WO2017026634A1 - Heat exchange device for battery of electric vehicle - Google Patents

Heat exchange device for battery of electric vehicle Download PDF

Info

Publication number
WO2017026634A1
WO2017026634A1 PCT/KR2016/005696 KR2016005696W WO2017026634A1 WO 2017026634 A1 WO2017026634 A1 WO 2017026634A1 KR 2016005696 W KR2016005696 W KR 2016005696W WO 2017026634 A1 WO2017026634 A1 WO 2017026634A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
space
plate
electric vehicle
battery
Prior art date
Application number
PCT/KR2016/005696
Other languages
French (fr)
Korean (ko)
Inventor
김홍석
문정욱
박내현
김주현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201680047301.7A priority Critical patent/CN107925141A/en
Publication of WO2017026634A1 publication Critical patent/WO2017026634A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery heat exchanger of an electric vehicle, and more particularly, by installing a battery pack module by reducing the overall weight and volume installed in the vehicle body compared to the existing, it is possible to improve driving distance and improve heat exchange performance.
  • the present invention relates to a battery heat exchanger of an electric vehicle.
  • an electric vehicle is mainly a vehicle that obtains power by driving an AC or DC motor using a battery power, and is classified into a battery-only electric vehicle and a hybrid electric vehicle.
  • the motor is driven by using the battery power and recharged when the power is exhausted.
  • the hybrid electric vehicle uses the fossil fuel to operate the engine to generate electricity to charge the battery and use the electricity to drive the electric motor. It is configured to move the body.
  • Such an electric vehicle is provided with a battery pack module for supplying current to the motor.
  • the battery pack module generates a predetermined heat while being operated, and the operating time of the battery pack module varies depending on the surrounding temperature. Most electric vehicles cool the heat generated from the battery pack module, or By applying heat arbitrarily, the operating time of the battery pack module is extended.
  • the battery pack module can be cooled by water or air cooling, and in the case of water cooling, the refrigerant cools the cooling water while passing through the water refrigerant heat exchanger, and the water refrigerant heat exchanger is connected to the battery pack module and the cooling water circuit so that the cooling water is connected to the water refrigerant heat exchanger. It is configured to cool the battery pack module while circulating the battery pack module, in the case of the empty cooling, the refrigerant passes through the battery cooling evaporator to cool the battery cooling evaporator, the air cooled in the battery cooling evaporator is the battery pack module Flow through the connection duct of the battery pack module is configured to cool the battery pack module.
  • the heating method of the battery pack module may be configured to heat using heat generated from the refrigerant condensed in the above-described water-cooled and air-cooled cooling method, or to connect a separate heater to the battery pack module to heat.
  • the essential weight such as a separate water refrigerant heat exchanger and the various cooling water flow pipes constituting the cooling water circuit
  • the total weight of the electric vehicle is increased to the same volume While the driving distance of the electric vehicle by the battery pack module is shortened, it occupies a predetermined installation volume, and the size of the battery pack module that can be installed by that amount is relatively reduced, thereby lowering overall battery performance.
  • the present invention has been made to solve the above technical problem, by reducing the overall weight and volume installed in the vehicle body compared to the existing battery pack module by installing the module to improve the mileage, heat exchange performance can be improved It is an object to provide a battery heat exchanger.
  • a preferred embodiment of the battery heat exchange apparatus of an electric vehicle comprises a refrigerant circulation unit configured to circulate a refrigerant while constituting a refrigeration cycle, and a battery pack module supplied with an expanded refrigerant through an expander among the refrigerant circulation units. And a battery heat exchange unit for cooling and discharging the refrigerant to the circulation portion, wherein the battery heat exchange unit includes a plurality of heat conduction plates disposed in thermal contact with a plurality of cells constituting the battery pack module, and one surface of the heat conduction plate. And a plurality of cooling tubes arranged in close contact with each other, and a plurality of heating plates disposed in close contact with one surface of the heat conductive plate between each of the plurality of cooling tubes.
  • the cooling tube may be bonded to one surface of the plurality of heat conductive plates by a brazing bonding method, or may be manufactured by extrusion molding with the plurality of heat conductive plates.
  • the heating plate may be bonded to one surface of the plurality of heat conductive plates by a printing method or clamped to a clamping part formed on one surface of the plurality of heat conductive plates.
  • the plurality of heat conductive plates may be formed to have an area corresponding to the contact surface shape of the plurality of cells in contact.
  • the battery heat exchange unit may include a distribution piping module configured to receive the refrigerant from the expander and to distribute the supplied refrigerant to the plurality of heat conductive plates, and a discharge pipe configured to collect the refrigerant from the plurality of heat conductive plates and discharge the refrigerant to the refrigerant circulation unit.
  • the module may further include.
  • the battery heat exchange unit may further include a refrigerant distributor configured to uniformly distribute the refrigerant supplied from the expander to the plurality of heat conductive plates
  • the distribution piping module may include an expander-distributor connecting the expander and the refrigerant distributor.
  • the refrigerant distributor may include a distributor connected to the expander-distributor connecting pipe, an inlet part through which the refrigerant is introduced, a pipe extending from the inlet part, and a plurality of supply pipes annularly connected along an edge. Can be.
  • the cooling tube distribution header may include a refrigerant supply part connected to the plurality of supply pipes, a connection part extending in a straight direction in communication with the refrigerant supply part, and connected to the plurality of cooling tubes.
  • the connecting portion has a cross-sectional shape of a rectangular parallelepiped, a coupling portion connected to the plurality of cooling tubes, a semicircular cross-sectional shape, and an inner space in which the coolant is accommodated, and the coolant is formed in the inner space. It may include a mixing unit for at least two homogeneous mixing.
  • the mixing unit may include a header main body having an inner space in which the refrigerant is accommodated, and a plurality of supply pipes communicating with the plurality of supply pipes, and being inserted into the inner space of the header main body, and firstly expanded while the refrigerant is discharged to the outside.
  • the first expanded refrigerant may include a second inner tube having a second expansion hole is formed to be second expansion as the discharge.
  • first expansion hole may communicate with the coupling part side, and the second expansion hole may communicate with a direction opposite to the communication direction of the first expansion hole.
  • the refrigerant receiving volume occupied by the space between the second inner tube and the first inner tube is larger than the refrigerant containing volume of the first inner tube, and the space between the second inner tube and the first inner tube is
  • the refrigerant accommodating volume occupied by the space between the inner space and the second inner tube may be set larger than the refrigerant accommodating volume.
  • the connecting portion has a cross-sectional shape of a rectangular parallelepiped, a coupling portion connected to the plurality of cooling tubes, a cross-sectional shape of a semi-circumference, and an inner space in which the refrigerant is accommodated, and each of the plurality of cooling tubes is formed. It may include a multi-flow path portion formed with a multi-flow path to supply the refrigerant to each.
  • the multi-channel flow passage is disposed in the longitudinal direction in the longitudinal direction of the connecting portion in the inner space so as to partition the inner space into a coupling portion side space to which the plurality of cooling tubes are coupled and the coupling portion side space.
  • the distal end of the flow path separating plate is disposed to be spaced apart from the inner wall surface of the inner space corresponding to the distal end of the connection part by a predetermined distance, and the coupling part side space and the connection part side of the inner space are disposed at the distal end of the flow path separating plate.
  • a plurality of through-holes communicating with each other may be formed to be spaced apart a predetermined distance in the longitudinal direction of the connecting portion.
  • the flow path separating plate may include a first flow path through which the refrigerant introduced into the space at the coupling part from the refrigerant supply part to the portion where the plurality of through holes is formed is mixed and flows into at least one of the plurality of refrigerant tubes, and the connection part space.
  • a third flow passage may be formed between the outer side of the front end and the inner wall surface of the inner space corresponding to the front end of the connection part, passing through the coupling side space, and then mixing and flowing to the rest of the plurality of refrigerant tubes.
  • the multi-channel portion is arranged in the longitudinal direction in the longitudinal direction of the connecting portion in the inner space so as to divide the inner space into a plurality of space in the coupling portion side and the coupling portion side opposite to the coupling portion side space coupled to the plurality of cooling tubes. It may include a plurality of flow path separation plate.
  • one end of each of the plurality of flow path separation plates may be connected to the refrigerant supply unit, and a length between the one end and the other end may be different from each other.
  • the plurality of flow path separation plate is provided with a length between the one end and the other end gradually longer from the first plate to the third plate and spaced apart from the space on the coupling side to which the plurality of refrigerant tubes are coupled,
  • a second flow passage which is mixed and flows toward at least another one
  • a third flow passage which is mixed and flows toward another one of the plurality of refrigerant tubes between a tip of the second plate and a tip of the third plate, and the third plate
  • the inner hole corresponding to the distal end of the connecting portion from the distal end of A third flow path may be formed between the inner wall surface of the liver to be mixed and flow toward the rest of the plurality of refrigerant tubes.
  • the discharge piping module may include a refrigerant collector provided as a manifold to collect refrigerant from the plurality of heat conductive plates and deliver the refrigerant to the refrigerant circulation unit, and disposed in the plurality of heat conductive plates, respectively, to communicate with the plurality of cooling tubes. It may include a plurality of cooling tube collecting header for collecting the refrigerant heat exchanged from the heat conduction plate, and a plurality of refrigerant discharge pipe connecting the plurality of cooling tube collecting header and the refrigerant collector.
  • the battery heat exchanger of the electric vehicle according to the present invention can achieve various effects as follows.
  • the overall weight of the electric vehicle is reduced and the additional space of the predetermined battery pack module is secured to secure the additional volume of the battery. Can improve the performance.
  • FIG. 1 is a refrigerant circulation circuit diagram showing an embodiment of a battery heat exchange device of an electric vehicle according to the present invention
  • FIG. 2 is a perspective view showing a preferred embodiment of a battery heat exchanger of an electric vehicle according to the present invention
  • FIG. 3 is a perspective view illustrating a battery heat exchange unit in the configuration of FIG. 2;
  • FIG. 4 is a perspective view showing a heat conduction plate of the configuration of FIG.
  • FIG. 5 is a cross-sectional view taken along the line A-A of FIG.
  • FIG. 6 is a perspective view illustrating an example of a refrigerant distributor in the configuration of FIG. 3;
  • FIG. 7 is a perspective view showing an embodiment of the cooling tube distribution header of the configuration of Figure 4,
  • FIG. 8 is a cross-sectional view taken along the line B-B of FIG.
  • FIG. 9 is a perspective view showing another embodiment of the cooling tube distribution header of the configuration of Figure 4,
  • FIG. 10 is a cross-sectional view taken along the line C-C of FIG.
  • FIG. 11 is a perspective view illustrating a refrigerant collecting part of the configuration of FIG. 4;
  • FIG. 12 is a perspective view illustrating a refrigerant collector of the configuration of FIG. 11.
  • FIG. 1 is a refrigerant circulation circuit diagram showing an embodiment of a battery heat exchange device of an electric vehicle according to the present invention.
  • the refrigerant circulating unit 10 to 40 configured to circulate the refrigerant while configuring the refrigeration cycle, and the refrigerant circulating unit (10 to 40) )
  • the refrigerant circulating unit (10 to 40) Includes a battery heat exchange unit 400 receiving the expanded refrigerant through an expander to cool the battery pack module 200 and discharge the refrigerant to the refrigerant circulation parts 10 to 40.
  • the refrigerant circulation units 10 to 40 include a compressor 10 for compressing the refrigerant, a condenser 20 for condensing the refrigerant compressed by the compressor 10, and a refrigerant condensed by the condenser 20.
  • the circuit is connected via refrigerant circulation piping.
  • the plurality of refrigerant circulation pipes may include a compressor-condenser connecting pipe (hereinafter, referred to as a “first pipe”) 15 connecting the compressor 10 and the condenser 20, and a condenser connecting the condenser 20 and the expander.
  • -Expander connection pipe hereinafter referred to as 'second pipe'
  • expander-evaporator connection pipe hereinafter referred to as 'third pipe'
  • the evaporator-compressor connecting pipe hereinafter referred to as 'fourth pipe'
  • the second pipes 25, 27, and 28 are refrigerants branched from the middle into the first branch pipes 27 and the second branch pipes 28 and condensed.
  • the first expander provided on the vehicle air conditioner (not shown) side.
  • 30A or the second expander 30B provided at the battery pack module 200 side.
  • the first expander 30A is constituted by a thermal expansion valve (TVX), and the second expander 30B is preferably constituted by an electric expansion valve (EV).
  • TVX thermal expansion valve
  • EV electric expansion valve
  • the second piping (25, 27, 28) is provided with a three-way valve (not shown) for controlling the supply of the refrigerant to any one of the first branch pipe 27 and the second branch pipe 28, the three-way valve,
  • a three-way valve (not shown) for controlling the supply of the refrigerant to any one of the first branch pipe 27 and the second branch pipe 28, the three-way valve,
  • the refrigerant is supplied to the first expander 30A through the first branch pipe 27 to control the refrigerant flow to perform the indoor cooling air conditioning mode through the evaporator 40.
  • the refrigerant is supplied to the second expander 30B through the second branch pipe 28 to cool the battery pack module 200 through the battery heat exchange unit 400. Control the refrigerant flow to perform mode.
  • a separate coolant circulation circuit (not shown) is configured to cool the battery pack module 200 using the coolant, and heat exchange between the refrigerant expanded through the second expander 30B and the coolant in the coolant circulation circuit is performed.
  • a water refrigerant heat exchanger (not shown) is provided for the present invention, in the embodiment according to the present invention, the refrigerant expanded by the second expander 30B is immediately provided without a separate water refrigerant heat exchanger. It is configured to ensure more efficient battery cooling performance by supplying directly to the.
  • the refrigerant circulation units 10 to 40 may further include a radiator 710 for absorbing heat from the condenser 20 and a cooling fan 720 and an ePT unit 730 that are operated to cool the radiator 710. have.
  • FIG. 2 is a perspective view showing a preferred embodiment of the battery heat exchanger of the electric vehicle according to the present invention
  • Figure 3 is a perspective view showing a battery heat exchange unit of the configuration of Figure 2
  • Figure 4 is a heat conduction plate ( 410 is a perspective view
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 4.
  • the battery heat exchange unit 400 includes a plurality of heat conductive plates 410 arranged in thermal contact with a plurality of cells (not shown) constituting the battery pack module 200. And a plurality of cooling tubes 420 arranged in close contact with the heat conductive plate 410, and a plurality of heating plates disposed in close contact with one surface of the heat conductive plate 410 between the plurality of cooling tubes 420. 430 may be included.
  • the battery pack module 200 is modularized so that a plurality of battery cells (hereinafter, referred to as 'cells') are collectively installed to generate a high current, and the plurality of heat conducting plates as shown in FIGS. 2 and 3. It may be provided to be seated on the upper surface of the 410, respectively.
  • 'cells' a plurality of battery cells
  • the plurality of heat conducting plates 410 may be made of a material having high heat transfer efficiency, and may be made of a material that is strong enough to support the weight of the plurality of cells of the battery pack module 200.
  • the plurality of cooling tubes 420 may include one surface of the heat conduction plate 410 (in the embodiment of the present invention, a cooling tube 420 on the lower surface). ) Is coupled to be in close contact with the premise that is provided, it is disposed long in the longitudinal direction, and may be spaced apart in parallel to each other in a unidirectional direction.
