WO2022196271A1 - 培養装置 - Google Patents

培養装置 Download PDF

Info

Publication number
WO2022196271A1
WO2022196271A1 PCT/JP2022/007451 JP2022007451W WO2022196271A1 WO 2022196271 A1 WO2022196271 A1 WO 2022196271A1 JP 2022007451 W JP2022007451 W JP 2022007451W WO 2022196271 A1 WO2022196271 A1 WO 2022196271A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
support
culture tank
heat insulating
tank
Prior art date
Application number
PCT/JP2022/007451
Other languages
English (en)
French (fr)
Inventor
後藤稔
塩原のぞみ
木下翔平
高野文朋
土肥瑞穂
塩崎諭
町田賢司
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US18/281,707 priority Critical patent/US20240166979A1/en
Priority to JP2023506906A priority patent/JPWO2022196271A1/ja
Priority to CN202280021385.2A priority patent/CN117043314A/zh
Publication of WO2022196271A1 publication Critical patent/WO2022196271A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/20Heat exchange systems, e.g. heat jackets or outer envelopes the heat transfer medium being a gas

Definitions

  • the present invention relates to a culture device for culturing microalgae.
  • the culture apparatus disclosed in Japanese Patent Application Publication No. 2014-516550 stores a culture solution in a culturing tank consisting of a V-shaped trough having an upper opening.
  • microalgae are cultured in a culture solution while irradiating light in the depth direction of the culture solution mainly from the top opening of the culture tank.
  • a foamed heat insulating material is adhered to the side wall of the culture tank in order to improve the heat insulation inside the culture tank.
  • the culture solution in the culture tank can be prevented from being affected by changes in the external environment (for example, the outside temperature or the intensity of solar radiation).
  • the culture solution can be easily maintained at a temperature suitable for culturing microalgae. This makes it possible to successfully culture microalgae.
  • a culture apparatus includes a culture tank having translucent side walls.
  • microalgae are cultured while irradiating the microalgae with light from a direction intersecting the depth direction of the culture medium through the side wall.
  • this type of culture apparatus for example, compared to a culture apparatus that irradiates light in the depth direction of a culture solution through an upper opening, it is possible to easily increase the ratio of the light-receiving area to the culture volume of microalgae. For this reason, it is possible to distribute the light energy in which excess or deficiency is suppressed to more microalgae in the culture tank. For this reason, it becomes possible to culture microalgae satisfactorily.
  • An object of the present invention is to solve the above-mentioned problems.
  • One aspect of the present invention has a culture tank with a side wall formed of a material having translucency, and microalgae are cultured in a culture solution contained in the culture tank and irradiated with light through the side wall.
  • the culture apparatus includes a translucent heat insulating section covering the side wall, wherein the heat insulating section forms an air layer that heats the inside of the culture vessel.
  • the side walls of the translucent culture tank are covered with a translucent heat insulating part. Therefore, the inside of the culture tank is insulated by the air layer formed by the heat insulation part.
  • the interior of the culture vessel can be well irradiated with light through the adiabatic portion, the air layer, and the side wall, all of which are translucent. As a result, it is possible to increase the heat insulation in the culture tank while increasing the ratio of the light receiving area to the culture volume of the microalgae. For this reason, it becomes possible to culture microalgae satisfactorily.
  • FIG. 1 is a schematic front view of a culture apparatus according to an embodiment of the invention.
  • FIG. 2 is a schematic front view for explaining a heat insulating part and a support mechanism of the culture apparatus of FIG. 1;
  • FIG. 3 is a schematic side view of the culture apparatus illustrating a state in which the air layer is thinned by the support mechanism of FIG. 2;
  • FIG. 4 is a schematic side view of the culture apparatus illustrating a state in which the air layer is thickened by the support mechanism of FIG. 2;
  • 5 is a schematic front view of a culture tank of the culture apparatus of FIG. 1.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 5.
  • FIG. 7 is a schematic perspective view of a reservoir of the culture apparatus of FIG. 1.
  • FIG. FIG. 8 is a schematic side view of a culture apparatus explaining a heat insulation part according to a modification.
  • the culture apparatus 10 supplies light and supply gas to microalgae in a culture solution L2 containing water.
  • Feed gases include, for example, carbon dioxide gas or carbon dioxide-containing gases (eg, air).
  • the microalgae grow while performing photosynthesis. That is, the culture device 10 cultures microalgae.
  • the culture solution L2 contains nutrients (for example, nitrogen, phosphorus, and potassium) necessary for culturing microalgae.
  • the supply gas preferably contains carbon dioxide gas discharged from a factory or the like.
  • the microalgae that can be cultured by the culture device 10 are not particularly limited.
  • Chlorophyceae e.g., Chlamydomonas, Chlorella
  • Plasinophyceae e.g., Cryptophyceae
  • Cyanophyceae e.g., Spirulina
  • a particularly suitable example of microalgae cultured by the culture device 10 is "Honda DREAMO," deposited at the Patent Organism Depositary Center, National Institute of Technology and Evaluation (Room 120, 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture). strain” (acceptance date April 22, 2016, accession number FERM BP-22306).
  • the culture device 10 is installed in an environment in which microalgae can be irradiated with light having a wavelength (for example, 400 to 700 nm) necessary for the growth of microalgae.
  • a wavelength for example, 400 to 700 nm
  • Such an environment includes, for example, the outdoors where the microalgae can be irradiated with sunlight.
  • the culture device 10 may be installed in a room that can irradiate the microalgae with sunlight or artificial light, for example.
  • each component of the culture device 10 will be described as shown in FIG. 1, in the vertical direction when the culture device 10 is installed at an installation location where microalgae are cultured (directions of arrows X1 and X2 in FIG. 1). , a first horizontal direction (directions of arrows Y1 and Y2 in FIG. 1) and a second horizontal direction (directions of arrows Z1 and Z2 in FIG. 1) perpendicular to the first horizontal direction.
  • the first horizontal direction is the east-west direction and the second horizontal direction is the north-south direction.
  • the culture apparatus 10 includes a culture tank 12, a liquid storage tank 14, a heat insulator 16, a support mechanism 18 (FIGS. 2 to 4), and a temperature sensor 20 (FIGS. 3, 4). 4), a drive unit 22 (FIGS. 3 and 4), and a control unit 24 (FIGS. 3 and 4).
  • the culture tank 12 can contain microalgae and culture solution L2.
  • the culture tank 12 is made of a flexible and translucent material such as linear low-density polyethylene (LLDPE).
  • translucency here means being able to permeate the light of a wavelength required for the growth of microalgae.
  • the entire culture tank 12 is made of a translucent material. However, it is sufficient that at least the side surfaces (surfaces other than the bottom surface and the top surface) of the culture tank 12 are made of a translucent material.
  • a joint edge portion 26 is provided on the outer peripheral edge portion (side portion and bottom portion) of the culture tank 12 excluding the upper end.
  • the joint edge portion 26 is formed by joining the inner wall surfaces of the culture tank 12 together by, for example, welding.
  • an opening is provided at the upper end of the fermenter 12 where the joining edge 26 is not provided.
  • the welded joints are indicated by oblique lines.
  • the opening of the culture tank 12 may always be open toward the outside of the culture tank 12 .
  • the opening of the culture tank 12 may be configured to be openable and closable by an opening/closing part (not shown).
  • the opening becomes a communication port 28 that communicates the inside and the outside of the culture tank 12 .
  • exhaust gas can be discharged from the inside of the culture tank 12 to the outside.
  • exhaust gas can enter again from the outside of the culture tank 12 through the communication port 28 .
  • An example of the exhaust gas is, as will be described later, gas remaining from the supply gas supplied from the gas supply port 30 into the culture tank 12 that has not been consumed for photosynthesis of microalgae.
  • Another example of exhaust gas is oxygen gas generated by photosynthesis.
  • the opening of the culture tank 12 may be closed normally, for example.
  • the opening may be open only when accessing the interior of the fermenter 12, such as when harvesting microalgae from the interior of the fermenter 12.
  • the upper end of the culture tank 12 has a communication port (not shown) that communicates the inside and the outside of the culture tank 12 separately from the opening. is provided.
  • exhaust gas can enter and exit the culture tank 12 through the communication port.
  • the culture tank 12 may not have an opening at the upper end. That is, the joint edge portion 26 may be provided on the entire outer peripheral edge portion including the upper end of the culture tank 12 . Also in this case, the upper end portion of the culture tank 12 is provided with a communication port (not shown) for communicating the inside and the outside of the culture tank 12 . As a result, exhaust gas can enter and exit the culture tank 12 through the communication port.
  • the culture tank 12 is provided with, for example, a culture solution supply port and a microalgae recovery port, although neither is shown. may It becomes possible to supply the culture fluid L2 and the microalgae to the culture tank 12 through the culture fluid supply port. Microalgae cultured in the culture tank 12 can be recovered through the microalgae recovery port.
  • the culture tank 12 is provided with a partition portion 32 , a joint portion 34 , a guide portion 36 , a circulation portion 38 and a gas supply port 30 .
  • the culture tank 12 has two partitions 32, six joints 34, three guides 36, six circulation units 38, and three gas supply ports 30. is provided.
  • the number of partitions 32 , joints 34 , guides 36 , circulation parts 38 , and gas supply ports 30 provided in culture tank 12 is not particularly limited.
  • Each of the partition part 32 , the joint part 34 , the guide part 36 and the circulation part 38 extends vertically (vertically) inside the culture tank 12 .
  • the extending direction of each of the partition portion 32, the joint portion 34, the guide portion 36, and the circulation portion 38 is not limited to running parallel to the vertical direction. good.
  • the interior of the culture tank 12 is partitioned into three regions 40 aligned in the first horizontal direction (arrows Y1, Y2) by the two partitions 32.
  • the regions 40 in the first horizontal direction are arranged in this way, the length of the culture tank 12 in the first horizontal direction is longer than the length in the second horizontal direction (directions of arrows Z1 and Z2).
  • the partition part 32 is formed by joining the inner wall surfaces of the culture tank 12 together, for example, by welding.
  • Each region 40 in the culture tank 12 partitioned by the partition part 32 is further partitioned by a joint part 34 formed by joining the inner wall surfaces of the culture tank 12 together by, for example, welding.
  • each region 40 has one guide portion 36 and two circulation portions 38 arranged side by side on both sides of the guide portion 36 in the horizontal direction.
  • both end portions in the extending direction of the partition portion 32 and the joint portion 34 are arc-shaped.
  • each of the guide part 36 and the circulation part 38 has a substantially cylindrical cross-sectional shape when viewed in the vertical direction.
  • the inner diameter of each circulation section 38 as viewed in the vertical direction is at least twice the inner diameter of the guide section 36 as viewed in the vertical direction, but is not particularly limited to this.
  • the lengths of the joints 34 and the partitions 32 in the vertical direction are shorter than the length of the culture tank 12 in the vertical direction.
  • the vertical length of the partition portion 32 is equal to or greater than the vertical length of the joint portion 34 .
  • a guide portion entrance 42 is formed to allow the guide portion 36 and the circulation portion 38 to communicate with each other.
  • a guide part outlet 44 is formed to allow the guide part 36 and the circulation part 38 to communicate with each other.
  • the gas supply port 30 is provided at the bottom of the culture tank 12.
  • the gas supply port 30 is arranged under the guide part 36 provided in each area 40 in the culture tank 12 .
  • the gas supply port 30 is connected to a gas supply mechanism 50 via a gas supply pipe 48 provided with a supply fan 46 . Therefore, the supply gas supplied from the gas supply mechanism 50 is supplied to the interior of the culture tank 12 through the gas supply pipe 48 and the gas supply port 30 by driving the supply fan 46 .
  • the gas supply port 30 is provided under the guide portion 36. Therefore, as shown in FIG. 5, the supply gas supplied into the culture tank 12 flows upward through the guide portion 36 . As a result, in each region 40 in the culture tank 12, the culture medium L2 in the circulation section 38 flows into the guide section 36 from the guide section inlet 42, and the culture medium L2 in the guide section 36 flows from the guide section outlet 44. A culture fluid flow F is generated which flows out into the circulation section 38 .
  • the storage tank 14 is made of a flexible and translucent material such as linear low-density polyethylene (LLDPE) like the culture tank 12, for example.
  • the liquid storage tank 14 may be made of a translucent material such as acrylic resin, polycarbonate resin, or glass.
  • the entire liquid storage tank 14 is made of a translucent material. However, it is sufficient that at least the side surfaces (surfaces other than the bottom surface and the top surface) of the liquid storage tank 14 are made of a translucent material.
  • the liquid storage tank 14 stores therein a storage liquid L1 supplied from a storage liquid supply mechanism (not shown).
  • the stored liquid L1 is a translucent liquid such as water.
  • the internal dimensions of the liquid storage tank 14 are set larger than the external dimensions of the culture tank 12 . Therefore, it is possible to install the culture tank 12 inside the liquid storage tank 14 .
  • the upper end opening (communication port 28 ) of the culture tank 12 is fixed above the liquid surface of the stored liquid L ⁇ b>1 in the liquid storage tank 14 . This prevents the storage liquid L1 from being mixed with the culture liquid L2 in the culture tank 12 . Also, the culture solution L2 is prevented from being mixed with the storage solution L1 in the storage tank 14 .
  • liquid storage tank 14 may have various shapes that can accommodate the culture tank 12 while storing the storage liquid L1 therein.
  • the liquid storage tank 14 may be, for example, bag-shaped.
  • the culture device 10 may not include the liquid storage tank 14 .
  • the heat insulating part 16 is made of a translucent material.
  • the heat insulation part 16 covers the side wall of the culture tank 12 .
  • the heat insulation part 16 forms an air layer 52 that heats the inside of the culture tank 12 .
  • the heat insulating portion 16 is formed in a sheet shape from, for example, translucent and flexible resin.
  • the heat insulating portion 16 is supported by a support mechanism 18 (FIGS. 2 to 4) as described later.
  • the heat insulation part 16 covers the side wall of the culture tank 12 from the outside of the side wall of the liquid storage tank 14 .
  • the heat insulation part 16 and the side wall of the liquid storage tank 14 are arranged with a predetermined gap therebetween. Therefore, an air layer 52 is formed between the heat insulating portion 16 and the sidewall of the liquid storage tank 14 .
