JP2004299990A - Aluminum nitride sintered compact, and member and electrostatic chuck for semiconductor fabrication system using the same - Google Patents

Aluminum nitride sintered compact, and member and electrostatic chuck for semiconductor fabrication system using the same Download PDF

Info

Publication number
JP2004299990A
JP2004299990A JP2003096594A JP2003096594A JP2004299990A JP 2004299990 A JP2004299990 A JP 2004299990A JP 2003096594 A JP2003096594 A JP 2003096594A JP 2003096594 A JP2003096594 A JP 2003096594A JP 2004299990 A JP2004299990 A JP 2004299990A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
nitride sintered
mass
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003096594A
Other languages
Japanese (ja)
Other versions
JP4314048B2 (en
Inventor
Shinya Sato
伸也 佐藤
Hironori Ishida
弘徳 石田
Tatsuya Shiogai
達也 塩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003096594A priority Critical patent/JP4314048B2/en
Publication of JP2004299990A publication Critical patent/JP2004299990A/en
Application granted granted Critical
Publication of JP4314048B2 publication Critical patent/JP4314048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum nitride sintered compact which exhibits a black color of ≤4.0 N in clarity prescribed by JIS Z 8721, and has a volume resistivity of ≥1.0×10<SP>10</SP>Ωcm at 500°C. <P>SOLUTION: The aluminum nitride sintered compact is obtained by the addition of alkaline earth metal and lithium as sintering aids by ≥0.01 mass%, respectively, and by 0.3 to 10 mass% in total. Firing is performed under the conditions where grain growth can be suppressed, so that the average grain size of the crystal grains composing the sintered compact is controlled to 0.6 to 2.0 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高温における高い体積抵抗率を維持しつつ、明度を小さくし、黒色を呈する窒化アルミニウム焼結体およびそれを用いた半導体製造装置用部材および静電チャックに関する。
【0002】
【従来の技術】
近年、半導体製造装置用部材として熱伝導性に優れ、耐食性にも優れる窒化アルミニウム製部品が使用されている。特にウエハ保持部材として窒化アルミニウム焼結体中に金属電極を埋設したサセプタ、ヒータ、静電チャック等が使用されるようになってきた。このようなウエハ保持部材を使用する際には、リーク電流を低く抑える必要がある。過剰にリーク電流が流れるとデバイスに悪影響を及ぼすからである。ここで、一般的に窒化アルミニウム焼結体は室温で1×1014Ω・cm程度の体積抵抗率を有するが、高温になるほど体積抵抗率は低下するため、高温域で使用するウエハ保持部材には適用できなかった。そのため、高温域でも使用できる体積抵抗率の高い窒化アルミニウム焼結体が求められていた。
【0003】
また、一般的に窒化アルミニウム焼結体は白色または灰白色を呈するが、静電チャック、サセプタ、ヒータ等の部材には黒色であることが求められる。黒色部材の方が、白色の部材よりも輻射熱量が多く加熱特性が優れているからである。また、静電チャック等の部材に白色または灰白色の窒化アルミニウム焼結体を用いると、製品の表面に色むらが生じやすいため、改善が求められてきた。
【0004】
このため、窒化アルミニウム焼結体を黒色にするため、酸化チタン等の遷移金属元素やカーボンを原料粉末中に添加し、これを焼成して、黒色の窒化アルミニウム焼結体を製造する方法が提案されている(例えば、特許文献1参照。)。また、焼結助剤を添加することなしに黒色化した窒化アルミニウム焼結体、およびアルミナを添加することにより黒色化した窒化アルミニウム焼結体が提案されている(例えば、特許文献2、3参照。)。
【0005】
【特許文献1】
特開平9−48668号公報
【特許文献2】
特許第2883207号公報
【特許文献3】
特開平10−95673号公報
【0006】
【発明が解決しようとする課題】
しかしながら、遷移金属元素やカーボン等の導電性物質を添加して得られる窒化アルミニウム焼結体は、体積抵抗率が低下するため、ウエハ保持部材として使用した場合にリーク電流の増加によってデバイスを破壊するおそれがある。また、焼結助剤を添加しない場合には、液相への不純物酸素の取込が少ないため不純物酸素に起因する格子欠陥が生じやすくなる。その結果、体積抵抗率は低下し、リーク電流の増加によってデバイスに悪影響を与えるおそれが生じる。アルミナを添加した場合も同様に不純物酸素が増加するため体積抵抗率は低下する。
【0007】