  • the plurality of heating plates 430 may be arranged in parallel in the same direction as the cooling tube 420 between each of the plurality of cooling tubes 420.
  • the plurality of cooling tubes 420 may be integrally extruded to the bottom surface of the thermal conductive plate 410, as shown in FIG. 5. If the material of the cooling tube 420 and the heat conductive plate 410 is different, it may be manufactured by a double injection molding method, and if the material of the cooling tube 420 and the heat conductive plate 410 is the same, it is integrated by a general extrusion molding method. It is also possible to be produced with.
  • the plurality of cooling tubes 420 are not necessarily manufactured by an extrusion molding method, and the cooling tubes 420 may be coupled to the bottom surface of the heat conductive plate 410 by using a separate fastening device. Of course.
  • the heating plate 430 may be a thin film heater that is bonded to a lower surface of the plurality of heat conductive plates 410 by a printing method.
  • the heating plate 430 is also not necessarily bonded in a printing manner, and although not shown in the drawing, a clamping part (not shown) for clamping the heating plate 430 is provided on the lower surface of the heat conductive plate 410. Naturally, the heating plate 430 may be clamped to the clamping part.
  • the heating plate 430 may be provided as an electrically driven hot wire heater, and the heat conduction plate 410 may heat the battery pack module 200 by dispersing the heat provided from the heating play 430 as a whole. .
  • the cooling tube 420 of the battery heat exchange unit 400 to cool the temperature of the battery pack module 200 due to the continuous operation of the battery pack module 200.
  • the heating play 430 of the battery heat exchange unit 400 is used to heat the battery pack module 200 in cold weather.
  • the heat conduction plate 410 having such a configuration is preferably formed to correspond to the contact surface shape of the plurality of cells to be contacted.
  • the battery heat exchange unit 400 receives a refrigerant from the second expander 30B and distributes the plurality of distribution piping modules 450 and 455 to supply the plurality of heat conducting plates 410.
  • the discharge pipe module 460 may further include a discharge pipe module 460 which collects the refrigerant from the two heat conductive plates 410 and discharges the refrigerant to the refrigerant circulation parts 10 to 40.
  • the battery heat exchange unit 400 may further include a refrigerant distributor 405 that uniformly distributes the refrigerant supplied from the second expander 30B to the plurality of heat conductive plates 410.
  • FIG. 6 is a perspective view showing an example of the refrigerant distributor 405 of the configuration of Figure 3
  • Figure 7 is a perspective view showing an embodiment of the cooling tube distribution header of the configuration of Figure 4
  • Figure 8 is a line BB of Figure 7 9
  • FIG. 10 is a cross-sectional view taken along line CC of FIG. 9, and
  • FIG. 11 is a discharge pipe of the configuration of FIG. 4.
  • 12 is a perspective view of the module, and FIG. 12 is a perspective view of the refrigerant collector 470 in the configuration of FIG. 11.
  • the distribution piping modules 450 and 455 may include an expander-distributor connection pipe 451 connecting the second expander 30B and the refrigerant distributor 405 and the refrigerant distributor 405 as shown in FIGS. 2 and 3.
  • a plurality of supply pipes 453 and a plurality of supply pipes 453 respectively connected to the plurality of heat conductive plates 410, and are connected to the plurality of supply pipes 453 and the plurality of cooling tubes 420, respectively.
  • It may include a cooling tube distribution header 455 that uniformly distributes the refrigerant supplied from the 453 to the plurality of cooling tubes (420).
  • the refrigerant expanded through the second expander 30B flows to the refrigerant distributor 405 through the expander-distributor connection pipe 451, and the refrigerant distributor 405 is uniform in each of the plurality of supply pipes 453, 453A to 453E.
  • the refrigerant is uniformly distributed, and the refrigerant that is uniformly distributed to the plurality of supply pipes 453 and flows to the cooling tube distribution headers 455, 455A to 455E provided in the plurality of heat conducting plates 410, 410A to 410E, respectively.
  • the plurality of cooling tube distribution headers 455 are uniformly distributed to the plurality of cooling tubes 420.
  • the refrigerant distributor 405 is connected with an expander-distributor connecting pipe 451, and extends such that the refrigerant flows from the inlet 406 and the inlet 406.
  • the plurality of supply pipes 453 may include a distribution unit 407 connected in an annular manner along the rim.
  • a plurality of pipe connecting holes 408 to which one end of the plurality of supply pipes 453 are connected are formed in an annular shape along an edge.
  • the cooling tube distribution header 455 extends in a straight line in communication with the refrigerant supply unit 456 to which the other ends of the plurality of supply pipes are connected, and the refrigerant supply unit 456. Connections 457A, 457B to two cooling tubes 420.
  • connecting portions 457A and 457B may be provided in a double tube shape, as shown in FIGS. 7 and 8, and of course, may be provided in a multi-channel shape as described in FIGS. 9 and 10. .
  • connecting portions 457A and 457B an embodiment provided in a double pipe shape
  • connecting portions 457A and 457B an embodiment provided in a multi-channel shape
  • connecting portions 457A and 457B an embodiment provided in a multi-channel shape
  • the connecting portions 457A and 457B have a cross-sectional shape of a rectangular parallelepiped, as shown in FIGS. 7 and 8, a coupling portion 457B connected to the plurality of cooling tubes 420, and a semicircle. It has a cross-sectional shape of, and integrally extended with the coupling portion 457B, the inner space is formed to accommodate the refrigerant, may include a mixing unit 457A for homogeneously mixing the refrigerant at least twice in the inner space.
  • the mixing part 457A communicates with a header main body (not shown) having an internal space in which a refrigerant is accommodated, and a plurality of supply pipes 453 and is inserted into the internal space of the header main body.
  • the first inner tube 459A having the first expansion hole 459B is formed to be first expanded while the refrigerant is discharged to the outside, and the first inner tube 459A is inserted into the inner space of the header body to surround the first inner tube 459A.
  • a second inner tube 458A having a second expansion hole 458B formed to receive the first expanded refrigerant from the tube 459A, and to expand secondly as the primary expanded refrigerant is discharged into the inner space of the header body; can do.
  • the first inner tube 459A is preferably formed to be sized to be inserted into the second inner tube 458A, and the second inner tube 458A is sized to be inserted into the inner space of the header body. It is preferable to form.
  • the first expansion hole 459B is formed to be in communication with the opposite side of the connection portions 457A and 457B, that is, toward the refrigerant supply portion 456, and the second expansion hole 458B is opposite the refrigerant supply portion 456, that is, the connection portion ( 457A and 457B).
  • the mixing unit 457A uniformly mixes a supply refrigerant consisting of a liquid refrigerant and an air refrigerant, and a plurality of cooling tubes 420.
  • a homogeneous refrigerant serves to ensure that the thermal conductive plate 410 has a uniform cooling performance as a whole.
  • the two-phase refrigerant introduced through the first inner tube 459A has an inner circumference of the second inner tube 458A and an outer circumference of the first inner tube 459A through the first expansion hole 459B.
  • the first inner tube 459A is preferably disposed eccentrically toward the refrigerant supply unit 456 in the inner space of the second inner tube 458A, and the second inner tube 458A. Is eccentrically disposed on the opposite side of the refrigerant supply unit 456, that is, the connection portions 457A and 457B, in the inner space of the header body.
  • the refrigerant containing volume occupied by the space between the second inner tube 458A and the first inner tube 459A is larger than the refrigerant containing volume of the first inner tube 459A.
  • the refrigerant containing volume occupied by the space between the inner space of the header body and the second inner tube 458A is set larger than the refrigerant containing volume occupied by the space between the tube 458A and the first inner tube 459A.
  • This is intended to actively reflect the principle of expansion of the refrigerant, and reflects the principle that the two-phase refrigerant mixture is made faster by changing the phase of the refrigerant into a refrigerant as the liquid refrigerant expands from a narrow space to a wide space.
  • the connecting portions 457A and 457B according to the second embodiment have a cross-sectional shape of a rectangular parallelepiped, as shown in FIGS. 9 and 10, a coupling portion 457B connected to the plurality of cooling tubes 420, and a semicircle.
  • Multi-flow path portion 555 and 655 having a cross-sectional shape, extending from the coupling portion 457B, an inner space for accommodating a coolant therein, and a multi-flow path formed to supply a coolant to each of the plurality of cooling tubes 420. ).
  • mixing portions 457A of the connecting portions 457A and 457B according to the first embodiment and the multi-channel portions 555 and 655 of the connecting portions 457A and 457B according to the second embodiment may have the same appearance, Each configuration provided in the inner space accommodated is different.
  • the plurality of passages 559 are inserted in the longitudinal direction in the inner space and communicated to the header body side at the connecting portions 457A and 457B, as referred to the angles (a) of FIGS. 9 and 10.
  • the flow path separation plate 558 on which the plurality of through holes 559 are formed will be referred to as a 'first flow path separation plate 558'
  • the flow path separation plates 657, 658 and 659 each having different lengths will be referred to as 'second flow path separation plates (' 657,658,659 '', in particular, the second flow path separating plates 657,658,659 are arranged in the order of the first plate 657, the second plate 658, and the third plate 659 in order from the shortest to the longest for each plate. I'll name it.
  • the multi-channel portion has coupling spaces 457A and 457B opposed to the coupling portion side and the coupling portion side to which the plurality of cooling tubes are coupled.
  • the first flow path separation plate 558 described above may be disposed in the longitudinal direction of the connecting portions 457A and 457B in the inner space so as to partition into the side space.
  • the front end of the first flow path separation plate 558 is disposed to be spaced apart from the inner wall surface of the inner space corresponding to the front ends of the connection parts 457A and 457B by a predetermined distance, and the front end of the first flow path separation plate 558 is internal.
  • a plurality of through holes 559 may be formed to be spaced apart by a predetermined distance in the longitudinal direction of the connecting parts 457A and 457B from the space between the coupling part side and the connecting parts 457A and 457B.
  • the inner space is a space on the side of the connection portion 457A and 457B opposed to the space on the coupling portion and the space on the coupling portion to which the plurality of cooling tubes are coupled.
  • a plurality of second flow path separation plates 657, 658, and 659 may be disposed in the interior space in the lengthwise direction of the connecting parts 457A and 457B in a plurality of compartments.
  • the second flow path separation plates 657, 658, 659, one end is connected to the refrigerant supply unit 456, respectively, the length between one end and the other end may be provided differently.
  • the refrigerant supply process of the multi-path part as described with reference to (a) is as follows.
  • the space including the coupling part side among the spaces divided by the flow path separating plate 558 inserted into the interior spaces of the connection parts 457A and 457B is referred to as the 'compartment side space', and the opposite space It will be described by defining the 'space of the connecting portions (457A, 457B)'.
  • the refrigerant introduced into the space of the coupling portion of the portion where the plurality of through holes 559 are formed at the beginning of the connecting portions 457A and 457B is directly coupled to the coupling portion ( A portion of the plurality of cooling tubes 420 connected to the 457B (first flow path), and at the beginning of the connecting portions 457A and 457B to the space on the side of the connecting portions 457A and 457B in which the plurality of through holes 559 are formed.
  • Some of the introduced refrigerant passes through the plurality of through holes 559 and is partially distributed to the cooling tube 420 coupled around the plurality of through holes 559 of the plurality of cooling tubes 420 via the space at the coupling part side. (Second flow path), the remaining refrigerant flows from the end of the flow path separation plate 558 to the joint side space and is uniformly distributed to the remaining cooling tube 420 (third flow path).
  • the first plate 657 is inserted and installed to be close to the coupling part side in the inner space of the connecting portions 457A and 457B, and the second plate 658 is inserted and installed in the middle of the inner space of the connecting portions 457A and 457B.
  • the three plates 659 are installed far from the coupling part 457A, 457B coupling side in the inner space of the connection part 457A, 457B.
  • the refrigerant introduced between the coupling portion 457B and the first plate 657 is partially distributed and supplied to the cooling tube 420 therein (
  • the first flow path, the refrigerant introduced between the first plate 657 and the second plate 658 is provided between the end (tip) of the second plate 658 at the end (tip) of the first plate 657.
  • a portion is distributed and supplied to the cooling tube 420 (second flow path), and the refrigerant introduced between the second plate 658 and the third plate 659 is transferred to the third plate at the end (front end) of the second plate 658.
  • Part of the cooling tube 420 provided between the ends (tip) of the 659 is distributed and supplied (the third flow path), and the refrigerant introduced between the third plate 659 and the remaining spaces of the connecting portions 457A and 457B The remainder is distributedly supplied to the cooling tube 420 provided between the end portion (tip) of the third plate 659 and the inner surface of the inner spaces of the connecting portions 457A and 457B (fourth flow path).
  • the refrigerant flowing into the connecting portions 457A and 457B may be uniformly distributed and supplied to the cooling tube 420 while forming the multi-path by the multi-channel portions 555 and 655 as referred to in FIGS. 9 and 10. .
  • the refrigerant uniformly distributed into the plurality of cooling tubes 420 is heat-exchanged with the battery pack module 200 to have a uniform cooling performance in the entire heat conduction plate 410, and then the discharge piping module of the battery heat exchange unit 400.
  • the refrigerant is discharged back to the refrigerant circulation parts 10 to 40 through 460.
  • the discharge piping module 460 as shown in Figure 11, and the refrigerant collector 470 to collect the refrigerant from the plurality of heat conductive plate 410 and to deliver to the refrigerant circulation section (10-40)
  • a plurality of cooling tube collecting headers 460 disposed on the plurality of heat conducting plates 410 and arranged in communication with the plurality of cooling tubes 420 to collect the heat exchanged refrigerant, and a plurality of cooling tube collecting headers 460.
  • a plurality of refrigerant discharge pipes 466, 463A to 463E connecting the refrigerant collector 470 and the collector-refrigerant circulation connection pipe 35B connecting the refrigerant collector 470 and the refrigerant circulation parts 10 to 40. It may include.
  • the cooling tube collecting header 460 is disposed at the other end of the end of the heat conductive plate 410 such that the cooling tube distribution header 455 described above is disposed at one end of the rectangular heat conductive plate 410.
  • cooling tube distribution header 455 is configured to homogeneously distribute the refrigerant by dividing the refrigerant supply unit 456 and the connection units 457A and 457B, the cooling tube collecting header 460 does not require a separate configuration, The connection with the tube 420 is sufficient.
  • the refrigerant collector 470 may be provided as a manifold having a plurality of connectors 471A to 471E to which a plurality of refrigerant discharge pipes 466, 463A to 463E are connected.
  • the second condenser 30B is provided by controlling the three-way valve of the refrigerant condensed by the condenser 20 among the refrigerant flowing through the refrigerant circulation units 10 to 40. It flows to the 2nd branch pipe 28 side.
  • the refrigerant expanded by the second expander 30B is uniformly supplied to the heat conduction plate 410 through the distribution piping modules 450 and 455 to cool the battery pack module 200, and then again through the discharge piping module 460. Recovered to the circulation portion (10-40).
  • the heating play 430 coupled to the bottom surface of the heat conduction plate 410 is electrically operated to heat the battery pack module 200.
  • Embodiment of the battery heat exchange device of the electric vehicle according to the present invention after supplying the refrigerant directly to the battery pack module 200 side from the refrigerant circulation unit 10 to 40 provided for the air conditioning of the vehicle, by using the refrigerant It is configured to directly cool the battery pack module 200 or to heat using the direct heat of the heating play 430 provided on the bottom surface of the heat conduction plate 410, in order to reduce the weight of the product, Simplification and installation of the additional battery pack module 200 has the advantage of improving battery performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention relates to a heat exchange device for a battery of an electric vehicle. Specifically, the present invention comprises: a refrigerant circulation unit configured to circulate a refrigerant while forming a refrigeration cycle; and a heat exchange unit for a battery, which is supplied with the refrigerant expanded through an expander of the refrigerant circulation unit so as to cool a battery pack module, and discharges the refrigerant to the refrigerant circulation unit, thereby providing an advantage of improving battery cooling performance.

