WO2022196342A1 - Power element drive device - Google Patents

Power element drive device Download PDF

Info

Publication number
WO2022196342A1
WO2022196342A1 PCT/JP2022/008582 JP2022008582W WO2022196342A1 WO 2022196342 A1 WO2022196342 A1 WO 2022196342A1 JP 2022008582 W JP2022008582 W JP 2022008582W WO 2022196342 A1 WO2022196342 A1 WO 2022196342A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power element
drive
short
voltage
Prior art date
Application number
PCT/JP2022/008582
Other languages
French (fr)
Japanese (ja)
Inventor
貴仁 早川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022196342A1 publication Critical patent/WO2022196342A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT

Definitions

  • the present disclosure relates to a power element driving device.
  • each of a plurality of power elements is provided with a gate voltage detection, and resonance is detected by configuring a resistor and a diode in parallel between the control pole and the control voltage detection section of each power element. blocking the route.
  • a soft cutoff circuit and an off hold drive circuit are provided as a circuit for turning off the power element.
  • the drive IC is provided with terminals corresponding to outputs from the respective drive units. Further, the drive IC has a gate voltage detection section for detecting the gate voltage of the power element. The number of terminals of the gate voltage detection section is reduced by sharing the terminal with the off-holding drive section which is driven after the power element is turned off.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a power element driving device capable of reducing the number of terminals and miniaturizing the device.
  • an off drive circuit a soft cutoff circuit, an off hold drive circuit, a first voltage detection circuit, a second voltage detection circuit, and a control section.
  • the off-drive circuit normally off-drives from the off-drive terminal by extracting the gate charge of the power element based on the off command of the drive signal.
  • the soft cutoff circuit off-drives the power element from the cutoff drive terminal at a speed different from the off-driving speed of the off-drive circuit.
  • the OFF hold drive circuit holds the OFF state of the power element by connecting the control terminal of the power element to a low impedance.
  • the first voltage detection circuit monitors the control voltage of the power element at the off drive terminal of the off drive circuit.
  • the second voltage detection circuit monitors the control voltage of the power element at the cutoff drive terminal of the soft cutoff circuit.
  • the control unit determines and controls the contents of control based on the drive signal and the results of monitoring of the control voltage by the first voltage detection circuit and the second voltage detection circuit.
  • the first voltage detection circuit can monitor the control voltage of the power element from the off-drive terminal
  • the second voltage detection circuit can monitor the control voltage of the power element from the cut-off drive terminal
  • the off-drive terminal and the cut-off drive terminal are used for voltage detection.
  • FIG. 1 is an electrical configuration diagram of a power element driving system in the first embodiment
  • FIG. 2 is a normal time chart for explaining the flow of the first embodiment
  • FIG. 3 is a time chart schematically showing voltage changes at each part when half-on detection is performed in the first embodiment
  • FIG. 4 is an electrical configuration diagram of the power element drive system in the second embodiment
  • FIG. 5 is a time chart schematically showing voltage changes at each part when short-circuit overcurrent is detected in the second embodiment
  • FIG. 6 is an electrical configuration diagram of the power element drive system in the third embodiment
  • FIG. 7 is an electrical configuration diagram of a power element driving system in the fourth embodiment
  • FIG. 8 is an electrical configuration diagram showing a part of the power element drive system in the fifth embodiment
  • FIG. 9 is an electrical configuration diagram of a power device driving system according to the sixth embodiment.
  • the power element driving device A is a device for driving a gate-driven IGBT 1, and is mainly composed of a driving IC 10. As shown in FIG. The IGBT 1 is connected between its collector and emitter to a feed path to a load (not shown). IGBT is an abbreviation for Insulated Gate Bipolar Transistor, and is used as a power element to be driven. In this embodiment, a single IGBT 1 to be driven is shown.
  • the IGBT 1 has a sense emitter for current detection, and the sense emitter is connected to a resistor 2 for current detection.
  • the drain and source of an N-channel MOS transistor 6 are connected between the gate of the IGBT 1 and the ground through a parallel connection circuit 5 of a resistor 3 and a diode 4 .
  • the MOS transistor 6 is provided as a semiconductor element that keeps the gate of the IGBT 1 in an off state by setting the gate of the IGBT 1 to a lower impedance state than the off drive circuit 20 .
  • the driving IC 10 which is an integrated circuit, functions as a semiconductor element driving circuit, and performs gate drive control for ON-driving and OFF-driving the IGBT1.
  • the driving IC 10 supplies power to the gate G of the IGBT 1 from the DC power supply Vcc to turn it on, and discharges the gate charge of the IGBT 1 to the ground through the parallel connection circuit 5 to turn it off.
  • the drive IC 10 includes an ON drive terminal MP, a current detection terminal SOC, a cutoff drive terminal SCO, an OFF drive terminal MN, and an OFF hold drive terminal SOUT.
  • the driving IC 10 is mainly composed of the control unit 11.
  • the control unit 11 is composed of a microcomputer or a logic circuit.
  • the control unit 11 is a circuit that, when a drive signal MIN for the IGBT 1 is given from the outside, gives a drive signal to the gate G of the IGBT 1 in response to the drive signal MIN, thereby controlling the gate G of the IGBT 1 to be turned on or off.
  • the control unit 11 determines and controls the contents of control based on the monitoring result of the gate voltage of the IGBT 1 by the drive signal MIN and the first voltage detection circuit 18 and the second voltage detection circuit 27 .
  • the ON drive circuit 12 is configured inside the drive IC 10, and is configured using, for example, a MOS transistor and a buffer circuit.
  • the on-drive circuit 12 is powered by a DC power supply Vcc and outputs a gate drive signal through an on-drive terminal MP.
  • the on-drive circuit 12 drives the IGBT 1 by giving the drive signal from the on-drive terminal MP to the gate G of the IGBT 1 through the resistor 13 when the drive signal is given from the control section 11 .
  • the off drive circuit 14 is configured inside the drive IC 10 and includes, for example, an N-channel MOS transistor 15 and a buffer circuit 16 .
  • the MOS transistor 15 has a drain connected to the off drive terminal MN and a source connected to the ground.
  • Buffer circuit 16 applies a gate drive signal to gate G of MOS transistor 15 when a drive signal is applied from control unit 11 .
  • the off drive terminal MN is connected to the gate G of the IGBT 1 through the resistor 17 and the parallel connection circuit 5 .
  • a parallel connection circuit 5 is configured between the gate of the IGBT 1 and the off drive terminal MN of the off drive circuit 14 .
  • the parallel connection circuit 5 has a configuration in which a resistor 3 and a diode 4 are connected in parallel between the gate of the IGBT 1 and the resistor 17, respectively.
  • Diode 4 has its anode connected to the gate of IGBT 1 and its cathode connected to off drive terminal MN through resistor 17 .
  • the first voltage detection circuit 18 has a comparator 19 and inputs the off-holding threshold value Vt to the inverting input terminal.
  • the first voltage detection circuit 18 is connected in common with the off-drive terminal MN to which the off-drive circuit 14 is connected, detects the gate voltage of the IGBT 1 at the off-drive terminal MN through the parallel connection circuit 5 and the resistor 17, It is detected whether or not the detected voltage exceeds the OFF holding threshold value Vt.
  • the off-holding threshold Vt is predetermined according to the threshold voltage of the IGBT 1 and the off-control voltage, and if the voltage of the off-drive terminal MN exceeds the off-holding threshold Vt, a high-level detection signal is output.
  • the soft cutoff circuit 20 includes an N-channel MOS transistor 21 and a buffer circuit 22 .
  • the MOS transistor 21 has a drain connected to the cutoff drive terminal SCO and a source connected to the ground.
  • Buffer circuit 22 receives a drive signal from control unit 11 and provides a gate drive signal to MOS transistor 21 .
  • a cut-off drive terminal SCO is connected to the gate G of the IGBT 1 via a resistor 23 and a parallel connection circuit 24 .
  • a parallel connection circuit 24 is formed between the gate of the IGBT 1 and the cutoff drive terminal SCO of the off drive circuit 14 .
  • the parallel connection circuit 24 has a configuration in which a resistor 26 and a diode 25 are connected in parallel between the gate of the IGBT 1 and the resistor 23, respectively.
  • Diode 25 has its anode connected to the gate of IGBT 1 and its cathode connected to cutoff drive terminal SCO through resistor 23 .
  • the resistor 17 and the resistor 23 are set such that the resistance value of the resistor 23 is greater than the resistance value of the resistor 17 . This is because the gate charge of the IGBT 1 is discharged in a longer period of time than in normal times during soft shutdown.
  • the resistance values of the resistors 17 and 23 can be set to appropriate values according to the characteristics of the IGBT 1, and may be set so that the magnitude relationship is reversed.
  • the second voltage detection circuit 27 has a comparator 28 and inputs the off-holding threshold value Vt to the inverting input terminal.
  • a non-inverting input terminal of the comparator 28 is connected to a common connection point between the cutoff drive terminal SCO and the drain of the MOS transistor 21 .
  • the second voltage detection circuit 27 is connected in common with the cutoff drive terminal SCO to which the soft cutoff circuit 20 is connected, detects the gate voltage of the IGBT 1 at the cutoff drive terminal SCO through the parallel connection circuit 24 and the resistor 23, It is detected whether or not this detection voltage exceeds the OFF holding threshold value Vt.
  • the comparator 28 inputs the gate voltage of the IGBT 1 through the parallel connection circuit 24, the resistor 23, and the cutoff drive terminal SCO, and outputs a high-level detection signal if it exceeds the off-holding threshold Vt.
  • the hold-off driving circuit 29 includes an N-channel MOS transistor 30 and a buffer circuit 31, and in response to a hold-off signal supplied from the control unit 11, the gate of the MOS transistor 6 for holding off, which is an external output element.
  • An OFF hold signal is output from the OFF hold drive terminal SOUT.
  • the external element drive circuit 32 is configured inside the drive IC 10, is configured by a buffer circuit, and is commonly connected to the OFF hold drive terminal SOUT to which the OFF hold drive circuit 29 is connected.
  • the external element drive circuit 32 is a circuit for driving the MOS transistor 6, which is an external output element, in accordance with the OFF hold signal supplied from the control unit 11. Outputs a hold-off signal.
  • the current detection circuit 33 is a circuit configured as a first short-circuit overcurrent detection unit that detects whether or not an overcurrent or a short-circuit current has flowed through the IGBT 1, and is connected to the sense emitter of the IGBT 1 via a current detection terminal SOC. ing.
  • the current detection circuit 33 has a comparator 34 and inputs the short-circuit overcurrent threshold Vk to its inverting input terminal.
  • the current detection circuit 33 detects the sense current by detecting the voltage of the current detection resistor 2 of the IGBT 1 from the current detection terminal SOC, and determines whether the detected voltage of the sense current exceeds the short-circuit overcurrent threshold Vk. To detect.
  • the short-circuit overcurrent threshold Vk is predetermined according to the overcurrent threshold and the short-circuit current threshold of the IGBT 1, and if the voltage of the current detection terminal SOC exceeds the short-circuit overcurrent threshold Vk, a high-level detection signal is output. .
  • FIG. 2 is a timing chart corresponding to normal operation.
  • a drive signal is applied to the OFF drive circuit 14 and the OFF hold drive circuit 29 during the time t0 to t1 before the ON drive drive signal MIN is applied from the outside.
  • the MOS transistor 15 of the off-drive circuit 14 is turned on, and the off-holding MOS transistor 30 of the off-holding drive circuit 29 is turned on.
  • the charge on the gate G of the IGBT 1 is discharged, and the gate voltage is at the low potential level.
  • the control section 11 switches the OFF drive circuit 14 and the OFF hold drive circuit 29 to the OFF state, and sends the ON drive signal to the ON drive circuit 12. give.
  • the MOS transistor 15 of the off-drive circuit 14 is turned off, and the first voltage detection circuit 18 connected to the off-drive terminal MN becomes capable of detecting the gate voltage of the IGBT1. Further, since the soft cutoff circuit 20 is in the OFF state, the second voltage detection circuit 27 connected to the cutoff drive terminal SCO is in a state capable of detecting the gate voltage of the IGBT1.
  • the ON drive circuit 12 applies a voltage from the DC power supply Vcc to the gate G of the IGBT1. As a result, the gate voltage of the IGBT1 rises, and when the gate voltage of the IGBT1 reaches the on-threshold voltage, the IGBT1 is turned on, and the load is energized from the IGBT1. If at least the gate voltage of the IGBT 1 reaches the on-threshold voltage, the first voltage detection circuit 18 and the second voltage detection circuit 27 output high-level detection signals to the control section 11 .
  • the control section 11 stops driving the on-drive circuit 12 and drives the off-drive circuit 14 .
  • the gate G of the IGBT 1 is cut off.
  • the off-drive circuit 14 is driven to turn on the MOS transistor 15.
  • the gate charge of the IGBT 1 is transferred from the parallel connection circuit 5 and the resistor 17 to the off-drive terminal It is discharged to ground through MOS transistor 15 via MN.
  • the parallel connection circuit 5 is configured by connecting the resistor 3 and the diode 4 in parallel. .
  • the gate voltage of the IGBT1 can be quickly lowered. After that, the gate voltage of IGBT1 also decreases.
  • the first voltage detection circuit 18 is detecting the voltage of the off-drive terminal MN, but as shown from time t4 to t5, the voltage of the off-drive terminal MN becomes low at the same time when the MOS transistor 15 is turned on. level, it falls below the hold-off threshold Vt at time t5.
  • the second voltage detection circuit 27 detects the gate voltage of the IGBT 1 from the cut-off drive terminal SCO through the parallel connection circuit 24 and the resistor 23 since the MOS transistor 21 of the soft cut-off circuit 20 is in the OFF state also during the time t4-t5. can. Therefore, after the control unit 11 drives the off-drive circuit 14 , the gate voltage of the IGBT 1 can be detected from the cut-off drive terminal SCO using the detection signal of the second voltage detection circuit 27 .
  • the second voltage detection circuit 27 When the gate voltage of the IGBT 1 drops and the voltage of the cutoff drive terminal SCO drops to the OFF holding threshold Vt at time t6, the second voltage detection circuit 27 outputs a low-level detection signal. As a result, the control unit 11 outputs an off-hold drive signal to the off-hold drive circuit 29 at time t6.
  • the off-hold driving circuit 29 is turned on by applying a drive signal to the gate of the off-holding MOS transistor 30 via the off-holding drive terminal SOUT. Then, the gate charge of the IGBT 1 is rapidly discharged via the ON resistance of the MOS transistor 6, and the gate voltage instantly drops to the low potential level. Since the gate voltage of IGBT1 is held at a low potential level, it is fixed to the off state.
  • the detection value of the first voltage detection circuit 18 cannot be used during the period from time t3 to time t6, since driving is performed by the off-drive circuit 14 .
  • neither the off-drive circuit 14 nor the soft cut-off circuit 20 is used during the other period except the time t3 to t6, neither the first voltage detection circuit 18 nor the second voltage detection circuit 27 is used. can be used. By using both detection signals, erroneous detection due to noise or the like can be prevented and reliability can be improved.
  • control unit 11 turns off the off-holding drive circuit 29 when the voltages of both the off-drive terminal MN and the cut-off drive terminal SCO drop to a predetermined off-holding threshold value Vt while the IGBT 1 is off-driven. is controlled to maintain the OFF state. As a result, off-hold driving can be reliably performed.
  • a half-on state indicates a state in which the IGBT 1 operates in the active region.
  • Time t13 shown in FIG. 3 corresponds to time t3 in FIG. 2, and the operation before time t13 is the same as the operation from time t0 to time t3 in FIG. 2, so a description thereof will be omitted.
  • the control unit 11 stops driving the on-drive circuit 12 and drives the off-drive circuit .
  • the output of the ON drive circuit 12 is turned off, and the gate G of the IGBT 1 is de-energized.
  • the off-drive circuit 14 is turned on, the gate charge of the IGBT 1 is discharged from the parallel connection circuit 5 and the resistor 17 to the ground level through the MOS transistor 15 via the off-drive terminal MN. As a result, the gate voltage of the IGBT1 is lowered.
  • the first voltage detection circuit 18 detects the voltage of the off-drive terminal MN.
  • the voltage detection circuit 18 cannot detect the gate voltage of the IGBT1.
  • the second voltage detection circuit 27 can detect the gate voltage of the IGBT 1 because the MOS transistor 21 of the soft cutoff circuit 20 is in the OFF state.
  • the detection signal of the second voltage detection circuit 27 is used to detect the gate voltage of the IGBT1.
