WO2022195947A1 - Aln ceramic substrate, and heater for semiconductor manufacturing device - Google Patents

Aln ceramic substrate, and heater for semiconductor manufacturing device Download PDF

Info

Publication number
WO2022195947A1
WO2022195947A1 PCT/JP2021/040196 JP2021040196W WO2022195947A1 WO 2022195947 A1 WO2022195947 A1 WO 2022195947A1 JP 2021040196 W JP2021040196 W JP 2021040196W WO 2022195947 A1 WO2022195947 A1 WO 2022195947A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
aln
resistance heating
aln ceramic
heating element
Prior art date
Application number
PCT/JP2021/040196
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 山名
和宏 ▲のぼり▼
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to KR1020227038927A priority Critical patent/KR20220164583A/en
Priority to JP2022510795A priority patent/JP7074944B1/en
Priority to CN202180010171.0A priority patent/CN115606318A/en
Publication of WO2022195947A1 publication Critical patent/WO2022195947A1/en
Priority to US18/046,614 priority patent/US20230138000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits

Definitions

  • the present invention relates to AlN ceramic substrates and heaters for semiconductor manufacturing equipment.
  • a known heater for a semiconductor manufacturing apparatus includes an AlN ceramic substrate and a resistance heating element embedded inside the AlN ceramic substrate. Such heaters for semiconductor manufacturing equipment are used to heat a wafer mounted on the surface of an AlN ceramic substrate. Further, as a heater for semiconductor manufacturing equipment, as disclosed in Patent Document 2, a heater in which a resistance heating element and an electrostatic electrode are embedded in an AlN ceramic base is also known. In such a heater for a semiconductor manufacturing apparatus, if current leaks from the resistance heating element to the wafer or from the electrostatic electrode to the wafer, the wafer will be damaged. Therefore, it is preferable to control the volume resistivity of the AlN ceramic substrate to a high value.
  • Patent Document 3 as an AlN ceramic substrate, a mixed powder obtained by adding yttrium oxide powder as a sintering aid to AlN raw material powder is granulated, and the granules are used to produce a disk-shaped molded body.
  • a hot press sintering of the compact at 1850 to 1890° C. is disclosed.
  • the volume resistivity of the AlN ceramic substrate at 550° C. is as high as 1 ⁇ 10 9 to 2.6 ⁇ 10 9 ⁇ cm.
  • the leakage current flowing through the AlN ceramic substrate may not be sufficiently blocked.
  • the present invention has been made to solve such problems, and the main object thereof is to provide an AlN ceramic substrate having a higher volume resistivity at high temperatures than conventional ones.
  • the AlN ceramic substrate of the present invention is An AlN ceramic substrate comprising yttrium aluminate, Volume resistivity at 550 ° C. is 3 ⁇ 10 9 ⁇ cm or more, It is.
  • This AlN ceramic substrate has a higher volume resistivity at high temperatures than conventional ones. Therefore, when this AlN ceramic substrate is used as an AlN ceramic substrate in which a resistance heating element of a heater for semiconductor manufacturing equipment is embedded, it is possible to sufficiently prevent leakage current from flowing through the AlN ceramic substrate.
  • a volume resistivity of 5 ⁇ 10 9 ⁇ cm or more is preferable because leakage current can be further suppressed, and a volume resistivity of 1 ⁇ 10 10 ⁇ cm or more is more preferable because the thickness of the ceramic substrate can be further reduced.
  • Examples of yttrium aluminate include Y 4 Al 2 O 9 (YAM) and YAlO 3 (YAL).
  • the average particle size of the AlN sintered particles is preferably 1.5 ⁇ m or more and 2.5 ⁇ m or less, and yttrium aluminate exists in a dispersed state at the grain boundaries between the AlN sintered particles. is preferred. In this way, the yttrium aluminate is finely and uniformly dispersed. Therefore, it is possible to prevent a current path from occurring in the yttrium aluminate and increase the volume resistivity of the AlN ceramic substrate at high temperatures.
  • a heater for semiconductor manufacturing equipment has a resistance heating element embedded in the AlN ceramic substrate described above.
  • the volume resistivity of the AlN ceramic substrate at high temperatures is even higher than before. Therefore, it is possible to sufficiently prevent leakage current from flowing through the AlN ceramic substrate.
  • the resistance heating element is preferably made of Mo
  • the AlN ceramic base includes a first annular layer surrounding the resistance heating element so as to be in contact with the resistance heating element.
  • a second annular layer surrounding the first annular layer and the first annular layer preferably has a higher Y content and a wider layer width than the second annular layer.
  • the first annular layer may continuously surround the resistive heating element and the second annular layer may continuously surround the first annular layer.
  • the second annular layer may have a shape in which a portion of the annular shape has a discontinuous portion, and a shape that forms a single ring (smooth ring) if the discontinuous portion is virtually connected.
  • the average value per unit width of the Y content distributed in the width direction of the first annular layer is larger than the average value per unit width of the Y content distributed in the width direction of the second annular layer good.
  • FIG. 2 is a plan view of the heater 10 for semiconductor manufacturing equipment; AA sectional view of FIG. Sectional drawing of the modification of the 2nd annular layer L2.
  • 4 is a SEM photograph of a cross section containing Mo of the AlN ceramic sintered body 12 of Example 1.
  • FIG. 4 is a schematic diagram of a cross section containing Mo of the AlN ceramic sintered body 12 of Example 1.
  • FIG. 4 is a graph showing the results of EPMA analysis of Example 1.
  • FIG. 4 is a SEM photograph of a cross section containing Mo of the AlN ceramic sintered body of Comparative Example 1.
  • FIG. 4 is a schematic diagram of a cross section containing Mo of the AlN ceramic sintered body of Comparative Example 1.
  • FIG. 4 is a graph showing the results of EPMA analysis of Comparative Example 1.
  • FIG. 1 is a plan view of a heater 10 for semiconductor manufacturing equipment
  • FIG. 2 is a sectional view taken along line AA of FIG. Note that the dashed-dotted lines in FIG. 1 indicate the boundaries of the zones.
  • the inner and outer resistance heating elements 30 and 40 are indicated by hidden lines (dotted lines), but the RF electrode 20 is omitted.
  • a heater 10 for a semiconductor manufacturing apparatus has an RF electrode 20, an inner circumference side resistance heating element 30, and an outer circumference side resistance heating element 40 embedded in a disk-shaped AlN ceramic substrate 12.
  • the AlN ceramic substrate 12 contains yttrium aluminate (for example, YAL or YAM), and has a wafer mounting surface 12a on its upper surface.
  • the volume resistivity of the AlN ceramic substrate 12 at 550° C. is 3 ⁇ 10 9 ⁇ cm or higher, preferably 5 ⁇ 10 9 ⁇ cm or higher, more preferably 1 ⁇ 10 10 ⁇ cm or higher.
  • the AlN ceramic substrate 12 is divided into an inner zone Zin and an outer zone Zout when viewed from above.
  • the inner peripheral zone Zin is a circular zone with a diameter smaller than the diameter of the AlN ceramic substrate 12 .
  • the outer zone Zout is an annular zone surrounding the inner zone Zin.
  • the RF electrode 20 is a circular metal mesh (eg, Mo coil) and is provided substantially parallel to the wafer mounting surface 12a.
  • the RF electrode 20 is buried closer to the wafer mounting surface 12 a than the inner resistance heating element 30 and the outer resistance heating element 40 .
  • the diameter of RF electrode 20 is slightly smaller than the diameter of AlN ceramic substrate 12 .
  • a high-frequency voltage is applied between the RF electrode 20 and a parallel plate electrode (not shown) spaced apart from the wafer mounting surface 12a.
  • the RF electrode 20 is connected to the RF connecting member 22 .
  • the RF connection member 22 has an upper end connected to the lower surface of the RF electrode 20 and a lower end exposed from the lower surface 12 b of the AlN ceramic substrate 12 .
  • the RF connection member 22 is provided so as to pass through the gaps in the wiring pattern of the inner resistance heating element 30 .
  • An RF connecting member 22 is used to apply a high frequency voltage between the RF electrode 20 and the parallel plate electrodes.
  • the inner circumference side resistance heating element 30 is a metal coil (eg, Mo coil) and is provided substantially parallel to the wafer mounting surface 12a.
  • the inner peripheral resistance heating element 30 is wired from one of a pair of terminals 32 and 34 provided near the center of the AlN ceramic substrate 12 to the entire inner peripheral zone Zin in a unicursal manner without crossing. It is provided so as to reach the other of the pair of terminals 32 and 34 .
  • a pair of terminals 32 and 34 are connected to a pair of inner peripheral side connecting members 36 and 38 .
  • the lower ends of the pair of inner peripheral side connecting members 36 and 38 are exposed from the lower surface 12b of the AlN ceramic substrate 12. As shown in FIG.
  • a voltage is applied between the pair of terminals 32 and 34 using the pair of inner peripheral connecting members 36 and 38 .
  • the outer-peripheral-side resistance heating element 40 is a metal coil (for example, a Mo coil) and is provided substantially parallel to the wafer mounting surface 12a.
  • the outer resistance heating element 40 passes through the inner zone Zin from one of a pair of terminals 42 and 44 provided near the center of the AlN ceramic substrate 12 and is led out to the outer zone Zout. , and then pulled back to the inner peripheral zone Zin to reach the other of the pair of terminals 42 and 44 .
  • a pair of terminals 42 and 44 are connected to a pair of outer peripheral side connection members 46 and 48 .
  • the lower ends of the pair of outer peripheral side connecting members 46 and 48 are exposed from the lower surface 12b of the AlN ceramic substrate 12.
  • a voltage is applied between the pair of terminals 42 and 44 using the pair of outer connection members 46 and 48 .
  • the outer resistance heating element 40 is provided on the same plane as the inner resistance heating element 30 .
  • the heater 10 for semiconductor manufacturing equipment is installed in a chamber (not shown).
  • a wafer W is mounted on the wafer mounting surface 12a of the heater 10 for a semiconductor manufacturing apparatus, and an external power source is connected to the connection members 36 and 38 of the inner peripheral resistance heating element 30, so that an electric current is generated between the pair of terminals 32 and 34.
  • an external power source is connected to the connection members 36 and 38 of the inner peripheral resistance heating element 30, so that an electric current is generated between the pair of terminals 32 and 34.
  • another external power supply is connected to the connection members 46 and 48 of the outer resistance heating element 40 to apply a voltage between the pair of terminals 42 and 44 .
  • the inner peripheral resistance heating element 30 and the outer peripheral resistance heating element 40 generate heat to heat the wafer W to a predetermined temperature.
  • the temperature of the inner zone Zin and the outer zone Zout can be individually controlled.
  • a high-frequency voltage is applied between a parallel plate electrode (not shown) and the RF electrode 20 spaced apart above the wafer W, and the wafer W is subjected to various processes necessary for fabricating semiconductor chips.
  • the application of the high frequency voltage to the RF electrode 20 and the application of voltage to the inner and outer resistance heating elements 30 and 40 are terminated, and the wafer W is removed from the wafer mounting surface 12a.
  • AlN raw material powder is prepared.
  • the AlN raw material powder may contain a small amount of O, C, Ti, and Ca.
  • the AlN raw material powder preferably contains 0.65 to 0.90 mass % of O, 220 to 380 mass ppm of C, 95 mass ppm or less of Ti, and 250 mass ppm or less of Ca.
  • the average particle diameter of the AlN raw material powder is preferably set so that the average particle diameter of the AlN sintered particles after firing is 1.5 ⁇ m or more and 2.5 ⁇ m or less, for example, 1.5 ⁇ m or more and 2.0 ⁇ m or less. .
  • Y 2 O 3 powder is added as a sintering aid to the prepared AlN raw material powder and mixed to obtain a mixed powder, which is granulated by spray drying.
  • Y 2 O 3 is added so as to be 4 to 6% by mass with respect to the entire mixed powder.
  • the average particle size of the Y 2 O 3 powder is preferably of submicron order.
  • a mixing method wet mixing using an organic solvent may be employed, or dry mixing such as a ball mill, vibration mill, and dry bag mixing may be employed.
  • the RF electrode 20 and the inner and outer peripheral resistance heating elements 30 and 40 are embedded in the granules and molded to produce a compact.
  • the formed body is fired to obtain an AlN sintered body.
  • the heater 10 for semiconductor manufacturing equipment is obtained.
  • a firing method for example, hot press firing can be used.
  • the maximum temperature (firing temperature) during hot press firing is preferably set in the range of 1650°C or higher and 1750°C or lower, preferably 1670°C or higher and 1730°C or lower.
  • the firing temperature is maintained for 0.5 to 100 hours
  • the press pressure is 5 to 50 MPa
  • the atmosphere is a nitrogen atmosphere or a vacuum atmosphere (for example, 0.13 to 133.3 Pa).