Description

전기자동차의 배터리 열교환 장치Battery heat exchanger for electric vehicles
본 발명은 전기자동차의 배터리 열교환 장치에 관한 것으로서, 보다 상세하게는, 기존 대비 차체에 설치되는 전체적인 중량 및 부피를 줄여 배터리 팩 모듈을 추가 설치함으로써 주행 거리를 향상시키고, 열교환 성능을 향상시킬 수 있는 전기자동차의 배터리 열교환 장치에 관한 것이다.The present invention relates to a battery heat exchanger of an electric vehicle, and more particularly, by installing a battery pack module by reducing the overall weight and volume installed in the vehicle body compared to the existing, it is possible to improve driving distance and improve heat exchange performance. The present invention relates to a battery heat exchanger of an electric vehicle.
일반적으로, 전기자동차(Electric Vehicle, EV)는 주로 배터리의 전원을 이용하여 AC 또는 DC 모터를 구동하여 동력을 얻는 자동차로서, 크게 배터리전용 전기자동차와 하이브리드 전기자동차로 분류되며, 배터리전용 전기자동차는 배터리의 전원을 이용하여 모터를 구동하고 전원이 다 소모되면 재충전하며, 하이브리드 전기자동차는 엔진을 화석연료 등을 이용하여 가동하여 전기발전을 함으로써 배터리에 충전을 하고 이 전기를 이용하여 전기모터를 구동하여 차체를 움직이게 할 수 있도록 구성된다.In general, an electric vehicle (EV) is mainly a vehicle that obtains power by driving an AC or DC motor using a battery power, and is classified into a battery-only electric vehicle and a hybrid electric vehicle. The motor is driven by using the battery power and recharged when the power is exhausted. The hybrid electric vehicle uses the fossil fuel to operate the engine to generate electricity to charge the battery and use the electricity to drive the electric motor. It is configured to move the body.
이와 같은 전기자동차는, 모터로 전류를 공급하는 배터리 팩 모듈이 구비된다.Such an electric vehicle is provided with a battery pack module for supplying current to the motor.
여기서, 배터리 팩 모듈은, 작동되면서 소정의 열을 발생시키는 한편, 주변의 온도에 따라 그 작동 시간이 달라지는 바, 대부분의 전기자동차에는 배터리 팩 모듈로부터 발생된 열을 냉각시키거나, 배터리 팩 모듈에 임의로 열을 가함으로써 배터리 팩 모듈의 작동 시간을 연장시킨다.Here, the battery pack module generates a predetermined heat while being operated, and the operating time of the battery pack module varies depending on the surrounding temperature. Most electric vehicles cool the heat generated from the battery pack module, or By applying heat arbitrarily, the operating time of the battery pack module is extended.
배터리 팩 모듈은, 수냉식 또는 공랭식으로 냉각시킬 수 있고, 수냉식 냉각의 경우 냉매가 수냉매 열교환기를 통과하면서 냉각수를 냉각시키고 수냉매 열교환기가 배터리 팩 모듈과 냉각수 회로로 연결되어, 냉각수가 수냉매 열교환기와 배터리 팩 모듈을 순환하면서 배터리 팩 모듈을 냉각시키도록 구성되며, 공랙식 냉각의 경우 냉매가 배터리 냉각용 증발기를 통과하면서 배터리 냉각용 증발기를 냉각시키고, 배터리 냉각용 증발기에서 냉각된 공기가 배터리 팩 모듈의 연결 덕트를 통해 배터리 팩 모듈로 유동되어 배터리 팩 모듈을 냉각시키도록 구성된다.The battery pack module can be cooled by water or air cooling, and in the case of water cooling, the refrigerant cools the cooling water while passing through the water refrigerant heat exchanger, and the water refrigerant heat exchanger is connected to the battery pack module and the cooling water circuit so that the cooling water is connected to the water refrigerant heat exchanger. It is configured to cool the battery pack module while circulating the battery pack module, in the case of the empty cooling, the refrigerant passes through the battery cooling evaporator to cool the battery cooling evaporator, the air cooled in the battery cooling evaporator is the battery pack module Flow through the connection duct of the battery pack module is configured to cool the battery pack module.
한편, 배터리 팩 모듈의 가열 방식은, 상술한 수냉식 및 공랭식 냉각 방법에서 응축된 냉매로부터 발생되는 열을 이용하여 가열시키거나, 별도의 히터를 배터리 팩 모듈에 연결하여 가열시키도록 구성될 수 있다.On the other hand, the heating method of the battery pack module may be configured to heat using heat generated from the refrigerant condensed in the above-described water-cooled and air-cooled cooling method, or to connect a separate heater to the battery pack module to heat.
그러나, 상기와 같이 구성되는 종래 기술에 따른 전기자동차의 배터리 열교환 장치의 일예는, 특히, 배터리 팩 모듈의 냉각의 경우, 냉매의 냉기를 직접 이용하지 아니하고, 별도의 냉각수 및 공기를 이용하여 배터리 팩 모듈을 냉각시키는 바, 열교환 성능이 저하되는 문제점이 있다.However, one example of the battery heat exchange device of the electric vehicle according to the prior art configured as described above, in particular, in the case of cooling the battery pack module, the battery pack using a separate cooling water and air, instead of using the cool air of the refrigerant directly When the module is cooled, there is a problem that the heat exchange performance is lowered.
또한, 종래 기술에 따른 전기자동차의 배터리 열교환 장치의 일예는, 별도의 수냉매 열교환기 및 냉각수 회로를 구성하는 각종 냉각수 유동 배관 등의 필수 구비에 의해, 전기자동차의 전체 중량이 증가되어 동일체적 대비 배터리 팩 모듈에 의한 전기자동차의 주행거리가 짧아지는 한편, 소정의 설치 부피를 차지하는 바, 그 만큼 설치될 수 있는 배터리 팩 모듈의 크기가 상대적으로 축소됨으로써, 전체적인 배터리 성능을 저하시키는 문제점이 있다.In addition, one example of the battery heat exchange device of the electric vehicle according to the prior art, the essential weight, such as a separate water refrigerant heat exchanger and the various cooling water flow pipes constituting the cooling water circuit, the total weight of the electric vehicle is increased to the same volume While the driving distance of the electric vehicle by the battery pack module is shortened, it occupies a predetermined installation volume, and the size of the battery pack module that can be installed by that amount is relatively reduced, thereby lowering overall battery performance.
아울러, 수냉매 열교환기와 각종 냉각수 유동 배관의 배치 설계 및 이를 연결하는 작업 공수가 증대되어 불필요한 노동력 낭비가 매우 심한 문제점이 있다.In addition, the layout design of the water-cooling heat exchanger and various cooling water flow pipes and the number of work connecting the same increases, there is a very serious problem of unnecessary waste of labor.
본 발명은 상기한 기술적 과제를 해결하기 위하여 안출된 것으로서, 기존 대비 차체에 설치되는 전체적인 중량 및 부피를 줄여 배터리 팩 모듈을 추가 설치함으로써 주행 거리를 향상시키고, 열교환 성능을 향상시킬 수 있는 전기자동차의 배터리 열교환 장치를 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the above technical problem, by reducing the overall weight and volume installed in the vehicle body compared to the existing battery pack module by installing the module to improve the mileage, heat exchange performance can be improved It is an object to provide a battery heat exchanger.
본 발명에 따른 전기자동차의 배터리 열교환 장치의 바람직한 일실시예는, 냉동 사이클을 구성하면서 냉매가 순환되도록 구성된 냉매 순환부와, 상기 냉매 순환부 중 팽창기를 통하여 팽창된 냉매를 공급받아 배터리 팩 모듈을 냉각시키고 상기 냉매 순환부로 토출시키는 배터리 열교환 유닛을 포함하고, 상기 배터리 열교환 유닛은, 상기 배터리 팩 모듈을 구성하는 복수개의 셀에 각각 열접촉 가능하게 배치된 복수개의 열전도 플레이트와, 상기 열전도 플레이트의 일면에 밀착되게 복수열 배열된 복수개의 냉각 튜브와, 상기 복수개의 냉각 튜브 각각의 사이에 상기 열전도 플레이트의 일면에 밀착되게 배치된 복수개의 히팅 플레이트를 포함한다.A preferred embodiment of the battery heat exchange apparatus of an electric vehicle according to the present invention comprises a refrigerant circulation unit configured to circulate a refrigerant while constituting a refrigeration cycle, and a battery pack module supplied with an expanded refrigerant through an expander among the refrigerant circulation units. And a battery heat exchange unit for cooling and discharging the refrigerant to the circulation portion, wherein the battery heat exchange unit includes a plurality of heat conduction plates disposed in thermal contact with a plurality of cells constituting the battery pack module, and one surface of the heat conduction plate. And a plurality of cooling tubes arranged in close contact with each other, and a plurality of heating plates disposed in close contact with one surface of the heat conductive plate between each of the plurality of cooling tubes.
여기서, 상기 냉각 튜브는, 상기 복수개의 열전도 플레이트의 일면에 브레이징(Brazing) 접착 공법으로 접합되거나, 상기 복수개의 열전도 플레이트와 일체로 압출 성형 제작될 수 있다.Here, the cooling tube may be bonded to one surface of the plurality of heat conductive plates by a brazing bonding method, or may be manufactured by extrusion molding with the plurality of heat conductive plates.
또한, 상기 히팅 플레이트는, 상기 복수개의 열전도 플레이트의 일면에 프린팅 방식으로 접합되거나, 상기 복수개의 열전도 플레이트의 일면에 형성된 클램핑부에 클램핑 결합될 수 있다.In addition, the heating plate may be bonded to one surface of the plurality of heat conductive plates by a printing method or clamped to a clamping part formed on one surface of the plurality of heat conductive plates.
또한, 상기 복수개의 열전도 플레이트는, 접촉되는 상기 복수개의 셀의 접촉면 형상에 대응되는 넓이를 가지도록 형성될 수 있다.In addition, the plurality of heat conductive plates may be formed to have an area corresponding to the contact surface shape of the plurality of cells in contact.
또한, 상기 배터리 열교환 유닛은, 상기 팽창기로부터 상기 냉매를 공급받아 상기 복수개의 열전도 플레이트로 분배하여 공급하는 분배 배관 모듈과, 상기 복수개의 열전도 플레이트로부터 상기 냉매를 포집하여 상기 냉매 순환부로 토출시키는 토출 배관 모듈을 더 포함할 수 있다.The battery heat exchange unit may include a distribution piping module configured to receive the refrigerant from the expander and to distribute the supplied refrigerant to the plurality of heat conductive plates, and a discharge pipe configured to collect the refrigerant from the plurality of heat conductive plates and discharge the refrigerant to the refrigerant circulation unit. The module may further include.
또한, 상기 배터리 열교환 유닛은, 상기 팽창기로부터 공급받은 냉매를 상기 복수개의 열전도 플레이트로 균일하게 분배하는 냉매 분배기를 더 포함하고, 상기 분배 배관 모듈은, 상기 팽창기와 상기 냉매 분배기를 연결하는 팽창기-분배기 연결 배관과, 상기 냉매 분배기로부터 분지되어 상기 복수개의 열전도 플레이트에 각각 연결되는 복수개의 공급 배관과, 상기 복수개의 공급 배관 및 상기 복수개의 냉각 튜브와 연통되게 배치되어 각각의 상기 복수개의 공급 배관으로부터 공급된 상기 냉매를 상기 복수개의 냉각 튜브로 균일 분배하는 냉각튜브 분배 헤더를 포함할 수 있다.The battery heat exchange unit may further include a refrigerant distributor configured to uniformly distribute the refrigerant supplied from the expander to the plurality of heat conductive plates, and the distribution piping module may include an expander-distributor connecting the expander and the refrigerant distributor. A connecting pipe, a plurality of supply pipes branched from the refrigerant distributor, and connected to the plurality of heat conducting plates, respectively, and in communication with the plurality of supply pipes and the plurality of cooling tubes, and supplied from each of the plurality of supply pipes. It may include a cooling tube distribution header for uniformly distributing the refrigerant to the plurality of cooling tubes.
또한, 상기 냉매 분배기는, 상기 팽창기-분배기 연결 배관이 연결되고, 상기 냉매가 유입되는 유입부와, 상기 유입부로부터 확관되고, 상기 복수개의 공급 배관이 테두리를 따라 환상으로 연결되는 분배부를 포함할 수 있다.The refrigerant distributor may include a distributor connected to the expander-distributor connecting pipe, an inlet part through which the refrigerant is introduced, a pipe extending from the inlet part, and a plurality of supply pipes annularly connected along an edge. Can be.
또한, 상기 냉각튜브 분배 헤더는, 상기 복수개의 공급 배관과 연결되는 냉매 공급부와, 상기 냉매 공급부와 연통되게 일직선 방향으로 연장되고, 상기 복수개의 냉각 튜브로 연결되는 연결부를 포함할 수 있다.The cooling tube distribution header may include a refrigerant supply part connected to the plurality of supply pipes, a connection part extending in a straight direction in communication with the refrigerant supply part, and connected to the plurality of cooling tubes.
또한, 상기 연결부는, 직육면체의 단면 형상을 갖고, 상기 복수개의 냉각 튜브와 연결되는 결합부와, 반원주의 단면 형상을 갖고, 상기 냉매가 수용되는 내부 공간이 형성되며, 상기 내부 공간에서 상기 냉매를 적어도 2회 균질 혼합시키는 혼합부를 포함할 수 있다.In addition, the connecting portion has a cross-sectional shape of a rectangular parallelepiped, a coupling portion connected to the plurality of cooling tubes, a semicircular cross-sectional shape, and an inner space in which the coolant is accommodated, and the coolant is formed in the inner space. It may include a mixing unit for at least two homogeneous mixing.
또한, 상기 혼합부는, 상기 냉매가 수용되는 내부 공간이 형성된 헤더 본체와, 상기 복수개의 공급 배관과 연통되되 상기 헤더 본체의 내부 공간에 삽관되고, 상기 냉매가 외부로 토출되면서 1차 팽창되도록 제1팽창홀이 형성된 제1이너 튜브와, 상기 제1이너 튜브를 감싸도록 상기 헤더 본체의 내부 공간에 삽관되어 상기 제1이너 튜브로부터 상기 1차 팽창된 냉매를 공급받고, 상기 헤더 본체의 내부 공간으로 상기 1차 팽창된 냉매가 토출되면서 2차 팽창되도록 제2팽창홀이 형성된 제2이너 튜브를 포함할 수 있다.The mixing unit may include a header main body having an inner space in which the refrigerant is accommodated, and a plurality of supply pipes communicating with the plurality of supply pipes, and being inserted into the inner space of the header main body, and firstly expanded while the refrigerant is discharged to the outside. A first inner tube having an expansion hole formed therein, and inserted into an inner space of the header body to surround the first inner tube to receive the first expanded refrigerant from the first inner tube, and to the inner space of the header body; The first expanded refrigerant may include a second inner tube having a second expansion hole is formed to be second expansion as the discharge.
또한, 상기 제1팽창홀은 상기 결합부 측으로 연통되고, 상기 제2팽창홀은 상기 제1팽창홀의 연통 방향과 반대 방향으로 연통될 수 있다.In addition, the first expansion hole may communicate with the coupling part side, and the second expansion hole may communicate with a direction opposite to the communication direction of the first expansion hole.
또한, 상기 제1이너 튜브의 냉매 수용 부피보다 상기 제2이너 튜브와 상기 제1이너 튜브 사이의 공간이 차지하는 냉매 수용 부피가 더 크고, 상기 제2이너 튜브와 상기 제1이너 튜브 사이의 공간이 차지하는 냉매 수용 부피보다 상기 내부 공간과 상기 제2이너 튜브 사이의 공간이 차지하는 냉매 수용 부피가 더 크게 설정될 수 있다.In addition, the refrigerant receiving volume occupied by the space between the second inner tube and the first inner tube is larger than the refrigerant containing volume of the first inner tube, and the space between the second inner tube and the first inner tube is The refrigerant accommodating volume occupied by the space between the inner space and the second inner tube may be set larger than the refrigerant accommodating volume.
또한, 상기 연결부는, 직육면체의 단면 형상을 갖고, 상기 복수개의 냉각 튜브와 연결되는 결합부와, 반원주의 단면 형상을 갖고, 상기 냉매가 수용되는 내부 공간이 형성되며, 각각의 상기 복수개의 냉각 튜브마다에 상기 냉매를 공급하도록 멀티 유로가 형성된 멀티 유로부를 포함할 수 있다.In addition, the connecting portion has a cross-sectional shape of a rectangular parallelepiped, a coupling portion connected to the plurality of cooling tubes, a cross-sectional shape of a semi-circumference, and an inner space in which the refrigerant is accommodated, and each of the plurality of cooling tubes is formed. It may include a multi-flow path portion formed with a multi-flow path to supply the refrigerant to each.
또한, 상기 멀티 유로부는, 상기 내부 공간을 상기 복수개의 냉각튜브가 결합되는 결합부측 공간과 상기 결합부측 공간에 대향되는 연결부측 공간으로 구획하도록 상기 내부 공간에 상기 연결부의 길이방향으로 길게 배치되는 유로 분리 플레이트를 포함할 수 있다.In addition, the multi-channel flow passage, the flow path is disposed in the longitudinal direction in the longitudinal direction of the connecting portion in the inner space so as to partition the inner space into a coupling portion side space to which the plurality of cooling tubes are coupled and the coupling portion side space. May comprise a separating plate.
또한, 상기 유로 분리 플레이트의 선단은, 상기 연결부의 선단에 해당하는 상기 내부 공간의 내벽면으로부터 소정거리 이격되게 배치되고, 상기 유로 분리 플레이트의 선단부에는 상기 내부 공간 중 상기 결합부측 공간과 상기 연결부측 공간을 상호 연통시키는 다수의 통공이 상기 연결부의 길이방향으로 소정거리 이격되게 형성될 수 있다.In addition, the distal end of the flow path separating plate is disposed to be spaced apart from the inner wall surface of the inner space corresponding to the distal end of the connection part by a predetermined distance, and the coupling part side space and the connection part side of the inner space are disposed at the distal end of the flow path separating plate. A plurality of through-holes communicating with each other may be formed to be spaced apart a predetermined distance in the longitudinal direction of the connecting portion.
또한, 상기 유로 분리 플레이트는, 상기 냉매 공급부로부터 상기 다수의 통공이 형성된 부분까지 상기 결합부측 공간으로 유입된 냉매가 상기 복수개의 냉매튜브 중 적어도 어느 하나로 혼합 유동되는 제1유로와, 상기 연결부측 공간으로 유입된 냉매가 상기 다수의 통공을 통과하여 상기 결합부측 공간을 경유한 후 상기 복수개의 냉매튜브 중 적어도 다른 하나로 혼합 유동되는 제2유로와, 상기 연결부측 공간으로 유입된 냉매가 상기 유로 분리 플레이트 선단 외측과 상기 연결부의 선단에 해당하는 상기 내부 공간의 내벽면 사이를 통과하여 상기 결합부측 공간을 경유한 후 상기 복수개의 냉매튜브의 나머지로 혼합 유동되는 제3유로를 형성할 수 있다.The flow path separating plate may include a first flow path through which the refrigerant introduced into the space at the coupling part from the refrigerant supply part to the portion where the plurality of through holes is formed is mixed and flows into at least one of the plurality of refrigerant tubes, and the connection part space. After the refrigerant flows through the plurality of through-holes through the coupling side space, the second flow path is mixed and flows into at least another one of the plurality of refrigerant tubes, and the refrigerant flowing into the connection side space is the flow path separating plate A third flow passage may be formed between the outer side of the front end and the inner wall surface of the inner space corresponding to the front end of the connection part, passing through the coupling side space, and then mixing and flowing to the rest of the plurality of refrigerant tubes.
