WO2022196056A1 - Inspection apparatus, inspection method, and laser machining apparatus - Google Patents

Inspection apparatus, inspection method, and laser machining apparatus Download PDF

Info

Publication number
WO2022196056A1
WO2022196056A1 PCT/JP2022/000790 JP2022000790W WO2022196056A1 WO 2022196056 A1 WO2022196056 A1 WO 2022196056A1 JP 2022000790 W JP2022000790 W JP 2022000790W WO 2022196056 A1 WO2022196056 A1 WO 2022196056A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
laser beam
optical component
processing
light intensity
Prior art date
Application number
PCT/JP2022/000790
Other languages
French (fr)
Japanese (ja)
Inventor
哲平 田中
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2023506779A priority Critical patent/JPWO2022196056A1/ja
Publication of WO2022196056A1 publication Critical patent/WO2022196056A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to an inspection device for a laser processing device, an inspection method, and a laser processing device.
  • a laser processing device capable of online monitoring of a decrease in light intensity caused by contamination or deterioration of optical components is known (see Patent Document 1).
  • a laser beam for processing is made incident on an optical component, and scattered light from the optical component is observed.
  • the detection sensitivity for dirt, scratches, etc. will be low. For this reason, it is difficult to detect dirt and scratches that are extremely small compared to the size of the beam cross section.
  • An object of the present invention is to provide an inspection apparatus and an inspection method capable of detecting stains, flaws, etc., which are smaller than the size of the beam cross-section of the processing laser beam.
  • Another object of the present invention is to provide a laser processing apparatus capable of detecting stains, scratches, etc., which are smaller than the size of the beam cross-section of the processing laser beam.
  • An inspection device for inspecting a laser processing device including at least one optical component having an interface that refracts or reflects a processing laser beam, The inspection laser beam is incident on the interface of the optical component to be inspected so that the beam spot at the interface of the optical component to be inspected of the laser processing apparatus is smaller than the passing area of the processing laser beam, and an inspection optical system for scanning the beam spot of the inspection laser beam; and a light intensity measuring device for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component to be inspected.
  • An inspection method for inspecting a laser processing apparatus having at least one optical component having an interface that refracts or reflects a processing laser beam The beam spot of the inspection laser beam is scanned within the interface under the condition that the beam spot of the inspection laser beam at the interface of the optical component to be inspected of the laser processing apparatus is smaller than the passing area of the processing laser beam.
  • An inspection method is provided for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component to be inspected.
  • a laser oscillator that outputs a processing laser beam; at least one optical component disposed on the path of the processing laser beam from the laser oscillator to the object and having an interface that refracts or reflects the processing laser beam;
  • the inspection laser beam is incident on the interface of the optical component so that the beam spot at the interface of the optical component is smaller than the passing area of the processing laser beam, and the beam spot of the inspection laser beam is scanned within the interface.
  • an inspection optical system for and a light intensity measuring device for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component.
  • the beam spot of the inspection laser beam smaller than the passing area of the processing laser beam, it is possible to increase the detection sensitivity for dirt and scratches that are small compared to the size of the passing area of the processing laser beam.
  • FIG. 1 is a schematic diagram of a laser processing apparatus according to one embodiment.
  • FIG. 2 is a block diagram of an inspection processor.
  • FIG. 3A is a schematic front view of an optical component, and FIG. 3B shows an example of temporal change in light intensity measured by a light intensity measuring device while an inspection laser beam is incident on the optical component. graph.
  • FIG. 4 is a flow chart showing a procedure for inspecting a laser processing apparatus using an inspection apparatus according to an embodiment.
  • FIG. 5 is a schematic diagram of a laser processing apparatus according to another embodiment.
  • FIG. 6 is a schematic diagram of a laser processing apparatus according to still another embodiment.
  • FIG. 7 is a schematic diagram of a laser processing apparatus according to still another embodiment.
  • FIG. 8 is a schematic diagram of a laser processing apparatus according to still another embodiment.
  • FIG. 9 is a schematic diagram of a laser processing apparatus according to still another embodiment.
  • FIG. 10 is a schematic diagram of a laser processing apparatus according to still another embodiment.
  • FIG. 1 is a schematic diagram of a laser processing apparatus according to one embodiment.
  • a processing laser oscillator 50 outputs a processing laser beam 40 .
  • the optical axis of the processing laser beam 40 is indicated by a chain double-dashed line.
  • a processing laser beam 40 enters an object 60 via an optical component 51 such as a lens and other optical components 52 .
  • a target object 60 is held on the stage 53 .
  • the processing laser oscillator 50 is a laser diode, a solid-state laser oscillator such as an Nd:YAG laser, an excimer laser oscillator, or the like.
  • the optical component 51 is, for example, one lens out of a plurality of lenses forming a beam expander.
  • Other optical components 52 include the remaining lenses that make up the beam expander, a beam homogenizer, a galvanometer scanner, an f ⁇ lens, a beam transmission window, and the like.
  • the object 60 is a semiconductor wafer implanted with dopant ions, and is subjected to activation annealing by the processing laser beam 40 .
  • the laser processing apparatus includes an inspection device in addition to these optical components.
  • the inspection apparatus includes an inspection optical system 10 , a light intensity measuring device 20 , an inspection processing device 25 and an output device 26 .
  • the inspection optical system 10 includes an inspection laser oscillator 11 , a condenser lens 12 , a beam scanner 13 and a moving mechanism 14 .
  • the beam scanner 13 is, for example, a galvanometer scanner including a pair of oscillating mirrors 13A and 13B.
  • the swinging mirror 13B has a position (hereinafter referred to as an inspection position) blocking the path of the processing laser beam 40 and does not spatially interfere with the path of the processing laser beam 40.
  • position hereinafter referred to as standby position
  • the swing mirror 13B at the inspection position is indicated by a solid line
  • the swing mirror 13B at the standby position is indicated by a broken line.
  • a double arrow indicates the direction in which the swing mirror 13B translates.
  • the inspection laser oscillator 11 outputs an inspection laser beam 30 .
  • the inspection laser beam 30 may be a continuous wave laser beam or a pulse laser beam.
  • the inspection laser beam 30 enters the optical component 51 via the condenser lens 12, the oscillating mirror 13A, and the oscillating mirror 13B.
  • the optical component 51 has two interfaces that refract the laser beam. These two interfaces correspond to the surface of the lens.
  • the condenser lens 12 converges the inspection laser beam 30 so that the beam spot of the inspection laser beam 30 at the two interfaces of the optical component 51 is smaller than the passing area of the processing laser beam 40 .
  • Beam scanner 13 moves the beam spot within the surface of optical component 51 .
  • One oscillating mirror 13A and the other oscillating mirror 13B of the beam scanner 13 move beam spots in mutually orthogonal directions. In FIG. 1, the oscillating mirror 13A moves the beam spot in a direction perpendicular to the paper, and the oscillating mirror 13B moves the beam spot in a direction parallel to the paper.
  • the light intensity measuring device 20 is translated by the moving mechanism 21 between an inspection position that blocks the path of the processing laser beam 40 and a standby position that does not spatially interfere with the path of the processing laser beam 40 .
  • the light intensity measuring device 20 at the inspection position is indicated by a solid line
  • the light intensity measuring device 20 at the standby position is indicated by a broken line.
  • the directions in which the light intensity measuring device 20 translates are indicated by double arrows.
  • the inspection laser beam 30 that has passed through the optical component 51 is incident on the light intensity measuring device 20 .
  • the light intensity measuring device 20 measures the light intensity of the incident inspection laser beam 30 .
  • a measurement result obtained by the light intensity measuring device 20 is input to the inspection processing device 25 .
  • FIG. 2 is a block diagram of the processing device 25 for inspection.
  • the inspection processing device 25 includes a laser oscillation control section 25A, a moving mechanism control section 25B, a beam scanning control section 25C, a light intensity measurement section 25D, and an output control section 25E.
  • the laser oscillation control unit 25A controls the inspection laser oscillator 11 to output an inspection laser beam.
  • the moving mechanism controller 25B controls the moving mechanisms 14 and 21 to move the swing mirror 13B (FIG. 1) and the light intensity measuring device 20 (FIG. 1) between the standby position and the inspection position.
  • the beam scanning controller 25C controls the beam scanner 13 to move the beam spot of the inspection laser beam within the surface of the optical component 51 (FIG. 1).
  • the light intensity measuring unit 25D acquires the measurement result measured by the light intensity measuring device 20.
  • the output control unit 25E outputs the measurement result of the light intensity acquired by the light intensity measurement unit 25D to the output device 26 in various forms.
  • An image display device for example, is used as the output device 26, and the output control unit 25E displays, for example, the measurement result of the light intensity in a graphic form or a graph.
  • FIG. 3A is a schematic front view of the optical component 51.
  • FIG. A passing region 41 of the processing laser beam 40 (FIG. 1) is indicated by a dashed line.
  • a deposit 45 adheres to the surface of the optical component 51 and a scratch 46 is generated.
  • a passing region 41 of the processing laser beam 40 is sufficiently large compared to the sizes of the deposits 45 and the scratches 46 . Therefore, the deposits 45 and the scratches 46 do not greatly affect the propagation of the processing laser beam 40 .
  • the number of deposits 45 and scratches 46 increases, the propagation of the processing laser beam 40 is greatly affected, and a situation may arise in which the desired intensity cannot be obtained on the surface of the object 60 .
  • the beam spot 31 of the inspection laser beam 30 (FIG. 1) is smaller than the passing area 41 of the processing laser beam 40, and is about the same size as the assumed deposit 45 and flaw 46.
  • the inspection laser beam 30 is scanned by the beam scanner 13 (FIG. 1), the beam spot 31 moves along the movement locus 32 within the surface of the optical component 51 . That is, by repeating main scanning and sub-scanning of the beam spot 31 , almost the entire surface of the optical component 51 is scanned with the beam spot 31 .
  • the inspection laser beam 30 is a pulsed laser beam
  • the moving speed of the beam spot 31 may be set so that the beam spots 31 of two laser pulses adjacent on the time axis overlap each other.
  • the optical path length from the condenser lens 12 (FIG. 1) to the surface of the optical component 51 varies according to the incident position of the inspection laser beam 30 . Therefore, the size of the beam spot 31 (FIG. 3A) of the inspection laser beam 30 on the surface of the optical component 51 also varies depending on the position on the surface. However, even in the state where the beam spot 31 is the largest within the variation range of the size of the beam spot 31, the size is sufficiently smaller than the passing area 41 of the processing laser beam 40, and the expected deposit 45 or It is about the same size as the scratch 46 .
  • FIG. 3B is a graph showing an example of temporal changes in light intensity measured by the light intensity measuring device 20 (FIG. 1) while the surface of the optical component 51 is being scanned with the inspection laser beam 30.
  • FIG. The horizontal axis represents elapsed time, and the vertical axis represents light intensity.
  • the light intensity decreases at times t1, t2, and t3.
  • the drop in light intensity at times t1 and t2 is caused by the deposit 45, and the drop in light intensity at time t3 is caused by the scratch 46.
  • the output control unit 25E of the inspection processing device 25 displays the measurement results of the light intensity measuring device 20 on the output device 26 (FIG. 1) as a time waveform graph as shown in FIG. 3B.
  • FIG. 4 is a flow chart showing the procedure for inspecting the laser processing apparatus using the inspection apparatus according to this embodiment.
  • the moving mechanism control unit 25B (FIG. 2) controls the moving mechanisms 14 and 21 to move the swing mirror 13B (FIG. 1) and the light intensity measuring device 20 (FIG. 1) from the standby position to the inspection position (step S1).
  • the laser oscillation control unit 25A (FIG. 2) controls the inspection laser oscillator 11 to output an inspection laser beam
  • the beam scanning control unit 25C (FIG. 2) controls the beam scanner 13 to output an inspection laser beam.
  • a laser beam is scanned as shown in FIG. 2A (step S2).
  • the light intensity measuring unit 25D acquires the light intensity measurement result from the light intensity measuring device 20 (step S2).
  • the output control unit 25E (FIG. 2) outputs the light intensity measurement result to the output device 26 (step S3).
  • the moving mechanism control unit 25B controls the moving mechanisms 14 and 21 to wait the swing mirror 13B (FIG. 1) and the light intensity measuring device 20 (FIG. 1) from the inspection position. Move to position (step S4)
  • the processing laser beam 40 for processing when passing through the optical component 51 can be used.
  • the attenuation rate of the light intensity of the laser beam 40 is slight. Therefore, even if the light intensity of the processing laser beam 40 is measured, it is difficult to detect the adhering matter 45 and the flaw 46 .
  • the beam spot 31 (FIG. 3A) of the inspection laser beam 30 is made smaller than the passing area 41 of the processing laser beam 40 . Therefore, even if the adhering matter 45 or the scratch 46 is small, the attenuation rate of the light intensity of the inspection laser beam 30 increases when it passes through the optical component 51 . As a result, the detection sensitivity of small adhering matter 45 and scratches 46 is increased. This makes it possible to detect signs of machining defects before they occur.
  • the diameter of the beam spot 31 of the inspection laser beam 30 on the surface of the optical component 51 is 1/ the diameter of the minimum enclosing circle of the passing region 41 (FIG. 3A) of the processing laser beam 40 on the surface of the optical component 51. 10 or less is preferable. This makes it possible to detect the adhering matter 45 and the flaw 46 that are difficult to detect by measuring the attenuation rate of the light intensity of the processing laser beam 40 .