  • the gate voltage of the IGBT 1 decreases slowly, and the voltage at the cutoff drive terminal SCO does not reach the OFF hold threshold Vt even at time t15 after a predetermined time T1 has elapsed from time t13.
  • the controller 11 outputs the off-hold drive signal to the off-hold drive circuit 29. to output
  • the off-holding drive circuit 29 applies a drive signal to the off-holding MOS transistor 6 via the off-holding drive terminal SOUT to turn it on. Then, the gate charge of IGBT 1 is rapidly discharged through the ON resistance of MOS transistor 6, and the gate voltage instantly drops to the low potential level. As a result, the gate voltage of the IGBT1 is held at the low potential level, so that the IGBT1 is fixed in the off state.
  • neither the off drive circuit 14 nor the soft cutoff circuit 20 is used during the period other than the time t13 to t15.
  • a detection signal can be used, and by using both detection signals, erroneous detection due to noise or the like can be prevented, and reliability can be improved.
  • the half-on state is detected when the voltage of the cut-off drive terminal SCO is higher than the off-holding threshold value Vt even after the control unit 11 measures the predetermined time T1. If neither the first voltage detection circuit 18 nor the second voltage detection circuit 27 outputs a detection signal even after T1 is measured, the half-on state may be detected.
  • the control unit 11 determines that the voltage of either the off-drive terminal MN or the cut-off drive terminal SCO is higher than the predetermined off-holding threshold value Vt when the IGBT 1 is off-driven.
  • Vt the predetermined off-holding threshold value
  • the first voltage detection circuit 18 can monitor the gate voltage of the IGBT 1 from the off drive terminal MN, and the second voltage detection circuit 27 can monitor the gate voltage from the cutoff drive terminal SCO.
  • the off-drive terminal MN and cut-off drive terminal SCO can also be shared as terminals for voltage detection. Voltage detection, off-driving, and soft shut-off can also be performed through the cut-off drive terminal SCO and the off-drive terminal MN, and the IGBT 1 can be driven while miniaturizing by suppressing the number of terminals.
  • the first voltage detection circuit 18 includes a comparator 19a and is configured to input the short-circuit overcurrent threshold Vm to the inverting input terminal and to input the detected voltage of the off-drive terminal MN to the non-inverting input terminal.
  • the comparator 19a is used as a second short-circuit overcurrent detector.
  • the first voltage detection circuit 18 includes a comparator 19b, and is configured by inputting the off-holding threshold Vt to an inverting input terminal and inputting the voltage of the off drive terminal MN to a non-inverting input terminal.
  • the comparator 19b has the same function as the comparator 19 of the above-described embodiment, so description thereof will be omitted.
  • the comparator 19a detects a voltage based on the gate voltage of the IGBT 1 at the off-drive terminal MN, and outputs a detection signal for determining whether or not the short-circuit overcurrent threshold value Vm is reached to the control unit 11. Based on this detection signal, the control unit 11 can determine whether a short circuit or an overcurrent has occurred.
  • the second voltage detection circuit 27 has a comparator 28a and is configured by inputting the short-circuit overcurrent threshold value Vm to the inverting input terminal and inputting the detected voltage of the cutoff drive terminal SCO to the non-inverting input terminal.
  • the comparator 28a is used as a second short-circuit overcurrent detector.
  • the second voltage detection circuit 27 includes a comparator 28b, and is configured by inputting the off-holding threshold value Vt to an inverting input terminal and inputting the voltage of the cutoff drive terminal SCO to a non-inverting input terminal.
  • the comparator 28b has the same function as the comparator 28 of the above-described embodiment, so description thereof will be omitted.
  • the comparator 28a detects a voltage based on the gate voltage of the IGBT 1 at the cutoff drive terminal SCO, and outputs a detection signal for determining whether or not the short circuit overcurrent threshold value Vm is reached to the control unit 11. Based on this detection signal, the control unit 11 can determine whether a short circuit or an overcurrent has occurred.
  • the control unit 11 switches the OFF drive circuit 14 and the OFF hold drive circuit 29 to the OFF state, and further gives the ON drive signal to the ON drive circuit 12. .
  • the IGBT 1 is turned on.
  • the comparator 19 b of the first voltage detection circuit 18 and the comparator 28 b of the second voltage detection circuit 27 output high-level detection signals to the control section 11 .
  • the control unit 11 starts driving.
  • the IC 10 turns on its internal flag at time t23a, and thereafter stops driving the ON drive circuit 12 and drives the soft cutoff circuit 20.
  • the gate G of the IGBT 1 is cut off, and the MOS transistor 21 of the soft cutoff circuit 20 is turned on, so that the gate charge of the IGBT 1 is discharged from the resistor 23 to the ground through the cutoff drive terminal SCO and the MOS transistor 21 from time t24. be done.
  • the parallel connection circuit 24 is formed between the cut-off drive terminal SCO and the gate of the IGBT 1, when the same current flows through the resistor 26 and the diode 25, the forward voltage Vf of the diode 25 is instantaneously applied. Since the voltage drops, the gate voltage of the IGBT 1 can be lowered quickly. Even after that, the gate voltage of the IGBT 1 continues to decrease.
  • the second voltage detection circuit 27 detects the voltage of the cutoff drive terminal SCO.
  • the cutoff drive terminal SCO drops to the ground level at time t24 when the MOS transistor 21 is turned on. Therefore, the detection operation cannot be performed through the cutoff drive terminal SCO.
  • the first voltage detection circuit 18 is maintained in a state capable of detecting the gate voltage of the IGBT 1 because the MOS transistor 15 of the off drive circuit 14 is in the off state.
  • the control unit 11 uses the detection signal of the first voltage detection circuit 18 when the soft cutoff circuit 20 is driven.
  • the first voltage detection circuit 18 outputs a high-level detection signal.
  • the control unit 11 outputs an off-hold drive signal to the off-hold drive circuit 29 .
  • the off-hold driving circuit 29 applies a drive signal to the gate of the off-holding MOS transistor 6 via the off-holding drive terminal SOUT to turn it on. Then, the gate charge of the IGBT 1 is rapidly discharged via the ON resistance of the MOS transistor 6, and the gate voltage instantly drops to the ground level. As a result, the gate voltage of the IGBT 1 is held at the ground level, so that the IGBT 1 is fixed in the off state.
  • the second voltage detection circuit 27 cannot be used from the time t24 to the time t25 because the soft cutoff circuit 20 performs soft cutoff.
  • neither the off-drive circuit 14 nor the soft cutoff circuit 20 is used. Either detection signal can be used, and by using both detection signals, erroneous detection due to noise or the like can be prevented, and reliability can be improved.
  • the control unit 11 detects that the predetermined short-circuit overcurrent threshold value Vk has been reached by the current detection circuit 33 when the power device 1 is on-driven, and the off-drive terminal MN is turned on.
  • a short circuit or overcurrent is determined when the voltage is determined to be higher than a predetermined short circuit overcurrent threshold value Vm.
  • the current detection circuit 33 detects that the detected current has reached the short-circuit overcurrent threshold value Vk, the detected voltage at the off-drive terminal MN does not reach the short-circuit overcurrent threshold value Vm, it is not determined as a short-circuit or overcurrent. This eliminates the influence of noise.
  • the reliability of short-circuit or overcurrent detection can be improved by using the detection voltage of the off-drive terminal MN.
  • the control unit 11 when it is detected that the detected current of the power element 1 reaches the short-circuit overcurrent threshold Vk and the detection voltage of the off-drive terminal MN reaches the short-circuit overcurrent threshold Vm, the control unit 11 is controlled by software. Although the cutoff circuit 20 is driven and the voltage of the off-drive terminal MN is monitored by the comparator 19a of the first voltage detection circuit 18, it is not limited to this.
  • the control unit 11 When it is detected that the detected current of the power element 1 reaches the short-circuit overcurrent threshold Vk and the detection voltage of the off-drive terminal MN reaches the short-circuit overcurrent threshold Vm, the control unit 11 turns off the off-drive circuit 14. You can drive.
  • the second voltage detection circuit 27 since the MOS transistor 21 of the soft cutoff circuit 20 is in the off state, the second voltage detection circuit 27 preferably detects the gate voltage of the IGBT 1, and the voltage of the soft cutoff terminal SCO reaches the short-circuit overcurrent threshold value Vm by the comparator 28a. It is preferable to detect whether or not it has been reached. As a result, the influence of noise can be excluded as described above, and the reliability of short-circuit or overcurrent detection can be improved by using the detection voltage of the off-drive terminal MN.
  • the current detection circuit 34 detects that the detected current of the power element 1 has reached the short-circuit overcurrent threshold Vk regardless of whether or not the voltage detected at the off drive terminal MN has reached the short-circuit overcurrent threshold Vm.
  • a short circuit or an overcurrent may be determined under the condition that the short circuit or overcurrent is detected. Even if a short circuit or overcurrent flows, it can be safely detected.
  • the control unit 11 may drive the soft cutoff circuit 20 or the off drive circuit 14 . As a result, the same effect as described above can be obtained.
  • a third embodiment will be described with reference to FIG.
  • a plurality of IGBTs 1a and 1b to be driven may be connected in parallel and driven.
  • the number of parallel-connected IGBTs 1a and 1b to be simultaneously driven may be determined according to the driving capability of the power element driving device A, and is not limited to two, and may be three or more.
  • the power element driving device A is mainly composed of a driving IC 110, and is configured to simultaneously drive IGBTs 1a and 1b as a plurality of power elements through resistors 13a and 13b.
  • a sense emitter is formed in each of the plurality of IGBTs 1a and 1b.
  • Resistors 2a and 2b are connected to the sense emitters of the IGBTs 1a and 1b, respectively, and the detected voltages of the resistors 2a and 2b are input to the current detection circuit 33 through current detection terminals SOC1 and SOC2.
  • the current detection circuit 33 has comparators 34a and 34b, and inputs the short-circuit overcurrent threshold value Vk to the inverting input terminal as a comparison reference.
  • the off-drive circuit 14 is configured to turn off the plurality of IGBTs 1a and 1b simultaneously through the off-drive terminal MN and the resistor 17.
  • a parallel connection circuit 5 is formed between the gates of the plurality of IGBTs 1a and 1b and the off-drive terminal MN of the off-drive circuit 14, respectively.
  • the off drive circuit 14 is configured to turn off the plurality of IGBTs 1a and 1b by applying the same control voltage to the gates of all the plurality of IGBTs 1a and 1b through the parallel connection circuit 5.
  • the soft cutoff circuit 20 is configured to softly cut off the plurality of IGBTs 1 a and 1 b simultaneously through the soft cutoff terminal SCO and the resistor 23 .
  • a parallel connection circuit 24 is formed between the gates of the plurality of IGBTs 1a and 1b and the soft cutoff terminal SCO of the soft cutoff circuit 20, respectively.
  • the soft cutoff circuit 20 is configured to softly cut off the plurality of IGBTs 1a and 1b by applying the same control voltage to the gates of all the plurality of IGBTs 1a and 1b through a parallel connection circuit 24 . It has been confirmed that this embodiment also behaves in the same manner as the above-described normal operation, half-on detection operation, and short-circuit overcurrent detection operation. .
  • a fourth embodiment will be described with reference to FIG.
  • a short circuit or an overcurrent may be detected by detecting the gate voltages of the plurality of IGBTs 1a and 1b through the cut-off drive terminal SCO and the off-drive terminal MN.
  • the first voltage detection circuit 18 includes a comparator 19a and is configured by inputting the short-circuit overcurrent threshold value Vm to an inverting input terminal and inputting the voltage of the off-drive terminal MN to a non-inverting input terminal.
  • the first voltage detection circuit 18 includes a comparator 19b, and is configured by inputting the off-holding threshold value Vt to an inverting input terminal and inputting the voltage of the off drive terminal MN to a non-inverting input terminal.
  • the comparator 19b has the same function as the comparator 19 of the above-described embodiment, so description thereof will be omitted.
  • the comparator 19a detects a voltage based on the gate voltage of the IGBT 1 through the off drive terminal MN, and outputs a detection signal for determining whether or not the short circuit overcurrent threshold value Vm is reached to the control unit 11. Based on this detection signal, the control unit 11 can determine whether a short circuit or an overcurrent has occurred.
  • the second voltage detection circuit 27 includes a comparator 28a and is configured by inputting the short-circuit overcurrent threshold Vm to an inverting input terminal and inputting the voltage of the cutoff drive terminal SCO to a non-inverting input terminal.
  • the second voltage detection circuit 27 includes a comparator 28b, and is configured by inputting the off-holding threshold value Vt to an inverting input terminal and inputting the voltage of the cutoff drive terminal SCO to a non-inverting input terminal.
  • the comparator 28b has the same function as the comparator 28 of the above-described embodiment, so description thereof will be omitted.
  • the comparator 28a detects a voltage based on the gate voltage of the IGBT 1 through the cutoff drive terminal SCO, and outputs a detection signal for determining whether or not the short circuit overcurrent threshold value Vm is reached to the control unit 11. Based on this detection signal, the control unit 11 can determine whether a short circuit or an overcurrent has occurred. Also in this embodiment, the same effects as those of the above-described embodiment can be obtained.
  • the current detection circuit 33 includes comparators 34c and 34d.
  • the comparator 34c is configured as a short-circuit detection section having a predetermined short-circuit determination threshold value Vk1 input to an inverting input terminal and a sense emitter current detection voltage input to a non-inverting input terminal through a current detection terminal SOC.
  • the comparator 34d is configured as an overcurrent detection section having a predetermined overcurrent determination threshold value Vk2 input to an inverting input terminal and a sense emitter current detection voltage input to a non-inverting input terminal through a current detection terminal SOC. Since other configurations of the power element driving device A are the same as those of FIG. 1, illustration and description thereof are omitted.
  • the short circuit determination threshold Vk1 and the overcurrent determination threshold Vk2 are set to mutually different values. Then short circuit detection and overcurrent detection can be separated. If the short-circuit determination threshold Vk1 and the overcurrent determination threshold Vk2 are set to different values, the thresholds can be flexibly adjusted, and the degree of freedom in setting can be increased.
  • the first voltage detection circuit 18 includes comparators 19c and 19d.
  • the comparator 19c is configured as a short-circuit detection section having a predetermined short-circuit determination threshold value Vm1 input to its inverting input terminal and having a non-inverting input terminal input to the detection voltage of the off-drive terminal MN.
  • the comparator 19d is configured as an overcurrent detection unit having a predetermined overcurrent determination threshold value Vm2 input to its inverting input terminal and having a non-inverting input terminal input to the detection voltage of the off-drive terminal MN.
  • the second voltage detection circuit 27 includes comparators 28c and 28d.
  • the comparator 28c is configured as a short-circuit detection unit having a predetermined short-circuit determination threshold value Vm1 input to an inverting input terminal and a detection voltage of the soft cut-off terminal SCO input to a non-inverting input terminal.
  • the comparator 28d is configured as an overcurrent detection unit having a predetermined overcurrent determination threshold value Vm2 input to its inverting input terminal and having a non-inverting input terminal input to the detection voltage of the soft cutoff terminal SCO. Since other configurations of the power element driving device A are the same as those of FIG. 1, description thereof will be omitted.
  • the short circuit determination threshold Vm1 and the overcurrent determination threshold Vm2 are set to mutually different values. Then short circuit detection and overcurrent detection can be separated. If the short-circuit determination threshold value Vm1 and the overcurrent determination threshold value Vm2 are set to different values, the threshold values can be flexibly adjusted, and the degree of freedom in setting can be increased.
  • IGBTs 1, 1a, and 1b have been exemplified as power elements, they are not limited to these, and MOSFETs may also be used.
  • power elements using silicon carbide (SiC) or silicon (Si) as a semiconductor material can be applied.
  • 1, 1a, 1b are IGBTs as power elements, 11 is a control section, 14 is an off drive circuit, MN is an off drive terminal, 20 is a soft cutoff circuit, 29 is an off hold drive circuit, and 18 is a first voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