또한, 상기 멀티 유로부는, 상기 내부 공간을 상기 복수개의 냉각튜브가 결합되는 결합부측 공간과 상기 결합부측 공간에 대향되는 연결부측 공간으로 복수개로 구획하도록 상기 내부 공간에 상기 연결부의 길이방향으로 길게 배치되는 복수개의 유로 분리 플레이트를 포함할 수 있다.In addition, the multi-channel portion is arranged in the longitudinal direction in the longitudinal direction of the connecting portion in the inner space so as to divide the inner space into a plurality of space in the coupling portion side and the coupling portion side opposite to the coupling portion side space coupled to the plurality of cooling tubes. It may include a plurality of flow path separation plate.
또한, 상기 복수개의 유로 분리 플레이트는, 일단이 각각 상기 냉매 공급부에 연결되되, 상기 일단과 타단 사이의 길이가 각각 상이할 수 있다.In addition, one end of each of the plurality of flow path separation plates may be connected to the refrigerant supply unit, and a length between the one end and the other end may be different from each other.
또한, 상기 복수개의 유로 분리 플레이트가 상기 일단과 타단 사이의 길이가 제1플레이트로부터 순차적으로 제3플레이트까지 점차 길게 구비됨과 아울러 상기 복수개의 냉매 튜브가 결합되는 결합부측 공간으로부터 이격되게 구비될 경우, 상기 냉매 공급부로부터 상기 제1플레이트의 선단 사이로 상기 복수개의 냉매튜브 중 적어도 어느 하나를 향하여 혼합 유동되는 제1유로와, 상기 제1플레이트의 선단으로부터 상기 제2플레이트의 선단 사이로 상기 복수개의 냉매튜브 중 적어도 다른 하나를 향하여 혼합 유동되는 제2유로와, 상기 제2플레이트의 선단으로부터 상기 제3플레이트의 선단 사이로 상기 복수개의 냉매튜브의 또 다른 하나를 향하여 혼합 유동되는 제3유로와, 상기 제3플레이트의 선단으로부터 상기 연결부의 선단에 해당하는 상기 내부 공간의 내벽면 사이로 상기 복수개의 냉매튜브의 나머지를 향하여 혼합 유동되는 제3유로를 형성할 수 있다.In addition, when the plurality of flow path separation plate is provided with a length between the one end and the other end gradually longer from the first plate to the third plate and spaced apart from the space on the coupling side to which the plurality of refrigerant tubes are coupled, Of the plurality of refrigerant tubes flows from the refrigerant supply portion between the front end of the first plate toward the at least one of the plurality of refrigerant tubes and between the front end of the first plate and the end of the second plate A second flow passage which is mixed and flows toward at least another one, a third flow passage which is mixed and flows toward another one of the plurality of refrigerant tubes between a tip of the second plate and a tip of the third plate, and the third plate The inner hole corresponding to the distal end of the connecting portion from the distal end of A third flow path may be formed between the inner wall surface of the liver to be mixed and flow toward the rest of the plurality of refrigerant tubes.
또한, 상기 토출 배관 모듈은, 상기 복수개의 열전도 플레이트로부터 냉매를 포집하여 상기 냉매 순환부로 전달하도록 매니폴드로 구비된 냉매 포집기와, 상기 복수개의 열전도 플레이트에 각각 배치되되, 상기 복수개의 냉각 튜브와 연통되게 배치되어 상기 열전도 플레이트로부터 열교환된 냉매를 포집하는 복수개의 냉각튜브 포집 헤더와, 상기 복수개의 냉각튜브 포집 헤더와 상기 냉매 포집기를 연결하는 복수개의 냉매 토출 배관을 포함할 수 있다.The discharge piping module may include a refrigerant collector provided as a manifold to collect refrigerant from the plurality of heat conductive plates and deliver the refrigerant to the refrigerant circulation unit, and disposed in the plurality of heat conductive plates, respectively, to communicate with the plurality of cooling tubes. It may include a plurality of cooling tube collecting header for collecting the refrigerant heat exchanged from the heat conduction plate, and a plurality of refrigerant discharge pipe connecting the plurality of cooling tube collecting header and the refrigerant collector.
본 발명에 따른 전기자동차의 배터리 열교환 장치의 바람직한 일실시예에 따르면 다음과 같은 다양한 효과를 달성할 수 있다.According to a preferred embodiment of the battery heat exchanger of the electric vehicle according to the present invention can achieve various effects as follows.
첫째, 냉매와 열교환되는 냉각수 및 냉각수를 유동시키기 위한 냉각수 회로의 구비 및 설치가 불요되는 바, 전기자동차의 전체적인 중량을 축소시킴과 아울러 소정의 배터리 팩 모듈의 추가 설치 공간을 확보함으로써 동일 체적 대비 배터리의 성능을 향상시킬 수 있다.First, since the provision and installation of the coolant circuit and the coolant circuit for flowing the coolant that are exchanged with the refrigerant are unnecessary, the overall weight of the electric vehicle is reduced and the additional space of the predetermined battery pack module is secured to secure the additional volume of the battery. Can improve the performance.
둘째, 복잡한 수냉매 열교환기와 각종 냉각수 유동 배관의 배치 설계를 단순화함으로써 불필요한 조립공수를 절감하여 노동비를 향상시킬 수 있다.Second, by simplifying the layout design of the complex water refrigerant heat exchanger and various coolant flow pipes, unnecessary assembly labor can be reduced to improve labor costs.
도 1은 본 발명에 따른 전기자동차의 배터리 열교환 장치의 실시예를 나타낸 냉매 순환 회로도이고,1 is a refrigerant circulation circuit diagram showing an embodiment of a battery heat exchange device of an electric vehicle according to the present invention,
도 2는 본 발명에 따른 전기자동차의 배터리 열교환 장치의 바람직한 일실시예를 나타낸 사시도이고,2 is a perspective view showing a preferred embodiment of a battery heat exchanger of an electric vehicle according to the present invention;
도 3은 도 2의 구성 중 배터리 열교환 유닛을 나타낸 사시도이며,3 is a perspective view illustrating a battery heat exchange unit in the configuration of FIG. 2;
도 4는 도 3의 구성 중 열전도 플레이트를 나타낸 사시도이고,4 is a perspective view showing a heat conduction plate of the configuration of FIG.
도 5는 도 4의 A-A선을 따라 취한 단면도이며,5 is a cross-sectional view taken along the line A-A of FIG.
도 6은 도 3의 구성 중 냉매 분배기의 일예를 나타낸 사시도이고,6 is a perspective view illustrating an example of a refrigerant distributor in the configuration of FIG. 3;
도 7은 도 4의 구성 중 냉각튜브 분배 헤더의 일실시예를 나타낸 사시도이며,7 is a perspective view showing an embodiment of the cooling tube distribution header of the configuration of Figure 4,
도 8은 도 7의 B-B선을 따라 취한 단면도이고,8 is a cross-sectional view taken along the line B-B of FIG.
도 9는 도 4의 구성 중 냉각튜브 분배 헤더의 다른 실시예를 나타낸 사시도이며,9 is a perspective view showing another embodiment of the cooling tube distribution header of the configuration of Figure 4,
도 10은 도 9의 C-C선을 따라 취한 단면도이고,10 is a cross-sectional view taken along the line C-C of FIG.
도 11은 도 4의 구성 중 냉매 포집부를 나타낸 사시도이며,FIG. 11 is a perspective view illustrating a refrigerant collecting part of the configuration of FIG. 4;
도 12는 도 11의 구성 중 냉매 포집기를 나타낸 사시도이다.FIG. 12 is a perspective view illustrating a refrigerant collector of the configuration of FIG. 11.
이하, 본 발명에 따른 전기자동차의 배터리 열교환 장치의 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.Hereinafter, an embodiment of a battery heat exchanger of an electric vehicle according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 전기자동차의 배터리 열교환 장치의 실시예를 나타낸 냉매 순환 회로도이다.1 is a refrigerant circulation circuit diagram showing an embodiment of a battery heat exchange device of an electric vehicle according to the present invention.
본 발명에 따른 전기자동차의 배터리 열교환 장치의 실시예는, 도 1에 참조된 바와 같이, 냉동 사이클을 구성하면서 냉매가 순환되도록 구성된 냉매 순환부(10~40)와, 냉매 순환부(10~40) 중 팽창기를 통하여 팽창된 냉매를 공급받아 배터리 팩 모듈(200)을 냉각시키고 냉매 순환부(10~40)로 토출시키는 배터리 열교환 유닛(400)을 포함한다.Embodiment of the battery heat exchanger of the electric vehicle according to the present invention, as shown in Figure 1, the refrigerant circulating unit 10 to 40 configured to circulate the refrigerant while configuring the refrigeration cycle, and the refrigerant circulating unit (10 to 40) ) Includes a battery heat exchange unit 400 receiving the expanded refrigerant through an expander to cool the battery pack module 200 and discharge the refrigerant to the refrigerant circulation parts 10 to 40.
여기서, 냉매 순환부(10~40)는, 냉매를 압축시키는 압축기(10)와, 압축기(10)에 의하여 압축된 냉매를 응축시키는 응축기(20)와, 응축기(20)에 의하여 응축된 냉매를 팽창시키는 팽창기(40) 및 팽창기(40)에 의하여 팽창된 냉매를 증발시키는 증발기(40)를 포함하고, 냉매를 압축기(10)-응축기(20)-팽창기-증발기(40)를 순환하도록 복수개의 냉매 순환 배관을 통해 회로 연결된다.Here, the refrigerant circulation units 10 to 40 include a compressor 10 for compressing the refrigerant, a condenser 20 for condensing the refrigerant compressed by the compressor 10, and a refrigerant condensed by the condenser 20. An expander 40 for expanding and an evaporator 40 for evaporating the refrigerant expanded by the expander 40, the plurality of refrigerants being circulated through the compressor 10-condenser 20-expander-evaporator 40. The circuit is connected via refrigerant circulation piping.
복수개의 냉매 순환 배관은, 압축기(10)와 응축기(20)를 연결시키는 압축기-응축기 연결배관(이하, ‘제1배관’이라 함)(15)과, 응축기(20)와 팽창기를 연결시키는 응축기-팽창기 연결배관(이하, ‘제2배관’이라 함)(25,27,28)과, 팽창기와 증발기(40)를 연결시키는 팽창기-증발기 연결배관(이하, ‘제3배관’이라 함)(도면부호 미표기)과, 증발기(40)와 압축기(10)를 연결시키는 증발기-압축기 연결배관(이하, ‘제4배관’이라 함)(35A,35)을 포함할 수 있다.The plurality of refrigerant circulation pipes may include a compressor-condenser connecting pipe (hereinafter, referred to as a “first pipe”) 15 connecting the compressor 10 and the condenser 20, and a condenser connecting the condenser 20 and the expander. -Expander connection pipe (hereinafter referred to as 'second pipe') (25, 27, 28), and expander-evaporator connection pipe (hereinafter referred to as 'third pipe') connecting the inflator and the evaporator 40 ( Reference numeral not shown), and the evaporator-compressor connecting pipe (hereinafter referred to as 'fourth pipe') 35A and 35 connecting the evaporator 40 and the compressor 10 may be included.
제2배관(25,27,28)은 중간에서 제1분지배관(27) 및 제2분지배관(28)으로 분지되어 응축된 냉매를, 차량용 공조부(미도시) 측에 구비된 제1팽창기(30A)로 공급하거나 배터리 팩 모듈(200) 측에 구비된 제2팽창기(30B)로 공급할 수 있다.The second pipes 25, 27, and 28 are refrigerants branched from the middle into the first branch pipes 27 and the second branch pipes 28 and condensed. The first expander provided on the vehicle air conditioner (not shown) side. 30A or the second expander 30B provided at the battery pack module 200 side.
제1팽창기(30A)는 온도식 자동 팽창밸브(Thermal Expansion Valve : TVX)로 구성됨이 바람직하고, 제2팽창기(30B)는 전자식 팽창 밸브(Electric Expansion Valve : EEV)로 구성됨이 바람직하다.Preferably, the first expander 30A is constituted by a thermal expansion valve (TVX), and the second expander 30B is preferably constituted by an electric expansion valve (EV).
제2배관(25,27,28)에는 제1분지배관(27) 및 제2분지배관(28) 중 어느 하나로 냉매를 공급 제어하기 위한 삼방밸브(도면부호 미표기)가 구비되고, 삼방밸브는, 차량 내부의 실내 공조를 요하는 경우에는 제1분지배관(27)을 통하여 냉매가 제1팽창기(30A)로 공급되도록 하여 증발기(40)를 통한 실내 냉각 공조 모드를 수행하도록 냉매 흐름을 제어하며, 배터리 팩 모듈(200)의 냉각을 요하는 경우에는 제2분지배관(28)을 통하여 냉매가 제2팽창기(30B)로 공급되도록 하여 배터리 열교환 유닛(400)을 통한 배터리 팩 모듈(200)의 냉각 모드를 수행하도록 냉매 흐름을 제어한다.The second piping (25, 27, 28) is provided with a three-way valve (not shown) for controlling the supply of the refrigerant to any one of the first branch pipe 27 and the second branch pipe 28, the three-way valve, When indoor air conditioning is required inside the vehicle, the refrigerant is supplied to the first expander 30A through the first branch pipe 27 to control the refrigerant flow to perform the indoor cooling air conditioning mode through the evaporator 40. When cooling of the battery pack module 200 is required, the refrigerant is supplied to the second expander 30B through the second branch pipe 28 to cool the battery pack module 200 through the battery heat exchange unit 400. Control the refrigerant flow to perform mode.
종래에는, 냉각수를 이용하여 배터리 팩 모듈(200)을 냉각시키기 위하여 별도의 냉각수 순환 회로(미도시)를 구성하고, 제2팽창기(30B)를 통하여 팽창된 냉매와 냉각수 순환 회로의 냉각수와의 열교환을 위한 수냉매 열교환기(미도시)가 구비되었으나, 본 발명에 따른 실시예에서는, 별도의 수냉매 열교환기의 구비 없이 곧바로 제2팽창기(30B)에 의하여 팽창된 냉매를 배터리 열교환 유닛(400)으로 직접 공급함으로써 보다 효율적인 배터리 냉각 성능을 확보하도록 구성된다.Conventionally, a separate coolant circulation circuit (not shown) is configured to cool the battery pack module 200 using the coolant, and heat exchange between the refrigerant expanded through the second expander 30B and the coolant in the coolant circulation circuit is performed. Although a water refrigerant heat exchanger (not shown) is provided for the present invention, in the embodiment according to the present invention, the refrigerant expanded by the second expander 30B is immediately provided without a separate water refrigerant heat exchanger. It is configured to ensure more efficient battery cooling performance by supplying directly to the.
한편, 냉매 순환부(10~40)는, 응축기(20)로부터 흡열하는 라디에이터(710)와 라디에이터(710)를 냉각시키도록 가동되는 냉각팬(720) 및 ePT Unit(730)을 더 포함할 수 있다.Meanwhile, the refrigerant circulation units 10 to 40 may further include a radiator 710 for absorbing heat from the condenser 20 and a cooling fan 720 and an ePT unit 730 that are operated to cool the radiator 710. have.
도 2는 본 발명에 따른 전기자동차의 배터리 열교환 장치의 바람직한 일실시예를 나타낸 사시도이고, 도 3은 도 2의 구성 중 배터리 열교환 유닛을 나타낸 사시도이며, 도 4는 도 3의 구성 중 열전도 플레이트(410)를 나타낸 사시도이고, 도 5는 도 4의 A-A선을 따라 취한 단면도이다.2 is a perspective view showing a preferred embodiment of the battery heat exchanger of the electric vehicle according to the present invention, Figure 3 is a perspective view showing a battery heat exchange unit of the configuration of Figure 2, Figure 4 is a heat conduction plate ( 410 is a perspective view, and FIG. 5 is a cross-sectional view taken along line AA of FIG. 4.
배터리 열교환 유닛(400)은, 도 2 및 도 3에 참조된 바와 같이, 배터리 팩 모듈(200)을 구성하는 복수개의 셀(미도시)에 각각 열접촉 가능하게 배치된 복수개의 열전도 플레이트(410)와, 열전도 플레이트(410)에 밀착되게 복수열 배열된 복수개의 냉각 튜브(420)와, 복수개의 냉각 튜브(420) 각각의 사이에 열전도 플레이트(410)의 일면에 밀착되게 배치된 복수개의 히팅 플레이트(430)를 포함할 수 있다.As illustrated in FIGS. 2 and 3, the battery heat exchange unit 400 includes a plurality of heat conductive plates 410 arranged in thermal contact with a plurality of cells (not shown) constituting the battery pack module 200. And a plurality of cooling tubes 420 arranged in close contact with the heat conductive plate 410, and a plurality of heating plates disposed in close contact with one surface of the heat conductive plate 410 between the plurality of cooling tubes 420. 430 may be included.
배터리 팩 모듈(200)은, 복수개의 전지 셀(이하, ‘셀’이라 한다)이 집약 설치되어 고전류를 생성할 수 있도록 모듈화 된 것으로서, 도 2 및 도 3에 참조된 바와 같은, 복수개의 열전도 플레이트(410)의 상부면에 각각 안착되도록 구비될 수 있다.The battery pack module 200 is modularized so that a plurality of battery cells (hereinafter, referred to as 'cells') are collectively installed to generate a high current, and the plurality of heat conducting plates as shown in FIGS. 2 and 3. It may be provided to be seated on the upper surface of the 410, respectively.
복수개의 열전도 플레이트(410)는, 열전달 효율이 높은 재질로 이루어지고, 배터리 팩 모듈(200)의 복수개의 셀의 무게를 지지할 수 있는 정도의 견고한 재질로 이루어짐이 바람직하다.The plurality of heat conducting plates 410 may be made of a material having high heat transfer efficiency, and may be made of a material that is strong enough to support the weight of the plurality of cells of the battery pack module 200.
복수개의 열전도 플레이트(410)가 장방형으로 형성된 경우, 도 4에 참조된 바와 같이, 복수개의 냉각 튜브(420)는, 열전도 플레이트(410)의 일면(본 발명의 실시예에서는 하면에 냉각 튜브(420)가 구비된 것으로 전제하여 설명한다)에 밀착되도록 결합되되, 장방향으로 길게 배치되며, 상호간에 서로 단방향으로 평행되게 이격 배치될 수 있다.When the plurality of heat conduction plates 410 are formed in a rectangular shape, as shown in FIG. 4, the plurality of cooling tubes 420 may include one surface of the heat conduction plate 410 (in the embodiment of the present invention, a cooling tube 420 on the lower surface). ) Is coupled to be in close contact with the premise that is provided, it is disposed long in the longitudinal direction, and may be spaced apart in parallel to each other in a unidirectional direction.