以上のように、従来の窒化アルミニウム焼結体は加熱特性の低い白色又は灰白色を呈しており、色むらも生じやすく、その対策として黒色化した窒化アルミニウム焼結体は体積抵抗率が低く、高温域で使用する半導体装置用部材として適用できないという問題があった。
【0008】
本発明は、上記課題に鑑みなされたものであって、その目的は、高温における高い体積抵抗率を維持しつつ、明度を小さくし、黒色を呈する窒化アルミニウム焼結体およびそれを用いた半導体製造装置用部材および静電チャックを提供することにある。
【0009】
【課題を解決するための手段】
本発明者等は、上記目的を達成するため研究を重ねた結果、焼結助剤としてアルカリ土類金属およびリチウムを所定量添加してなる相対密度が98%以上の緻密質な窒化アルミニウム焼結体において、それを構成する結晶粒子の平均粒径を所定の範囲内に制御することにより、高温で高い体積抵抗率をもち、かつ黒色を呈する窒化アルミニウム焼結体が得られることを見出し、本発明を完成するに至った。
【0010】
即ち本発明は、
(1)相対密度が98%以上であり、JIS Z 8721に規定する明度がN4.0以下の黒色を呈し、500℃における体積抵抗率が1.0×1010Ω・cm以上であることを特徴とする窒化アルミニウム焼結体(請求項1)とし、
(2)焼結助剤としてアルカリ土類金属およびリチウムを酸化物換算でそれぞれ0.01質量%以上、合計で0.3〜10質量%添加してなる窒化アルミニウム焼結体であって、該窒化アルミニウム焼結体を構成する結晶粒子の平均粒径が0.6〜2.0μmであることを特徴とする上記(1)に記載の窒化アルミニウム焼結体(請求項2)とし、
(3)焼結助剤としてアルカリ土類金属およびリチウムを酸化物換算でそれぞれ0.01質量%以上、合計で0.3〜10質量%添加してなる窒化アルミニウム焼結体であって、該窒化アルミニウム焼結体を得るための被焼成体の焼成条件が、焼成温度1500〜1700℃、圧力が11.7MPa以上であることを特徴とする上記(2)に記載の窒化アルミニウム焼結体(請求項3)とし、
(4)前記アルカリ土類金属がカルシウムであることを特徴とする上記(2)または(3)に記載の窒化アルミニウム焼結体(請求項4)とし、
(5)上記(1)〜(4)のいずれか1つに記載の窒化アルミニウム焼結体を基材として使用していることを特徴とする半導体製造装置用部材(請求項5)とし、
(6)上記(1)〜(4)のいずれか1つに記載の窒化アルミニウム焼結体を用いることを特徴とする静電チャック(請求項6)とすることを要旨とする。
【0011】
【発明の実施の形態】
本発明の窒化アルミニウム焼結体は、相対密度が98%以上であり、JIS Z 8721に規定する明度がN4.0以下の黒色を呈し、500℃における体積抵抗率が1.0×1010Ω・cm以上であることを特徴とする。
【0012】
本発明者等は、焼結助剤としてアルカリ土類金属およびリチウムを添加した窒化アルミニウム焼結体の色調および体積抵抗率について研究した結果、相対密度が98%以上であって、JIS Z 8721に規定する明度がN4.0以下の黒色を呈し、500℃における体積抵抗率が1.0×1010Ω・cm以上である窒化アルミニウム焼結体を得ることに成功した。JIS Z 8721に規定する明度がN4.0以下の黒色を呈しているため、輻射熱量が多く加熱特性が優れており、また、色むらがなく焼結体の外観もきわめて良好である。したがって、静電チャック、サセプタ、ヒータ等の半導体製造装置用部材として好適であり、さらに500℃の高温時でも1010Ω・cm以上の高体積抵抗率を有するため、リーク電流の増加によってデバイスを破壊するおそれがないことから、特に高温で使用される半導体製造装置用部材に最適である。また、窒化アルミニウム焼結体の相対密度を98%以上とすることにより、熱伝導率や耐プラズマ性の低下を抑えることができる。
【0013】
本発明の窒化アルミニウム焼結体は、焼結助剤としてアルカリ土類金属およびリチウムを酸化物換算でそれぞれ0.01質量%以上、合計で0.3〜10質量%添加してなる窒化アルミニウム焼結体であって、その窒化アルミニウム焼結体の相対密度を98%以上とし、その窒化アルミニウム焼結体を構成する結晶粒子の平均粒径を0.6〜2.0μmに制御することにより得ることができる。
【0014】
窒化アルミニウム焼結体を構成する結晶粒子の平均粒径が0.6〜2.0μmと小さいと、粒界が多いことから、焼成過程で窒化アルミニウム粒子内部もしくは粒子表面から粒界に取込まれた不純物酸素等によって、欠陥が粒界中に多く形成され、この粒界が可視光を吸収することによって黒色を示していると考えられる。さらに、粒成長が極めて少ないため、酸素原子の窒化アルミニウム結晶粒子内への固溶が抑制され、窒化アルミニウム結晶粒子内の格子欠陥による体積抵抗率の低下を防いでいることが考えられる。なお、その機構は定かではないが、窒化アルミニウム焼結体中のアルカリ土類金属成分およびリチウム成分の存在形態も焼結体の明度や体積抵抗率に影響していると考えられる。
【0015】
アルカリ土類金属とリチウムの酸化物換算による合計添加量を0.3〜10質量%としたのは、0.3質量%より少ないと焼結体の明度が上昇し、体積抵抗率が低下するからである。また、合計添加量が10質量%を超えると緻密化し難くなり、相対密度を98%以上とすることが困難になるからである。
【0016】
アルカリ土類金属としては、カルシウムが焼結性の点で最も有利であるが、ストロンチウム、バリウムでもよい。これらのアルカリ土類金属は酸化物として添加することが特に好ましく、また焼結条件下で酸化物となる化合物を用いてもよく、炭酸塩、硝酸塩、水酸化物等を使用することができる。アルカリ土類酸化物の添加量は0.01質量%以上、好ましくは0.1質量%以上、さらに好ましくは0.3質量%以上である。添加量が少なすぎると、明度が上昇し、体積抵抗率が低下する。
【0017】
リチウムの酸化物換算による添加量は0.01質量%以上、好ましくは0.1質量%以上である。添加量が少ないと、明度が上昇し、体積抵抗率が低下する。添加するリチウムの形態としては、酸化リチウムの他、炭酸リチウム、硝酸リチウム、水酸化リチウム等が使用できる。
【0018】
窒化アルミニウムの原料は、直接窒化法または還元窒化法によって得られた粉末が使用できる。得られた窒化アルミニウム焼結体を静電チャック、サセプタ、ヒータ等半導体製造装置の部品として使用する場合には、不純物が半導体汚染の原因になるため、窒化アルミニウム粉末は高純度であることが望ましい。
【0019】
本発明の窒化アルミニウム焼結体は、ホットプレス焼成によることが好適であり、被焼成体を11.7MPa以上の圧力下で焼成温度1500〜1700℃でホットプレス焼結させることが好ましい。焼成温度が1500℃より低いと相対密度98%に到達せず、1700℃より高いと焼結体を構成する結晶粒子の平均粒径が大きくなり、焼結体の明度が上昇するためである。圧力が11.7MPaより低いと、焼結体の相対密度を98%以上にするためには1700℃より高い焼成温度が必要となり、その結果、焼結体を構成する結晶粒子の平均粒径が大きくなり、焼結体の明度が上昇するためである。