This power element drive device is equipped with: an off-drive circuit (14) for driving so as to perform a normal off operation from an off-drive terminal (MN) by taking away the gate voltage of a power element (1, 1a, 1b) on the basis of a drive signal (MIN) off command; a soft isolation circuit (20) for driving so as to turn the power element off from an isolation drive terminal by taking away the gate voltage at a different speed than when the off-drive circuit drives so as to turn the same off; an off-holding drive circuit (29) for holding the state of the power element being off, by connecting the source and the gate of the power element at an impedance which is lower compared to the off-drive circuit; a first voltage detection circuit (18) for monitoring the control voltage of the power element at the off-drive terminal; a second voltage detection circuit (27) for monitoring the control voltage of the power element at the isolation drive terminal; and a control unit (11) for determining and controlling the control content on the basis of the drive signal and the monitoring results of the control voltage from the first and second voltage detection circuits.

Description

パワー素子駆動装置Power device driver 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年3月16日に出願された日本出願番号2021-042450号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-042450 filed on March 16, 2021, and the contents thereof are incorporated herein.
 本開示は、パワー素子駆動装置に関する。 The present disclosure relates to a power element driving device.
 出願人は、パワー素子を駆動する装置として特許文献1のように提案している。特許文献1記載によれば、複数のパワー素子にそれぞれゲート電圧検出が設けられており、各パワー素子の制御極と制御電圧検出部との間に抵抗とダイオードを並列形態で構成することで共振経路を遮断している。 The applicant has proposed a device for driving a power element as in Patent Document 1. According to Patent Document 1, each of a plurality of power elements is provided with a gate voltage detection, and resonance is detected by configuring a resistor and a diode in parallel between the control pole and the control voltage detection section of each power element. blocking the route.
 ところで、パワー素子をターンオフするための回路として、通常のオフ駆動回路に加えて、ソフト遮断回路、オフ保持駆動回路を備える。駆動ICは、それぞれの駆動部からの出力に対応する端子が設けられる。また駆動ICには、パワー素子のゲート電圧を検出するゲート電圧検出部を備えている。ゲート電圧検出部は、パワー素子のオフ後に駆動させるオフ保持駆動部と端子を共用化することで端子数を削減していた。 By the way, as a circuit for turning off the power element, in addition to the normal off drive circuit, a soft cutoff circuit and an off hold drive circuit are provided. The drive IC is provided with terminals corresponding to outputs from the respective drive units. Further, the drive IC has a gate voltage detection section for detecting the gate voltage of the power element. The number of terminals of the gate voltage detection section is reduced by sharing the terminal with the off-holding drive section which is driven after the power element is turned off.
 ところが、パワー素子をより確実にオフ保持させるために、外付け素子を用いてオフ保持を行いたい場合、ゲート電圧を監視する端子や外付け端子を駆動する端子の2端子を必要としてしまう。端子数を削減するためにオフ保持機能を1端子に集約させることができず、ゲート電圧検出部はオフ保持駆動部と端子の共用化ができなくなり、ゲート電圧検出部用の端子を別途設ける必要を生じる。この結果、駆動ICの端子数が増加することになり、駆動ICの小型化を阻害してしまう。 However, if it is desired to use an external element to keep the power element off in order to more reliably keep it off, two terminals are required: a terminal for monitoring the gate voltage and a terminal for driving the external terminal. In order to reduce the number of terminals, the off-holding function cannot be integrated into one terminal, and the gate voltage detection section cannot share the terminal with the off-holding drive section, so it is necessary to provide a separate terminal for the gate voltage detection section. produces As a result, the number of terminals of the driving IC increases, which hinders miniaturization of the driving IC.
特開2018-148745号公報JP 2018-148745 A
 本開示は、上記事情に鑑みてなされたものであり、端子数を抑制して小型化を図ることができるパワー素子駆動装置を提供することにある。 The present disclosure has been made in view of the above circumstances, and aims to provide a power element driving device capable of reducing the number of terminals and miniaturizing the device.
 本開示の一態様によれば、オフ駆動回路、ソフト遮断回路、オフ保持駆動回路、第1電圧検出回路、第2電圧検出回路、及び制御部を備える。オフ駆動回路は、駆動信号のオフ指令に基づいてパワー素子のゲート電荷を引き抜くことでオフ駆動端子から通常オフ駆動する。ソフト遮断回路は、オフ駆動回路によるオフ駆動時とは異なる速度によりパワー素子を遮断駆動端子からオフ駆動する。オフ保持駆動回路は、パワー素子の制御端子を低インピーダンスに接続することでパワー素子のオフ状態を保持する。第1電圧検出回路は、オフ駆動回路のオフ駆動端子にてパワー素子の制御電圧を監視する。第2電圧検出回路は、ソフト遮断回路の遮断駆動端子にてパワー素子の制御電圧を監視する。制御部は、駆動信号と、第1電圧検出回路及び第2電圧検出回路による制御電圧の監視結果に基づいて制御内容を決定して制御する。 According to one aspect of the present disclosure, an off drive circuit, a soft cutoff circuit, an off hold drive circuit, a first voltage detection circuit, a second voltage detection circuit, and a control section are provided. The off-drive circuit normally off-drives from the off-drive terminal by extracting the gate charge of the power element based on the off command of the drive signal. The soft cutoff circuit off-drives the power element from the cutoff drive terminal at a speed different from the off-driving speed of the off-drive circuit. The OFF hold drive circuit holds the OFF state of the power element by connecting the control terminal of the power element to a low impedance. The first voltage detection circuit monitors the control voltage of the power element at the off drive terminal of the off drive circuit. The second voltage detection circuit monitors the control voltage of the power element at the cutoff drive terminal of the soft cutoff circuit. The control unit determines and controls the contents of control based on the drive signal and the results of monitoring of the control voltage by the first voltage detection circuit and the second voltage detection circuit.
 第1電圧検出回路によりオフ駆動端子からパワー素子の制御電圧を監視できると共に、第2電圧検出回路により遮断駆動端子からパワー素子の制御電圧を監視でき、オフ駆動端子及び遮断駆動端子を電圧検出用の端子として共有化できる。遮断駆動端子及びオフ駆動端子を通じて電圧検出したりオフ駆動したりソフト遮断することもでき、端子数を抑制して小型化を図りながらパワー素子を駆動できる。 The first voltage detection circuit can monitor the control voltage of the power element from the off-drive terminal, the second voltage detection circuit can monitor the control voltage of the power element from the cut-off drive terminal, and the off-drive terminal and the cut-off drive terminal are used for voltage detection. can be shared as a terminal for Voltage detection, off-driving, and soft shut-off can also be performed through the shut-off drive terminal and the off-drive terminal, and the power element can be driven while reducing the number of terminals and achieving miniaturization.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態におけるパワー素子駆動システムの電気的構成図であり、 図2は、第1実施形態の流れを説明する通常時のタイムチャートであり、 図3は、第1実施形態におけるハーフオン検出時の各部の電圧変化を模式的に示すタイムチャートであり、 図4は、第2実施形態におけるパワー素子駆動システムの電気的構成図であり、 図5は、第2実施形態において短絡過電流検出時の各部の電圧変化を模式的に示すタイムチャートであり、 図6は、第3実施形態におけるパワー素子駆動システムの電気的構成図であり、 図7は、第4実施形態におけるパワー素子駆動システムの電気的構成図であり、 図8は、第5実施形態におけるパワー素子駆動システムの一部を示す電気的構成図であり、 図9は、第6実施形態におけるパワー素子駆動システムの電気的構成図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an electrical configuration diagram of a power element driving system in the first embodiment, FIG. 2 is a normal time chart for explaining the flow of the first embodiment, FIG. 3 is a time chart schematically showing voltage changes at each part when half-on detection is performed in the first embodiment; FIG. 4 is an electrical configuration diagram of the power element drive system in the second embodiment, FIG. 5 is a time chart schematically showing voltage changes at each part when short-circuit overcurrent is detected in the second embodiment, FIG. 6 is an electrical configuration diagram of the power element drive system in the third embodiment, FIG. 7 is an electrical configuration diagram of a power element driving system in the fourth embodiment, FIG. 8 is an electrical configuration diagram showing a part of the power element drive system in the fifth embodiment, FIG. 9 is an electrical configuration diagram of a power device driving system according to the sixth embodiment.
 以下、幾つかの実施形態について図面を参照しながら説明する。以下に説明する各実施形態において、同一又は類似の動作を行う構成については、同一又は類似の符号を付し、必要に応じて説明を省略する。 Several embodiments will be described below with reference to the drawings. In each of the embodiments described below, the same or similar reference numerals are given to components that perform the same or similar operations, and description thereof will be omitted as necessary.
 (第1実施形態)
 以下、本開示の第1実施形態について、図1~図3を参照して説明する。図1に示すように、パワー素子駆動装置Aは、ゲート駆動型のIGBT1を駆動する装置であり、駆動IC10を主体に構成されている。IGBT1は、コレクタ-エミッタ間が図示しない負荷への給電経路に接続されている。IGBTは、Insulated Gate Bipolar Transistorの略であり、駆動対象となるパワー素子として用いられる。本形態では、駆動対象となるIGBT1を一つとした形態を示す。
(First embodiment)
A first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 3. FIG. As shown in FIG. 1, the power element driving device A is a device for driving a gate-driven IGBT 1, and is mainly composed of a driving IC 10. As shown in FIG. The IGBT 1 is connected between its collector and emitter to a feed path to a load (not shown). IGBT is an abbreviation for Insulated Gate Bipolar Transistor, and is used as a power element to be driven. In this embodiment, a single IGBT 1 to be driven is shown.
 IGBT1は、電流検出用のセンスエミッタを備え、センスエミッタは電流検出用の抵抗2に接続されている。IGBT1のゲートとグランドとの間には、抵抗3及びダイオード4の並列接続回路5を通じてNチャネル型のMOSトランジスタ6のドレイン・ソースが接続されている。MOSトランジスタ6は、IGBT1のゲートをオフ駆動回路20よりも低インピーダンス状態とすることでオフ状態に保持させる半導体素子として設けられる。 The IGBT 1 has a sense emitter for current detection, and the sense emitter is connected to a resistor 2 for current detection. The drain and source of an N-channel MOS transistor 6 are connected between the gate of the IGBT 1 and the ground through a parallel connection circuit 5 of a resistor 3 and a diode 4 . The MOS transistor 6 is provided as a semiconductor element that keeps the gate of the IGBT 1 in an off state by setting the gate of the IGBT 1 to a lower impedance state than the off drive circuit 20 .
 集積回路からなる駆動IC10は、半導体素子駆動回路として機能するもので、IGBT1のオン駆動及びオフ駆動のゲート駆動制御を行う。駆動IC10は、直流電源VccからIGBT1のゲートGに給電してオン駆動し、また、IGBT1のゲート電荷について並列接続回路5を通じてグランドに放電させることでオフ駆動する。駆動IC10は、オン駆動端子MP、電流検出端子SOC、遮断駆動端子SCO、オフ駆動端子MN、オフ保持駆動端子SOUTを備える。 The driving IC 10, which is an integrated circuit, functions as a semiconductor element driving circuit, and performs gate drive control for ON-driving and OFF-driving the IGBT1. The driving IC 10 supplies power to the gate G of the IGBT 1 from the DC power supply Vcc to turn it on, and discharges the gate charge of the IGBT 1 to the ground through the parallel connection circuit 5 to turn it off. The drive IC 10 includes an ON drive terminal MP, a current detection terminal SOC, a cutoff drive terminal SCO, an OFF drive terminal MN, and an OFF hold drive terminal SOUT.
 駆動IC10は、制御部11を主体として構成される。制御部11は、マイコンもしくはロジック回路から構成される。制御部11は、外部からIGBT1の駆動信号MINが与えられると、これに応じてIGBT1のゲートGに駆動信号を与え、オン状態もしくはオフ状態となるように制御する回路である。制御部11は、駆動信号MINと第1電圧検出回路18及び第2電圧検出回路27によるIGBT1のゲート電圧の監視結果に基づいて制御内容を決定して制御する。 The driving IC 10 is mainly composed of the control unit 11. The control unit 11 is composed of a microcomputer or a logic circuit. The control unit 11 is a circuit that, when a drive signal MIN for the IGBT 1 is given from the outside, gives a drive signal to the gate G of the IGBT 1 in response to the drive signal MIN, thereby controlling the gate G of the IGBT 1 to be turned on or off. The control unit 11 determines and controls the contents of control based on the monitoring result of the gate voltage of the IGBT 1 by the drive signal MIN and the first voltage detection circuit 18 and the second voltage detection circuit 27 .
 オン駆動回路12は、駆動IC10の内部に構成され、例えばMOSトランジスタ及びバッファ回路を用いて構成される。オン駆動回路12は、直流電源Vccから電源供給されておりオン駆動端子MPを通じてゲート駆動信号を出力する。オン駆動回路12は、制御部11から駆動信号が与えられるとオン駆動端子MPから抵抗13を通じてIGBT1のゲートGに駆動信号を与えることでIGBT1を駆動する。 The ON drive circuit 12 is configured inside the drive IC 10, and is configured using, for example, a MOS transistor and a buffer circuit. The on-drive circuit 12 is powered by a DC power supply Vcc and outputs a gate drive signal through an on-drive terminal MP. The on-drive circuit 12 drives the IGBT 1 by giving the drive signal from the on-drive terminal MP to the gate G of the IGBT 1 through the resistor 13 when the drive signal is given from the control section 11 .