  • the heat insulating section 16 has a first heat insulating sheet 56 and a set of second heat insulating sheets 58.
  • the first insulating sheet 56 has a first portion 60, a second portion 62 and a third portion 64.
  • the first portion 60 and the second portion 62 face each other across the culture tank 12 installed at the installation location in the second horizontal direction (directions of arrows Z1 and Z2). That is, the first portion 60 covers the side wall of the culture tank 12 on the arrow Z1 side.
  • the second portion 62 covers the side wall of the culture tank 12 on the arrow Z2 side.
  • the third portion 64 covers the upper surface of the culture tank 12 (communication port 28).
  • the upper end of the first portion 60 and the upper end of the second portion 62 are continuous via the third portion 64 .
  • the first heat insulating sheet 56 is strip-shaped with the first horizontal direction (directions of arrows Y1 and Y2) as the width direction.
  • a portion of the first heat insulating sheet 56 extending in the direction of the arrow Z1 from the first portion 60 may be fixed to the ground by a sheet fixing portion 66, for example.
  • a portion of the first heat insulating sheet 56 extending in the direction of arrow Z2 from the second portion 62 may be wound around a take-up roller 68, for example.
  • one of the set of second heat insulating sheets 58 covers the side wall of the culture tank 12 installed at the installation location in the arrow Y1 direction.
  • the other of the pair of second heat insulating sheets 58 covers the side wall of the culture tank 12 in the arrow Y2 direction.
  • Each of the second heat insulating sheets 58 is provided so as to be stretchable in the second horizontal direction.
  • the material itself forming the second insulating sheet 58 may have elasticity in the second horizontal direction.
  • the second heat insulating sheet 58 may be provided with a stretchable structure such as a bellows structure or gathers (none of which is shown) so as to be stretchable in the second horizontal direction.
  • the support mechanism 18 supports the heat insulation section 16 so that the first portion 60 and the second portion 62 can be relatively moved toward or separated from each other.
  • the support mechanism 18 includes two first struts 70 and two second struts 72 .
  • Each of these first struts 70 and second struts 72 extends vertically from the bottom end of the culture tank 12 installed at the installation location to above the top end of the culture tank 12 .
  • the number of each of the first struts 70 and the second struts 72 is not particularly limited, and may be one or three or more.
  • the two first struts 70 are arranged side by side with a gap along the width direction of the first portion 60 (directions of arrows Y1 and Y2).
  • One of the two first struts 70 is arranged at one end in the width direction of the first portion 60 (the end in the arrow Y1 direction).
  • the other of the two first struts 70 is arranged at the other end in the width direction of the first portion 60 (the end in the arrow Y2 direction).
  • the two second struts 72 are arranged side by side at intervals along the width direction of the second portion 62 (directions of arrows Y1 and Y2).
  • One of the two second struts 72 is arranged at one end in the width direction of the second portion 62 (the end in the arrow Y1 direction).
  • the other of the two second struts 72 is arranged at the other end in the width direction of the second portion 62 (the end in the arrow Y2 direction). Note that one of the two second support columns 72 arranged at the end in the arrow Y1 direction is not shown in the drawing.
  • the first support 70 and the second support 72 face each other with a gap in the directions of arrows Z1 and Z2.
  • telescopic support parts 74 extending in the directions of arrows Z1 and Z2 are provided.
  • One end portion (the end portion in the direction of arrow Z1) of the telescopic support portion 74 in the extending direction is fixed to the first support 70 .
  • the other end (the end in the direction of arrow Z2) of the telescopic support portion 74 is fixed to the second column 72 .
  • the telescopic support portion 74 has, for example, a nested structure in which an inner shaft portion 78 is inserted inside the outer tubular portion 76 . Thereby, the expansion/contraction support portion 74 is configured to be expandable/contractible in the directions of arrows Z1 and Z2.
  • first support 70 and the second support 72 at the ends in the direction of the arrow Y1 are similar to the first support 70 and the second support 72 at the ends in the direction of the arrow Y2. They face each other with an interval in the Z1 and Z2 directions. Also, between the upper end of the first support 70 and the upper end of the second support 72 at the end of the arrow Y1 direction, the upper end of the first support 70 at the end of the arrow Y1 and the second support 72 As with the upper end portion, a telescopic support portion 74 is provided so as to be telescopic in the directions of arrows Z1 and Z2.
  • the first pillar 70 and the second pillar 72 are driven by the drive section 22 .
  • the first support 70 and the second support 72 can move toward or away from each other along the second horizontal direction (directions of arrows Z1 and Z2).
  • the culture tank 12 and the liquid storage tank 14 are interposed between the first support 70 and the second support 72 .
  • the drive unit 22 moves the first support 70 and the second support 72 toward or away from each other, the expansion/contraction support 74 provided therebetween also expands and contracts.
  • both the first support column 70 and the second support column 72 are movable in the second horizontal direction by the drive section 22 in this embodiment.
  • the configuration for changing the horizontal distance between the first support 70 and the second support 72 is not limited to the above configuration.
  • either one of the first support 70 and the second support 72 may be fixed to the ground or the like. In this case, only the other of the first support 70 and the second support 72 can be moved in the second horizontal direction by the drive section 22 .
  • the drive unit 22 a known configuration that can move the first support column 70 and the second support column 72 as described above can be adopted, so detailed description thereof will be omitted.
  • a first lower end support portion 82 is provided at the lower end portion of the first column 70 with a fixing portion 80 interposed therebetween.
  • a first upper end support portion 84 is provided at the upper end portion of the first column 70 .
  • At least one of the first lower end support portion 82 and the first upper end support portion 84 connects the parallel first columns 70 by extending along the directions of the arrows Y1 and Y2. 2 to 4, both the first lower end support portion 82 and the first upper end support portion 84 extend along the directions of the arrows Y1 and Y2 to connect the parallel first columns 70 to each other. ing.
  • each of the first lower end support portion 82 and the first upper end support portion 84 is rotatable with respect to the first column 70 with the directions of the arrows Y1 and Y2 as axial directions.
  • the first lower end support portion 82 is fixed to the first column 70 via the fixing portion 80 .
  • the first lower end support portion 82 is arranged further away from the liquid storage tank 14 (closer to the end in the arrow Z1 direction) than the first upper end support portion 84 is.
  • a second lower end support portion 86 is provided at the lower end portion of the second support 72 via a fixing portion 80 .
  • a second upper end support portion 88 is provided at the upper end portion of the second support column 72 .
  • At least one of the second lower end support portion 86 and the second upper end support portion 88 connects the parallel second columns 72 by extending along the directions of the arrows Y1 and Y2. 2 to 4, both the second lower end support portion 86 and the second upper end support portion 88 extend along the directions of the arrows Y1 and Y2 to connect the parallel second columns 72 to each other. ing.
  • each of the second lower end support portion 86 and the second upper end support portion 88 is rotatable with respect to the second column 72 with the directions of the arrows Y1 and Y2 as axial directions.
  • the second lower end support portion 86 is fixed to the second column 72 via the fixing portion 80 . As a result, it is arranged further away from the liquid storage tank 14 than the second upper end support portion 88 (closer to the end in the arrow Z2 direction).
  • the first heat insulating sheet 56 is supported by the support mechanism 18. Thereby, the first portion 60 extends from the first lower end support portion 82 toward the first upper end support portion 84 . Also, the second portion 62 extends from the second upper end support portion 88 toward the second lower end support portion 86 . Additionally, a third portion 64 extends in a second horizontal direction from the first top support 84 toward the second top support 88 .
  • the first heat insulating sheet 56 extends from the sheet fixing portion 66 along the second horizontal direction, and then touches the lower portion of the first lower end support portion 82 to extend in the vertical direction. is changed to Also, the extending direction of the first heat insulating sheet 56 is changed to the second horizontal direction by coming into contact with the upper portion of the first upper end support portion 84 . The extending direction of the first heat insulating sheet 56 is changed to the vertical direction by coming into contact with the upper portion of the second upper end support portion 88 . Further, the extending direction of the first heat insulating sheet 56 is changed to the second horizontal direction by coming into contact with the lower portion of the second lower end support portion 86 .
  • the drive unit 22 causes the first support 70 and the second support 72 to approach each other, as shown in FIG. This allows the first portion 60 and the second portion 62 to approach each other. As a result, the air layer 52 formed between the first heat insulating sheet 56 and the sidewall of the culture tank 12 can be made thinner.
  • the first part 60 and the second part 62 can be separated by separating the first support 70 and the second support 72 by the drive unit 22 .
  • the thickness of the air layer 52 formed between the first heat insulating sheet 56 and the sidewall of the culture tank 12 can be increased.
  • each of the first lower end support portion 82, the first upper end support portion 84, the second lower end support portion 86, and the second upper end support portion 88 is rotatable while being in contact with the first heat insulating sheet 56. .
  • the frictional force generated between the first heat insulating sheet 56 and the support mechanism 18 can be reduced, and the first portion 60 and the second portion 62 can be smoothly moved toward or away from each other.
  • the length of the third portion 64 may be excessive with respect to the distance between the first support 70 and the second support 72. be.
  • the take-up roller 68 is rotated in the direction to take up the first heat insulating sheet 56 .
  • the surplus portion can be eliminated, and the first heat insulating sheet 56 can be satisfactorily fitted along the side and top surfaces of the culture tank 12 .
  • the length of the third portion 64 may be insufficient for the distance between the first support 70 and the second support 72.
  • the take-up roller 68 is rotated in the direction in which the first heat insulating sheet 56 is drawn out. As a result, the shortfall can be eliminated, and the first heat insulating sheet 56 can be satisfactorily fitted along the side and top surfaces of the culture tank 12 .
  • the first insulating sheet 56 formed of a stretchable material is placed between the first struts 70 and the second post. 2 You may expand-contract according to the space
  • One of the pair of second heat insulating sheets 58 is supported by the extensible support portion 74 at the end in the arrow Y1 direction to cover the side wall of the culture tank 12 (liquid storage tank 14) at the end in the arrow Y1 direction.
  • the other of the pair of second heat insulating sheets 58 covers the side wall of the end of the culture tank 12 (liquid storage tank 14) in the direction of the arrow Y2 by being supported by the extensible support portion 74 at the end in the direction of the arrow Y2.
  • each of these second heat insulating sheets 58 expands and contracts in the second horizontal direction according to the expansion and contraction of the expansion and contraction support portion 74 . As a result, even when the first support 70 and the second support 72 are moved toward or away from each other as described above, both side walls of the culture tank 12 in the first horizontal direction are kept covered with the second heat insulating sheet 58 . be.
  • the heat insulating section 16 forms a closed space 90 that accommodates the culture tank 12 inside.
  • a pipe insertion opening 92 is provided in the lower portion of the heat insulating portion 16 .
  • a gas supply pipe 48 for connecting the gas supply port 30 of the culture tank 12 and the gas supply mechanism 50 provided outside the closed space 90 is inserted through the pipe insertion port 92 .
  • a gas discharge port 94 is provided at the top of the heat insulating portion 16 .
  • the gas exhaust port 94 enables exhaust gas exhausted from the culture tank 12 to the closed space 90 through the communication port 28 to be exhausted from the closed space 90 .
  • One end of a gas recovery pipe 98 is connected to the gas discharge port 94 .
  • An exhaust fan 96 is provided in the gas recovery pipe 98 .
  • a gas recovery pipe 98 recovers the exhaust gas discharged from the gas discharge port 94 by driving the discharge fan 96 .
  • the other end of the gas recovery pipe 98 is connected to the gas supply pipe 48 upstream of the supply fan 46 . Therefore, the exhaust gas recovered by the gas recovery pipe 98 can be supplied to the culture solution L2 in the culture tank 12 via the gas supply pipe 48 and the gas supply port 30 .
  • the temperature sensor 20 is provided inside the closed space 90, for example.
  • a temperature sensor 20 measures the temperature of the culture medium L2 in the culture tank 12 .
  • the temperature sensor 20 may be of a contact type that measures the temperature by coming into contact with the culture medium L2 in the culture tank 12 .
  • the temperature sensor 20 may be of a non-contact type that measures the temperature without contacting the culture solution L2. The measured value of the temperature sensor 20 is sent to the controller 24 .
  • the control unit 24 is configured, for example, as a microcomputer including a CPU (not shown).
  • the control unit 24 performs various processes and controls related to the culture apparatus 10 by executing predetermined calculations according to a control program.
  • Control unit 24 controls drive unit 22 so that the distance between first portion 60 and second portion 62 (thickness of air layer 52 ) is the length associated with the measurement value of temperature sensor 20 .
  • the air layer 52 formed between the first heat insulating sheet 56 and the sidewall of the culture tank 12 is thinned. This reduces the heat insulation of the air layer 52 .
  • the smaller the measured value of the temperature sensor 20 is the more the first portion 60 and the second portion 62 are spaced apart. This thickens the air layer 52 formed between the first heat insulating sheet 56 and the side wall of the culture tank 12 . This increases the heat insulation of the air layer 52 .
  • control unit 24 may adjust the thickness of the air layer 52 based on, for example, the intensity of sunlight detected by a sunlight sensor (not shown). The control unit 24 may adjust the thickness of the air layer 52 based on a preset calendar or the like.
  • the culture device 10 is basically configured as described above. An example of a microalgae culture method using the culture device 10 will be described.
  • the culture tank 12 is placed in the reservoir liquid L1 of the liquid reservoir 14, as shown in FIGS.