복수개의 히팅 플레이트(430)는, 복수개의 냉각 튜브(420) 각각의 사이에 냉각 튜브(420)와 동일한 방향으로 평행 배치될 수 있다.The plurality of heating plates 430 may be arranged in parallel in the same direction as the cooling tube 420 between each of the plurality of cooling tubes 420.
복수개의 냉각 튜브(420)는, 도 5에 참조된 바와 같이, 열전도 플레이트(410)의 하면에 일체로 압출 성형될 수 있다. 냉각 튜브(420)와 열전도 플레이트(410)의 재질이 상이한 경우 이중 사출 성형 방식으로 제작될 수 있고, 냉각 튜브(420)와 열전도 플레이트(410)의 재질이 동일한 경우에는 일반의 압출 성형 방식으로 일체로 제작되는 것도 가능하다.The plurality of cooling tubes 420 may be integrally extruded to the bottom surface of the thermal conductive plate 410, as shown in FIG. 5. If the material of the cooling tube 420 and the heat conductive plate 410 is different, it may be manufactured by a double injection molding method, and if the material of the cooling tube 420 and the heat conductive plate 410 is the same, it is integrated by a general extrusion molding method. It is also possible to be produced with.
그러나, 복수개의 냉각 튜브(420)가 반드시 압출 성형 방식에 의하여 제작되어야 하는 것은 아니고, 열전도 플레이트(410)의 하면에 별도의 체결 장치를 이용하여 냉각 튜브(420)가 면 밀착되도록 결합되는 것도 가능함은 당연하다.However, the plurality of cooling tubes 420 are not necessarily manufactured by an extrusion molding method, and the cooling tubes 420 may be coupled to the bottom surface of the heat conductive plate 410 by using a separate fastening device. Of course.
한편, 히팅 플레이트(430)는, 복수개의 열전도 플레이트(410)의 하면에 프린팅 방식으로 접합되는 박막 히터일 수 있다.Meanwhile, the heating plate 430 may be a thin film heater that is bonded to a lower surface of the plurality of heat conductive plates 410 by a printing method.
그러나, 히팅 플레이트(430) 또한 반드시 프린팅 방식으로 접합되어야 하는 것은 아니고, 도면에 도시되지 않았으나, 열전도 플레이트(410)의 하면에 히팅 플레이트(430)를 클램핑시키는 클램핑부(미도시)가 구비되고, 이 클램핑부에 히팅 플레이트(430)가 클램핑 결합되는 것도 가능함은 당연하다.However, the heating plate 430 is also not necessarily bonded in a printing manner, and although not shown in the drawing, a clamping part (not shown) for clamping the heating plate 430 is provided on the lower surface of the heat conductive plate 410. Naturally, the heating plate 430 may be clamped to the clamping part.
히팅 플레이트(430)는, 전기적으로 구동되는 열선 히터로서 구비될 수 있고, 열전도 플레이트(410)는 히팅 플레이(430)로부터 제공되는 열을 전체로 분산시켜 배터리 팩 모듈(200)을 가열시킬 수 있다.The heating plate 430 may be provided as an electrically driven hot wire heater, and the heat conduction plate 410 may heat the battery pack module 200 by dispersing the heat provided from the heating play 430 as a whole. .
본 발명에 따른 전기자동차의 배터리 열교환 장치의 실시예는, 배터리 팩 모듈(200)의 지속적인 가동으로 인한 배터리 팩 모듈(200) 온도를 냉각시키기 위하여 배터리 열교환 유닛(400)의 냉각 튜브(420)를 이용하고, 혹한기의 날씨에서 배터리 팩 모듈(200)을 가열시키기 위하여 배터리 열교환 유닛(400)의 히팅 플레이(430)를 이용한다. An embodiment of the battery heat exchange device of the electric vehicle according to the present invention, the cooling tube 420 of the battery heat exchange unit 400 to cool the temperature of the battery pack module 200 due to the continuous operation of the battery pack module 200. The heating play 430 of the battery heat exchange unit 400 is used to heat the battery pack module 200 in cold weather.
이와 같은 구성의 열전도 플레이트(410)는, 접촉되는 대상인 복수개의 셀의 접촉면 형상에 대응되게 형성됨이 바람직하다.The heat conduction plate 410 having such a configuration is preferably formed to correspond to the contact surface shape of the plurality of cells to be contacted.
한편, 배터리 열교환 유닛(400)은, 도 2에 참조된 바와 같이, 제2팽창기(30B)로부터 냉매를 공급받아 복수개의 열전도 플레이트(410)로 분배하여 공급하는 분배 배관 모듈(450,455)과, 복수개의 열전도 플레이트(410)로부터 냉매를 포집하여 냉매 순환부(10~40)로 토출시키는 토출 배관 모듈(460)을 더 포함할 수 있다.Meanwhile, as illustrated in FIG. 2, the battery heat exchange unit 400 receives a refrigerant from the second expander 30B and distributes the plurality of distribution piping modules 450 and 455 to supply the plurality of heat conducting plates 410. The discharge pipe module 460 may further include a discharge pipe module 460 which collects the refrigerant from the two heat conductive plates 410 and discharges the refrigerant to the refrigerant circulation parts 10 to 40.
또한, 배터리 열교환 유닛(400)은, 제2팽창기(30B)로부터 공급받은 냉매를 복수개의 열전도 플레이트(410)로 균일하게 분배하는 냉매 분배기(405)를 더 포함할 수 있다.In addition, the battery heat exchange unit 400 may further include a refrigerant distributor 405 that uniformly distributes the refrigerant supplied from the second expander 30B to the plurality of heat conductive plates 410.
도 6은 도 3의 구성 중 냉매 분배기(405)의 일예를 나타낸 사시도이고, 도 7은 도 4의 구성 중 냉각튜브 분배 헤더의 일실시예를 나타낸 사시도이며, 도 8은 도 7의 B-B선을 따라 취한 단면도이고, 도 9는 도 4의 구성 중 냉각튜브 분배 헤더의 다른 실시예를 나타낸 사시도이며, 도 10은 도 9의 C-C선을 따라 취한 단면도이고, 도 11은 도 4의 구성 중 토출 배관 모듈을 나타낸 사시도이며, 도 12는 도 11의 구성 중 냉매 포집기(470)를 나타낸 사시도이다.6 is a perspective view showing an example of the refrigerant distributor 405 of the configuration of Figure 3, Figure 7 is a perspective view showing an embodiment of the cooling tube distribution header of the configuration of Figure 4, Figure 8 is a line BB of Figure 7 9 is a perspective view illustrating another embodiment of the cooling tube distribution header of FIG. 4, FIG. 10 is a cross-sectional view taken along line CC of FIG. 9, and FIG. 11 is a discharge pipe of the configuration of FIG. 4. 12 is a perspective view of the module, and FIG. 12 is a perspective view of the refrigerant collector 470 in the configuration of FIG. 11.
여기서, 분배 배관 모듈(450,455)은, 도 2 및 도 3에 참조된 바와 같이, 제2팽창기(30B)와 냉매 분배기(405)를 연결하는 팽창기-분배기 연결 배관(451)과, 냉매 분배기(405)로부터 분지되어 복수개의 열전도 플레이트(410)에 각각 연결되는 복수개의 공급 배관(453)과, 복수개의 공급 배관(453) 및 복수개의 냉각 튜브(420)와 연통되게 배치되어 각각의 복수개의 공급 배관(453)으로부터 공급된 냉매를 복수개의 냉각 튜브(420)로 균일 분배하는 냉각튜브 분배 헤더(455)를 포함할 수 있다.Here, the distribution piping modules 450 and 455 may include an expander-distributor connection pipe 451 connecting the second expander 30B and the refrigerant distributor 405 and the refrigerant distributor 405 as shown in FIGS. 2 and 3. A plurality of supply pipes 453 and a plurality of supply pipes 453 respectively connected to the plurality of heat conductive plates 410, and are connected to the plurality of supply pipes 453 and the plurality of cooling tubes 420, respectively. It may include a cooling tube distribution header 455 that uniformly distributes the refrigerant supplied from the 453 to the plurality of cooling tubes (420).
제2팽창기(30B)를 통하여 팽창된 냉매는 팽창기-분배기 연결 배관(451)을 통하여 냉매 분배기(405)로 유동되고, 냉매 분배기(405)는 복수개의 공급 배관(453,453A~453E) 각각에 균일하게 냉매를 분배하며, 복수개의 공급 배관(453)으로 각각 균일 분배되어 유동되는 냉매는 복수개의 열전도 플레이트(410,410A~410E)에 각각 구비된 냉각튜브 분배 헤더(455,455A~455E)로 유동되어 다시 복수개의 냉각튜브 분배 헤더(455)에 의해 복수개의 냉각 튜브(420)로 균일하게 분배된다.The refrigerant expanded through the second expander 30B flows to the refrigerant distributor 405 through the expander-distributor connection pipe 451, and the refrigerant distributor 405 is uniform in each of the plurality of supply pipes 453, 453A to 453E. The refrigerant is uniformly distributed, and the refrigerant that is uniformly distributed to the plurality of supply pipes 453 and flows to the cooling tube distribution headers 455, 455A to 455E provided in the plurality of heat conducting plates 410, 410A to 410E, respectively. The plurality of cooling tube distribution headers 455 are uniformly distributed to the plurality of cooling tubes 420.
냉매 분배기(405)는, 도 6에 참조된 바와 같이, 팽창기-분배기 연결 배관(451)이 연결되고, 냉매가 유입되는 유입부(406)와, 유입부(406)로부터 냉매가 분기되도록 연장되고, 복수개의 공급 배관(453)이 테두리를 따라 환상으로 연결되는 분배부(407)를 포함할 수 있다.As shown in FIG. 6, the refrigerant distributor 405 is connected with an expander-distributor connecting pipe 451, and extends such that the refrigerant flows from the inlet 406 and the inlet 406. In addition, the plurality of supply pipes 453 may include a distribution unit 407 connected in an annular manner along the rim.
분배부(407)에는, 복수개의 공급 배관(453)의 일단이 각각 연결되는 복수개의 배관 연결공(408)이 테두리를 따라 환상으로 형성된다.In the distribution part 407, a plurality of pipe connecting holes 408 to which one end of the plurality of supply pipes 453 are connected are formed in an annular shape along an edge.
한편, 냉각튜브 분배 헤더(455)는, 도 4에 참조된 바와 같이, 복수개의 공급 배관의 타단이 연결되는 냉매 공급부(456)와, 냉매 공급부(456)와 연통되게 일직선 방향으로 연장되고, 복수개의 냉각 튜브(420)로 연결되는 연결부(457A,457B)를 포함할 수 있다.Meanwhile, as shown in FIG. 4, the cooling tube distribution header 455 extends in a straight line in communication with the refrigerant supply unit 456 to which the other ends of the plurality of supply pipes are connected, and the refrigerant supply unit 456. Connections 457A, 457B to two cooling tubes 420.
여기서, 연결부(457A,457B)는, 도 7 및 도 8에 참조된 바와 같이, 이중관 형상으로 구비될 수 있음은 물론, 도 9 및 도 10에 참조된 바와 같이, 멀티 유로 형상으로 구비될 수 있다.Here, the connecting portions 457A and 457B may be provided in a double tube shape, as shown in FIGS. 7 and 8, and of course, may be provided in a multi-channel shape as described in FIGS. 9 and 10. .
이하에서는, 이중관 형상으로 구비된 실시예를 제1실시예에 따른 연결부(457A,457B)라 칭하고, 멀티 유로 형상으로 구비된 실시예를 제2실시예에 따른 연결부(457A,457B)라 칭하기로 한다.Hereinafter, an embodiment provided in a double pipe shape will be referred to as connecting portions 457A and 457B according to the first embodiment, and an embodiment provided in a multi-channel shape will be referred to as connecting portions 457A and 457B according to the second embodiment. do.
제1실시예에 따른 연결부(457A,457B)는, 도 7 및 도 8에 참조된 바와 같이, 직육면체의 단면 형상을 갖고, 복수개의 냉각 튜브(420)와 연결되는 결합부(457B)와, 반원주의 단면 형상을 갖되, 결합부(457B)와 일체로 연장되고, 냉매가 수용되는 내부 공간이 형성되며, 내부 공간에서 냉매를 적어도 2회 균질 혼합시키는 혼합부(457A)를 포함할 수 있다.The connecting portions 457A and 457B according to the first embodiment have a cross-sectional shape of a rectangular parallelepiped, as shown in FIGS. 7 and 8, a coupling portion 457B connected to the plurality of cooling tubes 420, and a semicircle. It has a cross-sectional shape of, and integrally extended with the coupling portion 457B, the inner space is formed to accommodate the refrigerant, may include a mixing unit 457A for homogeneously mixing the refrigerant at least twice in the inner space.
혼합부(457A)는, 도 7에 참조된 바와 같이, 냉매가 수용되는 내부 공간이 형성된 헤더 본체(도면부호 미표기)와, 복수개의 공급 배관(453)과 연통되되 헤더 본체의 내부 공간에 삽관되고, 냉매가 외부로 토출되면서 1차 팽창되도록 제1팽창홀(459B)이 형성된 제1이너 튜브(459A)와, 제1이너 튜브(459A)를 감싸도록 헤더 본체의 내부 공간에 삽관되어 제1이너 튜브(459A)로부터 1차 팽창된 냉매를 공급받고, 헤더 본체의 내부 공간으로 1차 팽창된 냉매가 토출되면서 2차 팽창되도록 제2팽창홀(458B)이 형성된 제2이너 튜브(458A)를 포함할 수 있다.As shown in FIG. 7, the mixing part 457A communicates with a header main body (not shown) having an internal space in which a refrigerant is accommodated, and a plurality of supply pipes 453 and is inserted into the internal space of the header main body. The first inner tube 459A having the first expansion hole 459B is formed to be first expanded while the refrigerant is discharged to the outside, and the first inner tube 459A is inserted into the inner space of the header body to surround the first inner tube 459A. A second inner tube 458A having a second expansion hole 458B formed to receive the first expanded refrigerant from the tube 459A, and to expand secondly as the primary expanded refrigerant is discharged into the inner space of the header body; can do.
제1이너 튜브(459A)는, 제2이너 튜브(458A)의 내부로 삽관될 수 있는 크기로 형성됨이 바람직하고, 제2이너 튜브(458A)는, 헤더 본체의 내부 공간으로 삽관될 수 있는 크기로 형성됨이 바람직하다.The first inner tube 459A is preferably formed to be sized to be inserted into the second inner tube 458A, and the second inner tube 458A is sized to be inserted into the inner space of the header body. It is preferable to form.
제1팽창홀(459B)은, 연결부(457A,457B)의 반대편, 즉 냉매 공급부(456) 측으로 연통되게 형성되고, 제2팽창홀(458B)은, 냉매 공급부(456)의 반대편, 즉 연결부(457A,457B) 측으로 연통되게 형성된다.The first expansion hole 459B is formed to be in communication with the opposite side of the connection portions 457A and 457B, that is, toward the refrigerant supply portion 456, and the second expansion hole 458B is opposite the refrigerant supply portion 456, that is, the connection portion ( 457A and 457B).
여기서, 혼합부(457A)는, 제2팽창기(30B)에 의하여 팽창된 냉매가 공급되는 과정에서, 액냉매 및 기냉매의 2상 냉매로 이루어진 공급 냉매를 균일하게 혼합하여 복수개의 냉각 튜브(420)로 균질의 냉매가 공급되도록 함으로써 열전도 플레이트(410)가 전체적으로 균등한 냉각 성능을 가지도록 하는 역할을 한다.Here, in the process of supplying the refrigerant expanded by the second expander 30B, the mixing unit 457A uniformly mixes a supply refrigerant consisting of a liquid refrigerant and an air refrigerant, and a plurality of cooling tubes 420. By supplying a homogeneous refrigerant to the ()) serves to ensure that the thermal conductive plate 410 has a uniform cooling performance as a whole.
보다 상세하게는, 제1이너 튜브(459A)를 통하여 유입된 2상의 냉매는, 제1팽창홀(459B)을 통하여 제2이너 튜브(458A)의 내주와 제1이너 튜브(459A)의 외주가 형성하는 공간으로 토출되는 동작으로 1차적으로 팽창되어 균질하게 혼합되고, 제2팽창홀(458B)을 통하여 헤더 본체의 내측면과 제2이너 튜브(458A)의 외주가 형성하는 공간으로 토출되는 동작으로 2차적으로 팽창되어 균질하게 혼합된다.More specifically, the two-phase refrigerant introduced through the first inner tube 459A has an inner circumference of the second inner tube 458A and an outer circumference of the first inner tube 459A through the first expansion hole 459B. Primary expansion and homogeneous mixing by the operation to be discharged into the space to be formed, and discharged to the space formed by the inner surface of the header body and the outer periphery of the second inner tube 458A through the second expansion hole (458B) It is expanded secondarily and mixed homogeneously.
여기서, 도 8에 참조된 바와 같이, 제1이너 튜브(459A)는, 제2이너 튜브(458A)의 내부 공간에서 냉매 공급부(456) 측으로 편심되게 배치됨이 바람직하고, 제2이너 튜브(458A)는, 헤더 본체의 내부 공간에서 냉매 공급부(456)의 반대편, 즉 연결부(457A,457B) 측으로 편심되게 배치됨이 바람직하다.Here, as shown in FIG. 8, the first inner tube 459A is preferably disposed eccentrically toward the refrigerant supply unit 456 in the inner space of the second inner tube 458A, and the second inner tube 458A. Is eccentrically disposed on the opposite side of the refrigerant supply unit 456, that is, the connection portions 457A and 457B, in the inner space of the header body.
또한, 제1이너 튜브(459A)의 냉매 수용 부피보다 제2이너 튜브(458A)와 제1이너 튜브(459A) 사이의 공간이 차지하는 냉매 수용 부피가 더 크도록 설정됨이 바람직하고, 제2이너 튜브(458A)와 제1이너 튜브(459A) 사이의 공간이 차지하는 냉매 수용 부피보다 헤더 본체의 내부 공간과 제2이너 튜브(458A) 사이의 공간이 차지하는 냉매 수용 부피가 더 크게 설정됨이 바람직하다.In addition, it is preferable that the refrigerant containing volume occupied by the space between the second inner tube 458A and the first inner tube 459A is larger than the refrigerant containing volume of the first inner tube 459A. Preferably, the refrigerant containing volume occupied by the space between the inner space of the header body and the second inner tube 458A is set larger than the refrigerant containing volume occupied by the space between the tube 458A and the first inner tube 459A. .
이는, 냉매의 팽창의 원리가 능동적으로 반영되도록 한 것으로서, 좁은 공간에서 넓은 공간으로 액냉매가 팽창되면서 기냉매로 상변화되도록 하여 2상의 냉매 혼합이 보다 빠르게 이루어지도록 하는 원리가 반영된 것이다.This is intended to actively reflect the principle of expansion of the refrigerant, and reflects the principle that the two-phase refrigerant mixture is made faster by changing the phase of the refrigerant into a refrigerant as the liquid refrigerant expands from a narrow space to a wide space.
제2실시예에 따른 연결부(457A,457B)는, 도 9 및 도 10에 참조된 바와 같이, 직육면체의 단면 형상을 갖고, 복수개의 냉각 튜브(420)와 연결되는 결합부(457B)와, 반원주의 단면 형상을 갖되, 결합부(457B)로부터 연장 형성되고, 냉매가 수용되는 내부 공간이 형성되며, 각각의 복수개의 냉각 튜브(420)마다에 냉매를 공급하도록 멀티 유로가 형성된 멀티 유로부(555,655)를 포함한다.The connecting portions 457A and 457B according to the second embodiment have a cross-sectional shape of a rectangular parallelepiped, as shown in FIGS. 9 and 10, a coupling portion 457B connected to the plurality of cooling tubes 420, and a semicircle. Multi-flow path portion 555 and 655 having a cross-sectional shape, extending from the coupling portion 457B, an inner space for accommodating a coolant therein, and a multi-flow path formed to supply a coolant to each of the plurality of cooling tubes 420. ).