  • the average particle size of the AlN sintered particles is preferably 1.5 ⁇ m or more and 2.5 ⁇ m or less. It is preferable that yttrium aluminate, which is finer than the AlN sintered particles, is present in a dispersed state at grain boundaries between the AlN sintered particles. If the average particle size of the AlN sintered particles is larger than this, the yttrium aluminate exists in a wet state at the grain boundary between the AlN sintered particles, making it easier to form a current path. not high enough.
  • the average particle size of the AlN sintered particles is 1.5 ⁇ m or more and 2.5 ⁇ m or less, yttrium aluminate exists in a state of being dispersed in the grain boundaries between the AlN sintered particles, so a current path is formed. and the volume resistivity at high temperatures is sufficiently high.
  • the AlN ceramic substrate 12 has an inner surface so as to be in contact with the inner resistance heating element 30 as shown in the enlarged view of FIG.
  • a first annular layer L1 continuously (that is, without interruption) surrounding the circumferential resistance heating element 30 and a second annular layer L2 continuously surrounding the first annular layer L1 appear.
  • the first annular layer L1 has a higher Y content and a wider layer width than the second annular layer L2. That is, the first annular layer L1 is a Y-rich layer, and the second annular layer L2 is a Y-poor layer.
  • Such a microstructure is also seen around the outer resistance heating element 40 .
  • the reason why the first annular layer L1 becomes the Y-rich layer is considered as follows.
  • the Y concentration in the region in contact with the Mo inner peripheral resistance heating element 30 decreases.
  • Mo has a high affinity for oxygen and tries to take oxygen from the yttrium aluminate around Mo, whereas the yttrium aluminate around Mo does not want to take oxygen. Therefore, it is considered to move to a position away from Mo.
  • the Y concentration in the region of the AlN ceramic substrate 12 in contact with the Mo inner resistance heating element 30 is considered to decrease. This may be one of the reasons why the volume resistivity at high temperatures is not sufficiently high.
  • the firing temperature when the firing temperature is 1650° C. or higher and 1750° C. or lower, the Y concentration in the region (first annular layer L1) in contact with the Mo inner circumference side resistance heating element 30 becomes relatively high. If the firing temperature is 1750° C. or lower, it is difficult for Mo to deprive the surrounding yttrium aluminate of oxygen. As a result, when the firing temperature is 1650° C. or higher and 1750° C. or lower, the Y concentration in the region (first annular layer L1) of the AlN ceramic substrate 12 that is in contact with the Mo inner peripheral side resistance heating element 30 does not decrease. It is thought that it will become a rich layer. This may be one of the reasons why the volume resistivity at high temperatures is sufficiently high.
  • the volume resistivity of the AlN ceramic substrate 12 at a high temperature (550° C.) is 3 ⁇ 10 9 ⁇ cm or more, which is higher than that of the conventional heater. Therefore, it is possible to sufficiently prevent leakage current from flowing through the AlN ceramic substrate 12 .
  • a volume resistivity of 5 ⁇ 10 9 ⁇ cm or more is preferable because leakage current can be further suppressed, and a volume resistivity of 1 ⁇ 10 10 ⁇ cm or more is more preferable because the thickness of the ceramic substrate can be further reduced.
  • the average particle size of the AlN sintered particles in the AlN ceramic substrate 12 is preferably 1.5 ⁇ m or more and 2.5 ⁇ m or less, and yttrium aluminate exists in a dispersed state at the grain boundary between the AlN sintered particles. is preferred. In this way, the yttrium aluminate is finely and uniformly dispersed. Therefore, it is possible to prevent the occurrence of a current path of yttrium aluminate and increase the volume resistivity of the AlN ceramic substrate 12 at high temperatures.
  • the inner and outer peripheral resistance heating elements 30 and 40 are preferably made of Mo. and a second annular layer L2 that continuously surrounds the first annular layer L2.
  • the first annular layer L1 has a higher Y content than the second annular layer L2 A wide width is preferred.
  • Such structures are believed to contribute in some way to the high volume resistivity at high temperatures. Such a structure is obtained by performing the operation of keeping for at least one hour or more until the maximum temperature is reached (between 1500 ° C. and 10 ° C. below the maximum temperature) when performing hot press firing. , is likely to occur.
  • the heater 10 for a semiconductor manufacturing apparatus includes a mixed powder of AlN powder and Y 2 O 3 powder (the Y 2 O 3 powder is 4% by mass or more and 6% by mass or less of the entire mixed powder), the RF electrode 20 and the inner circumference.
  • the molded body is hot-press fired at a maximum firing temperature of 1650° C. or higher and 1750° C. or lower. It is obtained. Therefore, it is possible to relatively easily manufacture the heater 10 for semiconductor manufacturing equipment, which can sufficiently prevent the leak current from flowing through the AlN ceramic substrate 12 .
  • the RF electrode 20 is embedded in the AlN ceramic substrate 12, but the RF electrode 20 may be omitted, the RF electrode 20 may be replaced with an electrostatic electrode, or the RF electrode 20 may be replaced with an electrostatic electrode. It may also be used as an electrostatic electrode.
  • an electrostatic electrode is provided, the wafer W can be attracted and held on the wafer mounting surface 12a by applying a voltage to the electrostatic electrode.
  • a metal mesh is exemplified as the RF electrode 20, but a metal plate may be employed.
  • the metal coils have been exemplified as the inner and outer peripheral resistance heating elements 30 and 40, metal ribbons and metal meshes may also be employed.
  • the RF electrode 20 and the inner and outer resistance heating elements 30 and 40 may be formed by printing a conductive paste in a predetermined shape or pattern.
  • the inner resistance heating element 30 is embedded in the inner zone Zin and the outer resistance heating element 40 is embedded in the outer zone Zout.
  • a resistance heating element may be embedded in each zone by dividing it. Alternatively, a single resistance heating element may be wired throughout the AlN ceramic substrate 12 without dividing it into a plurality of zones.
  • the inner peripheral side resistance heating element 30 and the outer peripheral side resistance heating element 40 are embedded on the same plane, but they may be embedded on different surfaces.
  • the heater 10 for a semiconductor manufacturing apparatus is illustrated, but the AlN ceramic substrate 12 can be used alone without embedding the RF electrode 20 and the inner and outer peripheral resistance heating elements 30 and 40 in the AlN ceramic substrate 12. can be made with
  • the second annular layer L2 has a shape that continuously surrounds the first annular layer L1, but it is not particularly limited to this.
  • the second annular layer L2 may have a shape that is not continuous but has an annular portion L2a that is interrupted.
  • the second annular layer L2 forms one ring (smooth ring) if the discontinuous portions L2a are virtually connected.
  • Example 1 AlN raw material powder was prepared. 5% by mass of Y 2 O 3 powder was added as a sintering aid to this AlN raw material powder and mixed by a ball mill to obtain a mixed powder, which was granulated by spray drying. Y 2 O 3 was added so as to be 5% by mass with respect to the entire mixed powder. Subsequently, using the granules of the mixed powder, a disk-shaped compact was produced. An RF electrode 20 and inner and outer resistance heating elements 30 and 40 were embedded in the compact. Then, the heater 10 for a semiconductor manufacturing apparatus was produced by hot-press firing the compact.
  • the maximum temperature (firing temperature) during firing was 1720° C.
  • the time to keep the firing temperature was 2 hours
  • the press pressure was 20 MPa
  • the atmosphere was nitrogen atmosphere.
  • the operation of keeping for 1 hour was performed twice or more until the maximum temperature was reached (from 1500° C. to a temperature 10° C. lower than the maximum temperature).
  • the crystal phase contained in the AlN ceramic substrate 12 was identified by X-ray diffraction. About 0.5 g of powder was measured for X-ray diffraction with a Bruker AXS D8 ADVANCE. The measurement conditions were a CuK ⁇ ray source, a tube voltage of 40 kV, and a tube current of 40 mA. Rietveld analysis was performed on the measurement results to identify and quantify the crystal phase. Crystal phases identified from the XRD profile were AlN, YAM, and YAL, and TiN was not confirmed.
  • Comparative Example 1 A heater for a semiconductor manufacturing apparatus was manufactured in the same manner as in Example 1, except that the maximum temperature was set to 1850° C. and the operation to keep the temperature was not performed until the maximum temperature was reached. Also in Comparative Example 1, the crystal phases identified from the XRD profile were AlN, YAM, and YAL, and TiN was not confirmed.
  • the volume resistivity of the AlN ceramic substrate 12 of the heater 10 for semiconductor manufacturing equipment of Example 1 was measured at 550°C. Measurement was performed as follows. A leak current (current flowing between the wafer W and the RF electrode 20) is obtained when a Si wafer W is placed on the wafer mounting surface 12a and a voltage is applied between the wafer W and the RF electrode 20 (metal mesh) at 550°C. ) was measured. The diameter of the RF electrode 20 was ⁇ 355.6 mm, the film thickness of the dielectric layer (the layer between the wafer mounting surface 12a and the RF electrode 20) was 1.02 mm, and the applied voltage was 660V.
  • a plurality of heaters 10 for a semiconductor manufacturing apparatus of Example 1 were produced, and the leak current was measured to be on the order of 40 mA.
  • the volume resistivity of the AlN ceramic substrate 12 at 550° C. was indirectly calculated from the leak current, the average value was 1.2 ⁇ 10 10 ⁇ cm.
  • the leakage current was measured in Comparative Example 1 in the same manner as in Example 1, it was on the order of 280 mA, and the average volume resistivity of the AlN ceramic substrate at 550° C. was 2.4 ⁇ 10 9 ⁇ cm. .
  • Example 1 When the average particle size of the AlN sintered particles was determined from the SEM photograph of the cross section containing Mo of the AlN ceramic sintered body 12 of Example 1, it was 1.9 ⁇ m. Therefore, in Example 1, it was determined that the yttrium aluminate was uniformly dispersed in the grain boundaries between fine AlN sintered particles. When the average particle size of Comparative Example 1 was determined in the same manner, the average particle size was 4.5 ⁇ m, which is larger than that of Example 1. The average particle size is obtained by obtaining a secondary electron image (magnification: 3000), drawing a straight line on the image, measuring the length of each line segment that crosses 40 particles, and calculating the average value thereof. did.
  • a secondary electron image magnification: 3000
  • FIG. 4 is a SEM photograph of a cross section of the AlN ceramic sintered body 12 of Example 1 including Mo (the inner peripheral resistance heating element 30), and FIG. 5 is a schematic diagram thereof.
  • the first annular layer L1 continuously (without interruption) surrounds Mo so as to be in contact with Mo
  • the second annular layer L2 continuously surrounds the first annular layer L1.
  • the first annular layer L1 had a large number of fine white spots (Y derived from yttrium aluminate) dispersed therein, but the second annular layer L2 had almost no such spots and was almost black.
  • FIG. 6 is a graph showing the results of EPMA analysis for Mo and Y along the arrow directions in FIG. In FIG.
  • the portions where the Mo concentration rises sharply and the portions where it falls steeply are regarded as boundaries between the resistance heating element (Mo) and the AlN ceramic sintered body.
  • the Y concentration in the first annular layer L1 was relatively high, but the Y concentration in the second annular layer L2 was almost zero. From this, it was found that the first annular layer L1 was a Y-rich layer and the second annular layer L2 was a Y-poor layer. Also, the layer width of the first annular layer L1 was wider than the layer width of the second annular layer L2.
  • FIG. 7 is a SEM photograph of a cross section containing Mo of the AlN ceramic sintered body of Comparative Example 1
  • FIG. 8 is a schematic diagram thereof.
  • a first layer surrounding Mo so as to be in contact with Mo and a second layer surrounding the first layer were observed.
  • the first layer was almost black with almost no spots, and the second layer had relatively many spots.
  • the second layer was non-continuous and discontinuous.
  • FIG. 9 shows the results of EPMA analysis of Mo and Y along the arrow directions in FIG. In FIG. 9, the portions where the Mo concentration steeply rises and falls are regarded as boundaries between the resistance heating element (Mo) and the AlN sintered body.
  • Mo resistance heating element
  • the Y concentration of the first layer was almost zero and the Y concentration of the second layer was relatively high. From this, it was found that the first layer in Comparative Example 1 was a Y-poor layer and the second layer was a Y-rich layer, that is, contrary to Example 1.
  • the present invention can be used for heaters for semiconductor manufacturing equipment.
  • Heater for semiconductor manufacturing equipment 12 AlN ceramic substrate, 12a Wafer mounting surface, 12b Lower surface, 20 RF electrode, 22 RF connection member, 30 Inner peripheral side resistance heating element, 32, 34 Terminal, 36, 38 Inner peripheral side connection Member, 40 outer resistance heating element, 42, 44 terminals, 46, 48 outer connecting member, L1 first annular layer, L2 second annular layer, W wafer, Zin inner zone, Zout outer zone.