【0020】
以上述べたように、本発明の窒化アルミニウム焼結体は静電チャック、サセプタ、ヒータ等の半導体製造装置用部材として好適であり、特に高温で使用される半導体製造装置用部材に最適である。以下、本発明の窒化アルミニウム焼結体を用いた静電チャックの例について説明する。
【0021】
図1および図2は、本発明の窒化アルミニウム焼結体を用いた静電チャックを示す断面図であり、図1は単極型のものを示し、図2は双極型のものを示す。図1の単極型の静電チャック1は、アルミニウム等からなる基台5の上に固定されて設けられており、吸着面を有し、本発明の窒化アルミニウム焼結体で構成された誘電体層2と、その下に設けられた電極3と、電極3と基台5との間に設けられた絶縁層4とを有しており、電極3には直流電源6が接続されており、この直流電源6から電極3に給電されることにより、誘電体層2の上に載置された被吸着体であるシリコンウエハ10が静電吸着される。図2の双極型の静電チャック1’は、誘電体層2と絶縁層4との間に一対の電極3a、3bが設けられており、これらに直流電源6が接続されており、直流電源6からこれらの電極にそれぞれ逆極性の電荷が供給されて誘電体層2の上に載置されたシリコンウエハ10が静電吸着される。
【0022】
なお、静電チャックの構造は特に限定されるものではなく、図1、図2に示す構造の他に、一方の面に電極が形成された誘電体層をセラミックス板あるいは絶縁層が形成されたアルミニウム台座に接着剤により貼り付けた構造など、種々の構造を採用することができる。また、電極構造は特に限定されず、上述のように単極型電極でも双極型電極でもよく、その形状も限定されるものではない。
【0023】
【実施例】
以下本発明の実施例を比較例と共に具体的に挙げ、本発明をより詳細に説明する。
【0024】
還元窒化法で製造された窒化アルミニウム粉末(一次粒子径0.6μm)に、表1に示した量で種々の焼結助剤を添加し、樹脂ボールを混合媒体とし、適量のIPA(イソプロピルアルコール)を溶媒として加え、24時間混合した。得られたスラリーを乾燥し、メッシュパスして原料粉末を作製した。リチウム源としては炭酸リチウムを添加した。アルカリ土類金属については、カルシウム、ストロンチウム、バリウムともに炭酸塩の形態で添加した。なお、比較例であるNo.1〜6では焼結助剤として炭酸リチウムのみを添加し、No.7〜12では焼結助剤として炭酸カルシウムのみを添加した。また、No.34では窒化アルミニウムの一般的な焼結助剤である酸化イットリウムを添加し、No.35では焼結助剤を添加しないものを使用した。
【0025】
得られた原料粉末を表1に示す条件で焼成し、φ50×10mmの焼結体を得た。なお、焼成温度での保持時間はいずれも2時間、プレス圧力については、No.1〜31、34、35では11.7MPaとし、No.32、33では10.8MPaとした。
【0026】
得られた窒化アルミニウム焼結体について、平均粒径、色調、明度、体積抵抗率、密度を測定した。平均粒径は、焼結体の破断面をSEMにより観察し、インターセプト法から求めた。明度の測定は、色差計を用いて、マンセル表示(H・V・C表示)にて数値化した。体積抵抗率は、JIS C 2141「電気絶縁用セラミック材料試験方法」に従って測定した。焼結体密度は純水を媒体としたアルキメデス法により求め、理論密度に対する百分率である相対密度を算出した。それらの評価結果も表1に示す。
【0027】
【表1】

Figure 2004299990
【0028】
試験の結果を説明する。比較例であるNo.1〜12は、焼結助剤としてアルカリ土類金属もしくはリチウムのどちらか一方のみを添加したものであるが、得られた焼結体の明度はいずれもN4.0より大きく、500℃における体積抵抗率は1.0×1010Ω・cmより小さい値を示した。また、比較例であるNo.13、15、18、21は焼成温度を1800℃としたものであるが、いずれも明度がN4.0より大きく、500℃における体積抵抗率は1.0×1010Ω・cmより小さくなった。比較例であるNo.34、35は、焼成時のプレス圧力を10.8MPaとしたものであるが、焼成温度1700℃では焼結体の相対密度が98%に到達せず、明度もN4.0より大きく、焼成温度を1800℃にすると緻密化するが粒成長が進み、明度もN4.0より大きくなった。また、No.34は焼結助剤として酸化イットリウムを添加したもの、No.35は焼結助剤を添加していないものであるが、焼結体の相対密度を98%以上にするためには焼成温度を1700℃より高くする必要があり、得られた焼結体は高い明度と低い体積抵抗率を示した。
【0029】
これらに対して、No.14、16、17、19、20およびNo.22〜33は本発明の範囲内の窒化アルミニウム焼結体であるが、これらの焼結体の色調は濃灰色から灰黒色を呈し、明度がN4.0以下を示しており、500℃における体積抵抗率は1.0×1010Ω・cm以上の高い値を示した。また、本発明の範囲内の焼結体はすべて相対密度98%以上に緻密化しており、色むら等の不具合もなく、外観に優れたものであった。
【0030】
また、表1に示す実施例の条件で実際に静電チャックの大きさの焼結体を作製し、500℃および600℃において加熱試験および吸着試験を行った結果、十分な吸着力が発生し、リーク電流が低く抑えられていた。また、焼結体が黒色に近いため加熱特性に優れていた。一方、比較例の条件の窒化アルミニウム焼結体を使用したものは、リーク電流が増大し、また加熱特性も劣っていた。
【0031】
【発明の効果】
本発明によれば、500℃を超える高温で使用できる静電チャック、サセプタ、ヒータ等の半導体製造装置部材として好適な窒化アルミニウム焼結体を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る単極型静電チャックの構造を示す断面図である。
【図2】本発明の一実施形態に係る双極型静電チャックの構造を示す断面図である。
【符号の説明】
1、1’ 静電チャック
2 誘電体層
3、3a、3b 電極
4 絶縁層
5 基台
6 直流電源
10 シリコンウエハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum nitride sintered body that has reduced brightness and exhibits a black color while maintaining a high volume resistivity at a high temperature, a member for a semiconductor manufacturing apparatus using the same, and an electrostatic chuck using the same.
