 같이 종래 초전도 한류기는 냉동기를 사용하여 초전도 소자가 침지된 액체 질소를 냉각시켜 온도를 유지하되, 전도 냉각 구리 밴드를 사용하거나, 쉴드 배쓰를 사용하는 방식이 대표적이다.As described above, the conventional superconducting current limiter uses a refrigerator to cool liquid nitrogen in which the superconducting element is immersed to maintain the temperature, but a typical method is to use a conductive cooling copper band or a shield bath.
초전도체 소자가 침지된 액체 냉각제는 과냉각 된 것으로, 기화가 발생하지 않기 때문에 내부 압력이 3pa로 일정하게 유지된다.The liquid coolant in which the superconducting element is immersed is supercooled, and since vaporization does not occur, the internal pressure is kept constant at 3pa.
그러나 위의 압력 유지의 예는 이상적인 조건이며, 초전도 한류기의 운용 과정에서 다양한 변수의 작용에 의하여 초전도 소자가 침지된 액체 냉각제는 과냉각 상태에서 포화상태 또는 포화상태를 지나 기화가 발생하기도 한다.However, the above example of maintaining pressure is an ideal condition, and during the operation of the superconducting fault current limiter, the liquid coolant in which the superconducting element is immersed due to the action of various variables may vaporize from the supercooled state to the saturated state or to pass the saturated state.
이처럼 액체 냉각제가 기화되면, 용기의 내부 압력이 증가하게 되며, 압력이 증가하면 액체 냉각제 상변화에 영향을 주게 되어 일정한 온도의 유지가 어렵게 된다.As such, when the liquid coolant is vaporized, the internal pressure of the container increases, and when the pressure increases, it affects the phase change of the liquid coolant, making it difficult to maintain a constant temperature.
즉, 압력 변수를 상수로 고정하고, 온도를 조절하는 방식의 초전도 한류기의 운용에서 압력도 변수가 되기 때문에 제어 및 운용이 용이하지 않은 문제점이 있었다.That is, in the operation of a superconducting fault current limiter in which the pressure variable is fixed as a constant and the temperature is adjusted, the pressure also becomes a variable, so there is a problem in that it is not easy to control and operate it.
상기와 같은 문제점을 감안한 본 발명이 해결하고자 하는 과제는, 초전도 소자를 수용하는 용기의 내부 압력을 일정하게 유지할 수 있는 초전도 한류기의 냉각 장치를 제공함에 있다.An object of the present invention to be solved in view of the above problems is to provide a cooling device for a superconducting current limiter capable of maintaining a constant internal pressure of a container accommodating a superconducting element.
또한, 본 발명은 과냉각 액체 냉각제의 순환을 활성화하여 온도 균일성을 확보함으로써, 초전도 소자의 냉각 온도 균일성을 확보할 수 있는 초전도 한류기의 냉각 제어장치를 제공함에 다른 목적이 있다.Another object of the present invention is to provide a cooling control device for a superconducting fault current limiter that can ensure uniformity of cooling temperature of a superconducting element by activating circulation of a supercooled liquid coolant to secure temperature uniformity.
상기와 같은 기술적 과제를 해결하기 위한 본 발명 응축면을 포함하는 초전도 한류기의 냉각 장치는, 과냉각 액체 냉각제를 수용하는 제1용기와, 상기 제1용기의 상기 과냉각 액체 냉각제에 침지되어 온도가 유지되는 초전도 소자와, 상기 제1용기의 외부에서 상기 과냉각 액체 냉각제의 온도보다 더 낮은 온도의 냉열에 의해 상기 제1용기의 외벽 일부에 생성되어, 상기 과냉각 액체 냉각제가 기화되면 다시 응축시키는 응축면을 포함할 수 있다.In order to solve the above technical problems, the cooling device of the superconducting current limiter including the condensing surface of the present invention includes a first container accommodating a supercooled liquid coolant, and the temperature is maintained by being immersed in the supercooled liquid coolant in the first container. a superconducting element, which is generated on a part of the outer wall of the first container by cooling heat at a temperature lower than the temperature of the supercooled liquid coolant from the outside of the first container, and a condensation surface for condensing again when the supercooled liquid coolant is vaporized may include
본 발명의 실시예에서, 상기 응축면은, 상기 제1용기의 외면을 감싸는 제2용기의 내에 충진되며, 냉동기에 의해 온도가 유지되는 포화 액체 냉각제에 의해 형성될 수 있다.In an embodiment of the present invention, the condensing surface may be formed by a saturated liquid coolant that is filled in the second container surrounding the outer surface of the first container, and the temperature is maintained by a refrigerator.
본 발명의 실시예에서, 상기 포화 액체 냉각제의 액위는, 상기 과냉각 액체 냉각제의 액위에 비하여 더 높으며, 상기 응축면은 상기 과냉각 액체 냉각제의 액위로부터 상향으로 형성될 수 있다.In an embodiment of the present invention, the level of the saturated liquid coolant is higher than the level of the supercooled liquid coolant, and the condensation surface may be formed upward from the level of the supercooled liquid coolant.
본 발명의 실시예에서, 상기 응축면은, 냉동기의 콜드 헤드와 상기 제1용기의 외벽 외측을 연결하는 금속 열전도체에 의해 형성될 수 있다.In an embodiment of the present invention, the condensing surface may be formed by a metal heat conductor connecting the cold head of the refrigerator and the outer wall of the first container.
본 발명의 실시예에서, 상기 금속 열전도체의 상기 제1용기와 접촉되는 접촉면은, 상기 과냉각 액체 냉각제의 액위로부터 하부측의 제1용기 외면에 접촉되는 하부 접촉면과, 상기 과냉각 액체 냉각제의 액위 상부측의 제1용기 외면에 접촉되는 상부 접촉면을 포함할 수 있다.In an embodiment of the present invention, the contact surface of the metal heat conductor in contact with the first container includes a lower contact surface in contact with the outer surface of the first container on the lower side from the liquid level of the supercooled liquid coolant, and an upper portion of the liquid level of the supercooled liquid coolant It may include an upper contact surface in contact with the outer surface of the first container side.
본 발명의 실시예에서, 상기 하부 접촉면과 상기 상부 접촉면은, 상호 일체형 또는 분리형일 수 있다.In an embodiment of the present invention, the lower contact surface and the upper contact surface may be integrally formed or separated from each other.
