WO2018092999A1 - Battery heat exchanger and battery pack having same - Google Patents

Battery heat exchanger and battery pack having same Download PDF

Info

Publication number
WO2018092999A1
WO2018092999A1 PCT/KR2017/005475 KR2017005475W WO2018092999A1 WO 2018092999 A1 WO2018092999 A1 WO 2018092999A1 KR 2017005475 W KR2017005475 W KR 2017005475W WO 2018092999 A1 WO2018092999 A1 WO 2018092999A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
horizontal
heat exchanger
tube
battery
Prior art date
Application number
PCT/KR2017/005475
Other languages
French (fr)
Korean (ko)
Inventor
김봉준
이요한
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201780070802.1A priority Critical patent/CN109952682A/en
Publication of WO2018092999A1 publication Critical patent/WO2018092999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery heat exchanger and a battery pack having the same, and more particularly, to a battery heat exchanger having a horizontal header disposed horizontally and a battery pack having the same.
  • the vehicle may be provided with a battery for supplying electricity to the electric motor, a motor controller for controlling the electric motor, and the like.
  • the battery installed in the vehicle may be charged from a renewable power source or a charger, and may supply electric power to the electric motor when the vehicle is driven.
  • the performance of a battery can be largely determined by its temperature, and the temperature rises during charging and discharging.
  • electrolyte decomposition may occur, degrading battery performance and gradually decreasing its lifespan.
  • the battery may include a plurality of battery modules, and the plurality of battery modules may be managed to minimize the temperature difference between each other.
  • the vehicle may be provided with a battery cooling device for cooling the battery module to prevent the battery module from overheating to maintain the performance of the battery module.
  • the battery cooler may be classified into an air-cooled battery cooler, a water-cooled battery cooler, and a refrigerant battery cooler according to a cooling method.
  • the refrigerant type battery cooling device includes a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed in the compressor, an expansion valve for expanding the refrigerant condensed in the condenser, and a refrigerant expanded by the expansion valve to be in contact with the battery module. It may include a battery module heat exchanger.
  • the refrigerant compressed in the compressor may be sequentially passed through the condenser, the expansion valve, and the battery heat exchanger, and then sucked into the compressor, and the refrigerant may absorb heat of the battery module while passing through the battery heat exchanger.
  • the battery heat exchanger for cooling the battery module is not complicated in structure, and it is preferable to distribute the refrigerant evenly when the vehicle and the battery heat exchanger are inclined.
  • An object of the present invention is to provide a battery heat exchanger and a vehicle battery pack having the same, in which the refrigerant in the header can be evenly distributed to the plurality of refrigerant tubes even when the vehicle is inclined.
  • the battery heat exchanger includes a pair of horizontal headers having a plurality of refrigerant tube insertion holes formed therein; A plurality of refrigerant tubes connected to the pair of horizontal headers and having an inner tube portion inserted into the refrigerant passage through the refrigerant tube insertion hole, and an outer tube portion positioned between the pair of horizontal headers; And a bonding material for joining the outer surface of the inner tube portion to the inner surface of the horizontal header, wherein the plurality of refrigerant tube insertion holes are spaced apart in the longitudinal direction of the horizontal header, and at least a portion of the bonding material is disposed between the lower end of the inner tube portion and the inner bottom of the horizontal header.
  • a gap to be located is formed, and the height of the gap is 0.1 to 0.4 times the height between the centerline of the horizontal header and the inner bottom of the horizontal header.
  • a battery pack having a battery heat exchanger includes at least one battery module; A battery heat exchanger on which the battery module is mounted, the battery heat exchanger comprising: a cooling plate; A plurality of coolant tubes disposed on the bottom of the cooling plate, and a pair of horizontal headers arranged horizontally next to the cooling plate and having a coolant flow path formed therein and spaced in the longitudinal direction of the cooling plate, and a pair of horizontal headers
  • Each of the plurality of refrigerant tube insertion holes is spaced apart in the longitudinal direction of the horizontal header
  • the plurality of refrigerant tubes include an inner tube portion inserted into the refrigerant flow path through the refrigerant tube insertion hole, and the outer tube portion located between the pair of horizontal headers
  • the outer surface of the inner tube portion and the inner surface of the horizontal header are joined by a joining material, and a gap is formed between the lower end of the inner tube portion and the inner bottom of the horizontal header, and a gap in which at least a portion of the joining material is located is
  • the refrigerant tube insertion hole may be eccentrically downward based on the center line.
  • All of the refrigerant tube insertion holes may be located below the center line.
  • the height of the gap may be 0.9 mm to 1.1 mm.
  • the hydraulic diameter of the horizontal header may be 0.25 to 0.5 times the rated flow rate of the battery heat exchanger.
  • the cross-sectional shape of the refrigerant passage may be rectangular.
  • the cross-sectional shape of the refrigerant passage may be semicircular.
  • connection tube through which the refrigerant flows may be connected to the longitudinal center of the horizontal header.
  • the connecting tube can be connected higher than the refrigerant tube.
  • the bonding material when the horizontal header and the refrigerant tube are joined, the bonding material may be minimized from entering the refrigerant tube, and the refrigerant tube may be blocked by the bonding material.
  • FIG. 1 is a perspective view showing a battery heat exchanger and a battery pack according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the inside of a battery pack according to an embodiment of the present invention
  • FIG. 3 is an enlarged cross-sectional view when the refrigerant tube shown in FIG. 2 is before brazing bonding with a horizontal header,
  • FIG. 4 is an enlarged cross-sectional view when the refrigerant tube shown in FIG. 3 is brazed to a horizontal header;
  • FIG. 5 is a side view showing a header of a battery heat exchanger according to an embodiment of the present invention.
  • FIG. 6 is a side view when the horizontal header shown in FIG. 5 is inclined
  • FIG. 8 is a view showing the flow rate of the refrigerant tube along the gap between the lower end of the refrigerant tube and the inner lower surface of the horizontal header of the embodiment of the present invention
  • FIG. 9 is a cross-sectional view showing various examples of a horizontal header according to an embodiment of the present invention.
  • FIG. 10 is a view showing the flow rate of the refrigerant according to the hydraulic diameter of the horizontal header according to an embodiment of the present invention
  • FIG. 11 is a view showing a flow pattern of the refrigerant according to the hydraulic diameter of the horizontal header according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a battery heat exchanger and a battery pack according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view showing the inside of the battery pack according to an embodiment of the present invention.
  • the battery heat exchanger 5 may be disposed in contact with the battery module 4 to absorb heat of the battery module 4.
  • the battery heat exchanger 5 may configure the battery pack P together with the battery module 4.
  • the battery pack P may further include a carrier 1 mounted on the vehicle, and the battery heat exchanger 5 may be mounted on the carrier 1.
  • the battery pack P may further include a top cover 2 covering an upper surface of the carrier 1.
  • the carrier 1 and the top cover 2 may form an appearance of the battery pack P, and a space for accommodating the battery heat exchanger 5 and the battery module 4 may be formed therebetween.
  • the battery heat exchanger 5 may be connected to the refrigeration cycle apparatus provided in the vehicle by a refrigerant pipe, and the refrigerant of the refrigeration cycle apparatus may enter the battery heat exchanger 5 and pass through the battery heat exchanger 5.
  • the refrigerant may absorb heat transferred from the battery module 4 to the battery heat exchanger 5 while passing through the battery heat exchanger 5.
  • the refrigeration cycle apparatus to which the battery heat exchanger 5 is connected may include a compressor, a condenser, an expansion mechanism, and an evaporator.
  • the battery heat exchanger 5 and the evaporator may be connected in parallel or in series.
  • the two-phase refrigerant expanded by the expansion mechanism may flow into the battery heat exchanger 5 to cool the battery heat exchanger 5.
  • the refrigeration cycle apparatus to which the battery heat exchanger 5 is connected may include a compressor, a condenser, and an expansion mechanism, but may not include a separate evaporator.
  • the battery heat exchanger 5 may be arranged between the expansion mechanism and the compressor in the refrigerant flow direction to cool the battery module 4 while functioning as an evaporator.
  • the battery pack P may include a plurality of battery modules 4, at least one of the plurality of battery modules 4 may be mounted on the battery heat exchanger 5, and may be disposed by the battery heat exchanger 5. Can be cooled. Preferably, a plurality of battery modules 4 are mounted on the battery heat exchanger 5. In this case, the battery heat exchanger 5 may cool the plurality of battery modules 4 simultaneously or sequentially.
  • At least one battery module 4 may be mounted on the battery heat exchanger 5, and the battery heat exchanger 5 may cool at least one battery module 4 positioned above the battery heat exchanger 5.
  • the battery heat exchanger 5 may include a pair of horizontal headers 110 and 120 and a plurality of refrigerant tubes 130 connected to the pair of horizontal headers 110 and 120.
  • the battery pack P may have at least one battery module 4 mounted on the plurality of refrigerant tubes 130, and the at least one battery module 4 may be cooled by the plurality of refrigerant tubes 130.
  • the battery heat exchanger 5 may further include a separate cooling plate 140 to which the plurality of refrigerant tubes 130 are in contact.
  • the battery heat exchanger 5 further includes a cooling plate 140
  • the plurality of refrigerant tubes 130 may be disposed on the bottom surface of the cooling plate 140.
  • the plurality of refrigerant tubes 130 may be disposed to contact the cooling plate 140 on the bottom surface of the cooling plate 140.
  • the pair of horizontal headers 110 and 120 may be disposed horizontally next to the cooling plate 140.
  • Lower and cooling plates 140 of the plurality of battery modules 4 may be located between the pair of headers 110 and 120 and may be protected by a pair of horizontal headers 110 and 120. have.
  • the space S1 of the upper portion of the cooling plate 140 among the spaces between the pair of horizontal headers 110 and 120 may be a space in which the lower portions of the plurality of battery modules 4 are accommodated.
  • the pair of headers 110 and 120 may be spaced apart in the longitudinal direction of the cooling plate 140.
  • the pair of horizontal headers 110 and 120 may be spaced apart from each other at a distance L3 greater than the length L2 of the cooling plate 140.
  • Each of the pair of horizontal headers 110 and 120 may be spaced apart from the cooling plate 140.