[0002]
[Prior art]
In recent years, aluminum nitride parts having excellent thermal conductivity and excellent corrosion resistance have been used as members for semiconductor manufacturing equipment. In particular, susceptors, heaters, electrostatic chucks, and the like having a metal electrode embedded in an aluminum nitride sintered body have been used as a wafer holding member. When using such a wafer holding member, it is necessary to suppress the leakage current. This is because excessive leakage current adversely affects the device. Here, the aluminum nitride sintered body generally has a volume resistivity of about 1 × 10 14 Ω · cm at room temperature, but since the volume resistivity decreases as the temperature increases, the aluminum nitride sintered body is used for a wafer holding member used in a high temperature region. Was not applicable. Therefore, an aluminum nitride sintered body having a high volume resistivity that can be used even in a high temperature range has been demanded.
[0003]
In general, an aluminum nitride sintered body has a white or gray-white color, but members such as an electrostatic chuck, a susceptor, and a heater are required to be black. This is because the black member has a larger amount of radiant heat and has better heating characteristics than the white member. Further, when a white or gray-white aluminum nitride sintered body is used for a member such as an electrostatic chuck, color unevenness is likely to occur on the surface of a product, and thus improvement has been required.
[0004]
For this reason, in order to make the aluminum nitride sintered body black, a method of adding a transition metal element such as titanium oxide or carbon to the raw material powder and firing the raw material powder to produce a black aluminum nitride sintered body has been proposed. (For example, see Patent Document 1). Further, an aluminum nitride sintered body blackened without adding a sintering aid and an aluminum nitride sintered body blackened by adding alumina have been proposed (for example, see Patent Documents 2 and 3). .).
[0005]
[Patent Document 1]
JP-A-9-48668 [Patent Document 2]
Japanese Patent No. 2883207 [Patent Document 3]
JP-A-10-95773
[Problems to be solved by the invention]
However, an aluminum nitride sintered body obtained by adding a conductive material such as a transition metal element or carbon has a reduced volume resistivity, and thus, when used as a wafer holding member, breaks a device due to an increase in leakage current. There is a risk. Further, when the sintering aid is not added, the introduction of impurity oxygen into the liquid phase is small, so that lattice defects due to impurity oxygen are likely to occur. As a result, the volume resistivity decreases, and an increase in leakage current may adversely affect the device. Similarly, when alumina is added, the volume resistivity decreases because impurity oxygen increases.