 オフ駆動回路14は、駆動IC10の内部に構成され、例えばNチャネル型のMOSトランジスタ15及びバッファ回路16を備える。MOSトランジスタ15のドレインはオフ駆動端子MNに接続され、ソースはグランドに接続される。バッファ回路16は、制御部11から駆動信号が与えられると、MOSトランジスタ15のゲートGにゲート駆動信号を与える。オフ駆動端子MNは、抵抗17及び並列接続回路5を通じてIGBT1のゲートGに接続されている。 The off drive circuit 14 is configured inside the drive IC 10 and includes, for example, an N-channel MOS transistor 15 and a buffer circuit 16 . The MOS transistor 15 has a drain connected to the off drive terminal MN and a source connected to the ground. Buffer circuit 16 applies a gate drive signal to gate G of MOS transistor 15 when a drive signal is applied from control unit 11 . The off drive terminal MN is connected to the gate G of the IGBT 1 through the resistor 17 and the parallel connection circuit 5 .
 IGBT1のゲートとオフ駆動回路14のオフ駆動端子MNとの間には並列接続回路5が構成されている。並列接続回路5は、IGBT1のゲートと抵抗17との間にそれぞれ抵抗3及びダイオード4を並列接続した構成である。ダイオード4は、そのアノードをIGBT1のゲートに接続すると共に、カソードを、抵抗17を通じてオフ駆動端子MNに接続している。 A parallel connection circuit 5 is configured between the gate of the IGBT 1 and the off drive terminal MN of the off drive circuit 14 . The parallel connection circuit 5 has a configuration in which a resistor 3 and a diode 4 are connected in parallel between the gate of the IGBT 1 and the resistor 17, respectively. Diode 4 has its anode connected to the gate of IGBT 1 and its cathode connected to off drive terminal MN through resistor 17 .
 第1電圧検出回路18は、コンパレータ19を備えオフ保持閾値Vtを反転入力端子に入力する。第1電圧検出回路18は、オフ駆動回路14が接続されるオフ駆動端子MNを共有して接続しており、並列接続回路5及び抵抗17を通じてオフ駆動端子MNにおいてIGBT1のゲート電圧を検出し、検出電圧がオフ保持閾値Vtを超えているか否かを検出する。オフ保持閾値Vtは、IGBT1の閾値電圧、オフ制御電圧に応じて予め定められており、オフ駆動端子MNの電圧がオフ保持閾値Vtを上回っていればハイレベルの検出信号を出力する。 The first voltage detection circuit 18 has a comparator 19 and inputs the off-holding threshold value Vt to the inverting input terminal. The first voltage detection circuit 18 is connected in common with the off-drive terminal MN to which the off-drive circuit 14 is connected, detects the gate voltage of the IGBT 1 at the off-drive terminal MN through the parallel connection circuit 5 and the resistor 17, It is detected whether or not the detected voltage exceeds the OFF holding threshold value Vt. The off-holding threshold Vt is predetermined according to the threshold voltage of the IGBT 1 and the off-control voltage, and if the voltage of the off-drive terminal MN exceeds the off-holding threshold Vt, a high-level detection signal is output.
 ソフト遮断回路20は、Nチャネル型のMOSトランジスタ21及びバッファ回路22を備える。MOSトランジスタ21のドレインは遮断駆動端子SCOに接続され、ソースはグランドに接続される。バッファ回路22は、制御部11から駆動信号が与えられ、MOSトランジスタ21にゲート駆動信号を与える。遮断駆動端子SCOは、抵抗23及び並列接続回路24を介してIGBT1のゲートGに接続される。IGBT1のゲートとオフ駆動回路14の遮断駆動端子SCOとの間には並列接続回路24が構成されている。並列接続回路24は、IGBT1のゲートと抵抗23との間にそれぞれ抵抗26及びダイオード25を並列接続した構成である。ダイオード25は、そのアノードをIGBT1のゲートに接続すると共に、カソードを、抵抗23を通じて遮断駆動端子SCOに接続している。 The soft cutoff circuit 20 includes an N-channel MOS transistor 21 and a buffer circuit 22 . The MOS transistor 21 has a drain connected to the cutoff drive terminal SCO and a source connected to the ground. Buffer circuit 22 receives a drive signal from control unit 11 and provides a gate drive signal to MOS transistor 21 . A cut-off drive terminal SCO is connected to the gate G of the IGBT 1 via a resistor 23 and a parallel connection circuit 24 . A parallel connection circuit 24 is formed between the gate of the IGBT 1 and the cutoff drive terminal SCO of the off drive circuit 14 . The parallel connection circuit 24 has a configuration in which a resistor 26 and a diode 25 are connected in parallel between the gate of the IGBT 1 and the resistor 23, respectively. Diode 25 has its anode connected to the gate of IGBT 1 and its cathode connected to cutoff drive terminal SCO through resistor 23 .
 なお本実施形態においては、抵抗17及び抵抗23は、抵抗23の抵抗値を抵抗17の抵抗値よりも大きい値に設定している。これは、ソフト遮断時にIGBT1のゲート電荷を通常時よりも長い時間で放電させるためである。抵抗17、23の抵抗値については、IGBT1の特性に応じて、適宜の値に設定することができるし、大小関係も逆となるように設定しても良い。 Note that in the present embodiment, the resistor 17 and the resistor 23 are set such that the resistance value of the resistor 23 is greater than the resistance value of the resistor 17 . This is because the gate charge of the IGBT 1 is discharged in a longer period of time than in normal times during soft shutdown. The resistance values of the resistors 17 and 23 can be set to appropriate values according to the characteristics of the IGBT 1, and may be set so that the magnitude relationship is reversed.
 第2電圧検出回路27は、コンパレータ28を備えオフ保持閾値Vtを反転入力端子に入力する。コンパレータ28の非反転入力端子は、遮断駆動端子SCOとMOSトランジスタ21のドレインとの共通接続点に接続される。 The second voltage detection circuit 27 has a comparator 28 and inputs the off-holding threshold value Vt to the inverting input terminal. A non-inverting input terminal of the comparator 28 is connected to a common connection point between the cutoff drive terminal SCO and the drain of the MOS transistor 21 .
 第2電圧検出回路27は、ソフト遮断回路20が接続される遮断駆動端子SCOを共有して接続しており、並列接続回路24及び抵抗23を通じてIGBT1のゲート電圧を遮断駆動端子SCOにおいて検出し、この検出電圧がオフ保持閾値Vtを超えるか否かを検出する。 The second voltage detection circuit 27 is connected in common with the cutoff drive terminal SCO to which the soft cutoff circuit 20 is connected, detects the gate voltage of the IGBT 1 at the cutoff drive terminal SCO through the parallel connection circuit 24 and the resistor 23, It is detected whether or not this detection voltage exceeds the OFF holding threshold value Vt.
 コンパレータ28は、IGBT1のゲート電圧について並列接続回路24、抵抗23、及び遮断駆動端子SCOを通じて入力し、オフ保持閾値Vtを超えていればハイレベルの検出信号を出力する。 The comparator 28 inputs the gate voltage of the IGBT 1 through the parallel connection circuit 24, the resistor 23, and the cutoff drive terminal SCO, and outputs a high-level detection signal if it exceeds the off-holding threshold Vt.
 オフ保持駆動回路29は、Nチャネル型のMOSトランジスタ30及びバッファ回路31を備え、制御部11から与えられるオフ保持の信号に応じて、外部出力素子であるオフ保持用のMOSトランジスタ6のゲートにオフ保持駆動端子SOUTからオフ保持信号を出力する。 The hold-off driving circuit 29 includes an N-channel MOS transistor 30 and a buffer circuit 31, and in response to a hold-off signal supplied from the control unit 11, the gate of the MOS transistor 6 for holding off, which is an external output element. An OFF hold signal is output from the OFF hold drive terminal SOUT.
 外付け素子駆動回路32は、駆動IC10の内部に構成されると共に、バッファ回路により構成され、オフ保持駆動回路29が接続されるオフ保持駆動端子SOUTを共有して接続している。外付け素子駆動回路32は、制御部11から与えられるオフ保持の信号に応じて外部出力素子であるMOSトランジスタ6を駆動するための回路であり、MOSトランジスタ6のゲートにオフ保持駆動端子SOUTを通じてオフ保持信号を出力する。 The external element drive circuit 32 is configured inside the drive IC 10, is configured by a buffer circuit, and is commonly connected to the OFF hold drive terminal SOUT to which the OFF hold drive circuit 29 is connected. The external element drive circuit 32 is a circuit for driving the MOS transistor 6, which is an external output element, in accordance with the OFF hold signal supplied from the control unit 11. Outputs a hold-off signal.
 電流検出回路33は、IGBT1に過電流又は短絡電流が流れたか否かを検出する第1短絡過電流検出部として構成される回路であり、電流検出端子SOCを介してIGBT1のセンスエミッタに接続されている。電流検出回路33は、コンパレータ34を備え短絡過電流閾値Vkを反転入力端子に入力する。 The current detection circuit 33 is a circuit configured as a first short-circuit overcurrent detection unit that detects whether or not an overcurrent or a short-circuit current has flowed through the IGBT 1, and is connected to the sense emitter of the IGBT 1 via a current detection terminal SOC. ing. The current detection circuit 33 has a comparator 34 and inputs the short-circuit overcurrent threshold Vk to its inverting input terminal.
 電流検出回路33は、電流検出端子SOCからIGBT1の電流検出用の抵抗2の電圧を検出することでセンス電流を検出し、センス電流の検出電圧が短絡過電流閾値Vkを超えているか否かを検出する。短絡過電流閾値Vkは、IGBT1の過電流閾値及び短絡電流閾値に応じて予め定められており、電流検出端子SOCの電圧が短絡過電流閾値Vkを上回っていればハイレベルの検出信号を出力する。 The current detection circuit 33 detects the sense current by detecting the voltage of the current detection resistor 2 of the IGBT 1 from the current detection terminal SOC, and determines whether the detected voltage of the sense current exceeds the short-circuit overcurrent threshold Vk. To detect. The short-circuit overcurrent threshold Vk is predetermined according to the overcurrent threshold and the short-circuit current threshold of the IGBT 1, and if the voltage of the current detection terminal SOC exceeds the short-circuit overcurrent threshold Vk, a high-level detection signal is output. .
 次に上記構成の作用について、図2を参照して通常時の動作について説明する。続いて、図3を参照してハーフオン検出時の動作を説明する。 Next, the operation of the above configuration will be described with reference to FIG. 2 during normal operation. Next, the operation when half-on is detected will be described with reference to FIG.
 <通常時の動作>
 図2は通常時の動作に対応するタイミングチャートである。制御部11は、外部からオン駆動の駆動信号MINが与えられる前の時刻t0~t1の間、オフ駆動回路14及びオフ保持駆動回路29には駆動信号が与えられている。
<Normal operation>
FIG. 2 is a timing chart corresponding to normal operation. In the control unit 11, a drive signal is applied to the OFF drive circuit 14 and the OFF hold drive circuit 29 during the time t0 to t1 before the ON drive drive signal MIN is applied from the outside.
 このとき、オフ駆動回路14のMOSトランジスタ15がオン駆動されると共に、オフ保持駆動回路29のオフ保持用のMOSトランジスタ30がオン駆動される。これにより、IGBT1のゲートGの電荷は放電された状態となり、ゲート電圧は低電位レベルとなっている。 At this time, the MOS transistor 15 of the off-drive circuit 14 is turned on, and the off-holding MOS transistor 30 of the off-holding drive circuit 29 is turned on. As a result, the charge on the gate G of the IGBT 1 is discharged, and the gate voltage is at the low potential level.
 次に時刻t1において、制御部11は、外部からゲート駆動信号としてオン駆動信号が与えられると、オフ駆動回路14及びオフ保持駆動回路29をオフ状態に切り替え、さらにオン駆動回路12にオン駆動信号を与える。 Next, at time t1, when an ON drive signal is given as a gate drive signal from the outside, the control section 11 switches the OFF drive circuit 14 and the OFF hold drive circuit 29 to the OFF state, and sends the ON drive signal to the ON drive circuit 12. give.
 これにより、オフ駆動回路14のMOSトランジスタ15がオフ状態となり、オフ駆動端子MNに接続される第1電圧検出回路18は、IGBT1のゲート電圧を検出可能な状態となる。また、ソフト遮断回路20はオフ状態であるので、遮断駆動端子SCOに接続される第2電圧検出回路27は、IGBT1のゲート電圧を検出可能な状態となっている。 As a result, the MOS transistor 15 of the off-drive circuit 14 is turned off, and the first voltage detection circuit 18 connected to the off-drive terminal MN becomes capable of detecting the gate voltage of the IGBT1. Further, since the soft cutoff circuit 20 is in the OFF state, the second voltage detection circuit 27 connected to the cutoff drive terminal SCO is in a state capable of detecting the gate voltage of the IGBT1.
 オン駆動回路12は、IGBT1のゲートGに直流電源Vccから電圧を印加する。これにより、IGBT1のゲート電圧が上昇し、IGBT1のゲート電圧がオン閾値電圧に達するとIGBT1がオン状態になり、IGBT1から負荷へ通電される。少なくともIGBT1のゲート電圧がオン閾値電圧に達していれば、第1電圧検出回路18及び第2電圧検出回路27がハイレベルの検出信号を制御部11に出力する。 The ON drive circuit 12 applies a voltage from the DC power supply Vcc to the gate G of the IGBT1. As a result, the gate voltage of the IGBT1 rises, and when the gate voltage of the IGBT1 reaches the on-threshold voltage, the IGBT1 is turned on, and the load is energized from the IGBT1. If at least the gate voltage of the IGBT 1 reaches the on-threshold voltage, the first voltage detection circuit 18 and the second voltage detection circuit 27 output high-level detection signals to the control section 11 .
 この後、時刻t3において、駆動信号MINがオフ駆動に対応したレベルになると、制御部11は、オン駆動回路12を駆動停止すると共に、オフ駆動回路14を駆動させる。これによりIGBT1のゲートGは断電される。 After that, at time t3, when the drive signal MIN reaches the level corresponding to the off-drive, the control section 11 stops driving the on-drive circuit 12 and drives the off-drive circuit 14 . As a result, the gate G of the IGBT 1 is cut off.
 時刻t3にて駆動指令を受けて、オフ駆動回路14が駆動されることで、MOSトランジスタ15がオンされると、時刻t4以降においてIGBT1のゲート電荷は並列接続回路5及び抵抗17からオフ駆動端子MNを介してMOSトランジスタ15を通じてグランドに放電される。このとき、並列接続回路5が抵抗3とダイオード4を並列接続して構成されており、これらの抵抗3及びダイオード4に同一電流が通電すると、ダイオード4の順方向電圧Vfだけ瞬時に電圧降下する。これによりIGBT1のゲート電圧を素早く低下させることができる。その後も、IGBT1のゲート電圧は低下する。 At time t3, a drive command is received and the off-drive circuit 14 is driven to turn on the MOS transistor 15. After time t4, the gate charge of the IGBT 1 is transferred from the parallel connection circuit 5 and the resistor 17 to the off-drive terminal It is discharged to ground through MOS transistor 15 via MN. At this time, the parallel connection circuit 5 is configured by connecting the resistor 3 and the diode 4 in parallel. . As a result, the gate voltage of the IGBT1 can be quickly lowered. After that, the gate voltage of IGBT1 also decreases.
 この間、第1電圧検出回路18はオフ駆動端子MNの電圧を検出中となっているものの、時刻t4~t5に示されるように、オフ駆動端子MNの電圧はMOSトランジスタ15のオンと同時に低電位レベルに低下するため、時刻t5においてオフ保持閾値Vtを下回ることになる。 During this period, the first voltage detection circuit 18 is detecting the voltage of the off-drive terminal MN, but as shown from time t4 to t5, the voltage of the off-drive terminal MN becomes low at the same time when the MOS transistor 15 is turned on. level, it falls below the hold-off threshold Vt at time t5.