  • the diameter of the beam spot 31 is made too small, the time required for scanning almost the entire surface of the optical component 51 with the inspection laser beam 30 will become longer. Therefore, it is preferable to set the diameter of the beam spot 31 to 5 ⁇ m or more.
  • the transmittance of the optical component 51 is sufficiently high in the wavelength region of the inspection laser beam 30 in the region where the deposits 45 and scratches 46 are not present. is preferred.
  • the optical component 51 is usually coated with an antireflection coating so as to maximize the transmittance in the wavelength range of the processing laser beam 40 . Therefore, it is preferable to make the wavelength of the inspection laser beam 30 substantially the same as the wavelength of the processing laser beam 40 . It should be noted that the wavelength of the inspection laser beam 30 does not necessarily have to be the same as the wavelength of the processing laser beam 40 if a sufficiently high transmittance can be obtained for the inspection laser beam 30 .
  • the inspection device is provided for one optical component 51 out of the plurality of optical components that constitute the laser processing apparatus. may be provided.
  • the inspection processing device 25 and the output device 26 may be shared by a plurality of inspection devices.
  • the inspection laser oscillator 11 is arranged separately from the processing laser oscillator 50, but the laser beam output from the processing laser oscillator 50 may be used as the inspection laser beam.
  • the laser beam output from the processing laser oscillator 50 may be guided to the condenser lens 12 of the inspection optical system 10 via a mirror or the like.
  • the measurement results of the light intensity measuring device 20 are displayed on the output device 26 (Fig. 1) in the graph format shown in Fig. 3B.
  • the time waveform graph shown in FIG. 3B may be converted into a two-dimensional light intensity distribution on the surface of the optical component 51 and displayed on the output device 26 as a two-dimensional image.
  • the inspection processing device 25 (FIG. 1) analyzes the waveform of the graph shown in FIG. You may make it
  • the interface (surface) of the optical component 51 that refracts the processing laser beam 40 is inspected, but it is also possible to inspect an optical component that has an interface (surface) that reflects the processing laser beam 40. is. For example, it is possible to inspect the presence or absence of any foreign matter adhering to a reflecting surface such as a plane mirror, a concave mirror, or a convex mirror, or whether there is a scratch or the like on the reflecting surface. In this case, the inspection laser beam 30 scans the opposite surface and measures the intensity of the reflected light from the reflecting surface.
  • FIG. 5 is a schematic diagram of the laser processing apparatus according to this embodiment.
  • one swinging mirror 13B of the beam scanner 13 is translated between the inspection position and the standby position.
  • the pair of oscillating mirrors constituting the beam scanner 13 are not translated, but the movable mirror 15 is translated between the inspection position and the standby position by the moving mechanism 14. move.
  • the movable mirror 15 at the inspection position is indicated by a solid line
  • the movable mirror 15 at the standby position is indicated by a broken line.
  • the inspection laser beam 30 scanned by the beam scanner 13 is reflected by the moving mirror 15 at the inspection position and enters the optical component 51 to be inspected.
  • the excellent effects of the embodiment shown in FIG. 5 will be described. Also in this embodiment, as in the embodiment shown in FIGS. 1 to 4, the deposits 45 and scratches 46 (FIG. 3A) on the optical component 51 can be detected with high sensitivity. Further, in the embodiment shown in FIGS. 1 to 4, the moving mechanism 14 must move the swinging mechanism together with the swinging mirror 13B. In contrast, in this embodiment, since the moving mirror 15 does not swing, the moving mechanism 14 does not need to move the swinging mechanism. Therefore, the moving mechanism 14 can be downsized.
  • FIG. 6 is a schematic diagram of the laser processing apparatus according to this embodiment.
  • the moving mechanism 14 translates some optical components of the inspection optical system 10 between the inspection position and the standby position, and the moving mechanism 21 moves the light intensity measuring device 20. is translated between the inspection position and the standby position.
  • none of the optical components of the inspection optical system 10 is translated.
  • the beam scanner 13 is arranged at a position that does not spatially interfere with the path of the processing laser beam 40 . Any inspection laser beam 30 within the scanning range of the beam scanner 13 is incident on the optical component 51 from an oblique direction.
  • the light intensity measuring device 20 is arranged at a position where the inspection laser beam 30 that has obliquely entered the optical component 51 and passed through the optical component 51 is incident.
  • the light intensity measuring device 20 also does not translate and is arranged at a position that does not spatially interfere with the path of the processing laser beam 40 .
  • the incident angle when the inspection laser beam 30 is incident on the optical component 51 is larger than the incident angle in the laser processing apparatus shown in FIGS. Therefore, the optical path length from the condenser lens 12 to the optical component 51 varies greatly depending on the incident position. Therefore, the variation in the size of the beam spot 31 (FIG. 3A) on the surface of the optical component 51 is increased. Even in the state where the beam spot 31 is the largest within the variation range of the size of the beam spot 31, the size is sufficiently smaller than the passing area 41 of the processing laser beam 40, and the expected deposits 45 and scratches 46 are observed.
  • the optical system such as the condensing lens 12 is adjusted so that the size is about the same.
  • the interval between scanning lines may be adjusted according to the size of the beam spot 31. For example, in areas where the beam spot 31 is relatively small, the scanning line spacing may be relatively narrow, and in areas where the beam spot 31 is relatively large, the scanning line spacing may be relatively wide.
  • the inspection device does not need to have a translation mechanism. Therefore, it is possible to reduce the size and cost of the device.
  • FIG. 7 is a schematic diagram of the laser processing apparatus according to this embodiment.
  • the beam scanner 13 and the light intensity measuring device 20 are arranged on opposite sides of each other when viewed from the path of the processing laser beam 40 .
  • the beam scanner 13 and the light intensity measuring device 20 are arranged on the same side as viewed from the path of the processing laser beam 40 .
  • a mirror 22 is arranged on the opposite side of the beam scanner 13 as viewed from the path of the processing laser beam 40 .
  • the inspection laser beam 30 that has passed through the optical component 51 is incident on the mirror 22 .
  • the inspection laser beam 30 reflected by the mirror 22 enters the light intensity measuring device 20 .
  • the attached matter 45 and the scratch 46 (FIG. 3A) on the optical component 51 can be detected with high sensitivity.
  • the configuration according to this embodiment may be adopted when there is no space for arranging the light intensity measuring device 20 on the opposite side of the beam scanner 13 as viewed from the path of the processing laser beam 40 .
  • the mirror 22 used in the laser processing apparatus according to the embodiment shown in FIG. 7 is a plane mirror
  • a concave mirror may be used instead of the plane mirror.
  • the beam scanner 13 and the light intensity measuring device 20 by arranging the beam scanner 13 and the light intensity measuring device 20 at the position of the conjugate point of the concave mirror, the light intensity measuring device 20 with a small light receiving surface can be used.
  • FIG. 8 is a schematic diagram of the laser processing apparatus according to this embodiment.
  • the light intensity of the inspection laser beam 30 transmitted through the optical component 51 is measured by the light intensity measuring device 20 .
  • the light intensity measuring device 20 measures the light intensity of the inspection laser beam 30 reflected by the surface of the optical component 51 .
  • the inspection laser beam 30 in the embodiment shown in FIG. 6, as the inspection laser beam 30, a wavelength band in which the transmittance of the optical component 51 coated with antireflection coating with respect to the processing laser beam 40 is sufficiently large is used.
  • the inspection laser beam 30 in a wavelength range in which the surface of the optical component 51 has a relatively large reflectance is used.
  • the reflectance on the surface of the optical component 51 changes due to the deposits 45 and scratches 46 (FIG. 3A) on the surface of the optical component 51 .
  • By measuring the light intensity of the inspection laser beam 30 reflected by the surface of the optical component 51 it is possible to detect the change in reflectance and detect the presence or absence of the adhering matter 45 and the flaw 46 .
  • the reflectance may be low or high depending on the adhering matter 45 . In either case, the presence or absence of the deposit 45 can be determined by detecting a change in reflectance.
  • FIG. 9 is a schematic diagram of the laser processing apparatus according to this embodiment.
  • one light intensity measuring device 20 is arranged for one inspection optical system 10 .
  • a plurality of light intensity measuring devices 20A, 20B, 20C, and 20D are arranged for one inspection optical system 10.
  • FIG. A plurality of light intensity measuring devices 20A, 20B, 20C, and 20D are arranged in this order from the upstream side to the downstream side of the processing laser beam 40 .
  • Each of the plurality of light intensity measuring devices 20A-20D can be translated between an inspection position and a standby position.
  • a single optical component 51 is arranged between the inspection optical system 10 and the light intensity measuring device 20A.
  • Two optical components 51 and 54 are arranged between the inspection optical system 10 and the light intensity measuring device 20B.
  • Three optical components 51, 54 and 55 are arranged between the inspection optical system 10 and the light intensity measuring device 20C.
  • Four optical components 51, 54, 55 and 56 are arranged between the inspection optical system 10 and the light intensity measuring device 20D.
  • the focal length of the condenser lens 12 of the inspection optical system 10 is fixed.
  • a lens with a variable focal length is used as the condenser lens 12 .
  • the focal length of the condenser lens 12 is controlled by the inspection processor 25 .
  • two mirrors 59 are arranged to reflect the processing laser beam 40, but the mirrors 59 are not necessarily required, and the number of mirrors is not limited to two. do not have.
  • the state in which the first light intensity measuring device 20A counted from the upstream side of the processing laser beam 40 is placed at the inspection position is the same as the state in which the light intensity measuring device 20 of the embodiment shown in FIG. 5 is placed at the inspection position. is. In this state, the optical component 51 can be inspected.
  • the inspection laser beam 30 is optically It passes through the parts 51 and 54 in order and enters the light intensity measuring device 20B.
  • the inspection processor 25 adjusts the focal length of the condenser lens 12 so that the beam spot is sufficiently small at the position of the second optical component 54 .
  • the inspection processor 25 controls the beam scanner 13 so that the beam spot of the inspection laser beam 30 moves within the surface of the second optical component 54 .
  • the second optical component 54 can be inspected with the second light intensity measuring device 20B placed at the inspection position.
  • third optical component 55 and fourth optical component 56 can be inspected.
  • the condenser lens 12 aligns the beam spot of the inspection laser beam 30 at the position of one of the optical components to be inspected selected from the plurality of optical components 51 , 54 , 55 , 56 so that the processing laser beam 40 passes through. It functions as a focal length adjustment mechanism that makes it smaller than region 41 (FIG. 3A).
  • a plurality of optical components 51, 54, 55 and 56 can be inspected by arranging a plurality of light intensity measuring devices 20A to 20D for one inspection optical system 10. can. Therefore, the number of parts of the inspection apparatus can be reduced compared to a configuration in which the inspection optical system 10 is arranged for each optical part to be inspected.
  • FIG. 10 is a schematic diagram of the laser processing apparatus according to this embodiment.
  • a beam expander telescope 71, an optical mask 72, a field lens 73, and a beam scanner are arranged in order from the upstream side to the downstream side on the path of the processing laser beam 40 from the processing laser oscillator 50 to the object 60.
  • 75 and an f ⁇ lens 76 are arranged.
  • the beam expander telescope 71 is composed of a plurality of lenses, for example, three lenses, adjusts the size of the beam cross section at the position of the optical mask 72, and converts the processing laser beam into a parallel beam.
  • the processing laser beam 40 that has passed through the optical mask 72 passes through the field lens 73 and enters the aperture 74 .
  • the aperture 74 shapes the beam profile by passing a predetermined diffracted light of the processing laser beam 40 diffracted by the optical mask 72 .
  • the beam scanner 75 moves the beam spot of the processing laser beam 40 on the surface of the object 60 by scanning the processing laser beam 40 .
  • the f-theta lens 76 images the opening of the aperture 74 onto the surface of the object 60 .
  • the object 60 is held on the stage 53.
  • the stage 53 can move the object 60 in two mutually orthogonal directions parallel to its surface.
  • the processing laser beam 40 can be incident on almost the entire surface of the object 60 .
  • An inspection optical system 10 and a light intensity measuring device 20 are arranged for each of the plurality of lenses that constitute the beam expander telescope 71 . Furthermore, an inspection optical system 10 and a light intensity measuring device 20 are arranged for each of the field lens 73 and the f ⁇ lens 76 .
  • One inspection processing device 25 and one output device 26 are shared by a plurality of inspection optical systems 10 and a plurality of light intensity measuring devices 20 .
  • the object 60 is a semiconductor wafer into which dopants are ion-implanted, and the activation annealing of the dopants is performed by a processing laser beam.
  • inspection optical system 11 inspection laser oscillator 12 condenser lens 13 beam scanners 13A and 13B rocking mirror 14 moving mechanism 15 moving mirrors 20, 20A, 20B, 20C and 20D light intensity measuring device 21 moving mechanism 22 mirror 25 for inspection Processing device 25A Laser oscillation control unit 25B Movement mechanism control unit 25C Beam scanning control unit 25D Light intensity measurement unit 25E Output control unit 26 Output device 30 Inspection laser beam 31 Inspection laser beam beam spot 32 Inspection laser beam beam spot Trajectory 40 Processing laser beam 41 Processing laser beam passage area 45 Attachment 46 Scratches 50 Processing laser oscillators 51, 52 Optical component 53 Stages 54, 55, 56 Optical component 59 Mirror 60 Object 71 Beam expander tele scope 72 optical mask 73 field lens 74 aperture 75 beam scanner 76 f ⁇ lens