  • a culture medium L2 supplied from a culture medium supply mechanism (not shown) is accommodated inside the culture tank 12 .
  • the culture fluid L2 is supplied into the culture tank 12 in the reservoir fluid L1.
  • the supply gas supplied from the gas supply mechanism 50 is supplied to each region in the culture tank 12 through the gas supply pipe 48 and the gas supply port 30 by driving the supply fan 46 . 40 is fed toward the guide portion 36 .
  • a culture fluid flow F can be generated in each region 40 of the culture tank 12 . Therefore, microalgae can be circulated in the culture tank 12 together with the culture solution L2. This allows good dispersion of the microalgae.
  • the supply gas, light, or the like can be effectively supplied to the entire microalgae.
  • the stored liquid L1 has translucency.
  • the heat insulating portion 16 is made of a translucent material.
  • Side walls of each of the culture tank 12 and the liquid storage tank 14 are made of a translucent material. Therefore, it is possible to irradiate the microalgae with light such as sunlight through the heat insulating part 16 and the side walls of the culture tank 12 and the liquid storage tank 14 .
  • a large light-receiving area can be secured with respect to the culture volume of microalgae compared to culturing in a so-called open pond (raceway pond).
  • open pond raceway pond
  • Microalgae perform photosynthesis using carbon dioxide in the supplied gas, light, and water in the culture solution L2. As a result, the cells grow and proliferate while accumulating starch and the like in the cells.
  • the surplus supply gas not used for photosynthesis is discharged from the culture tank 12 through the communication port 28 into the closed space 90 and becomes exhaust gas. That is, the exhaust gas contains carbon dioxide gas. Therefore, by surrounding the culture tank 12 with the heat insulation part 16 to form the closed space 90, the carbon dioxide gas concentration around the culture tank 12 can be increased. This makes it easier to re-supply the carbon dioxide gas in the closed space 90 through the communication port 28 to the culture solution L2. Therefore, it is possible to improve the utilization efficiency of the carbon dioxide gas supplied from the gas supply mechanism 50 .
  • the exhaust gas discharged from the communication port 28 exceeds the volume of the closed space 90, the exhaust gas is discharged from the closed space 90.
  • the exhaust gas discharged into the closed space 90 through the communication port 28 is driven by the discharge fan 96 and collected in the gas recovery pipe 98 through the gas discharge port 94 provided in the upper portion of the heat insulating portion 16. be.
  • the exhaust gas recovered in the gas recovery pipe 98 is supplied again to the culture solution L2 in the culture tank 12 through the gas supply pipe 48 and the gas supply port 30 while the supply fan 46 is driven. This also makes it possible to improve the utilization efficiency of carbon dioxide gas.
  • the temperature sensor 20 measures the temperature of the culture solution L2 in the culture tank 12 .
  • the drive unit 22 is controlled by the control unit 24 based on the measured value of the temperature sensor 20 .
  • the air layer 52 formed between the side wall of the culture tank 12 and the first heat insulating sheet 56 is adjusted to have a thickness suitable for culturing microalgae.
  • the thickness of the air layer 52 may be adjusted based on the sunlight intensity and the calendar so that the inside of the culture tank 12 is maintained in an environment suitable for culturing microalgae.
  • the drive unit 22 is not limited to being controlled by the control unit 24.
  • the drive unit 22 may be configured so that the thickness of the air layer 52 can be adjusted by the operator's operation.
  • the support mechanism 18 is not limited to being driven by the drive section 22 .
  • the support mechanism 18 may allow the operator to manually adjust the distance between the first support 70 and the second support 72 to adjust the thickness of the air layer 52 .
  • the culture tank 12 is arranged in the reservoir liquid L1 stored in the reservoir tank 14. Therefore, the culture solution L2 and the microalgae in the culture tank 12 are prevented from being affected by changes in the external environment of the culture apparatus 10 (for example, the outside temperature, the intensity of solar radiation, the amount of solar radiation, or the duration of solar radiation). From these, it becomes easy to maintain the temperature of the culture solution L2 in the culture tank 12 at a temperature suitable for culturing microalgae.
  • changes in the external environment of the culture apparatus 10 for example, the outside temperature, the intensity of solar radiation, the amount of solar radiation, or the duration of solar radiation.
  • the microalgae By culturing the microalgae as described above, the microalgae are sufficiently grown in the culture tank 12. After that, for example, the microalgae are collected from the inside of the culture tank 12 together with the culture solution L2 through the communication port 28 exposed from the heat insulation part 16 . After that, microalgae can be obtained by separating the microalgae from the culture solution L2.
  • the side walls of the translucent culture tank 12 are covered with the translucent heat insulating portion 16 .
  • the inside of the culture tank 12 is insulated by the air layer 52 formed by the heat insulating portion 16 .
  • Each of the heat insulating portion 16, the air layer 52, and the side wall has translucency. Therefore, light can be well irradiated into the culture tank 12 through the heat insulating portion 16, the air layer 52, and the side walls.
  • the heat insulating portion 16 is in the form of a flexible sheet, and the air layer 52 is formed between the side wall and the heat insulating portion 16 that are spaced apart from each other. . According to this, with a simple configuration in which the flexible sheet-shaped heat insulating part 16 is spaced from the side wall of the culture tank 12, the inside of the culture tank 12 can be can increase the thermal insulation of the
  • the heat insulation section 16 covers the side wall of the culture tank 12 and the top surface of the culture tank 12 . According to this, the air layer 52 is also formed on the upper surface of the culture tank 12 by the heat insulation part 16, and the heat insulation property in the culture tank 12 can be improved.
  • the culture tank 12 of the culture apparatus 10 is provided with a gas supply port 30 capable of supplying a supply gas to the culture solution L2 in the culture tank 12.
  • a communication port 28 is provided for communicating between the inside and the outside of the cell 12.
  • the heat insulating part 16 forms a closed space 90 that accommodates the culture tank 12 inside.
  • a gas discharge port 94 is provided to allow the exhaust gas discharged to the closed space 90 via the closed space 90 to be discharged from the closed space 90 .
  • a gas discharge port 94 is also provided in the heat insulating portion 16 . Therefore, it is possible to prevent the heat insulating portion 16 from being damaged by the pressure of the exhaust gas discharged into the closed space 90 . Carbon dioxide gas is heavier than air and tends to collect below the closed space 90 . Therefore, by providing the gas outlet 94 in the upper portion of the heat insulating portion 16, the concentration of carbon dioxide gas in the closed space 90 can be relatively easily increased.
  • the gas supply port 30 is connected to the gas supply mechanism 50 via the gas supply pipe 48, and the exhaust gas discharged from the gas discharge port 94 is supplied to the gas discharge port 94.
  • One end of the gas recovery pipe 98 to be recovered is connected, the other end of the gas recovery pipe 98 is connected to the gas supply pipe 48, and the exhaust gas recovered in the gas recovery pipe 98 is supplied to the gas supply pipe 48 and the gas supply pipe
  • the culture solution L2 in the culture tank 12 is supplied through the port 30 .
  • the culture apparatus 10 includes the support mechanism 18 that supports the heat insulating section 16.
  • the heat insulating section 16 is composed of the first portion 60 and the second portion 60 that face each other across the culture tank 12 installed at the installation location in the horizontal direction. Having two portions 62, the support mechanism 18 supports the insulating portion 16 such that the first portion 60 and the second portion 62 can be moved toward or away from each other.
  • the distance between the first portion 60 and the second portion 62 can be adjusted by the support mechanism 18 .
  • the thickness of the air layer 52 formed between the heat insulation part 16 and the side wall of the culture tank 12 can be adjusted. Therefore, for example, the thickness of the air layer 52 can be adjusted according to the temperature of the culture solution L2 in the culture tank 12 and the environment (external environment) of the installation location where the culture tank 12 is installed. This makes it easier to maintain the environment inside the culture tank 12 suitable for culturing microalgae.
  • the support mechanism 18 has the first support 70 and the second support 72, and each of the first support 70 and the second support 72 is a culture tank installed at the installation location. 12 to the upper end of the culture tank 12 along the vertical direction.
  • a first upper end support portion 84 is provided at the portion
  • a second lower end support portion 86 is provided at the lower end portion of the second column 72
  • a second upper end support portion 88 is provided at the upper end portion of the second column 72.
  • the first support 70 and the second support 72 can be relatively moved toward or away from each other along the horizontal direction with the culture tank 12 interposed therebetween.
  • the second portion 62 extends from the second upper end support 88 toward the second lower end support 86, the first portion 60 and the second portion
  • the two portions 62 are continuous via a third portion 64 that horizontally extends from the first upper end support portion 84 toward the second upper end support portion 88 .
  • the distance between the first part 60 and the second part 62 can be easily adjusted by moving the first support 70 and the second support 72 closer to or separating from each other.
  • the thickness of the air layer 52 formed between the heat insulation part 16 and the side wall of the culture tank 12 can be easily adjusted.
  • a plurality of the first struts 70 are provided in parallel along the width direction of the first portion 60, and at least one of the first lower end support portion 82 and the first upper end support portion 84 is provided.
  • One extends along the width direction of the first portion 60 and connects the parallel first struts 70, and the second struts 72 are arranged side by side along the width direction of the second portion 62.
  • At least one of the second lower end support portion 86 and the second upper end support portion 88 is provided and extends along the width direction of the second portion 62 to connect the parallel second columns 72 to each other.
  • the first heat insulating sheet 56 of the heat insulating portion 16 is well supported by at least one of the first lower end supporting portion 82 and the first upper end supporting portion 84 extending along the width direction of the first portion 60. be able to.
  • at least one of the second lower end support portion 86 and the second upper end support portion 88 extending along the width direction of the second portion 62 can support the first heat insulating sheet 56 of the heat insulating portion 16 well. can.
  • the parallel first columns 70 are connected to each other by at least one of the first lower end support portion 82 and the first upper end support portion 84, deformation of the support mechanism 18 and the like are suppressed.
  • the parallel second support columns 72 are connected to each other by at least one of the second lower end support portion 86 and the second upper end support portion 88, thereby suppressing deformation of the support mechanism 18 and the like. That is, it becomes possible to form the support mechanism 18 firmly. Therefore, it is possible to maintain the state in which the heat insulating portion 16 is supported by the support mechanism 18 in a favorable manner.
  • the temperature sensor 20 that measures the temperature of the culture medium L2 in the culture tank 12, and the drive unit that drives the first portion 60 and the second portion 62 in the direction of approaching or separating from each other. 22 , and a control unit 24 that controls the driving unit 22 so that the distance between the first portion 60 and the second portion 62 is adjusted according to the measurement value of the temperature sensor 20 .
  • the distance between the first portion 60 and the second portion 62 can be automatically adjusted by the control section 24 based on the measurement result of the temperature sensor 20 . Therefore, it becomes easier to maintain the environment inside the culture tank 12 in an environment suitable for culturing microalgae.
  • the heat insulating portion 16 is in the form of a flexible sheet, and the air layer 52 is formed between the side wall and the heat insulating portion 16 that are spaced apart.
  • the culture device 10 may include a heat insulation section 100 shown in FIG. 8 instead of the heat insulation section 16 shown in FIGS.
  • the heat insulating portion 100 in FIG. 8 is, for example, airgel having heat insulating properties and permeability, such as silica airgel.
  • the heat insulation part 100 is arranged along the side wall of the culture tank 12 . According to this, an air layer 102 that insulates the interior of the culture tank 12 is formed within the pores of the airgel.
  • the heat insulating portion 100 is made of airgel, the interior of the culture vessel 12 can be well irradiated with light through the heat insulating portion 100, the air layer 102, and the side walls. Therefore, it is possible to increase the heat insulation in the culture tank 12 while increasing the ratio of the light receiving area to the culture volume of the microalgae. This makes it possible to culture microalgae satisfactorily.
  • the heat insulating property in the culture tank 12 can be improved by a simple configuration in which the heat insulation part 100 is arranged along the side wall of the culture tank 12 .
  • airgel is relatively lightweight, even if the heat insulating part 100 falls over the culture tank 12 and the heat insulating part 100 collides with the culture tank 12, damage to the culture tank 12 can be avoided. .
  • the guide part 36 and the circulation part 38 extending along the vertical direction when the culture tank 12 is installed at the installation location are provided side by side in the horizontal direction.
  • the guide portion 36 and the circulation portion 38 communicate with each other through a guide portion inlet 42 provided in the lower portion in the vertical direction and a guide portion outlet 44 provided in the upper portion in the vertical direction.
  • the bottom of the culture tank 12 is provided with a gas supply port 30 that enables gas to be supplied to the guide portion 36 from bottom to top.
  • the culture solution L2 in the circulation portion 38 flows into the guide portion 36 from the guide portion inlet 42, and the culture solution L2 in the guide portion 36 flows into the guide portion.
  • a culture fluid flow F is generated that flows out from the outlet 44 into the circulation section 38 .
  • the culture fluid flow F can be generated in the culture tank 12 with a simple configuration in which the gas necessary for culturing microalgae is supplied from the gas supply port 30 and circulated through the guide portion 36 . Moreover, there is no need to provide and drive a special configuration for generating the culture medium flow F, such as a water pump. Therefore, it becomes possible to satisfactorily culture microalgae with a simple configuration while suppressing an increase in energy consumption.
  • the configuration of the culture tank 12 is not particularly limited.
  • the culture liquid L2 in the culture tank 12 may be circulated by generating a culture solution flow by a water pump (not shown).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