Abstract

This AlN ceramic substrate contains yttrium-aluminate, wherein the volume resistivity at 550℃ is at least 3×109Ωcm.

Description

AlNセラミック基体及び半導体製造装置用ヒータAlN ceramic substrate and heater for semiconductor manufacturing equipment
 本発明は、AlNセラミック基体及び半導体製造装置用ヒータに関する。 The present invention relates to AlN ceramic substrates and heaters for semiconductor manufacturing equipment.
 半導体製造装置用ヒータとしては、特許文献1に示されるように、AlNセラミック基体と、そのAlNセラミック基体の内部に埋設された抵抗発熱体とを備えたものが知られている。こうした半導体製造装置用ヒータは、AlNセラミック基体の表面に載置されたウエハを加熱するのに用いられる。また、半導体製造装置用ヒータとしては、特許文献2に示されるように、AlNセラミック基体の内部に抵抗発熱体と静電電極とが埋設されたものも知られている。こうした半導体製造装置用ヒータでは、抵抗発熱体からウエハへ電流がリークしたり静電電極からウエハへ電流がリークしたりすると、ウエハがダメージを受けることになる。そのため、AlNセラミック基体の体積抵抗率を高い値に制御することが好ましい。この点に鑑み、特許文献3には、AlNセラミック基体として、AlN原料粉末に焼結助剤としての酸化イットリウム粉末を添加した混合粉末を顆粒化し、その顆粒で円盤形状の成形体を作製し、その成形体を1850~1890℃でホットプレス焼成させたものが開示されている。そのAlNセラミック基体の550℃での体積抵抗率は1×109~2.6×109Ωcmと高い値になっている。 2. Description of the Related Art As disclosed in Patent Document 1, a known heater for a semiconductor manufacturing apparatus includes an AlN ceramic substrate and a resistance heating element embedded inside the AlN ceramic substrate. Such heaters for semiconductor manufacturing equipment are used to heat a wafer mounted on the surface of an AlN ceramic substrate. Further, as a heater for semiconductor manufacturing equipment, as disclosed in Patent Document 2, a heater in which a resistance heating element and an electrostatic electrode are embedded in an AlN ceramic base is also known. In such a heater for a semiconductor manufacturing apparatus, if current leaks from the resistance heating element to the wafer or from the electrostatic electrode to the wafer, the wafer will be damaged. Therefore, it is preferable to control the volume resistivity of the AlN ceramic substrate to a high value. In view of this point, in Patent Document 3, as an AlN ceramic substrate, a mixed powder obtained by adding yttrium oxide powder as a sintering aid to AlN raw material powder is granulated, and the granules are used to produce a disk-shaped molded body. A hot press sintering of the compact at 1850 to 1890° C. is disclosed. The volume resistivity of the AlN ceramic substrate at 550° C. is as high as 1×10 9 to 2.6×10 9 Ωcm.
特開2008-153194号公報JP 2008-153194 A 特開2005-281046号公報JP 2005-281046 A 特許第6393006号公報Japanese Patent No. 6393006
 しかしながら、550℃での体積抵抗率が1×109~2.6×109ΩcmのAlNセラミック基体を用いた場合、AlNセラミック基体を流れるリーク電流を十分に阻止できないことがあった。 However, when an AlN ceramic substrate having a volume resistivity of 1×10 9 to 2.6×10 9 Ωcm at 550° C. is used, the leakage current flowing through the AlN ceramic substrate may not be sufficiently blocked.
 本発明はこのような課題を解決するためになされたものであり、高温での体積抵抗率が従来に比べて更に高いAlNセラミック基体を提供することを主目的とする。 The present invention has been made to solve such problems, and the main object thereof is to provide an AlN ceramic substrate having a higher volume resistivity at high temperatures than conventional ones.
 本発明のAlNセラミック基体は、
 イットリウムアルミネートを含むAlNセラミック基体であって、
 550℃での体積抵抗率が3×109Ωcm以上である、
 ものである。
The AlN ceramic substrate of the present invention is
An AlN ceramic substrate comprising yttrium aluminate,
Volume resistivity at 550 ° C. is 3 × 10 9 Ωcm or more,
It is.
 このAlNセラミック基体は、高温での体積抵抗率が従来に比べて更に高い。そのため、このAlNセラミック基体を、半導体製造装置用ヒータの抵抗発熱体を埋設するAlNセラミック基体として用いた場合、AlNセラミック基体をリーク電流が流れるのを十分に阻止することができる。 This AlN ceramic substrate has a higher volume resistivity at high temperatures than conventional ones. Therefore, when this AlN ceramic substrate is used as an AlN ceramic substrate in which a resistance heating element of a heater for semiconductor manufacturing equipment is embedded, it is possible to sufficiently prevent leakage current from flowing through the AlN ceramic substrate.
 なお、体積抵抗率が5×109Ωcm以上であればリーク電流を更に抑制できるので好ましく、1×1010Ωcm以上であればセラミック基体の厚さを更に薄くできるのでより好ましい。また、イットリウムアルミネートとしては、例えばY4Al29(YAM)やYAlO3(YAL)などが挙げられる。 A volume resistivity of 5×10 9 Ωcm or more is preferable because leakage current can be further suppressed, and a volume resistivity of 1×10 10 Ωcm or more is more preferable because the thickness of the ceramic substrate can be further reduced. Examples of yttrium aluminate include Y 4 Al 2 O 9 (YAM) and YAlO 3 (YAL).
 本発明のAlNセラミック基体において、AlN焼結粒子の平均粒径が1.5μm以上2.5μm以下であることが好ましく、AlN焼結粒子同士の粒界にイットリウムアルミネートが分散した状態で存在することが好ましい。こうすれば、イットリウムアルミネートが微細かつ均一に分散した状態になる。そのため、イットリウムアルミネートの電流パスが生じるのを防止することができ、AlNセラミック基体の高温での体積抵抗率を高くすることができる。 In the AlN ceramic substrate of the present invention, the average particle size of the AlN sintered particles is preferably 1.5 μm or more and 2.5 μm or less, and yttrium aluminate exists in a dispersed state at the grain boundaries between the AlN sintered particles. is preferred. In this way, the yttrium aluminate is finely and uniformly dispersed. Therefore, it is possible to prevent a current path from occurring in the yttrium aluminate and increase the volume resistivity of the AlN ceramic substrate at high temperatures.
 本発明の半導体製造装置用ヒータは、上述したAlNセラミック基体に抵抗発熱体が埋設されたものである。 A heater for semiconductor manufacturing equipment according to the present invention has a resistance heating element embedded in the AlN ceramic substrate described above.
 この半導体製造装置用ヒータでは、AlNセラミック基体の高温での体積抵抗率が従来に比べて更に高い。そのため、AlNセラミック基体をリーク電流が流れるのを十分に阻止することができる。 In this heater for semiconductor manufacturing equipment, the volume resistivity of the AlN ceramic substrate at high temperatures is even higher than before. Therefore, it is possible to sufficiently prevent leakage current from flowing through the AlN ceramic substrate.
 本発明の半導体製造装置用ヒータにおいて、前記抵抗発熱体は、Mo製であることが好ましく、前記AlNセラミック基体には、前記抵抗発熱体に接するように前記抵抗発熱体を取り囲む第1環状層と、前記第1環状層を取り囲む第2環状層とが存在し、前記第1環状層は、前記第2環状層に比べてY含有量が多くて層幅が広いことが好ましい。第1環状層は、抵抗発熱体を連続的に取り囲んでいてもよく、第2環状層は、第1環状層を連続的に取り囲んでいてもよい。第2環状層は、環状の一部に途切れた箇所を有する形状で、且つ、途切れた箇所を仮想的に繋げたとすると一本の輪(スムーズな輪)になる形状であってもよい。また、第1環状層の幅方向に分布するY含有量の単位幅当たりの平均値が、第2環状層の幅方向に分布するY含有量の単位幅当たりの平均値に比べて多くてもよい。 In the heater for a semiconductor manufacturing apparatus of the present invention, the resistance heating element is preferably made of Mo, and the AlN ceramic base includes a first annular layer surrounding the resistance heating element so as to be in contact with the resistance heating element. , and a second annular layer surrounding the first annular layer, and the first annular layer preferably has a higher Y content and a wider layer width than the second annular layer. The first annular layer may continuously surround the resistive heating element and the second annular layer may continuously surround the first annular layer. The second annular layer may have a shape in which a portion of the annular shape has a discontinuous portion, and a shape that forms a single ring (smooth ring) if the discontinuous portion is virtually connected. In addition, even if the average value per unit width of the Y content distributed in the width direction of the first annular layer is larger than the average value per unit width of the Y content distributed in the width direction of the second annular layer good.
半導体製造装置用ヒータ10の平面図。FIG. 2 is a plan view of the heater 10 for semiconductor manufacturing equipment; 図1のA-A断面図。AA sectional view of FIG. 第2環状層L2の変形例の断面図。Sectional drawing of the modification of the 2nd annular layer L2. 実施例1のAlNセラミック焼結体12のMoを含む断面を撮影したSEM写真。4 is a SEM photograph of a cross section containing Mo of the AlN ceramic sintered body 12 of Example 1. FIG. 実施例1のAlNセラミック焼結体12のMoを含む断面の模式図。4 is a schematic diagram of a cross section containing Mo of the AlN ceramic sintered body 12 of Example 1. FIG. 実施例1のEPMA分析を実施した結果を示すグラフ。4 is a graph showing the results of EPMA analysis of Example 1. FIG. 比較例1のAlNセラミック焼結体のMoを含む断面を撮影したSEM写真。4 is a SEM photograph of a cross section containing Mo of the AlN ceramic sintered body of Comparative Example 1. FIG. 比較例1のAlNセラミック焼結体のMoを含む断面の模式図。4 is a schematic diagram of a cross section containing Mo of the AlN ceramic sintered body of Comparative Example 1. FIG. 比較例1のEPMA分析を実施した結果を示すグラフ。4 is a graph showing the results of EPMA analysis of Comparative Example 1. FIG.
 本発明の好適な一実施形態である半導体製造装置用ヒータ10について以下に説明する。図1は半導体製造装置用ヒータ10の平面図、図2は図1のA-A断面図である。なお、図1の1点鎖線はゾーンの境界を示す。また、図1には、内周側及び外周側抵抗発熱体30,40を隠れ線(点線)で示したが、RF電極20は省略した。 A heater 10 for semiconductor manufacturing equipment, which is a preferred embodiment of the present invention, will be described below. FIG. 1 is a plan view of a heater 10 for semiconductor manufacturing equipment, and FIG. 2 is a sectional view taken along line AA of FIG. Note that the dashed-dotted lines in FIG. 1 indicate the boundaries of the zones. In FIG. 1, the inner and outer resistance heating elements 30 and 40 are indicated by hidden lines (dotted lines), but the RF electrode 20 is omitted.
 半導体製造装置用ヒータ10は、円盤状のAlNセラミック基体12にRF電極20、内周側抵抗発熱体30及び外周側抵抗発熱体40を埋設したものである。 A heater 10 for a semiconductor manufacturing apparatus has an RF electrode 20, an inner circumference side resistance heating element 30, and an outer circumference side resistance heating element 40 embedded in a disk-shaped AlN ceramic substrate 12.
 AlNセラミック基体12は、イットリウムアルミネート(例えばYALやYAMなど)を含み、上面にウエハ載置面12aが設けられている。AlNセラミック基体12の550℃での体積抵抗率は、3×109Ωcm以上であり、5×109Ωcm以上であることが好ましく、1×1010Ωcm以上であることがより好ましい。AlNセラミック基体12は、上方からみたときに内周側ゾーンZinと外周側ゾーンZoutに分かれている。内周側ゾーンZinは、円形ゾーンであり、その直径はAlNセラミック基体12の直径よりも小さい。外周側ゾーンZoutは、内周側ゾーンZinを取り囲む環状ゾーンである。 The AlN ceramic substrate 12 contains yttrium aluminate (for example, YAL or YAM), and has a wafer mounting surface 12a on its upper surface. The volume resistivity of the AlN ceramic substrate 12 at 550° C. is 3×10 9 Ωcm or higher, preferably 5×10 9 Ωcm or higher, more preferably 1×10 10 Ωcm or higher. The AlN ceramic substrate 12 is divided into an inner zone Zin and an outer zone Zout when viewed from above. The inner peripheral zone Zin is a circular zone with a diameter smaller than the diameter of the AlN ceramic substrate 12 . The outer zone Zout is an annular zone surrounding the inner zone Zin.