 一方、時刻t4~t5においても、第2電圧検出回路27はソフト遮断回路20のMOSトランジスタ21がオフ状態であるため、IGBT1のゲート電圧を並列接続回路24及び抵抗23を通じて遮断駆動端子SCOから検出できる。このため、制御部11が、オフ駆動回路14を駆動させた後には、第2電圧検出回路27の検出信号を用いて遮断駆動端子SCOからIGBT1のゲート電圧を検出できる。 On the other hand, the second voltage detection circuit 27 detects the gate voltage of the IGBT 1 from the cut-off drive terminal SCO through the parallel connection circuit 24 and the resistor 23 since the MOS transistor 21 of the soft cut-off circuit 20 is in the OFF state also during the time t4-t5. can. Therefore, after the control unit 11 drives the off-drive circuit 14 , the gate voltage of the IGBT 1 can be detected from the cut-off drive terminal SCO using the detection signal of the second voltage detection circuit 27 .
 IGBT1のゲート電圧が低下し、遮断駆動端子SCOの電圧が時刻t6にてオフ保持閾値Vtにまで低下すると、第2電圧検出回路27からロウレベルの検出信号が出力される。これにより、制御部11は、時刻t6においてオフ保持駆動回路29にオフ保持の駆動信号を出力する。 When the gate voltage of the IGBT 1 drops and the voltage of the cutoff drive terminal SCO drops to the OFF holding threshold Vt at time t6, the second voltage detection circuit 27 outputs a low-level detection signal. As a result, the control unit 11 outputs an off-hold drive signal to the off-hold drive circuit 29 at time t6.
 オフ保持駆動回路29は、オフ保持駆動端子SOUTを介してオフ保持用のMOSトランジスタ30のゲートに駆動信号を与えることでオン駆動する。すると、IGBT1のゲート電荷はMOSトランジスタ6のオン抵抗を介して急速に放電され、ゲート電圧は瞬時に低電位レベルまで低下する。IGBT1のゲート電圧は低電位レベルに保持された状態となるので、オフ状態に固定される。 The off-hold driving circuit 29 is turned on by applying a drive signal to the gate of the off-holding MOS transistor 30 via the off-holding drive terminal SOUT. Then, the gate charge of the IGBT 1 is rapidly discharged via the ON resistance of the MOS transistor 6, and the gate voltage instantly drops to the low potential level. Since the gate voltage of IGBT1 is held at a low potential level, it is fixed to the off state.
 なお、上記の動作において、時刻t3~t6の間は、オフ駆動回路14により駆動しているので、第1電圧検出回路18の検出値は使用できない。しかし、時刻t3~t6の間を除いた他の期間においては、オフ駆動回路14及びソフト遮断回路20の何れも使用していないため、第1電圧検出回路18及び第2電圧検出回路27の何れの検出信号を用いることができる。両方の検出信号を用いることでノイズなどによる誤検出を防止して確実性を高めることもできる。 It should be noted that, in the above operation, the detection value of the first voltage detection circuit 18 cannot be used during the period from time t3 to time t6, since driving is performed by the off-drive circuit 14 . However, since neither the off-drive circuit 14 nor the soft cut-off circuit 20 is used during the other period except the time t3 to t6, neither the first voltage detection circuit 18 nor the second voltage detection circuit 27 is used. can be used. By using both detection signals, erroneous detection due to noise or the like can be prevented and reliability can be improved.
 まとめると、制御部11は、IGBT1をオフ駆動しているときにオフ駆動端子MN及び遮断駆動端子SCOの両端子電圧が所定のオフ保持閾値Vtまで低下した状態となった時にオフ保持駆動回路29によりオフ状態を保持させるように制御している。これにより、確実にオフ保持駆動できる。 In summary, the control unit 11 turns off the off-holding drive circuit 29 when the voltages of both the off-drive terminal MN and the cut-off drive terminal SCO drop to a predetermined off-holding threshold value Vt while the IGBT 1 is off-driven. is controlled to maintain the OFF state. As a result, off-hold driving can be reliably performed.
 <ハーフオン時の動作>
 次に、図3を参照してIGBT1がオフ駆動された後に、ハーフオン状態として継続して検出される場合の動作について説明する。ハーフオン状態とは、IGBT1が能動領域で動作する状態を示している。
<Operation at half-on>
Next, with reference to FIG. 3, the operation when the half-on state is continuously detected after the IGBT 1 is turned off will be described. A half-on state indicates a state in which the IGBT 1 operates in the active region.
 図3に示す時刻t13は、図2の時刻t3に対応した時刻であり、時刻t13の前の動作は図2の時刻t0~t3までの動作と同様であるため説明を省略する。図3の時刻t13において、駆動信号MINがオフ駆動に対応したレベルになると、制御部11は、オン駆動回路12を駆動停止すると共に、オフ駆動回路14を駆動させる。 Time t13 shown in FIG. 3 corresponds to time t3 in FIG. 2, and the operation before time t13 is the same as the operation from time t0 to time t3 in FIG. 2, so a description thereof will be omitted. At time t13 in FIG. 3, when the drive signal MIN reaches the level corresponding to the off-drive, the control unit 11 stops driving the on-drive circuit 12 and drives the off-drive circuit .
 これにより、オン駆動回路12の出力がオフされ、IGBT1のゲートGは断電される。また、オフ駆動回路14が駆動オンされることで、IGBT1のゲート電荷は、並列接続回路5及び抵抗17からオフ駆動端子MNを介して、MOSトランジスタ15を通じてグランドレベルに放電される。これにより、IGBT1のゲート電圧は低下する。 As a result, the output of the ON drive circuit 12 is turned off, and the gate G of the IGBT 1 is de-energized. When the off-drive circuit 14 is turned on, the gate charge of the IGBT 1 is discharged from the parallel connection circuit 5 and the resistor 17 to the ground level through the MOS transistor 15 via the off-drive terminal MN. As a result, the gate voltage of the IGBT1 is lowered.
 この間、第1電圧検出回路18は、オフ駆動端子MNの電圧を検出しているが、MOSトランジスタ15がオンするとほぼ同時に、オフ駆動端子MNは時刻t14にてグランドレベルに低下するため、第1電圧検出回路18はIGBT1のゲート電圧を検出できない。一方、第2電圧検出回路27は、ソフト遮断回路20のMOSトランジスタ21がオフ状態であるため、IGBT1のゲート電圧を検出できる。 During this period, the first voltage detection circuit 18 detects the voltage of the off-drive terminal MN. The voltage detection circuit 18 cannot detect the gate voltage of the IGBT1. On the other hand, the second voltage detection circuit 27 can detect the gate voltage of the IGBT 1 because the MOS transistor 21 of the soft cutoff circuit 20 is in the OFF state.
 したがって、制御部11がオフ駆動回路14を駆動させたときには、第2電圧検出回路27の検出信号を用いてIGBT1のゲート電圧を検出する。ハーフオン状態が継続する場合、IGBT1のゲート電圧の低下が遅く、時刻t13から所定時間T1が経過した時刻t15においても遮断駆動端子SCOの電圧はオフ保持閾値Vtに達しない。 Therefore, when the control unit 11 drives the off drive circuit 14, the detection signal of the second voltage detection circuit 27 is used to detect the gate voltage of the IGBT1. When the half-on state continues, the gate voltage of the IGBT 1 decreases slowly, and the voltage at the cutoff drive terminal SCO does not reach the OFF hold threshold Vt even at time t15 after a predetermined time T1 has elapsed from time t13.
 時刻t15においても、第2電圧検出回路27はロウレベルの検出信号を出力しないため、制御部11は、時刻t13から所定時間T1が経過した時刻t15において、オフ保持駆動回路29にオフ保持の駆動信号を出力する。 At time t15, the second voltage detection circuit 27 does not output a low-level detection signal either. Therefore, at time t15 when the predetermined time T1 has elapsed from time t13, the controller 11 outputs the off-hold drive signal to the off-hold drive circuit 29. to output
 オフ保持駆動回路29は、オフ保持駆動端子SOUTを介してオフ保持用のMOSトランジスタ6に駆動信号を与えてオン駆動する。するとIGBT1のゲート電荷はMOSトランジスタ6のオン抵抗を介して急速に放電され、ゲート電圧は瞬時に低電位レベルまで低下する。これにより、IGBT1は、ゲート電圧が低電位レベルに保持されるので、オフ状態に固定される。 The off-holding drive circuit 29 applies a drive signal to the off-holding MOS transistor 6 via the off-holding drive terminal SOUT to turn it on. Then, the gate charge of IGBT 1 is rapidly discharged through the ON resistance of MOS transistor 6, and the gate voltage instantly drops to the low potential level. As a result, the gate voltage of the IGBT1 is held at the low potential level, so that the IGBT1 is fixed in the off state.
 なお、時刻t13~t15間を除いた他の期間においては、オフ駆動回路14及びソフト遮断回路20の何れも使用していないので、第1電圧検出回路18及び第2電圧検出回路27の何れの検出信号を用いることができ、両方の検出信号を用いることでノイズなどによる誤検出を防止して確実性を高めることもできる。 It should be noted that neither the off drive circuit 14 nor the soft cutoff circuit 20 is used during the period other than the time t13 to t15. A detection signal can be used, and by using both detection signals, erroneous detection due to noise or the like can be prevented, and reliability can be improved.
 本実施形態では、制御部11が所定時間T1を計測しても遮断駆動端子SCOの電圧がオフ保持閾値Vtより高い状態となっているときにハーフオン状態として検出した形態を示したが、所定時間T1を計測しても、第1電圧検出回路18及び第2電圧検出回路27の何れからも検出信号が出力されない場合に、ハーフオン状態として検出するように構成しても良い。 In this embodiment, the half-on state is detected when the voltage of the cut-off drive terminal SCO is higher than the off-holding threshold value Vt even after the control unit 11 measures the predetermined time T1. If neither the first voltage detection circuit 18 nor the second voltage detection circuit 27 outputs a detection signal even after T1 is measured, the half-on state may be detected.
 まとめると、ハーフオン検出時において、制御部11は、IGBT1をオフ駆動しているときにオフ駆動端子MN及び遮断駆動端子SCOの何れか片方の電圧が所定のオフ保持閾値Vtよりも高い状態が所定時間T1以上続いた場合にハーフオン検出し、ハーフオン検出したタイミングにてオフ保持駆動回路29によりオフ状態を保持させるように制御している。これにより、確実にオフ保持駆動できる。 In summary, when half-on is detected, the control unit 11 determines that the voltage of either the off-drive terminal MN or the cut-off drive terminal SCO is higher than the predetermined off-holding threshold value Vt when the IGBT 1 is off-driven. When it continues for time T1 or more, half-on detection is performed, and control is performed so that the off-state is maintained by the off-hold driving circuit 29 at the timing of the half-on detection. As a result, off-hold driving can be reliably performed.
 以上説明したように、本実施形態によれば、第1電圧検出回路18によりオフ駆動端子MNからIGBT1のゲート電圧を監視できると共に、第2電圧検出回路27により遮断駆動端子SCOからゲート電圧を監視でき、オフ駆動端子MN及び遮断駆動端子SCOを電圧検出用の端子としても共有化できる。遮断駆動端子SCO及びオフ駆動端子MNを通じて電圧検出したりオフ駆動したりソフト遮断することもでき、端子数を抑制して小型化を図りながらIGBT1を駆動できる。 As described above, according to this embodiment, the first voltage detection circuit 18 can monitor the gate voltage of the IGBT 1 from the off drive terminal MN, and the second voltage detection circuit 27 can monitor the gate voltage from the cutoff drive terminal SCO. The off-drive terminal MN and cut-off drive terminal SCO can also be shared as terminals for voltage detection. Voltage detection, off-driving, and soft shut-off can also be performed through the cut-off drive terminal SCO and the off-drive terminal MN, and the IGBT 1 can be driven while miniaturizing by suppressing the number of terminals.
 (第2実施形態)
 第2実施形態について図4及び図5を参照しながら説明する。本実施形態では、短絡過電流検出するための構成及び動作について説明する。
(Second embodiment)
A second embodiment will be described with reference to FIGS. 4 and 5. FIG. In this embodiment, the configuration and operation for detecting short-circuit overcurrent will be described.
 図4に示すように、第1電圧検出回路18は、コンパレータ19aを備え短絡過電流閾値Vmを反転入力端子に入力すると共にオフ駆動端子MNの検出電圧を非反転入力端子に入力して構成される。コンパレータ19aは第2短絡過電流検出部として用いられる。また第1電圧検出回路18は、コンパレータ19bを備えオフ保持閾値Vtを反転入力端子に入力すると共にオフ駆動端子MNの電圧を非反転入力端子に入力して構成される。 As shown in FIG. 4, the first voltage detection circuit 18 includes a comparator 19a and is configured to input the short-circuit overcurrent threshold Vm to the inverting input terminal and to input the detected voltage of the off-drive terminal MN to the non-inverting input terminal. be. The comparator 19a is used as a second short-circuit overcurrent detector. The first voltage detection circuit 18 includes a comparator 19b, and is configured by inputting the off-holding threshold Vt to an inverting input terminal and inputting the voltage of the off drive terminal MN to a non-inverting input terminal.
 コンパレータ19bは、前述実施形態のコンパレータ19と同様の機能であるため説明を省略する。コンパレータ19aは、IGBT1のゲート電圧に基づく電圧を、オフ駆動端子MNにおいて検出し、短絡過電流閾値Vmに達しているか否かを判定する検出信号を制御部11に出力する。制御部11は、この検出信号に基づいて短絡又は過電流を生じているか否かを判定できる。 The comparator 19b has the same function as the comparator 19 of the above-described embodiment, so description thereof will be omitted. The comparator 19a detects a voltage based on the gate voltage of the IGBT 1 at the off-drive terminal MN, and outputs a detection signal for determining whether or not the short-circuit overcurrent threshold value Vm is reached to the control unit 11. Based on this detection signal, the control unit 11 can determine whether a short circuit or an overcurrent has occurred.
 第2電圧検出回路27は、コンパレータ28aを備え短絡過電流閾値Vmを反転入力端子に入力すると共に遮断駆動端子SCOの検出電圧を非反転入力端子に入力して構成される。コンパレータ28aは第2短絡過電流検出部として用いられる。第2電圧検出回路27は、コンパレータ28bを備えオフ保持閾値Vtを反転入力端子に入力すると共に遮断駆動端子SCOの電圧を非反転入力端子に入力して構成される。 The second voltage detection circuit 27 has a comparator 28a and is configured by inputting the short-circuit overcurrent threshold value Vm to the inverting input terminal and inputting the detected voltage of the cutoff drive terminal SCO to the non-inverting input terminal. The comparator 28a is used as a second short-circuit overcurrent detector. The second voltage detection circuit 27 includes a comparator 28b, and is configured by inputting the off-holding threshold value Vt to an inverting input terminal and inputting the voltage of the cutoff drive terminal SCO to a non-inverting input terminal.