培養装置(10)は、側壁が透光性を有する材料から形成される培養槽(12)を備え、培養槽(12)に収容され且つ側壁を介して光が照射される培養液(L2)中で微細藻を培養する。培養装置(10)は、側壁を覆う透光性の断熱部(16)を備える。断熱部(16)は、培養槽(12)の内部を断熱する空気層(52)を形成する。

Description

培養装置
 本発明は、微細藻を培養する培養装置に関する。
 例えば、特表2014-516550号公報に開示される培養装置が知られている。この培養装置は、上面開口を有するV型トラフからなる培養槽に培養液を貯留する。この培養装置では、主に、培養槽の上面開口から培養液の深さ方向に光を照射しつつ、培養液中で微細藻を培養する。この培養装置では、培養槽内の断熱性を高めるべく、培養槽の側壁に発泡断熱材を接着している。これにより、培養槽内の培養液が、外部環境(例えば、外気温又は日射強度)の変化の影響を受けることを抑制できる。その結果、培養液を微細藻の培養に適した温度に維持し易くすることができる。これにより、微細藻を良好に培養することが可能になる。
 ところで、透光性の側壁を有する培養槽を備える培養装置が提案されている。この培養装置では、上記の側壁を介して培養液の深さ方向に交差する方向から微細藻に光を照射しつつ微細藻を培養する。この種の培養装置では、例えば、上面開口を介して培養液の深さ方向に光を照射する培養装置に比して、微細藻の培養容積に対する受光面積の割合を容易に増やすことができる。このため、培養槽内のより多くの微細藻に対して過不足が抑制された光エネルギーを分配できる。このため、微細藻を良好に培養することが可能になる。
 側壁を介して培養槽内に光を照射する培養装置において、培養槽内の断熱性を向上させるためには、側壁に発泡断熱材を接着することが考えられる。しかしながら、側壁に発砲断熱材を接着すると、発泡断熱材が側壁を介した光の照射を妨げる。このため、微細藻の培養容積に対する受光面積の割合を増大させつつ、培養槽内の断熱性を高めることは困難であった。
 本発明は、上述した課題を解決することを目的とする。
 本発明の一態様は、側壁が透光性を有する材料から形成された培養槽を有し、該培養槽に収容され且つ前記側壁を介して光が照射される培養液中で微細藻を培養する培養装置であって、前記側壁を覆う透光性の断熱部を備え、前記断熱部は、前記培養槽の内部を断熱する空気層を形成する培養装置である。
 この培養装置では、透光性の培養槽の側壁が、透光性の断熱部に覆われている。このため、断熱部により形成される空気層により培養槽の内部が断熱される。この場合、何れも透光性を有する、断熱部と、空気層と、側壁とを介して培養槽の内部に光を良好に照射することができる。その結果、微細藻の培養容積に対する受光面積の割合を増大させつつ、培養槽内の断熱性を高めることができる。このため、微細藻を良好に培養することが可能となる。
図1は、本発明の実施形態に係る培養装置の概略正面図である。 図2は、図1の培養装置の断熱部及び支持機構を説明する概略正面図である。 図3は、図2の支持機構により空気層を薄くした状態を説明する培養装置の概略側面図である。 図4は、図2の支持機構により空気層を厚くした状態を説明する培養装置の概略側面図である。 図5は、図1の培養装置の培養槽の概略正面図である。 図6は、図5のVI-VI線矢視断面図である。 図7は、図1の培養装置の貯液槽の概略斜視図である。 図8は、変形例に係る断熱部を説明する培養装置の概略側面図である。
 以下の図において、同一又は同様の機能及び効果を奏する構成要素には同一の参照符号を付し、繰り返しの説明を省略する場合がある。
 図1に示す本実施形態に係る培養装置10は、水を含む培養液L2中の微細藻に、光と、供給ガスを供給する。供給ガスとしては、例えば、二酸化炭素ガス又は二酸化炭素含有ガス(例えば、空気)が挙げられる。これにより、培養装置10では、微細藻が光合成を行いながら増殖する。つまり、培養装置10は、微細藻を培養する。なお、培養液L2は水の他に、微細藻の培養に必要な栄養分(例えば、窒素、リン、カリウム)を含む。供給ガスは、工場等から排出される二酸化炭素ガスを含むことが好ましい。
 培養装置10により培養可能な微細藻は特に限定されない。培養した微細藻を用いて、例えば、エタノール等のバイオ燃料を製造する場合には、緑藻綱(例えば、クラミドモナス、クロレラ)、プラシノ藻綱、クリプト藻綱、藍藻綱(例えば、スピルリナ)に分類される微細藻類を培養装置10により培養することが好ましい。培養装置10により培養する微細藻の特に好適な例としては、独立行政法人製品評価技術基盤機構特許生物寄託センター(千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託した、「HondaDREAMO株」(受託日2016年4月22日、受託番号FERM BP-22306)が挙げられる。
 培養装置10は、微細藻の成長に必要な波長(例えば、400~700nm)の光を微細藻に照射可能な環境に設置される。このような環境としては、例えば、太陽光を微細藻に照射可能な屋外が挙げられる。しかしながら、培養装置10は、例えば、太陽光又は人工光を微細藻に照射可能な室内に設置されてもよい。
 以下では、培養装置10の各構成要素の向きについて、図1に示すように、微細藻の培養を行う設置箇所に培養装置10を設置した場合の鉛直方向(図1の矢印X1、X2方向)と、第1水平方向(図1の矢印Y1、Y2方向)と、第1水平方向に直交する第2水平方向(図1の矢印Z1、Z2方向)とを基準として説明する。なお、特に制限されないが、第1水平方向は東西方向であり、第2水平方向は南北方向であることが好ましい。
 図1~図4に示すように、培養装置10は、培養槽12と、貯液槽14と、断熱部16と、支持機構18(図2~図4)と、温度センサ20(図3、図4)と、駆動部22(図3、図4)と、制御部24(図3、図4)と、を備える。図5に示すように、培養槽12は、微細藻及び培養液L2を収容可能である。培養槽12は、例えば、直鎖状低密度ポリエチレン(LLDPE)のような可撓性及び透光性を有する材料から形成される。なお、ここでの透光性とは、微細藻の成長に必要な波長の光を透過可能であることをいう。本実施形態では、培養槽12の全体が透光性を有する材料から形成される。しかしながら、培養槽12は、少なくとも側面(底面及び上面を除く面)が透光性を有する材料から形成されていればよい。
 また、本実施形態では、培養槽12の上端を除く外周縁部(側部及び底部)に接合縁部26が設けられている。接合縁部26は、培養槽12の内壁面同士を、例えば、溶着により接合して形成される。接合縁部26が設けられていない培養槽12の上端には、該培養槽12の内部へのアクセスを可能とする開口部が設けられている。なお、図5では、説明の便宜上、溶着による接合箇所を斜線により示している。
 培養槽12の開口部は、培養槽12の外部に向かって常に開放されていてもよい。培養槽12の開口部は、不図示の開閉部によって開閉可能に構成されてもよい。開口部を開放した状態で微細藻の培養を行う場合、開口部は培養槽12の内部と外部とを連通させる連通口28となる。この連通口28を介して培養槽12の内部から外部に排出ガスを排出することが可能となる。また、連通口28を介して培養槽12の外部から内部に再び排出ガスが入り込むことも可能となる。排出ガスの一例としては、後述するように、ガス供給口30から培養槽12内に供給された供給ガスのうち、微細藻の光合成に消費されなかった残部のガスが挙げられる。排出ガスの他の例としては、光合成で発生した酸素ガスが挙げられる。
 一方、培養槽12の開口部を開閉可能とする場合、開口部は、例えば、普段は閉鎖されていてもよい。開口部は、培養槽12の内部から微細藻を回収するときのように、培養槽12の内部にアクセスするときのみ開放されてもよい。このように、開口部を閉鎖した状態で微細藻の培養を行う場合、培養槽12の上端部には、開口部とは別に、培養槽12の内部と外部とを連通させる不図示の連通口が設けられる。これによって、開口部を閉塞した状態でも、培養槽12に連通口を介して排出ガスが出入りすることが可能となっている。
 さらに、培養槽12は、上端に開口部が設けられていなくてもよい。すなわち、接合縁部26が、培養槽12の上端を含む外周縁部の全体に設けられていてもよい。この場合も、培養槽12の上端部には、培養槽12の内部と外部とを連通させる不図示の連通口が設けられる。これによって、培養槽12に連通口を介して排出ガスが出入りすることが可能となっている。このように培養槽12の外周縁部の全体に接合縁部26が設けられる場合、何れも不図示ではあるが、培養槽12には、例えば、培養液供給口、微細藻回収口が設けられてもよい。培養液供給口を介して培養槽12に培養液L2及び微細藻を供給することが可能になる。培養槽12内で培養した微細藻を、微細藻回収口を介して回収することが可能になる。
 培養槽12には、仕切部32と、接合部34と、ガイド部36と、循環部38と、ガス供給口30とが設けられている。本実施形態では、培養槽12に、2個の仕切部32と、6個の接合部34と、3個のガイド部36と、6個の循環部38と、3個のガス供給口30とが設けられている。しかしながら、培養槽12に設けられる、仕切部32、接合部34、ガイド部36、循環部38、ガス供給口30の各々の個数は特に限定されない。
 仕切部32、接合部34、ガイド部36、循環部38の各々は、培養槽12の内部を鉛直方向(上下方向)に沿って延在する。なお、仕切部32、接合部34、ガイド部36、循環部38の各々の延在方向は、鉛直方向に平行に沿うことには限定されず、鉛直方向に対して傾斜しつつ沿っていてもよい。
 本実施形態では、2個の仕切部32によって、培養槽12の内部が第1水平方向(矢印Y1、Y2)に並ぶ3個の領域40に区画されている。このように領域40が第1水平方向に並ぶことで、培養槽12は、第1水平方向の長さが、第2水平方向(矢印Z1、Z2方向)の長さよりも長くなっている。
 仕切部32は、培養槽12の内壁面同士を、例えば、溶着により接合して形成される。仕切部32によって区画された培養槽12内の各領域40は、培養槽12の内壁面同士を、例えば、溶着により接合して形成された接合部34によりさらに区切られている。これによって、各領域40には、1個のガイド部36と、該ガイド部36の水平方向の両側に並んで配置された2個の循環部38とを有する。なお、例えば、応力集中を抑制するべく、仕切部32及び接合部34の延在方向の両端部の各々は、円弧状であることが好ましい。