[0007]
As described above, the conventional aluminum nitride sintered body presents white or gray-white having low heating characteristics, and is apt to cause color unevenness. As a countermeasure, a blackened aluminum nitride sintered body has a low volume resistivity and a high temperature. There is a problem that it cannot be applied as a member for a semiconductor device used in a region.
[0008]
The present invention has been made in view of the above problems, and has as its object to reduce the brightness while maintaining a high volume resistivity at a high temperature, to produce a black aluminum nitride sintered body, and to produce a semiconductor using the same. An object of the present invention is to provide an apparatus member and an electrostatic chuck.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have conducted studies to achieve the above object, and as a result, obtained by adding a predetermined amount of an alkaline earth metal and lithium as a sintering aid, a dense aluminum nitride sintered body having a relative density of 98% or more. The present inventors have found that by controlling the average particle size of the crystal grains constituting the body within a predetermined range, an aluminum nitride sintered body having a high volume resistivity at a high temperature and exhibiting a black color can be obtained. The invention has been completed.
[0010]
That is, the present invention
(1) The relative density is 98% or more, the blackness of the brightness specified in JIS Z 8721 is N4.0 or less, and the volume resistivity at 500 ° C. is 1.0 × 10 10 Ω · cm or more. A characteristic aluminum nitride sintered body (claim 1);
(2) An aluminum nitride sintered body obtained by adding an alkaline earth metal and lithium as sintering aids in an amount of 0.01% by mass or more in terms of oxide, respectively, and a total of 0.3 to 10% by mass. The aluminum nitride sintered body according to the above (1), wherein the average particle size of the crystal grains constituting the aluminum nitride sintered body is 0.6 to 2.0 μm,
(3) An aluminum nitride sintered body obtained by adding an alkaline earth metal and lithium as sintering aids in an amount of 0.01% by mass or more in terms of oxides, respectively, and a total of 0.3 to 10% by mass. (2) The aluminum nitride sintered body according to the above (2), wherein a firing condition of the object to be fired to obtain the aluminum nitride sintered body is a firing temperature of 1500 to 1700 ° C and a pressure of 11.7 MPa or more. Claim 3),
(4) The aluminum nitride sintered body according to the above (2) or (3), wherein the alkaline earth metal is calcium,
(5) A member for a semiconductor manufacturing apparatus, wherein the aluminum nitride sintered body according to any one of the above (1) to (4) is used as a base material (Claim 5).
(6) The gist is to provide an electrostatic chuck (claim 6) using the aluminum nitride sintered body according to any one of the above (1) to (4).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The aluminum nitride sintered body of the present invention has a relative density of 98% or more, a black color having a brightness defined by JIS Z 8721 of N4.0 or less, and a volume resistivity at 500 ° C. of 1.0 × 10 10 Ω.・ Cm or more.
[0012]
The present inventors have studied the color tone and volume resistivity of an aluminum nitride sintered body to which an alkaline earth metal and lithium have been added as a sintering aid. As a result, the relative density is 98% or more, and the JIS Z 8721 The aluminum nitride sintered body having a specified brightness of N4.0 or less and having a volume resistivity at 500 ° C. of 1.0 × 10 10 Ω · cm or more was successfully obtained. Since the lightness specified in JIS Z 8721 is black with N4.0 or less, the amount of radiant heat is large and the heating characteristics are excellent, and there is no color unevenness and the appearance of the sintered body is extremely good. Therefore, it is suitable as a member for semiconductor manufacturing equipment such as an electrostatic chuck, a susceptor, and a heater, and has a high volume resistivity of 10 10 Ω · cm or more even at a high temperature of 500 ° C. Since there is no possibility of breakage, it is particularly suitable for a member for a semiconductor manufacturing apparatus used at a high temperature. Further, by setting the relative density of the aluminum nitride sintered body to 98% or more, it is possible to suppress a decrease in thermal conductivity and plasma resistance.
[0013]
The aluminum nitride sintered body of the present invention is obtained by adding an alkaline earth metal and lithium as sintering aids in an amount of 0.01% by mass or more in terms of oxides, respectively, for a total of 0.3 to 10% by mass. It is obtained by controlling the relative density of the aluminum nitride sintered body to 98% or more and controlling the average particle diameter of the crystal grains constituting the aluminum nitride sintered body to 0.6 to 2.0 μm. be able to.
[0014]
If the average grain size of the crystal grains constituting the aluminum nitride sintered body is as small as 0.6 to 2.0 μm, the grain boundaries are large, and thus the grains are taken into the grain boundaries from inside the aluminum nitride grains or from the grain surface during the firing process. It is considered that many defects are formed in the grain boundaries due to impurity oxygen and the like, and the grain boundaries exhibit black color by absorbing visible light. Furthermore, since the grain growth is extremely small, it is conceivable that solid solution of oxygen atoms in the aluminum nitride crystal grains is suppressed, thereby preventing a decrease in volume resistivity due to lattice defects in the aluminum nitride crystal grains. Although the mechanism is not clear, it is considered that the form of the alkaline earth metal component and the lithium component in the aluminum nitride sintered body also affects the brightness and the volume resistivity of the sintered body.