  • Each of the pair of horizontal headers 110 and 120 may have a refrigerant passage T formed therein.
  • a plurality of refrigerant tube insertion holes 112 may be formed in each of the pair of horizontal headers 110 and 120.
  • the refrigerant tube insertion hole 112 may be formed to face the other horizontal header on each of the pair of horizontal headers 110 and 120.
  • the height of the battery pack P may be determined according to the formation height of the refrigerant tube insertion hole 112.
  • the height of the coolant tube 130 may be high and the height of the battery module 4 may be high.
  • a portion located between the pair of horizontal headers 110 and 120 of the battery module 4 may be small, and the overall height L1 of the battery pack P may be high.
  • the height of the coolant tube 130 may be low and the height of the battery module 4 may also be low.
  • a portion accommodated between the pair of horizontal headers 110 and 120 of the battery module 4 may be large, and the overall height L1 of the battery pack P may be low.
  • the coolant tube insertion hole 112 is preferably formed at a relatively low height among the pair of horizontal headers 110 and 120.
  • Each of the plurality of refrigerant tubes 130 may be connected to a pair of horizontal headers 110 and 120.
  • Each of the plurality of coolant tubes 130 may include an inner tube part 132 inserted into the coolant flow path T through a coolant tube insertion hole, and an outer tube part positioned between the pair of horizontal headers 110 and 120. 134).
  • the inner tube part 132 may be provided at both sides of the outer tube part 134, and the plurality of refrigerant tubes 130 may include the outer tube part 134 between the pair of inner tube parts 132. Can be.
  • the inner tube part 132 may be a fixed tube part fixed to each of the horizontal headers 110 and 120.
  • the inner tube part 132 may be joined to the horizontal headers 110 and 120 by a method such as brazing bonding in a state of being inserted into the horizontal headers 110 and 120 through the refrigerant tube insertion hole 112. .
  • the outer tube portion 134 may be a contact tube portion whose outer surface directly contacts the bottom surface of the battery module 4 or contacts the bottom surface of the cooling plate 140.
  • the outer tube part 134 may be configured as a tube part in which one refrigerant passage is formed, and may be configured as a flat tube part in which a plurality of refrigerant channels are formed.
  • the battery heat exchanger 5 may include a plurality of heat exchange modules 101, 102, 103, 104, and 105, and a plurality of heat exchange modules 101 and 102.
  • the 103, 104, and 105 may be connected to the connection tube 106.
  • the connection tubes 106 may be connected in series or in parallel.
  • the plurality of heat exchange modules 101, 102, 103, 104, and 105 may be spaced apart from each other, and may be connected by a connection tube 106.
  • the plurality of heat exchange modules 101, 102, 103, 104, and 105 may be disposed in the carrier 1 to be spaced apart in the front and rear directions, and at least one may be spaced apart in the vertical direction from the others. have.
  • Each of the plurality of heat exchange modules 101, 102, 103, 104, and 105 may include horizontal headers 110 and 120, a plurality of refrigerant tubes 130, and a cooling plate 140. .
  • FIG. 3 is an enlarged cross-sectional view when the refrigerant tube shown in FIG. 2 is before brazing bonding with the horizontal header
  • FIG. 4 is an enlarged cross-sectional view when the refrigerant tube shown in FIG. 3 is brazing bonding with the horizontal header
  • FIG. 6 is a side view illustrating a header of a battery heat exchanger according to an embodiment of the present invention
  • FIG. 6 is a side view when the horizontal header shown in FIG. 5 is inclined
  • FIG. 7 is a comparative example of the present invention compared with an embodiment.
  • 8 is a side view when the horizontal header is inclined
  • FIG. 8 is a view illustrating a flow rate of the refrigerant tube along a gap between a lower end of the refrigerant tube and an inner lower surface of the horizontal header.
  • Each of the pair of horizontal headers 110 and 120 may have a plurality of refrigerant tube insertion holes 112 formed therein, and the plurality of refrigerant tube insertion holes 112 may extend in the longitudinal direction of the horizontal headers 110 and 120. X) can be spaced apart.
  • the battery heat exchanger 4 may include a bonding material 150 for joining the outer surface 133 of the inner tube part 132 and the inner surface 113 of the horizontal header 110 and 120.
  • the bonding material 150 ′ before the brazing bonding of the refrigerant tube 130 and the horizontal header 110 and 120 may be thin and evenly formed on the inner surface of the horizontal header 110 and 120.
  • the coolant tube 130 and the horizontal header 110 and 120 are put together in a brazing furnace (not shown). As shown, the bonding material 150 'formed evenly on the inner surface of the horizontal header 110, 120 is melted and flows along the inner surface of the horizontal header 110, 120, the inner tube portion ( It may be joined in a round shape as a whole along the outer circumference of the inner tube part 132 while filling the outer surface of the 132 and the refrigerant tube insertion hole 112.
  • a portion of the bonding material 150 may be located between the outer surface of the inner tube part 132 and the inner bottom surface 113A of the horizontal header 110 and 120.
  • a gap 131 may be formed between at least a portion of the bonding material 150 between the lower end 133A of the inner tube part 132 and the inner bottom 113A of the horizontal header 110 and 120.
  • the height G of the gap 131 may be 0.1 to 0.4 times the height H between the center line S2 of the horizontal header 110 and 120 and the inner bottom surface 113A of the horizontal header.
  • the center line S2 of the horizontal headers 110 and 120 is an imaginary line capable of dividing the horizontal headers 110 and 120 into upper and lower portions, and may be long in the horizontal direction.
  • the coolant tube insertion hole 112 may be eccentrically downward based on the center line S2.
  • the refrigerant tube insertion hole 112 may be located below the center line (S2) of the whole.
  • the coolant tube insertion hole 112 may be eccentrically larger than a region located below the center line S2.
  • the molten bonding material may penetrate into the inner tube part 132 and block the inside of the inner tube part 132 during brazing bonding.
  • the height of the gap 131 between the lower end 133A of the inner tube part 132 and the inner bottom 113A of the horizontal header 110 and 120 is preferably formed to a height at which the molten bonding material does not penetrate, and is approximately 0.9 mm. To 1.1 mm.
  • the molten bonding material may be minimized to penetrate into the inner tube part 132, and reliability of the brazing joint may be secured.
  • FIG. 6 shows that the height G of the gap 131 is 0.1 times the height H between the center line S2 of the horizontal header 110 and 120 and the inner bottom 113A of the horizontal header 110 and 120.
  • the refrigerant flow when 0.4 times is shown
  • FIG. 7 is a diagram showing the refrigerant flow when all the plurality of refrigerant tubes are located at the center height of the horizontal header.
  • the plurality of refrigerant tubes 130 may have different heights from the ground.
  • the first refrigerant tubes 130A having the lowest height are adjacent to each other in the longitudinal direction of the horizontal header and the first refrigerant tubes 130A.
  • the fourth refrigerant tube 130D having the highest height.
  • the refrigerant in the horizontal headers 110 and 120 is all the refrigerant tubes 130A, 130B, and 130C. It can be supplied evenly to 130D.
  • FIG 8 is a view showing the flow rate of the refrigerant tube according to the position and the gap of the refrigerant tube, when the horizontal header 110, 120 is tilted approximately 15 ° and the height of the plurality of refrigerant tubes 130 are different, The flow rate of the refrigerant tube 130 is shown.
  • FIG. 9 is a cross-sectional view showing various examples of the horizontal header according to an embodiment of the present invention
  • Figure 10 is a view showing the flow rate of the refrigerant according to the hydraulic diameter of the horizontal header according to an embodiment of the present invention
  • Figure 11 The flow pattern of the refrigerant according to the hydraulic diameter of the horizontal header according to an embodiment of the present invention is shown.
  • the horizontal headers 110 and 120 may be formed in various shapes, such as a cross section of a refrigerant passage T inside, a circle, a quadrangle, and a trapezoid.
  • FIG. 9A illustrates an example of a horizontal header having a rectangular cross-sectional shape of the refrigerant passage T
  • FIG. 9B illustrates an example of a horizontal header having a semicircular cross-sectional shape of the refrigerant passage T
  • 9C is an example in which the horizontal header whose cross-sectional shape of the refrigerant flow path T is close to a trapezoid is shown.
  • the hydraulic diameter Dh of the horizontal headers 110 and 120 may be greater than 0.25 times and less than 0.5 times the rated flow rate A of the battery heat exchanger 4.
  • the hydrodynamic diameter Dh of the horizontal headers 110 and 120 is defined as 4 X Ac / Pc, irrespective of the cross-sectional shape of the flow path T, where Ac is the cross section of the coolant flow path through which the coolant flows, and Pc May indicate the length of a line surrounding the refrigerant in the cross section of the refrigerant passage.
  • Hydraulic diameter of the horizontal headers 110, 120 when the circular pipe having an inner diameter of D, horizontal headers 110, 120 (Dh) is a 4 ( ⁇ D 2/4) / ⁇ D, the length of one side of a
  • the hydraulic diameter Dh of the horizontal header 110 and 120 is 4a 2 / 4a
  • the horizontal header 110 in the case of a rectangular duct shape having a short side a and a long side b, the horizontal header 110 (
  • the hydraulic diameter Dh of 120 may be 2ab / (a + b).
  • FIG. 10 is a view showing the position of the refrigerant tube and the flow rate of the refrigerant tube according to the hydraulic diameter.
  • FIG. 11A is a side view illustrating a distribution pattern of a refrigerant when the hydraulic diameter is A / 4
  • FIG. 11B is a cross-sectional view taken along line AA of FIG. 11A
  • FIG. 11 (C) is a side view showing the distribution pattern of the refrigerant when the hydraulic diameter is A / 3
  • Figure 11 (d) is a cross-sectional view taken along the line BB shown in Figure 11 (c)
  • (e) is a side view showing the distribution pattern of the refrigerant when the hydraulic diameter is A / 2
  • FIG. 11 (f) is a cross-sectional view along the line CC shown in FIG.
  • the horizontal headers 110 and 120 may be connected to a connection tube 106 through which refrigerant enters, and the refrigerant flows into the horizontal headers 110 and 120 through the connection tube 106 or the connection tube 106. Through the horizontal header 110, 120 may flow out.
  • Connection tube 106 may be connected to the longitudinal center of the horizontal header (110, 120). The connection tube 106 may be connected closer to the center refrigerant tube among the outer refrigerant tube and the center refrigerant tube. The connection tube 106 may be connected to be positioned above the pair of central refrigerant tubes.
  • connection tube 106 may be connected higher than the refrigerant tube 130.
  • the lower end of the connection tube 106 may be higher than the upper end of the refrigerant tube 130.
  • the horizontal headers 110 and 120 are drawn to both ends of the horizontal header when the hydraulic diameter is A / 4, and are drawn to the center of the horizontal header when the hydraulic diameter is A / 2. This occurs, and when the hydraulic diameter is A / 3, it can be seen that the refrigerant is evenly supplied to the plurality of refrigerant tubes.
  • the horizontal headers 110 and 120 preferably have a hydraulic diameter of A / 3.