Abstract

This inspection apparatus inspects a laser machining apparatus provided with at least one optical component having an interface that refracts or reflects a machining laser beam. An inspection optical system makes an inspection laser beam enter the interface of the optical component to be inspected so that a beam spot in the interface of the optical component to be inspected becomes smaller than a passing area of the machining laser beam, and scans with the beam spot of the inspection laser beam in the interface. A light intensity measuring device measures the light intensity of the inspection laser beam that has passed through or reflected at the interface of the optical component to be inspected. Provided is the inspection apparatus capable of inspecting dirt or flaws smaller than the size of a beam section of the machining laser beam.

Description

検査装置、検査方法、及びレーザ加工装置Inspection device, inspection method, and laser processing device
 本発明は、レーザ加工装置の検査装置、検査方法、及びレーザ加工装置に関する。 The present invention relates to an inspection device for a laser processing device, an inspection method, and a laser processing device.
 光学部品の汚れや劣化に起因する光強度の低下をオンラインモニタリングすることが可能なレーザ加工装置が知られている(特許文献1参照)。特許文献1に記載されたレーザ加工装置においては、光学部品に加工用のレーザビームを入射させ、光学部品からの散乱光等を観測する。 A laser processing device capable of online monitoring of a decrease in light intensity caused by contamination or deterioration of optical components is known (see Patent Document 1). In the laser processing apparatus described in Patent Document 1, a laser beam for processing is made incident on an optical component, and scattered light from the optical component is observed.
特開2018-018909号公報JP 2018-018909 A
 光学部品の汚れや、光学部品の傷等が、レーザビームのビーム断面の大きさに比べて小さい場合、汚れや傷等の検知感度が低くなる。このため、ビーム断面の大きさに比べて著しく小さい汚れや傷を検知することが困難である。 If the dirt on the optical parts, the scratches on the optical parts, etc. are smaller than the size of the beam cross-section of the laser beam, the detection sensitivity for dirt, scratches, etc. will be low. For this reason, it is difficult to detect dirt and scratches that are extremely small compared to the size of the beam cross section.
 本発明の目的は、加工用のレーザビームのビーム断面の大きさに比べて小さな汚れや傷等を検知することが可能な検査装置及び検査方法を提供することである。本発明の他の目的は、加工用のレーザビームのビーム断面の大きさに比べて小さな汚れや傷等を検知することが可能なレーザ加工装置を提供することである。 An object of the present invention is to provide an inspection apparatus and an inspection method capable of detecting stains, flaws, etc., which are smaller than the size of the beam cross-section of the processing laser beam. Another object of the present invention is to provide a laser processing apparatus capable of detecting stains, scratches, etc., which are smaller than the size of the beam cross-section of the processing laser beam.
 本発明の一観点によると、
 加工用レーザビームを屈折または反射させる界面を有する少なくとも一つの光学部品を備えたレーザ加工装置を検査する検査装置であって、
 前記レーザ加工装置の検査対象の光学部品の界面におけるビームスポットが、前記加工用レーザビームの通過領域より小さくなるように前記検査対象の光学部品の界面に検査用レーザビームを入射させ、界面内で前記検査用レーザビームのビームスポットを走査する検査光学系と、
 前記検査対象の光学部品の界面を透過、または界面で反射した前記検査用レーザビームの光強度を測定する光強度測定器と
を備えた検査装置が提供される。
According to one aspect of the invention,
An inspection device for inspecting a laser processing device including at least one optical component having an interface that refracts or reflects a processing laser beam,
The inspection laser beam is incident on the interface of the optical component to be inspected so that the beam spot at the interface of the optical component to be inspected of the laser processing apparatus is smaller than the passing area of the processing laser beam, and an inspection optical system for scanning the beam spot of the inspection laser beam;
and a light intensity measuring device for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component to be inspected.
 本発明の他の観点によると、
 加工用レーザビームを屈折または反射させる界面を有する少なくとも一つの光学部品を備えたレーザ加工装置を検査する検査方法であって、
 前記レーザ加工装置の検査対象の光学部品の界面における検査用レーザビームのビームスポットが、前記加工用レーザビームの通過領域より小さくなる条件で、界面内で前記検査用レーザビームのビームスポットを走査し、
 前記検査対象の光学部品の界面を透過、または界面で反射した前記検査用レーザビームの光強度を測定する検査方法が提供される。
According to another aspect of the invention,
An inspection method for inspecting a laser processing apparatus having at least one optical component having an interface that refracts or reflects a processing laser beam,
The beam spot of the inspection laser beam is scanned within the interface under the condition that the beam spot of the inspection laser beam at the interface of the optical component to be inspected of the laser processing apparatus is smaller than the passing area of the processing laser beam. ,
An inspection method is provided for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component to be inspected.
 本発明のさらに他の観点によると、
 加工用レーザビームを出力するレーザ発振器と、
 前記レーザ発振器から対象物までの前記加工用レーザビームの経路に配置され、前記加工用レーザビームを屈折または反射させる界面を有する少なくとも一つの光学部品と、
 前記光学部品の界面におけるビームスポットが、前記加工用レーザビームの通過領域より小さくなるように前記光学部品の界面に検査用レーザビームを入射させ、界面内で前記検査用レーザビームのビームスポットを走査する検査光学系と、
 前記光学部品の界面を透過、または界面で反射した前記検査用レーザビームの光強度を測定する光強度測定器と
を備えたレーザ加工装置が提供される。
According to yet another aspect of the invention,
a laser oscillator that outputs a processing laser beam;
at least one optical component disposed on the path of the processing laser beam from the laser oscillator to the object and having an interface that refracts or reflects the processing laser beam;
The inspection laser beam is incident on the interface of the optical component so that the beam spot at the interface of the optical component is smaller than the passing area of the processing laser beam, and the beam spot of the inspection laser beam is scanned within the interface. an inspection optical system for
and a light intensity measuring device for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component.
 検査用レーザビームのビームスポットを加工用レーザビームの通過領域より小さくすることにより、加工用のレーザビームの通過領域の大きさに比べて小さな汚れや傷等の検知感度を高めることができる。 By making the beam spot of the inspection laser beam smaller than the passing area of the processing laser beam, it is possible to increase the detection sensitivity for dirt and scratches that are small compared to the size of the passing area of the processing laser beam.
図1は、一実施例によるレーザ加工装置の概略図である。FIG. 1 is a schematic diagram of a laser processing apparatus according to one embodiment. 図2は、検査用処理装置のブロック図である。FIG. 2 is a block diagram of an inspection processor. 図3Aは、光学部品の模式的な正面図であり、図3Bは、光学部品に検査用レーザビームを入射させている期間に光強度測定器によって測定された光強度の時間変化の一例を示すグラフである。FIG. 3A is a schematic front view of an optical component, and FIG. 3B shows an example of temporal change in light intensity measured by a light intensity measuring device while an inspection laser beam is incident on the optical component. graph. 図4は、一実施例による検査装置を用いてレーザ加工装置の検査を行う手順を示すフローチャートである。FIG. 4 is a flow chart showing a procedure for inspecting a laser processing apparatus using an inspection apparatus according to an embodiment. 図5は、他の実施例によるレーザ加工装置の概略図である。FIG. 5 is a schematic diagram of a laser processing apparatus according to another embodiment. 図6は、さらに他の実施例によるレーザ加工装置の概略図である。FIG. 6 is a schematic diagram of a laser processing apparatus according to still another embodiment. 図7は、さらに他の実施例によるレーザ加工装置の概略図である。FIG. 7 is a schematic diagram of a laser processing apparatus according to still another embodiment. 図8は、さらに他の実施例によるレーザ加工装置の概略図である。FIG. 8 is a schematic diagram of a laser processing apparatus according to still another embodiment. 図9は、さらに他の実施例によるレーザ加工装置の概略図である。FIG. 9 is a schematic diagram of a laser processing apparatus according to still another embodiment. 図10は、さらに他の実施例によるレーザ加工装置の概略図である。FIG. 10 is a schematic diagram of a laser processing apparatus according to still another embodiment.
 図1及び図4を参照して、本願発明の一実施例によるレーザ加工装置及びその検査装置について説明する。 A laser processing apparatus and an inspection apparatus therefor according to an embodiment of the present invention will be described with reference to FIGS.
 図1は、一実施例によるレーザ加工装置の概略図である。加工用レーザ発振器50が加工用レーザビーム40を出力する。図1において、加工用レーザビーム40の光軸を二点鎖線で表している。加工用レーザビーム40は、レンズ等の光学部品51及びその他の光学部品52を経由して対象物60に入射する。対象物60は、ステージ53に保持されている。 FIG. 1 is a schematic diagram of a laser processing apparatus according to one embodiment. A processing laser oscillator 50 outputs a processing laser beam 40 . In FIG. 1, the optical axis of the processing laser beam 40 is indicated by a chain double-dashed line. A processing laser beam 40 enters an object 60 via an optical component 51 such as a lens and other optical components 52 . A target object 60 is held on the stage 53 .
 一例として、加工用レーザ発振器50は、レーザダイオード、Nd:YAGレーザ等の固体レーザ発振器、エキシマレーザ発振器等である。光学部品51は、例えば、ビームエキスパンダを構成する複数のレンズのうちの1枚のレンズである。他の光学部品52には、ビームエキスパンダを構成する残りのレンズ、ビームホモジナイザ、ガルバノスキャナ、fθレンズ、ビーム透過窓等が含まれる。対象物60は、ドーパントがイオン注入された半導体ウエハであり、加工用レーザビーム40によって活性化アニールが行われる。 As an example, the processing laser oscillator 50 is a laser diode, a solid-state laser oscillator such as an Nd:YAG laser, an excimer laser oscillator, or the like. The optical component 51 is, for example, one lens out of a plurality of lenses forming a beam expander. Other optical components 52 include the remaining lenses that make up the beam expander, a beam homogenizer, a galvanometer scanner, an fθ lens, a beam transmission window, and the like. The object 60 is a semiconductor wafer implanted with dopant ions, and is subjected to activation annealing by the processing laser beam 40 .
 本実施例によるレーザ加工装置は、これらの光学部品の他に検査装置を備えている。検査装置は、検査光学系10、光強度測定器20、検査用処理装置25、及び出力装置26を含む。検査光学系10は、検査用レーザ発振器11、集光レンズ12、ビーム走査器13、及び移動機構14を含む。ビーム走査器13は、例えば、一対の揺動ミラー13A、13Bを含むガルバノスキャナである。一方の揺動ミラー13Bは、移動機構14を駆動することにより、加工用レーザビーム40の経路を塞ぐ位置(以下、検査位置という。)と、加工用レーザビーム40の経路と空間的に干渉しない位置(以下、待機位置という。)との間で並進移動する。図1において、検査位置の揺動ミラー13Bを実線で示し、待機位置の揺動ミラー13Bを破線で示している。揺動ミラー13Bが並進移動する方向を両矢印で表している。 The laser processing apparatus according to this embodiment includes an inspection device in addition to these optical components. The inspection apparatus includes an inspection optical system 10 , a light intensity measuring device 20 , an inspection processing device 25 and an output device 26 . The inspection optical system 10 includes an inspection laser oscillator 11 , a condenser lens 12 , a beam scanner 13 and a moving mechanism 14 . The beam scanner 13 is, for example, a galvanometer scanner including a pair of oscillating mirrors 13A and 13B. By driving the moving mechanism 14, the swinging mirror 13B has a position (hereinafter referred to as an inspection position) blocking the path of the processing laser beam 40 and does not spatially interfere with the path of the processing laser beam 40. position (hereinafter referred to as standby position). In FIG. 1, the swing mirror 13B at the inspection position is indicated by a solid line, and the swing mirror 13B at the standby position is indicated by a broken line. A double arrow indicates the direction in which the swing mirror 13B translates.
 検査用レーザ発振器11が検査用レーザビーム30を出力する。検査用レーザビーム30は、連続波レーザビームでもよいし、パルスレーザビームでもよい。揺動ミラー13Bを検査位置に配置した状態で、検査用レーザビーム30は、集光レンズ12、揺動ミラー13A、及び揺動ミラー13Bを経由して光学部品51に入射する。光学部品51は、レーザビームを屈折させる2つの界面を有する。この2つの界面は、レンズの表面に相当する。 The inspection laser oscillator 11 outputs an inspection laser beam 30 . The inspection laser beam 30 may be a continuous wave laser beam or a pulse laser beam. With the oscillating mirror 13B placed at the inspection position, the inspection laser beam 30 enters the optical component 51 via the condenser lens 12, the oscillating mirror 13A, and the oscillating mirror 13B. The optical component 51 has two interfaces that refract the laser beam. These two interfaces correspond to the surface of the lens.
 集光レンズ12は、光学部品51の2つの界面における検査用レーザビーム30のビームスポットが、加工用レーザビーム40の通過領域より小さくなるように検査用レーザビーム30を収束させる。ビーム走査器13は、光学部品51の表面内でビームスポットを移動させる。ビーム走査器13の一方の揺動ミラー13Aと、他方の揺動ミラー13Bとは、それぞれビームスポットを相互に直交する方向に移動させる。図1において、揺動ミラー13Aはビームスポットを紙面に垂直な方向に移動させ、揺動ミラー13Bは、ビームスポットを紙面に平行な方向に移動させる。 The condenser lens 12 converges the inspection laser beam 30 so that the beam spot of the inspection laser beam 30 at the two interfaces of the optical component 51 is smaller than the passing area of the processing laser beam 40 . Beam scanner 13 moves the beam spot within the surface of optical component 51 . One oscillating mirror 13A and the other oscillating mirror 13B of the beam scanner 13 move beam spots in mutually orthogonal directions. In FIG. 1, the oscillating mirror 13A moves the beam spot in a direction perpendicular to the paper, and the oscillating mirror 13B moves the beam spot in a direction parallel to the paper.
 光強度測定器20が、移動機構21によって、加工用レーザビーム40の経路を塞ぐ検査位置と、加工用レーザビーム40の経路と空間的に干渉しない待機位置との間で並進移動する。図1において、検査位置の光強度測定器20を実線で示し、待機位置の光強度測定器20を破線で示している。光強度測定器20が並進移動する方向を両矢印で表している。 The light intensity measuring device 20 is translated by the moving mechanism 21 between an inspection position that blocks the path of the processing laser beam 40 and a standby position that does not spatially interfere with the path of the processing laser beam 40 . In FIG. 1, the light intensity measuring device 20 at the inspection position is indicated by a solid line, and the light intensity measuring device 20 at the standby position is indicated by a broken line. The directions in which the light intensity measuring device 20 translates are indicated by double arrows.