제1실시예에 따른 연결부(457A,457B)의 혼합부(457A)와 제2실시예에 따른 연결부(457A,457B)의 멀티 유로부(555,655)의 외관은 동일하게 형성될 수 있으나, 냉매가 수용되는 내부 공간에 구비된 각 구성은 상이하다.Although the mixing portions 457A of the connecting portions 457A and 457B according to the first embodiment and the multi-channel portions 555 and 655 of the connecting portions 457A and 457B according to the second embodiment may have the same appearance, Each configuration provided in the inner space accommodated is different.
멀티 유로부(555,655)는, 도 9 및 도 10의 각 (a)에 참조된 바와 같이, 내부 공간에 길이 방향으로 삽입되되, 연결부(457A,457B)에서 헤더 본체 측으로 연통된 다수의 통공(559)이 형성된 유로 분리 플레이트(558)를 포함할 수 있고, 도 9 및 도 10의 (b)에 참조된 바와 같이, 각각 상이한 길이를 가지며, 내부 공간에 길이 방향으로 삽입된 복수개의 유로 분리 플레이트(657,658,659)를 포함할 수 있다.9 and 10, the plurality of passages 559 are inserted in the longitudinal direction in the inner space and communicated to the header body side at the connecting portions 457A and 457B, as referred to the angles (a) of FIGS. 9 and 10. And a flow path separation plate 558 formed therein, and as shown in FIGS. 9 and 10 (b), each having a different length and having a plurality of flow path separation plates inserted in the longitudinal direction in the inner space ( 657,658,659).
이하에서는, 다수의 통공(559)이 형성된 유로 분리 플레이트(558)를 ‘제1유로 분리 플레이트(558)’로 칭하고, 각각 상이한 길이로 형성된 유로 분리 플레이트(657,658,659)를 ‘제2유로 분리 플레이트(657,658,659)’로 칭하며, 특히 제2유로 분리 플레이트(657,658,659)는, 각각의 플레이트마다 길이가 짧은 것에서 긴 순으로 제1플레이트(657), 제2플레이트(658), 제3플레이트(659) 순으로 명명하기로 한다.Hereinafter, the flow path separation plate 558 on which the plurality of through holes 559 are formed will be referred to as a 'first flow path separation plate 558', and the flow path separation plates 657, 658 and 659 each having different lengths will be referred to as 'second flow path separation plates (' 657,658,659 '', in particular, the second flow path separating plates 657,658,659 are arranged in the order of the first plate 657, the second plate 658, and the third plate 659 in order from the shortest to the longest for each plate. I'll name it.
보다 상세하게는, 멀티 유로부는, 도 9 및 도 10의 각 (a)에 참조된 바와 같이, 내부 공간을 복수개의 냉각튜브가 결합되는 결합부측 공간과 결합부측에 대향되는 연결부(457A,457B)측 공간으로 구획하도록 내부 공간에 연결부(457A,457B)의 길이방향으로 길게 배치되는 상술한 제1유로 분리 플레이트(558)를 포함할 수 있다.More specifically, as shown in each of (a) of FIGS. 9 and 10, the multi-channel portion has coupling spaces 457A and 457B opposed to the coupling portion side and the coupling portion side to which the plurality of cooling tubes are coupled. The first flow path separation plate 558 described above may be disposed in the longitudinal direction of the connecting portions 457A and 457B in the inner space so as to partition into the side space.
여기서, 제1유로 분리 플레이트(558)의 선단은, 연결부(457A,457B)의 선단에 해당하는 내부 공간의 내벽면으로부터 소정거리 이격되게 배치되고, 제1유로 분리 플레이트(558)의 선단부에는 내부 공간 중 결합부측 공간과 연결부(457A,457B)측 공간을 상호 연통시키는 다수개의 통공(559)이 연결부(457A,457B)의 길이방향으로 소정거리 이격되게 형성될 수 있다.Here, the front end of the first flow path separation plate 558 is disposed to be spaced apart from the inner wall surface of the inner space corresponding to the front ends of the connection parts 457A and 457B by a predetermined distance, and the front end of the first flow path separation plate 558 is internal. A plurality of through holes 559 may be formed to be spaced apart by a predetermined distance in the longitudinal direction of the connecting parts 457A and 457B from the space between the coupling part side and the connecting parts 457A and 457B.
또한, 멀티 유로부는, 도 9 및 도 10의 (b)에 참조된 바와 같이, 내부 공간을 복수개의 냉각튜브가 결합되는 결합부측 공간과 결합부측 공간에 대향되는 연결부(457A,457B)측 공간으로 복수개로 구획하도록 내부 공간에 연결부(457A,457B)의 길이방향으로 길게 배치되되 복수개가 구비된 제2유로 분리 플레이트(657,658,659)를 포함할 수 있다.9 and 10 (b), the inner space is a space on the side of the connection portion 457A and 457B opposed to the space on the coupling portion and the space on the coupling portion to which the plurality of cooling tubes are coupled. A plurality of second flow path separation plates 657, 658, and 659 may be disposed in the interior space in the lengthwise direction of the connecting parts 457A and 457B in a plurality of compartments.
여기서, 제2유로 분리 플레이트(657,658,659)는, 일단이 각각 냉매 공급부(456)에 연결되되, 일단과 타단 사이의 길이가 각각 상이하게 구비될 수 있다.Here, the second flow path separation plates 657, 658, 659, one end is connected to the refrigerant supply unit 456, respectively, the length between one end and the other end may be provided differently.
도 9 및 도 10의 (a)에 참조된 바와 같은 멀티 유로부의 냉매 공급 과정을 설명하면 다음과 같다.9 and 10, the refrigerant supply process of the multi-path part as described with reference to (a) is as follows.
설명의 편의를 위하여, 연결부(457A,457B)의 내부 공간에 삽입된 유로 분리 플레이트(558)에 의하여 나뉘어지는 공간 중 결합부 측을 포함하는 공간은 ‘결합부측 공간’이라 칭하고, 그 반대편 공간을 ‘연결부(457A,457B)측 공간’이라 정의하여 설명한다.For convenience of description, the space including the coupling part side among the spaces divided by the flow path separating plate 558 inserted into the interior spaces of the connection parts 457A and 457B is referred to as the 'compartment side space', and the opposite space It will be described by defining the 'space of the connecting portions (457A, 457B)'.
냉매가 냉매 공급부(456)에서 연결부(457A,457B)로 유입되면, 연결부(457A,457B)의 시작 부분에서 다수의 통공(559)이 형성된 부분 중 결합부측 공간으로 유입된 냉매는 곧바로 결합부(457B)에 연결된 복수개의 냉각 튜브(420) 중 일부로 분배되고(제1유로), 연결부(457A,457B)의 시작 부분에서 다수의 통공(559)이 형성된 부분 중 연결부(457A,457B)측 공간으로 유입된 냉매의 일부는 다수의 통공(559)을 관통하여 결합부측 공간을 경유하여 복수개의 냉각 튜브(420) 중 다수의 통공(559)의 주위에 결합된 냉각 튜브(420)로 일부가 분배되며(제2유로), 그 나머지 냉매는 유로 분리 플레이트(558)의 단부에서 결합부측 공간으로 유동되어 나머지 냉각 튜브(420)로 균일하게 분배된다(제3유로).When the refrigerant flows into the connecting portions 457A and 457B from the refrigerant supply unit 456, the refrigerant introduced into the space of the coupling portion of the portion where the plurality of through holes 559 are formed at the beginning of the connecting portions 457A and 457B is directly coupled to the coupling portion ( A portion of the plurality of cooling tubes 420 connected to the 457B (first flow path), and at the beginning of the connecting portions 457A and 457B to the space on the side of the connecting portions 457A and 457B in which the plurality of through holes 559 are formed. Some of the introduced refrigerant passes through the plurality of through holes 559 and is partially distributed to the cooling tube 420 coupled around the plurality of through holes 559 of the plurality of cooling tubes 420 via the space at the coupling part side. (Second flow path), the remaining refrigerant flows from the end of the flow path separation plate 558 to the joint side space and is uniformly distributed to the remaining cooling tube 420 (third flow path).
도 9 및 도 10의 (b)에 참조된 바와 같은 멀티 유로부의 냉매 공급 과정을 설명하면 다음과 같다.9 and 10 (b), the refrigerant supply process of the multi flow path unit will be described below.
제1플레이트(657)는 연결부(457A,457B)의 내부 공간에서 결합부 측에 가깝도록 삽입 설치되고, 제2플레이트(658)는 연결부(457A,457B)의 내부 공간 중간에 삽입 설치되며, 제3플레이트(659)는 연결부(457A,457B)의 내부 공간에서 연결부(457A,457B) 결합부 측에 멀게 설치된다.The first plate 657 is inserted and installed to be close to the coupling part side in the inner space of the connecting portions 457A and 457B, and the second plate 658 is inserted and installed in the middle of the inner space of the connecting portions 457A and 457B. The three plates 659 are installed far from the coupling part 457A, 457B coupling side in the inner space of the connection part 457A, 457B.
냉매가 냉매 공급부(456)에서 연결부(457A,457B)로 유입되면, 결합부(457B)와 제1플레이트(657) 사이로 유입된 냉매는 그 근처의 냉각 튜브(420)로 일부가 분배 공급되고(제1유로), 제1플레이트(657)와 제2플레이트(658) 사이로 유입된 냉매는 제1플레이트(657)의 단부(선단)에서 제2플레이트(658)의 단부(선단) 사이에 구비된 냉각 튜브(420)로 일부가 분배 공급되며(제2유로), 제2플레이트(658)와 제3플레이트(659) 사이로 유입된 냉매는 제2플레이트(658)의 단부(선단)에서 제3플레이트(659)의 단부(선단) 사이에 구비된 냉각 튜브(420)로 일부가 분배 공급되고(제3유로), 제3플레이트(659)와 연결부(457A,457B)의 나머지 공간 사이로 유입된 냉매는 제3플레이트(659)의 단부(선단)와 연결부(457A,457B)의 내부 공간 중 내측면 사이에 구비된 냉각 튜브(420)로 나머지가 분배 공급된다(제4유로).When the refrigerant flows into the connection portions 457A and 457B from the refrigerant supply portion 456, the refrigerant introduced between the coupling portion 457B and the first plate 657 is partially distributed and supplied to the cooling tube 420 therein ( The first flow path, the refrigerant introduced between the first plate 657 and the second plate 658 is provided between the end (tip) of the second plate 658 at the end (tip) of the first plate 657. A portion is distributed and supplied to the cooling tube 420 (second flow path), and the refrigerant introduced between the second plate 658 and the third plate 659 is transferred to the third plate at the end (front end) of the second plate 658. Part of the cooling tube 420 provided between the ends (tip) of the 659 is distributed and supplied (the third flow path), and the refrigerant introduced between the third plate 659 and the remaining spaces of the connecting portions 457A and 457B The remainder is distributedly supplied to the cooling tube 420 provided between the end portion (tip) of the third plate 659 and the inner surface of the inner spaces of the connecting portions 457A and 457B (fourth flow path).
이처럼, 도 9 및 도 10에 참조된 바와 같은 멀티 유로부(555,655)에 의하여, 연결부(457A,457B)로 유입된 냉매는 멀티 유로를 형성하면서 균일하게 냉각 튜브(420)로 분배 공급될 수 있다.As such, the refrigerant flowing into the connecting portions 457A and 457B may be uniformly distributed and supplied to the cooling tube 420 while forming the multi-path by the multi-channel portions 555 and 655 as referred to in FIGS. 9 and 10. .
복수개의 냉각 튜브(420)로 균일하게 분배된 냉매는, 열전도 플레이트(410) 전체에서 균일한 냉각 성능을 가지도록 배터리 팩 모듈(200)과 열교환된 후, 배터리 열교환 유닛(400) 중 토출 배관 모듈(460)을 통하여 다시 냉매 순환부(10~40)로 토출된다.The refrigerant uniformly distributed into the plurality of cooling tubes 420 is heat-exchanged with the battery pack module 200 to have a uniform cooling performance in the entire heat conduction plate 410, and then the discharge piping module of the battery heat exchange unit 400. The refrigerant is discharged back to the refrigerant circulation parts 10 to 40 through 460.
보다 상세하게는, 토출 배관 모듈(460)은, 도 11에 참조된 바와 같이, 복수개의 열전도 플레이트(410)로부터 냉매를 포집하여 냉매 순환부(10~40)로 전달하는 냉매 포집기(470)와, 복수개의 열전도 플레이트(410)에 각각 배치되되, 복수개의 냉각 튜브(420)와 연통되게 배치되어 열교환된 냉매를 수집하는 복수개의 냉각튜브 포집 헤더(460)와, 복수개의 냉각튜브 포집 헤더(460)와 냉매 포집기(470)를 연결하는 복수개의 냉매 토출 배관(466,463A~463E) 및 냉매 포집기(470)와 냉매 순환부(10~40)를 연결하는 포집기-냉매 순환부 연결 배관(35B)을 포함할 수 있다. More specifically, the discharge piping module 460, as shown in Figure 11, and the refrigerant collector 470 to collect the refrigerant from the plurality of heat conductive plate 410 and to deliver to the refrigerant circulation section (10-40) A plurality of cooling tube collecting headers 460 disposed on the plurality of heat conducting plates 410 and arranged in communication with the plurality of cooling tubes 420 to collect the heat exchanged refrigerant, and a plurality of cooling tube collecting headers 460. ) And a plurality of refrigerant discharge pipes 466, 463A to 463E connecting the refrigerant collector 470 and the collector-refrigerant circulation connection pipe 35B connecting the refrigerant collector 470 and the refrigerant circulation parts 10 to 40. It may include.
냉각튜브 포집 헤더(460)는, 상술한 냉각튜브 분배 헤더(455)가 장방형의 열전도 플레이트(410)의 단부 중 일단에 배치된 것과 대칭되게 열전도 플레이트(410)의 단부 중 타단에 배치된다.The cooling tube collecting header 460 is disposed at the other end of the end of the heat conductive plate 410 such that the cooling tube distribution header 455 described above is disposed at one end of the rectangular heat conductive plate 410.
냉각튜브 분배 헤더(455)가 냉매 공급부(456) 및 연결부(457A,457B)로 나누어 냉매를 균질하게 분배하는 구성인 반면에 냉각튜브 포집 헤더(460)는 별도의 구성은 요하지 않고, 복수개의 냉각 튜브(420)와의 연결이 견고하면 족하다.While the cooling tube distribution header 455 is configured to homogeneously distribute the refrigerant by dividing the refrigerant supply unit 456 and the connection units 457A and 457B, the cooling tube collecting header 460 does not require a separate configuration, The connection with the tube 420 is sufficient.
냉매 포집기(470)는, 도 12에 참조된 바와 같이, 복수개의 냉매 토출 배관(466,463A~463E)이 연결되는 복수개의 연결구(471A~471E)가 형성된 매니폴드로 구비될 수 있다.As shown in FIG. 12, the refrigerant collector 470 may be provided as a manifold having a plurality of connectors 471A to 471E to which a plurality of refrigerant discharge pipes 466, 463A to 463E are connected.
상기와 같이 구성된 본 발명에 따른 전기자동차의 배터리 열교환 장치에 따른 배터리 팩 모듈(200)의 냉각 및 가열 과정을 간략하게 설명하면 다음과 같다.When briefly described the cooling and heating process of the battery pack module 200 according to the battery heat exchange device of the electric vehicle according to the present invention configured as described above.
배터리 팩 모듈(200)의 냉각이 필요한 경우에는, 냉매 순환부(10~40)를 유동되는 냉매 중 응축기(20)에 의하여 응축된 냉매를 삼방밸브를 제어하여 제2팽창기(30B)가 구비된 제2분지배관(28) 측으로 유동시킨다.When the battery pack module 200 needs to be cooled, the second condenser 30B is provided by controlling the three-way valve of the refrigerant condensed by the condenser 20 among the refrigerant flowing through the refrigerant circulation units 10 to 40. It flows to the 2nd branch pipe 28 side.
제2팽창기(30B)에 의하여 팽창된 냉매는 분배 배관 모듈(450,455)을 통하여 열전도 플레이트(410)로 균일하게 공급되어 배터리 팩 모듈(200)을 냉각시킨 후 토출 배관 모듈(460)을 통하여 다시 냉매 순환부(10~40)로 회수된다.The refrigerant expanded by the second expander 30B is uniformly supplied to the heat conduction plate 410 through the distribution piping modules 450 and 455 to cool the battery pack module 200, and then again through the discharge piping module 460. Recovered to the circulation portion (10-40).
배터리 팩 모듈(200)의 가열이 필요한 경우에는, 열전도 플레이트(410)의 하면에 결합된 히팅 플레이(430)를 전기적으로 작동시켜 배터리 팩 모듈(200)을 가열시킨다.When heating of the battery pack module 200 is required, the heating play 430 coupled to the bottom surface of the heat conduction plate 410 is electrically operated to heat the battery pack module 200.
본 발명에 따른 전기자동차의 배터리 열교환 장치의 실시예는, 차량의 공조를 위해 구비된 냉매 순환부(10~40)로부터 냉매를 배터리 팩 모듈(200) 측으로 직접 공급한 후, 그 냉매를 이용하여 직접적으로 배터리 팩 모듈(200)을 냉각시키거나, 열전도 플레이트(410)의 하면에 구비된 히팅 플레이(430)의 직접적인 열을 이용하여 가열시키도록 구성됨으로써, 제품의 경량화를 추구하는 한편, 설치의 간소화와, 추가적인 배터리 팩 모듈(200)의 설치가 가능함으로써 배터리 성능을 향상시키는 이점을 가진다.Embodiment of the battery heat exchange device of the electric vehicle according to the present invention, after supplying the refrigerant directly to the battery pack module 200 side from the refrigerant circulation unit 10 to 40 provided for the air conditioning of the vehicle, by using the refrigerant It is configured to directly cool the battery pack module 200 or to heat using the direct heat of the heating play 430 provided on the bottom surface of the heat conduction plate 410, in order to reduce the weight of the product, Simplification and installation of the additional battery pack module 200 has the advantage of improving battery performance.
이상, 본 발명에 따른 전기자동차의 배터리 열교환 장치의 실시예를 첨부된 도면을 참조하여 상세하게 설명하였다. 그러나, 본 발명의 실시예가 반드시 상술한 실시예들에 의하여 한정되는 것은 아니고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변형 및 균등한 범위에서의 실시가 가능함은 당연하다고 할 것이다. 그러므로, 본 발명의 진정한 권리범위는 후술하는 특허청구범위에 의하여 정해진다고 할 것이다.Or more, with reference to the accompanying drawings, an embodiment of a battery heat exchanger of an electric vehicle according to the present invention was described in detail. However, the embodiments of the present invention are not necessarily limited to the above-described embodiments, and it is natural that various modifications and equivalents can be made by those skilled in the art to which the present invention pertains. will be. Therefore, the true scope of the present invention will be defined by the claims to be described later.