 RF電極20は、円形の金属メッシュ(例えばMoコイル)であり、ウエハ載置面12aと略平行に設けられている。RF電極20は、内周側抵抗発熱体30及び外周側抵抗発熱体40よりも、ウエハ載置面12aの近くに埋設されている。RF電極20の直径は、AlNセラミック基体12の直径よりもやや小さい。ウエハ載置面12aと間隔をあけて配置される平行平板電極(図示せず)とRF電極20との間には、高周波電圧が印加される。RF電極20は、RF接続部材22に接続されている。RF接続部材22は、上端がRF電極20の下面に接続され、下端がAlNセラミック基体12の下面12bから露出している。RF接続部材22は、内周側抵抗発熱体30の配線パターンの間隙を通過するように設けられている。RF電極20と平行平板電極との間に高周波電圧を印加する際には、RF接続部材22を利用する。 The RF electrode 20 is a circular metal mesh (eg, Mo coil) and is provided substantially parallel to the wafer mounting surface 12a. The RF electrode 20 is buried closer to the wafer mounting surface 12 a than the inner resistance heating element 30 and the outer resistance heating element 40 . The diameter of RF electrode 20 is slightly smaller than the diameter of AlN ceramic substrate 12 . A high-frequency voltage is applied between the RF electrode 20 and a parallel plate electrode (not shown) spaced apart from the wafer mounting surface 12a. The RF electrode 20 is connected to the RF connecting member 22 . The RF connection member 22 has an upper end connected to the lower surface of the RF electrode 20 and a lower end exposed from the lower surface 12 b of the AlN ceramic substrate 12 . The RF connection member 22 is provided so as to pass through the gaps in the wiring pattern of the inner resistance heating element 30 . An RF connecting member 22 is used to apply a high frequency voltage between the RF electrode 20 and the parallel plate electrodes.
 内周側抵抗発熱体30は、金属コイル(例えばMoコイル)であり、ウエハ載置面12aと略平行に設けられている。内周側抵抗発熱体30は、AlNセラミック基体12の中央付近に設けられた一対の端子32,34の一方から内周側ゾーンZinの全体にわたって一筆書きの要領で交差することなく配線されたあと一対の端子32,34の他方に至るように設けられている。一対の端子32,34は、一対の内周側接続部材36,38に接続されている。一対の内周側接続部材36,38の下端は、AlNセラミック基体12の下面12bから露出している。内周側抵抗発熱体30を発熱させる際には、一対の内周側接続部材36,38を利用して一対の端子32,34の間に電圧を印加する。 The inner circumference side resistance heating element 30 is a metal coil (eg, Mo coil) and is provided substantially parallel to the wafer mounting surface 12a. The inner peripheral resistance heating element 30 is wired from one of a pair of terminals 32 and 34 provided near the center of the AlN ceramic substrate 12 to the entire inner peripheral zone Zin in a unicursal manner without crossing. It is provided so as to reach the other of the pair of terminals 32 and 34 . A pair of terminals 32 and 34 are connected to a pair of inner peripheral side connecting members 36 and 38 . The lower ends of the pair of inner peripheral side connecting members 36 and 38 are exposed from the lower surface 12b of the AlN ceramic substrate 12. As shown in FIG. When the inner peripheral resistance heating element 30 is to generate heat, a voltage is applied between the pair of terminals 32 and 34 using the pair of inner peripheral connecting members 36 and 38 .
 外周側抵抗発熱体40は、金属コイル(例えばMoコイル)であり、ウエハ載置面12aと略平行に設けられている。外周側抵抗発熱体40は、AlNセラミック基体12の中央付近に設けられた一対の端子42,44の一方から内周側ゾーンZinを通過して外周側ゾーンZoutに引き出されたあと外周側ゾーンZoutの全体にわたって一筆書きの要領で交差することなく配線され、その後、内周側ゾーンZinに引き戻されて一対の端子42,44の他方に至るように設けられている。一対の端子42,44は、一対の外周側接続部材46,48に接続されている。一対の外周側接続部材46,48の下端は、AlNセラミック基体12の下面12bから露出している。外周側抵抗発熱体40を発熱させる際には、一対の外周側接続部材46,48を利用して一対の端子42,44の間に電圧を印加する。外周側抵抗発熱体40は、内周側抵抗発熱体30と同一平面上に設けられている。 The outer-peripheral-side resistance heating element 40 is a metal coil (for example, a Mo coil) and is provided substantially parallel to the wafer mounting surface 12a. The outer resistance heating element 40 passes through the inner zone Zin from one of a pair of terminals 42 and 44 provided near the center of the AlN ceramic substrate 12 and is led out to the outer zone Zout. , and then pulled back to the inner peripheral zone Zin to reach the other of the pair of terminals 42 and 44 . A pair of terminals 42 and 44 are connected to a pair of outer peripheral side connection members 46 and 48 . The lower ends of the pair of outer peripheral side connecting members 46 and 48 are exposed from the lower surface 12b of the AlN ceramic substrate 12. As shown in FIG. When the outer resistance heating element 40 is caused to generate heat, a voltage is applied between the pair of terminals 42 and 44 using the pair of outer connection members 46 and 48 . The outer resistance heating element 40 is provided on the same plane as the inner resistance heating element 30 .
 次に、半導体製造装置用ヒータ10の使用例について説明する。まず、半導体製造装置用ヒータ10を図示しないチャンバ内に設置する。そして、半導体製造装置用ヒータ10のウエハ載置面12aにウエハWを載置し、内周側抵抗発熱体30の接続部材36,38に外部電源を接続して一対の端子32,34の間に電圧を印加する。それと共に、外周側抵抗発熱体40の接続部材46,48に別の外部電源を接続して一対の端子42,44の間に電圧を印加する。これにより、内周側抵抗発熱体30と外周側抵抗発熱体40が発熱してウエハWを所定温度に加熱する。本実施形態では、内周側ゾーンZinと外周側ゾーンZoutとは、個別に温度制御可能である。この状態で、ウエハWの上方に離れて配置された図示しない平行平板電極とRF電極20との間に高周波電圧を印加し、ウエハWに半導体チップを作製するために必要な各種処理を施す。処理終了後、RF電極20への高周波電圧の印加や内周側及び外周側抵抗発熱体30,40への電圧印加を終了し、ウエハWをウエハ載置面12aから取り外す。 Next, a usage example of the heater 10 for semiconductor manufacturing equipment will be described. First, the heater 10 for semiconductor manufacturing equipment is installed in a chamber (not shown). A wafer W is mounted on the wafer mounting surface 12a of the heater 10 for a semiconductor manufacturing apparatus, and an external power source is connected to the connection members 36 and 38 of the inner peripheral resistance heating element 30, so that an electric current is generated between the pair of terminals 32 and 34. Apply a voltage to At the same time, another external power supply is connected to the connection members 46 and 48 of the outer resistance heating element 40 to apply a voltage between the pair of terminals 42 and 44 . As a result, the inner peripheral resistance heating element 30 and the outer peripheral resistance heating element 40 generate heat to heat the wafer W to a predetermined temperature. In this embodiment, the temperature of the inner zone Zin and the outer zone Zout can be individually controlled. In this state, a high-frequency voltage is applied between a parallel plate electrode (not shown) and the RF electrode 20 spaced apart above the wafer W, and the wafer W is subjected to various processes necessary for fabricating semiconductor chips. After completion of the processing, the application of the high frequency voltage to the RF electrode 20 and the application of voltage to the inner and outer resistance heating elements 30 and 40 are terminated, and the wafer W is removed from the wafer mounting surface 12a.
 次に、半導体製造装置用ヒータ10の製造例について説明する。まず、AlN原料粉末を用意する。AlN原料粉末は、O,C,Ti,Caを少量含んでいてもよい。AlN原料粉末中、Oは0.65~0.90質量%、Cは220~380質量ppm、Tiは95質量ppm以下、Caは250質量ppm以下含まれるようにするのが好ましい。AlN原料粉末の平均粒径は、焼成後のAlN焼結粒子の平均粒径が1.5μm以上2.5μm以下となるように設定するのが好ましく、例えば1.5μm以上2.0μm以下が好ましい。 Next, a manufacturing example of the heater 10 for semiconductor manufacturing equipment will be described. First, AlN raw material powder is prepared. The AlN raw material powder may contain a small amount of O, C, Ti, and Ca. The AlN raw material powder preferably contains 0.65 to 0.90 mass % of O, 220 to 380 mass ppm of C, 95 mass ppm or less of Ti, and 250 mass ppm or less of Ca. The average particle diameter of the AlN raw material powder is preferably set so that the average particle diameter of the AlN sintered particles after firing is 1.5 μm or more and 2.5 μm or less, for example, 1.5 μm or more and 2.0 μm or less. .
 続いて、用意したAlN原料粉末に焼結助剤としてY23粉末を添加して混合して混合粉末とし、これをスプレードライにて顆粒にする。Y23は混合粉末全体に対して4~6質量%となるように添加する。Y23粉末の平均粒径は、サブミクロンオーダーが好ましい。混合方法としては、有機溶剤を使用した湿式混合を採用してもよいし、ボールミルや振動ミル、乾式袋混合等に例示される乾式混合を採用してもよい。 Subsequently, Y 2 O 3 powder is added as a sintering aid to the prepared AlN raw material powder and mixed to obtain a mixed powder, which is granulated by spray drying. Y 2 O 3 is added so as to be 4 to 6% by mass with respect to the entire mixed powder. The average particle size of the Y 2 O 3 powder is preferably of submicron order. As a mixing method, wet mixing using an organic solvent may be employed, or dry mixing such as a ball mill, vibration mill, and dry bag mixing may be employed.
 続いて、混合粉末の顆粒を用いて、内部にRF電極20や内周側及び外周側抵抗発熱体30,40を埋設して成形することにより、成形体を作製する。そして、この成形体を焼成することによりAlN焼結体とする。これにより、半導体製造装置用ヒータ10が得られる。焼成方法は、例えばホットプレス焼成などを用いることができる。ホットプレス焼成時の最高温度(焼成温度)は、1650℃以上1750℃以下、好ましくは1670℃以上1730℃以下の範囲で設定するのが好ましい。焼成温度でのキープ時間は0.5~100時間、プレス圧力は5~50MPa、雰囲気は窒素雰囲気か真空雰囲気(例えば0.13~133.3Pa)とすることが好ましい。ホットプレス焼成を行う際、最高温度に到達するまでの間(1500℃から最高温度より10℃低い温度までの間)で、少なくとも1時間以上キープする操作を1回以上行うことが好ましい。 Subsequently, using granules of the mixed powder, the RF electrode 20 and the inner and outer peripheral resistance heating elements 30 and 40 are embedded in the granules and molded to produce a compact. Then, the formed body is fired to obtain an AlN sintered body. Thus, the heater 10 for semiconductor manufacturing equipment is obtained. As a firing method, for example, hot press firing can be used. The maximum temperature (firing temperature) during hot press firing is preferably set in the range of 1650°C or higher and 1750°C or lower, preferably 1670°C or higher and 1730°C or lower. It is preferable that the firing temperature is maintained for 0.5 to 100 hours, the press pressure is 5 to 50 MPa, and the atmosphere is a nitrogen atmosphere or a vacuum atmosphere (for example, 0.13 to 133.3 Pa). When performing hot press firing, it is preferable to perform an operation of keeping for at least one hour or more until the maximum temperature is reached (from 1500° C. to a temperature 10° C. lower than the maximum temperature) once or more.
 得られた半導体製造装置用ヒータ10のAlNセラミック基体12の断面を撮影したSEM写真を見たとき、AlN焼結粒子の平均粒径が1.5μm以上2.5μm以下であることが好ましく、そのAlN焼結粒子同士の粒界にAlN焼結粒子よりも細かいイットリウムアルミネートが分散した状態で存在していることが好ましい。AlN焼結粒子の平均粒径がこれより大きいと、AlN焼結粒子同士の粒界にイットリウムアルミネートが濡れた状態で存在して電流パスを形成しやすくなるため、高温での体積抵抗率が十分高くならない。これに対して、AlN焼結粒子の平均粒径が1.5μm以上2.5μm以下だと、AlN焼結粒子同士の粒界にイットリウムアルミネートが分散した状態で存在するため、電流パスが形成されず、高温での体積抵抗率が十分高くなる。 Looking at the SEM photograph of the cross section of the AlN ceramic substrate 12 of the obtained heater 10 for semiconductor manufacturing equipment, the average particle size of the AlN sintered particles is preferably 1.5 μm or more and 2.5 μm or less. It is preferable that yttrium aluminate, which is finer than the AlN sintered particles, is present in a dispersed state at grain boundaries between the AlN sintered particles. If the average particle size of the AlN sintered particles is larger than this, the yttrium aluminate exists in a wet state at the grain boundary between the AlN sintered particles, making it easier to form a current path. not high enough. On the other hand, when the average particle size of the AlN sintered particles is 1.5 μm or more and 2.5 μm or less, yttrium aluminate exists in a state of being dispersed in the grain boundaries between the AlN sintered particles, so a current path is formed. and the volume resistivity at high temperatures is sufficiently high.