 図6に示すように、培養槽12に培養液L2が収容された場合、ガイド部36及び循環部38の各々は、鉛直方向視の断面形状が略円筒状となる。本実施形態では、鉛直方向視における各循環部38の内径は、鉛直方向視におけるガイド部36の内径の2倍以上であるが、特にこれには限定されない。
 図5に示すように、接合部34及び仕切部32の鉛直方向(延在方向)の長さは、培養槽12の鉛直方向の長さより短い。また、仕切部32の鉛直方向の長さは、接合部34の鉛直方向の長さ以上である。培養槽12内の接合部34よりも下部には、ガイド部36と循環部38とを連通させるガイド部入口42が形成される。また、培養槽12内の接合部34よりも上部には、ガイド部36と循環部38とを連通させるガイド部出口44が形成される。
 ガス供給口30は、培養槽12の底部に設けられている。ガス供給口30は、培養槽12内の各領域40に設けられたガイド部36の下に配置される。図1に示すように、ガス供給口30は、供給ファン46が設けられたガス供給配管48を介してガス供給機構50に接続されている。このため、ガス供給機構50から供給される供給ガスは、供給ファン46の駆動によって、ガス供給配管48及びガス供給口30を介して培養槽12の内部に供給される。
 上記の通り、ガス供給口30がガイド部36の下に設けられている。このため、図5に示すように、培養槽12内に供給された供給ガスは、ガイド部36を上方に向かって流通する。これにより、培養槽12内の各領域40では、循環部38内の培養液L2がガイド部入口42からガイド部36内に流入し、且つガイド部36内の培養液L2がガイド部出口44から循環部38内に流出する培養液流Fが生じる。
 図7に示すように、貯液槽14は、例えば、培養槽12と同様に直鎖状低密度ポリエチレン(LLDPE)のような可撓性及び透光性を有する材料から形成される。貯液槽14は、アクリル樹脂、ポリカーボネート樹脂、ガラスのような透光性を有する材料から形成されてもよい。本実施形態では、貯液槽14の全体が透光性を有する材料から形成される。しかしながら、貯液槽14は、少なくとも側面(底面及び上面を除く面)が透光性を有する材料から形成されていればよい。
 貯液槽14は、不図示の貯留液供給機構から供給される貯留液L1を内部に貯留する。貯留液L1は、水のような透光性を有する液体である。図1~図4に示すように、貯液槽14の内寸は、培養槽12の外寸よりも大きく設定される。このため、貯液槽14の内部に培養槽12を設置することが可能である。貯液槽14の内部では、例えば、培養槽12の上端の開口部(連通口28)が貯液槽14内の貯留液L1の液面よりも上側に固定される。これにより、貯留液L1が培養槽12内の培養液L2に混入することが回避されている。また、培養液L2が貯液槽14内の貯留液L1に混入することが回避されている。
 なお、図1~図4、図7等には、上端が開口した筐体状の貯液槽14を記載する。しかしながら、貯液槽14は、内部に貯留液L1を貯留するとともに、培養槽12を収容することが可能な種々の形状を採用することができる。貯液槽14は、例えば、袋状としてもよい。また、培養装置10は、貯液槽14を備えていなくてもよい。
 図1~図4に示すように、断熱部16は、透光性を有する材料から形成される。断熱部16は、培養槽12の側壁を覆う。これにより、断熱部16は、培養槽12の内部を断熱する空気層52を形成する。本実施形態では、断熱部16は、例えば、透光性及び可撓性を有する樹脂からシート状に形成されている。断熱部16は、後述するように支持機構18(図2~図4)に支持されている。断熱部16は、貯液槽14の側壁の外部から培養槽12の側壁を覆う。断熱部16と貯液槽14の側壁とは所定の間隔を置いて配置される。このため、断熱部16と貯液槽14の側壁との間に空気層52が形成される。
 図2~図4に示すように、断熱部16は、第1断熱シート56と、一組の第2断熱シート58とを有する。図3及び図4に示すように、第1断熱シート56は、第1部分60と、第2部分62と、第3部分64とを有する。第1部分60と第2部分62とは、設置箇所に設置された培養槽12を第2水平方向(矢印Z1、Z2方向)に挟んで向かい合う。つまり、第1部分60は、培養槽12の矢印Z1側の側壁を覆う。第2部分62は、培養槽12の矢印Z2側の側壁を覆う。第3部分64は、培養槽12の上面(連通口28)を覆う。第1部分60の上端と、第2部分62との上端とは第3部分64を介して連続する。このため、第1断熱シート56は、第1水平方向(矢印Y1、Y2方向)を幅方向とする帯状である。なお、第1断熱シート56のうち、第1部分60よりも矢印Z1方向に延びる部分は、シート固定部66により例えば地面に固定されていてもよい。第1断熱シート56のうち、第2部分62よりも矢印Z2方向に延びる部分は、例えば、巻取りローラ68に巻回されていてもよい。
 図2に示すように、一組の第2断熱シート58の一方は、設置箇所に設置された培養槽12の矢印Y1方向の側壁を覆う。一組の第2断熱シート58の他方は、培養槽12の矢印Y2方向の側壁を覆う。第2断熱シート58の各々は、第2水平方向に伸縮可能に設けられている。第2断熱シート58を形成する材料自体が第2水平方向に伸縮性を有してもよい。また、第2断熱シート58に、例えば、蛇腹構造、ギャザー(何れも不図示)のような伸縮可能な構造が設けられることによって第2水平方向に伸縮可能であってもよい。
 支持機構18は、第1部分60及び第2部分62が相対的に接近又は離間可能となるように断熱部16を支持する。具体的には、支持機構18は、2本の第1支柱70と、2本の第2支柱72とを備える。これらの第1支柱70及び第2支柱72の各々は、設置箇所に設置された培養槽12の下端から、該培養槽12の上端よりも上部まで鉛直方向に沿って延在する。なお、第1支柱70及び第2支柱72の各々の本数は特に限定されず、1本でもよいし、3本以上であってもよい。
 図2に示すように、2本の第1支柱70は、第1部分60の幅方向(矢印Y1、Y2方向)に沿って間隔を置いて並列する。2本の第1支柱70の一方は、第1部分60の幅方向の一端部(矢印Y1方向の端部)に配置される。2本の第1支柱70の他方は、第1部分60の幅方向の他端部(矢印Y2方向の端部)に配置される。
 2本の第2支柱72(図3、図4)は、第2部分62の幅方向(矢印Y1、Y2方向)に沿って間隔を置いて並列する。2本の第2支柱72の一方は、第2部分62の幅方向一端部(矢印Y1方向の端部)に配置される。2本の第2支柱72の他方は、第2部分62の幅方向の他端部(矢印Y2方向の端部)に配置される。なお、2本の第2支柱72のうち、矢印Y1方向の端部に配置される一方は図には現れていない。
 図3及び図4に示すように、矢印Y2方向の端部では、第1支柱70と第2支柱72とが、矢印Z1、Z2方向に間隔を置いて向かい合う。これらの第1支柱70の上端部と、第2支柱72の上端部との間には、矢印Z1、Z2方向に延在する伸縮支持部74が設けられている。伸縮支持部74の延在方向の一端部(矢印Z1方向の端部)は、第1支柱70に固定されている。伸縮支持部74の延在方向の他端部(矢印Z2方向の端部)は、第2支柱72に固定されている。伸縮支持部74は、例えば、外側筒部76の内側に、内側軸部78が内挿された入れ子構造を有する。これにより、伸縮支持部74は、矢印Z1、Z2方向に伸縮可能に構成されている。
 なお、具体的な図示は省略するが、矢印Y1方向端部における第1支柱70と第2支柱72も、上記の矢印Y2方向端部における第1支柱70と第2支柱72と同様に、矢印Z1、Z2方向に間隔を置いて向かい合う。また、矢印Y1方向端部における第1支柱70の上端部と、第2支柱72の上端部との間にも、矢印Y1方向端部における第1支柱70の上端部と、第2支柱72の上端部との間と同様に、伸縮支持部74が矢印Z1、Z2方向に伸縮可能に設けられている。
 第1支柱70と第2支柱72とは、駆動部22によって駆動される。これにより、第1支柱70と第2支柱72とは、第2水平方向(矢印Z1、Z2方向)に沿って相対的に接近又は離間することが可能となっている。このとき、第1支柱70と第2支柱72との間には、培養槽12及び貯液槽14が介在している。駆動部22により、第1支柱70及び第2支柱72を接近又は離間させると、これらの間に設けられた伸縮支持部74も合わせて伸縮する。
 なお、本実施形態では、第1支柱70及び第2支柱72の両方が駆動部22により第2水平方向に移動可能である。しかしながら、第1支柱70と第2支柱72との水平方向の距離を変化させる構成は、上記の構成に制限されない。例えば、第1支柱70及び第2支柱72の何れか一方は、地面等に固定されてもよい。この場合、第1支柱70及び第2支柱72の他方のみが駆動部22により第2水平方向に移動可能である。駆動部22としては、第1支柱70及び第2支柱72を上記のように移動させることが可能な公知の構成を採用することができるため、その詳細な説明は省略する。
 図2~図4に示すように、第1支柱70の下端部には、固定部80を介して第1下端支持部82が設けられる。第1支柱70の上端部には、第1上端支持部84が設けられる。第1下端支持部82及び第1上端支持部84の少なくとも一方は、矢印Y1、Y2方向に沿って延在することで、並列する第1支柱70同士を接続する。なお、図2~図4では、第1下端支持部82及び第1上端支持部84の両方が、矢印Y1、Y2方向に沿って延在することで、並列する第1支柱70同士を接続している。
 また、第1下端支持部82及び第1上端支持部84の各々は、第1支柱70に対して、矢印Y1、Y2方向を軸方向として回転可能となっている。第1下端支持部82は、固定部80を介して第1支柱70に固定される。これにより、第1下端支持部82は、第1上端支持部84よりも貯液槽14から離間して(矢印Z1方向端部の近く)に配置されている。
 第2支柱72の下端部には、固定部80を介して第2下端支持部86が設けられる。第2支柱72の上端部には、第2上端支持部88が設けられている。第2下端支持部86及び第2上端支持部88の少なくとも一方は、矢印Y1、Y2方向に沿って延在することで、並列する第2支柱72同士を接続する。なお、図2~図4では、第2下端支持部86及び第2上端支持部88の両方が、矢印Y1、Y2方向に沿って延在することで、並列する第2支柱72同士を接続している。
 また、第2下端支持部86及び第2上端支持部88の各々は、第2支柱72に対して、矢印Y1、Y2方向を軸方向として回転可能となっている。第2下端支持部86は、固定部80を介して第2支柱72に固定される。これにより、第2上端支持部88よりも貯液槽14から離間して(矢印Z2方向端部の近く)に配置されている。