 光学部品51を透過した検査用レーザビーム30が、光強度測定器20に入射する。光強度測定器20は、入射した検査用レーザビーム30の光強度を測定する。光強度測定器20で測定された測定結果が検査用処理装置25に入力される。 The inspection laser beam 30 that has passed through the optical component 51 is incident on the light intensity measuring device 20 . The light intensity measuring device 20 measures the light intensity of the incident inspection laser beam 30 . A measurement result obtained by the light intensity measuring device 20 is input to the inspection processing device 25 .
 図2は、検査用処理装置25のブロック図である。検査用処理装置25は、レーザ発振制御部25A、移動機構制御部25B、ビーム走査制御部25C、光強度測定部25D、及び出力制御部25Eを含む。レーザ発振制御部25Aは、検査用レーザ発振器11を制御して検査用のレーザビームを出力させる。移動機構制御部25Bは、移動機構14、21を制御して、揺動ミラー13B(図1)及び光強度測定器20(図1)を、待機位置と検査位置との間で移動させる。 FIG. 2 is a block diagram of the processing device 25 for inspection. The inspection processing device 25 includes a laser oscillation control section 25A, a moving mechanism control section 25B, a beam scanning control section 25C, a light intensity measurement section 25D, and an output control section 25E. The laser oscillation control unit 25A controls the inspection laser oscillator 11 to output an inspection laser beam. The moving mechanism controller 25B controls the moving mechanisms 14 and 21 to move the swing mirror 13B (FIG. 1) and the light intensity measuring device 20 (FIG. 1) between the standby position and the inspection position.
 ビーム走査制御部25Cは、ビーム走査器13を制御して、光学部品51(図1)の表面内で、検査用レーザビームのビームスポットを移動させる。光強度測定部25Dは、光強度測定器20で測定された測定結果を取得する。出力制御部25Eは、光強度測定部25Dが取得した光強度の測定結果を、種々の態様で出力装置26に出力する。出力装置26には、例えば画像表示装置が用いられ、出力制御部25Eは、例えば光強度の測定結果を図形またはグラフ等で表示する。 The beam scanning controller 25C controls the beam scanner 13 to move the beam spot of the inspection laser beam within the surface of the optical component 51 (FIG. 1). The light intensity measuring unit 25D acquires the measurement result measured by the light intensity measuring device 20. FIG. The output control unit 25E outputs the measurement result of the light intensity acquired by the light intensity measurement unit 25D to the output device 26 in various forms. An image display device, for example, is used as the output device 26, and the output control unit 25E displays, for example, the measurement result of the light intensity in a graphic form or a graph.
 次に、図3Aを参照して光学部品51、加工用レーザビーム40、及び検査用レーザビーム30の相対的な位置関係について説明する。 Next, the relative positional relationship between the optical component 51, the processing laser beam 40, and the inspection laser beam 30 will be described with reference to FIG. 3A.
 図3Aは、光学部品51の模式的な正面図である。加工用レーザビーム40(図1)の通過領域41を破線で示す。光学部品51の表面に付着物45が付着しており、傷46が発生している。加工用レーザビーム40の通過領域41は、付着物45や傷46の大きさに比べて十分大きい。このため、付着物45及び傷46は、加工用レーザビーム40の伝搬に大きな影響を及ぼさない。ただし、付着物45や傷46の個数が増加すると、加工用レーザビーム40の伝搬に大きな影響を与えるようになり、対象物60の表面において所望の強度が得られなくなる状況が発生し得る。 3A is a schematic front view of the optical component 51. FIG. A passing region 41 of the processing laser beam 40 (FIG. 1) is indicated by a dashed line. A deposit 45 adheres to the surface of the optical component 51 and a scratch 46 is generated. A passing region 41 of the processing laser beam 40 is sufficiently large compared to the sizes of the deposits 45 and the scratches 46 . Therefore, the deposits 45 and the scratches 46 do not greatly affect the propagation of the processing laser beam 40 . However, when the number of deposits 45 and scratches 46 increases, the propagation of the processing laser beam 40 is greatly affected, and a situation may arise in which the desired intensity cannot be obtained on the surface of the object 60 .
 検査用レーザビーム30(図1)のビームスポット31は、加工用レーザビーム40の通過領域41より小さく、想定される付着物45や傷46と同程度の大きさである。ビーム走査器13(図1)で検査用レーザビーム30を走査すると、ビームスポット31が光学部品51の表面内で移動軌跡32に沿って移動する。すなわち、ビームスポット31の主走査と副走査とを繰り返すことにより、光学部品51の表面のほぼ全域をビームスポット31で走査する。検査用レーザビーム30がパルスレーザビームである場合には、時間軸上で隣り合う2つのレーザパルスのビームスポット31がオーバラップするようにビームスポット31の移動速度を設定すればよい。 The beam spot 31 of the inspection laser beam 30 (FIG. 1) is smaller than the passing area 41 of the processing laser beam 40, and is about the same size as the assumed deposit 45 and flaw 46. When the inspection laser beam 30 is scanned by the beam scanner 13 (FIG. 1), the beam spot 31 moves along the movement locus 32 within the surface of the optical component 51 . That is, by repeating main scanning and sub-scanning of the beam spot 31 , almost the entire surface of the optical component 51 is scanned with the beam spot 31 . When the inspection laser beam 30 is a pulsed laser beam, the moving speed of the beam spot 31 may be set so that the beam spots 31 of two laser pulses adjacent on the time axis overlap each other.
 集光レンズ12(図1)から光学部品51の表面までの光路長は、検査用レーザビーム30の入射位置に応じて変動する。このため、光学部品51の表面における検査用レーザビーム30のビームスポット31(図3A)の大きさも、表面内の位置に応じて変動する。ただし、ビームスポット31の大きさの変動範囲内でビームスポット31が最も大きくなった状態でも、その大きさは、加工用レーザビーム40の通過領域41より十分小さく、かつ想定される付着物45や傷46と同程度の大きさである。 The optical path length from the condenser lens 12 (FIG. 1) to the surface of the optical component 51 varies according to the incident position of the inspection laser beam 30 . Therefore, the size of the beam spot 31 (FIG. 3A) of the inspection laser beam 30 on the surface of the optical component 51 also varies depending on the position on the surface. However, even in the state where the beam spot 31 is the largest within the variation range of the size of the beam spot 31, the size is sufficiently smaller than the passing area 41 of the processing laser beam 40, and the expected deposit 45 or It is about the same size as the scratch 46 .
 図3Bは、光学部品51の表面を検査用レーザビーム30で走査している期間に光強度測定器20(図1)によって測定された光強度の時間変化の一例を示すグラフである。横軸は経過時間を表し、縦軸は光強度を表す。時刻t1、t2、t3で光強度が低下している。時刻t1、t2での光強度の低下は、付着物45に起因し、時刻t3での光強度の低下は傷46に起因する。 FIG. 3B is a graph showing an example of temporal changes in light intensity measured by the light intensity measuring device 20 (FIG. 1) while the surface of the optical component 51 is being scanned with the inspection laser beam 30. FIG. The horizontal axis represents elapsed time, and the vertical axis represents light intensity. The light intensity decreases at times t1, t2, and t3. The drop in light intensity at times t1 and t2 is caused by the deposit 45, and the drop in light intensity at time t3 is caused by the scratch 46. FIG.
 検査用処理装置25の出力制御部25Eは、光強度測定器20の測定結果を、図3Bに示すような時間波形のグラフとして、出力装置26(図1)に表示する。 The output control unit 25E of the inspection processing device 25 displays the measurement results of the light intensity measuring device 20 on the output device 26 (FIG. 1) as a time waveform graph as shown in FIG. 3B.
 図4は、本実施例による検査装置を用いてレーザ加工装置の検査を行う手順を示すフローチャートである。まず、移動機構制御部25B(図2)が移動機構14、21を制御して、揺動ミラー13B(図1)及び光強度測定器20(図1)を待機位置から検査位置まで移動させる(ステップS1)。次に、レーザ発振制御部25A(図2)が検査用レーザ発振器11を制御して検査用レーザビームを出力させ、ビーム走査制御部25C(図2)がビーム走査器13を制御して検査用レーザビームを図2Aに示したように走査する(ステップS2)。さらに、光強度測定部25Dが光強度測定器20から光強度の測定結果を取得する(ステップS2)。 FIG. 4 is a flow chart showing the procedure for inspecting the laser processing apparatus using the inspection apparatus according to this embodiment. First, the moving mechanism control unit 25B (FIG. 2) controls the moving mechanisms 14 and 21 to move the swing mirror 13B (FIG. 1) and the light intensity measuring device 20 (FIG. 1) from the standby position to the inspection position ( step S1). Next, the laser oscillation control unit 25A (FIG. 2) controls the inspection laser oscillator 11 to output an inspection laser beam, and the beam scanning control unit 25C (FIG. 2) controls the beam scanner 13 to output an inspection laser beam. A laser beam is scanned as shown in FIG. 2A (step S2). Further, the light intensity measuring unit 25D acquires the light intensity measurement result from the light intensity measuring device 20 (step S2).
 光学部品51(図3A)の表面の走査が終了すると、出力制御部25E(図2)が光強度の測定結果を出力装置26に出力する(ステップS3)。その後、または並行して、移動機構制御部25B(図2)が移動機構14、21を制御して、揺動ミラー13B(図1)及び光強度測定器20(図1)を検査位置から待機位置まで移動させる(ステップS4) When the scanning of the surface of the optical component 51 (FIG. 3A) is completed, the output control unit 25E (FIG. 2) outputs the light intensity measurement result to the output device 26 (step S3). After that, or in parallel, the moving mechanism control unit 25B (FIG. 2) controls the moving mechanisms 14 and 21 to wait the swing mirror 13B (FIG. 1) and the light intensity measuring device 20 (FIG. 1) from the inspection position. Move to position (step S4)
 次に、上記実施例の優れた効果について説明する。
 光学部品51の表面における加工用レーザビーム40の通過領域41(図3A)と比べて、付着物45や傷46(図3A)が十分小さい場合には、光学部品51を通過するときの加工用レーザビーム40の光強度の減衰率はわずかである。このため、加工用レーザビーム40の光強度を測定しても、付着物45や傷46を検知することは困難である。
Next, the excellent effects of the above embodiment will be described.
If the deposits 45 and flaws 46 (FIG. 3A) on the surface of the optical component 51 are sufficiently small compared to the passing area 41 (FIG. 3A) of the processing laser beam 40, the processing laser beam 40 for processing when passing through the optical component 51 can be used. The attenuation rate of the light intensity of the laser beam 40 is slight. Therefore, even if the light intensity of the processing laser beam 40 is measured, it is difficult to detect the adhering matter 45 and the flaw 46 .
 これに対して上記実施例では、検査用レーザビーム30のビームスポット31(図3A)を、加工用レーザビーム40の通過領域41より小さくしている。このため、付着物45や傷46が小さい場合であっても、光学部品51を透過するときに、検査用レーザビーム30の光強度の減衰率が大きくなる。これにより、小さな付着物45や傷46の検知感度が高くなる。これにより、加工不良が発生する前に、その兆候を検知することができる。 On the other hand, in the above embodiment, the beam spot 31 (FIG. 3A) of the inspection laser beam 30 is made smaller than the passing area 41 of the processing laser beam 40 . Therefore, even if the adhering matter 45 or the scratch 46 is small, the attenuation rate of the light intensity of the inspection laser beam 30 increases when it passes through the optical component 51 . As a result, the detection sensitivity of small adhering matter 45 and scratches 46 is increased. This makes it possible to detect signs of machining defects before they occur.
 一例として、光学部品51の表面における検査用レーザビーム30のビームスポット31の直径を、光学部品51の表面における加工用レーザビーム40の通過領域41(図3A)の最小包含円の直径の1/10以下にすることが好ましい。これにより、加工用レーザビーム40の光強度の減衰率の測定では検知が困難な付着物45や傷46を検知することが可能になる。また、想定される付着物45や傷46の寸法から、光学部品51の表面における検査用レーザビーム30のビームスポット31の直径を50μm以下にすることが好ましい。逆に、ビームスポット31を小さくし過ぎると、検査用レーザビーム30で光学部品51の表面のほぼ全域を走査するための所要時間が長くなってしまう。したがって、ビームスポット31の直径を5μm以上にすることが好ましい。 As an example, the diameter of the beam spot 31 of the inspection laser beam 30 on the surface of the optical component 51 is 1/ the diameter of the minimum enclosing circle of the passing region 41 (FIG. 3A) of the processing laser beam 40 on the surface of the optical component 51. 10 or less is preferable. This makes it possible to detect the adhering matter 45 and the flaw 46 that are difficult to detect by measuring the attenuation rate of the light intensity of the processing laser beam 40 . In addition, it is preferable to set the diameter of the beam spot 31 of the inspection laser beam 30 on the surface of the optical component 51 to 50 μm or less in view of the size of the assumed deposit 45 and flaw 46 . Conversely, if the beam spot 31 is made too small, the time required for scanning almost the entire surface of the optical component 51 with the inspection laser beam 30 will become longer. Therefore, it is preferable to set the diameter of the beam spot 31 to 5 μm or more.
 次に、検査用レーザビーム30の好ましい波長について説明する。光学部品51の付着物45や傷46(図3A)を検出するためには、検査用レーザビーム30の波長域において、付着物45や傷46が無い領域における光学部品51の透過率が十分高いことが好ましい。通常、光学部品51は、加工用レーザビーム40の波長域において透過率が最大になるように無反射コーティングされている。したがって、検査用レーザビーム30の波長を、加工用レーザビーム40の波長とほぼ同一にすることが好ましい。なお、検査用レーザビーム30に対して十分高い透過率が得られる場合には、必ずしも検査用レーザビーム30の波長を加工用レーザビーム40の波長と同一にする必要はない。 Next, a preferable wavelength of the inspection laser beam 30 will be described. In order to detect the deposits 45 and scratches 46 (FIG. 3A) of the optical component 51, the transmittance of the optical component 51 is sufficiently high in the wavelength region of the inspection laser beam 30 in the region where the deposits 45 and scratches 46 are not present. is preferred. The optical component 51 is usually coated with an antireflection coating so as to maximize the transmittance in the wavelength range of the processing laser beam 40 . Therefore, it is preferable to make the wavelength of the inspection laser beam 30 substantially the same as the wavelength of the processing laser beam 40 . It should be noted that the wavelength of the inspection laser beam 30 does not necessarily have to be the same as the wavelength of the processing laser beam 40 if a sufficiently high transmittance can be obtained for the inspection laser beam 30 .
 次に、上記実施例の変形例について説明する。
 上記実施例では、レーザ加工装置を構成する複数の光学部品のうち、1つの光学部品51に対して検査装置を設けているが、その他の複数の光学部品に対して、それぞれ同様の検査装置を設けてもよい。この場合、検査用処理装置25及び出力装置26は、複数の検査装置で共用してもよい。