[0015]
The total addition amount of the alkaline earth metal and lithium in terms of oxide is set to 0.3 to 10% by mass. If less than 0.3% by mass, the brightness of the sintered body increases and the volume resistivity decreases. Because. On the other hand, if the total added amount exceeds 10% by mass, it becomes difficult to densify, and it becomes difficult to make the relative density 98% or more.
[0016]
As the alkaline earth metal, calcium is most advantageous in terms of sinterability, but strontium and barium may be used. It is particularly preferable to add these alkaline earth metals as oxides, and compounds that become oxides under sintering conditions may be used, and carbonates, nitrates, hydroxides and the like can be used. The addition amount of the alkaline earth oxide is 0.01% by mass or more, preferably 0.1% by mass or more, and more preferably 0.3% by mass or more. If the amount is too small, the lightness increases and the volume resistivity decreases.
[0017]
The addition amount of lithium in terms of oxide is 0.01% by mass or more, preferably 0.1% by mass or more. If the amount is small, the brightness increases and the volume resistivity decreases. As the form of lithium to be added, lithium carbonate, lithium nitrate, lithium hydroxide and the like can be used in addition to lithium oxide.
[0018]
As a raw material of aluminum nitride, a powder obtained by a direct nitriding method or a reduction nitriding method can be used. When the obtained aluminum nitride sintered body is used as a component of a semiconductor manufacturing apparatus such as an electrostatic chuck, a susceptor, and a heater, it is desirable that the aluminum nitride powder has high purity because impurities cause semiconductor contamination. .
[0019]
The aluminum nitride sintered body of the present invention is preferably subjected to hot press sintering, and the object to be fired is preferably subjected to hot press sintering at a firing temperature of 1500 to 1700 ° C. under a pressure of 11.7 MPa or more. If the firing temperature is lower than 1500 ° C., the relative density does not reach 98%. If the firing temperature is higher than 1700 ° C., the average particle size of the crystal particles constituting the sintered body increases, and the lightness of the sintered body increases. If the pressure is lower than 11.7 MPa, a firing temperature higher than 1700 ° C. is required to make the relative density of the sintered body 98% or more, and as a result, the average particle size of the crystal particles constituting the sintered body is reduced. This is because the size of the sintered body increases and the brightness of the sintered body increases.
[0020]
As described above, the aluminum nitride sintered body of the present invention is suitable as a member for a semiconductor manufacturing device such as an electrostatic chuck, a susceptor, and a heater, and is particularly suitable for a member for a semiconductor manufacturing device used at a high temperature. Hereinafter, an example of an electrostatic chuck using the aluminum nitride sintered body of the present invention will be described.
[0021]
1 and 2 are cross-sectional views showing an electrostatic chuck using the aluminum nitride sintered body of the present invention. FIG. 1 shows a monopolar type, and FIG. 2 shows a bipolar type. The monopolar electrostatic chuck 1 shown in FIG. 1 is fixedly provided on a base 5 made of aluminum or the like, has a suction surface, and is made of a dielectric material made of the aluminum nitride sintered body of the present invention. It has a body layer 2, an electrode 3 provided thereunder, and an insulating layer 4 provided between the electrode 3 and the base 5, and a DC power supply 6 is connected to the electrode 3. When power is supplied from the DC power supply 6 to the electrode 3, the silicon wafer 10, which is the object to be attached, placed on the dielectric layer 2 is electrostatically attached. The bipolar electrostatic chuck 1 ′ shown in FIG. 2 has a pair of electrodes 3 a and 3 b provided between a dielectric layer 2 and an insulating layer 4, and a DC power supply 6 is connected to these electrodes. 6, charges of opposite polarities are supplied to these electrodes, respectively, and the silicon wafer 10 placed on the dielectric layer 2 is electrostatically attracted.
[0022]
The structure of the electrostatic chuck is not particularly limited. In addition to the structure shown in FIGS. 1 and 2, a dielectric layer having electrodes formed on one surface is formed of a ceramic plate or an insulating layer. Various structures can be adopted, such as a structure in which the structure is attached to an aluminum pedestal with an adhesive. The electrode structure is not particularly limited, and may be a monopolar electrode or a bipolar electrode as described above, and the shape is not limited.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.
[0024]
To aluminum nitride powder (primary particle diameter: 0.6 μm) manufactured by the reduction nitriding method, various sintering aids were added in the amounts shown in Table 1, resin balls were used as a mixed medium, and an appropriate amount of IPA (isopropyl alcohol) was used. ) Was added as a solvent and mixed for 24 hours. The obtained slurry was dried and passed through a mesh to prepare a raw material powder. Lithium carbonate was added as a lithium source. As for the alkaline earth metal, calcium, strontium and barium were added in the form of carbonate. It should be noted that the comparative examples No. In Nos. 1 to 6, only lithium carbonate was added as a sintering aid. In Nos. 7 to 12, only calcium carbonate was added as a sintering aid. No. In No. 34, yttrium oxide as a general sintering aid for aluminum nitride was added. In No. 35, a sintering aid was not added.