 コンパレータ28bは、前述実施形態のコンパレータ28と同様の機能であるため説明を省略する。コンパレータ28aは、IGBT1のゲート電圧に基づく電圧を、遮断駆動端子SCOにおいて検出し、短絡過電流閾値Vmに達しているか否かを判定する検出信号を制御部11に出力する。制御部11は、この検出信号に基づいて短絡又は過電流を生じているか否かを判定できる。 The comparator 28b has the same function as the comparator 28 of the above-described embodiment, so description thereof will be omitted. The comparator 28a detects a voltage based on the gate voltage of the IGBT 1 at the cutoff drive terminal SCO, and outputs a detection signal for determining whether or not the short circuit overcurrent threshold value Vm is reached to the control unit 11. Based on this detection signal, the control unit 11 can determine whether a short circuit or an overcurrent has occurred.
 <短絡/過電流検出時の動作>
 次に、図5を参照してIGBT1がオン駆動されるときに短絡又は過電流検出した場合の動作について説明する。図4に示すように、オン駆動の駆動信号MINが与えられる前の時刻t20~t21の間には、オフ駆動回路14及びオフ保持駆動回路29に駆動信号が与えられ、IGBT1のゲートGの電荷は放電された状態となり、ゲート電圧は0Vでグランドレベルとなっている。
<Operation at short circuit/overcurrent detection>
Next, the operation when a short circuit or overcurrent is detected when the IGBT 1 is turned on will be described with reference to FIG. As shown in FIG. 4, between times t20 and t21 before the on-driving drive signal MIN is applied, the drive signal is applied to the off-drive circuit 14 and the off-hold drive circuit 29, and the charge of the gate G of the IGBT 1 is reduced. is in a discharged state, and the gate voltage is 0V and ground level.
 次に、時刻t21において、オン駆動の駆動信号MINが与えられると、制御部11は、オフ駆動回路14及びオフ保持駆動回路29をオフ状態に切り替え、さらにオン駆動回路12にオン駆動信号を与える。これにより、IGBT1はオン駆動される。IGBT1のゲート電圧が閾値電圧に達すると、第1電圧検出回路18のコンパレータ19b及び第2電圧検出回路27のコンパレータ28bは、ハイレベルの検出信号を制御部11に出力する。 Next, at time t21, when the drive signal MIN for ON drive is given, the control unit 11 switches the OFF drive circuit 14 and the OFF hold drive circuit 29 to the OFF state, and further gives the ON drive signal to the ON drive circuit 12. . As a result, the IGBT 1 is turned on. When the gate voltage of the IGBT 1 reaches the threshold voltage, the comparator 19 b of the first voltage detection circuit 18 and the comparator 28 b of the second voltage detection circuit 27 output high-level detection signals to the control section 11 .
 その後、時刻t23付近において、IGBT1に短絡電流が流れると、センスエミッタも短絡電流に対応した電流が流れるため、IGBT1のセンスエミッタの電圧が短絡過電流閾値Vkを超えて高くなる。また他方では、オフ駆動端子MNの検出電圧が短絡過電流閾値Vmを超えて高くなる。IGBT1のセンスエミッタの電圧が短絡過電流閾値Vkを超えると、電流検出回路33のコンパレータ34がハイレベルの検出信号を制御部11に出力する。また、オフ駆動端子MNの検出電圧が短絡過電流閾値Vmを超えて高くなると、第1電圧検出回路18のコンパレータ19aはハイレベルの検出信号を制御部11に出力する。 After that, when a short-circuit current flows through the IGBT1 around time t23, a current corresponding to the short-circuit current also flows through the sense emitter, so the voltage of the sense emitter of the IGBT1 exceeds the short-circuit overcurrent threshold Vk and increases. On the other hand, the detected voltage at the off-drive terminal MN exceeds the short-circuit overcurrent threshold Vm and becomes high. When the voltage of the sense emitter of the IGBT 1 exceeds the short circuit overcurrent threshold Vk, the comparator 34 of the current detection circuit 33 outputs a high level detection signal to the control section 11 . Further, when the detected voltage of the off-drive terminal MN exceeds the short-circuit overcurrent threshold value Vm and becomes higher, the comparator 19 a of the first voltage detection circuit 18 outputs a high-level detection signal to the control section 11 .
 制御部11は、電流検出回路33により短絡過電流閾値Vkを超えたことが検出されると共に第1電圧検出回路18のコンパレータ19aにより短絡過電流閾値Vmを超えたことが検出されると、駆動IC10は時刻t23aにてその内部フラグをオンし、その後、オン駆動回路12を駆動停止すると共に、ソフト遮断回路20を駆動させる。 When the current detection circuit 33 detects that the short-circuit overcurrent threshold Vk has been exceeded and the comparator 19a of the first voltage detection circuit 18 detects that the short-circuit overcurrent threshold Vm has been exceeded, the control unit 11 starts driving. The IC 10 turns on its internal flag at time t23a, and thereafter stops driving the ON drive circuit 12 and drives the soft cutoff circuit 20. FIG.
 これにより、IGBT1のゲートGは断電され、さらにソフト遮断回路20のMOSトランジスタ21がオンすることで、時刻t24からIGBT1のゲート電荷は抵抗23から遮断駆動端子SCO及びMOSトランジスタ21を通じてグランドに放電される。このとき、並列接続回路24が遮断駆動端子SCOとIGBT1のゲートとの間に構成されているため、これらの抵抗26及びダイオード25に同一電流が通電すると、ダイオード25の順方向電圧Vfだけ瞬時に電圧降下することから、IGBT1のゲート電圧を素早く低下させることができる。その後も、IGBT1のゲート電圧は低下していく。 As a result, the gate G of the IGBT 1 is cut off, and the MOS transistor 21 of the soft cutoff circuit 20 is turned on, so that the gate charge of the IGBT 1 is discharged from the resistor 23 to the ground through the cutoff drive terminal SCO and the MOS transistor 21 from time t24. be done. At this time, since the parallel connection circuit 24 is formed between the cut-off drive terminal SCO and the gate of the IGBT 1, when the same current flows through the resistor 26 and the diode 25, the forward voltage Vf of the diode 25 is instantaneously applied. Since the voltage drops, the gate voltage of the IGBT 1 can be lowered quickly. Even after that, the gate voltage of the IGBT 1 continues to decrease.
 この間、第2電圧検出回路27は、遮断駆動端子SCOの電圧を検出している。遮断駆動端子SCOはMOSトランジスタ21のオンと同時に時刻t24においてグランドレベルに低下する。このため、遮断駆動端子SCOを通じて検出動作を行うことができない。一方、第1電圧検出回路18は、オフ駆動回路14のMOSトランジスタ15がオフ状態であるから、IGBT1のゲート電圧を検出可能な状態に維持されている。 During this time, the second voltage detection circuit 27 detects the voltage of the cutoff drive terminal SCO. The cutoff drive terminal SCO drops to the ground level at time t24 when the MOS transistor 21 is turned on. Therefore, the detection operation cannot be performed through the cutoff drive terminal SCO. On the other hand, the first voltage detection circuit 18 is maintained in a state capable of detecting the gate voltage of the IGBT 1 because the MOS transistor 15 of the off drive circuit 14 is in the off state.
 制御部11は、ソフト遮断回路20を駆動させたときには、第1電圧検出回路18の検出信号を用いる。IGBT1のゲート電圧が低下し、時刻t25でオフ保持閾値Vtに達すると、第1電圧検出回路18によりハイレベルの検出信号が出力される。これにより、制御部11は、オフ保持駆動回路29にオフ保持の駆動信号を出力する。 The control unit 11 uses the detection signal of the first voltage detection circuit 18 when the soft cutoff circuit 20 is driven. When the gate voltage of the IGBT 1 decreases and reaches the OFF holding threshold Vt at time t25, the first voltage detection circuit 18 outputs a high-level detection signal. As a result, the control unit 11 outputs an off-hold drive signal to the off-hold drive circuit 29 .
 オフ保持駆動回路29は、オフ保持駆動端子SOUTを介してオフ保持用のMOSトランジスタ6のゲートに駆動信号を与えてオン駆動する。すると、IGBT1のゲート電荷はMOSトランジスタ6のオン抵抗を介して急速に放電され、ゲート電圧は瞬時にグランドレベルまで低下する。これにより、IGBT1は、ゲート電圧がグランドレベルに保持された状態になるので、オフ状態に固定される。 The off-hold driving circuit 29 applies a drive signal to the gate of the off-holding MOS transistor 6 via the off-holding drive terminal SOUT to turn it on. Then, the gate charge of the IGBT 1 is rapidly discharged via the ON resistance of the MOS transistor 6, and the gate voltage instantly drops to the ground level. As a result, the gate voltage of the IGBT 1 is held at the ground level, so that the IGBT 1 is fixed in the off state.
 なお、上記の動作において、時刻t24から時刻t25の間は、ソフト遮断回路20によりソフト遮断しているので、第2電圧検出回路27を使用できない。しかし、時刻t24-時刻t25の間を除いた他の期間においては、オフ駆動回路14及びソフト遮断回路20の何れも使用していないので、第1電圧検出回路18及び第2電圧検出回路27の何れの検出信号を用いることができ、両方の検出信号を用いることでノイズなどによる誤検出を防止して確実性を高めることができる。 In the above operation, the second voltage detection circuit 27 cannot be used from the time t24 to the time t25 because the soft cutoff circuit 20 performs soft cutoff. However, during periods other than time t24-time t25, neither the off-drive circuit 14 nor the soft cutoff circuit 20 is used. Either detection signal can be used, and by using both detection signals, erroneous detection due to noise or the like can be prevented, and reliability can be improved.
 本実施形態によれば、制御部11は、パワー素子1がオン駆動されているときに電流検出回路33により所定の短絡過電流閾値Vkに達したことが検出されると共に、オフ駆動端子MNの電圧が所定の短絡過電流閾値Vmより高いと判定されたときに短絡又は過電流と判定するようにしている。 According to the present embodiment, the control unit 11 detects that the predetermined short-circuit overcurrent threshold value Vk has been reached by the current detection circuit 33 when the power device 1 is on-driven, and the off-drive terminal MN is turned on. A short circuit or overcurrent is determined when the voltage is determined to be higher than a predetermined short circuit overcurrent threshold value Vm.
 例えば、何らかのノイズにより一時的にパワー素子1に過電流が流れ電流検出回路33により検出電流が短絡過電流閾値Vkに達したことが検出された場合であっても、オフ駆動端子MNの検出電圧が短絡過電流閾値Vmに達していなければ短絡又は過電流と判定されることはない。これによりノイズの影響を除外できる。オフ駆動端子MNの検出電圧を用いることで短絡又は過電流検出の確実性を向上できる。 For example, even if an overcurrent temporarily flows through the power element 1 due to some noise and the current detection circuit 33 detects that the detected current has reached the short-circuit overcurrent threshold value Vk, the detected voltage at the off-drive terminal MN does not reach the short-circuit overcurrent threshold value Vm, it is not determined as a short-circuit or overcurrent. This eliminates the influence of noise. The reliability of short-circuit or overcurrent detection can be improved by using the detection voltage of the off-drive terminal MN.
 (変形例)
 本実施形態では、パワー素子1の検出電流が短絡過電流閾値Vkに達すると共に、オフ駆動端子MNの検出電圧が短絡過電流閾値Vmに達したことが検出されたときに、制御部11がソフト遮断回路20を駆動し、第1電圧検出回路18のコンパレータ19aによりオフ駆動端子MNの電圧を監視するようにしたが、これに限られるものではない。
(Modification)
In the present embodiment, when it is detected that the detected current of the power element 1 reaches the short-circuit overcurrent threshold Vk and the detection voltage of the off-drive terminal MN reaches the short-circuit overcurrent threshold Vm, the control unit 11 is controlled by software. Although the cutoff circuit 20 is driven and the voltage of the off-drive terminal MN is monitored by the comparator 19a of the first voltage detection circuit 18, it is not limited to this.
 またパワー素子1の検出電流が短絡過電流閾値Vkに達すると共に、オフ駆動端子MNの検出電圧が短絡過電流閾値Vmに達したことが検出されたときに、制御部11がオフ駆動回路14を駆動しても良い。このときには、ソフト遮断回路20のMOSトランジスタ21がオフ状態であるため、第2電圧検出回路27がIGBT1のゲート電圧を検出すると良く、コンパレータ28aによりソフト遮断端子SCOの電圧が短絡過電流閾値Vmに達しているか否かを検出すると良い。これにより、前述したようにノイズの影響を除外でき、オフ駆動端子MNの検出電圧を用いることで短絡又は過電流検出の確実性を向上できる。 When it is detected that the detected current of the power element 1 reaches the short-circuit overcurrent threshold Vk and the detection voltage of the off-drive terminal MN reaches the short-circuit overcurrent threshold Vm, the control unit 11 turns off the off-drive circuit 14. You can drive. At this time, since the MOS transistor 21 of the soft cutoff circuit 20 is in the off state, the second voltage detection circuit 27 preferably detects the gate voltage of the IGBT 1, and the voltage of the soft cutoff terminal SCO reaches the short-circuit overcurrent threshold value Vm by the comparator 28a. It is preferable to detect whether or not it has been reached. As a result, the influence of noise can be excluded as described above, and the reliability of short-circuit or overcurrent detection can be improved by using the detection voltage of the off-drive terminal MN.
 またオフ駆動端子MNの検出電圧が短絡過電流閾値Vmに達したことが検出されているか否かに拘わらず、パワー素子1の検出電流が短絡過電流閾値Vkに達したことを電流検出回路34により検出したことを条件として短絡又は過電流と判定するようにしても良い。短絡又は過電流が流れたとしても安全に検出できる。この場合、制御部11は、ソフト遮断回路20を駆動しても良いし、オフ駆動回路14を駆動しても良い。これにより前述と同様の作用効果を得られる。 The current detection circuit 34 detects that the detected current of the power element 1 has reached the short-circuit overcurrent threshold Vk regardless of whether or not the voltage detected at the off drive terminal MN has reached the short-circuit overcurrent threshold Vm. A short circuit or an overcurrent may be determined under the condition that the short circuit or overcurrent is detected. Even if a short circuit or overcurrent flows, it can be safely detected. In this case, the control unit 11 may drive the soft cutoff circuit 20 or the off drive circuit 14 . As a result, the same effect as described above can be obtained.
 (第3実施形態)
 第3実施形態について図6を参照しながら説明する。図6に示すように、駆動対象となるIGBT1a、1bを複数並列接続して駆動するようにしても良い。同時に駆動対象となる並列接続されるIGBT1a、1bの個数は、パワー素子駆動装置Aの駆動能力に応じて定めれば良く、2個に限られるものではなく3個以上であっても良い。
(Third embodiment)
A third embodiment will be described with reference to FIG. As shown in FIG. 6, a plurality of IGBTs 1a and 1b to be driven may be connected in parallel and driven. The number of parallel-connected IGBTs 1a and 1b to be simultaneously driven may be determined according to the driving capability of the power element driving device A, and is not limited to two, and may be three or more.