 第1断熱シート56は、支持機構18に支持される。これにより、第1部分60が、第1下端支持部82から第1上端支持部84に向かって延在する。また、第2部分62が、第2上端支持部88から第2下端支持部86に向かって延在する。さらに、第3部分64が、第1上端支持部84から第2上端支持部88に向かって第2水平方向に延在する。
 本実施形態では、第1断熱シート56は、シート固定部66から、第2水平方向に沿って延在した後、第1下端支持部82の下部に接触することで延在方向が鉛直方向へと変更される。また、第1断熱シート56は、第1上端支持部84の上部に接触することで延在方向が第2水平方向へと変更される。第1断熱シート56は、第2上端支持部88の上部に接触することで延在方向が鉛直方向へと変更される。さらに、第1断熱シート56は、第2下端支持部86の下部に接触することで延在方向が第2水平方向へと変更される。
 上記のように第1断熱シート56を支持機構18に支持した状態で、図3に示す通り、駆動部22により第1支柱70と第2支柱72とを接近させる。これにより、第1部分60と第2部分62とを接近させることができる。その結果、第1断熱シート56と培養槽12の側壁との間に形成される空気層52を薄くすることができる。
 一方、図4に示す通り、駆動部22により第1支柱70と第2支柱72とを離間させることで、第1部分60と第2部分62とを離間させることができる。その結果、第1断熱シート56と培養槽12の側壁との間に形成される空気層52を厚くすることができる。
 なお、第1下端支持部82と、第1上端支持部84と、第2下端支持部86と、第2上端支持部88との各々は、第1断熱シート56に接触しつつ回転可能である。これによって、第1断熱シート56と支持機構18との間に生じる摩擦力を低減して、第1部分60及び第2部分62を円滑に接近又は離間させることができる。
 また、上記のようにして第1部分60及び第2部分62を接近させることで、第1支柱70と第2支柱72との間隔に対して第3部分64の長さが余剰となることがある。この場合、例えば、第1断熱シート56を巻き取る方向に巻取りローラ68を回転させる。これによって、余剰分を解消して、培養槽12の側面及び上面に第1断熱シート56を良好に沿わせることが可能になる。
 一方、上記のようにして第1部分60及び第2部分62を離間させることで、第1支柱70と第2支柱72との間隔に対して第3部分64の長さが不足することがある。この場合、例えば、第1断熱シート56を繰り出す方向に巻取りローラ68を回転させる。これによって、不足分を解消して、培養槽12の側面及び上面に第1断熱シート56を良好に沿わせることが可能になる。
 上記のように巻取りローラ68を回転させることに代えて、又は巻取りローラ68を回転させることと併せて、伸縮性を有する材料から形成した第1断熱シート56を、第1支柱70と第2支柱72との間隔に応じて伸縮させてもよい。これによっても、第1部分60と第2部分62とを接近又は離間させることに伴って生じる第1部分60、第2部分62及び第3部分64の長さの過不足を解消することができる。
 一組の第2断熱シート58の一方は、矢印Y1方向の端部の伸縮支持部74に支持されることで、培養槽12(貯液槽14)の矢印Y1方向の端部の側壁を覆う。一組の第2断熱シート58の他方は、矢印Y2方向の端部の伸縮支持部74に支持されることで、培養槽12(貯液槽14)の矢印Y2方向の端部の側壁を覆う。また、これらの第2断熱シート58の各々は、伸縮支持部74の伸縮に応じて、第2水平方向に伸縮する。これによって、第1支柱70及び第2支柱72を上記のように接近又は離間させても、培養槽12の第1水平方向の両端の側壁が第2断熱シート58により覆われた状態で維持される。
 断熱部16は、上記のように支持機構18に支持されることで、培養槽12を内側に収容する閉空間90を形成する。図1に示すように、断熱部16の下部には、配管挿通口92が設けられている。配管挿通口92には、培養槽12のガス供給口30と、閉空間90の外側に設けられたガス供給機構50とを接続するためのガス供給配管48が挿通される。
 また、断熱部16の上部には、ガス排出口94が設けられている。ガス排出口94は、培養槽12から連通口28を介して閉空間90に排出された排出ガスを該閉空間90から排出可能とする。ガス排出口94には、ガス回収配管98の一端部が接続されている。ガス回収配管98には、排出ファン96が設けられている。ガス回収配管98は、排出ファン96の駆動によって、ガス排出口94から排出された排出ガスを回収する。ガス回収配管98の他端部は、ガス供給配管48の供給ファン46よりも上流部に接続されている。このため、ガス回収配管98に回収された排出ガスは、ガス供給配管48及びガス供給口30を介して培養槽12内の培養液L2に供給されることが可能である。
 図3及び図4に示すように、温度センサ20は、例えば、閉空間90の内部に設けられる。温度センサ20は、培養槽12内の培養液L2の温度を測定する。なお、温度センサ20は、培養槽12内の培養液L2に接触して温度を測定する接触式であってもよい。温度センサ20は、培養液L2に非接触で温度を測定する非接触式であってもよい。温度センサ20の測定値は、制御部24に送られる。
 制御部24は、例えば、不図示のCPU等を備えるマイクロコンピュータとして構成される。制御部24は、制御プログラムに従って所定の演算を実行することで、培養装置10に関する種々の処理及び制御を行う。制御部24は、第1部分60と第2部分62との距離(空気層52の厚さ)が、温度センサ20の測定値に対応付けられた長さとなるように駆動部22を制御する。
 制御部24は、例えば、温度センサ20の測定値が高いほど、第1部分60と第2部分62とを接近させる。これによって、第1断熱シート56と培養槽12の側壁との間に形成される空気層52を薄くする。これによって、空気層52の断熱性を小さくする。これによって、培養槽12内の培養液L2の熱を閉空間90の外側に逃がし易くする。一方、温度センサ20の測定値が小さいほど、第1部分60と第2部分62とを離間させる。これによって、第1断熱シート56と培養槽12の側壁との間に形成される空気層52を厚くする。これによって、空気層52の断熱性を大きくする。これによって、培養槽12内の培養液L2の熱が閉空間90の外側に伝わることを抑制する。また、制御部24は、温度センサ20の測定値の他に、例えば、不図示の太陽光センサによって検出した太陽光強度に基づいて、空気層52の厚さを調整してもよい。制御部24は、予め設定された暦等に基づいて、空気層52の厚さを調整してもよい。
 本実施形態に係る培養装置10は基本的には上記のように構成される。培養装置10を用いた微細藻の培養方法の一例について説明する。培養装置10により微細藻を培養する場合、先ず、図1~図4に示すように、培養槽12を貯液槽14の貯留液L1内に配置する。この状態で、不図示の培養液供給機構から供給される培養液L2を培養槽12の内部に収容する。貯留液L1内で培養槽12内に培養液L2を供給する。これによって、培養液L2の液圧によって培養槽12が破損することを抑制できる。
 次に、図1及び図5に示すように、ガス供給機構50から供給される供給ガスを、供給ファン46の駆動によってガス供給配管48及びガス供給口30を介して培養槽12内の各領域40のガイド部36に向かって供給する。これによって、図5に示すように、培養槽12の各領域40に培養液流Fを生じさせることができる。このため、培養槽12内で培養液L2とともに微細藻を循環させることができる。これによって、微細藻を良好に分散させることができる。これによって、微細藻の全体に供給ガス又は光等を効果的に供給することができる。
 貯留液L1が透光性を有する。断熱部16が透光性を有する材料から形成されている。培養槽12及び貯液槽14の各々の側壁が透光性を有する材料から形成されている。このため、断熱部16と、培養槽12及び貯液槽14の側壁とを介して微細藻に太陽光等の光を照射することができる。これにより、いわゆるオープンポンド(レースウェイポンド)での培養に比して、微細藻の培養容積に対して大きな受光面積を確保することができる。その結果、培養槽12内のより多くの微細藻に対して過不足が抑制された光エネルギーを分配することが可能になる。
 微細藻は、供給ガス中の二酸化炭素と、光と、培養液L2中の水とを利用して光合成を行う。これによって、細胞内に澱粉等を蓄積しながら成長し、増殖する。この光合成に利用されなかった供給ガスの余剰分は、培養槽12から連通口28を介して閉空間90に排出されて排出ガスとなる。つまり、排出ガスには二酸化炭素ガスが含まれる。このため、培養槽12を断熱部16で囲んで閉空間90を形成することで、培養槽12の周囲の二酸化炭素ガス濃度を高めることができる。これにより、閉空間90内の二酸化炭素ガスを、連通口28を介して再び培養液L2に供給し易くなる。このため、ガス供給機構50から供給される二酸化炭素ガスの利用効率を向上させることが可能になる。
 連通口28から排出された排出ガスが閉空間90の容積を超えると、閉空間90から排出ガスが排出される。この場合、連通口28を介して閉空間90に排出された排出ガスは、排出ファン96の駆動によって、断熱部16の上部に設けられたガス排出口94を介してガス回収配管98に回収される。ガス回収配管98に回収された排出ガスは、供給ファン46の駆動下に、ガス供給配管48及びガス供給口30を介して培養槽12内の培養液L2に再び供給される。これによっても、二酸化炭素ガスの利用効率を向上させることが可能になる。
 また、上記のようにして培養槽12内で微細藻を培養する場合、温度センサ20により、培養槽12内の培養液L2の温度を測定する。また、温度センサ20の測定値に基づき、制御部24によって駆動部22が制御される。これにより、培養槽12の側壁と第1断熱シート56との間に形成される空気層52が、微細藻の培養に適した厚さとなるように調整される。例えば、太陽光強度、暦に基づいて、培養槽12内が微細藻の培養に適した環境に維持されるように、空気層52の厚さが調整されてもよい。
 なお、駆動部22は、制御部24に制御されることに制限されない。駆動部22は、作業者の操作により空気層52の厚さを調整可能としてもよい。また、支持機構18は、駆動部22によって駆動されることに制限されない。支持機構18は、作業者が手動で第1支柱70と第2支柱72との距離を調整することにより、空気層52の厚さを調整可能としてもよい。
 上記の通り、培養槽12は、貯液槽14に貯留された貯留液L1内に配設されている。このため、培養槽12内の培養液L2及び微細藻が、培養装置10の外部環境(例えば、外気温、日射強度、日射量又は日射時間)の変化の影響を受けることが抑制される。これらから、培養槽12内の培養液L2の温度を、微細藻の培養に適した温度に維持することが容易になる。