Next, a modification of the above embodiment will be described.
In the above-described embodiment, the inspection device is provided for one optical component 51 out of the plurality of optical components that constitute the laser processing apparatus. may be provided. In this case, the inspection processing device 25 and the output device 26 may be shared by a plurality of inspection devices.
 上記実施例では、加工用レーザ発振器50とは別に検査用レーザ発振器11を配置しているが、加工用レーザ発振器50から出力されたレーザビームを検査用レーザビームとして用いてもよい。例えば、加工用レーザ発振器50から出力されたレーザビームを、ミラー等を経由して検査光学系10の集光レンズ12まで導光すればよい。 In the above embodiment, the inspection laser oscillator 11 is arranged separately from the processing laser oscillator 50, but the laser beam output from the processing laser oscillator 50 may be used as the inspection laser beam. For example, the laser beam output from the processing laser oscillator 50 may be guided to the condenser lens 12 of the inspection optical system 10 via a mirror or the like.
 上記実施例では、光強度測定器20(図1)による測定結果を、図3Bに示したグラフ形式で出力装置26(図1)に表示させている。その他に、図3Bに示した時間波形のグラフを、光学部品51の表面における二次元の光強度分布に変換して、二次元画像として出力装置26に表示してもよい。また、検査用処理装置25(図1)が、図3Bに示したグラフの波形を分析して、付着物45や傷46(図3A)の有無を判定し、判定結果を出力装置26に出力するようにしてもよい。 In the above embodiment, the measurement results of the light intensity measuring device 20 (Fig. 1) are displayed on the output device 26 (Fig. 1) in the graph format shown in Fig. 3B. Alternatively, the time waveform graph shown in FIG. 3B may be converted into a two-dimensional light intensity distribution on the surface of the optical component 51 and displayed on the output device 26 as a two-dimensional image. Also, the inspection processing device 25 (FIG. 1) analyzes the waveform of the graph shown in FIG. You may make it
 上記実施例では、加工用レーザビーム40を屈折させる光学部品51の界面(表面)の検査を行うが、加工用レーザビーム40を反射させる界面(表面)を持つ光学部品の検査を行うことも可能である。例えば、平面鏡、凹面鏡、凸面鏡等の反射面に付着した不着物や、反射面の傷等の有無を検査することができる。この場合には、検査用レーザビーム30で反面面を走査し、反射面からの反射光の強度を測定すればよい。 In the above embodiment, the interface (surface) of the optical component 51 that refracts the processing laser beam 40 is inspected, but it is also possible to inspect an optical component that has an interface (surface) that reflects the processing laser beam 40. is. For example, it is possible to inspect the presence or absence of any foreign matter adhering to a reflecting surface such as a plane mirror, a concave mirror, or a convex mirror, or whether there is a scratch or the like on the reflecting surface. In this case, the inspection laser beam 30 scans the opposite surface and measures the intensity of the reflected light from the reflecting surface.
 次に、図5を参照して他の実施例によるレーザ加工装置について説明する。以下、図1~図4に示した実施例によるレーザ加工装置と共通の構成については説明を省略する。 Next, a laser processing apparatus according to another embodiment will be described with reference to FIG. In the following, the description of the configuration common to the laser processing apparatus according to the embodiment shown in FIGS. 1 to 4 will be omitted.
 図5は、本実施例によるレーザ加工装置の概略図である。図1に示した実施例では、ビーム走査器13の一方の揺動ミラー13Bを、検査位置と待機位置との間で並進移動させている。これに対して図5に示した実施例では、ビーム走査器13を構成する一対の揺動ミラーは並進移動させず、移動ミラー15を移動機構14によって、検査位置と待機位置との間で並進移動させる。図5において、検査位置の移動ミラー15を実線で表し、待機位置の移動ミラー15を破線で表している。ビーム走査器13で走査された検査用レーザビーム30が、検査位置の移動ミラー15で反射されて検査対象の光学部品51に入射する。 FIG. 5 is a schematic diagram of the laser processing apparatus according to this embodiment. In the embodiment shown in FIG. 1, one swinging mirror 13B of the beam scanner 13 is translated between the inspection position and the standby position. On the other hand, in the embodiment shown in FIG. 5, the pair of oscillating mirrors constituting the beam scanner 13 are not translated, but the movable mirror 15 is translated between the inspection position and the standby position by the moving mechanism 14. move. In FIG. 5, the movable mirror 15 at the inspection position is indicated by a solid line, and the movable mirror 15 at the standby position is indicated by a broken line. The inspection laser beam 30 scanned by the beam scanner 13 is reflected by the moving mirror 15 at the inspection position and enters the optical component 51 to be inspected.
 次に、図5に示した実施例の優れた効果について説明する。
 本実施例においても図1~図4に示した実施例と同様に、光学部品51の付着物45や傷46(図3A)を感度よく検知することができる。また、図1~図4に示した実施例では、移動機構14が、揺動ミラー13Bとともに、揺動機構を移動させる必要がある。これに対して本実施例では、移動ミラー15は揺動しないため、移動機構14は揺動機構を移動させる必要がない。このため、移動機構14を小型化することができる。
Next, the excellent effects of the embodiment shown in FIG. 5 will be described.
Also in this embodiment, as in the embodiment shown in FIGS. 1 to 4, the deposits 45 and scratches 46 (FIG. 3A) on the optical component 51 can be detected with high sensitivity. Further, in the embodiment shown in FIGS. 1 to 4, the moving mechanism 14 must move the swinging mechanism together with the swinging mirror 13B. In contrast, in this embodiment, since the moving mirror 15 does not swing, the moving mechanism 14 does not need to move the swinging mechanism. Therefore, the moving mechanism 14 can be downsized.
 次に、図6を参照してさらに他の実施例によるレーザ加工装置について説明する。以下、図1~図4に示した実施例と共通の構成については説明を省略する。 Next, a laser processing apparatus according to still another embodiment will be described with reference to FIG. Hereinafter, explanations of configurations common to the embodiments shown in FIGS. 1 to 4 will be omitted.
 図6は、本実施例によるレーザ加工装置の概略図である。図1~図4に示した実施例では、移動機構14が、検査光学系10の一部の光学部品を検査位置と待機位置との間で並進移動させ、移動機構21が光強度測定器20を検査位置と待機位置との間で並進移動させている。これに対して本実施例では、検査光学系10のいずれの光学部品も並進移動しない。ビーム走査器13が、加工用レーザビーム40の経路と空間的に干渉しない位置に配置されている。ビーム走査器13の走査範囲内のいずれの検査用レーザビーム30も、光学部品51に斜め方向から入射する。 FIG. 6 is a schematic diagram of the laser processing apparatus according to this embodiment. In the embodiment shown in FIGS. 1 to 4, the moving mechanism 14 translates some optical components of the inspection optical system 10 between the inspection position and the standby position, and the moving mechanism 21 moves the light intensity measuring device 20. is translated between the inspection position and the standby position. In contrast, in this embodiment, none of the optical components of the inspection optical system 10 is translated. The beam scanner 13 is arranged at a position that does not spatially interfere with the path of the processing laser beam 40 . Any inspection laser beam 30 within the scanning range of the beam scanner 13 is incident on the optical component 51 from an oblique direction.
 斜め方向から光学部品51に入射し、光学部品51を透過した検査用レーザビーム30が入射する位置に、光強度測定器20が配置されている。光強度測定器20も並進移動せず、加工用レーザビーム40の経路と空間的に干渉しない位置に配置されている。 The light intensity measuring device 20 is arranged at a position where the inspection laser beam 30 that has obliquely entered the optical component 51 and passed through the optical component 51 is incident. The light intensity measuring device 20 also does not translate and is arranged at a position that does not spatially interfere with the path of the processing laser beam 40 .
 本実施例では、検査用レーザビーム30が光学部品51に入射するときの入射角が、図1~図4に示したレーザ加工装置における入射角より大きい。このため、集光レンズ12から光学部品51までの光路長が、入射位置によって大きく変動する。このため、光学部品51の表面におけるビームスポット31(図3A)の大きさの変動が大きくなる。ビームスポット31の大きさの変動範囲内でビームスポット31が最も大きくなった状態でも、その大きさは、加工用レーザビーム40の通過領域41より十分小さく、かつ想定される付着物45や傷46と同程度の大きさになるように集光レンズ12等の光学系が調整されている。 In this embodiment, the incident angle when the inspection laser beam 30 is incident on the optical component 51 is larger than the incident angle in the laser processing apparatus shown in FIGS. Therefore, the optical path length from the condenser lens 12 to the optical component 51 varies greatly depending on the incident position. Therefore, the variation in the size of the beam spot 31 (FIG. 3A) on the surface of the optical component 51 is increased. Even in the state where the beam spot 31 is the largest within the variation range of the size of the beam spot 31, the size is sufficiently smaller than the passing area 41 of the processing laser beam 40, and the expected deposits 45 and scratches 46 are observed. The optical system such as the condensing lens 12 is adjusted so that the size is about the same.
 走査線の間隔を、ビームスポット31の大きさに応じて調整してもよい。例えば、ビームスポット31が相対的に小さい領域では、走査線の間隔を相対的に狭くし、ビームスポット31が相対的に大きい領域では、走査線の間隔を相対的に広くしてもよい。 The interval between scanning lines may be adjusted according to the size of the beam spot 31. For example, in areas where the beam spot 31 is relatively small, the scanning line spacing may be relatively narrow, and in areas where the beam spot 31 is relatively large, the scanning line spacing may be relatively wide.
 次に、図6に示した実施例の優れた効果について説明する。
 本実施例においても図1~図4に示した実施例と同様に、光学部品51の付着物45や傷46(図3A)を感度よく検知することができる。さらに、本実施例では、検査装置が並進移動機構を備える必要がない。このため、装置の小型化、コスト削減を図ることが可能である。
Next, the excellent effects of the embodiment shown in FIG. 6 will be described.
Also in this embodiment, as in the embodiment shown in FIGS. 1 to 4, the deposits 45 and scratches 46 (FIG. 3A) on the optical component 51 can be detected with high sensitivity. Furthermore, in this embodiment, the inspection device does not need to have a translation mechanism. Therefore, it is possible to reduce the size and cost of the device.
 次に、図7を参照してさらに他の実施例によるレーザ加工装置について説明する。以下、図6に示した実施例と共通の構成については説明を省略する。 Next, a laser processing apparatus according to still another embodiment will be described with reference to FIG. Hereinafter, the description of the configuration common to the embodiment shown in FIG. 6 will be omitted.
 図7は、本実施例によるレーザ加工装置の概略図である。図6に示した実施例では、加工用レーザビーム40の経路から見て、ビーム走査器13と光強度測定器20とが相互に反対側に配置されている。これに対して本実施例では、加工用レーザビーム40の経路から見て、ビーム走査器13と光強度測定器20とが同じ側に配置されている。加工用レーザビーム40の経路から見て、ビーム走査器13の反対側にミラー22が配置されている。光学部品51を透過した検査用レーザビーム30がミラー22に入射する。ミラー22で反射された検査用レーザビーム30が光強度測定器20に入射する。 FIG. 7 is a schematic diagram of the laser processing apparatus according to this embodiment. In the embodiment shown in FIG. 6, the beam scanner 13 and the light intensity measuring device 20 are arranged on opposite sides of each other when viewed from the path of the processing laser beam 40 . In contrast, in this embodiment, the beam scanner 13 and the light intensity measuring device 20 are arranged on the same side as viewed from the path of the processing laser beam 40 . A mirror 22 is arranged on the opposite side of the beam scanner 13 as viewed from the path of the processing laser beam 40 . The inspection laser beam 30 that has passed through the optical component 51 is incident on the mirror 22 . The inspection laser beam 30 reflected by the mirror 22 enters the light intensity measuring device 20 .
 次に、図7に示した実施例の優れた効果について説明する。
 本実施例においても図6に示した実施例と同様に、光学部品51の付着物45や傷46(図3A)を感度よく検知することができる。加工用レーザビーム40の経路から見てビーム走査器13の反対側に光強度測定器20を配置する空間的余裕がない場合に、本実施例による構成を採用するとよい。
Next, the excellent effects of the embodiment shown in FIG. 7 will be described.
Also in this embodiment, similarly to the embodiment shown in FIG. 6, the attached matter 45 and the scratch 46 (FIG. 3A) on the optical component 51 can be detected with high sensitivity. The configuration according to this embodiment may be adopted when there is no space for arranging the light intensity measuring device 20 on the opposite side of the beam scanner 13 as viewed from the path of the processing laser beam 40 .
 次に、図7に示した実施例の変形例について説明する。図7に示した実施例によるレーザ加工装置に用いられているミラー22は平面鏡であるが、平面鏡に代えて凹面鏡を用いてもよい。例えば、ビーム走査器13と光強度測定器20とを、凹面鏡の共役点の位置に配置することにより、受光面の小さな光強度測定器20を用いることができる。 Next, a modification of the embodiment shown in FIG. 7 will be described. Although the mirror 22 used in the laser processing apparatus according to the embodiment shown in FIG. 7 is a plane mirror, a concave mirror may be used instead of the plane mirror. For example, by arranging the beam scanner 13 and the light intensity measuring device 20 at the position of the conjugate point of the concave mirror, the light intensity measuring device 20 with a small light receiving surface can be used.
 次に、図8を参照してさらに他の実施例によるレーザ加工装置について説明する。以下、図6に示した実施例と共通の構成については説明を省略する。 Next, a laser processing apparatus according to still another embodiment will be described with reference to FIG. Hereinafter, the description of the configuration common to the embodiment shown in FIG. 6 will be omitted.
 図8は、本実施例によるレーザ加工装置の概略図である。図6に示した実施例では、光学部品51を透過した検査用レーザビーム30の光強度を、光強度測定器20で測定している。これに対して図8に示した実施例では、光学部品51の表面で反射した検査用レーザビーム30の光強度を、光強度測定器20で測定する。 FIG. 8 is a schematic diagram of the laser processing apparatus according to this embodiment. In the embodiment shown in FIG. 6, the light intensity of the inspection laser beam 30 transmitted through the optical component 51 is measured by the light intensity measuring device 20 . On the other hand, in the embodiment shown in FIG. 8, the light intensity measuring device 20 measures the light intensity of the inspection laser beam 30 reflected by the surface of the optical component 51 .