 図6に示すように、パワー素子駆動装置Aは、駆動IC110を主体として構成され、複数のパワー素子としてのIGBT1a、1bを抵抗13a、13bを通じて同時に駆動するように構成されている。なお、複数のIGBT1a、1bのそれぞれにはセンスエミッタが構成されている。これらの複数のIGBT1a、1bは、図示していないがコレクタ-エミッタ間を共通に並列接続した状態で使用される。 As shown in FIG. 6, the power element driving device A is mainly composed of a driving IC 110, and is configured to simultaneously drive IGBTs 1a and 1b as a plurality of power elements through resistors 13a and 13b. A sense emitter is formed in each of the plurality of IGBTs 1a and 1b. These multiple IGBTs 1a and 1b are used with their collectors and emitters connected in parallel, not shown.
 IGBT1a、1bのセンスエミッタにはそれぞれ抵抗2a、2bが接続されており、抵抗2a、2bの検出電圧は、電流検出端子SOC1、SOC2を通じて電流検出回路33に入力されている。電流検出回路33は、コンパレータ34a及び34bを備えており、比較基準として短絡過電流閾値Vkを反転入力端子に入力している。 Resistors 2a and 2b are connected to the sense emitters of the IGBTs 1a and 1b, respectively, and the detected voltages of the resistors 2a and 2b are input to the current detection circuit 33 through current detection terminals SOC1 and SOC2. The current detection circuit 33 has comparators 34a and 34b, and inputs the short-circuit overcurrent threshold value Vk to the inverting input terminal as a comparison reference.
 オフ駆動回路14は、オフ駆動端子MN及び抵抗17を通じて複数のIGBT1a、1bを同時にオフ駆動するように構成されている。複数のIGBT1a、1bのゲートとオフ駆動回路14のオフ駆動端子MNとの間にはそれぞれ並列接続回路5が構成されている。 オフ駆動回路14は、全ての複数のIGBT1a、1bのゲートに並列接続回路5を通じて同一の制御電圧を印加することで複数のIGBT1a、1bをオフ駆動するように構成されている。 The off-drive circuit 14 is configured to turn off the plurality of IGBTs 1a and 1b simultaneously through the off-drive terminal MN and the resistor 17. A parallel connection circuit 5 is formed between the gates of the plurality of IGBTs 1a and 1b and the off-drive terminal MN of the off-drive circuit 14, respectively. The off drive circuit 14 is configured to turn off the plurality of IGBTs 1a and 1b by applying the same control voltage to the gates of all the plurality of IGBTs 1a and 1b through the parallel connection circuit 5.
 ソフト遮断回路20は、ソフト遮断端子SCO及び抵抗23を通じて複数のIGBT1a、1bを同時にソフト遮断するように構成されている。複数のIGBT1a、1bのゲートとソフト遮断回路20のソフト遮断端子SCOとの間にはそれぞれ並列接続回路24が構成されている。ソフト遮断回路20は、全ての複数のIGBT1a、1bのゲートに並列接続回路24を通じて同一の制御電圧を印加することで複数のIGBT1a、1bをソフト遮断可能に構成されている。このような本実施形態においても、前述の通常動作、ハーフオン検出時の動作、短絡過電流検出時の動作と同様の挙動を示すことが確認されており、前述実施形態と同様の作用効果を奏する。 The soft cutoff circuit 20 is configured to softly cut off the plurality of IGBTs 1 a and 1 b simultaneously through the soft cutoff terminal SCO and the resistor 23 . A parallel connection circuit 24 is formed between the gates of the plurality of IGBTs 1a and 1b and the soft cutoff terminal SCO of the soft cutoff circuit 20, respectively. The soft cutoff circuit 20 is configured to softly cut off the plurality of IGBTs 1a and 1b by applying the same control voltage to the gates of all the plurality of IGBTs 1a and 1b through a parallel connection circuit 24 . It has been confirmed that this embodiment also behaves in the same manner as the above-described normal operation, half-on detection operation, and short-circuit overcurrent detection operation. .
 (第4実施形態)
 第4実施形態について図7を参照しながら説明する。複数のIGBT1a、1bのゲート電圧を、遮断駆動端子SCO、オフ駆動端子MNを通じて検出することで、短絡又は過電流検出するようにしても良い。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. A short circuit or an overcurrent may be detected by detecting the gate voltages of the plurality of IGBTs 1a and 1b through the cut-off drive terminal SCO and the off-drive terminal MN.
 第1電圧検出回路18は、コンパレータ19aを備え短絡過電流閾値Vmを反転入力端子に入力すると共にオフ駆動端子MNの電圧を非反転入力端子に入力して構成される。第1電圧検出回路18は、コンパレータ19bを備えオフ保持閾値Vtを反転入力端子に入力すると共にオフ駆動端子MNの電圧を非反転入力端子に入力して構成される。 The first voltage detection circuit 18 includes a comparator 19a and is configured by inputting the short-circuit overcurrent threshold value Vm to an inverting input terminal and inputting the voltage of the off-drive terminal MN to a non-inverting input terminal. The first voltage detection circuit 18 includes a comparator 19b, and is configured by inputting the off-holding threshold value Vt to an inverting input terminal and inputting the voltage of the off drive terminal MN to a non-inverting input terminal.
 コンパレータ19bは、前述実施形態のコンパレータ19と同様の機能であるため説明を省略する。コンパレータ19aは、IGBT1のゲート電圧に基づく電圧を、オフ駆動端子MNを通じて検出し、この短絡過電流閾値Vmに達しているか否かを判定する検出信号を制御部11に出力する。制御部11は、この検出信号に基づいて短絡又は過電流を生じているか否かを判定できる。 The comparator 19b has the same function as the comparator 19 of the above-described embodiment, so description thereof will be omitted. The comparator 19a detects a voltage based on the gate voltage of the IGBT 1 through the off drive terminal MN, and outputs a detection signal for determining whether or not the short circuit overcurrent threshold value Vm is reached to the control unit 11. Based on this detection signal, the control unit 11 can determine whether a short circuit or an overcurrent has occurred.
 第2電圧検出回路27は、コンパレータ28aを備え短絡過電流閾値Vmを反転入力端子に入力すると共に遮断駆動端子SCOの電圧を非反転入力端子に入力して構成される。第2電圧検出回路27は、コンパレータ28bを備えオフ保持閾値Vtを反転入力端子に入力すると共に遮断駆動端子SCOの電圧を非反転入力端子に入力して構成される。 The second voltage detection circuit 27 includes a comparator 28a and is configured by inputting the short-circuit overcurrent threshold Vm to an inverting input terminal and inputting the voltage of the cutoff drive terminal SCO to a non-inverting input terminal. The second voltage detection circuit 27 includes a comparator 28b, and is configured by inputting the off-holding threshold value Vt to an inverting input terminal and inputting the voltage of the cutoff drive terminal SCO to a non-inverting input terminal.
 コンパレータ28bは、前述実施形態のコンパレータ28と同様の機能であるため説明を省略する。コンパレータ28aは、IGBT1のゲート電圧に基づく電圧を、遮断駆動端子SCOを通じて検出し、この短絡過電流閾値Vmに達しているか否かを判定する検出信号を制御部11に出力する。制御部11は、この検出信号に基づいて短絡又は過電流を生じているか否かを判定できる。このような本実施形態においても、前述実施形態と同様の作用効果を奏する。 The comparator 28b has the same function as the comparator 28 of the above-described embodiment, so description thereof will be omitted. The comparator 28a detects a voltage based on the gate voltage of the IGBT 1 through the cutoff drive terminal SCO, and outputs a detection signal for determining whether or not the short circuit overcurrent threshold value Vm is reached to the control unit 11. Based on this detection signal, the control unit 11 can determine whether a short circuit or an overcurrent has occurred. Also in this embodiment, the same effects as those of the above-described embodiment can be obtained.
 (第5実施形態)
 第5実施形態について図8を参照しながら説明する。図8に示すように、電流検出回路33は、コンパレータ34c及び34dを備える。コンパレータ34cは、所定の短絡判定閾値Vk1を反転入力端子に入力すると共にセンスエミッタ電流の検出電圧を、電流検出端子SOCを通じて非反転入力端子に入力した短絡検出部として構成される。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIG. As shown in FIG. 8, the current detection circuit 33 includes comparators 34c and 34d. The comparator 34c is configured as a short-circuit detection section having a predetermined short-circuit determination threshold value Vk1 input to an inverting input terminal and a sense emitter current detection voltage input to a non-inverting input terminal through a current detection terminal SOC.
 コンパレータ34dは、所定の過電流判定閾値Vk2を反転入力端子に入力すると共にセンスエミッタ電流の検出電圧を、電流検出端子SOCを通じて非反転入力端子に入力した過電流検出部として構成される。その他のパワー素子駆動装置Aの構成は図1の構成と同様であるため図示及びその説明を省略する。 The comparator 34d is configured as an overcurrent detection section having a predetermined overcurrent determination threshold value Vk2 input to an inverting input terminal and a sense emitter current detection voltage input to a non-inverting input terminal through a current detection terminal SOC. Since other configurations of the power element driving device A are the same as those of FIG. 1, illustration and description thereof are omitted.
 このような構成において、短絡判定閾値Vk1と過電流判定閾値Vk2とは互いに異なる値に設定されていると良い。すると、短絡検出と過電流検出を分けることができる。短絡判定閾値Vk1と過電流判定閾値Vk2が互いに異なる値に設定されていれば閾値を柔軟に調整できるようになり設定の自由度を高めることができる。 In such a configuration, it is preferable that the short circuit determination threshold Vk1 and the overcurrent determination threshold Vk2 are set to mutually different values. Then short circuit detection and overcurrent detection can be separated. If the short-circuit determination threshold Vk1 and the overcurrent determination threshold Vk2 are set to different values, the thresholds can be flexibly adjusted, and the degree of freedom in setting can be increased.
 (第6実施形態)
 第6実施形態について図9を参照しながら説明する。図9に示すように、第1電圧検出回路18は、コンパレータ19に加えてコンパレータ19c及び19dを備える。コンパレータ19cは、所定の短絡判定閾値Vm1を反転入力端子に入力すると共にオフ駆動端子MNの検出電圧を非反転入力端子に入力した短絡検出部として構成される。コンパレータ19dは、所定の過電流判定閾値Vm2を反転入力端子に入力すると共にオフ駆動端子MNの検出電圧を非反転入力端子に入力した過電流検出部として構成される。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIG. As shown in FIG. 9, in addition to the comparator 19, the first voltage detection circuit 18 includes comparators 19c and 19d. The comparator 19c is configured as a short-circuit detection section having a predetermined short-circuit determination threshold value Vm1 input to its inverting input terminal and having a non-inverting input terminal input to the detection voltage of the off-drive terminal MN. The comparator 19d is configured as an overcurrent detection unit having a predetermined overcurrent determination threshold value Vm2 input to its inverting input terminal and having a non-inverting input terminal input to the detection voltage of the off-drive terminal MN.
 また第2電圧検出回路27は、コンパレータ28に加えてコンパレータ28c及び28dを備える。コンパレータ28cは、所定の短絡判定閾値Vm1を反転入力端子に入力すると共にソフト遮断端子SCOの検出電圧を非反転入力端子に入力した短絡検出部として構成される。コンパレータ28dは、所定の過電流判定閾値Vm2を反転入力端子に入力すると共にソフト遮断端子SCOの検出電圧を非反転入力端子に入力した過電流検出部として構成される。その他のパワー素子駆動装置Aの構成は図1の構成と同様であるため説明を省略する。 In addition to the comparator 28, the second voltage detection circuit 27 includes comparators 28c and 28d. The comparator 28c is configured as a short-circuit detection unit having a predetermined short-circuit determination threshold value Vm1 input to an inverting input terminal and a detection voltage of the soft cut-off terminal SCO input to a non-inverting input terminal. The comparator 28d is configured as an overcurrent detection unit having a predetermined overcurrent determination threshold value Vm2 input to its inverting input terminal and having a non-inverting input terminal input to the detection voltage of the soft cutoff terminal SCO. Since other configurations of the power element driving device A are the same as those of FIG. 1, description thereof will be omitted.
 このような構成において、短絡判定閾値Vm1と過電流判定閾値Vm2とは互いに異なる値に設定されていると良い。すると、短絡検出と過電流検出を分けることができる。短絡判定閾値Vm1と過電流判定閾値Vm2が互いに異なる値に設定されていれば閾値を柔軟に調整できるようになり設定の自由度を高めることができる。 In such a configuration, it is preferable that the short circuit determination threshold Vm1 and the overcurrent determination threshold Vm2 are set to mutually different values. Then short circuit detection and overcurrent detection can be separated. If the short-circuit determination threshold value Vm1 and the overcurrent determination threshold value Vm2 are set to different values, the threshold values can be flexibly adjusted, and the degree of freedom in setting can be increased.
 (他の実施形態)
 前述実施形態に限定されるものではなく、例えば、以下に示す変形又は拡張が可能である。パワー素子としてIGBT1、1a、1bを例示したが、これに限られるものではなくMOSFETでも良く、例えば炭化ケイ素(SiC)やシリコン(Si)を半導体材料として用いたパワー素子を適用できる。
(Other embodiments)
The present invention is not limited to the above-described embodiments, and for example, the following modifications or extensions are possible. Although IGBTs 1, 1a, and 1b have been exemplified as power elements, they are not limited to these, and MOSFETs may also be used. For example, power elements using silicon carbide (SiC) or silicon (Si) as a semiconductor material can be applied.
 図面中、1、1a、1bはパワー素子としてのIGBT、11は制御部、14はオフ駆動回路、MNはオフ駆動端子、20はソフト遮断回路、29はオフ保持駆動回路、18は第1電圧検出回路、27は第2電圧検出回路、34cはコンパレータ(短絡検出部)、34dは短絡検出部としてのコンパレータ、Vkは第1短絡過電流閾値、Vmは第2短絡過電流閾値、Vk1、Vm1は短絡判定閾値、Vk2、Vm2は過電流判定閾値を示す。 In the drawing, 1, 1a, 1b are IGBTs as power elements, 11 is a control section, 14 is an off drive circuit, MN is an off drive terminal, 20 is a soft cutoff circuit, 29 is an off hold drive circuit, and 18 is a first voltage. A detection circuit, 27 a second voltage detection circuit, 34c a comparator (short-circuit detection unit), 34d a comparator as a short-circuit detection unit, Vk a first short-circuit overcurrent threshold, Vm a second short-circuit overcurrent threshold, Vk1, Vm1 indicates a short circuit determination threshold, and Vk2 and Vm2 indicate overcurrent determination thresholds.
 本開示は、前述した実施形態に準拠して記述したが、当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。
 