 上記のようにして微細藻を培養することにより、培養槽12内で十分に微細藻を増殖させる。その後、例えば、断熱部16から露出させた連通口28を介して培養槽12の内部から培養液L2とともに微細藻を回収する。その後、微細藻と培養液L2とを分離することで微細藻を得ることができる。
 以上から、本実施形態に係る培養装置10では、透光性の培養槽12の側壁が、透光性の断熱部16に覆われる。この断熱部16により形成される空気層52により培養槽12の内部が断熱される。断熱部16と、空気層52と、側壁との各々が何れも透光性を有する。このため、断熱部16と、空気層52と、側壁とを介して培養槽12の内部に光を良好に照射することができる。その結果、微細藻の培養容積に対する受光面積の割合を増大させつつ、培養槽12内の断熱性を高めることができる。これにより、微細藻を良好に培養することが可能となる。
 上記の実施形態に係る培養装置10では、断熱部16は、可撓性を有するシート状であり、空気層52は、間隔を置いて配置された側壁と断熱部16との間に形成される。これによれば、可撓性を有するシート状の断熱部16を培養槽12の側壁と間隔を置いて配置する簡単な構成により、微細藻への光の照射を妨げることなく、培養槽12内の断熱性を高めることができる。
 上記の実施形態に係る培養装置10では、断熱部16は、培養槽12の側壁と、培養槽12の上面と、を覆う。これによれば、断熱部16により培養槽12の上面にも空気層52を形成して、培養槽12内の断熱性を高めることができる。
 上記の実施形態に係る培養装置10の培養槽12には、培養槽12内の培養液L2に供給ガスを供給可能とするガス供給口30が設けられ、培養槽12の上面には、培養槽12の内部と外部とを連通させる連通口28が設けられ、断熱部16は、培養槽12を内側に収容する閉空間90を形成し、断熱部16の上部には、培養槽12から連通口28を介して閉空間90に排出された排出ガスを該閉空間90から排出可能とするガス排出口94が設けられる。
 このように断熱部16により閉空間90を形成することで、培養槽12内の断熱性を高めることができるとともに、排出ガスに含まれる二酸化炭素ガスを培養槽12の周囲に留め易くすることができる。このため、排出ガスに含まれる二酸化炭素ガスを、連通口28を介して再び培養槽12内の培養液L2に供給することが可能になる。このため、ガス供給機構50から供給される二酸化炭素ガスの利用効率を向上させることができる。
 また、断熱部16にガス排出口94が設けられる。このため、閉空間90に排出された排出ガスの圧力によって断熱部16が破損することを回避できる。二酸化炭素ガスは空気よりも重く、閉空間90の下方に集まる傾向がある。このため、断熱部16の上部にガス排出口94を設けることで、閉空間90内の二酸化炭素ガスの濃度を比較的上昇させ易くすることができる。
 上記の実施形態に係る培養装置10では、ガス供給口30は、ガス供給配管48を介してガス供給機構50に接続され、ガス排出口94には、ガス排出口94から排出された排出ガスを回収するガス回収配管98の一端部が接続され、ガス回収配管98の他端部は、ガス供給配管48に接続され、ガス回収配管98に回収された排出ガスは、ガス供給配管48及びガス供給口30を介して培養槽12内の培養液L2に供給される。
 これによれば、閉空間90から排出された排出ガスに含まれる二酸化炭素ガスを、培養槽12のガス供給口30に供給することが可能になる。すなわち、培養槽12と閉空間90との間で二酸化炭素ガスを循環させることが可能になる。このため、ガス供給機構50から供給される二酸化炭素ガスの利用効率を一層効果的に向上させることができる。
 上記の実施形態に係る培養装置10では、断熱部16を支持する支持機構18を備え、断熱部16は、設置箇所に設置された培養槽12を水平方向に挟んで向かい合う第1部分60及び第2部分62を有し、支持機構18は、第1部分60及び第2部分62が相対的に接近又は離間可能となるように、断熱部16を支持する。
 これによれば、支持機構18により、第1部分60及び第2部分62の距離を調整することができる。これにより、断熱部16と培養槽12の側壁との間に形成される空気層52の厚さを調整できる。このため、例えば、培養槽12内の培養液L2の温度、培養槽12が設置された設置箇所の環境(外部環境)に合わせて、空気層52の厚さを調整することができる。これにより、培養槽12内を微細藻の培養に適した環境に維持することが容易になる。
 上記の実施形態に係る培養装置10では、支持機構18は、第1支柱70及び第2支柱72を有し、第1支柱70及び第2支柱72の各々は、設置箇所に設置された培養槽12の下端部から、培養槽12の上端よりも上部まで鉛直方向に沿ってそれぞれ延在し、第1支柱70の下端部には第1下端支持部82が設けられ、第1支柱70の上端部には第1上端支持部84が設けられ、第2支柱72の下端部には第2下端支持部86が設けられ、第2支柱72の上端部には第2上端支持部88が設けられ、第1支柱70と第2支柱72とは、互いの間に培養槽12を介在させた状態で、水平方向に沿って相対的に接近又は離間可能であり、第1部分60は、第1下端支持部82から第1上端支持部84に向かって延在し、第2部分62は、第2上端支持部88から第2下端支持部86に向かって延在し、第1部分60及び第2部分62は、第1上端支持部84から第2上端支持部88に向かって水平方向に延在する第3部分64を介して連続する。
 これによれば、第1支柱70及び第2支柱72を接近又は離間させることにより、第1部分60及び第2部分62の距離を容易に調整できる。ひいては、断熱部16と培養槽12の側壁との間に形成される空気層52の厚さを容易に調整できる。
 上記の実施形態に係る培養装置10では、第1支柱70は、第1部分60の幅方向に沿って複数並列して設けられ、第1下端支持部82及び第1上端支持部84の少なくとも何れか一方は、第1部分60の幅方向に沿って延在して、並列する第1支柱70同士を接続し、第2支柱72は、第2部分62の幅方向に沿って複数並列して設けられ、第2下端支持部86及び第2上端支持部88の少なくとも何れか一方は、第2部分62の前記幅方向に沿って延在して、並列する第2支柱72同士を接続する。
 これによれば、第1部分60の幅方向に沿って延在する第1下端支持部82及び第1上端支持部84の少なくとも一方によって、断熱部16の第1断熱シート56を良好に支持することができる。同様に、第2部分62の幅方向に沿って延在する第2下端支持部86及び第2上端支持部88の少なくとも一方によって、断熱部16の第1断熱シート56を良好に支持することができる。
 また、並列する第1支柱70同士が第1下端支持部82及び第1上端支持部84の少なくとも一方によって接続されることにより、支持機構18の変形等が抑制される。また、並列する第2支柱72同士が第2下端支持部86及び第2上端支持部88の少なくとも一方によって接続されることにより、支持機構18の変形等が抑制される。すなわち、支持機構18を強固に構成することが可能になる。このため、支持機構18により断熱部16を支持した状態を良好に維持することが可能になる。
 上記の実施形態に係る培養装置10では、培養槽12内の培養液L2の温度を測定する温度センサ20と、第1部分60及び第2部分62を互いに接近又は離間させる方向に駆動する駆動部22と、温度センサ20の測定値に応じて、第1部分60と第2部分62との距離が調整されるように駆動部22を制御する制御部24と、を備える。これによれば、温度センサ20の測定結果に基づいて制御部24により自動的に第1部分60と第2部分62との距離を調整することが可能になる。このため、培養槽12内を微細藻の培養に適した環境に維持することが一層容易になる。
 なお、本発明は、上述した実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を取り得る。
 例えば、上記の実施形態では、断熱部16は、可撓性を有するシート状であり、間隔を置いて配置された側壁と断熱部16との間に空気層52が形成される。しかしながら、特にこれには制限されない。例えば、培養装置10は、図1~図4に示す断熱部16に代えて、図8に示す断熱部100を備えてもよい。図8の断熱部100は、例えば、シリカエアロゲルのような断熱性と透過性とを有するエアロゲルである。断熱部100は、培養槽12の側壁に沿って配置される。これによれば、培養槽12の内部を断熱する空気層102は、エアロゲルの細孔内に形成される。
 このように、断熱部100をエアロゲルとした場合であっても、断熱部100と、空気層102と、側壁とを介して培養槽12の内部に光を良好に照射することができる。このため、微細藻の培養容積に対する受光面積の割合を増大させつつ、培養槽12内の断熱性を高めることができる。これによって、微細藻を良好に培養することが可能となる。しかも、この場合、培養槽12の側壁に断熱部100を沿わせる簡単な構成により、培養槽12内の断熱性を高めることができる。また、エアロゲルは比較的軽量であるため、たとえ、断熱部100が培養槽12に倒れ掛かり、断熱部100が培養槽12に衝突した場合であっても、培養槽12が損傷することを回避できる。
 上記の実施形態では、培養槽12の内部には、培養槽12を設置箇所に設置した場合の鉛直方向に沿って延在するガイド部36及び循環部38が水平方向に並んで設けられる。ガイド部36及び循環部38は、鉛直方向の下部に設けられたガイド部入口42と、鉛直方向の上部に設けられたガイド部出口44とを介して互いに連通する。培養槽12の底部には、ガイド部36に下から上に向かってガスを供給可能とするガス供給口30が設けられる。ガス供給口30からガイド部36にガスが供給されると、循環部38内の培養液L2がガイド部入口42からガイド部36内に流入するとともに、ガイド部36内の培養液L2がガイド部出口44から循環部38内に流出する培養液流Fが生じる。
 これによれば、微細藻の培養に必要なガスをガス供給口30から供給してガイド部36に流通させる簡単な構成により、培養槽12内に培養液流Fを生じさせることができる。しかも、例えば、送水ポンプのような培養液流Fを生じさせるための特別な構成を設けて駆動する必要もない。従って、エネルギー消費量が増大することを抑制しつつ、簡単な構成で微細藻を良好に培養することが可能になる。
 しかしながら、培養槽12の構成は、特に制限されない。例えば、培養槽12において、不図示の送水ポンプにより培養液流を生じさせて、培養槽12内の培養液L2を循環させてもよい。