Abstract

The present embodiment comprises: a pair of horizontal headers having a refrigerant passage formed therein and having a plurality of refrigerant tube insertion holes formed therein; a plurality of refrigerant tubes having an inner tube portion connected to the pair of horizontal headers and inserted into the refrigerant passage through the refrigerant tube insertion holes, and an outer tube portion positioned between the pair of horizontal headers; and a bonding material for bonding the outer surface of the inner tube portion and the inner surface of the horizontal headers, wherein the plurality of refrigerant tube insertion holes are spaced apart in the longitudinal direction of the horizontal header; a gap in which at least a part of the bonding material is located is formed between the lower end of the inner tube portion and the inner bottom surface of the horizontal headers; the height of the gap is 0.1 to 0.4 times the height between the center line of the horizontal headers and the inner bottom surface of the horizontal headers; even when a vehicle is inclined, the plurality of refrigerant tubes may be evenly distributed; and there is an advantage in that the temperature deviation of a battery module may be minimized.

Description

배터리 열교환기 및 그를 갖는 배터리 팩Battery heat exchanger and battery pack having
본 발명은 배터리 열교환기 및 그를 갖는 배터리 팩에 관한 것으로, 더욱 상세하게는 수평하게 배치된 수평헤더를 갖는 배터리 열교환기 및 그를 갖는 배터리 팩에 관한 것이다.The present invention relates to a battery heat exchanger and a battery pack having the same, and more particularly, to a battery heat exchanger having a horizontal header disposed horizontally and a battery pack having the same.
차량에는 전기모터에 전기를 공급하는 배터리, 전기모터를 제어하는 모터 제어기 등이 구비될 수 있다.The vehicle may be provided with a battery for supplying electricity to the electric motor, a motor controller for controlling the electric motor, and the like.
차량에 설치된 배터리는 재생 동력원이나 충전기로부터 충전될 수 있고, 차량의 주행시 전기모터로 전력을 공급할 수 있다.The battery installed in the vehicle may be charged from a renewable power source or a charger, and may supply electric power to the electric motor when the vehicle is driven.
배터리는 그 온도에 따라 성능이 크게 결정될 수 있고, 충전과 방전시 온도가 상승한다.The performance of a battery can be largely determined by its temperature, and the temperature rises during charging and discharging.
배터리는 그 사용이 계속됨에 따라 전해질 분해가 일어나 배터리의 성능이 떨어지고 수명이 점차 단축된다.As the battery continues to be used, electrolyte decomposition may occur, degrading battery performance and gradually decreasing its lifespan.
배터리는 다수의 배터리모듈을 포함할 수 있고, 다수의 배터리모듈은 서로 간의 온도차가 최소화되게 관리되는 것이 바람직하다.The battery may include a plurality of battery modules, and the plurality of battery modules may be managed to minimize the temperature difference between each other.
차량에는 이러한 배터리모듈의 과열을 방지하여 배터리모듈의 성능을 유지시키기 위해 배터리모듈을 냉각시키는 배터리 냉각장치가 설치될 수 있다.The vehicle may be provided with a battery cooling device for cooling the battery module to prevent the battery module from overheating to maintain the performance of the battery module.
배터리 냉각장치는 냉각 방식에 따라, 공랭식 배터리 냉각장치, 수냉식 배터리 냉각장치 및 냉매식 배터리 냉각장치로 구분될 수 있다.The battery cooler may be classified into an air-cooled battery cooler, a water-cooled battery cooler, and a refrigerant battery cooler according to a cooling method.
냉매식 배터리 냉각장치는 냉매를 압축하는 압축기, 압축기에서 압축된 냉매가 응축되는 응축기와, 응축기에서 응축된 냉매를 팽창시키는 팽창밸브와, 팽창밸브에 의해 팽창된 냉매가 통과하고 배터리모듈과 접촉된 배터리모듈 열교환기를 포함할 수 있다.The refrigerant type battery cooling device includes a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed in the compressor, an expansion valve for expanding the refrigerant condensed in the condenser, and a refrigerant expanded by the expansion valve to be in contact with the battery module. It may include a battery module heat exchanger.
압축기의 구동시, 압축기에서 압축된 냉매는 응축기와 팽창밸브와 배터리 열교환기를 순차적으로 통과한 후 압축기로 흡입될 수 있고, 냉매는 배터리 열교환기를 통과하면서 배터리모듈의 열을 흡열할 수 있다.When the compressor is driven, the refrigerant compressed in the compressor may be sequentially passed through the condenser, the expansion valve, and the battery heat exchanger, and then sucked into the compressor, and the refrigerant may absorb heat of the battery module while passing through the battery heat exchanger.
배터리모듈을 냉각시키는 배터리 열교환기는 구조가 복잡하지 않고, 차량이 및 배터리 열교환기가 기울어지는 경우에도 냉매를 고루 분배하는 것이 바람직하다.The battery heat exchanger for cooling the battery module is not complicated in structure, and it is preferable to distribute the refrigerant evenly when the vehicle and the battery heat exchanger are inclined.
본 발명은 차량이 기울어지는 조건에서도 헤더 내의 냉매가 복수의 냉매튜브로 고르게 분배될 수 있는 배터리 열교환기 및 그를 갖는 차량용 배터리 팩을 제공하는데 그 목적이 있다. An object of the present invention is to provide a battery heat exchanger and a vehicle battery pack having the same, in which the refrigerant in the header can be evenly distributed to the plurality of refrigerant tubes even when the vehicle is inclined.
본 발명의 일 실시 예에 따른 배터리 열교환기는 복수의 냉매튜브 삽입공이 형성된 한 쌍의 수평헤더와; 한 쌍의 수평헤더에 연결되고 냉매튜브 삽입공를 통해 냉매유로로 삽입된 이너 튜브부와, 한 쌍의 수평헤더 사이에 위치하는 아우터 튜브부를 갖는 복수의 냉매튜브와; 이너 튜브부의 외면과 수평헤더의 내면을 접합하는 접합재를 포함하고, 복수의 냉매튜브 삽입공은 수평헤더의 길이방향으로 이격되고, 이너 튜브부의 하단과 수평헤더의 내측 저면 사이에는 접합재의 적어도 일부가 위치되는 틈이 형성되며, 틈의 높이는 수평헤더의 중심선과 수평헤더의 내측 저면 사이의 높이의 0.1배 내지 0.4배이다.The battery heat exchanger according to an embodiment of the present invention includes a pair of horizontal headers having a plurality of refrigerant tube insertion holes formed therein; A plurality of refrigerant tubes connected to the pair of horizontal headers and having an inner tube portion inserted into the refrigerant passage through the refrigerant tube insertion hole, and an outer tube portion positioned between the pair of horizontal headers; And a bonding material for joining the outer surface of the inner tube portion to the inner surface of the horizontal header, wherein the plurality of refrigerant tube insertion holes are spaced apart in the longitudinal direction of the horizontal header, and at least a portion of the bonding material is disposed between the lower end of the inner tube portion and the inner bottom of the horizontal header. A gap to be located is formed, and the height of the gap is 0.1 to 0.4 times the height between the centerline of the horizontal header and the inner bottom of the horizontal header.
배터리 열교환기를 갖는 배터리 팩은 적어도 하나의 배터리모듈과; 배터리모듈이 올려진 배터리 열교환기를 포함하고, 배터리 열교환기는 쿨링 플레이트와; 쿨링 플레이트 저면에 배치된 복수의 냉매튜브와, 쿨링 플레이트의 옆에 수평하게 배치되며 내부에 냉매유로가 형성되며 쿨링 플레이트의 길이방향으로 이격된 한 쌍의 수평헤더를 포함하고, 한 쌍의 수평헤더 각각은 복수의 냉매튜브 삽입공이 수평헤더의 길이 방향으로 이격되고, 복수의 냉매튜브는 냉매튜브 삽입공를 통해 냉매유로로 삽입된 이너 튜브부와, 한 쌍의 수평헤더 사이에 위치하는 아우터 튜브부를 포함하며, 이너 튜브부의 외면과 수평헤더의 내면은 접합재로 접합되고, 이너 튜브부의 하단과 수평헤더의 내측 저면 사이에는 상기 접합재의 적어도 일부가 위치되는 틈이 형성되며, 틈의 높이는 수평헤더의 중심선과 수평헤더의 내측 저면 사이의 높이의 0.1배 내지 0.4배이다. A battery pack having a battery heat exchanger includes at least one battery module; A battery heat exchanger on which the battery module is mounted, the battery heat exchanger comprising: a cooling plate; A plurality of coolant tubes disposed on the bottom of the cooling plate, and a pair of horizontal headers arranged horizontally next to the cooling plate and having a coolant flow path formed therein and spaced in the longitudinal direction of the cooling plate, and a pair of horizontal headers Each of the plurality of refrigerant tube insertion holes is spaced apart in the longitudinal direction of the horizontal header, the plurality of refrigerant tubes include an inner tube portion inserted into the refrigerant flow path through the refrigerant tube insertion hole, and the outer tube portion located between the pair of horizontal headers The outer surface of the inner tube portion and the inner surface of the horizontal header are joined by a joining material, and a gap is formed between the lower end of the inner tube portion and the inner bottom of the horizontal header, and a gap in which at least a portion of the joining material is located is formed, and the height of the gap is the centerline of the horizontal header. 0.1 to 0.4 times the height between the inner bottom of the horizontal header.
냉매튜브 삽입공은 상기 중심선을 기준으로 하측으로 편심될 수 있다. The refrigerant tube insertion hole may be eccentrically downward based on the center line.
냉매튜브 삽입공은 그 전부가 상기 중심선의 아래에 위치할 수 있다. All of the refrigerant tube insertion holes may be located below the center line.
틈의 높이는 0.9mm 내지 1.1mm일 수 있다. The height of the gap may be 0.9 mm to 1.1 mm.
수평헤더의 수력학적 직경은 배터리 열교환기의 정격 유량의 0.25배 내지 0.5배일 수 있다.The hydraulic diameter of the horizontal header may be 0.25 to 0.5 times the rated flow rate of the battery heat exchanger.
냉매유로의 단면 형상은 사각형일 수 있다. The cross-sectional shape of the refrigerant passage may be rectangular.
냉매유로의 단면 형상은 반원형일 수 있다. The cross-sectional shape of the refrigerant passage may be semicircular.
수평헤더의 길이방향 중앙에는 냉매가 출입되는 연결튜브가 연결될 수 있다. 연결튜브는 냉매튜브 보다 더 높게 연결될 수 있다.The connection tube through which the refrigerant flows may be connected to the longitudinal center of the horizontal header. The connecting tube can be connected higher than the refrigerant tube.
본 발명의 실시 예에 따르면, 수평헤더와 냉매튜브의 접합시 접합재가 냉매튜브로 유입되는 것을 최소화할 수 있고, 접합재에 의해 냉매튜브가 막히는 것으로 최소화할 수 있는 이점이 있다.According to an exemplary embodiment of the present invention, when the horizontal header and the refrigerant tube are joined, the bonding material may be minimized from entering the refrigerant tube, and the refrigerant tube may be blocked by the bonding material.
도 1은 본 발명의 실시 예에 따른 배터리 열교환기 및 배터리 팩이 도시된 사시도,1 is a perspective view showing a battery heat exchanger and a battery pack according to an embodiment of the present invention;
도 2은 본 발명의 실시 예에 따른 배터리 팩의 내부가 도시된 단면도,2 is a cross-sectional view showing the inside of a battery pack according to an embodiment of the present invention;
도 3은 도 2에 도시된 냉매튜브가 수평헤더와 브레이징 접합되기 이전일 때의 확대 단면도이며,FIG. 3 is an enlarged cross-sectional view when the refrigerant tube shown in FIG. 2 is before brazing bonding with a horizontal header,
도 4는 도 3에 도시된 냉매튜브가 수평헤더와 브레이징 접합되었을 때의 확대 단면도,4 is an enlarged cross-sectional view when the refrigerant tube shown in FIG. 3 is brazed to a horizontal header;
도 5는 본 발명의 실시 예에 따른 배터리 열교환기의 헤더가 도시된 측면도이고,5 is a side view showing a header of a battery heat exchanger according to an embodiment of the present invention;
도 6은 도 5에 도시된 수평헤더가 기울어졌을 때의 측면도이며,6 is a side view when the horizontal header shown in FIG. 5 is inclined,
도 7은 본 발명이 실시 예와 비교되는 비교예의 수평헤더가 기울어졌을 때의 측면도이고,7 is a side view when the horizontal header of the comparative example in which the present invention is compared with the example is inclined,
도 8은 본 발명의 실시 예의 냉매튜브의 하단과 수평헤더의 내측 하면 사이의 틈에 따른 냉매 튜브의 유량이 도시된 도,8 is a view showing the flow rate of the refrigerant tube along the gap between the lower end of the refrigerant tube and the inner lower surface of the horizontal header of the embodiment of the present invention,
도 9는 본 발명의 실시 예에 따른 수평헤더의 다양한 예가 도시된 단면도,9 is a cross-sectional view showing various examples of a horizontal header according to an embodiment of the present invention;
도 10은 본 발명의 실시 예에 따른 수평헤더의 수력학적 직경에 따른 냉매의 유량이 도시된 도,10 is a view showing the flow rate of the refrigerant according to the hydraulic diameter of the horizontal header according to an embodiment of the present invention,
도 11은 본 발명의 실시 예에 따른 수평헤더의 수력학적 직경에 따른 냉매의 유동 패턴이 도시된 도이다.11 is a view showing a flow pattern of the refrigerant according to the hydraulic diameter of the horizontal header according to an embodiment of the present invention.
이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시 예에 따른 배터리 열교환기 및 배터리 팩이 도시된 사시도이고, 도 2는 본 발명의 실시 예에 따른 배터리 팩의 내부가 도시된 단면도이다.1 is a perspective view showing a battery heat exchanger and a battery pack according to an embodiment of the present invention, Figure 2 is a cross-sectional view showing the inside of the battery pack according to an embodiment of the present invention.
배터리 열교환기(5)는 배터리모듈(4)와 접촉되게 배치되어 배터리모듈(4)의 열을 흡열할 수 있다. 배터리 열교환기(5)는 배터리모듈(4)과 함께 배터리 팩(P)을 구성할 수 있다. The battery heat exchanger 5 may be disposed in contact with the battery module 4 to absorb heat of the battery module 4. The battery heat exchanger 5 may configure the battery pack P together with the battery module 4.
배터리 팩(P)은 차량에 장착되는 캐리어(1)를 더 포함할 수 있고, 배터리 열교환기(5)는 캐리어(1)에 올려질 수 있다. The battery pack P may further include a carrier 1 mounted on the vehicle, and the battery heat exchanger 5 may be mounted on the carrier 1.
배터리 팩(P)은 캐리어(1)의 상면을 덮는 탑 커버(2)를 더 포함할 수 있다. 캐리어(1)와 탑 커버(2)는 배터리 팩(P)의 외관을 형성할 수 있고, 그 사이에는 배터리 열교환기(5)와 배터리모듈(4)이 수용되는 공간이 형성될 수 있다. The battery pack P may further include a top cover 2 covering an upper surface of the carrier 1. The carrier 1 and the top cover 2 may form an appearance of the battery pack P, and a space for accommodating the battery heat exchanger 5 and the battery module 4 may be formed therebetween.
배터리 열교환기(5)는 차량에 구비된 냉동사이클 장치에 냉매배관으로 연결될 수 있고, 냉동사이클 장치의 냉매는 배터리 열교환기(5)로 유입되어 배터리 열교환기(5)를 통과할 수 있다. 냉매는 배터리 열교환기(5)를 통과하면서 배터리모듈(4)에서 배터리 열교환기(5)로 전달된 열을 흡열할 수 있다.The battery heat exchanger 5 may be connected to the refrigeration cycle apparatus provided in the vehicle by a refrigerant pipe, and the refrigerant of the refrigeration cycle apparatus may enter the battery heat exchanger 5 and pass through the battery heat exchanger 5. The refrigerant may absorb heat transferred from the battery module 4 to the battery heat exchanger 5 while passing through the battery heat exchanger 5.
배터리 열교환기(5)가 연결되는 냉동사이클 장치는 압축기와, 응축기와, 팽창기구와, 증발기를 포함할 수 있다. 배터리 열교환기(5)와 증발기는 병렬 또는 직렬로 연결될 수 있다. 팽창기구에 의해 팽창된 2상 냉매는 배터리 열교환기(5)로 유입되어 배터리 열교환기(5)를 냉각시킬 수 있다. The refrigeration cycle apparatus to which the battery heat exchanger 5 is connected may include a compressor, a condenser, an expansion mechanism, and an evaporator. The battery heat exchanger 5 and the evaporator may be connected in parallel or in series. The two-phase refrigerant expanded by the expansion mechanism may flow into the battery heat exchanger 5 to cool the battery heat exchanger 5.
배터리 열교환기(5)가 연결되는 냉동사이클 장치는 압축기와 응축기와, 팽창기구를 포함하되, 별도의 증발기를 포함하지 않는 것도 가능하다. 이 경우, 배터리 열교환기(5)는 냉매 유동방향으로 팽창기구 및 압축기의 사이에 배치되어 증발기로 기능하면서 배터리모듈(4)을 냉각하는 것도 가능함은 물론이다.The refrigeration cycle apparatus to which the battery heat exchanger 5 is connected may include a compressor, a condenser, and an expansion mechanism, but may not include a separate evaporator. In this case, the battery heat exchanger 5 may be arranged between the expansion mechanism and the compressor in the refrigerant flow direction to cool the battery module 4 while functioning as an evaporator.
배터리 팩(P)은 복수의 배터리모듈(4)을 포함할 수 있고, 복수의 배터리모듈(4) 중 적어도 하나는 배터리 열교환기(5) 위에 올려질 수 있으며, 배터리 열교환기(5)에 의해 냉각될 수 있다. 배터리 열교환기(5)에는 복수의 배터리모듈(4)이 올려지는 것이 바람직하고, 이 경우, 배터리 열교환기(5)는 복수의 배터리모듈(4)을 동시에 또는 순차적으로 냉각할 수 있다.The battery pack P may include a plurality of battery modules 4, at least one of the plurality of battery modules 4 may be mounted on the battery heat exchanger 5, and may be disposed by the battery heat exchanger 5. Can be cooled. Preferably, a plurality of battery modules 4 are mounted on the battery heat exchanger 5. In this case, the battery heat exchanger 5 may cool the plurality of battery modules 4 simultaneously or sequentially.
배터리 열교환기(5)에는 적어도 하나의 배터리모듈(4)이 올려질 수 있고, 배터리 열교환기(5)는 그 상측에 위치하는 적어도 하나의 배터리모듈(4)을 냉각할 수 있다. At least one battery module 4 may be mounted on the battery heat exchanger 5, and the battery heat exchanger 5 may cool at least one battery module 4 positioned above the battery heat exchanger 5.
배터리 열교환기(5)는 한 쌍의 수평헤더(110)(120)와, 한 쌍의 수평헤더(110)(120)에 연결된 복수의 냉매튜브(130)를 포함할 수 있다. The battery heat exchanger 5 may include a pair of horizontal headers 110 and 120 and a plurality of refrigerant tubes 130 connected to the pair of horizontal headers 110 and 120.
배터리 팩(P)은 적어도 하나의 배터리모듈(4)이 복수의 냉매튜브(130)에 올려지고, 적어도 하나의 배터리모듈(4)은 복수의 냉매튜브(130)에 의해 냉각될 수 있다.The battery pack P may have at least one battery module 4 mounted on the plurality of refrigerant tubes 130, and the at least one battery module 4 may be cooled by the plurality of refrigerant tubes 130.
배터리 열교환기(5)는 복수의 냉매튜브(130)가 접촉되는 별도의 쿨링 플레이트(140)를 더 포함할 수 있다. 배터리 열교환기(5)가 쿨링 플레이트(140)를 더 포함할 경우, 복수의 냉매튜브(130)는 쿨링 플레이트(140)의 저면에 배치될 수 있다. 복수의 냉매튜브(130)는 쿨링 플레이트(140)의 저면에 쿨링 플레이트(140)에 접촉되게 배치될 수 있다.The battery heat exchanger 5 may further include a separate cooling plate 140 to which the plurality of refrigerant tubes 130 are in contact. When the battery heat exchanger 5 further includes a cooling plate 140, the plurality of refrigerant tubes 130 may be disposed on the bottom surface of the cooling plate 140. The plurality of refrigerant tubes 130 may be disposed to contact the cooling plate 140 on the bottom surface of the cooling plate 140.
그리고, 한 쌍의 수평헤더(110)(120)는 쿨링 플레이트(140)의 옆에 수평하게 배치될 수 있다. 복수의 배터리모듈(4)의 하부 및 쿨링 플레이트(140)는 한 쌍의 헤더(110)(120)의 사이에 위치할 수 있고, 한 쌍의 수평헤더(110)(120)에 의해 보호될 수 있다. 한 쌍의 수평헤더(110)(120) 사이의 공간 중 쿨링 플레이트(140)의 상부의 공간(S1)는 복수의 배터리모듈(4) 각각의 하부가 수용되는 공간일 수 있다. In addition, the pair of horizontal headers 110 and 120 may be disposed horizontally next to the cooling plate 140. Lower and cooling plates 140 of the plurality of battery modules 4 may be located between the pair of headers 110 and 120 and may be protected by a pair of horizontal headers 110 and 120. have. The space S1 of the upper portion of the cooling plate 140 among the spaces between the pair of horizontal headers 110 and 120 may be a space in which the lower portions of the plurality of battery modules 4 are accommodated.
한 쌍의 헤더(110)(120)는 쿨링 플레이트(140)의 길이방향으로 이격될 수 있다. 한 쌍의 수평헤더(110)(120)는 쿨링 플레이트(140)의 길이(L2) 보다 큰 간격(L3)을 두고 이격될 수 있다. 한 쌍의 수평헤더(110)(120) 각각은 쿨링 플레이트(140)와 이격될 수 있다.The pair of headers 110 and 120 may be spaced apart in the longitudinal direction of the cooling plate 140. The pair of horizontal headers 110 and 120 may be spaced apart from each other at a distance L3 greater than the length L2 of the cooling plate 140. Each of the pair of horizontal headers 110 and 120 may be spaced apart from the cooling plate 140.
한 쌍의 수평헤더(110)(120) 각각은 내부에 냉매유로(T)가 형성될 수 있다. 한 쌍의 수평헤더(110)(120) 각각에는 복수의 냉매튜브 삽입공(112)이 형성될 수 있다. 냉매튜브 삽입공(112)은 한 쌍의 수평헤더(110)(120) 각각에 타 수평헤더를 마주보게 형성될 수 있다. Each of the pair of horizontal headers 110 and 120 may have a refrigerant passage T formed therein. A plurality of refrigerant tube insertion holes 112 may be formed in each of the pair of horizontal headers 110 and 120. The refrigerant tube insertion hole 112 may be formed to face the other horizontal header on each of the pair of horizontal headers 110 and 120.
배터리 팩(P)는 냉매튜브 삽입공(112)의 형성 높이에 따라, 그 전체의 높이가 결정될 수 있다.The height of the battery pack P may be determined according to the formation height of the refrigerant tube insertion hole 112.
냉매튜브 삽입공(112)의 형성 높이가 높으면, 냉매튜브(130)의 높이가 높고, 배터리모듈(4)의 높이가 높을 수 있다. 이 경우, 배터리모듈(4) 중 한 쌍의 수평헤더(110)(120) 사이에 위치하는 부분은 작을 수 있고, 배터리 팩(P)의 전체 높이(L1)는 높을 수 있다. When the formation height of the coolant tube insertion hole 112 is high, the height of the coolant tube 130 may be high and the height of the battery module 4 may be high. In this case, a portion located between the pair of horizontal headers 110 and 120 of the battery module 4 may be small, and the overall height L1 of the battery pack P may be high.
반대로, 냉매튜브 삽입공(112)의 형성 높이가 낮으면, 냉매튜브(130)의 높이가 낮고, 배터리모듈(4)의 높이도 낮을 수 있다. 이 경우, 배터리모듈(4) 중 한 쌍의 수평헤더(110)(120) 사이에 수용되는 부분은 많을 수 있으며, 배터리 팩(P)의 전체 높이(L1)는 낮을 수 있다. On the contrary, when the formation height of the coolant tube insertion hole 112 is low, the height of the coolant tube 130 may be low and the height of the battery module 4 may also be low. In this case, a portion accommodated between the pair of horizontal headers 110 and 120 of the battery module 4 may be large, and the overall height L1 of the battery pack P may be low.
냉매튜브 삽입공(112)은 한 쌍의 수평헤더(110)(120) 중 비교적 낮은 높이에 형성되는 것이 바람직하다. The coolant tube insertion hole 112 is preferably formed at a relatively low height among the pair of horizontal headers 110 and 120.
복수의 냉매튜브(130) 각각은 한 쌍의 수평헤더(110)(120)에 연결될 수 있다. Each of the plurality of refrigerant tubes 130 may be connected to a pair of horizontal headers 110 and 120.
복수의 냉매튜브(130) 각각은 냉매튜브 삽입공을 통해 냉매유로(T)로 삽입된 이너 튜브부(132)와, 한 쌍의 수평헤더(110)(120) 사이에 위치하는 아우터 튜브부(134)를 갖을 수 있다. Each of the plurality of coolant tubes 130 may include an inner tube part 132 inserted into the coolant flow path T through a coolant tube insertion hole, and an outer tube part positioned between the pair of horizontal headers 110 and 120. 134).
이너 튜브부(132)는 아우터 튜브부(134)의 양측에 각각 구비될 수 있고, 복수의 냉매튜브(130)는 한 쌍의 이너 튜브부(132) 사이에 아우터 튜브부(134)가 위치할 수 있다. The inner tube part 132 may be provided at both sides of the outer tube part 134, and the plurality of refrigerant tubes 130 may include the outer tube part 134 between the pair of inner tube parts 132. Can be.
이너 튜브부(132)는 수평헤더(110)(120) 각각과 고정되는 고정 튜브부일 수 있다. 이너 튜브부(132)는 냉매튜브 삽입공(112)을 통해 수평헤더(110)(120)의 내부로 삽입된 상태에서 브레이징 접합 등의 공법으로 수평헤더(110)(120)에 접합될 수 있다. The inner tube part 132 may be a fixed tube part fixed to each of the horizontal headers 110 and 120. The inner tube part 132 may be joined to the horizontal headers 110 and 120 by a method such as brazing bonding in a state of being inserted into the horizontal headers 110 and 120 through the refrigerant tube insertion hole 112. .
아우터 튜브부(134)는 외면이 배터리모듈(4)의 저면에 직접 접촉되거나 쿨링 플레이트(140)의 저면에 접촉되는 접촉 튜브부일 수 있다. The outer tube portion 134 may be a contact tube portion whose outer surface directly contacts the bottom surface of the battery module 4 or contacts the bottom surface of the cooling plate 140.
아우터 튜브부(134)는 내부에 하나의 냉매유로가 형성된 튜브부로 구성되는 것이 가능하고, 내부에 복수의 냉매채널이 형성된 플랫튜브부로 구성되는 것이 가능하다. The outer tube part 134 may be configured as a tube part in which one refrigerant passage is formed, and may be configured as a flat tube part in which a plurality of refrigerant channels are formed.
배터리 열교환기(5)는 도 1에 도시된 바와 같이, 복수의 열교환모듈(101)(102)(103)(104)(105)을 포함할 수 있고, 복수의 열교환모듈(101)(102)(103)(104)(105)은 연결튜브(106)로 연결될 수 있다. 복수의 열교환모듈(101)(102)(103)(104)(105)는 연결튜브(106)가 직렬 또는 병렬로 연결될 수 있다. 복수의 열교환모듈(101)(102)(103)(104)(105)은 서로 이격되게 위치될 수 있고, 연결튜브(106)에 의해 연결될 수 있다. As shown in FIG. 1, the battery heat exchanger 5 may include a plurality of heat exchange modules 101, 102, 103, 104, and 105, and a plurality of heat exchange modules 101 and 102. The 103, 104, and 105 may be connected to the connection tube 106. In the plurality of heat exchange modules 101, 102, 103, 104, and 105, the connection tubes 106 may be connected in series or in parallel. The plurality of heat exchange modules 101, 102, 103, 104, and 105 may be spaced apart from each other, and may be connected by a connection tube 106.
복수의 열교환모듈(101)(102)(103)(104)(105)은 캐리어(1) 내부에 전후 방향으로 이격되게 배치될 수 있고, 적어도 하나가 나머지들과 상하 방향으로 이격되게 배치될 수 있다. The plurality of heat exchange modules 101, 102, 103, 104, and 105 may be disposed in the carrier 1 to be spaced apart in the front and rear directions, and at least one may be spaced apart in the vertical direction from the others. have.
복수의 열교환모듈(101)(102)(103)(104)(105) 각각은 수평헤더(110)(120)와, 복수의 냉매튜브(130)와, 쿨링 플레이트(140)를 포함할 수 있다.Each of the plurality of heat exchange modules 101, 102, 103, 104, and 105 may include horizontal headers 110 and 120, a plurality of refrigerant tubes 130, and a cooling plate 140. .
도 3은 도 2에 도시된 냉매튜브가 수평헤더와 브레이징 접합되기 이전일 때의 확대 단면도이고, 도 4는 도 3에 도시된 냉매튜브가 수평헤더와 브레이징 접합되었을 때의 확대 단면도이며, 도 5는 본 발명의 실시 예에 따른 배터리 열교환기의 헤더가 도시된 측면도이고, 도 6은 도 5에 도시된 수평헤더가 기울어졌을 때의 측면도이며, 도 7은 본 발명이 실시 예와 비교되는 비교예의 수평헤더가 기울어졌을 때의 측면도이고, 도 8은 본 발명의 실시 예의 냉매튜브의 하단과 수평헤더의 내측 하면 사이의 틈에 따른 냉매튜브의 유량이 도시된 도이다.3 is an enlarged cross-sectional view when the refrigerant tube shown in FIG. 2 is before brazing bonding with the horizontal header, and FIG. 4 is an enlarged cross-sectional view when the refrigerant tube shown in FIG. 3 is brazing bonding with the horizontal header, and FIG. 6 is a side view illustrating a header of a battery heat exchanger according to an embodiment of the present invention, FIG. 6 is a side view when the horizontal header shown in FIG. 5 is inclined, and FIG. 7 is a comparative example of the present invention compared with an embodiment. 8 is a side view when the horizontal header is inclined, and FIG. 8 is a view illustrating a flow rate of the refrigerant tube along a gap between a lower end of the refrigerant tube and an inner lower surface of the horizontal header.
한 쌍의 수평헤더(110)(120) 각각은 복수의 냉매튜브 삽입공(112)이 형성될 수 있고, 복수의 냉매튜브 삽입공(112)은 수평헤더(110)(120)의 길이방향(X)으로 이격될 수 있다. Each of the pair of horizontal headers 110 and 120 may have a plurality of refrigerant tube insertion holes 112 formed therein, and the plurality of refrigerant tube insertion holes 112 may extend in the longitudinal direction of the horizontal headers 110 and 120. X) can be spaced apart.
배터리 열교환기(4)는 이너 튜브부(132)의 외면(133)과 수평헤더(110)(120)의 내면(113)을 접합하는 접합재(150)를 포함할 수 있다. The battery heat exchanger 4 may include a bonding material 150 for joining the outer surface 133 of the inner tube part 132 and the inner surface 113 of the horizontal header 110 and 120.
도 3을 참조하면, 냉매튜브(130)와 수평헤더(110)(120)의 브레이징 접합 전 접합재(150')는 수평헤더(110)(120)의 내면에 얇고 고르게 형성된 상태일 수 있다. Referring to FIG. 3, the bonding material 150 ′ before the brazing bonding of the refrigerant tube 130 and the horizontal header 110 and 120 may be thin and evenly formed on the inner surface of the horizontal header 110 and 120.
냉매튜브(130)의 일부를 냉매튜브 삽입공(112)에 삽입한 상태에서, 냉매튜브(130)와 수평헤더(110)(120)를 함께 브레이징 로(미도시)에 투입하면, 도 3에 도시된 바와 같이, 수평헤더(110)(120)의 내면에 고르게 형성되어 있던 접합재(150')는 용융되어 수평헤더(110)(120)의 내면을 따라 흐르고, 모세관 현상에 의해 이너 튜브부(132)의 외면과 냉매튜브 삽입공(112) 사이를 메우면서 이너 튜브부(132)의 외둘레를 따라 전체적으로 라운드 형상으로 접합될 수 있다. When a portion of the coolant tube 130 is inserted into the coolant tube insertion hole 112, the coolant tube 130 and the horizontal header 110 and 120 are put together in a brazing furnace (not shown). As shown, the bonding material 150 'formed evenly on the inner surface of the horizontal header 110, 120 is melted and flows along the inner surface of the horizontal header 110, 120, the inner tube portion ( It may be joined in a round shape as a whole along the outer circumference of the inner tube part 132 while filling the outer surface of the 132 and the refrigerant tube insertion hole 112.
접합재(150)는 일부가 이너 튜브부(132)의 외면과 수평헤더(110)(120)의 내측 저면(113A) 사이에 위치될 수 있다. A portion of the bonding material 150 may be located between the outer surface of the inner tube part 132 and the inner bottom surface 113A of the horizontal header 110 and 120.
이너 튜브부(132)의 하단(133A)과 수평헤더(110)(120)의 내측 저면(113A) 사이에는 접합재(150)의 적어도 일부가 위치되는 틈(131)이 형성될 수 있다. A gap 131 may be formed between at least a portion of the bonding material 150 between the lower end 133A of the inner tube part 132 and the inner bottom 113A of the horizontal header 110 and 120.
틈(131)의 높이(G)는 수평헤더(110)(120)의 중심선(S2)과 수평헤더의 내측 저면(113A) 사이의 높이(H)의 0.1배 내지 0.4배일 수 있다. The height G of the gap 131 may be 0.1 to 0.4 times the height H between the center line S2 of the horizontal header 110 and 120 and the inner bottom surface 113A of the horizontal header.
여기서, 수평헤더(110)(120)의 중심선(S2)은 수평헤더(110)(120)를 상부와 하부로 2등분할 수 있는 가상선으로서, 수평방향으로 길 수 있다.Here, the center line S2 of the horizontal headers 110 and 120 is an imaginary line capable of dividing the horizontal headers 110 and 120 into upper and lower portions, and may be long in the horizontal direction.
냉매튜브 삽입공(112)은 중심선(S2)을 기준으로 하측으로 편심될 수 있다. 냉매튜브 삽입공(112)은 그 전부가 중심선(S2)의 아래에 위치하는 것이 가능하다. 냉매튜브 삽입공(112)은 중심선(S2)의 아래에 위치하는 영역이 중심선(S2)의 위에 위치하는 영역보다 크게 편심되는 것도 가능함은 물론이다.The coolant tube insertion hole 112 may be eccentrically downward based on the center line S2. The refrigerant tube insertion hole 112 may be located below the center line (S2) of the whole. Of course, the coolant tube insertion hole 112 may be eccentrically larger than a region located below the center line S2.
틈(131)의 높이(G)가 낮을 경우, 브레이징 접합시 용융된 접합재는 이너 튜브부(132)의 내부로 침투되어 이너 튜브부(132)의 내부를 막을 수 있다. When the height G of the gap 131 is low, the molten bonding material may penetrate into the inner tube part 132 and block the inside of the inner tube part 132 during brazing bonding.
이너 튜브부(132)의 하단(133A)과 수평헤더(110)(120)의 내측 저면(113A) 사이의 틈(131) 높이는 융융 접합재가 침투되지 않는 높이로 형성되는 것이 바람직하고, 대략 0.9mm 내지 1.1mm일 수 있다.The height of the gap 131 between the lower end 133A of the inner tube part 132 and the inner bottom 113A of the horizontal header 110 and 120 is preferably formed to a height at which the molten bonding material does not penetrate, and is approximately 0.9 mm. To 1.1 mm.
틈(131)의 높이(G)가 0.9mm 내지 1.1mm 일 경우, 용융 접합재는 이너 튜브부(132)의 내부로 침투되는 것을 최소화할 수 있고, 브레이징 접합의 신뢰성은 확보될 수 있다. When the height G of the gap 131 is 0.9 mm to 1.1 mm, the molten bonding material may be minimized to penetrate into the inner tube part 132, and reliability of the brazing joint may be secured.
도 6은 틈(131)의 높이(G)가 수평헤더(110)(120)의 중심선(S2)과 수평헤더(110)(120)의 내측 저면(113A) 사이 높이(H)의 0.1배 내지 0.4배일 때의 냉매 유동이 도시된 도이고, 도 7은 복수의 냉매튜브 모두가 수평헤더의 중앙 높이에 위치할 때의 냉매 유동이 도시된 도이다. 6 shows that the height G of the gap 131 is 0.1 times the height H between the center line S2 of the horizontal header 110 and 120 and the inner bottom 113A of the horizontal header 110 and 120. The refrigerant flow when 0.4 times is shown, and FIG. 7 is a diagram showing the refrigerant flow when all the plurality of refrigerant tubes are located at the center height of the horizontal header.