[0025]
The obtained raw material powder was fired under the conditions shown in Table 1 to obtain a sintered body of φ50 × 10 mm. The holding time at the firing temperature was 2 hours in each case, and the pressing pressure was For Nos. 1-31, 34 and 35, the pressure was 11.7 MPa. For 32 and 33, it was 10.8 MPa.
[0026]
The average particle size, color tone, lightness, volume resistivity, and density of the obtained aluminum nitride sintered body were measured. The average particle diameter was determined by observing the fractured surface of the sintered body by SEM and using an intercept method. The measurement of lightness was quantified by Munsell display (HVC display) using a color difference meter. The volume resistivity was measured according to JIS C 2141 “Testing method for ceramic materials for electrical insulation”. The sintered body density was determined by the Archimedes method using pure water as a medium, and the relative density, which is a percentage of the theoretical density, was calculated. Table 1 also shows the evaluation results.
[0027]
[Table 1]
Figure 2004299990
[0028]
The results of the test will be described. No. of Comparative Example. Nos. 1 to 12 were obtained by adding only one of an alkaline earth metal and lithium as a sintering aid, and the brightness of each of the obtained sintered bodies was larger than N4.0 and the volume at 500 ° C. The resistivity showed a value smaller than 1.0 × 10 10 Ω · cm. In addition, in Comparative Example No. 13, 15, 18, and 21 were obtained by setting the sintering temperature to 1800 ° C., but the lightness was higher than N4.0 and the volume resistivity at 500 ° C. was lower than 1.0 × 10 10 Ω · cm. . No. of Comparative Example. In Nos. 34 and 35, the press pressure at the time of firing was 10.8 MPa. At a firing temperature of 1700 ° C., the relative density of the sintered body did not reach 98%, and the lightness was higher than N4.0. When the temperature was increased to 1800 ° C., the grains were densified, but the grain growth proceeded, and the brightness became larger than N4.0. No. No. 34 was prepared by adding yttrium oxide as a sintering aid. 35 has no sintering aid added, but in order to make the relative density of the sintered body 98% or more, the firing temperature must be higher than 1700 ° C., and the obtained sintered body is It exhibited high brightness and low volume resistivity.
[0029]
On the other hand, no. 14, 16, 17, 19, 20 and No. 22 to 33 are aluminum nitride sintered bodies within the range of the present invention. The color tone of these sintered bodies is from dark gray to gray black, the lightness is N4.0 or less, and the volume at 500 ° C. The resistivity showed a high value of 1.0 × 10 10 Ω · cm or more. Further, all the sintered bodies within the scope of the present invention were densified to a relative density of 98% or more, had no problems such as uneven color, and were excellent in appearance.
[0030]
Further, a sintered body having the size of an electrostatic chuck was actually manufactured under the conditions of the example shown in Table 1, and a heating test and an adsorption test were performed at 500 ° C. and 600 ° C. As a result, a sufficient adsorption force was generated. , The leakage current was kept low. In addition, since the sintered body was close to black, the heating characteristics were excellent. On the other hand, in the case of using the aluminum nitride sintered body under the condition of the comparative example, the leakage current was increased and the heating characteristics were inferior.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the aluminum nitride sintered compact suitable as a semiconductor manufacturing apparatus member, such as an electrostatic chuck, a susceptor, and a heater, which can be used at high temperature exceeding 500 degreeC can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a structure of a monopolar electrostatic chuck according to an embodiment of the present invention.
FIG. 2 is a sectional view showing a structure of a bipolar electrostatic chuck according to one embodiment of the present invention.