Claims (20)

  1. 냉동 사이클을 구성하면서 냉매가 순환되도록 구성된 냉매 순환부와;A refrigerant circulation unit configured to circulate the refrigerant while constituting the refrigeration cycle;
    상기 냉매 순환부 중 팽창기를 통하여 팽창된 냉매를 공급받아 배터리 팩 모듈을 냉각시키고 상기 냉매 순환부로 토출시키는 배터리 열교환 유닛을 포함하고,A battery heat exchange unit receiving the expanded refrigerant through the expander among the refrigerant circulation units to cool the battery pack module and discharge the battery pack module to the refrigerant circulation unit;
    상기 배터리 열교환 유닛은,The battery heat exchange unit,
    상기 배터리 팩 모듈을 구성하는 복수개의 셀에 각각 열접촉 가능하게 배치된 복수개의 열전도 플레이트와;A plurality of heat conductive plates arranged in thermal contact with a plurality of cells constituting the battery pack module;
    상기 열전도 플레이트의 일면에 밀착되게 복수열 배열된 복수개의 냉각 튜브와;A plurality of cooling tubes arranged in a plurality of rows in close contact with one surface of the heat conductive plate;
    상기 복수개의 냉각 튜브 각각의 사이에 해당하는 상기 열전도 플레이트의 일면에 밀착되게 배치된 복수개의 히팅 플레이트를 포함하는 전기자동차의 배터리 열교환 장치.And a plurality of heating plates disposed in close contact with one surface of the heat conduction plate corresponding to each of the plurality of cooling tubes.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 냉각 튜브는, 상기 복수개의 열전도 플레이트의 일면에 브레이징(Brazing) 접착 공법으로 접합되거나, 상기 복수개의 열전도 플레이트와 일체로 압출 성형 제작되는 전기자동차의 배터리 열교환 장치.The cooling tube is bonded to one surface of the plurality of heat conductive plates by a brazing (Brazing) bonding method, or a battery heat exchange apparatus of an electric vehicle that is integrally extrusion molded with the plurality of heat conductive plates.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 히팅 플레이트는, 상기 복수개의 열전도 플레이트의 일면에 프린팅 방식으로 접합되거나, 상기 복수개의 열전도 플레이트의 일면에 형성된 클램핑부에 클램핑 결합되는 전기자동차의 배터리 열교환 장치.The heating plate is bonded to one surface of the plurality of heat conductive plates by a printing method, or a battery heat exchange apparatus of an electric vehicle is clamped coupled to the clamping portion formed on one surface of the plurality of heat conductive plates.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 복수개의 열전도 플레이트는,The plurality of heat conductive plates,
    접촉되는 상기 복수개의 셀의 접촉면 형상에 대응되는 넓이를 가지도록 형성된 전기자동차의 배터리 열교환 장치.Battery heat exchange apparatus for an electric vehicle formed to have an area corresponding to the contact surface shape of the plurality of cells in contact.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 배터리 열교환 유닛은,The battery heat exchange unit,
    상기 팽창기로부터 상기 냉매를 공급받아 상기 복수개의 열전도 플레이트로 분배하여 공급하는 분배 배관 모듈과;A distribution piping module which receives the refrigerant from the expander and distributes the refrigerant to the plurality of heat conductive plates;
    상기 복수개의 열전도 플레이트로부터 상기 냉매를 포집하여 상기 냉매 순환부로 토출시키는 토출 배관 모듈을 더 포함하는 전기자동차의 배터리 열교환 장치.And a discharge piping module configured to collect the refrigerant from the plurality of heat conductive plates and discharge the refrigerant to the refrigerant circulation unit.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 배터리 열교환 유닛은, 상기 팽창기로부터 공급받은 냉매를 상기 복수개의 열전도 플레이트로 균일하게 분배하는 냉매 분배기를 더 포함하고,The battery heat exchange unit further includes a refrigerant distributor that uniformly distributes the refrigerant supplied from the expander to the plurality of heat conductive plates.
    상기 분배 배관 모듈은,The distribution piping module,
    상기 팽창기와 상기 냉매 분배기를 연결하는 팽창기-분배기 연결 배관과;An expander-distributor connection pipe connecting the expander and the refrigerant distributor;
    상기 냉매 분배기로부터 분지되어 상기 복수개의 열전도 플레이트에 각각 연결되는 복수개의 공급 배관과;A plurality of supply pipes branched from the refrigerant distributor and connected to the plurality of heat conductive plates, respectively;
    상기 복수개의 공급 배관 및 상기 복수개의 냉각 튜브와 연통되게 배치되어 각각의 상기 복수개의 공급 배관으로부터 공급된 상기 냉매를 상기 복수개의 냉각 튜브로 균일 분배하는 냉각튜브 분배 헤더를 포함하는 전기자동차의 배터리 열교환 장치.Battery heat exchange of an electric vehicle including a cooling tube distribution header disposed in communication with the plurality of supply pipes and the plurality of cooling tubes to uniformly distribute the refrigerant supplied from each of the plurality of supply pipes to the plurality of cooling tubes. Device.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 냉매 분배기는,The refrigerant distributor,
    상기 팽창기-분배기 연결 배관이 연결되고, 상기 냉매가 유입되는 유입부와;An inlet part to which the expander-distributor connection pipe is connected and into which the refrigerant is introduced;
    상기 유입부로부터 확관되고, 상기 복수개의 공급 배관이 테두리를 따라 환상으로 연결되는 분배부를 포함하는 전기자동차의 배터리 열교환 장치.A battery heat exchanger of an electric vehicle, which extends from the inlet and includes a distribution unit in which the plurality of supply pipes are annularly connected along an edge thereof.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 냉각튜브 분배 헤더는,The cooling tube distribution header,
    상기 복수개의 공급 배관과 연결되는 냉매 공급부와;A refrigerant supply unit connected to the plurality of supply pipes;
    상기 냉매 공급부와 연통되게 일직선 방향으로 연장되고, 상기 복수개의 냉각 튜브로 연결되는 연결부를 포함하는 전기자동차의 배터리 열교환 장치.A battery heat exchanger of an electric vehicle including a connection part extending in a straight line in communication with the refrigerant supply part and connected to the plurality of cooling tubes.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 연결부는,The connecting portion,
    직육면체의 단면 형상을 갖고, 상기 복수개의 냉각 튜브와 연결되는 결합부와;A coupling portion having a cross sectional shape of a rectangular parallelepiped and connected to the plurality of cooling tubes;
    반원주의 단면 형상을 갖고, 상기 냉매가 수용되는 내부 공간이 형성되며, 상기 내부 공간에서 상기 냉매를 적어도 2회 균질 혼합시키는 혼합부를 포함하는 전기자동차의 배터리 열교환 장치.A battery heat exchange apparatus for an electric vehicle having a cross-sectional shape of a semi-circumference, an internal space in which the refrigerant is accommodated, and a mixing unit configured to homogeneously mix the refrigerant at least twice in the internal space.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 혼합부는,The mixing unit,
    상기 냉매가 수용되는 내부 공간이 형성된 헤더 본체와;A header body having an internal space in which the refrigerant is accommodated;
    상기 복수개의 공급 배관과 연통되되 상기 헤더 본체의 내부 공간에 삽관되고, 상기 냉매가 외부로 토출되면서 1차 팽창되도록 제1팽창홀이 형성된 제1이너 튜브와;A first inner tube communicating with the plurality of supply pipes and inserted into an inner space of the header body, and having a first expansion hole formed to expand first as the refrigerant is discharged to the outside;
    상기 제1이너 튜브를 감싸도록 상기 헤더 본체의 내부 공간에 삽관되어 상기 제1이너 튜브로부터 상기 1차 팽창된 냉매를 공급받고, 상기 헤더 본체의 내부 공간으로 상기 1차 팽창된 냉매가 토출되면서 2차 팽창되도록 제2팽창홀이 형성된 제2이너 튜브를 포함하는 전기자동차의 배터리 열교환 장치.It is inserted into the inner space of the header body to surround the first inner tube is supplied with the primary expanded refrigerant from the first inner tube, and the primary expanded refrigerant is discharged into the inner space of the header body 2 Battery heat exchange apparatus for an electric vehicle comprising a second inner tube is formed with a second expansion hole to be expanded.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 제1팽창홀은 상기 결합부 측으로 연통되고, 상기 제2팽창홀은 상기 제1팽창홀의 연통 방향과 반대 방향으로 연통되는 전기자동차의 배터리 열교환 장치.And the first expansion hole communicates with the coupling part side, and the second expansion hole communicates in a direction opposite to the communication direction of the first expansion hole.
  12. 청구항 10에 있어서,The method according to claim 10,
    상기 제1이너 튜브의 냉매 수용 부피보다 상기 제2이너 튜브와 상기 제1이너 튜브 사이의 공간이 차지하는 냉매 수용 부피가 더 크고,The refrigerant accommodating volume occupied by the space between the second inner tube and the first inner tube is larger than the refrigerant accommodating volume of the first inner tube,
    상기 제2이너 튜브와 상기 제1이너 튜브 사이의 공간이 차지하는 냉매 수용 부피보다 상기 내부 공간과 상기 제2이너 튜브 사이의 공간이 차지하는 냉매 수용 부피가 더 크게 형성된 전기자동차의 배터리 열교환 장치.The battery heat exchanger of an electric vehicle having a larger refrigerant accommodating volume occupied by the space between the inner space and the second inner tube than a refrigerant accommodating volume occupied by the space between the second inner tube and the first inner tube.
  13. 청구항 8에 있어서,The method according to claim 8,
    상기 연결부는,The connecting portion,
    직육면체의 단면 형상을 갖고, 상기 복수개의 냉각 튜브와 연결되는 결합부와;A coupling portion having a cross sectional shape of a rectangular parallelepiped and connected to the plurality of cooling tubes;
    반원주의 단면 형상을 갖고, 상기 냉매가 수용되는 내부 공간이 형성되며, 각각의 상기 복수개의 냉각 튜브마다에 상기 냉매를 공급하도록 멀티 유로가 형성된 멀티 유로부를 포함하는 전기자동차의 배터리 열교환 장치.A battery heat exchange apparatus for an electric vehicle having a cross-sectional shape of a semi-circumference, an internal space in which the refrigerant is accommodated, and a multi-path portion formed to supply the refrigerant to each of the plurality of cooling tubes.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 멀티 유로부는,The multi flow path unit,
    상기 내부 공간을 상기 복수개의 냉각튜브가 결합되는 결합부측 공간과 상기 결합부측 공간에 대향되는 연결부측 공간으로 구획하도록 상기 내부 공간에 상기 연결부의 길이방향으로 길게 배치되는 유로 분리 플레이트를 포함하는 전기자동차의 배터리 열교환 장치.An electric vehicle including a flow path separating plate disposed in the lengthwise direction of the connecting portion in the inner space so as to partition the inner space into a coupling part side space to which the plurality of cooling tubes are coupled and a coupling part side space opposite to the coupling part side space. Battery heat exchanger.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 유로 분리 플레이트의 선단은, 상기 연결부의 선단에 해당하는 상기 내부 공간의 내벽면으로부터 소정거리 이격되게 배치되고,The front end of the flow path separating plate is disposed to be spaced apart from the inner wall surface of the inner space corresponding to the front end of the connection part by a predetermined distance.
    상기 유로 분리 플레이트의 선단부에는 상기 내부 공간 중 상기 결합부측 공간과 상기 연결부측 공간을 상호 연통시키는 다수의 통공이 상기 연결부의 길이방향으로 소정거리 이격되게 형성된 전기자동차의 배터리 열교환 장치.The battery heat exchange apparatus of the electric vehicle is formed in the front end portion of the flow path separating plate is formed a plurality of through-holes for communicating the space between the coupling portion side and the connection portion side of the inner space in the longitudinal direction of the connecting portion.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 유로 분리 플레이트는,The flow path separating plate,
    상기 냉매 공급부로부터 상기 다수의 통공이 형성된 부분까지 상기 결합부측 공간으로 유입된 냉매가 상기 복수개의 냉매튜브 중 적어도 어느 하나로 혼합 유동되는 제1유로와;A first passage through which the refrigerant introduced into the space at the coupling part from the refrigerant supply part to the portion where the plurality of through holes are formed is mixed and flows into at least one of the plurality of refrigerant tubes;
    상기 연결부측 공간으로 유입된 냉매가 상기 다수의 통공을 통과하여 상기 결합부측 공간을 경유한 후 상기 복수개의 냉매튜브 중 적어도 다른 하나로 혼합 유동되는 제2유로와;A second passage through which the refrigerant introduced into the connection side space passes through the plurality of through holes and passes through the coupling side space and is mixed and flows into at least another one of the plurality of refrigerant tubes;
    상기 연결부측 공간으로 유입된 냉매가 상기 유로 분리 플레이트 선단 외측과 상기 연결부의 선단에 해당하는 상기 내부 공간의 내벽면 사이를 통과하여 상기 결합부측 공간을 경유한 후 상기 복수개의 냉매튜브의 나머지로 혼합 유동되는 제3유로를,The refrigerant introduced into the connection side space passes between the outer end of the flow path separating plate and the inner wall surface of the inner space corresponding to the front end of the connection portion, passes through the coupling side space, and mixes the rest of the plurality of refrigerant tubes. Flowing the third flow path,
    형성하는 전기자동차의 배터리 열교환 장치.Forming battery heat exchanger for electric vehicles.
  17. 청구항 13에 있어서,The method according to claim 13,
    상기 멀티 유로부는,The multi flow path unit,
    상기 내부 공간을 상기 복수개의 냉각튜브가 결합되는 결합부측 공간과 상기 결합부측 공간에 대향되는 연결부측 공간으로 복수개로 구획하도록 상기 내부 공간에 상기 연결부의 길이방향으로 길게 배치되는 복수개의 유로 분리 플레이트를 포함하는 전기자동차의 배터리 열교환 장치.A plurality of flow path separating plates disposed in the lengthwise direction of the connection part in the inner space to divide the inner space into a plurality of spaces in the coupling part side to which the plurality of cooling tubes are coupled and in the coupling part side space opposite the coupling part side space; Battery heat exchanger of an electric vehicle comprising.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 복수개의 유로 분리 플레이트는, 일단이 각각 상기 냉매 공급부에 연결되되, 상기 일단과 타단 사이의 길이가 각각 상이한 전기자동차의 배터리 열교환 장치.One end of each of the plurality of flow path separating plates is connected to the refrigerant supply unit, and a battery heat exchange apparatus of an electric vehicle having different lengths between the one end and the other end.
  19. 청구항 18에 있어서,The method according to claim 18,
    상기 복수개의 유로 분리 플레이트가 상기 일단과 타단 사이의 길이가 제1플레이트로부터 순차적으로 제3플레이트까지 점차 길게 구비됨과 아울러 상기 복수개의 냉매 튜브가 결합되는 결합부측 공간으로부터 이격되게 구비될 경우,When the plurality of flow path separation plates are provided with a length between the one end and the other end gradually longer from the first plate to the third plate and spaced apart from the space at the coupling side to which the plurality of refrigerant tubes are coupled,
    상기 냉매 공급부로부터 상기 제1플레이트의 선단 사이로 상기 복수개의 냉매튜브 중 적어도 어느 하나를 향하여 혼합 유동되는 제1유로와;A first flow passage which is mixed and flows toward at least one of the plurality of refrigerant tubes between the refrigerant supply unit and the front end of the first plate;
    상기 제1플레이트의 선단으로부터 상기 제2플레이트의 선단 사이로 상기 복수개의 냉매튜브 중 적어도 다른 하나를 향하여 혼합 유동되는 제2유로와;A second flow passage that is mixed and flows toward at least another one of the plurality of refrigerant tubes between the tip of the first plate and the tip of the second plate;
    상기 제2플레이트의 선단으로부터 상기 제3플레이트의 선단 사이로 상기 복수개의 냉매튜브의 또 다른 하나를 향하여 혼합 유동되는 제3유로와;A third flow passage that is mixed and flows from one end of the second plate to another one of the plurality of refrigerant tubes between the ends of the third plate;
    상기 제3플레이트의 선단으로부터 상기 연결부의 선단에 해당하는 상기 내부 공간의 내벽면 사이로 상기 복수개의 냉매튜브의 나머지를 향하여 혼합 유동되는 제3유로,A third flow passage which is mixed and flows toward the remainder of the plurality of refrigerant tubes between the inner wall surface of the inner space corresponding to the distal end of the third plate from the distal end of the third plate,
    를 형성하는 전기자동차의 배터리 열교환 장치.Battery heat exchanger of the electric vehicle to form a.
  20. 청구항 5에 있어서,The method according to claim 5,
    상기 토출 배관 모듈은, 상기 복수개의 열전도 플레이트로부터 냉매를 포집하여 상기 냉매 순환부로 전달하도록 매니폴드로 구비된 냉매 포집기와;The discharge piping module may include a refrigerant collector provided as a manifold to collect refrigerant from the plurality of heat conductive plates and transfer the refrigerant to the refrigerant circulation unit;
    상기 복수개의 열전도 플레이트에 각각 배치되되, 상기 복수개의 냉각 튜브와 연통되게 배치되어 상기 열전도 플레이트로부터 열교환된 냉매를 포집하는 복수개의 냉각튜브 포집 헤더와;A plurality of cooling tube collecting headers disposed on the plurality of heat conducting plates, respectively, in communication with the plurality of cooling tubes to collect refrigerant exchanged from the heat conducting plate;
    상기 복수개의 냉각튜브 포집 헤더와 상기 냉매 포집기를 연결하는 복수개의 냉매 토출 배관을 포함하는 전기자동차의 배터리 열교환 장치.And a plurality of refrigerant discharge pipes connecting the plurality of cooling tube collecting headers and the refrigerant collecting device.
PCT/KR2016/005696 2015-08-13 2016-05-30 Heat exchange device for battery of electric vehicle WO2017026634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680047301.7A CN107925141A (en) 2015-08-13 2016-05-30 The battery heat-exchange device of electric automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150114834A KR101724296B1 (en) 2015-08-13 2015-08-13 Cooling and Heating apparatus for Battery module of Eleceric Vehicles
KR10-2015-0114834 2015-08-13