 また、内周側及び外周側抵抗発熱体30,40にMoを用いた場合、AlNセラミック基体12には、図2の拡大図に示すように、内周側抵抗発熱体30に接するように内周側抵抗発熱体30を連続的に(つまり途切れることなく)取り囲む第1環状層L1と、第1環状層L1を連続的に取り囲む第2環状層L2とが現れる。第1環状層L1は、第2環状層L2に比べてY含有量が多くて層幅が広い。すなわち、第1環状層L1はYリッチ層、第2環状層L2はYプア層である。こうした微構造は、外周側抵抗発熱体40の周辺でも見られる。第1環状層L1がYリッチ層になる理由は以下のように考えられる。 Further, when Mo is used for the inner and outer resistance heating elements 30 and 40, the AlN ceramic substrate 12 has an inner surface so as to be in contact with the inner resistance heating element 30 as shown in the enlarged view of FIG. A first annular layer L1 continuously (that is, without interruption) surrounding the circumferential resistance heating element 30 and a second annular layer L2 continuously surrounding the first annular layer L1 appear. The first annular layer L1 has a higher Y content and a wider layer width than the second annular layer L2. That is, the first annular layer L1 is a Y-rich layer, and the second annular layer L2 is a Y-poor layer. Such a microstructure is also seen around the outer resistance heating element 40 . The reason why the first annular layer L1 becomes the Y-rich layer is considered as follows.
 焼成温度が1750℃を超えると、Mo製の内周側抵抗発熱体30に接する領域のY濃度は低下する。焼成温度が1750℃を超えると、Moは酸素との親和性が高いためMoの周辺のイットリウムアルミネートから酸素を奪おうとするのに対し、Moの周辺のイットリウムアルミネートは酸素を奪われたくないためMoから離れた位置へ移動すると考えられる。それにより、焼成温度が1750℃を超えると、AlNセラミック基体12のうちMo製の内周側抵抗発熱体30に接する領域のY濃度が低下すると考えられる。これが、高温での体積抵抗率が十分高くならない一因になっている可能性があると思われる。 When the firing temperature exceeds 1750° C., the Y concentration in the region in contact with the Mo inner peripheral resistance heating element 30 decreases. When the firing temperature exceeds 1750 ° C., Mo has a high affinity for oxygen and tries to take oxygen from the yttrium aluminate around Mo, whereas the yttrium aluminate around Mo does not want to take oxygen. Therefore, it is considered to move to a position away from Mo. As a result, when the firing temperature exceeds 1750° C., the Y concentration in the region of the AlN ceramic substrate 12 in contact with the Mo inner resistance heating element 30 is considered to decrease. This may be one of the reasons why the volume resistivity at high temperatures is not sufficiently high.
 一方、焼成温度が1650℃以上1750℃以下であると、Mo製の内周側抵抗発熱体30に接する領域(第1環状層L1)のY濃度は比較的高くなる。焼成温度が1750℃以下だと、Moが周辺のイットリウムアルミネートから酸素を奪う反応が起こり難いため、Moの周辺のイットリウムアルミネートはMoから離れた位置へ移動しにくいと考えられる。それにより、焼成温度が1650℃以上1750℃以下であると、AlNセラミック基体12のうちMo製の内周側抵抗発熱体30に接する領域(第1環状層L1)のY濃度は低下せずYリッチ層になると考えられる。これが、高温での体積抵抗率が十分高くなる一因になっている可能性があると思われる。 On the other hand, when the firing temperature is 1650° C. or higher and 1750° C. or lower, the Y concentration in the region (first annular layer L1) in contact with the Mo inner circumference side resistance heating element 30 becomes relatively high. If the firing temperature is 1750° C. or lower, it is difficult for Mo to deprive the surrounding yttrium aluminate of oxygen. As a result, when the firing temperature is 1650° C. or higher and 1750° C. or lower, the Y concentration in the region (first annular layer L1) of the AlN ceramic substrate 12 that is in contact with the Mo inner peripheral side resistance heating element 30 does not decrease. It is thought that it will become a rich layer. This may be one of the reasons why the volume resistivity at high temperatures is sufficiently high.
 以上説明した本実施形態の半導体製造装置用ヒータ10によれば、AlNセラミック基体12の高温(550℃)での体積抵抗率が3×109Ωcm以上であり、従来に比べて更に高い。そのため、AlNセラミック基体12をリーク電流が流れるのを十分に阻止することができる。なお、体積抵抗率が5×109Ωcm以上であればリーク電流を更に抑制できるので好ましく、1×1010Ωcm以上であればセラミック基体の厚さを更に薄くできるのでより好ましい。 According to the semiconductor manufacturing apparatus heater 10 of the present embodiment described above, the volume resistivity of the AlN ceramic substrate 12 at a high temperature (550° C.) is 3×10 9 Ωcm or more, which is higher than that of the conventional heater. Therefore, it is possible to sufficiently prevent leakage current from flowing through the AlN ceramic substrate 12 . A volume resistivity of 5×10 9 Ωcm or more is preferable because leakage current can be further suppressed, and a volume resistivity of 1×10 10 Ωcm or more is more preferable because the thickness of the ceramic substrate can be further reduced.
 また、AlNセラミック基体12中のAlN焼結粒子の平均粒径は1.5μm以上2.5μm以下であることが好ましく、AlN焼結粒子同士の粒界にイットリウムアルミネートが分散した状態で存在することが好ましい。こうすれば、イットリウムアルミネートが微細かつ均一に分散した状態になる。そのため、イットリウムアルミネートの電流パスが生じるのを防止することができ、AlNセラミック基体12の高温での体積抵抗率を高くすることができる。 In addition, the average particle size of the AlN sintered particles in the AlN ceramic substrate 12 is preferably 1.5 μm or more and 2.5 μm or less, and yttrium aluminate exists in a dispersed state at the grain boundary between the AlN sintered particles. is preferred. In this way, the yttrium aluminate is finely and uniformly dispersed. Therefore, it is possible to prevent the occurrence of a current path of yttrium aluminate and increase the volume resistivity of the AlN ceramic substrate 12 at high temperatures.
 更に、内周側及び外周側抵抗発熱体30,40は、Mo製であることが好ましく、AlNセラミック基体12には、抵抗発熱体30,40に接するように抵抗発熱体30,40を連続的に取り囲む第1環状層L1と、第1環状層L2を連続的に取り囲む第2環状層L2とが現れ、第1環状層L1は、第2環状層L2に比べてY含有量が多くて層幅が広いことが好ましい。こうした構造は、高温での高い体積抵抗率に何らかの貢献をしていると考えられる。こうした構造は、ホットプレス焼成を行う際、最高温度に到達するまでの間(1500℃から最高温度より10℃低い温度までの間)で、少なくとも1時間以上キープする操作を1回以上行うことによって、生じやすい。 Furthermore, the inner and outer peripheral resistance heating elements 30 and 40 are preferably made of Mo. and a second annular layer L2 that continuously surrounds the first annular layer L2. The first annular layer L1 has a higher Y content than the second annular layer L2 A wide width is preferred. Such structures are believed to contribute in some way to the high volume resistivity at high temperatures. Such a structure is obtained by performing the operation of keeping for at least one hour or more until the maximum temperature is reached (between 1500 ° C. and 10 ° C. below the maximum temperature) when performing hot press firing. , is likely to occur.
 更にまた、半導体製造装置用ヒータ10は、AlN粉末とY23粉末との混合粉末(Y23粉末は混合粉末全体の4質量%以上6質量%以下)にRF電極20や内周側及び外周側抵抗発熱体30,40を埋設して成形することにより成形体を得たあと、焼成時の最高温度を1650℃以上1750℃以下に設定して成形体をホットプレス焼成することにより得られたものである。そのため、AlNセラミック基体12をリーク電流が流れるのを十分に阻止することができる半導体製造装置用ヒータ10を比較的容易に製造することができる。 Furthermore, the heater 10 for a semiconductor manufacturing apparatus includes a mixed powder of AlN powder and Y 2 O 3 powder (the Y 2 O 3 powder is 4% by mass or more and 6% by mass or less of the entire mixed powder), the RF electrode 20 and the inner circumference. By embedding the side and outer peripheral resistance heating elements 30 and 40 and molding to obtain a molded body, the molded body is hot-press fired at a maximum firing temperature of 1650° C. or higher and 1750° C. or lower. It is obtained. Therefore, it is possible to relatively easily manufacture the heater 10 for semiconductor manufacturing equipment, which can sufficiently prevent the leak current from flowing through the AlN ceramic substrate 12 .
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is by no means limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present invention.
 例えば、上述した実施形態では、AlNセラミック基体12にRF電極20を埋設したが、RF電極20を省略してもよいし、RF電極20を静電電極に置き換えてもよいし、RF電極20を静電電極と兼用してもよい。静電電極を設けた場合、静電電極に電圧を印加することによりウエハWをウエハ載置面12aに吸着保持することができる。 For example, in the embodiment described above, the RF electrode 20 is embedded in the AlN ceramic substrate 12, but the RF electrode 20 may be omitted, the RF electrode 20 may be replaced with an electrostatic electrode, or the RF electrode 20 may be replaced with an electrostatic electrode. It may also be used as an electrostatic electrode. When an electrostatic electrode is provided, the wafer W can be attracted and held on the wafer mounting surface 12a by applying a voltage to the electrostatic electrode.
 上述した実施形態では、RF電極20として、金属メッシュを例示したが、金属板を採用してもよい。また、内周側及び外周側抵抗発熱体30,40として、金属コイルを例示したが、金属リボンや金属メッシュを採用してもよい。また、RF電極20や内周側及び外周側抵抗発熱体30,40は、導電ペーストを所定形状又は所定パターンとなるように印刷して形成してもよい。 In the above-described embodiment, a metal mesh is exemplified as the RF electrode 20, but a metal plate may be employed. In addition, although the metal coils have been exemplified as the inner and outer peripheral resistance heating elements 30 and 40, metal ribbons and metal meshes may also be employed. Also, the RF electrode 20 and the inner and outer resistance heating elements 30 and 40 may be formed by printing a conductive paste in a predetermined shape or pattern.
 上述した実施形態では、内周側ゾーンZinに内周側抵抗発熱体30を埋設し、外周側ゾーンZoutに外周側抵抗発熱体40を埋設したが、AlNセラミック基体12を3つ以上のゾーンに分割して各ゾーンに抵抗発熱体を埋設してもよい。あるいは、AlNセラミック基体12を複数のゾーンに分割することなく1本の抵抗発熱体を全体にわたって配線してもよい。 In the above-described embodiment, the inner resistance heating element 30 is embedded in the inner zone Zin and the outer resistance heating element 40 is embedded in the outer zone Zout. A resistance heating element may be embedded in each zone by dividing it. Alternatively, a single resistance heating element may be wired throughout the AlN ceramic substrate 12 without dividing it into a plurality of zones.
 上述した実施形態では、内周側抵抗発熱体30と外周側抵抗発熱体40を同一平面上に埋設したが、両者を異なる面に埋設してもよい。 In the above-described embodiment, the inner peripheral side resistance heating element 30 and the outer peripheral side resistance heating element 40 are embedded on the same plane, but they may be embedded on different surfaces.
 上述した実施形態では、半導体製造装置用ヒータ10を例示したが、RF電極20や内周側及び外周側抵抗発熱体30,40をAlNセラミック基体12に埋設することなく、AlNセラミック基体12を単独で作製してもよい。 In the above-described embodiment, the heater 10 for a semiconductor manufacturing apparatus is illustrated, but the AlN ceramic substrate 12 can be used alone without embedding the RF electrode 20 and the inner and outer peripheral resistance heating elements 30 and 40 in the AlN ceramic substrate 12. can be made with
 上述した実施形態では、第2環状層L2は、第1環状層L1を連続的に取り囲む形状としたが、特にこれに限定されない。例えば、図3に示すように、第2環状層L2は、連続的ではなく、環状の一部に途切れた箇所L2aを有する形状であってもよい。第2環状層L2は、途切れた箇所L2aを仮想的に繋げたとすると一本の輪(スムーズな輪)になる。 In the above-described embodiment, the second annular layer L2 has a shape that continuously surrounds the first annular layer L1, but it is not particularly limited to this. For example, as shown in FIG. 3, the second annular layer L2 may have a shape that is not continuous but has an annular portion L2a that is interrupted. The second annular layer L2 forms one ring (smooth ring) if the discontinuous portions L2a are virtually connected.