 図6に示した実施例では、検査用レーザビーム30として、加工用レーザビーム40に対して無反射コーティングされた光学部品51の透過率が十分大きな波長域のものを用いる。これに対して本実施例では、光学部品51の表面における反射率がある程度大きな波長域の検査用レーザビーム30を用いる。 In the embodiment shown in FIG. 6, as the inspection laser beam 30, a wavelength band in which the transmittance of the optical component 51 coated with antireflection coating with respect to the processing laser beam 40 is sufficiently large is used. On the other hand, in the present embodiment, the inspection laser beam 30 in a wavelength range in which the surface of the optical component 51 has a relatively large reflectance is used.
 次に、図8に示した実施例の優れた効果について説明する。
 光学部品51の表面の付着物45や傷46(図3A)によって、光学部品51の表面での反射率が変化する。光学部品51の表面で反射された検査用レーザビーム30の光強度を測定することにより、この反射率の変化を検出し、付着物45や傷46の有無を検知することができる。なお、付着物45によっては、反射率が低くなる場合や高くなる場合がある。いずれの場合でも、反射率の変化を検出することにより、付着物45の有無を判定することができる。
Next, the excellent effects of the embodiment shown in FIG. 8 will be described.
The reflectance on the surface of the optical component 51 changes due to the deposits 45 and scratches 46 (FIG. 3A) on the surface of the optical component 51 . By measuring the light intensity of the inspection laser beam 30 reflected by the surface of the optical component 51 , it is possible to detect the change in reflectance and detect the presence or absence of the adhering matter 45 and the flaw 46 . It should be noted that the reflectance may be low or high depending on the adhering matter 45 . In either case, the presence or absence of the deposit 45 can be determined by detecting a change in reflectance.
 次に、図9を参照してさらに他の実施例について説明する。以下、図5に示した実施例と共通の構成については説明を省略する。 Next, still another embodiment will be described with reference to FIG. Hereinafter, the description of the configuration common to the embodiment shown in FIG. 5 will be omitted.
 図9は、本実施例によるレーザ加工装置の概略図である。図5に示した実施例では、1つの検査光学系10に対して1つの光強度測定器20が配置されている。これに対して本実施例では、1つの検査光学系10に対して複数の光強度測定器20A、20B、20C、20Dが配置されている。複数の光強度測定器20A、20B、20C、20Dは、加工用レーザビーム40の上流側から下流側に向かってこの順番に配置されている。複数の光強度測定器20A~20Dは、それぞれ検査位置と待機位置との間で並進移動可能である。 FIG. 9 is a schematic diagram of the laser processing apparatus according to this embodiment. In the embodiment shown in FIG. 5, one light intensity measuring device 20 is arranged for one inspection optical system 10 . In contrast, in this embodiment, a plurality of light intensity measuring devices 20A, 20B, 20C, and 20D are arranged for one inspection optical system 10. FIG. A plurality of light intensity measuring devices 20A, 20B, 20C, and 20D are arranged in this order from the upstream side to the downstream side of the processing laser beam 40 . Each of the plurality of light intensity measuring devices 20A-20D can be translated between an inspection position and a standby position.
 検査光学系10と光強度測定器20Aとの間に、1つの光学部品51が配置されている。検査光学系10と光強度測定器20Bとの間に、2つの光学部品51、54が配置されている。検査光学系10と光強度測定器20Cとの間に、3つの光学部品51、54、55が配置されている。検査光学系10と光強度測定器20Dとの間に、4つの光学部品51、54、55、56が配置されている。 A single optical component 51 is arranged between the inspection optical system 10 and the light intensity measuring device 20A. Two optical components 51 and 54 are arranged between the inspection optical system 10 and the light intensity measuring device 20B. Three optical components 51, 54 and 55 are arranged between the inspection optical system 10 and the light intensity measuring device 20C. Four optical components 51, 54, 55 and 56 are arranged between the inspection optical system 10 and the light intensity measuring device 20D.
 また、図5に示した実施例では、検査光学系10の集光レンズ12の焦点距離が固定されている。これに対して本実施例では、集光レンズ12として焦点距離可変のレンズが用いられる。集光レンズ12の焦点距離は、検査用処理装置25によって制御される。 Also, in the embodiment shown in FIG. 5, the focal length of the condenser lens 12 of the inspection optical system 10 is fixed. In contrast, in this embodiment, a lens with a variable focal length is used as the condenser lens 12 . The focal length of the condenser lens 12 is controlled by the inspection processor 25 .
 なお、図9に示した実施例では、加工用レーザビーム40を反射する2枚のミラー59が配置されているが、ミラー59は必ずしも必要ではなく、またその枚数も2枚であるとは限らない。 In the embodiment shown in FIG. 9, two mirrors 59 are arranged to reflect the processing laser beam 40, but the mirrors 59 are not necessarily required, and the number of mirrors is not limited to two. do not have.
 加工用レーザビーム40の上流側から数えて1番目の光強度測定器20Aを検査位置に配置した状態は、図5に示した実施例の光強度測定器20を検査位置に配置した状態と同一である。この状態で、光学部品51の検査を行うことができる。 The state in which the first light intensity measuring device 20A counted from the upstream side of the processing laser beam 40 is placed at the inspection position is the same as the state in which the light intensity measuring device 20 of the embodiment shown in FIG. 5 is placed at the inspection position. is. In this state, the optical component 51 can be inspected.
 加工用レーザビーム40の上流側から数えて1番目の光強度測定器20Aを待機位置に配置し、2番目の光強度測定器20Bを検査位置に配置した状態では、検査用レーザビーム30が光学部品51、54を順番に通過して、光強度測定器20Bに入射する。このとき、検査用処理装置25は、2番目の光学部品54の位置においてビームスポットが十分小さくなるように、集光レンズ12の焦点距離を調整する。さらに、検査用処理装置25は、2番目の光学部品54の表面内で検査用レーザビーム30のビームスポットが移動するように、ビーム走査器13を制御する。 In a state where the first light intensity measuring device 20A counted from the upstream side of the processing laser beam 40 is placed at the standby position and the second light intensity measuring device 20B is placed at the inspection position, the inspection laser beam 30 is optically It passes through the parts 51 and 54 in order and enters the light intensity measuring device 20B. At this time, the inspection processor 25 adjusts the focal length of the condenser lens 12 so that the beam spot is sufficiently small at the position of the second optical component 54 . Furthermore, the inspection processor 25 controls the beam scanner 13 so that the beam spot of the inspection laser beam 30 moves within the surface of the second optical component 54 .
 1番目の光学部品51を検査して異常がないことが確かめられると、2番目の光強度測定器20Bを検査位置に配置した状態で、2番目の光学部品54の検査を行うことができる。同様に、3番目の光学部品55、4番目の光学部品56の検査を行うことができる。このとき、集光レンズ12は、複数の光学部品51、54、55、56から選択した一つの検査対象の光学部品の位置において、検査用レーザビーム30のビームスポットを加工用レーザビーム40の通過領域41(図3A)より小さくする焦点距離調整機構として機能する。 When the first optical component 51 is inspected and no abnormality is confirmed, the second optical component 54 can be inspected with the second light intensity measuring device 20B placed at the inspection position. Similarly, third optical component 55 and fourth optical component 56 can be inspected. At this time, the condenser lens 12 aligns the beam spot of the inspection laser beam 30 at the position of one of the optical components to be inspected selected from the plurality of optical components 51 , 54 , 55 , 56 so that the processing laser beam 40 passes through. It functions as a focal length adjustment mechanism that makes it smaller than region 41 (FIG. 3A).
 次に、図9に示した実施例の優れた効果について説明する。
 図9に示した実施例では、1つの検査光学系10に対して複数の光強度測定器20A~20Dを配置することにより、複数の光学部品51、54、55、56の検査を行うことができる。このため、検査対象の光学部品ごとに検査光学系10を配置する構成と比べて、検査装置の部品点数を削減することができる。
Next, the excellent effects of the embodiment shown in FIG. 9 will be described.
In the embodiment shown in FIG. 9, a plurality of optical components 51, 54, 55 and 56 can be inspected by arranging a plurality of light intensity measuring devices 20A to 20D for one inspection optical system 10. can. Therefore, the number of parts of the inspection apparatus can be reduced compared to a configuration in which the inspection optical system 10 is arranged for each optical part to be inspected.
 次に、図10を参照してさらに他の実施例によるレーザ加工装置について説明する。以下、図1~図4に示した実施例と共通の構成については説明を省略する。 Next, a laser processing apparatus according to still another embodiment will be described with reference to FIG. Hereinafter, explanations of configurations common to the embodiments shown in FIGS. 1 to 4 will be omitted.
 図10は、本実施例によるレーザ加工装置の概略図である。加工用レーザ発振器50から対象物60までの加工用レーザビーム40の経路上に、上流側から下流側に向かって順番に、ビームエキスパンダテレスコープ71、光学マスク72、フィールドレンズ73、ビーム走査器75、及びfθレンズ76が配置されている。ビームエキスパンダテレスコープ71は、複数のレンズ、例えば3枚のレンズで構成され、光学マスク72の位置におけるビーム断面の寸法を調整するとともに、加工用レーザビームを平行光線束にする。 FIG. 10 is a schematic diagram of the laser processing apparatus according to this embodiment. A beam expander telescope 71, an optical mask 72, a field lens 73, and a beam scanner are arranged in order from the upstream side to the downstream side on the path of the processing laser beam 40 from the processing laser oscillator 50 to the object 60. 75 and an fθ lens 76 are arranged. The beam expander telescope 71 is composed of a plurality of lenses, for example, three lenses, adjusts the size of the beam cross section at the position of the optical mask 72, and converts the processing laser beam into a parallel beam.
 光学マスク72を通過した加工用レーザビーム40がフィールドレンズ73を通過してアパーチャ74に入射する。アパーチャ74は、光学マスク72で回折された加工用レーザビーム40のうち所定の回折光を通過させることにより、ビームプロファイルを整形する。 The processing laser beam 40 that has passed through the optical mask 72 passes through the field lens 73 and enters the aperture 74 . The aperture 74 shapes the beam profile by passing a predetermined diffracted light of the processing laser beam 40 diffracted by the optical mask 72 .
 ビーム走査器75は、加工用レーザビーム40を走査することにより、対象物60の表面において、加工用レーザビーム40のビームスポットを移動させる。fθレンズ76は、アパーチャ74の開口部を対象物60の表面に結像させる。 The beam scanner 75 moves the beam spot of the processing laser beam 40 on the surface of the object 60 by scanning the processing laser beam 40 . The f-theta lens 76 images the opening of the aperture 74 onto the surface of the object 60 .
 対象物60は、ステージ53に保持されている。ステージ53は、対象物60をその表面に平行で相互に直交する二方向に移動させることができる。ビーム走査器75による加工用レーザビーム40の走査と、ステージ53による対象物60の移動とを組み合わせて、対象物60の表面のほぼ全域に加工用レーザビーム40を入射させることができる。 The object 60 is held on the stage 53. The stage 53 can move the object 60 in two mutually orthogonal directions parallel to its surface. By combining the scanning of the processing laser beam 40 by the beam scanner 75 and the movement of the object 60 by the stage 53 , the processing laser beam 40 can be incident on almost the entire surface of the object 60 .
 ビームエキスパンダテレスコープ71を構成する複数のレンズのそれぞれに対して、検査光学系10と光強度測定器20とが配置されている。さらに、フィールドレンズ73、fθレンズ76のそれぞれに対して、検査光学系10と光強度測定器20とが配置されている。1つの検査用処理装置25及び1つの出力装置26が、複数の検査光学系10及び複数の光強度測定器20とで共用されている。 An inspection optical system 10 and a light intensity measuring device 20 are arranged for each of the plurality of lenses that constitute the beam expander telescope 71 . Furthermore, an inspection optical system 10 and a light intensity measuring device 20 are arranged for each of the field lens 73 and the fθ lens 76 . One inspection processing device 25 and one output device 26 are shared by a plurality of inspection optical systems 10 and a plurality of light intensity measuring devices 20 .
 対象物60は、ドーパントがイオン注入された半導体ウエハであり、加工用レーザビームによってドーパントの活性化アニールが行われる。 The object 60 is a semiconductor wafer into which dopants are ion-implanted, and the activation annealing of the dopants is performed by a processing laser beam.
 次に、図10に示した実施例の優れた効果について説明する。
 本実施例では、レーザ加工装置を構成するビームエキスパンダテレスコープ71のレンズ、フィールドレンズ73、fθレンズ76の付着物及び傷の有無を検査することができる。
Next, the excellent effects of the embodiment shown in FIG. 10 will be described.
In this embodiment, the presence or absence of deposits and scratches on the lens of the beam expander telescope 71, the field lens 73, and the f.theta.
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 It goes without saying that each of the above-described embodiments is an example, and partial replacement or combination of configurations shown in different embodiments is possible. Similar actions and effects due to similar configurations of multiple embodiments will not be sequentially referred to for each embodiment. Furthermore, the invention is not limited to the embodiments described above. For example, it will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.
10 検査光学系
11 検査用レーザ発振器
12 集光レンズ
13 ビーム走査器
13A、13B 揺動ミラー
14 移動機構
15 移動ミラー
20、20A、20B、20C、20D 光強度測定器
21 移動機構
22 ミラー
25 検査用処理装置
25A レーザ発振制御部
25B 移動機構制御部
25C ビーム走査制御部
25D 光強度測定部
25E 出力制御部
26 出力装置
30 検査用レーザビーム
31 検査用レーザビームのビームスポット
32 検査用レーザビームのビームスポットの移動軌跡
40 加工用レーザビーム
41 加工用レーザビームの通過領域
45 付着物
46 傷
50 加工用レーザ発振器
51、52 光学部品
53 ステージ
54、55、56 光学部品
59 ミラー
60 対象物
71 ビームエキスパンダテレスコープ
72 光学マスク
73 フィールドレンズ
74 アパーチャ
75 ビーム走査器
76 fθレンズ
10 inspection optical system 11 inspection laser oscillator 12 condenser lens 13 beam scanners 13A and 13B rocking mirror 14 moving mechanism 15 moving mirrors 20, 20A, 20B, 20C and 20D light intensity measuring device 21 moving mechanism 22 mirror 25 for inspection Processing device 25A Laser oscillation control unit 25B Movement mechanism control unit 25C Beam scanning control unit 25D Light intensity measurement unit 25E Output control unit 26 Output device 30 Inspection laser beam 31 Inspection laser beam beam spot 32 Inspection laser beam beam spot Trajectory 40 Processing laser beam 41 Processing laser beam passage area 45 Attachment 46 Scratches 50 Processing laser oscillators 51, 52 Optical component 53 Stages 54, 55, 56 Optical component 59 Mirror 60 Object 71 Beam expander tele scope 72 optical mask 73 field lens 74 aperture 75 beam scanner 76 fθ lens