수평헤더(110)(120)가 도 6에 도시된 바와 같이, 기울어졌을 때, 복수의 냉매튜브(130)는 지면으로부터의 높이는 서로 상이할 수 있다. 6, when the horizontal headers 110 and 120 are inclined, the plurality of refrigerant tubes 130 may have different heights from the ground.
복수의 냉매튜브(130)는 기울어졌을 때, 도 6에 도시된 바와 같이, 가장 높이가 낮은 제1냉매튜브(130A)과, 제1냉매튜브(130A)와 수평헤더의 길이방향으로 인접하고 제1냉매튜브(130A) 보다 높은 제2냉매튜브(130B)와, 제2냉매튜브(130B)와 수평헤더의 길이방향으로 인접하고 제2냉매튜브(130B) 보다 높은 제3냉매튜브(130C)와, 가장 높이가 높은 제4냉매튜브(130D)를 포함할 수 있다.When the plurality of refrigerant tubes 130 are inclined, as illustrated in FIG. 6, the first refrigerant tubes 130A having the lowest height are adjacent to each other in the longitudinal direction of the horizontal header and the first refrigerant tubes 130A. The second refrigerant tube 130B higher than the first refrigerant tube 130A, the third refrigerant tube 130C adjacent to the second refrigerant tube 130B in the longitudinal direction of the horizontal header, and higher than the second refrigerant tube 130B; , The fourth refrigerant tube 130D having the highest height.
수평헤더(110)(120)가 15° 기울어지더라도, 복수의 냉매튜브(130) 모두의 높이는 낮고, 수평헤더(110)(120) 내의 냉매는 모든 냉매튜브(130A)(130B)(130C)(130D)로 고르게 공급될 수 있다. Even when the horizontal headers 110 and 120 are inclined by 15 °, the heights of all the plurality of refrigerant tubes 130 are low, and the refrigerant in the horizontal headers 110 and 120 is all the refrigerant tubes 130A, 130B, and 130C. It can be supplied evenly to 130D.
그러나, 도 7에 도시된 비교예는 수평헤더(110)(120)가 대략 15°기울어졌을 때, 가장 높이가 높은 냉매튜브(130D)로 냉매가 공급되지 못하는 것이 확인될 수 있고, 이 경우 냉매는 복수의 냉매튜브 모두에 고르게 분배되지 못한다. However, in the comparative example shown in FIG. 7, when the horizontal headers 110 and 120 are tilted approximately 15 °, it may be confirmed that the refrigerant cannot be supplied to the refrigerant tube 130D having the highest height. Is not evenly distributed over all of the plurality of refrigerant tubes.
도 8은 냉매튜브의 위치와 틈에 따른 냉매튜브의 유량이 도시된 도로서, 수평헤더(110)(120)가 대략 15°기울어지고 복수의 냉매튜브(130)의 높이가 상이할 때, 각 냉매튜브(130)의 유량이 도시된 도이다.8 is a view showing the flow rate of the refrigerant tube according to the position and the gap of the refrigerant tube, when the horizontal header 110, 120 is tilted approximately 15 ° and the height of the plurality of refrigerant tubes 130 are different, The flow rate of the refrigerant tube 130 is shown.
틈(131)의 높이(G)가 수평헤더(110)(120)의 중심선(S2)과 수평헤더(110)(120)의 내측 저면(113A) 사이 높이(H)의 0.1배 내지 0.4배일 때, 높이가 상이한 모든 냉매튜브(130A)(130B)(130C)(130D)의 유량이 비교적 고른 것을 확인할 수 있다.When the height G of the gap 131 is 0.1 times to 0.4 times the height H between the centerline S2 of the horizontal headers 110 and 120 and the inner bottom 113A of the horizontal headers 110 and 120. , It can be seen that the flow rates of all the refrigerant tubes 130A, 130B, 130C, and 130D having different heights are relatively even.
반면에, 틈(131)의 높이(G)가 수평헤더(110)(120)의 중심선(S2)과 수평헤더(110)(120)의 내측 저면(113A) 사이 높이(H)의 0.5배일 경우에는 가장 높이가 높은 냉매튜브(130D)의 유량이 급격하게 감소하는 것을 확인할 수 있다. On the other hand, when the height G of the gap 131 is 0.5 times the height H between the centerline S2 of the horizontal headers 110 and 120 and the inner bottom 113A of the horizontal headers 110 and 120. It can be seen that the flow rate of the refrigerant tube 130D having the highest height decreases drastically.
도 9는 본 발명의 실시 예에 따른 수평헤더의 다양한 예가 도시된 단면도이고, 도 10은 본 발명의 실시 예에 따른 수평헤더의 수력학적 직경에 따른 냉매의 유량이 도시된 도이며, 도 11은 본 발명의 실시 예에 따른 수평헤더의 수력학적 직경에 따른 냉매의 유동 패턴이 도시된 도이다. 9 is a cross-sectional view showing various examples of the horizontal header according to an embodiment of the present invention, Figure 10 is a view showing the flow rate of the refrigerant according to the hydraulic diameter of the horizontal header according to an embodiment of the present invention, Figure 11 The flow pattern of the refrigerant according to the hydraulic diameter of the horizontal header according to an embodiment of the present invention is shown.
수평헤더(110)(120)는 내부의 냉매유로(T)의 단면이 원형, 사각형, 사다리꼴 등의 다양한 형상으로 형성될 수 있다.The horizontal headers 110 and 120 may be formed in various shapes, such as a cross section of a refrigerant passage T inside, a circle, a quadrangle, and a trapezoid.
도 9의 (a)는 냉매유로(T)의 단면 형상이 사각형인 수평헤더가 도시된 예이고, 도 9의 (b)는 냉매유로(T)의 단면 형상이 반원형인 수평헤더가 도시된 예이고, 도 9의 (c)는 냉매유로(T)의 단면 형상이 사다리꼴에 가까운 형상인 수평헤더가 도시된 예이다. 9A illustrates an example of a horizontal header having a rectangular cross-sectional shape of the refrigerant passage T, and FIG. 9B illustrates an example of a horizontal header having a semicircular cross-sectional shape of the refrigerant passage T. 9C is an example in which the horizontal header whose cross-sectional shape of the refrigerant flow path T is close to a trapezoid is shown.
수평헤더(110)(120)의 수력학적 직경(Dh)은 배터리 열교환기(4)의 정격 유량(A)의 0.25배 초과이고, 0.5배 미만일 수 있다. The hydraulic diameter Dh of the horizontal headers 110 and 120 may be greater than 0.25 times and less than 0.5 times the rated flow rate A of the battery heat exchanger 4.
수평헤더(110)(120)의 수력학적 직경(Dh)은 유로(T)의 단면 형태와 상관없이, 4 X Ac/Pc로 정의되고, 여기서, Ac는 냉매가 흐르는 냉매유로의 단면적이고, Pc는 냉매유로의 단면 중 냉매를 둘러싸는 선의 길이를 가리킬 수 있다. The hydrodynamic diameter Dh of the horizontal headers 110 and 120 is defined as 4 X Ac / Pc, irrespective of the cross-sectional shape of the flow path T, where Ac is the cross section of the coolant flow path through which the coolant flows, and Pc May indicate the length of a line surrounding the refrigerant in the cross section of the refrigerant passage.
수평헤더(110)(120)가 내경이 D인 원형 파이프일 경우, 수평헤더(110)(120)의 수력학적 직경(Dh)는 4(πD2/4)/πD이고, 한변의 길이가 a인 정사각형 덕트 형상일 경우, 수평헤더(110)(120)의 수력학적 직경(Dh)는 4a2/4a이며, 단변이 a이고, 장변이 b인 직사각형 덕트 형상일 경우, 수평헤더(110)(120)의 수력학적 직경(Dh)는 2ab/(a+b)일 수 있다. Hydraulic diameter of the horizontal headers 110, 120 when the circular pipe having an inner diameter of D, horizontal headers 110, 120 (Dh) is a 4 (πD 2/4) / πD, the length of one side of a In the case of a square duct shape, the hydraulic diameter Dh of the horizontal header 110 and 120 is 4a 2 / 4a, and in the case of a rectangular duct shape having a short side a and a long side b, the horizontal header 110 ( The hydraulic diameter Dh of 120 may be 2ab / (a + b).
도 10은 냉매튜브의 위치와, 수력학적 직경에 따른 냉매튜브의 유량이 도시된 도이다. 10 is a view showing the position of the refrigerant tube and the flow rate of the refrigerant tube according to the hydraulic diameter.
도 10을 참조하면, 수력학적 직경(Dh)이 A/4 내지 A/2일 경우는 수력학적 직경이 A인 경우 보다 각 냉매튜브의 유량이 많음을 확인할 수 있다. 여기서, A는 열교환기의 정격 유량(kg/kr)이다. Referring to FIG. 10, when the hydraulic diameter Dh is A / 4 to A / 2, it may be confirmed that the flow rate of each refrigerant tube is higher than that of the hydraulic diameter A. FIG. Where A is the rated flow rate (kg / kr) of the heat exchanger.
도 10을 참조하면, 수력학적 직경(Dh)은 A/4 내지 A/2일 경우, 모든 냉매튜브의 유량이 비교적 높은 것을 확인할 수 있다.Referring to FIG. 10, when the hydraulic diameter Dh is A / 4 to A / 2, it can be confirmed that the flow rates of all the refrigerant tubes are relatively high.
도 11의 (a)는 수력학적 직경이 A/4일 경우의 냉매의 분배 패턴이 도시된 측면도이고, 도 11의 (b)는 도 11의 (a)에 도시된 A-A선 단면도이며, 도 11의 (c)는 수력학적 직경이 A/3일 경우의 냉매의 분배 패턴이 도시된 측면도이고, 도 11의 (d)는 도 11의 (c)에 도시된 B-B선 단면도이며, 도 11의 (e)는 수력학적 직경이 A/2일 경우의 냉매의 분배 패턴이 도시된 측면도이고, 도 11의 (f)는 도 11의 (e)에 도시된 C-C선 단면도이다.FIG. 11A is a side view illustrating a distribution pattern of a refrigerant when the hydraulic diameter is A / 4, and FIG. 11B is a cross-sectional view taken along line AA of FIG. 11A, and FIG. 11. (C) is a side view showing the distribution pattern of the refrigerant when the hydraulic diameter is A / 3, Figure 11 (d) is a cross-sectional view taken along the line BB shown in Figure 11 (c), (e) is a side view showing the distribution pattern of the refrigerant when the hydraulic diameter is A / 2, and FIG. 11 (f) is a cross-sectional view along the line CC shown in FIG.
수평헤더(110)(120)에는 냉매가 출입되는 연결튜브(106)가 연결될 수 있고, 냉매는 연결튜브(106)를 통해 수평헤더(110)(120)의 내부로 유입되거나 연결튜브(106)을 통해 수평헤더(110)(120) 외부로 유출될 수 있다. The horizontal headers 110 and 120 may be connected to a connection tube 106 through which refrigerant enters, and the refrigerant flows into the horizontal headers 110 and 120 through the connection tube 106 or the connection tube 106. Through the horizontal header 110, 120 may flow out.
연결튜브(106)는 수평헤더(110)(120)의 길이방향 중앙에 연결될 수 있다. 연결튜브(106)는 외곽측 냉매튜브와 중앙측 냉매튜브 중에서 중앙측 냉매튜브에 더 가깝게 연결될 수 있다. 연결튜브(106)는 한 쌍의 중앙측 냉매튜브의 사이 상측에 위치되게 연결될 수 있다. Connection tube 106 may be connected to the longitudinal center of the horizontal header (110, 120). The connection tube 106 may be connected closer to the center refrigerant tube among the outer refrigerant tube and the center refrigerant tube. The connection tube 106 may be connected to be positioned above the pair of central refrigerant tubes.
연결튜브(106)는 냉매튜브(130) 보다 더 높게 연결될 수 있다. 연결튜브(106)의 하단은 냉매튜브(130)의 상단 보다 높을 수 있다.The connection tube 106 may be connected higher than the refrigerant tube 130. The lower end of the connection tube 106 may be higher than the upper end of the refrigerant tube 130.
도 11을 참조하면, 수평헤더(110)(120)는 수력학적 직경이 A/4일때, 수평헤더의 양 단부로 쏠림이 발생되며, 수력학적 직경이 A/2일 때 수평헤더의 중앙으로 쏠림이 발생되며, 수력학적 직경이 A/3일 때, 복수의 냉매튜브로 고르게 냉매를 공급되는 것을 확인할 수 있다.Referring to FIG. 11, the horizontal headers 110 and 120 are drawn to both ends of the horizontal header when the hydraulic diameter is A / 4, and are drawn to the center of the horizontal header when the hydraulic diameter is A / 2. This occurs, and when the hydraulic diameter is A / 3, it can be seen that the refrigerant is evenly supplied to the plurality of refrigerant tubes.
도 11을 참조하면, 수평헤더(110)(120)는 수력학적 직경이 A/3인 것이 바람직하다. Referring to FIG. 11, the horizontal headers 110 and 120 preferably have a hydraulic diameter of A / 3.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (13)

  1. 내부에 냉매유로가 형성되고 복수의 냉매튜브 삽입공이 형성된 한 쌍의 수평헤더와;A pair of horizontal headers having a refrigerant passage formed therein and a plurality of refrigerant tube insertion holes formed therein;
    상기 한 쌍의 수평헤더에 연결되고 상기 냉매튜브 삽입공를 통해 상기 냉매유로로 삽입된 이너 튜브부와, 상기 한 쌍의 수평헤더 사이에 위치하는 아우터 튜브부를 갖는 복수의 냉매튜브와;A plurality of refrigerant tubes connected to the pair of horizontal headers and having an inner tube portion inserted into the refrigerant passage through the refrigerant tube insertion hole and an outer tube portion positioned between the pair of horizontal headers;
    상기 이너 튜브부의 외면과 상기 수평헤더의 내면을 접합하는 접합재를 포함하고,It includes a bonding material for bonding the outer surface of the inner tube portion and the inner surface of the horizontal header,
    상기 복수의 냉매튜브 삽입공은 상기 수평헤더의 길이방향으로 이격되고, The plurality of refrigerant tube insertion holes are spaced apart in the longitudinal direction of the horizontal header,
    상기 이너 튜브부의 하단과 상기 수평헤더의 내측 저면 사이에는 상기 접합재의 적어도 일부가 위치되는 틈이 형성되며, Between the lower end of the inner tube portion and the inner bottom surface of the horizontal header is formed a gap in which at least a portion of the bonding material is located,
    상기 틈의 높이는 상기 수평헤더의 중심선과 상기 수평헤더의 내측 저면 사이의 높이의 0.1배 내지 0.4배인 배터리 열교환기.And the height of the gap is 0.1 to 0.4 times the height between the center line of the horizontal header and the inner bottom of the horizontal header.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 냉매튜브 삽입공은 상기 중심선을 기준으로 하측으로 편심된 배터리 열교환기.The refrigerant tube insertion hole is a battery heat exchanger eccentrically downward based on the center line.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 냉매튜브 삽입공은 그 전부가 상기 중심선의 아래에 위치하는 배터리 팩.The refrigerant tube insertion hole of the battery pack is located below all of the center line.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 틈의 높이는 0.9mm 내지 1.1mm인 배터리 열교환기.The height of the gap is 0.9mm to 1.1mm battery heat exchanger.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 수평헤더의 수력학적 직경은 상기 배터리 열교환기의 정격 유량의 0.25배 초과이고, 0.5배 미만인 배터리 열교환기. The hydraulic diameter of the horizontal header is greater than 0.25 times and less than 0.5 times the rated flow rate of the battery heat exchanger.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 냉매유로의 단면 형상은 사각형인 배터리 열교환기.The cross-sectional shape of the refrigerant passage is a battery heat exchanger.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 냉매유로의 단면 형상은 반원형인 배터리 열교환기.The cross-sectional shape of the refrigerant passage is a semi-circular battery heat exchanger.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 수평헤더의 길이방향 중앙에는 냉매가 출입되는 연결튜브가 연결되고,The connecting tube through which the refrigerant flows in is connected to the center in the longitudinal direction of the horizontal header,
    상기 연결튜브는 상기 냉매튜브 보다 더 높게 연결된 열교환기.And the connecting tube is connected higher than the refrigerant tube.
  9. 적어도 하나의 배터리모듈과;At least one battery module;
    상기 배터리모듈이 올려진 배터리 열교환기를 포함하고, The battery module includes a battery heat exchanger mounted,
    상기 배터리 열교환기는 쿨링 플레이트와;The battery heat exchanger includes a cooling plate;
    상기 쿨링 플레이트 저면에 배치된 복수의 냉매튜브와,A plurality of refrigerant tubes disposed on the cooling plate bottom surface;
    상기 쿨링 플레이트의 옆에 수평하게 배치되며 내부에 냉매유로가 형성되며 상기 쿨링 플레이트의 길이방향으로 이격된 한 쌍의 수평헤더를 포함하고, It is arranged horizontally next to the cooling plate and a refrigerant flow path is formed therein and includes a pair of horizontal headers spaced in the longitudinal direction of the cooling plate,
    상기 한 쌍의 수평헤더 각각은 복수의 냉매튜브 삽입공이 상기 수평헤더의 길이 방향으로 이격되고,Each of the pair of horizontal headers has a plurality of refrigerant tube insertion holes spaced apart in the longitudinal direction of the horizontal header,
    상기 복수의 냉매튜브는 상기 냉매튜브 삽입공를 통해 상기 냉매유로로 삽입된 이너 튜브부와, 상기 한 쌍의 수평헤더 사이에 위치하는 아우터 튜브부를 포함하며,The plurality of coolant tubes include an inner tube part inserted into the coolant flow path through the coolant tube inserting hole, and an outer tube part located between the pair of horizontal headers,
    상기 이너 튜브부의 외면과 상기 수평헤더의 내면은 접합재로 접합되고,The outer surface of the inner tube portion and the inner surface of the horizontal header are joined by a bonding material,
    상기 이너 튜브부의 하단과 상기 수평헤더의 내측 저면 사이에는 상기 접합재의 적어도 일부가 위치되는 틈이 형성되며,Between the lower end of the inner tube portion and the inner bottom surface of the horizontal header is formed a gap in which at least a portion of the bonding material is located,
    상기 냉매튜브 삽입공은 상기 중심선을 기준으로 하측으로 편심되고, The refrigerant tube insertion hole is eccentrically downward based on the center line,
    상기 틈의 높이는 상기 수평헤더의 중심선과 상기 수평헤더의 내측 저면 사이의 높이의 0.1배 내지 0.4배인 배터리 열교환기를 갖는 배터리 팩.And the height of the gap is between 0.1 and 0.4 times the height between the centerline of the horizontal header and the inner bottom of the horizontal header.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 냉매튜브 삽입공은 상기 중심선을 기준으로 하측으로 편심된 배터리 열교환기를 갖는 배터리 팩.The coolant tube insertion hole has a battery heat exchanger eccentrically downward based on the center line.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 틈의 높이는 0.9mm 내지 1.1mm인 배터리 열교환기를 갖는 배터리 팩.The gap has a height of 0.9mm to 1.1mm battery pack having a battery heat exchanger.
  12. 제 9 항에 있어서,The method of claim 9,
    상기 수평헤더의 수력학적 직경은 상기 배터리 열교환기의 정격 유량의 0.25배 내지 0.5배인 배터리 열교환기를 갖는 배터리 팩.And a hydraulic diameter of the horizontal header is 0.25 to 0.5 times the rated flow rate of the battery heat exchanger.
  13. 제 9 항에 있어서,The method of claim 9,
    상기 수평헤더의 길이방향 중앙에는 냉매가 출입되는 연결튜브가 연결되고,The connecting tube through which the refrigerant flows in is connected to the center in the longitudinal direction of the horizontal header,
    상기 연결튜브는 상기 냉매튜브 보다 더 높게 연결된 배터리 열교환기를 갖는 배터리 팩.And the connection tube has a battery heat exchanger connected higher than the refrigerant tube.
PCT/KR2017/005475 2016-11-15 2017-05-25 Battery heat exchanger and battery pack having same WO2018092999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780070802.1A CN109952682A (en) 2016-11-15 2017-05-25 Battery heat exchanger and the battery pack for having the battery heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160152271A KR20180054382A (en) 2016-11-15 2016-11-15 Heat exchanger and Battery pack having the same
KR10-2016-0152271 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092999A1 true WO2018092999A1 (en) 2018-05-24