 以下に、本発明の実施例について説明する。なお、以下の実施例は本発明を何ら限定するものではない。 Examples of the present invention will be described below. In addition, the following examples do not limit the present invention.
[実施例1]
 まず、AlN原料粉末を用意した。このAlN原料粉末に焼結助剤としてY23粉末を5質量%添加してボールミルにより混合して混合粉末とし、これをスプレードライにて顆粒化した。Y23は混合粉末全体に対して5質量%となるように添加した。続いて、混合粉末の顆粒を用いて、円盤形状の成形体を作製した。成形体には、RF電極20と内周側及び外周側抵抗発熱体30,40を埋設した。そして、この成形体をホットプレス焼成することにより半導体製造装置用ヒータ10を作製した。ホットプレス焼成では、焼成時の最高温度(焼成温度)を1720℃、焼成温度でのキープ時間を2時間、プレス圧力を20MPa、雰囲気を窒素雰囲気とした。なお、ホットプレス焼成では、最高温度に到達するまでの間(1500℃から最高温度より10℃低い温度までの間)で、1時間キープする操作を2回以上行った。
[Example 1]
First, AlN raw material powder was prepared. 5% by mass of Y 2 O 3 powder was added as a sintering aid to this AlN raw material powder and mixed by a ball mill to obtain a mixed powder, which was granulated by spray drying. Y 2 O 3 was added so as to be 5% by mass with respect to the entire mixed powder. Subsequently, using the granules of the mixed powder, a disk-shaped compact was produced. An RF electrode 20 and inner and outer resistance heating elements 30 and 40 were embedded in the compact. Then, the heater 10 for a semiconductor manufacturing apparatus was produced by hot-press firing the compact. In the hot press firing, the maximum temperature (firing temperature) during firing was 1720° C., the time to keep the firing temperature was 2 hours, the press pressure was 20 MPa, and the atmosphere was nitrogen atmosphere. In the hot press firing, the operation of keeping for 1 hour was performed twice or more until the maximum temperature was reached (from 1500° C. to a temperature 10° C. lower than the maximum temperature).
 AlNセラミック基体12に含まれる結晶相をX線回折により同定した。X線回折は、0.5g程度の粉末をBruker AXS製D8 ADVANCEで測定した。測定条件は、CuKα線源、管電圧40kV、管電流40mAとした。測定結果をリートベルト解析し、結晶相の同定と定量化を行った。XRDプロファイルから同定された結晶相はAlN,YAM,YALであり、TiNは確認されなかった。 The crystal phase contained in the AlN ceramic substrate 12 was identified by X-ray diffraction. About 0.5 g of powder was measured for X-ray diffraction with a Bruker AXS D8 ADVANCE. The measurement conditions were a CuKα ray source, a tube voltage of 40 kV, and a tube current of 40 mA. Rietveld analysis was performed on the measurement results to identify and quantify the crystal phase. Crystal phases identified from the XRD profile were AlN, YAM, and YAL, and TiN was not confirmed.
[比較例1]
 最高温度を1850℃としたこと及び最高温度に到達するまでの間でキープする操作を行わなかったこと以外は、実施例1と同様にして半導体製造装置用ヒータを作製した。比較例1も、XRDプロファイルから同定された結晶相はAlN,YAM,YALであり、TiNは確認されなかった。
[Comparative Example 1]
A heater for a semiconductor manufacturing apparatus was manufactured in the same manner as in Example 1, except that the maximum temperature was set to 1850° C. and the operation to keep the temperature was not performed until the maximum temperature was reached. Also in Comparative Example 1, the crystal phases identified from the XRD profile were AlN, YAM, and YAL, and TiN was not confirmed.
[体積抵抗率]
 実施例1の半導体製造装置用ヒータ10につき、AlNセラミック基体12の550℃での体積抵抗率を測定した。測定は、次のようにして行った。ウエハ載置面12aにSiウエハWを載せ、550℃でウエハWとRF電極20(金属メッシュ)との間に電圧を印加したときのリーク電流(ウエハWとRF電極20との間を流れる電流)を測定した。RF電極20の直径はφ355.6mm、誘電層(ウエハ載置面12aとRF電極20との間の層)の膜厚は1.02mm、印加電圧は660Vとした。実施例1の半導体製造装置用ヒータ10を複数作製し、リーク電流を測定したところ、40mA台であった。AlNセラミック基体12の550℃での体積抵抗率を、リーク電流から間接的に計算したところ、平均値は1.2×1010Ωcmであった。一方、比較例1も実施例1と同様にしてリーク電流を測定したところ、280mA台であり、AlNセラミック基体の550℃での体積抵抗率の平均値は2.4×109Ωcmであった。
[Volume resistivity]
The volume resistivity of the AlN ceramic substrate 12 of the heater 10 for semiconductor manufacturing equipment of Example 1 was measured at 550°C. Measurement was performed as follows. A leak current (current flowing between the wafer W and the RF electrode 20) is obtained when a Si wafer W is placed on the wafer mounting surface 12a and a voltage is applied between the wafer W and the RF electrode 20 (metal mesh) at 550°C. ) was measured. The diameter of the RF electrode 20 was φ355.6 mm, the film thickness of the dielectric layer (the layer between the wafer mounting surface 12a and the RF electrode 20) was 1.02 mm, and the applied voltage was 660V. A plurality of heaters 10 for a semiconductor manufacturing apparatus of Example 1 were produced, and the leak current was measured to be on the order of 40 mA. When the volume resistivity of the AlN ceramic substrate 12 at 550° C. was indirectly calculated from the leak current, the average value was 1.2×10 10 Ωcm. On the other hand, when the leakage current was measured in Comparative Example 1 in the same manner as in Example 1, it was on the order of 280 mA, and the average volume resistivity of the AlN ceramic substrate at 550° C. was 2.4×10 9 Ωcm. .
[微構造]
 実施例1のAlNセラミック焼結体12のMoを含む断面を撮影したSEM写真からAlN焼結粒子の平均粒径を求めたところ、1.9μmであった。そのため、実施例1では、微細なAlN焼結粒子同士の粒界にイットリウムアルミネートが均一に分散していると判断した。比較例1についても同様にして平均粒径を求めたところ、4.5μmであり、実施例1と比べて大きな粒子であった。なお、平均粒径は、二次電子像(倍率3000倍)を取得し、その画像上に直線を引き、40個の粒子を横切る線分の長さをそれぞれ測定し、それらの平均値として算出した。
[Microstructure]
When the average particle size of the AlN sintered particles was determined from the SEM photograph of the cross section containing Mo of the AlN ceramic sintered body 12 of Example 1, it was 1.9 μm. Therefore, in Example 1, it was determined that the yttrium aluminate was uniformly dispersed in the grain boundaries between fine AlN sintered particles. When the average particle size of Comparative Example 1 was determined in the same manner, the average particle size was 4.5 μm, which is larger than that of Example 1. The average particle size is obtained by obtaining a secondary electron image (magnification: 3000), drawing a straight line on the image, measuring the length of each line segment that crosses 40 particles, and calculating the average value thereof. did.
 図4は実施例1のAlNセラミック焼結体12のMo(内周側抵抗発熱体30)を含む断面を撮影したSEM写真であり、図5はその模式図である。図4及び図5からわかるように、Moに接するようにMoを連続的に(途切れることなく)取り囲む第1環状層L1と、第1環状層L1を連続的に取り囲む第2環状層L2とが観察された。第1環状層L1は、白くて細かい斑点(イットリウムアルミネート由来のY)が多く分散していたが、第2環状層L2は、そうした斑点がほとんどなくほぼ黒に近かった。図6は、図4の矢印方向に沿ってMo及びYのそれぞれについてEPMA分析を実施した結果を示すグラフである。図6では、Mo濃度が急峻に立ち上がる部分及び急峻に立ち下がる部分を、抵抗発熱体(Mo)とAlNセラミック焼結体との境界とみなした。第1環状層L1のY濃度は比較的高かったが、第2環状層L2のY濃度はほとんどゼロであった。このことから、第1環状層L1はYリッチ層であり、第2環状層L2はYプア層であることがわかった。また、第1環状層L1の層幅は、第2環状層L2の層幅よりも広かった。 FIG. 4 is a SEM photograph of a cross section of the AlN ceramic sintered body 12 of Example 1 including Mo (the inner peripheral resistance heating element 30), and FIG. 5 is a schematic diagram thereof. As can be seen from FIGS. 4 and 5, the first annular layer L1 continuously (without interruption) surrounds Mo so as to be in contact with Mo, and the second annular layer L2 continuously surrounds the first annular layer L1. observed. The first annular layer L1 had a large number of fine white spots (Y derived from yttrium aluminate) dispersed therein, but the second annular layer L2 had almost no such spots and was almost black. FIG. 6 is a graph showing the results of EPMA analysis for Mo and Y along the arrow directions in FIG. In FIG. 6, the portions where the Mo concentration rises sharply and the portions where it falls steeply are regarded as boundaries between the resistance heating element (Mo) and the AlN ceramic sintered body. The Y concentration in the first annular layer L1 was relatively high, but the Y concentration in the second annular layer L2 was almost zero. From this, it was found that the first annular layer L1 was a Y-rich layer and the second annular layer L2 was a Y-poor layer. Also, the layer width of the first annular layer L1 was wider than the layer width of the second annular layer L2.
 図7は比較例1のAlNセラミック焼結体のMoを含む断面を撮影したSEM写真であり、図8はその模式図である。図7及び図8からわかるように、Moに接するようにMoを取り囲む第1層と、第1層を取り囲む第2層とが観察された。第1層は、斑点がほとんどなくほぼ黒に近い層であり、第2層は、斑点が比較的多く存在していた。第2層は連続しておらず不連続であった。図7の矢印方向に沿ってMo及びYのそれぞれについてEPMA分析を実施した結果を図9に示す。図9では、Mo濃度が急峻に立ち上がる部分及び急峻に立ち下がる部分を、抵抗発熱体(Mo)とAlN焼結体との境界とみなした。第1層のY濃度はほとんどゼロであり、第2層のY濃度は比較的高かった。このことから、比較例1の第1層はYプア層であり、第2層はYリッチ層であること、つまり実施例1とは逆であることがわかった。 FIG. 7 is a SEM photograph of a cross section containing Mo of the AlN ceramic sintered body of Comparative Example 1, and FIG. 8 is a schematic diagram thereof. As can be seen from FIGS. 7 and 8, a first layer surrounding Mo so as to be in contact with Mo and a second layer surrounding the first layer were observed. The first layer was almost black with almost no spots, and the second layer had relatively many spots. The second layer was non-continuous and discontinuous. FIG. 9 shows the results of EPMA analysis of Mo and Y along the arrow directions in FIG. In FIG. 9, the portions where the Mo concentration steeply rises and falls are regarded as boundaries between the resistance heating element (Mo) and the AlN sintered body. The Y concentration of the first layer was almost zero and the Y concentration of the second layer was relatively high. From this, it was found that the first layer in Comparative Example 1 was a Y-poor layer and the second layer was a Y-rich layer, that is, contrary to Example 1.
 本出願は、2021年3月18日に出願された日本国特許出願第2021-44405号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application claims priority from Japanese Patent Application No. 2021-44405 filed on March 18, 2021, the entire contents of which are incorporated herein by reference.
 本発明は、半導体製造装置用ヒータに利用可能である。 The present invention can be used for heaters for semiconductor manufacturing equipment.
10 半導体製造装置用ヒータ、12 AlNセラミック基体、12a ウエハ載置面、12b 下面、20 RF電極、22 RF接続部材、30 内周側抵抗発熱体、32,34 端子、36,38 内周側接続部材、40 外周側抵抗発熱体、42,44 端子、46,48 外周側接続部材、L1 第1環状層、L2 第2環状層、W ウエハ、Zin 内周側ゾーン、Zout 外周側ゾーン。 10 Heater for semiconductor manufacturing equipment, 12 AlN ceramic substrate, 12a Wafer mounting surface, 12b Lower surface, 20 RF electrode, 22 RF connection member, 30 Inner peripheral side resistance heating element, 32, 34 Terminal, 36, 38 Inner peripheral side connection Member, 40 outer resistance heating element, 42, 44 terminals, 46, 48 outer connecting member, L1 first annular layer, L2 second annular layer, W wafer, Zin inner zone, Zout outer zone.

Claims (5)

  1.  イットリウムアルミネートを含むAlNセラミック基体であって、
     550℃での体積抵抗率が3×109Ωcm以上である、
     AlNセラミック基体。
    An AlN ceramic substrate comprising yttrium aluminate,
    Volume resistivity at 550 ° C. is 3 × 10 9 Ωcm or more,
    AlN ceramic substrate.
  2.  AlN焼結粒子の平均粒径が1.5μm以上2.5μm以下であり、
     AlN焼結粒子同士の粒界にイットリウムアルミネートが分散した状態で存在する、
     請求項1に記載のAlNセラミック基体。
    The average particle diameter of the AlN sintered particles is 1.5 μm or more and 2.5 μm or less,
    Yttrium aluminate exists in a dispersed state at the grain boundary between AlN sintered particles,
    The AlN ceramic substrate of claim 1.
  3.  請求項1又は2に記載のAlNセラミック基体に抵抗発熱体が埋設された、
     半導体製造装置用ヒータ。
    A resistance heating element is embedded in the AlN ceramic substrate according to claim 1 or 2,
    Heater for semiconductor manufacturing equipment.
  4.  前記抵抗発熱体は、Mo製であり、
     前記AlNセラミック基体には、前記抵抗発熱体に接するように前記抵抗発熱体を取り囲む第1環状層と、前記第1環状層を取り囲む第2環状層とが存在し、前記第1環状層は、前記第2環状層に比べてY含有量が多くて層幅が広い、
     請求項3に記載の半導体製造装置用ヒータ。
    The resistance heating element is made of Mo,
    The AlN ceramic substrate includes a first annular layer surrounding the resistance heating element so as to be in contact with the resistance heating element, and a second annular layer surrounding the first annular layer, wherein the first annular layer comprises: The Y content is larger and the layer width is wider than that of the second annular layer,
    4. The heater for semiconductor manufacturing equipment according to claim 3.
  5.  前記第1環状層は、前記抵抗発熱体を連続的に取り囲み、
     前記第2環状層は、前記第1環状層を連続的に取り囲む、
     請求項4に記載の半導体製造装置用ヒータ。
    the first annular layer continuously surrounds the resistive heating element;
    the second annular layer continuously surrounds the first annular layer;
    5. The heater for semiconductor manufacturing equipment according to claim 4.
PCT/JP2021/040196 2021-03-18 2021-11-01 Aln ceramic substrate, and heater for semiconductor manufacturing device WO2022195947A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227038927A KR20220164583A (en) 2021-03-18 2021-11-01 Heater for AlN ceramic body and semiconductor manufacturing equipment
JP2022510795A JP7074944B1 (en) 2021-03-18 2021-11-01 Heater for semiconductor manufacturing equipment
CN202180010171.0A CN115606318A (en) 2021-03-18 2021-11-01 AlN ceramic base and heater for semiconductor manufacturing apparatus
US18/046,614 US20230138000A1 (en) 2021-03-18 2022-10-14 AlN CERAMIC SUBSTRATE AND HEATER FOR SEMICONDUCTOR MANUFACTURING APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-044405 2021-03-18
JP2021044405 2021-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/046,614 Continuation US20230138000A1 (en) 2021-03-18 2022-10-14 AlN CERAMIC SUBSTRATE AND HEATER FOR SEMICONDUCTOR MANUFACTURING APPARATUS