본 발명의 실시예에서, 상기 응축면은, 상기 제1용기의 외부를 감싸는 제2용기에 순환 유입된 액체 냉각제에 의해 형성될 수 있다.In an embodiment of the present invention, the condensing surface may be formed by the liquid coolant circulated and introduced into the second container surrounding the outside of the first container.
본 발명의 실시예에서, 상기 제2용기는, 상기 액체 냉각제가 유입되는 유입관 및 액체 냉각제가 배출되는 유출관을 포함하되, 상기 유입관 및 유출관은, 상기 과냉각 액체 냉각제의 액위보다 높이 위치할 수 있다.In an embodiment of the present invention, the second container includes an inlet pipe through which the liquid coolant is introduced and an outlet pipe through which the liquid coolant is discharged, wherein the inlet pipe and the outlet pipe are positioned higher than the liquid level of the supercooled liquid coolant. can do.
본 발명은, 초전도 소자를 수용하는 용기의 벽면 일부를 응축면으로 사용하여, 기화된 액체 냉각제를 재응축시킴으로써, 용기의 내부 압력이 변화됨을 방지하여, 안정적인 제어와 운용이 가능한 효과가 있다.The present invention uses a portion of the wall surface of the container for accommodating the superconducting element as a condensation surface, and by re-condensing the vaporized liquid coolant, the internal pressure of the container is prevented from being changed, thereby enabling stable control and operation.
또한, 본 발명은 초전도 소자가 침지되는 과냉각 액체 냉각제의 부분적인 온도차를 발생시켜 용기 내에서 과냉각 액체 냉각제의 순환을 활성화하여 초전도 소자의 온도 균일성을 확보할 수 있는 효과가 있다.In addition, the present invention has an effect that the temperature uniformity of the superconducting element can be ensured by generating a partial temperature difference of the supercooled liquid coolant in which the superconducting element is immersed, thereby activating the circulation of the supercooled liquid coolant in the container.
도 1은 본 발명의 바람직한 실시예에 따른 초전도 한류기의 냉각 장치 구성도이다.1 is a block diagram of a cooling device for a superconducting fault current limiter according to a preferred embodiment of the present invention.
도 2 내지 도 4는 각각 본 발명의 다른 실시예에 따른 초전도 한류기의 냉각 장치 구성도이다.2 to 4 are diagrams of a cooling device for a superconducting fault current limiter according to another embodiment of the present invention, respectively.
-부호의 설명--Description of symbols-
10:제1용기 11:초전도 소자10: first container 11: superconducting element
12:과냉각 액체 냉각제 13:응축면12: supercooled liquid coolant 13: condensed surface
20:제2용기 21:포화 액체 냉각제20: second container 21: saturated liquid coolant
30:제3용기 31:진공30: third container 31: vacuum
40:냉동기 50:금속 열전도체40: freezer 50: metal heat conductor
60:단열 진공용기60: insulated vacuum container
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.In order to fully understand the configuration and effect of the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and may be embodied in various forms and various modifications may be made. However, the description of the present embodiment is provided so that the disclosure of the present invention is complete, and to fully inform those of ordinary skill in the art to which the present invention pertains the scope of the invention. In the accompanying drawings, components are enlarged in size than actual for convenience of description, and ratios of each component may be exaggerated or reduced.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.Terms such as 'first' and 'second' may be used to describe various elements, but the elements should not be limited by the above terms. The above term may be used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a 'first component' may be termed a 'second component', and similarly, a 'second component' may also be termed a 'first component'. can Also, the singular expression includes the plural expression unless the context clearly dictates otherwise. Unless otherwise defined, terms used in the embodiments of the present invention may be interpreted as meanings commonly known to those of ordinary skill in the art.
이하에서는, 도면을 참조하여 본 발명의 일실시예에 따른 응축면을 포함하는 초전도 한류기의 냉각 장치에 대하여 상세히 설명한다.Hereinafter, a cooling device for a superconducting current limiter including a condensing surface according to an embodiment of the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 바람직한 실시예에 따른 응축면을 포함하는 초전도 한류기의 냉각 장치 구성도이다.1 is a block diagram of a cooling device for a superconducting fault current limiter including a condensing surface according to a preferred embodiment of the present invention.
도 1을 참조하면 본 발명은, 초전도 소자(11)가 침지되는 과냉각 액체 냉각제(12)를 수용하는 제1용기(10)와, 상기 제1용기(10)의 측면 및 저면을 덮도록 제1용기(10)의 외면에 접하여 위치하며, 포화 액체 냉각제(21)를 수용하는 제2용기(20)와, 상기 제1용기(10) 및 제2용기(20)의 측면 및 저면에 접하는 제3용기(30)와, 상기 제2용기(20)에 삽입되어 기화된 포화 액체 냉각제(21)를 응축하는 냉동기(40)를 포함하며, 상기 포화 액체 냉각제(21)의 액위(L2)는 상기 과냉각 액체 냉각제(12)의 액위(L1)에 비하여 더 높게 하여 제1용기(10)에 응축면(13)을 형성하도록 구성된다.Referring to FIG. 1 , the present invention provides a first container 10 accommodating a supercooled liquid coolant 12 in which a superconducting element 11 is immersed, and a first container 10 to cover the side and bottom surfaces of the first container 10 . A second container 20 positioned in contact with the outer surface of the container 10 and accommodating the saturated liquid coolant 21 , and a third container in contact with side surfaces and bottom surfaces of the first container 10 and the second container 20 . a container (30) and a refrigerator (40) inserted into the second container (20) to condense the vaporized saturated liquid coolant (21), and the liquid level (L2) of the saturated liquid coolant (21) is the supercooling It is configured to form a condensing surface 13 in the first container 10 by making it higher than the liquid level L1 of the liquid coolant 12 .
이하, 상기와 같이 구성되는 본 발명 응축면을 포함하는 초전도 한류기 냉각 장치의 구성과 작용을 보다 상세히 설명한다.Hereinafter, the configuration and operation of the superconducting current limiter cooling device including the condensing surface of the present invention configured as described above will be described in more detail.
먼저, 제1용기(10)는 원기둥형의 수용공간을 제공하며, 내측에 초전도 소자(11)가 마련되어 있다. 초전도 소자(11)는 전력계통의 상 수와 동 수로 마련될 수 있다.First, the first container 10 provides a cylindrical accommodation space, the superconducting element 11 is provided inside. The superconducting element 11 may be provided with the same number as the constant number of the power system.
즉, 3상 전력계통에는 3개의 초전도 소자(11)가 사용될 수 있다.That is, three superconducting elements 11 may be used in the three-phase power system.