Family

ID=62145593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005475 WO2018092999A1 (en) 2016-11-15 2017-05-25 Battery heat exchanger and battery pack having same

Country Status (3)

Country Link
KR (1) KR20180054382A (en)
CN (1) CN109952682A (en)
WO (1) WO2018092999A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640329B1 (en) * 2018-10-19 2024-02-22 삼성에스디아이 주식회사 Battery module
KR102646854B1 (en) 2018-10-19 2024-03-11 삼성에스디아이 주식회사 Battery module
KR102640327B1 (en) 2018-10-19 2024-02-22 삼성에스디아이 주식회사 Large module of battery
KR102640328B1 (en) 2018-10-19 2024-02-22 삼성에스디아이 주식회사 Large module of battery
KR102646853B1 (en) 2018-10-19 2024-03-11 삼성에스디아이 주식회사 Battery module
KR20200044582A (en) 2018-10-19 2020-04-29 삼성에스디아이 주식회사 Large module of battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272137A (en) * 2008-05-07 2009-11-19 Calsonic Kansei Corp Heat exchanger
KR20130057530A (en) * 2011-11-24 2013-06-03 한라비스테온공조 주식회사 Vehicle battery cooling system
US20130164576A1 (en) * 2011-12-22 2013-06-27 In-Hwan Cha Battery module
KR20130113740A (en) * 2012-04-06 2013-10-16 인지컨트롤스 주식회사 Refrigerant manifold for cell
KR20150081516A (en) * 2014-01-06 2015-07-15 희성정밀 주식회사 Battery cooling apparatus for electric vehicle and manufacturing method thereof
KR20160048564A (en) * 2014-10-24 2016-05-04 주식회사 고산 Extrusion type heat exchanger for battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593891B2 (en) * 2012-09-28 2017-03-14 Mahle International Gmbh Heat exchanger
CN204651434U (en) * 2015-05-07 2015-09-16 纳百川控股有限公司 A kind of mouth organ passage parallel flow heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272137A (en) * 2008-05-07 2009-11-19 Calsonic Kansei Corp Heat exchanger
KR20130057530A (en) * 2011-11-24 2013-06-03 한라비스테온공조 주식회사 Vehicle battery cooling system
US20130164576A1 (en) * 2011-12-22 2013-06-27 In-Hwan Cha Battery module
KR20130113740A (en) * 2012-04-06 2013-10-16 인지컨트롤스 주식회사 Refrigerant manifold for cell
KR20150081516A (en) * 2014-01-06 2015-07-15 희성정밀 주식회사 Battery cooling apparatus for electric vehicle and manufacturing method thereof
KR20160048564A (en) * 2014-10-24 2016-05-04 주식회사 고산 Extrusion type heat exchanger for battery

Also Published As

Publication number Publication date
CN109952682A (en) 2019-06-28
KR20180054382A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2018092999A1 (en) Battery heat exchanger and battery pack having same
WO2010067944A1 (en) Middle or large-sized battery pack of novel air cooling structure
WO2013048060A2 (en) Battery pack having a novel cooling structure
WO2015009028A1 (en) Heat exchanger
WO2010013902A2 (en) Medium or large battery pack case with excellent cooling efficiency
WO2017116128A1 (en) Heat exchanger for cooling electrical device
WO2010044553A2 (en) Battery module assembly with improved cooling efficiency
WO2013002507A2 (en) Battery module and battery assembly including same
WO2010098598A2 (en) Medium- to large-size battery pack case having improved uniformity of distribution of coolant flow
WO2012177000A2 (en) Battery pack of novel air cooling structure
WO2012020941A2 (en) Battery pack of novel structure
WO2016043441A1 (en) Battery module comprising cooling structure having minimized bending of refrigerant channel
WO2013133636A1 (en) Battery pack having novel air cooling type structure
WO2010071370A2 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
WO2018088655A1 (en) Battery heat exchanger and battery pack having same
WO2017146379A1 (en) Battery module, battery pack and vehicle having same
WO2017150802A1 (en) Battery module, battery pack comprising same, and vehicle
WO2019221376A1 (en) Battery pack comprising frame profile having integral refrigerant circuit member
WO2017026634A1 (en) Heat exchange device for battery of electric vehicle
WO2013165098A1 (en) Battery module and method for manufacturing the same
WO2015130057A1 (en) Battery module
WO2021085911A1 (en) Battery module, and battery rack and power storage device comprising battery module
WO2019004553A1 (en) Battery module
WO2017142290A1 (en) Battery system
WO2018038344A1 (en) Integral radiator and assembly method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871832

Country of ref document: EP

Kind code of ref document: A1