Claims (10)

  1.  側壁が透光性を有する材料から形成された培養槽(12)を有し、該培養槽に収容され且つ前記側壁を介して光が照射される培養液(L2)中で微細藻を培養する培養装置(10)であって、
     前記側壁を覆う透光性の断熱部(16、100)を備え、
     前記断熱部は、前記培養槽の内部を断熱する空気層(52、102)を形成する、培養装置。
  2.  請求項1記載の培養装置において、
     前記断熱部は、エアロゲルであり、
     前記空気層は、前記エアロゲルの細孔内に形成される、培養装置。
  3.  請求項1記載の培養装置において、
     前記断熱部は、可撓性を有するシート状であり、
     前記空気層は、間隔を置いて配置された前記側壁と前記断熱部との間に形成される、培養装置。
  4.  請求項3記載の培養装置において、
     前記断熱部は、前記側壁と、前記培養槽の上面と、を覆う、培養装置。
  5.  請求項4記載の培養装置において、
     前記培養槽には、該培養槽内の前記培養液に供給ガスを供給可能とするガス供給口(30)が設けられ、
     前記培養槽の前記上面には、前記培養槽の内部と外部とを連通させる連通口(28)が設けられ、
     前記断熱部は、前記培養槽を内側に収容する閉空間(90)を形成し、
     前記断熱部の上部には、前記培養槽から前記連通口を介して前記閉空間に排出された排出ガスを該閉空間から排出可能とするガス排出口(94)が設けられる、培養装置。
  6.  請求項5記載の培養装置において、
     前記ガス供給口は、ガス供給配管(48)を介してガス供給機構(50)に接続され、
     前記ガス排出口には、該ガス排出口から排出された前記排出ガスを回収するガス回収配管(98)の一端部が接続され、前記ガス回収配管の他端部は、前記ガス供給配管に接続され、
     前記ガス回収配管に回収された前記排出ガスは、前記ガス供給配管及び前記ガス供給口を介して前記培養槽内の前記培養液に供給される、培養装置。
  7.  請求項3~6の何れか1項に記載の培養装置において、
     前記断熱部を支持する支持機構(18)を備え、
     前記断熱部は、設置箇所に設置された前記培養槽を水平方向に挟んで向かい合う第1部分(60)及び第2部分(62)を有し、
     前記支持機構は、前記第1部分及び前記第2部分が相対的に接近又は離間可能となるように、前記断熱部を支持する、培養装置。
  8.  請求項7記載の培養装置において、
     前記支持機構は、第1支柱(70)及び第2支柱(72)を有し、
     前記第1支柱及び前記第2支柱の各々は、前記設置箇所に設置された前記培養槽の下端部から、該培養槽の上端よりも上部まで鉛直方向に沿って延在し、
     前記第1支柱の下端部には第1下端支持部(82)が設けられ、前記第1支柱の上端部には第1上端支持部(84)が設けられ、
     前記第2支柱の下端部には第2下端支持部(86)が設けられ、前記第2支柱の上端部には第2上端支持部(88)が設けられ、
     前記第1支柱と前記第2支柱とは、互いの間に前記培養槽を介在させた状態で、前記水平方向に沿って相対的に接近又は離間可能であり、
     前記第1部分は、前記第1下端支持部から前記第1上端支持部に向かって延在し、前記第2部分は、前記第2上端支持部から前記第2下端支持部に向かって延在し、前記第1部分及び前記第2部分は、前記第1上端支持部から前記第2上端支持部に向かって前記水平方向に延在する第3部分(64)を介して連続する、培養装置。
  9.  請求項8記載の培養装置において、
     前記第1支柱は、前記第1部分の幅方向に沿って複数並列して設けられ、
     前記第1下端支持部及び前記第1上端支持部の少なくとも何れか一方は、前記第1部分の前記幅方向に沿って延在して、並列する前記第1支柱同士を接続し、
     前記第2支柱は、前記第2部分の幅方向に沿って複数並列して設けられ、
     前記第2下端支持部及び前記第2上端支持部の少なくとも何れか一方は、前記第2部分の前記幅方向に沿って延在して、並列する前記第2支柱同士を接続する、培養装置。
  10.  請求項7~9の何れか1項に記載の培養装置において、
     前記培養槽内の前記培養液の温度を測定する温度センサ(20)と、
     前記第1部分及び前記第2部分を互いに接近又は離間させる方向に駆動する駆動部(22)と、
     前記温度センサの測定値に応じて、前記第1部分と前記第2部分との距離が調整されるように前記駆動部を制御する制御部(24)と、を備える、培養装置。
PCT/JP2022/007451 2021-03-15 2022-02-24 培養装置 WO2022196271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/281,707 US20240166979A1 (en) 2021-03-15 2022-02-24 Culture device
JP2023506906A JPWO2022196271A1 (ja) 2021-03-15 2022-02-24
CN202280021385.2A CN117043314A (zh) 2021-03-15 2022-02-24 培养装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-041556 2021-03-15
JP2021041556 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196271A1 true WO2022196271A1 (ja) 2022-09-22

Family

ID=83321268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007451 WO2022196271A1 (ja) 2021-03-15 2022-02-24 培養装置

Country Status (4)

Country Link
US (1) US20240166979A1 (ja)
JP (1) JPWO2022196271A1 (ja)
CN (1) CN117043314A (ja)
WO (1) WO2022196271A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984484A (ja) * 1995-09-28 1997-03-31 Matsushita Electric Works Ltd 観賞魚飼育用水槽
JPH10150974A (ja) * 1996-11-22 1998-06-09 Kaiyo Bio Technol Kenkyusho:Kk 光合成微生物培養装置及び培養方法
WO2012050221A2 (ja) * 2010-10-13 2012-04-19 Sekine Toshirou 光合成微生物の培養方法と装置
WO2012050220A1 (ja) * 2010-10-13 2012-04-19 Sekine Toshirou 光合成微生物の培養方法及び装置
JP2019511230A (ja) * 2016-04-12 2019-04-25 スライブ バイオサイエンス, インコーポレイテッド 細胞を培養するための容器
JP2019536459A (ja) * 2016-12-01 2019-12-19 アーボレア リミテッドArborea Ltd 光バイオリアクターデバイスおよび方法
JP2020506717A (ja) * 2017-01-06 2020-03-05 ローカス アイピー カンパニー、エルエルシー 新規な発酵システム及び方法
JP2022012441A (ja) * 2020-07-01 2022-01-17 学校法人 創価大学 微生物の培養システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984484A (ja) * 1995-09-28 1997-03-31 Matsushita Electric Works Ltd 観賞魚飼育用水槽
JPH10150974A (ja) * 1996-11-22 1998-06-09 Kaiyo Bio Technol Kenkyusho:Kk 光合成微生物培養装置及び培養方法
WO2012050221A2 (ja) * 2010-10-13 2012-04-19 Sekine Toshirou 光合成微生物の培養方法と装置
WO2012050220A1 (ja) * 2010-10-13 2012-04-19 Sekine Toshirou 光合成微生物の培養方法及び装置
JP2019511230A (ja) * 2016-04-12 2019-04-25 スライブ バイオサイエンス, インコーポレイテッド 細胞を培養するための容器
JP2019536459A (ja) * 2016-12-01 2019-12-19 アーボレア リミテッドArborea Ltd 光バイオリアクターデバイスおよび方法
JP2020506717A (ja) * 2017-01-06 2020-03-05 ローカス アイピー カンパニー、エルエルシー 新規な発酵システム及び方法
JP2022012441A (ja) * 2020-07-01 2022-01-17 学校法人 創価大学 微生物の培養システム

Also Published As

Publication number Publication date
JPWO2022196271A1 (ja) 2022-09-22
US20240166979A1 (en) 2024-05-23
CN117043314A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US7980024B2 (en) Photobioreactor systems positioned on bodies of water
US9637714B2 (en) Diffuse light extended surface area water-supported photobioreactor
US8198076B2 (en) Photobioreactor and uses therefor
US20140315290A1 (en) Low-cost photobioreactor
US20130115688A1 (en) Laminar photobioreactor for the production of microalgae
WO2012177463A3 (en) Aquatic-based microalgae production apparatus
US20130295659A1 (en) Closed type photo-bio reacting apparatus for microalgae
WO2022196271A1 (ja) 培養装置
MX2008010831A (es) Dispositivo de enfriamiento para uso en un horno de arco electrico.
KR101439138B1 (ko) 미세조류 배양용 광생물 반응기
US20230115516A1 (en) Culture apparatus and culture method
KR20140080082A (ko) 미세조류 배양수조
EP2740787B1 (en) Photobioreactor for culturing photoautotrophic microorganisms
US20230159884A1 (en) Culture device and culture method
AU2014201960A1 (en) Improved diffuse light extended surface area water-supported photobioreactor
CA2764291A1 (en) Low-cost integrated pond-photobioreactor
JP2022153737A (ja) 培養装置
AU2012203478B2 (en) Photobioreactor and method for algae growth
KR20240078588A (ko) 광생물 반응기 제조장치
JP2022142222A (ja) 培養システム
JP2023137320A (ja) 培養装置及びその製造方法
JP2023136382A (ja) 培養装置及び培養方法
CN115279176A (zh) 用于生产生物膜形式的微藻的漂浮系统
CN103355155A (zh) 集成池-光生物反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506906

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18281707

Country of ref document: US

Ref document number: 2301005725

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280021385.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202347068586

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771029

Country of ref document: EP

Kind code of ref document: A1