[Explanation of symbols]
1, 1 'electrostatic chuck 2 dielectric layer 3, 3a, 3b electrode 4 insulating layer 5 base 6 DC power supply 10 silicon wafer

Claims (6)

相対密度が98%以上であり、JIS Z 8721に規定する明度がN4.0以下の黒色を呈し、500℃における体積抵抗率が1.0×1010Ω・cm以上であることを特徴とする窒化アルミニウム焼結体。It has a relative density of 98% or more, a black color having a lightness defined by JIS Z 8721 of N4.0 or less, and a volume resistivity at 500 ° C. of 1.0 × 10 10 Ω · cm or more. Aluminum nitride sintered body. 焼結助剤としてアルカリ土類金属およびリチウムを酸化物換算でそれぞれ0.01質量%以上、合計で0.3〜10質量%添加してなる窒化アルミニウム焼結体であって、該窒化アルミニウム焼結体を構成する結晶粒子の平均粒径が0.6〜2.0μmであることを特徴とする請求項1に記載の窒化アルミニウム焼結体。An aluminum nitride sintered body obtained by adding an alkaline earth metal and lithium as sintering aids in an amount of 0.01% by mass or more in terms of oxides, respectively, in a total of 0.3 to 10% by mass. 2. The aluminum nitride sintered body according to claim 1, wherein an average particle diameter of crystal grains constituting the compact is 0.6 to 2.0 μm. 3. 焼結助剤としてアルカリ土類金属およびリチウムを酸化物換算でそれぞれ0.01質量%以上、合計で0.3〜10質量%添加してなる窒化アルミニウム焼結体であって、該窒化アルミニウム焼結体を得るための被焼成体の焼成条件が、焼成温度1500〜1700℃、圧力が11.7MPa以上であることを特徴とする請求項2に記載の窒化アルミニウム焼結体。An aluminum nitride sintered body obtained by adding an alkaline earth metal and lithium as sintering aids in an amount of 0.01% by mass or more in terms of oxides, respectively, in a total of 0.3 to 10% by mass. 3. The aluminum nitride sintered body according to claim 2, wherein firing conditions of the object to be fired to obtain a sintered body are a firing temperature of 1500 to 1700 ° C. and a pressure of 11.7 MPa or more. 前記アルカリ土類金属がカルシウムであることを特徴とする請求項2または3に記載の窒化アルミニウム焼結体。4. The aluminum nitride sintered body according to claim 2, wherein the alkaline earth metal is calcium. 請求項1〜4のいずれか1項に記載の窒化アルミニウム焼結体を基材として使用していることを特徴とする半導体製造装置用部材。A member for a semiconductor manufacturing apparatus, wherein the aluminum nitride sintered body according to any one of claims 1 to 4 is used as a base material. 請求項1〜4のいずれか1項に記載の窒化アルミニウム焼結体を用いることを特徴とする静電チャック。An electrostatic chuck using the aluminum nitride sintered body according to claim 1.
JP2003096594A 2003-03-31 2003-03-31 Electrostatic chuck Expired - Fee Related JP4314048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096594A JP4314048B2 (en) 2003-03-31 2003-03-31 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096594A JP4314048B2 (en) 2003-03-31 2003-03-31 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2004299990A true JP2004299990A (en) 2004-10-28
JP4314048B2 JP4314048B2 (en) 2009-08-12

Family

ID=33408595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096594A Expired - Fee Related JP4314048B2 (en) 2003-03-31 2003-03-31 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4314048B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239387A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Aluminum nitride corrosion resistant member and member for semiconductor manufacturing apparatus
JP2011151336A (en) * 2009-12-21 2011-08-04 Sumitomo Osaka Cement Co Ltd Electrostatic chuck, production method thereof and electrostatic chuck device
CN118164766A (en) * 2024-05-16 2024-06-11 成都旭瓷新材料有限公司 Aluminum nitride ceramic sintered body, preparation method thereof and aluminum nitride ceramic substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239387A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Aluminum nitride corrosion resistant member and member for semiconductor manufacturing apparatus
JP2011151336A (en) * 2009-12-21 2011-08-04 Sumitomo Osaka Cement Co Ltd Electrostatic chuck, production method thereof and electrostatic chuck device
CN118164766A (en) * 2024-05-16 2024-06-11 成都旭瓷新材料有限公司 Aluminum nitride ceramic sintered body, preparation method thereof and aluminum nitride ceramic substrate

Also Published As

Publication number Publication date
JP4314048B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP6432649B2 (en) Ceramic materials, electrostatic chuck device
EP1496033B1 (en) Aluminum nitride sintered body containing carbon fibers and method of manufacturing the same
US10322934B2 (en) Silicon nitride substrate and silicon nitride circuit board using the same
JP5872998B2 (en) Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
JP2001163672A (en) Aluminum nitride sintered compact and member for producing semiconductor
JP6881676B2 (en) Electrostatic chuck device and its manufacturing method
JP7111257B2 (en) Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for manufacturing composite sintered body
JP2009238949A (en) Electrostatic chuck and method of manufacturing the same
KR100345083B1 (en) Aluminum nitride sintered body, electronic functional material, and electrostatic chuck
KR100278904B1 (en) Method for producing aluminum nitride based composite, electronic functional material, electrostatic chuck and aluminum nitride based composite
JP2003055052A (en) Low volume resistivity material, aluminum nitride sintered compact and member for manufacturing semiconductor
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
TWI783000B (en) Heaters for semiconductor manufacturing equipment
CN110892520A (en) Electrostatic chuck
JP4314048B2 (en) Electrostatic chuck
JP2003313078A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
JP2009302518A (en) Electrostatic chuck
KR100940456B1 (en) Aluminum nitride sintered compact and members for semiconductor producing apparatus having the same
JP2008288428A (en) Electrostatic chuck
JP4641758B2 (en) Aluminum nitride sintered body and electrostatic chuck using the same
KR102697597B1 (en) Ceramic material having high resistivity and high corrosion resistance, and wafer placement table
JP2004168609A (en) Aluminum nitride sintered compact, and electrostatic chuck obtained by using the same
JP2008044846A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
KR101217253B1 (en) Dielectric materials with black color for electrostatic chuck and manufacturing method of the same
JP5641967B2 (en) Aluminum nitride sintered body and electrostatic chuck using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4314048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees