WO2022196678A1 - 車間距離判定装置および車間距離判定方法 - Google Patents

車間距離判定装置および車間距離判定方法 Download PDF

Info

Publication number
WO2022196678A1
WO2022196678A1 PCT/JP2022/011555 JP2022011555W WO2022196678A1 WO 2022196678 A1 WO2022196678 A1 WO 2022196678A1 JP 2022011555 W JP2022011555 W JP 2022011555W WO 2022196678 A1 WO2022196678 A1 WO 2022196678A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inter
vehicle distance
follow
flow rate
Prior art date
Application number
PCT/JP2022/011555
Other languages
English (en)
French (fr)
Inventor
亮 福田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022196678A1 publication Critical patent/WO2022196678A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to an inter-vehicle distance determination device and an inter-vehicle distance determination method.
  • following driving driving
  • the own vehicle follows the preceding vehicle by manual operation by the driver or by computer control.
  • a function that realizes follow-up running by computer control is known as ACC (Adaptive Cruise Control).
  • ACC Adaptive Cruise Control
  • follow-up running the own vehicle follows the preceding vehicle while maintaining a predetermined inter-vehicle distance (the distance between the front end of the own vehicle and the rear end of the preceding vehicle) based on a predetermined vehicle speed. and run.
  • Patent Document 1 discloses a device that determines whether or not the fuel consumption deteriorates when the follow-up run is performed.
  • the traveling air volume (air resistance) that the vehicle receives changes according to the inter-vehicle distance.
  • the amount of energy consumed by the own vehicle hereinafter referred to as "consumed energy amount. For example, fuel consumption, electricity consumption, etc.) also changes. Therefore, it is desired to suppress the amount of energy consumption when the follow-up running is performed.
  • An object of one aspect of the present disclosure is to provide an inter-vehicle distance determination device and an inter-vehicle distance determination method capable of suppressing the amount of energy consumption when follow-up driving is performed.
  • An inter-vehicle distance determination device includes a flow rate adjustment device that adjusts the flow rate of a refrigerant used for cooling an in-vehicle device, and a cooling fan that cools the in-vehicle device by blowing air.
  • the vehicle is mounted on a vehicle that follows a preceding vehicle while maintaining a set inter-vehicle distance, and each time a plurality of inter-vehicle distances predetermined for follow-up traveling are taken, the set vehicle speed and a calculation unit for calculating an amount of energy consumed by the vehicle based on the amount of airflow received by the vehicle; a selection unit that selects the set inter-vehicle distance as the inter-vehicle distance corresponding to the amount; When the selected inter-vehicle distance is the shortest among the plurality of inter-vehicle distances, the cooling fan is controlled to reduce airflow and the flow control device is controlled to increase the flow rate of the refrigerant. and a control unit for
  • a vehicle-to-vehicle distance determination method includes a flow rate adjustment device that adjusts the flow rate of a refrigerant used for cooling an in-vehicle device, and a cooling fan that cools the in-vehicle device by blowing air.
  • the vehicle follows the preceding vehicle while maintaining a set inter-vehicle distance, and the set vehicle speed and a step of calculating an amount of energy consumed by the vehicle based on the amount of airflow received by the vehicle; a step of selecting the set inter-vehicle distance as the inter-vehicle distance corresponding to the above; controlling the cooling fan to reduce airflow and controlling the flow control device to increase the flow rate of the refrigerant when the determined inter-vehicle distance is the shortest among the plurality of inter-vehicle distances; and have
  • FIG. 1 is a block diagram showing a configuration example of an inter-vehicle distance determination device according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing an operation example of the inter-vehicle distance determination device according to the embodiment of the present disclosure.
  • the amount of airflow received by the vehicle (hereinafter simply referred to as (also called traveling air volume) changes, the amount of energy consumed by the own vehicle also changes.
  • the amount of air flow decreases, so the amount of energy consumed by devices other than the cooling fan (for example, the drive source) decreases, but the amount of energy consumed by the cooling fan increases.
  • the amount of air flow increases, so the amount of energy consumed by the cooling fan decreases, but the amount of energy consumed by devices other than the cooling fan increases.
  • An object of the present disclosure is to realize suppression of the amount of energy consumption when follow-up traveling is performed.
  • FIG. 1 is a block diagram showing a configuration example of an inter-vehicle distance determination device 100. As shown in FIG.
  • the inter-vehicle distance determination device 100 shown in FIG. 1 is installed, for example, in an automobile (either a passenger car or a commercial vehicle).
  • an example will be described in which the vehicle equipped with inter-vehicle distance determination device 100 is an electric vehicle that uses only an electric motor as a drive source and consumes only electric power. Further, in the following description, the vehicle equipped with the inter-vehicle distance determination device 100 is also referred to as "own vehicle”.
  • the own vehicle has a cooling fan and a pump in addition to the electric motor.
  • Cooling fans and pumps are electric.
  • the electric motor is cooled by the blowing air generated by the operation of the cooling fan and the refrigerant (for example, cooling liquid) circulating through the piping provided inside the vehicle by the operation of the pump.
  • the amount of power consumed to drive the electric motor is referred to as “electric motor power consumption”.
  • the amount of power consumed for driving the cooling fan is referred to as “cooling fan power consumption”.
  • the amount of power consumed to drive the pump is referred to as “pump fan power consumption”.
  • An electric motor is an example of an "in-vehicle device” and an example of a “device other than a cooling fan.”
  • the pump is an example of a "flow rate adjusting device” that adjusts the flow rate of the refrigerant.
  • the flow rate adjusting device may be realized only by another device (for example, an electric valve), or may be realized by a combination of another device and the pump, instead of being realized only by the pump. .
  • follow-up travel means that the own vehicle follows and travels the preceding vehicle in a state where no other vehicle is traveling between the own vehicle and the preceding vehicle. Further, in the present embodiment, it is assumed that the host vehicle has the same vehicle type (same size and shape) as the preceding vehicle to be followed. It is assumed that the condition that the host vehicle and the preceding vehicle are of the same vehicle type is considered in first setting data and second setting data, which will be described later.
  • the vehicle speed is set (designated or determined) by, for example, a user's operation before or during the follow-up run.
  • the set vehicle speed is hereinafter referred to as "set vehicle speed”.
  • the set vehicle speed is notified to the inter-vehicle distance determination device 100 .
  • inter-vehicle distance used during follow-up travel.
  • One is called “short inter-vehicle distance” and the other is called “long inter-vehicle distance”.
  • the long inter-vehicle distance is longer than the short inter-vehicle distance. Therefore, when a long inter-vehicle distance is taken, compared with a case where a short inter-vehicle distance is taken, the running air volume received by the host vehicle becomes larger.
  • Both the short inter-vehicle distance and the long inter-vehicle distance satisfy safety requirements (for example, requirements included in regulations, guidelines, etc.).
  • the follow-up run may be performed manually by the driver of the own vehicle, or may be performed by a computer installed in the own vehicle (steering and acceleration of the own vehicle so that the follow-up run is executed).
  • a device for controlling deceleration, braking, etc. (hereinafter referred to as a follow-up running control device) may perform the control.
  • the follow-up cruise control device may be installed outside the own vehicle.
  • the inter-vehicle distance determination device 100 is a device that determines (can be said to select) an inter-vehicle distance that can reduce power consumption (an example of energy consumption) when the host vehicle follows the vehicle.
  • the inter-vehicle distance determination device 100 includes hardware such as a CPU (Central Processing Unit), a ROM (Read Only Memory) storing a computer program, a working memory RAM (Random Access Memory), and the like. have Each function of the inter-vehicle distance determination device 100 described below is realized by the CPU executing a computer program read from the ROM in the RAM. Inter-vehicle distance determination device 100 may be realized by, for example, an ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the inter-vehicle distance determination device 100 has a storage unit 110, a calculation unit 120, a selection unit 130, a prediction unit 140, and a control unit 150.
  • the storage unit 110 stores, for example, first setting data, second setting data, third setting data, and fourth setting data. Although the details will be described later, the first to third setting data are used by the calculation unit 120, and the fourth setting data is used by the control unit 150. FIG.
  • the first setting data is data in which the electric motor power consumption is calculated in consideration of air resistance (running air volume) for each vehicle speed in the case of a short inter-vehicle distance and in the case of a long inter-vehicle distance. .
  • the first setting data is defined so that the electric motor power consumption increases as the vehicle speed increases in both cases of a short inter-vehicle distance and a long inter-vehicle distance.
  • the electric motor power consumption for a long inter-vehicle distance is determined to be larger than the electric motor power consumption for a short inter-vehicle distance.
  • the second setting data is data in which the running air volume is determined for each vehicle speed in each of the short inter-vehicle distance and the long inter-vehicle distance.
  • the traveling air volume in the case of the short inter-vehicle distance is set to be substantially zero at any vehicle speed.
  • the third setting data is data in which the power consumption of the cooling fan is determined for each air volume of the cooling fan (which may be called air volume, hereinafter referred to as fan air volume).
  • the third setting data is defined so that the cooling fan power consumption increases as the fan air volume increases.
  • the fourth setting data is data in which the power consumption of the pump is determined for each flow rate of the circulating refrigerant (hereinafter referred to as refrigerant flow rate).
  • the fourth setting data is defined so that the power consumption of the pump increases as the refrigerant flow rate increases.
  • the first to fourth setting data are created, for example, based on simulations or experiments performed in advance, and stored in the storage unit 110 .
  • the formats of the first to fourth setting data may be, for example, tables, maps, or other formats.
  • the calculation unit 120 calculates the electric motor power consumption when the short inter-vehicle distance is taken (hereinafter referred to as the first power consumption) and the electric motor power consumption when the long inter-vehicle distance is taken. , the electric motor power consumption (hereinafter referred to as the second power consumption) is calculated.
  • the calculation unit 120 calculates the travel air volume when the short inter-vehicle distance is taken (hereinafter referred to as the first travel air volume) and the travel air volume when the long inter-vehicle distance is taken ( hereinafter referred to as a second traveling air volume).
  • the calculation unit 120 calculates the required air amount.
  • the required amount of air is, for example, the amount of air required to cool the electric motor, and is the total value of the running air amount and the fan air amount.
  • a known method can be used to calculate the required amount of air.
  • the calculation formula disclosed in "Fan Basics and Selection (How to Use)" in "SANYO DENKI Technical Report No.40 Nov. 2015” may be used, or other calculation methods may be used.
  • the calculation unit 120 calculates the fan air volume (hereinafter referred to as the first fan air volume) when the vehicle-to-vehicle distance is short, based on the required air volume and the first running air volume. Calculation unit 120 also calculates a fan air volume (hereinafter referred to as a second fan air volume) when a long vehicle-to-vehicle distance is taken, based on the required air volume and the second running air volume.
  • the calculation unit 120 calculates the first fan air volume by subtracting the first running air volume from the required air volume. Further, the calculation unit 120 calculates the second fan air volume by subtracting the second running air volume from the required air volume.
  • the calculation unit 120 calculates the cooling fan power consumption when the inter-vehicle distance is short (hereinafter referred to as the third power consumption), A cooling fan power consumption amount (hereinafter referred to as a fourth power consumption amount) when a long inter-vehicle distance is taken is calculated.
  • the calculation unit 120 calculates the total power consumption (hereinafter referred to as the first total power consumption) in the case where the inter-vehicle distance is short, based on the first power consumption and the third power consumption. Calculation unit 120 also calculates the total power consumption (hereinafter referred to as the second total power consumption) when the long inter-vehicle distance is taken, based on the second power consumption and the fourth power consumption.
  • the calculation unit 120 calculates the first total power consumption by adding the third power consumption to the first power consumption. Further, the calculation unit 120 calculates the second total power consumption by adding the fourth power consumption to the second power consumption.
  • the calculation unit 120 uses the first to third setting data has been described as an example, but the present invention is not limited to this.
  • the calculator 120 may perform the above various calculations using other data or known calculation formulas instead of the first to third setting data.
  • the selection unit 130 compares the first total power consumption and the second total power consumption, and selects the vehicle-to-vehicle distance corresponding to the smaller value as the vehicle-to-vehicle distance to be used for following travel.
  • the inter-vehicle distance selected here is the optimum inter-vehicle distance that can suppress power consumption during follow-up travel (especially when follow-up travel is performed on a flat road with no slope).
  • the selection unit 130 selects the short inter-vehicle distance corresponding to the first total power consumption.
  • the selection unit 130 selects the long inter-vehicle distance corresponding to the second total power consumption.
  • the inter-vehicle distance selected by the selection unit 130 is also referred to as "selected inter-vehicle distance”.
  • the prediction unit 140 predicts the load on the own vehicle (hereinafter simply referred to as the load on the own vehicle) after the start of follow-up running based on the selected inter-vehicle distance. Specifically, the prediction unit 140 predicts whether the load on the host vehicle will increase, decrease, or remain unchanged after the follow-up running based on the selected inter-vehicle distance has been performed for a predetermined time.
  • the prediction unit 140 predicts that the load on the vehicle will increase based on the gradient of the road on which the follow-up run is scheduled (hereinafter also simply referred to as the gradient) when the vehicle is scheduled to climb.
  • the gradient the gradient of the road on which the follow-up run is scheduled
  • the load on the vehicle is predicted to decrease, and when neither climbing nor descending is scheduled, the load on the vehicle is predicted to remain unchanged (no change).
  • the gradient may be, for example, a value defined in map information (for example, stored in the storage unit 110), or may be calculated by the prediction unit 140 (which may be the calculation unit 120), the altitude of the current position, It may be calculated based on a comparison with the elevation of a forward position (a position a predetermined distance away from the current position).
  • the altitude referred to here may be, for example, a value defined in map information.
  • the load on the vehicle is predicted based on the gradient of the road on which the vehicle is to be traveled. etc.).
  • the control unit 150 controls the cooling fan to decrease the fan air volume and controls the pump to increase the coolant flow rate.
  • This control is hereinafter also referred to as "cooling means control”.
  • the fan air volume when the selected inter-vehicle distance is taken is determined (for example, the above-mentioned first fan air volume or second fan air volume).
  • the fan air volume when the cooling means control is executed (hereinafter referred to as the post-control fan air volume) is a smaller value than the fan air volume when the selected inter-vehicle distance is taken (for example, the first fan air volume or the second fan air volume). is.
  • the refrigerant flow rate when the cooling means control is executed (hereinafter referred to as the post-control refrigerant flow rate) is a value larger than the refrigerant flow rate when only the normal circulation control is performed (hereinafter referred to as the normal refrigerant flow rate).
  • the control unit 150 determines the power consumption of the cooling fan to achieve the controlled fan air volume and the power consumption of the pump to achieve the controlled refrigerant flow rate, based on the third setting data and the fourth setting data. is equal to or less than the cooling fan power consumption (e.g., third power consumption or fourth power consumption) when the selected inter-vehicle distance (e.g., short inter-vehicle distance or long inter-vehicle distance) is taken. , controls cooling fans and pumps.
  • the cooling fan power consumption e.g., third power consumption or fourth power consumption
  • fan air volume a a fan air volume smaller than the second fan air volume (fan air volume when a long inter-vehicle distance is taken as described above)
  • fan air volume a an example of fan air volume after control
  • power consumption A the realized power consumption of the fan
  • refrigerant flow rate b an example of the refrigerant flow rate after control
  • power consumption B the power consumption of the pump at which the refrigerant flow rate b is realized
  • running air volume x the running air volume of the own vehicle when a long vehicle-to-vehicle distance is taken at a predetermined set vehicle speed
  • control unit 150 controls the cooling fan and the pump so that the sum of the power consumption A and the power consumption B is as small as possible within the range of the fourth power consumption or less. Furthermore, the control unit 150 determines that the temperature that can be lowered by the required air volume (fan air volume a + traveling air volume x) and the refrigerant flow rate b can be lowered by the required air volume (second fan air volume + traveling air volume x). Control the cooling fans and pumps so that the temperature is as close as possible.
  • cooling means control compensates for the heat dissipation realized by the reduced fan air volume by increasing the refrigerant, and the total of the cooling fan power consumption and the pump power consumption at that time is assumed. It can be said that the control is performed so as to be as small as possible within the range below the value (cooling fan power consumption when the selected inter-vehicle distance is taken and the refrigerant flow rate is not increased).
  • the cooling means control may be started before the current inter-vehicle distance is changed to the selected inter-vehicle distance, or may be started when the current inter-vehicle distance is changed to the selected inter-vehicle distance.
  • control unit 150 may output information indicating the inter-vehicle distance selected by the selection unit 130, that is, the selected inter-vehicle distance (hereinafter referred to as inter-vehicle distance information) to a predetermined device.
  • Examples of output destinations of inter-vehicle distance information include the above-mentioned follow-up running control device, a notification device mounted on the own vehicle (for example, a display, a speaker, etc. provided in the vehicle interior), a device installed outside the own vehicle ( For example, a computer used in a management center of own vehicle, etc.).
  • the following distance control device controls the following distance of the own vehicle so that the following distance indicated by the following distance information is maintained.
  • follow-up running with reduced power consumption is realized.
  • the inter-vehicle distance information is a notification device (eg, display, speaker, etc.)
  • the notification device notifies the inter-vehicle distance indicated by the inter-vehicle distance information. Therefore, the occupant (for example, the driver) of the host vehicle can grasp the selected inter-vehicle distance. Therefore, for example, when follow-up running is performed by a manual operation of the driver, the driver can perform acceleration/deceleration operations so as to maintain the notified inter-vehicle distance. As a result, follow-up running with reduced power consumption is realized. Further, for example, when the follow-up run is performed by the follow-up run control device without manual operation, the occupant sets the selected inter-vehicle distance used for the follow-up run in advance (before the current inter-vehicle distance is changed). can know
  • inter-vehicle distance information may be output to the plurality of output destinations described above.
  • the configuration of the inter-vehicle distance determination device 100 has been described above.
  • FIG. 2 is a flowchart showing an operation example of the inter-vehicle distance determination device 100. As shown in FIG.
  • the flowchart shown in FIG. 2 is started, for example, when the inter-vehicle distance determination device 100 receives an inter-vehicle distance determination instruction.
  • the inter-vehicle distance determination instruction is an instruction to determine the inter-vehicle distance.
  • the calculation unit 120 calculates a first power consumption amount and a second power consumption amount based on the set vehicle speed and the first setting data (step S1).
  • the calculation unit 120 calculates the first traveling air volume and the second traveling air volume based on the set vehicle speed and the second set data (step S2).
  • the calculation unit 120 calculates the required air amount (step S3).
  • the calculation unit 120 calculates the first fan air volume based on the required air volume and the first running air volume, and calculates the second fan air volume based on the required air volume and the second running air volume (step S4 ).
  • the calculation unit 120 calculates a third power consumption and a fourth power consumption based on the first fan air volume, the second fan air volume, and the third setting data (step S5).
  • the calculation unit 120 calculates a first total power consumption based on the first power consumption and the third power consumption, and calculates a second total power consumption based on the second power consumption and the fourth power consumption.
  • a power consumption amount is calculated (step S6).
  • the selection unit 130 compares the first total power consumption and the second total power consumption, and selects the inter-vehicle distance corresponding to the smaller value (step S7).
  • the prediction unit 140 predicts the load on the own vehicle (step S8).
  • step S8 If the prediction unit 140 predicts that the load on the host vehicle will increase (step S8: YES), the control unit 150 controls the cooling fan to reduce the fan air volume and operates the pump to increase the refrigerant flow rate. is controlled (step S9). As a result, the amount of fan air generated by the operation of the cooling fan is reduced, while the amount of refrigerant circulated by the operation of the pump is increased.
  • step S8 NO
  • control unit 150 may output the following distance information indicating the following distance selected in step S7 to a predetermined device.
  • steps S1 to S5 described above is an example, and is not limited to the illustration in FIG.
  • steps S2 and S3 may be reversed.
  • step S1 may be performed after steps S2 to S5.
  • inter-vehicle distance determination device 100 The operation of the inter-vehicle distance determination device 100 has been described above.
  • the inter-vehicle distance determination device 100 provides the total power consumption (cooling fan power consumption + cooling power consumption of devices other than fans (e.g. electric motors)) and total power consumption when a long inter-vehicle distance is taken (power consumption of cooling fans + devices other than cooling fans (e.g. electric motors) power consumption) are calculated and compared, and the vehicle-to-vehicle distance corresponding to the smaller total power consumption is selected.
  • the following distance determination device 100 controls the cooling fan so as to reduce the amount of air blown when an increase in the load on the own vehicle is predicted after the follow-up running based on the selected following distance is started, and It is characterized by controlling the pump so as to increase the flow rate of the refrigerant. As a result, it is possible to accurately suppress the amount of energy consumption when the follow-up running is performed.
  • the own vehicle may be an automobile driven only by an internal combustion engine that burns fuel (for example, gasoline or light oil), or an automobile driven by both an internal combustion engine and an electric motor. good too.
  • an internal combustion engine that burns fuel
  • an electric motor for example, gasoline or light oil
  • the total energy consumption (in the embodiment, the first total power consumption and the second total power consumption) used for the final comparison described in the embodiment is either fuel consumption or power consumption. It is preferable to be unified as much as possible.
  • a case where the own vehicle uses only the internal combustion engine as a drive source will be described as an example.
  • a first fuel consumption amount and a second fuel consumption amount are calculated instead of the first power consumption amount and the second power consumption amount described in the embodiment.
  • the third power consumption and the fourth power consumption (both power consumption of the cooling fan) described in the embodiment are calculated based on a predetermined conversion ratio. Convert to fuel amount. Then, a first total fuel consumption is calculated by adding the third fuel consumption to the first fuel consumption, and a second total fuel consumption is calculated by adding the fourth fuel consumption to the second fuel consumption. Then, the first total fuel consumption amount and the second total fuel consumption amount are compared, and the inter-vehicle distance corresponding to the smaller value is selected.
  • the vehicle-to-vehicle distance determination device 100 calculates the total energy consumption corresponding to each vehicle-to-vehicle distance. As a result, three or more total energy consumption amounts are calculated. Then, the inter-vehicle distance determination device 100 selects the inter-vehicle distance corresponding to the smallest total energy consumption amount among the three or more inter-vehicle distances to be used for follow-up running. Select as distance.
  • the power consumption of multiple devices other than the cooling fan may be used instead of the electric motor power consumption.
  • the plurality of devices include, in addition to the electric motor, an air conditioner condenser, an electric circuit, a battery, and a mounting (e.g., a refrigerator, etc.). good.
  • the inter-vehicle distance determination device 100 is described as being separate from the follow-up cruise control device, but the present invention is not limited to this.
  • control unit 150 may have the same function as the following cruise control device described above, in addition to the function of executing the cooling means control described above. That is, the control unit 150 may have a function of controlling the steering, acceleration/deceleration, and braking of the own vehicle so that follow-up running is performed.
  • cooling means control is performed on the condition that the load on the host vehicle is predicted to increase has been described as an example, but the present invention is not limited to this.
  • cooling means control may be performed when the inter-vehicle distance is shortened.
  • the controller 150 may control the cooling means.
  • Cooling means control may be performed.
  • the control unit 150 controls the cooling means may be controlled.
  • the prediction unit 140 may be omitted from the components shown in FIG.
  • inter-vehicle distance determination device and inter-vehicle distance determination method of the present disclosure are useful when following a vehicle.
  • inter-vehicle distance determination device 110 storage unit 120 calculation unit 130 selection unit 140 prediction unit 150 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

追従走行の際の消費エネルギ量を抑制できる車間距離判定装置および車間距離判定方法。車間距離判定装置は、追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、設定車速および走行風量に基づいて、車両で消費される消費エネルギ量を算出する算出部と、複数の車間距離のうち、算出された複数の消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を選択する選択部と、選択された車間距離に基づく追従走行が開始された後に車両の負荷の上昇が予測される場合、または、選択された車間距離が複数の車間距離のうちで最も短い場合、送風量を減少させるように冷却ファンを制御し、かつ、冷媒の流量を増加させるように流量調整装置を制御する制御部と、を有する。

Description

車間距離判定装置および車間距離判定方法
 本開示は、車間距離判定装置および車間距離判定方法に関する。
 従来、運転者の手動操作により、または、コンピュータ制御により、自車両を先行車両に追従させる走行(以下、追従走行という)が行われる場合がある。コンピュータ制御によって追従走行を実現する機能は、ACC(Adaptive Cruise Control)として知られている。一般的に、追従走行では、予め定められた車速に基づいて、予め定められた車間距離(自車両の先端と先行車両の後端との間の距離)を保ちながら自車両が先行車両に追従して走行する。
 なお、特許文献1には、追従走行を行った場合に燃費が悪化するか否かを判定する装置が開示されている。
日本国特開2017-146858号公報
 追従走行が行われる場合、車間距離に応じて、自車両が受ける走行風量(空気抵抗)は変わる。これにより、自車両で消費されるエネルギ量(以下、消費エネルギ量という。例えば、燃費、電費等)も変わる。よって、追従走行が行われる場合、消費エネルギ量を抑制することが望まれる。
 本開示の一態様の目的は、追従走行が行われる場合において消費エネルギ量を抑制することができる車間距離判定装置および車間距離判定方法を提供することである。
 本開示の一態様に係る車間距離判定装置は、車載装置の冷却に用いられる冷媒の流量を調整する流量調整装置と、送風により前記車載装置を冷却する冷却ファンとを備え、設定された車速に基づいて、設定された車間距離を保ちながら先行車両に追従走行する車両に搭載され、追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、前記設定された車速および前記車両が受ける走行風量に基づいて、前記車両で消費される消費エネルギ量を算出する算出部と、前記複数の車間距離のうち、算出された複数の前記消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を、前記設定された車間距離として選択する選択部と、前記選択された車間距離に基づく追従走行が開始された後に前記車両の負荷の上昇が予測される場合、または、前記選択された車間距離が前記複数の車間距離の中で最も短い場合、送風量を減少させるように前記冷却ファンを制御し、かつ、前記冷媒の流量を増加させるように前記流量調整装置を制御する制御部と、を有する。
 本開示の一態様に係る車間距離判定方法は、車載装置の冷却に用いられる冷媒の流量を調整する流量調整装置と、送風により前記車載装置を冷却する冷却ファンとを備え、設定された車速に基づいて、設定された車間距離を保ちながら先行車両に追従走行する車両で行われ、追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、前記設定された車速および前記車両が受ける走行風量に基づいて、前記車両で消費される消費エネルギ量を算出するステップと、前記複数の車間距離のうち、算出された複数の前記消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を、前記設定された車間距離として選択するステップと、前記選択された車間距離に基づく追従走行が開始された後に前記車両の負荷の上昇が予測される場合、または、前記選択された車間距離が前記複数の車間距離の中で最も短い場合、送風量を減少させるように前記冷却ファンを制御し、かつ、前記冷媒の流量を増加させるように前記流量調整装置を制御するステップと、を有する。
 本開示によれば、追従走行が行われる場合において消費エネルギ量を抑制することができる。
図1は、本開示の実施の形態に係る車間距離判定装置の構成例を示すブロック図である。 図2は、本開示の実施の形態に係る車間距離判定装置の動作例を示すフローチャートである。
 まず、本開示に至った知見について説明する。
 上述したとおり、追従走行が行われる場合では、車間距離(具体的には、自車両の先端と先行車両の後端との間の距離)に応じて、自車両が受ける走行風量(以下、単に走行風量ともいう)は変わるため、自車両における消費エネルギ量も変わる。
 具体的には、車間距離が短い場合では、走行風量が減少するため、冷却ファン以外の装置(例えば、駆動源)の消費エネルギ量が減少するが、冷却ファンの消費エネルギ量が増加する。その一方、車間距離が長い場合では、走行風量が増加するため、冷却ファンの消費エネルギ量が減少するが、冷却ファン以外の装置の消費エネルギ量が増加する。
 本開示では、追従走行が行われる場合において、消費エネルギ量の抑制を実現することを目的とする。
 次に、図1を用いて、本実施の形態の車間距離判定装置100の構成について説明する。図1は、車間距離判定装置100の構成例を示すブロック図である。
 図1に示す車間距離判定装置100は、例えば、自動車(乗用車でもよいし、商用車でもよい)に搭載される。本実施の形態では、車間距離判定装置100を搭載する自動車が、電動モータのみを駆動源とし、消費エネルギが電力のみである電気自動車である場合を例に挙げて説明する。また、以下の説明では、車間距離判定装置100を搭載する車両を「自車両」ともいう。
 また、自車両は、電動モータのほかに、冷却ファンおよびポンプを有する。冷却ファンおよびポンプは、電動である。電動モータは、冷却ファンの動作によって発生する送風、および、ポンプの動作によって自車両内に設けられた配管を循環する冷媒(例えば、冷却液)によって冷却される。
 以下では、電動モータの駆動のために消費される電力量を「電動モータ消費電力量」という。また、冷却ファンの駆動のために消費される電力量を「冷却ファン消費電力量」という。また、ポンプの駆動のために消費される電力量を「ポンプファン消費電力量」という。
 なお、電動モータは、「車載装置」の一例であり、「冷却ファン以外の装置」の一例である。また、ポンプは、冷媒の流量を調整する「流量調整装置」の一例である。なお、流量調整装置は、ポンプだけで実現される以外に、他の装置(例えば、電動式のバルブ)のみで実現されてもよいし、他の装置とポンプとの組み合わせで実現されてもよい。
 本実施の形態では、追従走行とは、自車両と先行車両との間に他の車両が走行してない状態で、自車両が先行車両に追従して走行することとする。また、本実施の形態では、自車両は、追従対象の先行車両と同じ車種(同じサイズ、同じ形状)であるとする。自車両と先行車両とが同じ車種であるという条件は、後述する第1設定データおよび第2設定データにおいて考慮されているとする。
 本実施の形態では、追従走行の開始前または実行中に、例えばユーザの操作により、車速が設定(指定または決定と言ってもよい)されるとする。設定された車速を以下「設定車速」という。設定車速は、車間距離判定装置100に通知される。
 本実施の形態では、追従走行時に用いられる車間距離として、互いに異なる2つの値を例に挙げて説明する。1つは「短車間距離」といい、もう1つは「長車間距離」という。長車間距離は、短車間距離より長い。よって、長車間距離が取られた場合では、短車間距離が取られた場合に比べて、自車両が受ける走行風量が大きくなる。なお、短車間距離および長車間距離はいずれも、安全要件(例えば、法規やガイドライン等に含まれる要件)を満たすものとする。
 なお、本実施の形態において、追従走行は、自車両の運転者の手動操作により行われてもよいし、自車両に搭載されるコンピュータ(追従走行が実行されるように自車両の操舵、加減速、制動等を制御する装置。以下、追従走行制御装置という)の制御により行われてもよい。なお、追従走行制御装置は、自車両の外部に設置されてもよい。
 車間距離判定装置100は、自車両が追従走行を行う場合において、消費電力量(消費エネルギ量の一例)を抑制可能な車間距離を判定(選択と言ってもよい)する装置である。
 図示は省略するが、車間距離判定装置100は、ハードウェアとして、例えば、CPU(Central Processing Unit)、コンピュータプログラムを格納したROM(Read Only Memory)、作業用メモリであるRAM(Random Access Memory)等を有する。以下に説明する車間距離判定装置100の各機能は、CPUがROMから読み出したコンピュータプログラムをRAMにて実行することにより実現される。車間距離判定装置100は、例えば、ECU(Electronic Control Unit)によって実現されてもよい。
 図1に示すように、車間距離判定装置100は、記憶部110、算出部120、選択部130、予測部140、および制御部150を有する。
 記憶部110は、例えば、第1設定データ、第2設定データ、第3設定データ、および第4設定データを記憶する。詳細は後述するが、第1~第3設定データは、算出部120によって用いられ、第4設定データは、制御部150によって用いられる。
 第1設定データは、短車間距離の場合と長車間距離の場合のそれぞれにおいて、車速毎に、空気抵抗(走行風量)を考慮して算出された電動モータ消費電力量が定められたデータである。
 具体的には、第1設定データでは、短車間距離の場合と長車間距離の場合のいずれにおいても、車速が大きくなるほど、電動モータ消費電力量が増加するように定められている。ただし、同じ車速であっても、長車間距離の場合の電動モータ消費電力量の方が、短車間距離の場合の電動モータ消費電力量よりも大きくなるように定められている。
 第2設定データは、短車間距離の場合と長車間距離の場合のそれぞれにおいて、車速毎に、走行風量が定められたデータである。
 具体的には、第2設定データでは、短車間距離の場合と長車間距離の場合のいずれにおいても、車速が大きくなるほど、走行風量が増加するように定められている。ただし、同じ車速であっても、長車間距離の場合の走行風量の方が、短車間距離の場合の走行風量よりも大きくなるように定められている。また、例えば短車間距離が自車両が走行風量をほぼ受けない距離である場合には、短車間距離の場合の走行風量は、どの車速であってもほぼゼロに定められている。
 第3設定データは、冷却ファンの風量(送風量と言ってもよい。以下、ファン風量という)毎に、冷却ファン消費電力量が定められたデータである。
 具体的には、第3設定データでは、ファン風量が大きくなるほど、冷却ファン消費電力量が大きくなるように定められている。
 第4設定データは、循環する冷媒の流量(以下、冷媒流量という)毎に、ポンプ消費電力量が定められたデータである。
 具体的には、第4設定データでは、冷媒流量が大きくなるほど、ポンプ消費電力量が大きくなるように定められている。
 第1~第4設定データは、例えば、予め実施されたシミュレーションまたは実験等に基づいて作成され、記憶部110に格納される。
 なお、第1~第4設定データの形式は、例えば、テーブルでもよいし、マップでもよいし、それら以外の形式でもよい。
 算出部120は、設定車速および第1設定データに基づいて、短車間距離が取られた場合における電動モータ消費電力量(以下、第1消費電力量という)と、長車間距離が取られた場合における電動モータ消費電力量(以下、第2消費電力量という)とを算出する。
 算出部120は、設定車速および第2設定データに基づいて、短車間距離が取られた場合における走行風量(以下、第1走行風量という)と、長車間距離が取られた場合における走行風量(以下、第2走行風量という)とを算出する。
 算出部120は、必要空気量を算出する。必要空気量とは、例えば、電動モータを冷却するために必要な空気量であり、走行風量とファン風量との合計値である。
 必要空気量の算出には、公知の方法を用いることができる。例えば、「SANYO DENKI Technical Report No.40 Nov. 2015」における「ファンの基礎と選定(使い方)」に開示された算出式を用いてもよいし、これ以外の算出方法を用いてもよい。
 算出部120は、必要空気量および第1走行風量に基づいて、短車間距離が取られた場合におけるファン風量(以下、第1ファン風量という)を算出する。また、算出部120は、必要空気量および第2走行風量に基づいて、長車間距離が取られた場合におけるファン風量(以下、第2ファン風量という)を算出する。
 具体的には、算出部120は、必要空気量から第1走行風量を差し引くことにより、第1ファン風量を算出する。また、算出部120は、必要空気量から第2走行風量を差し引くことにより、第2ファン風量を算出する。
 算出部120は、第1ファン風量、第2ファン風量、および第3設定データに基づいて、短車間距離が取られた場合における冷却ファン消費電力量(以下、第3消費電力量という)と、長車間距離が取られた場合における冷却ファン消費電力量(以下、第4消費電力量という)とを算出する。
 算出部120は、第1消費電力量および第3消費電力量に基づいて、短車間距離が取られた場合における合計消費電力量(以下、第1合計消費電力量という)を算出する。また、算出部120は、第2消費電力量および第4消費電力量に基づいて、長車間距離が取られた場合における合計消費電力量(以下、第2合計消費電力量という)を算出する。
 具体的には、算出部120は、第1消費電力量に第3消費電力量を加えることにより、第1合計消費電力量を算出する。また、算出部120は、第2消費電力量に第4消費電力量を加えることにより、第2合計消費電力量を算出する。
 なお、本実施の形態では、算出部120が第1~第3設定データを用いる場合を例に挙げて説明したが、これに限定されない。例えば、算出部120は、第1~第3設定データの代わりに、別のデータまたは公知の算出式を用いて、上記各種算出を行ってもよい。
 選択部130は、第1合計消費電力量と第2合計消費電力量とを比較し、値が小さい方に相当する車間距離を、追従走行に用いるための車間距離として選択する。すなわち、ここで選択された車間距離は、追従走行中(特に、勾配のない平坦な道路を追従走行する場合)において消費電力量を抑制できる最適な車間距離である。
 具体的には、選択部130は、第1合計消費電力量が第2合計消費電力量よりも小さい場合、第1合計消費電力量に相当する短車間距離を選択する。または、選択部130は、第2合計消費電力量が第1合計消費電力量よりも小さい場合、第2合計消費電力量に相当する長車間距離を選択する。
 以下の説明では、選択部130により選択された車間距離を「選択車間距離」ともいう。
 予測部140は、選択車間距離に基づく追従走行の開始後における自車両の負荷(以下、単に自車両の負荷という)を予測する。具体的には、予測部140は、選択車間距離に基づく追従走行が所定時間実行された後における自車両の負荷が、上昇するか、低下するか、または、変化無しかを予測する。
 例えば、予測部140は、追従走行が行われる予定の道路の勾配(以下、単に勾配ともいう)に基づいて、登坂が予定されている場合には、自車両の負荷が上昇すると予測し、降坂が予定されている場合には、自車両の負荷が低下すると予測し、登坂および降坂のいずれも予定されていない場合には、自車両の負荷は変化しない(変化無し)と予測する。
 なお、勾配は、例えば、地図情報(例えば、記憶部110に記憶されている)に定められた値でもよいし、または、予測部140(算出部120でもよい)により、現在位置の標高と、前方位置(現在位置から予め規定された距離離れた位置)の標高との比較に基づいて算出されてもよい。ここでいう標高は、例えば、地図情報に定められた値でもよい。
 なお、ここでは例として、自車両の負荷の予測が、走行予定の道路の勾配に基づいて行われる場合としたが、これに限定されず、他のパラメータ(例えば、走行予定の道路の混雑状況等)に基づいて行われてもよい。
 制御部150は、例えば予測部140により自車両の負荷の上昇が予測される場合、ファン風量を減少させるように冷却ファンを制御し、かつ、冷媒流量を増加させるようにポンプを制御する。この制御は、以下「冷却手段制御」ともいう。
 上述したとおり、選択車間距離が取られた場合のファン風量は決められている(例えば、上述した第1ファン風量または第2ファン風量)。冷却手段制御が実行された場合のファン風量(以下、制御後ファン風量という)は、選択車間距離が取られた場合のファン風量(例えば、第1ファン風量または第2ファン風量)よりも少ない値である。
 また、冷却手段制御が開始される際には、通常循環制御(例えば、電動モータを目標温度にするために必要な流量の冷媒を循環させる制御)は既に行われているとする。また、冷却手段制御は、その通常循環制御に加えて行われるとする。よって、冷却手段制御が実行された場合の冷媒流量(以下、制御後冷媒流量という)は、通常循環制御のみが実行された場合の冷媒流量(以下、通常冷媒流量という)よりも多い値である。
 冷却手段制御では、制御部150は、第3設定データおよび第4設定データに基づいて、制御後ファン風量が実現される冷却ファン消費電力量と、制御後冷媒流量が実現されるポンプ消費電力量との合計が、選択車間距離(例えば、短車間距離または長車間距離)が取られた場合の冷却ファン消費電力量(例えば、第3消費電力量または第4消費電力量)以下となるように、冷却ファンおよびポンプを制御する。
 ここで、選択車間距離が長車間距離である場合を例に挙げて説明する。また、第2ファン風量(上述したとおり、長車間距離が取られた場合のファン風量)よりも少ないファン風量を「ファン風量a」(制御後ファン風量の一例)といい、そのファン風量aが実現されるファン消費電力量を「消費電力量A」というとする。また、通常冷媒流量よりも多い冷媒流量を「冷媒流量b」(制御後冷媒流量の一例)といい、その冷媒流量bが実現されるポンプ消費電力量を「消費電力量B」というとする。また、所定の設定車速で長車間距離が取られた場合における自車両の走行風量を「走行風量x」という。
 この場合、制御部150は、消費電力量Aと消費電力量Bとの合計が第4消費電力量以下の範囲においてなるべく小さい値となるように、冷却ファンおよびポンプを制御する。さらに、制御部150は、必要空気量(ファン風量a+走行風量x)と冷媒流量bとにより低下させることができる温度が、必要空気量(第2ファン風量+走行風量x)により低下させることができる温度になるべく近い値となるように、冷却ファンおよびポンプを制御する。
 換言すれば、冷却手段制御とは、減少させた分のファン風量で実現される放熱を、冷媒を増加させることで補い、その際の冷却ファン消費電力量とポンプ消費電力量との合計が想定値(選択車間距離が取られ、かつ、冷媒流量を増加させなかった場合における冷却ファン消費電力量)以下の範囲においてなるべく小さくなるようにする制御である、と言える。
 なお、冷却手段制御は、現在の車間距離から選択車間距離に変更される前に開始されてもよいし、または、現在の車間距離から選択車間距離に変更された時点で開始されてもよい。
 また、制御部150は、選択部130により選択された車間距離、すなわち選択車間距離を示す情報(以下、車間距離情報という)を所定の装置へ出力してもよい。
 車間距離情報の出力先としては、例えば、上記追従走行制御装置、自車両に搭載された報知装置(例えば、車室内に設けられたディスプレイ、スピーカ等)、自車両の外部に設置された装置(例えば、自車両の管理センターで使用されるコンピュータ等)が挙げられる。
 例えば、車間距離情報が追従走行制御装置に出力された場合、追従走行制御装置は、その車間距離情報に示される車間距離が維持されるように、自車両の追従走行を制御する。これにより、消費電力量を抑制させた追従走行が実現される。
 また、例えば、車間距離情報が報知装置(例えば、ディスプレイ、スピーカ等)である場合、報知装置は、車間距離情報に示される車間距離の報知を行う。よって、自車両の乗員(例えば、運転者)は、選択された車間距離を把握することができる。よって、例えば、運転者の手動操作により追従走行が行われる場合には、運転者は、報知された車間距離を取るように、加減速操作を行うことができる。これにより、消費電力量を抑制させた追従走行が実現される。また、例えば、手動操作によらず、追従走行制御装置により追従走行が行われている場合、乗員は、追従走行に用いられる選択車間距離を事前に(現在の車間距離が変更される前に)知ることができる。
 なお、車間距離情報は、上述した複数の出力先に出力されてもよい。
 以上、車間距離判定装置100の構成について説明した。
 次に、図2を用いて、車間距離判定装置100の動作について説明する。図2は、車間距離判定装置100の動作例を示すフローチャートである。
 図2に示すフローチャートは、例えば、車間距離判定装置100が車間距離判定指示を受け付けたときに開始される。車間距離判定指示は、車間距離の判定を行う旨の指示であり、例えば、ユーザ(例えば、自車両の乗員)の操作によって行われてもよいし、追従走行制御装置によって行われてもよい。
 まず、算出部120は、設定車速および第1設定データに基づいて、第1消費電力量および第2消費電力量を算出する(ステップS1)。
 次に、算出部120は、設定車速および第2設定データに基づいて、第1走行風量および第2走行風量を算出する(ステップS2)。
 次に、算出部120は、必要空気量を算出する(ステップS3)。
 次に、算出部120は、必要空気量および第1走行風量に基づいて、第1ファン風量を算出し、必要空気量および第2走行風量に基づいて、第2ファン風量を算出する(ステップS4)。
 次に、算出部120は、第1ファン風量、第2ファン風量、および第3設定データに基づいて、第3消費電力量および第4消費電力量を算出する(ステップS5)。
 次に、算出部120は、第1消費電力量および第3消費電力量に基づいて、第1合計消費電力量を算出し、2消費電力量および第4消費電力量に基づいて、第2合計消費電力量を算出する(ステップS6)。
 次に、選択部130は、第1合計消費電力量と第2合計消費電力量を比較し、値が小さい方に相当する車間距離を選択する(ステップS7)。
 次に、予測部140は、自車両の負荷を予測する(ステップS8)。
 予測部140により自車両の負荷が上昇すると予測された場合(ステップS8:YES)、制御部150は、ファン風量を減少させるように冷却ファンを制御し、かつ、冷媒流量を増加させるようにポンプを制御する(ステップS9)。これにより、冷却ファンの動作により発生するファン風量は減少する一方で、ポンプの動作により循環する冷媒流量は増加する。
 予測部140により自車両の負荷が上昇しないと予測された場合(ステップS8:NO)、フローは終了する。
 なお、上述したフローの後、制御部150は、ステップS7で選択された車間距離を示す車間距離情報を所定の装置へ出力してもよい。
 また、上述したステップS1~S5の順序は、一例であり、図2の図示に限定されない。例えば、ステップS2とステップS3の順序は、逆であってもよい。また、例えば、ステップS2~S5の後で、ステップS1が行われてもよい。
 以上、車間距離判定装置100の動作について説明した。
 以上説明したように、本実施の形態の車間距離判定装置100は、設定車速で追従走行を行う場合において、短車間距離が取られた場合の合計消費電力量(冷却ファンの消費電力量+冷却ファン以外の装置(例えば、電動モータ)の消費電力量)と、長車間距離が取られた場合の合計消費電力量(冷却ファンの消費電力量+冷却ファン以外の装置(例えば、電動モータ)の消費電力量)とを算出し、それらを比較し、小さい方の合計消費電力量に相当する車間距離を選択することを特徴とする。さらに、車間距離判定装置100は、選択された車間距離に基づく追従走行が開始された後に自車両の負荷の上昇が予測される場合、送風量を減少させるように冷却ファンを制御し、かつ、冷媒の流量を増加させるようにポンプを制御することを特徴とする。これにより、追従走行が行われる場合において消費エネルギ量を精度良く抑制することができる。
 なお、本開示は、上記実施の形態の説明に限定されず、その趣旨を逸脱しない範囲において種々の変形が可能である。以下、変形例について説明する。
 [変形例1]
 実施の形態では、車間距離判定装置100を搭載する自動車(すなわち、自車両)が、電力のみを用いて走行する電気自動車であり、消費エネルギが電力のみである場合を例に挙げて説明したが、これに限定されない。
 例えば、自車両は、燃料(例えば、ガソリンまたは軽油等)を燃焼させる内燃機関のみを駆動源とする自動車であってもよいし、内燃機関と電動モータの両方を駆動源とする自動車であってもよい。
 それらの自動車では、内燃機関の駆動には燃料(消費エネルギの一例)が消費され、冷却ファンの駆動には電力(消費エネルギの一例)が消費される。よって、実施の形態で説明した最終的な比較に用いられる合計消費エネルギ量(実施の形態では、第1合計消費電力量、第2合計消費電力量)は、消費燃料量または消費電力量のいずれかに統一されることが好ましい。
 例えば、自車両が内燃機関のみを駆動源とする場合を例に挙げて説明する。その場合、実施の形態で説明した第1消費電力量、第2消費電力量に代えて、第1消費燃料量、第2消費燃料量を算出する。また、実施の形態で説明した第3消費電力量、第4消費電力量(ともに、冷却ファンの消費電力量)は、予め定められた換算比率に基づいて、第3消費燃料量、第4消費燃料量に換算する。そして、第1消費燃料量に第3消費燃料量を加えて第1合計消費燃料量を算出し、第2消費燃料量に第4消費燃料量を加えて第2合計消費燃料量を算出する。そして、第1合計消費燃料量と第2合計消費燃料量とを比較し、値が小さい方に相当する車間距離を選択する。
 よって、燃料および電力の両方を消費する自動車であっても、消費エネルギ量(消費燃料量+消費電力量)を抑制できる車間距離を選択することができる。
 [変形例2]
 実施の形態では、選択対象となる車間距離が短車間距離と長車間距離の2つである場合を例に挙げて説明したが、3つ以上であってもよい。
 選択対象として追従走行用の車間距離が3つ以上定められている場合、車間距離判定装置100は、それぞれの車間距離が取られた場合に対応する合計消費エネルギ量を算出する。これにより、3つ以上の合計消費エネルギ量が算出される。そして、車間距離判定装置100は、3つ以上の車間距離のうち、3つ以上の合計消費エネルギ量の中で最も値が小さい合計消費エネルギ量に相当する車間距離を、追従走行に用いられる車間距離として選択する。
 [変形例3]
 実施の形態では、合計消費電力量が、電動モータ消費電力量と冷却ファン消費電力量とに基づいて算出される場合を例に挙げて説明したが、これに限定されない。換言すれば、冷却ファン消費電力量以外に合計消費電力量に用いられる消費電力量は、電動モータのみの消費電力量に限定されない。
 例えば、電動モータ消費電力量の代わりに、冷却ファン以外の複数の装置の消費電力量を用いてもよい。複数の装置としては、上記電動モータ以外に、例えば、エアコンコンデンサ、電気回路、バッテリ、架装(例えば、冷凍機等)が挙げられるが、これらに限定されず、電力を消費する装置であればよい。
 [変形例4]
 実施の形態では、車間距離判定装置100は、追従走行制御装置とは別体である場合を例に挙げて説明したが、これに限定されない。
 例えば、制御部150は、上述した冷却手段制御を実行する機能のほかに、上述した追従走行制御装置と同じ機能を有してもよい。すなわち、制御部150は、追従走行が実行されるように自車両の操舵、加減速、制動を制御する機能を有してもよい。
 [変形例5]
 実施の形態では、冷却手段制御は、自車両の負荷の上昇が予測されることを条件として行われる場合を例に挙げて説明したが、これに限定されない。例えば、冷却手段制御は、車間距離が短縮される場合に行われてもよい。
 例えば、上記実施の形態において、選択部130により短車間距離が選択された場合、制御部150は、冷却手段制御を行ってもよい。
 また、例えば、選択対象として追従走行用の車間距離が3つ以上定められている場合(変形例2参照)では、制御部150は、選択部130により最も短い車間距離が選択された場合に、冷却手段制御を行ってもよい。
 また、例えば、選択部130により選択された車間距離が取られたときに、走行風量が予め定められた風量以下(例えば、ゼロに近い値等)となる場合に、制御部150は、冷却手段制御を行ってもよい。
 なお、本変形例では、自車両の負荷を予測する必要はないため、図1に示す構成要素から予測部140を省いてもよい。
 上述した変形例は、適宜組み合わせて実施されてもよい。
 本出願は、2021年3月19日付で出願された日本国特許出願(特願2021-045791)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の車間距離判定装置および車間距離判定方法は、追従走行する場合に有用である。
 100 車間距離判定装置
 110 記憶部
 120 算出部
 130 選択部
 140 予測部
 150 制御部

Claims (8)

  1.  車載装置の冷却に用いられる冷媒の流量を調整する流量調整装置と、送風により前記車載装置を冷却する冷却ファンとを備え、設定された車速に基づいて、設定された車間距離を保ちながら先行車両に追従走行する車両に搭載され、
     追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、前記設定された車速および前記車両が受ける走行風量に基づいて、前記車両で消費される消費エネルギ量を算出する算出部と、
     前記複数の車間距離のうち、算出された複数の前記消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を、前記設定された車間距離として選択する選択部と、
     前記選択された車間距離に基づく追従走行が開始された後に前記車両の負荷の上昇が予測される場合、または、前記選択された車間距離が前記複数の車間距離の中で最も短い場合、送風量を減少させるように前記冷却ファンを制御し、かつ、前記冷媒の流量を増加させるように前記流量調整装置を制御する制御部と、を有する、
     車間距離判定装置。
  2.  前記負荷の上昇を予測する予測部をさらに有し、
     前記予測部は、
     追従走行が行われる予定の道路の勾配に基づいて、登坂が予定されている場合、前記負荷が上昇すると予測する、
     請求項1に記載の車間距離判定装置。
  3.  前記算出部で算出される消費エネルギ量は、
     前記冷却ファンの消費エネルギ量と、前記冷却ファン以外の装置の消費エネルギ量とを合計した値である、
     請求項1に記載の車間距離判定装置。
  4.  前記冷却ファンの消費エネルギ量は、
     前記冷却ファン以外の装置を冷却するために必要な空気量と、前記車両が受ける走行風量との差である前記冷却ファンの風量に基づいて算出される、
     請求項3に記載の車間距離判定装置。
  5.  前記制御部は、
     前記選択された車間距離に基づいて、前記追従走行が実行されるように前記車両の操舵、加減速、制動を制御する機能をさらに有する、
     請求項1に記載の車間距離判定装置。
  6.  前記制御部は、
     前記選択された車間距離を示す情報を、前記追従走行が実行されるように前記車両の操舵、加減速、制動を制御する追従走行制御装置へ出力する、
     請求項1に記載の車間距離判定装置。
  7.  前記制御部は、
     前記選択された車間距離を示す情報を、前記車両に搭載され、前記車両の乗員に対して前記情報を報知する報知装置へ出力する、
     請求項1に記載の車間距離判定装置。
  8.  車載装置の冷却に用いられる冷媒の流量を調整する流量調整装置と、送風により前記車載装置を冷却する冷却ファンとを備え、設定された車速に基づいて、設定された車間距離を保ちながら先行車両に追従走行する車両で行われ、
     追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、前記設定された車速および前記車両が受ける走行風量に基づいて、前記車両で消費される消費エネルギ量を算出するステップと、
     前記複数の車間距離のうち、算出された複数の前記消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を、前記設定された車間距離として選択するステップと、
     前記選択された車間距離に基づく追従走行が開始された後に前記車両の負荷の上昇が予測される場合、または、前記選択された車間距離が前記複数の車間距離の中で最も短い場合、送風量を減少させるように前記冷却ファンを制御し、かつ、前記冷媒の流量を増加させるように前記流量調整装置を制御するステップと、を有する、
     車間距離判定方法。
PCT/JP2022/011555 2021-03-19 2022-03-15 車間距離判定装置および車間距離判定方法 WO2022196678A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021045791A JP7359182B2 (ja) 2021-03-19 2021-03-19 車間距離判定装置および車間距離判定方法
JP2021-045791 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196678A1 true WO2022196678A1 (ja) 2022-09-22

Family

ID=83321031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011555 WO2022196678A1 (ja) 2021-03-19 2022-03-15 車間距離判定装置および車間距離判定方法

Country Status (2)

Country Link
JP (1) JP7359182B2 (ja)
WO (1) WO2022196678A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211657A (ja) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd 発熱部の冷却装置、発熱部の冷却方法およびハイブリッド車の冷却装置
JP2010102660A (ja) * 2008-10-27 2010-05-06 Toyota Motor Corp 車群走行支援装置
JP2011111129A (ja) * 2009-11-30 2011-06-09 Toyota Motor Corp 冷却風導入構造
WO2011125193A1 (ja) * 2010-04-07 2011-10-13 トヨタ自動車株式会社 車両走行支援装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211657A (ja) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd 発熱部の冷却装置、発熱部の冷却方法およびハイブリッド車の冷却装置
JP2010102660A (ja) * 2008-10-27 2010-05-06 Toyota Motor Corp 車群走行支援装置
JP2011111129A (ja) * 2009-11-30 2011-06-09 Toyota Motor Corp 冷却風導入構造
WO2011125193A1 (ja) * 2010-04-07 2011-10-13 トヨタ自動車株式会社 車両走行支援装置

Also Published As

Publication number Publication date
JP7359182B2 (ja) 2023-10-11
JP2022144678A (ja) 2022-10-03

Similar Documents

Publication Publication Date Title
KR101856825B1 (ko) 연료 전지 시스템, 연료 전지 탑재 차량 및 연료 전지 시스템의 제어 방법
JP5945319B2 (ja) 自動車の出力要求の最適化方法
JP2004324613A (ja) 原動機温度制御装置
JP6989453B2 (ja) 電動車両の制御装置
CN110077193B (zh) 车辆的控制方法、系统及车辆
US20090236089A1 (en) Controlling Temperature of Vehicle Devices Using a Variable Speed Fan
JP2006213210A (ja) 車載用バッテリ冷却装置
KR20120035120A (ko) 공조 시스템의 에너지 효율적 제어
JP6174557B2 (ja) バッテリ冷却装置
WO2022196678A1 (ja) 車間距離判定装置および車間距離判定方法
US20210061132A1 (en) Control Unit and Method for Conditioning an Energy Store of a Vehicle
JP6398837B2 (ja) 制御システム
JP2012044849A (ja) 電気自動車の制御装置
JP7331878B2 (ja) 車間距離判定装置
CN116923030A (zh) 控制道路上行驶的车辆中的车厢气候的计算机实现的方法
JP7322912B2 (ja) 車間距離判定装置
WO2022196680A1 (ja) 車間距離判定装置および車間距離判定方法
JP5812117B2 (ja) 車両を制御する方法、車両制御装置
KR102537876B1 (ko) 차량의 온도 제어 방법, 장치, 프로그램 및 저장매체
KR20230147606A (ko) 전기 자동차용 열 관리 시스템
CN114619870A (zh) 一种格栅控制方法、装置、设备和介质
JP6025023B2 (ja) オルタネータの作動制御装置及び作動制御方法
JP6025022B2 (ja) コンプレッサの作動制御装置及び作動制御方法
JP4096885B2 (ja) 車両に搭載された電力変換機構の冷却装置
CN112550075A (zh) 控制温度控制装置的方法、温度控制装置、机动车辆和计算机程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771423

Country of ref document: EP

Kind code of ref document: A1