While the present disclosure has been described in reference to the embodiments described above, it is understood that the present disclosure is not limited to such embodiments or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations including one, more, or less elements thereof, are within the scope and spirit of this disclosure.

Claims (11)

  1.  駆動信号(MIN)のオフ指令に基づいてパワー素子(1、1a、1b)のゲート電荷を引き抜くことでオフ駆動端子(MN)から通常オフ駆動するオフ駆動回路(14)と、
     前記オフ駆動回路によるオフ駆動時とは異なる速度によりゲート電荷を引き抜くことで前記パワー素子を遮断駆動端子からオフ駆動するソフト遮断回路(20)と、
     前記パワー素子のゲートとソースを前記オフ駆動回路よりも低インピーダンスに接続することで前記パワー素子のオフ状態を保持するオフ保持駆動回路(29)と、
     前記オフ駆動回路の前記オフ駆動端子にて前記パワー素子の制御電圧を監視する第1電圧検出回路(18)と
     前記ソフト遮断回路の前記遮断駆動端子にて前記パワー素子の制御電圧を監視する第2電圧検出回路(27)と、
     前記駆動信号と、前記第1電圧検出回路及び前記第2電圧検出回路による制御電圧の監視結果に基づいて制御内容を決定して制御する制御部(11)と、
     を備えるパワー素子駆動装置。
    an off-driving circuit (14) for normally off-driving from an off-driving terminal (MN) by extracting gate charges of the power elements (1, 1a, 1b) based on an off command of the driving signal (MIN);
    a soft cutoff circuit (20) for off-driving the power element from the cutoff drive terminal by extracting the gate charge at a speed different from that during the off-drive by the off-drive circuit;
    an OFF hold drive circuit (29) that holds the OFF state of the power element by connecting the gate and source of the power element to an impedance lower than that of the OFF drive circuit;
    a first voltage detection circuit (18) for monitoring the control voltage of the power element at the off drive terminal of the off drive circuit; and a second voltage detection circuit (18) for monitoring the control voltage of the power element at the cutoff drive terminal of the soft cutoff circuit a two-voltage detection circuit (27);
    a control unit (11) for determining and controlling contents of control based on the drive signal and monitoring results of the control voltage by the first voltage detection circuit and the second voltage detection circuit;
    A power element driving device comprising:
  2.  駆動対象となる前記パワー素子を一つとして駆動する請求項1記載のパワー素子駆動装置。 The power element driving device according to claim 1, wherein one power element to be driven is driven.
  3.  駆動対象となる前記パワー素子を複数並列接続して駆動する請求項1記載のパワー素子駆動装置。 The power element driving device according to claim 1, wherein a plurality of said power elements to be driven are connected in parallel and driven.
  4.  前記制御部は、前記パワー素子をオフ駆動しているときに前記オフ駆動端子(MN)及び前記遮断駆動端子(SCO)の両端子電圧が所定のオフ保持閾値まで低下した状態となった時に前記オフ保持駆動回路によりオフ状態を保持させるように制御する請求項1から3の何れか一項に記載のパワー素子駆動装置。 When the voltages of both terminals of the off-drive terminal (MN) and the cut-off drive terminal (SCO) drop to a predetermined off-holding threshold while the power element is off-driven, the control unit 4. The power element driving device according to any one of claims 1 to 3, wherein control is performed so that the off state is maintained by an off-hold driving circuit.
  5.  前記制御部は、前記パワー素子をオフ駆動しているときに前記オフ駆動端子(MN)及び前記遮断駆動端子(SCO)の何れか片方の電圧が所定のオフ保持閾値よりも高い状態が所定時間(T1)以上続いた場合にハーフオン検出し、ハーフオン検出したタイミングにて前記オフ保持駆動回路によりオフ状態を保持させるように制御する請求項1から3の何れか一項に記載のパワー素子駆動装置。 When the power element is off-driven, the control unit maintains a state in which the voltage of either one of the off-drive terminal (MN) and the cut-off drive terminal (SCO) is higher than a predetermined off-holding threshold for a predetermined time. 4. The power element driving device according to any one of claims 1 to 3, wherein half-on is detected when the state continues for more than (T1), and control is performed so that the off-state is maintained by the off-hold driving circuit at the timing when the half-on is detected. .
  6.  前記パワー素子に過電流又は短絡電流が流れたか否かを検出するために前記パワー素子の検出電流が所定の第1短絡過電流閾値(Vk)に達したかを検出する第1短絡過電流検出部(33)を備える請求項1から5の何れか一項に記載のパワー素子駆動装置。 A first short circuit overcurrent detection for detecting whether the detected current of the power element reaches a predetermined first short circuit overcurrent threshold (Vk) to detect whether an overcurrent or a short circuit current has flowed through the power element. 6. A power element driving device according to any one of claims 1 to 5, comprising a portion (33).
  7.  前記パワー素子のゲート電圧の検出電圧が所定の短絡過電流閾値(Vm)に達したかを検出する第2短絡過電流検出部(19a、28a)を備え、
     前記制御部は、前記パワー素子がオン駆動されているときに前記第1短絡過電流検出部により所定の第1短絡過電流閾値(Vk)に達したことが検出されると共に、前記第2短絡過電流検出部により前記オフ駆動端子(MN)及び前記遮断駆動端子(SCO)の何れか片方の電圧が所定の第2短絡過電流閾値(Vm)より高いと判定されたときに短絡又は過電流と判定する請求項6記載のパワー素子駆動装置。
    A second short-circuit overcurrent detection unit (19a, 28a) for detecting whether the detected voltage of the gate voltage of the power element has reached a predetermined short-circuit overcurrent threshold (Vm),
    The control unit detects that a predetermined first short-circuit overcurrent threshold (Vk) has been reached by the first short-circuit overcurrent detection unit when the power element is on-driven, and detects that the second short-circuit overcurrent threshold (Vk) has been reached. A short circuit or overcurrent is detected when the overcurrent detection unit determines that the voltage of either one of the off drive terminal (MN) and the cutoff drive terminal (SCO) is higher than a predetermined second short circuit overcurrent threshold (Vm). 7. The power element driving device according to claim 6, wherein the determination is as follows.
  8.  前記第1短絡過電流検出部は、所定の短絡判定閾値(Vk1)を用いて前記パワー素子の短絡を判定する短絡検出部(34c)と、所定の過電流判定閾値(Vk2)を用いて前記パワー素子に流れる電流が過電流か否か検出する過電流検出部(34d)と、を備え、
     前記所定の第1短絡過電流閾値(Vk)として、前記短絡判定閾値(Vk1)と前記過電流判定閾値(Vk2)とが互いに異なる値に設定されている請求項6又は7記載のパワー素子駆動装置。
    The first short-circuit overcurrent detection unit includes a short-circuit detection unit (34c) that determines short-circuiting of the power element using a predetermined short-circuit determination threshold value (Vk1), and a predetermined overcurrent determination threshold value (Vk2). an overcurrent detection unit (34d) that detects whether or not the current flowing through the power element is overcurrent,
    8. The power element drive according to claim 6 or 7, wherein the short circuit determination threshold (Vk1) and the overcurrent determination threshold (Vk2) are set to different values as the predetermined first short circuit overcurrent threshold (Vk). Device.
  9.  前記第2短絡過電流検出部は、所定の短絡判定閾値(Vm1)を用いて前記パワー素子の短絡を判定する短絡検出部(19c)と、所定の過電流判定閾値(Vm2)を用いて前記パワー素子に流れる電流が過電流か否か検出する過電流検出部(19d)と、を備え、
     前記所定の第2短絡過電流閾値(Vm)として、前記短絡判定閾値(Vm1)と前記過電流判定閾値(Vm2)とが互いに異なる値に設定されている請求項6又は7記載のパワー素子駆動装置。
    The second short-circuit overcurrent detection unit includes a short-circuit detection unit (19c) that determines short-circuiting of the power element using a predetermined short-circuit determination threshold value (Vm1), and a predetermined overcurrent determination threshold value (Vm2). an overcurrent detection unit (19d) that detects whether or not the current flowing through the power element is overcurrent,
    8. The power element drive according to claim 6 or 7, wherein the short-circuit determination threshold (Vm1) and the overcurrent determination threshold (Vm2) are set to different values as the predetermined second short-circuit overcurrent threshold (Vm). Device.
  10.  前記パワー素子のゲートと前記オフ駆動端子との間に抵抗(3)とダイオード(4)の並列接続回路(5)を設けた請求項1から9の何れか一項に記載のパワー素子駆動装置。 10. The power element driving device according to any one of claims 1 to 9, wherein a parallel connection circuit (5) of a resistor (3) and a diode (4) is provided between the gate of the power element and the off drive terminal. .
  11.  前記パワー素子のゲートと前記遮断駆動端子との間に抵抗(26)とダイオード(25)の並列接続回路(24)を設けた請求項1から10の何れか一項に記載のパワー素子駆動装置。
     
    11. A power element driving device according to any one of claims 1 to 10, wherein a parallel connection circuit (24) of a resistor (26) and a diode (25) is provided between the gate of the power element and the cut-off drive terminal. .
PCT/JP2022/008582 2021-03-16 2022-03-01 Power element drive device WO2022196342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-042450 2021-03-16
JP2021042450A JP7447849B2 (en) 2021-03-16 2021-03-16 Power element drive device

Publications (1)

Publication Number Publication Date
WO2022196342A1 true WO2022196342A1 (en) 2022-09-22

Family

ID=83321486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008582 WO2022196342A1 (en) 2021-03-16 2022-03-01 Power element drive device

Country Status (2)

Country Link
JP (1) JP7447849B2 (en)
WO (1) WO2022196342A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222724A (en) * 2011-04-13 2012-11-12 Denso Corp Load drive device
JP2013126270A (en) * 2011-12-13 2013-06-24 Denso Corp Drive circuit of switching element
JP2013240210A (en) * 2012-05-16 2013-11-28 Denso Corp Driver of driven switching element
JP2014082904A (en) * 2012-10-18 2014-05-08 Denso Corp Drive circuit for driving object switching element
JP2016111785A (en) * 2014-12-04 2016-06-20 株式会社デンソー Drive unit for power conversion circuit
JP2019097305A (en) * 2017-11-22 2019-06-20 三菱電機株式会社 Power semiconductor module and power conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222724A (en) * 2011-04-13 2012-11-12 Denso Corp Load drive device
JP2013126270A (en) * 2011-12-13 2013-06-24 Denso Corp Drive circuit of switching element
JP2013240210A (en) * 2012-05-16 2013-11-28 Denso Corp Driver of driven switching element
JP2014082904A (en) * 2012-10-18 2014-05-08 Denso Corp Drive circuit for driving object switching element
JP2016111785A (en) * 2014-12-04 2016-06-20 株式会社デンソー Drive unit for power conversion circuit
JP2019097305A (en) * 2017-11-22 2019-06-20 三菱電機株式会社 Power semiconductor module and power conversion device

Also Published As

Publication number Publication date
JP7447849B2 (en) 2024-03-12
JP2022142316A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2017057079A1 (en) Load driving device
US11095283B2 (en) Drive control apparatus for driving a switching element including a sense element
JP4619812B2 (en) Gate drive circuit
JP3799341B2 (en) Gate drive circuit and semiconductor device
KR101863014B1 (en) Short-circuit protection circuit for self-arc-extinguishing semiconductor element
US9467138B2 (en) Semiconductor apparatus
CN107852159B (en) Drive device
US20100141304A1 (en) Drive circuit for power element
JP7095388B2 (en) Drive device for totem pole circuit
US10771080B1 (en) System and method for mode control using an input of an analog-to-digital converter
JP2000312143A (en) Switching device
JP2017079534A (en) Gate control circuit
JP5880494B2 (en) Switching control circuit
CN116707499A (en) Driver system and method for driving power transistor to drive load
JP2000312433A (en) Switch device
JP6003819B2 (en) Transistor drive circuit
WO2022196342A1 (en) Power element drive device
WO2018008333A1 (en) Inverter driving device
EP3928403B1 (en) Turn off circuit for protection switch
KR102693541B1 (en) Short circuit protection for power switch
JP7234868B2 (en) Semiconductor device drive circuit
US9219474B2 (en) Driver circuit for switching element
US11658652B2 (en) Semiconductor device
WO2022181479A1 (en) Semiconductor device
WO2013054465A1 (en) Drive circuit for insulated-gate type device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771096

Country of ref document: EP

Kind code of ref document: A1