Publications (1)

Publication Number Publication Date
WO2017026634A1 true WO2017026634A1 (en) 2017-02-16

Family

ID=57983315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005696 WO2017026634A1 (en) 2015-08-13 2016-05-30 Heat exchange device for battery of electric vehicle

Country Status (3)

Country Link
KR (1) KR101724296B1 (en)
CN (1) CN107925141A (en)
WO (1) WO2017026634A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718723A (en) * 2018-07-13 2020-01-21 株式会社高山 Heat exchanger for batteries and fuel cell stacks
CN110915061A (en) * 2017-07-19 2020-03-24 株式会社高山 Heat exchanger for cooling battery
CN111868467A (en) * 2018-03-16 2020-10-30 罗密欧系统公司 Cold plate for battery module
CN113074822A (en) * 2021-04-18 2021-07-06 葛同钊 Temperature measuring device based on new energy automobile uses

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995582B1 (en) * 2017-02-23 2019-07-02 엘지전자 주식회사 Battery cooling heat exchanger of Electric Vehicle
EP3553876B1 (en) * 2018-04-09 2020-07-22 Samsung SDI Co., Ltd. Coolant distributor
KR102210929B1 (en) * 2018-12-31 2021-02-02 주식회사 고산 Heat exchanger for battery cooling
JP7380248B2 (en) * 2019-02-26 2023-11-15 株式会社デンソー cooling system
CN110112502B (en) * 2019-05-07 2021-03-02 奇瑞新能源汽车股份有限公司 Electric automobile power battery attemperator, cooling system and electric automobile
JP7399650B2 (en) * 2019-08-21 2023-12-18 マツダ株式会社 vehicle battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070089615A (en) * 2006-02-28 2007-08-31 산요덴키가부시키가이샤 Power supply for vehicle
KR20130040554A (en) * 2011-10-14 2013-04-24 (주)브이이엔에스 Electric vehicle
KR20130113740A (en) * 2012-04-06 2013-10-16 인지컨트롤스 주식회사 Refrigerant manifold for cell
KR20140116626A (en) * 2013-03-25 2014-10-06 엘지전자 주식회사 A heat exchanger
KR20140144330A (en) * 2013-06-10 2014-12-19 현대자동차주식회사 Device for cooling and heating battery module of vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535835B2 (en) * 2008-03-26 2013-09-17 Kyocera Corporation Fuel battery module and fuel battery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070089615A (en) * 2006-02-28 2007-08-31 산요덴키가부시키가이샤 Power supply for vehicle
KR20130040554A (en) * 2011-10-14 2013-04-24 (주)브이이엔에스 Electric vehicle
KR20130113740A (en) * 2012-04-06 2013-10-16 인지컨트롤스 주식회사 Refrigerant manifold for cell
KR20140116626A (en) * 2013-03-25 2014-10-06 엘지전자 주식회사 A heat exchanger
KR20140144330A (en) * 2013-06-10 2014-12-19 현대자동차주식회사 Device for cooling and heating battery module of vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110915061A (en) * 2017-07-19 2020-03-24 株式会社高山 Heat exchanger for cooling battery
CN110915061B (en) * 2017-07-19 2023-02-17 株式会社高山 Heat exchanger for cooling battery
CN111868467A (en) * 2018-03-16 2020-10-30 罗密欧系统公司 Cold plate for battery module
CN110718723A (en) * 2018-07-13 2020-01-21 株式会社高山 Heat exchanger for batteries and fuel cell stacks
CN113074822A (en) * 2021-04-18 2021-07-06 葛同钊 Temperature measuring device based on new energy automobile uses

Also Published As

Publication number Publication date
KR101724296B1 (en) 2017-04-07
KR20170020103A (en) 2017-02-22
CN107925141A (en) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017026634A1 (en) Heat exchange device for battery of electric vehicle
WO2018105928A1 (en) Vehicle thermal management system
WO2016200144A1 (en) Battery pack thermal management system for electric vehicle
WO2018105925A1 (en) Vehicle thermal management system
WO2015102362A1 (en) Cooling module and cooling system for vehicle
WO2019066330A1 (en) Integrated heat management system of vehicle
WO2015130056A1 (en) Battery pack
WO2012169713A1 (en) Air conditioner with a cooling module
WO2020130518A1 (en) Heat management system
WO2014175589A1 (en) Heat pump system for vehicle
WO2020246792A1 (en) Heat management system
WO2022114563A1 (en) Heat management system
WO2020071801A1 (en) Heat management system
WO2019225867A1 (en) Heat management system
WO2013002529A2 (en) Air conditioning device for vehicle
WO2015178596A1 (en) Outdoor heat exchanger
WO2018092999A1 (en) Battery heat exchanger and battery pack having same
WO2020022738A1 (en) Integrated liquid air cooled condenser and low temperature radiator
WO2019208939A1 (en) Thermal management system
WO2019208942A1 (en) Heat exchange system for vehicle
WO2020013506A1 (en) Compact heat exchanger unit and air conditioning module particularly for electric vehicle
WO2021025426A1 (en) Integrated thermal management circuit for vehicle
WO2015142047A1 (en) Outdoor unit of an air conditioner and method of manufacturing the same
WO2022030663A1 (en) Reservoir tank for integrated heat management, and integrated heat management module comprising same
WO2018190540A1 (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835276

Country of ref document: EP

Kind code of ref document: A1