Publications (1)

Publication Number Publication Date
WO2022195947A1 true WO2022195947A1 (en) 2022-09-22

Family

ID=83320248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040196 WO2022195947A1 (en) 2021-03-18 2021-11-01 Aln ceramic substrate, and heater for semiconductor manufacturing device

Country Status (2)

Country Link
TW (1) TWI798917B (en)
WO (1) WO2022195947A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313078A (en) * 2002-04-18 2003-11-06 Taiheiyo Cement Corp Aluminum nitride sintered compact and electrostatic chuck using the same
JP2015514661A (en) * 2012-02-29 2015-05-21 ハリス,ジョナサン・エイチ Transient liquid phase, normal pressure bonding of aluminum nitride parts
US10403535B2 (en) * 2014-08-15 2019-09-03 Applied Materials, Inc. Method and apparatus of processing wafers with compressive or tensile stress at elevated temperatures in a plasma enhanced chemical vapor deposition system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102339550B1 (en) * 2017-06-30 2021-12-17 주식회사 미코세라믹스 Aluminum nitride sintered compact and members for semiconductor manufacturing apparatus including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313078A (en) * 2002-04-18 2003-11-06 Taiheiyo Cement Corp Aluminum nitride sintered compact and electrostatic chuck using the same
JP2015514661A (en) * 2012-02-29 2015-05-21 ハリス,ジョナサン・エイチ Transient liquid phase, normal pressure bonding of aluminum nitride parts
US10403535B2 (en) * 2014-08-15 2019-09-03 Applied Materials, Inc. Method and apparatus of processing wafers with compressive or tensile stress at elevated temperatures in a plasma enhanced chemical vapor deposition system

Also Published As

Publication number Publication date
TWI798917B (en) 2023-04-11
TW202239262A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
TW508716B (en) Electrostatic chuck and treatment device
US6294771B2 (en) Electrically heated substrate with multiple ceramic parts each having different volume resitivities
JP4499431B2 (en) Aluminum nitride sintered body, electrostatic chuck, conductive member, member for semiconductor manufacturing apparatus, and method for manufacturing aluminum nitride sintered body
JP5341049B2 (en) Method for manufacturing ceramic sintered body, ceramic sintered body, and ceramic heater
US7372001B2 (en) Ceramics heater
KR20130126622A (en) Electrostatic chuck
JP2008153194A (en) Heating device
JP7248653B2 (en) Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body
JP4482535B2 (en) Heating device
TW201946204A (en) Electrostatic chuck device and method for manufacturing same
TWI783000B (en) Heaters for semiconductor manufacturing equipment
KR20200133734A (en) Composite sintered body, electrostatic chuck member, electrostatic chuck device, and manufacturing method of composite sintered body
WO2022195947A1 (en) Aln ceramic substrate, and heater for semiconductor manufacturing device
KR20200133744A (en) Electrostatic chuck device and manufacturing method of electrostatic chuck device
US10679873B2 (en) Ceramic heater
US10615060B2 (en) Heating device
JP7074944B1 (en) Heater for semiconductor manufacturing equipment
JP2006127900A (en) Annular heater
JP2007265998A (en) Heating device and its manufacturing method
JP2003077995A (en) Electrostatic chuck
WO2018230232A1 (en) Wafer heating heater and semiconductor manufacturing device
JP2002319474A (en) Hot plate unit
JP2004299990A (en) Aluminum nitride sintered compact, and member and electrostatic chuck for semiconductor fabrication system using the same
JP2009302571A (en) Electrostatic chuck with heater

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022510795

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227038927

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931690

Country of ref document: EP

Kind code of ref document: A1