Claims (7)

  1.  加工用レーザビームを屈折または反射させる界面を有する少なくとも一つの光学部品を備えたレーザ加工装置を検査する検査装置であって、
     前記レーザ加工装置の検査対象の光学部品の界面におけるビームスポットが、前記加工用レーザビームの通過領域より小さくなるように前記検査対象の光学部品の界面に検査用レーザビームを入射させ、界面内で前記検査用レーザビームのビームスポットを走査する検査光学系と、
     前記検査対象の光学部品の界面を透過、または界面で反射した前記検査用レーザビームの光強度を測定する光強度測定器と
    を備えた検査装置。
    An inspection device for inspecting a laser processing device including at least one optical component having an interface that refracts or reflects a processing laser beam,
    The inspection laser beam is incident on the interface of the optical component to be inspected so that the beam spot at the interface of the optical component to be inspected of the laser processing apparatus is smaller than the passing area of the processing laser beam, and an inspection optical system for scanning the beam spot of the inspection laser beam;
    and a light intensity measuring device for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component to be inspected.
  2.  前記検査光学系を構成する一つの光学部品を、前記加工用レーザビームの経路を塞ぐ位置と、前記加工用レーザビームの経路と空間的に干渉しない位置との間で移動させる移動機構を、さらに備えた請求項1に記載の検査装置。 a moving mechanism for moving one optical component constituting the inspection optical system between a position blocking the path of the processing laser beam and a position not spatially interfering with the path of the processing laser beam; The inspection device according to claim 1, comprising:
  3.  前記検査光学系は、前記加工用レーザビームの経路と空間的に干渉しない位置に配置されており、前記加工用レーザビームの経路に対して斜め方向から、前記検査対象の光学部品の界面に前記検査用レーザビームを入射させる請求項1に記載の検査装置。 The inspection optical system is arranged at a position that does not spatially interfere with the path of the processing laser beam, and the inspection optical system is arranged at an oblique direction with respect to the path of the processing laser beam to the interface of the optical component to be inspected. 2. The inspection apparatus according to claim 1, wherein an inspection laser beam is incident.
  4.  前記光強度測定器は、前記加工用レーザビームの経路と空間的に干渉しない位置に配置されている請求項3に記載の検査装置。 The inspection apparatus according to claim 3, wherein the light intensity measuring device is arranged at a position that does not spatially interfere with the path of the processing laser beam.
  5.  前記レーザ加工装置は、前記加工用レーザビームを屈折または反射させる界面を有する複数の光学部品を備えており、
     前記検査光学系は、前記レーザ加工装置の複数の光学部品を経由するように前記検査用レーザビームを入射させ、
     前記光強度測定器は、前記レーザ加工装置の複数の光学部品を経由した前記検査用レーザビームの光強度を測定し、
     前記検査光学系は、前記レーザ加工装置の複数の光学部品から選択した一つの光学部品の位置において、前記検査用レーザビームのビームスポットを前記加工用レーザビームの通過領域より小さくする焦点距離調整機構を含む請求項1乃至4のいずれか1項に記載の検査装置。
    The laser processing apparatus includes a plurality of optical components having interfaces that refract or reflect the processing laser beam,
    The inspection optical system causes the inspection laser beam to enter through a plurality of optical components of the laser processing apparatus,
    The light intensity measuring device measures the light intensity of the inspection laser beam that has passed through a plurality of optical components of the laser processing apparatus,
    The inspection optical system has a focal length adjustment mechanism that makes the beam spot of the inspection laser beam smaller than the passing area of the processing laser beam at the position of one optical component selected from a plurality of optical components of the laser processing apparatus. The inspection apparatus according to any one of claims 1 to 4, comprising:
  6.  加工用レーザビームを屈折または反射させる界面を有する少なくとも一つの光学部品を備えたレーザ加工装置を検査する検査方法であって、
     前記レーザ加工装置の検査対象の光学部品の界面における検査用レーザビームのビームスポットが、前記加工用レーザビームの通過領域より小さくなる条件で、界面内で前記検査用レーザビームのビームスポットを走査し、
     前記検査対象の光学部品の界面を透過、または界面で反射した前記検査用レーザビームの光強度を測定する検査方法。
    An inspection method for inspecting a laser processing apparatus having at least one optical component having an interface that refracts or reflects a processing laser beam,
    The beam spot of the inspection laser beam is scanned within the interface under the condition that the beam spot of the inspection laser beam at the interface of the optical component to be inspected of the laser processing apparatus is smaller than the passing area of the processing laser beam. ,
    An inspection method for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component to be inspected.
  7.  加工用レーザビームを出力するレーザ発振器と、
     前記レーザ発振器から対象物までの前記加工用レーザビームの経路に配置され、前記加工用レーザビームを屈折または反射させる界面を有する少なくとも一つの光学部品と、
     前記光学部品の界面におけるビームスポットが、前記加工用レーザビームの通過領域より小さくなるように前記光学部品の界面に検査用レーザビームを入射させ、界面内で前記検査用レーザビームのビームスポットを走査する検査光学系と、
     前記光学部品の界面を透過、または界面で反射した前記検査用レーザビームの光強度を測定する光強度測定器と
    を備えたレーザ加工装置。
     