초전도 소자(11)는 제1용기(10)의 내에서 과냉각 액체 냉각제(12) 내에 침지되어 있으며, 과냉각 액체 냉각제(12)에 의해 온도가 유지되어 고장전류의 발생 전상태에서 저항이 0에 가까운 상태를 유지한다.The superconducting element 11 is immersed in the supercooled liquid coolant 12 in the first container 10, and the temperature is maintained by the supercooled liquid coolant 12 so that the resistance is close to zero in the state before the fault current is generated. keep the status
상기 과냉각 액체 냉각제(12)는 액체 질소일 수 있다.The supercooled liquid coolant 12 may be liquid nitrogen.
제1용기(10)의 내부 압력(P1)은 3bar이며, 과냉각 액체 냉각제(12)의 온도는 77K가 정상 기준온도가 된다. The internal pressure P1 of the first container 10 is 3 bar, and the temperature of the supercooled liquid coolant 12 is 77K as a normal reference temperature.
제1용기(10)의 내부 압력(P1)을 유지하기 위하여 비응축 가스가 주입된다. 비응축 가스의 예로는 기체상의 네온과 헬륨이 있으며, 제1용기(10)의 과냉각 액체 냉각제(12)의 상부측 공간은 기체상의 네온과 기체상의 헬륨이 혼합된 가스가 충진되어 압력을 유지하는 것으로 이해될 수 있다.A non-condensable gas is injected in order to maintain the internal pressure P1 of the first container 10 . Examples of the non-condensable gas include gaseous neon and helium, and the space above the supercooled liquid coolant 12 of the first container 10 is filled with a gas mixture of gaseous neon and gaseous helium to maintain the pressure. can be understood as
제1용기(10)에 수용된 과냉각 액체 냉각제(12)는 특별한 이유가 없는 이상은 교환되지 않으며, 설치상태를 유지하면서 온도를 유지한다.The supercooled liquid coolant 12 accommodated in the first container 10 is not exchanged unless there is a special reason, and the temperature is maintained while maintaining the installed state.
제1용기(10)의 과냉각 액체 냉각제(12)의 온도는 제2용기(20)의 포화 액체 냉각제(21)와, 냉동기(40)의 작용에 의해 유지된다.The temperature of the supercooled liquid coolant 12 in the first container 10 is maintained by the action of the saturated liquid coolant 21 in the second container 20 and the freezer 40 .
제2용기(20)의 압력(P2)은 1bar 미만으로 유지되며, 포화 액체 냉각제(21)의 온도는 77K 미만의 온도로 유지되어야 한다. 포화 액체 냉각제(21) 역시 액체 질소를 사용할 수 있다.The pressure P2 in the second vessel 20 is maintained below 1 bar, and the temperature of the saturated liquid coolant 21 should be maintained at a temperature below 77K. The saturated liquid coolant 21 may also use liquid nitrogen.
포화 액체 냉각제(21)의 온도는 바람직하게 75 내지 76K인 것으로 한다.The temperature of the saturated liquid coolant 21 is preferably 75 to 76K.
제2용기(20)의 내벽은 제1용기(10)의 외벽 일부를 그대로 사용하여 열교환에 유리하도록 할 수 있다.The inner wall of the second container 20 may be advantageous for heat exchange by using a portion of the outer wall of the first container 10 as it is.
제2용기(20)에 수용되는 포화 액체 냉각제(21)의 액위(L2)는 상기 제1용기(10)에 수용된 과냉각 액체 냉각제(12)의 액위(L1)에 비하여 더 높은 것으로 하며, 포화 액체 냉각제(21)의 액위(L2)와 과냉각 액체 냉각제(12)의 액위(L1)의 차(L2-L1)에 해당하는 제1용기(10)의 외벽 일부 영역은 다른 외벽 영역에 비하여 온도가 더 낮은 영역이 되며, 이를 응축면(13)으로 명명한다.The liquid level L2 of the saturated liquid coolant 21 accommodated in the second container 20 is higher than the liquid level L1 of the supercooled liquid coolant 12 accommodated in the first container 10, and the saturated liquid A portion of the outer wall of the first container 10 corresponding to the difference (L2-L1) between the liquid level L2 of the coolant 21 and the liquid level L1 of the supercooled liquid coolant 12 has a higher temperature than the other outer wall areas. It becomes a low region, which is called the condensation surface 13 .
응축면(13)의 작용에 대해서는 이후에 좀 더 상세히 설명한다.The action of the condensing surface 13 will be described later in more detail.
상기 제2용기(20)의 일면, 예를 들어 상면에는 다수의 냉동기(40)가 결합되며, 냉동기(40)의 콜드 헤드는 제2용기(20)의 내측으로 인입되어 있다.A plurality of refrigerators 40 are coupled to one surface, for example, an upper surface of the second container 20 , and the cold head of the refrigerator 40 is drawn into the inside of the second container 20 .
따라서, 제2용기(20)의 포화 액체 냉각제(21)와 제1용기(10)의 과냉각 액체 냉각제(12) 사이에 열교환이 이루어지며, 이때의 열교환은 포화 액체 냉각제(21)와 과냉각 액체 냉각제(12) 사이의 제1용기(10) 외벽 일부를 통해 이루어진다.Accordingly, heat exchange is made between the saturated liquid coolant 21 in the second container 20 and the supercooled liquid coolant 12 in the first container 10, wherein the heat exchange is between the saturated liquid coolant 21 and the supercooled liquid coolant (12) is made through a portion of the outer wall of the first container (10) between.
열교환에 의해 포화 액체 냉각제(21)의 일부는 기화되며, 과냉각 액체 냉각제(12)는 온도를 유지하게 된다.A portion of the saturated liquid coolant 21 is vaporized by heat exchange, and the supercooled liquid coolant 12 maintains its temperature.
기화된 포화 액체 냉각제(21)는 다시 냉동기(40)에 의해 응축되어 액화되고, 액화된 액체는 중력에 의해 낙하하여 포화 액체 냉각제(21)에 혼합되는 것을 반복한다.The vaporized saturated liquid coolant 21 is again condensed and liquefied by the refrigerator 40 , and the liquefied liquid falls by gravity and mixes with the saturated liquid coolant 21 repeatedly.
따라서 본 발명은 포화 액체 냉각제(21)를 순환시키지 않고도 과냉각 액체 냉각제(12) 및 초전도 소자(11)의 온도를 유지할 수 있다.Therefore, the present invention can maintain the temperature of the supercooled liquid coolant 12 and the superconducting element 11 without circulating the saturated liquid coolant 21 .
상기 제1용기(10)의 외벽 일부에 온도의 차이에 의해 형성된 응축면(13)은 제1용기(10)의 내부 압력의 증가를 방지하는 역할을 한다.The condensation surface 13 formed by a temperature difference on a part of the outer wall of the first container 10 serves to prevent an increase in the internal pressure of the first container 10 .
즉, 냉각 액체 냉각제(12)의 온도는 77K로 유지되고, 압력이 3bar인 경우 이론상은 과냉각 액체 냉각제(12)가 기화되지 않지만, 온도의 편차나 기타의 이유로 과냉각 액체 냉각제(12)가 기화되어 제1용기(10)의 압력이 증가하는 현상이 발생할 수 있다.That is, the temperature of the cooling liquid coolant 12 is maintained at 77 K, and when the pressure is 3 bar, in theory, the supercooled liquid coolant 12 is not vaporized, but the supercooled liquid coolant 12 is vaporized due to temperature deviation or other reasons. An increase in the pressure of the first container 10 may occur.
제1용기(10) 내부의 압력 변화는 전체적으로 상평형에 변화를 주는 요소가 되며, 압력을 일정하게 유지할 필요가 있다.The change in pressure inside the first container 10 becomes a factor that changes the overall phase equilibrium, and it is necessary to keep the pressure constant.
따라서, 제2용기(20) 내부의 포화 액체 냉각제(21)의 액위(L2)를 제1용기(10)의 과냉각 액체 냉각제(12)의 액위(L1)에 비하여 높게 유지하도록 설정하여, 응축면(13)의 온도가 제1용기(10)의 다른 영역에 비하여 더 낮은 온도가 되도록 한다.Therefore, the liquid level L2 of the saturated liquid coolant 21 inside the second container 20 is set to be higher than the liquid level L1 of the supercooled liquid coolant 12 of the first container 10, so that the condensing surface The temperature of (13) is made to be lower than that of the other regions of the first container (10).
응축면(13)의 높이, 즉 액체 냉각제(21)의 액위(L2)와 과냉각 액체 냉각제(12)의 액위(L2)의 높이차는 5 내지 30cm가 되도록 한다.The height of the condensation surface 13, that is, the difference in height between the liquid level L2 of the liquid coolant 21 and the level L2 of the supercooled liquid coolant 12 is 5 to 30 cm.
응축면(13)의 높이가 5cm 미만에서는 응축 효과가 낮으며, 30cm를 초과하는 경우 불필요한 에너지의 낭비가 발생할 수 있다.If the height of the condensing surface 13 is less than 5 cm, the condensation effect is low, and when it exceeds 30 cm, unnecessary waste of energy may occur.
응축면(13)의 형성에 의하여 제1용기(10) 내에서 기화된 과냉각 액체 냉각제(21)인 기체 질소는 온도가 응축 온도 이하인 응축면(13)에서 응축되어, 다시 액화되고 중력에 의해 과냉각 액체 냉각제(21)로 유입된다.The gaseous nitrogen as the supercooled liquid coolant 21 vaporized in the first vessel 10 by the formation of the condensing face 13 is condensed at the condensing face 13 where the temperature is below the condensing temperature, liquefied again, and supercooled by gravity It flows into the liquid coolant (21).
이와 같은 과정은 계속 반복적으로 이루어지며, 따라서 기타의 이유로 기화된 과냉각 액체 냉각제(21)를 다시 응축시킴으로써, 제1용기(10)의 내부 압력을 일정하게 유지할 수 있게 된다.This process is continuously repeated, and thus, by condensing the supercooled liquid coolant 21 vaporized for other reasons again, it is possible to maintain a constant internal pressure of the first container 10 .
앞서 설명한 바와 같이 상기 제2용기(20)에 수용된 포화 액체 냉각제(21)는 제1용기(10)의 과냉각 액체 냉각제(12)와 열교환됨과 아울러 상기 응축면(13)에서 기화된 과냉각 액체 냉각제(12)를 응축시키고, 온도가 높아져 기화된다.As described above, the saturated liquid coolant 21 contained in the second container 20 exchanges heat with the supercooled liquid coolant 12 in the first container 10 and the supercooled liquid coolant vaporized in the condensing surface 13 ( 12) is condensed, and the temperature rises to vaporize.
기화된 포화 액체 냉각제(21)는 냉동기(40)의 콜드 헤드에 의해 응축되는 과정을 반복하여, 포화 액체 냉각제(21)와 과냉각 액체 냉각제(12)의 온도를 유지함과 아울러 제1용기(10) 내에서 압력을 유지할 수 있게 된다.The vaporized saturated liquid coolant 21 repeats the process of being condensed by the cold head of the refrigerator 40 to maintain the temperature of the saturated liquid coolant 21 and the supercooled liquid coolant 12 and the first container 10 pressure can be maintained within the
이처럼 본 발명은 초전도 소자(11)가 수용되는 제1용기(10)의 일부에 응축면(13)을 형성함으로써, 제1용기(10)의 내부 압력을 일정하게 유지할 수 있게 된다.As such, in the present invention, by forming the condensation surface 13 on a part of the first container 10 in which the superconducting element 11 is accommodated, the internal pressure of the first container 10 can be constantly maintained.
제1용기(10)의 내부 압력의 유지는 제1용기(10)의 과냉각 액체 냉각제(12)의 온도 유지에 유리하며, 초전도 한류기를 안정적으로 운용할 수 있다.The maintenance of the internal pressure of the first container 10 is advantageous for maintaining the temperature of the supercooled liquid coolant 12 of the first container 10, and the superconducting current limiter can be stably operated.
제3용기(30)는 상기 제2용기(20)의 측면 및 저면과, 제1용기(10)의 노출된 측면과 저면을 모두 감싸는 구조이며, 내측이 진공(31) 상태로 열전달을 차단하여 제1용기(10) 및 제2용기(20)의 과냉각 액체 냉각제(12)와 포화 액체 냉각제(21)의 온도 유지에 유리하다.The third container 30 has a structure that surrounds both the side and bottom surfaces of the second container 20 and the exposed side and bottom surfaces of the first container 10, and the inner side blocks heat transfer in a vacuum 31 state. It is advantageous for maintaining the temperature of the supercooled liquid coolant 12 and the saturated liquid coolant 21 in the first container 10 and the second container 20 .
도 2는 본 발명의 다른 실시예에 따른 응축면을 포함하는 초전도 한류기의 냉각 장치의 구성도이다.2 is a block diagram of a cooling device for a superconducting fault current limiter including a condensing surface according to another embodiment of the present invention.
도 2를 참조하면 본 발명은, 앞서 도 1을 참조한 예와는 다르게 냉동기(40)의 냉열을 전달하는 금속 열전도체(50)를 사용하여 제1용기(10)의 과냉각 액체 냉각제(12)를 냉각시키는 방식의 구성이다.Referring to FIG. 2, the present invention uses a metal heat conductor 50 that transfers the cooling heat of the refrigerator 40, unlike the example with reference to FIG. 1 above, to supercool the liquid coolant 12 in the first container 10. It's a cooling system.
제1용기(10)는 진공(61)을 이용한 단열진공용기(60)에 의해 감싸져 있으며, 냉동기(40)는 단열진공용기(60)의 상부측에서 내측에 콜드 헤드가 위치하도록 배치된다.The first container 10 is surrounded by an insulated vacuum container 60 using a vacuum 61 , and the refrigerator 40 is disposed so that a cold head is located inside the insulated vacuum container 60 from the upper side.
상기 금속 열전도체(50)는 상기 냉동기(40)와 제1용기(10)의 벽면을 연결하여, 냉동기(40)의 냉열이 제1용기(10)의 과냉각 액체 냉각제(12)에 전달되도록 구성된다.The metal heat conductor 50 connects the refrigerator 40 and the wall surface of the first container 10 so that the cooling heat of the refrigerator 40 is transferred to the supercooled liquid coolant 12 of the first container 10. do.
금속 열전도체(50)는 구리를 사용할 수 있다.The metal heat conductor 50 may use copper.
금속 열전도체(50)의 제1용기(10) 접촉면은 상부 접촉면(51)과 하부 접촉면(52)으로 구분할 수 있다.The contact surface of the first container 10 of the metal heat conductor 50 may be divided into an upper contact surface 51 and a lower contact surface 52 .
상부 접촉면(51)과 하부 접촉면(52)은 일체의 구성 또는 서로 분리된 구성일 수 있다.The upper contact surface 51 and the lower contact surface 52 may be integrally formed or separated from each other.
상부 접촉면(51)은 과냉각 액체 냉각제(12)의 액위(L1)를 기준으로 상부측의 제1용기(10) 외면에 접촉되며, 하부 접촉면(52)은 과냉각 액체 냉각제(12)의 액위(L1)와 동일 높이부터 하부측의 제1용기(10) 외면에 접촉되어 있다.The upper contact surface 51 is in contact with the outer surface of the first container 10 on the upper side based on the liquid level L1 of the supercooled liquid coolant 12, and the lower contact surface 52 is the liquid level L1 of the supercooled liquid coolant 12 ) and in contact with the outer surface of the first container 10 on the lower side from the same height.
따라서 냉동기(40)의 냉열은 주로 하부 접촉면(51)을 통해 제1용기(10)의 과냉각 액체 냉각제(12)에 전달되며, 상부 접촉면(51)은 과냉각 액체 냉각제(12)의 액위(L1) 이상의 높이에 위치하는 제1용기(10)의 일부면을 냉각하여 응축면(13)을 형성하게 된다.Therefore, the cooling heat of the refrigerator 40 is mainly transmitted to the supercooled liquid coolant 12 of the first container 10 through the lower contact surface 51, and the upper contact surface 51 is the liquid level L1 of the supercooled liquid coolant 12. A condensing surface 13 is formed by cooling a partial surface of the first container 10 positioned at the above height.
즉, 도 1을 참조하여 설명한 예에서는 포화 액체 냉각제의 액위를 이용하여 응축면(13)을 형성하였고, 도 2의 구성에서는 금속 열전도체(50)를 이용하여 응축면(13)을 형성한 예를 나타낸다.That is, in the example described with reference to FIG. 1 , the condensation surface 13 was formed using the level of the saturated liquid coolant, and in the configuration of FIG. 2 , the condensation surface 13 was formed using the metal heat conductor 50 . indicates
금속 열전도체(50)를 이용하여 형성한 응축면(13)의 작용은 앞서 설명한 예와 동일하며, 제1용기(10)의 내부 압력을 일정한 수준으로 유지할 수 있다.The action of the condensation surface 13 formed by using the metal heat conductor 50 is the same as in the above-described example, and the internal pressure of the first container 10 can be maintained at a constant level.
도 3은 본 발명의 다른 실시예에 따른 응축면을 포함하는 초전도 한류기 냉각 장치의 구성도이다. 3 is a block diagram of a superconducting current limiter cooling device including a condensing surface according to another embodiment of the present invention.
도 3을 참조하면, 제2용기(20)는 제1용기(10)의 측면 상부측에만 위치하도록 구성할 수 있다.Referring to FIG. 3 , the second container 20 may be configured to be positioned only on the upper side of the side of the first container 10 .
즉, 제2용기(20)는 제1용기(10)의 측면 하부측 및 저면을 노출시키도록 위치되며, 따라서 포화 액체 냉각제(21)와의 열교환은 제1용기(10)에 수용된 과냉각 액체 냉각제(12)의 측면 측에서 일어나게 된다.That is, the second container 20 is positioned to expose the side lower side and the bottom of the first container 10, so that heat exchange with the saturated liquid coolant 21 is performed with the supercooled liquid coolant ( 12) occurs on the lateral side.
제2용기(20)는 제1용기(10)의 측면 상단으로부터 하향으로, 측면 높이의 50%정도를 덮는 것으로 할 수 있다. 좀 더 구체적으로 40 내지 60%를 덮을 수 있다.The second container 20 may cover about 50% of the height of the side surface downward from the upper end of the side surface of the first container 10 . More specifically, 40 to 60% may be covered.
제2용기(20)는 제1용기(10)의 측면 하부와 저면을 노출시키는 링타입 구조이며, 동일한 형태의 내부 공간을 제공한다.The second container 20 has a ring-type structure exposing the lower side and the bottom of the first container 10, and provides an internal space of the same shape.
제2용기(20)의 내벽은 제1용기(10)의 외벽 일부를 그대로 사용하여 열교환에 유리하도록 할 수 있다.The inner wall of the second container 20 may be advantageous for heat exchange by using a portion of the outer wall of the first container 10 as it is.
상기 제2용기(20)의 일면, 예를 들어 상면에는 다수의 냉동기(40)가 결합되며, 냉동기(40)의 콜드 헤드는 제2용기(20)의 내측으로 인입되어 있다.A plurality of refrigerators 40 are coupled to one surface, for example, an upper surface of the second container 20 , and the cold head of the refrigerator 40 is drawn into the inside of the second container 20 .
따라서, 제2용기(20)의 포화 액체 냉각제(21)와 제1용기(10)의 과냉각 액체 냉각제(12) 사이에 열교환이 이루어지며, 이때의 열교환은 포화 액체 냉각제(21)와 과냉각 액체 냉각제(12) 사이의 제1용기(10) 외벽 일부를 통해 이루어진다.Accordingly, heat exchange is made between the saturated liquid coolant 21 in the second container 20 and the supercooled liquid coolant 12 in the first container 10, wherein the heat exchange is between the saturated liquid coolant 21 and the supercooled liquid coolant (12) is made through a portion of the outer wall of the first container (10) between.
열교환에 의해 포화 액체 냉각제(21)의 일부는 기화되며, 과냉각 액체 냉각제(12)는 온도를 유지하게 된다.A portion of the saturated liquid coolant 21 is vaporized by heat exchange, and the supercooled liquid coolant 12 maintains its temperature.
기화된 포화 액체 냉각제(21)는 다시 냉동기(40)에 의해 응축되어 액화되고, 액화된 액체는 중력에 의해 낙하하여 포화 액체 냉각제(21)에 혼합되는 것을 반복한다.The vaporized saturated liquid coolant 21 is again condensed and liquefied by the refrigerator 40 , and the liquefied liquid falls by gravity and mixes with the saturated liquid coolant 21 repeatedly.
상기 제1용기(10)의 과냉각 액체 냉각제(12)는 제2용기(20)가 덮여 있는 상부측에서 주로 열교환이 일어난다. 도 3에서 A영역은 제2용기(20)의 포화 액체 냉각제(21)와 열교환이 일어나는 상층 영역이며, 하층 영역(B)은 열교환이 일어나지 않는다.The supercooled liquid coolant 12 of the first container 10 mainly undergoes heat exchange at the upper side where the second container 20 is covered. In FIG. 3 , area A is an upper layer area where heat exchange occurs with the saturated liquid coolant 21 of the second container 20 , and heat exchange does not occur in the lower layer area B .
그러나 상대적으로 하층 영역(B)의 과냉각 액체 냉각제(12)의 온도가 상층 영역(A)의 과냉각 액체 냉각제(12)의 온도보다 높으며, 따라서 상층 영역(A)과 하층 영역(B) 사이에 대류가 발생하게 된다.However, relatively the temperature of the supercooled liquid coolant 12 in the lower region B is higher than the temperature of the supercooled liquid coolant 12 in the upper region A, so that there is convection between the upper region A and the lower region B. will occur
즉, 본 발명은 제2용기(20)와 제1용기(10)의 접촉면을 일부로 제한하고, 열교환에 따른 제1용기(10) 내부의 과냉각 액체 냉각제(12)에 부분적인 열적 불균형을 유도하여, 대류를 형성한다.That is, the present invention limits the contact surface between the second container 20 and the first container 10 to a part, and induces a partial thermal imbalance in the supercooled liquid coolant 12 inside the first container 10 according to heat exchange. , form convection.
이와 같은 대류의 형성에 의해 제1용기(10) 내의 과냉각 액체 냉각제(12)가 자체적으로 순환하면서 온도 평형을 이루게 되며, 따라서 온도 균일성을 높일 수 있는 특징이 있다.By the formation of such convection, the supercooled liquid coolant 12 in the first container 10 circulates by itself to achieve temperature equilibrium, and thus has a feature of increasing temperature uniformity.
이러한 온도 균일성은 초전도 소자(11)를 전체적으로 균일한 온도로 냉각시킬 수 있으며, 초전도 소자(11)의 온도 균일성 확보에 의해 초전도 소자(11) 자체의 저항 균일성도 확보할 수 있다.Such temperature uniformity can cool the superconducting element 11 to a uniform temperature as a whole, and the resistance uniformity of the superconducting element 11 itself can also be ensured by ensuring the temperature uniformity of the superconducting element 11 .
이때 역시 상기 제2용기(20)의 포화 액체 냉각제(21)의 액위(L2)는 제1용기(10)의 과냉각 액체 냉각제(12)의 액위(L1)에 비하여 더 높은 위치가 되며, 액위의 높이 차(L2-L1)에 의해 제1용기(10)의 일부에 응축면(13)이 형성된다.At this time, also the liquid level L2 of the saturated liquid coolant 21 in the second container 20 is higher than the liquid level L1 of the supercooled liquid coolant 12 in the first container 10, and the Condensation surface 13 is formed in a portion of the first container 10 by the height difference (L2-L1).
앞서 언급한 바와 같이 응축면(13)의 작용에 의해 제1용기의 내부 압력이 일정하게 유지될 수 있다.As mentioned above, the internal pressure of the first container may be constantly maintained by the action of the condensing surface 13 .
도 4는 본 발명의 다른 실시예에 따른 응축면을 포함하는 초전도 한류기 냉각 장치의 구성도이다.4 is a block diagram of a superconducting current limiter cooling device including a condensing surface according to another embodiment of the present invention.
초전도 소자(11)가 침지되는 과냉각 액체 냉각제(12)를 수용하는 제1용기(10)와, 상기 제1용기(10)의 측면 및 저면을 감싸며, 초전도 전력 공급 시스템의 초전도 케이블에서 회수되는 액체 냉각제(24)가 유입되는 유입관(22) 및 유입된 액체 냉각제(24)가 유출되는 유출관(23)을 포함하는 제2용기(20)와, 상기 제2용기(20)의 측면 및 저면을 감싸며, 내부가 진공(31)인 제3용기(30)를 포함하여 구성된다.A first container 10 accommodating a supercooled liquid coolant 12 in which the superconducting element 11 is immersed, and a liquid that surrounds the side and bottom surfaces of the first container 10, and is recovered from the superconducting cable of the superconducting power supply system A second container (20) including an inlet pipe (22) through which the coolant (24) flows and an outlet pipe (23) through which the introduced liquid coolant (24) flows out, and side and bottom surfaces of the second container (20) It is configured to include a third container (30) that surrounds the inner vacuum (31).
제2용기(20)의 유입관(22)과 유출관(23)의 높이는 적어도 제1용기(10)의 과냉각 액체 냉각제(12)의 액위(L1)에 비하여 높은 위치에 위치하도록 함으로써, 제2용기(20)의 액체 냉각제(24)의 액위(L2)가 과냉각 액체 냉각제(12)의 액위(L1)에 비하여 더 높은 위치에 위치하도록 한다.The height of the inlet pipe 22 and the outlet pipe 23 of the second container 20 is at least higher than the liquid level L1 of the supercooled liquid coolant 12 of the first container 10, so that the second The level L2 of the liquid coolant 24 in the container 20 is positioned higher than the level L1 of the supercooled liquid coolant 12 .
따라서, 액체 냉각제(24)의 액위에 의해 제1용기(10)에는 응축면(13)이 형성된다.Accordingly, a condensation surface 13 is formed in the first container 10 by the level of the liquid coolant 24 .
위에서 액체 냉각제(24)는 초전도 케이블을 경유하면서 초전도 케이블을 냉각시키는데 이용된 액체 냉각제(24)이며 포화 상태가 아닌 과냉각된 액체 질소일 수 있다. 이때 액체 냉각제(24)는 제1용기(10)의 과냉각 액체 냉각제(12)의 온도보다 더 낮은 온도인 것으로 한다.The liquid coolant 24 above is the liquid coolant 24 used to cool the superconducting cable while passing through the superconducting cable and may be supercooled liquid nitrogen that is not saturated. At this time, it is assumed that the liquid coolant 24 has a temperature lower than the temperature of the supercooled liquid coolant 12 in the first container 10 .
이처럼 초전도 전력 공급 시스템의 액체 냉각제를 회수하는 과정에서 초전도 한류기를 경유하도록 함으로써, 초전도 한류기에 별도의 냉동기를 사용하지 않고도, 초전도 소자(11)의 온도를 유지할 수 있다.As such, by allowing the superconducting current limiter to pass through the process of recovering the liquid coolant of the superconducting power supply system, the temperature of the superconducting element 11 can be maintained without using a separate refrigerator for the superconducting current limiter.
제2용기(20)는 제1용기(10)의 전체를 감싸는 구조일 수 있으며, 도 4에 도시한 바와 같이 제1용기(10)의 측면을 상부측으로부터 소정의 높이까지 하향 연장하여, 제1용기(10)의 측면 하부측 및 저면측을 노출시키는 구조로 할 수 있다.The second container 20 may have a structure surrounding the entire first container 10, and as shown in FIG. 4, by extending the side surface of the first container 10 downward from the upper side to a predetermined height, It can be set as the structure in which the side lower side and the bottom side of one container 10 are exposed.
이와 같은 제2용기(20)의 구조 차이에 의하여 액체 냉각제(24)와 상층 영역(A)에서만 열교환이 발생하고, 따라서 하층 영역(B)과의 온도차이에 의해 대류가 발생하게 된다.Due to this difference in the structure of the second container 20, heat exchange occurs only between the liquid coolant 24 and the upper layer region A, and accordingly, convection occurs due to the temperature difference between the liquid coolant 24 and the lower layer region B.
대류의 발생에 의해 과냉각 액체 냉각제(12)는 전체적으로 균일한 온도가 되며, 따라서 침지된 초전도 소자(11)도 전체적으로 균일한 온도로 유지할 수 있다.Due to the occurrence of convection, the supercooled liquid coolant 12 has a uniform temperature as a whole, and thus the immersed superconducting element 11 can also be maintained at a uniform temperature as a whole.
이처럼 본 발명은 냉동기(40)를 사용하지 않고, 외부에서 순환 공급되는 액체 냉각제(24)를 이용하여 제1용기(10) 내의 과냉각 액체 냉각제(12)가 기화되면 다시 응축시키는 작용을 함으로써, 제1용기(10)의 내부 압력을 일정하게 유지할 수 있다.As such, in the present invention, when the supercooled liquid coolant 12 in the first container 10 is vaporized again by using the liquid coolant 24 supplied circulating from the outside, without using the refrigerator 40, it is condensed again. 1 It is possible to keep the internal pressure of the container 10 constant.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 청구범위에 의해서 정해져야 할 것이다.Although the embodiments according to the present invention have been described above, these are merely exemplary, and those of ordinary skill in the art will understand that various modifications and equivalent ranges of embodiments are possible therefrom. Accordingly, the true technical protection scope of the present invention should be defined by the following claims.
본 발명은 자연법칙을 이용하여 초전도 한류기의 내부 압력 변화를 방지하는 기술에 관한 것으로 산업상 이용 가능성이 있다.The present invention relates to a technology for preventing a change in internal pressure of a superconducting current limiter using a natural law, and has potential for industrial application.

Claims (8)

  1. 과냉각 액체 냉각제를 수용하는 제1용기;a first container containing a supercooled liquid coolant;
    상기 제1용기의 상기 과냉각 액체 냉각제에 침지되어 온도가 유지되는 초전도 소자; 및a superconducting element immersed in the supercooled liquid coolant in the first container to maintain a temperature; and
    상기 제1용기의 외부에서 상기 과냉각 액체 냉각제의 온도보다 더 낮은 온도의 냉열에 의해 상기 제1용기의 외벽 일부에 생성되어, 상기 과냉각 액체 냉각제가 기화되면 다시 응축시키는 응축면을 포함하는 초전도 한류기의 냉각 장치.Superconducting current limiter including a condensing surface that is generated on a part of the outer wall of the first container by cooling heat at a temperature lower than the temperature of the supercooled liquid coolant from the outside of the first container and condensed again when the supercooled liquid coolant is vaporized of cooling device.
  2. 제1항에 있어서,According to claim 1,
    상기 응축면은,The condensing surface is
    상기 제1용기의 외면을 감싸는 제2용기의 내에 충진되며, 냉동기에 의해 온도가 유지되는 포화 액체 냉각제에 의해 형성되는 것을 특징으로 하는 초전도 한류기의 냉각 장치.A cooling device for a superconducting fault current limiter, characterized in that it is formed by a saturated liquid coolant that is filled in a second container that surrounds the outer surface of the first container and whose temperature is maintained by a refrigerator.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 포화 액체 냉각제의 액위는, The liquid level of the saturated liquid coolant is
    상기 과냉각 액체 냉각제의 액위에 비하여 더 높으며,higher than the liquid level of the supercooled liquid coolant,
    상기 응축면은,The condensing surface is
    상기 과냉각 액체 냉각제의 액위로부터 상향으로 형성되는 것을 특징으로 하는 초전도 한류기의 냉각 장치.The superconducting current limiter cooling device, characterized in that it is formed upward from the liquid level of the supercooled liquid coolant.
  4. 제1항에 있어서,According to claim 1,
    상기 응축면은,The condensing surface is
    냉동기의 콜드 헤드와 상기 제1용기의 외벽 외측을 연결하는 금속 열전도체에 의해 형성되는 것을 특징으로 하는 초전도 한류기의 냉각 장치.A cooling device for a superconducting current limiter, characterized in that it is formed by a metal heat conductor connecting the cold head of the refrigerator and the outer wall of the first container.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 금속 열전도체의 상기 제1용기와 접촉되는 접촉면은,The contact surface in contact with the first container of the metal heat conductor,
    상기 과냉각 액체 냉각제의 액위로부터 하부측의 제1용기 외면에 접촉되는 하부 접촉면과,a lower contact surface contacting the outer surface of the first container on the lower side from the liquid level of the supercooled liquid coolant;
    상기 과냉각 액체 냉각제의 액위 상부측의 제1용기 외면에 접촉되는 상부 접촉면을 포함하는 초전도 한류기의 냉각 장치.and an upper contact surface in contact with the outer surface of the first container on the upper side of the liquid level of the supercooled liquid coolant.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 하부 접촉면과 상기 상부 접촉면은,The lower contact surface and the upper contact surface,
    상호 일체형 또는 분리형인 것을 특징으로 하는 초전도 한류기의 냉각 장치.A cooling device for a superconducting fault current limiter, characterized in that it is a mutually integrated or separate type.
  7. 제1항에 있어서,The method of claim 1,
    상기 응축면은,The condensing surface is
    상기 제1용기의 외부를 감싸는 제2용기에 순환 유입된 액체 냉각제에 의해 형성되는 것을 특징으로 하는 초전도 한류기의 냉각 장치.A cooling device for a superconducting current limiter, characterized in that it is formed by a liquid coolant circulated and introduced into a second container surrounding the outside of the first container.
  8. 제7항에 있어서, 8. The method of claim 7,
    상기 제2용기는, The second container,
    상기 액체 냉각제가 유입되는 유입관 및 액체 냉각제가 배출되는 유출관을 포함하되,an inlet pipe through which the liquid coolant is introduced and an outlet pipe through which the liquid coolant is discharged;
    상기 유입관 및 유출관은, The inlet pipe and the outlet pipe,
    상기 과냉각 액체 냉각제의 액위보다 높이 위치하는 것을 특징으로 하는 초전도 한류기의 냉각 장치.The superconducting current limiter cooling device, characterized in that it is positioned higher than the liquid level of the supercooled liquid coolant.
PCT/KR2022/002149 2021-03-19 2022-02-14 Cooling device for superconducting fault current limiter, including condensing surface WO2022196950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0035774 2021-03-19
KR1020210035774A KR102618454B1 (en) 2021-03-19 2021-03-19 Cooling device for superconducting fault current limiter including condensing surface

Publications (1)

Publication Number Publication Date
WO2022196950A1 true WO2022196950A1 (en) 2022-09-22

Family

ID=83320745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002149 WO2022196950A1 (en) 2021-03-19 2022-02-14 Cooling device for superconducting fault current limiter, including condensing surface

Country Status (2)

Country Link
KR (1) KR102618454B1 (en)
WO (1) WO2022196950A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030154734A1 (en) * 2000-12-21 2003-08-21 Willi Paul Device used in superconductor technology
JP2007221931A (en) * 2006-02-17 2007-08-30 Toshiba Corp Superconducting current limiter
JP2012217334A (en) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The Terminal connection part for cryogenic cable
KR20190142822A (en) * 2018-06-19 2019-12-30 엘에스산전 주식회사 Cryogenic cooling system
JP2020031160A (en) * 2018-08-23 2020-02-27 住友重機械工業株式会社 Superconducting magnet cooling device and superconducting magnet cooling method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104234B1 (en) * 2010-09-30 2012-01-10 한국전력공사 Apparatus and method for controlling temperature inside of superconducting fault current limiter
KR102433210B1 (en) * 2017-10-13 2022-08-18 한국전력공사 Superconductive cable system using multiple pressure regulating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030154734A1 (en) * 2000-12-21 2003-08-21 Willi Paul Device used in superconductor technology
JP2007221931A (en) * 2006-02-17 2007-08-30 Toshiba Corp Superconducting current limiter
JP2012217334A (en) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The Terminal connection part for cryogenic cable
KR20190142822A (en) * 2018-06-19 2019-12-30 엘에스산전 주식회사 Cryogenic cooling system
JP2020031160A (en) * 2018-08-23 2020-02-27 住友重機械工業株式会社 Superconducting magnet cooling device and superconducting magnet cooling method

Also Published As

Publication number Publication date
KR20220130923A (en) 2022-09-27
KR102618454B1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2021132975A1 (en) Helium gas liquefier and helium gas liquefaction method
CA2053763C (en) Hybrid vapor cooled power lead for cryostat
WO2010143896A2 (en) Heat-dissipating device and electronic apparatus having the same
EP0720024B1 (en) Helium recondensing superconducting magnet
WO2022196950A1 (en) Cooling device for superconducting fault current limiter, including condensing surface
WO2022196952A1 (en) Cooling control apparatus for superconducting fault current limiter
JPH0334562A (en) Temperature control device of electronic device
WO2016105034A1 (en) Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same
WO2012091390A2 (en) Dry coating apparatus
WO2024053809A1 (en) High-temperature superconducting rotary machine having solid refrigerant cooling battery-based cryogenic cooling module structure for improving long-term operation and maintenance reliability
WO2022196949A1 (en) Cooling apparatus for superconducting fault current limiter
KR20190142822A (en) Cryogenic cooling system
WO2022196951A1 (en) Superconducting power supply system
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
WO2023063615A1 (en) System and method for managing heat source by using cold energy
WO2020197068A1 (en) Deposition apparatus
WO2018012721A1 (en) Battery module
WO2017073833A1 (en) Superconducting cable terminal device
WO2015060536A1 (en) Method and system for cooling superconducting magnet
WO2022164021A1 (en) Heat sink for electric machine
EP1198802B1 (en) System for transmitting electric energy in superconductivity conditions and method for refrigerating in continuous a superconducting cable
WO2023182668A1 (en) Superconducting fault current limiter having direct cooling structure and method for controlling same
WO2024080610A1 (en) Method and system for cooling fuel cell using ion filter
WO2023204504A1 (en) Battery module comprising three-dimensional pulsating heat pipe
WO2021242034A1 (en) Cooling structure using phase change material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771616

Country of ref document: EP

Kind code of ref document: A1