    a laser oscillator that outputs a processing laser beam;
    at least one optical component disposed on the path of the processing laser beam from the laser oscillator to the object and having an interface that refracts or reflects the processing laser beam;
    The inspection laser beam is incident on the interface of the optical component so that the beam spot at the interface of the optical component is smaller than the passing area of the processing laser beam, and the beam spot of the inspection laser beam is scanned within the interface. an inspection optical system for
    and a light intensity measuring device for measuring the light intensity of the inspection laser beam transmitted through or reflected by the interface of the optical component.
PCT/JP2022/000790 2021-03-17 2022-01-12 Inspection apparatus, inspection method, and laser machining apparatus WO2022196056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506779A JPWO2022196056A1 (en) 2021-03-17 2022-01-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043805 2021-03-17
JP2021-043805 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196056A1 true WO2022196056A1 (en) 2022-09-22

Family

ID=83320197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000790 WO2022196056A1 (en) 2021-03-17 2022-01-12 Inspection apparatus, inspection method, and laser machining apparatus

Country Status (2)

Country Link
JP (1) JPWO2022196056A1 (en)
WO (1) WO2022196056A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337943A (en) * 2003-05-16 2004-12-02 Sumitomo Heavy Ind Ltd Laser beam machining apparatus
JP2010029917A (en) * 2008-07-30 2010-02-12 Pulstec Industrial Co Ltd Laser beam machining apparatus and laser beam machining method
JP2018018909A (en) * 2016-07-27 2018-02-01 住友重機械工業株式会社 Laser beam machine
JP2019195831A (en) * 2018-05-10 2019-11-14 株式会社アマダホールディングス Laser beam machine and status detection method of optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337943A (en) * 2003-05-16 2004-12-02 Sumitomo Heavy Ind Ltd Laser beam machining apparatus
JP2010029917A (en) * 2008-07-30 2010-02-12 Pulstec Industrial Co Ltd Laser beam machining apparatus and laser beam machining method
JP2018018909A (en) * 2016-07-27 2018-02-01 住友重機械工業株式会社 Laser beam machine
JP2019195831A (en) * 2018-05-10 2019-11-14 株式会社アマダホールディングス Laser beam machine and status detection method of optical element

Also Published As

Publication number Publication date
TW202237312A (en) 2022-10-01
JPWO2022196056A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
KR102362657B1 (en) Wafer inspection
US8427633B1 (en) Laser beam analysis apparatus
KR101805968B1 (en) Flat field telecentric scanner with diffraction limited performance
JP3385432B2 (en) Inspection device
US9395340B2 (en) Interleaved acousto-optical device scanning for suppression of optical crosstalk
JP5268061B2 (en) Board inspection equipment
JP2016534341A (en) Multi-spot lighting with improved detection sensitivity
EP2490064A1 (en) Systems and methods for scanning a beam of light across a specimen
WO2022196056A1 (en) Inspection apparatus, inspection method, and laser machining apparatus
TWI832171B (en) Inspection device, inspection method and laser processing device
KR100878425B1 (en) Surface measurement apparatus
WO2022004232A1 (en) Foreign substance/defect inspection device, image generation device in foreign substance/defect inspection, and foreign substance/defect inspection method
CN111989552B (en) Device for determining a focal position in a laser processing system, laser processing system and corresponding method
KR102116618B1 (en) Inspection apparatus for surface of optic specimen and controlling method thereof
JPH0886976A (en) High output laser beam branching device and converging device
JPH03152447A (en) Inspecting apparatus for flaw
KR20160009835A (en) Optical Apparatus and Method for Shaping Line-Focused Parallel Light Beam
JPH0498149A (en) Defect inspection device
JP2008047593A (en) Beam transmission apparatus, beam transmission method, laser beam machining apparatus, and laser beam machining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506779

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770818

Country of ref document: EP

Kind code of ref document: A1