WO2022195719A1 - Boiling-type cooler - Google Patents

Boiling-type cooler Download PDF

Info

Publication number
WO2022195719A1
WO2022195719A1 PCT/JP2021/010598 JP2021010598W WO2022195719A1 WO 2022195719 A1 WO2022195719 A1 WO 2022195719A1 JP 2021010598 W JP2021010598 W JP 2021010598W WO 2022195719 A1 WO2022195719 A1 WO 2022195719A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiling
section
space
refrigerant
partition plate
Prior art date
Application number
PCT/JP2021/010598
Other languages
French (fr)
Japanese (ja)
Inventor
章裕 田辺
賢二 安東
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to JP2023506441A priority Critical patent/JPWO2022195719A1/ja
Priority to PCT/JP2021/010598 priority patent/WO2022195719A1/en
Publication of WO2022195719A1 publication Critical patent/WO2022195719A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the present invention relates to an ebullient cooler, and more particularly to an ebullient cooler that circulates the refrigerant between a boiling section that boils the refrigerant and a condensing section that condenses the vaporized refrigerant.
  • a boiling cooler that circulates a refrigerant between a boiling section and a condensing section is known.
  • Such a boiling type cooler is disclosed, for example, in Japanese Patent Application Laid-Open No. 2002-134670.
  • the above Japanese Patent Application Laid-Open No. 2002-134670 has a structure in which a condensing section composed of a plate-fin heat exchanger is joined in an inverted T shape to the upper surface of a horizontally arranged evaporating section (boiling section). Refrigerant is sealed inside the evaporator.
  • a plate for mounting a semiconductor element is provided on the lower surface of the evaporating section.
  • an ebullient cooler in which the boiling portion extends in the lateral direction such as the ebullient cooler disclosed in JP-A-2002-134670, is referred to as a "horizontal" ebullition cooler.
  • a horizontal boiling type cooler it is necessary to install a heating element on the bottom surface of the boiling section. This is because the liquid-phase refrigerant collects in the lower part of the boiling section and the vapor-phase refrigerant gas collects in the upper part, so it is difficult to obtain sufficient cooling performance even if a heating element is installed on the upper surface of the boiling section. . Therefore, in the horizontal boiling type cooler, there is a problem that it is difficult to secure an installation area for the heating element.
  • the present invention has been made to solve the above problems, and one object of the present invention is to make it possible to increase the installation area of a heating element even in a horizontal boiling type cooler. To provide an efficient boiling type cooler.
  • a boiling type cooler has a housing space for housing a refrigerant, a boiling section for boiling the refrigerant by heat exchange with a heating element, and a boiling section for communicating with the boiling section to boil the refrigerant.
  • a condensing section for condensing the refrigerant gas from the section by heat exchange with an external fluid, wherein the boiling section is formed in a plate-like shape having an upper surface and a lower surface on which a heating element is installed, and is connected to the condensing section. It is provided so as to extend obliquely downward from the portion.
  • the boiling section is provided so as to extend obliquely downward from the connecting portion with the condensing section. It can be inclined with respect to the plane so that the internal top surface of the containment space is in continuous contact with the liquid coolant. Since the accommodation space slopes upward toward the condensation section, the refrigerant gas vaporized inside the accommodation space moves toward the condensation section along the inclined accommodation space. Therefore, it is possible to prevent the refrigerant gas from staying excessively on the inner upper surface of the accommodation space. As a result, the heating element installed on the upper surface of the boiling section can exhibit sufficient cooling performance. Even with a type cooler, the installation area of the heating element can be increased.
  • the term “horizontal boiling cooler” includes the case where the boiling section is inclined from the horizontal direction as long as the horizontal dimension is larger than the vertical dimension of the boiling section.
  • the boiling section has a simple flat plate shape, if the boiling section is provided at an angle of inclination of less than 45 degrees with respect to the horizontal direction, it is included in the "horizontal type" boiling type cooler.
  • the boiling portion is inclined so that the liquid level of the coolant is positioned within or above the area where the heating element is installed on the upper surface.
  • the area facing the installation area of the heat generating element the area immediately below the heat generating element
  • the liquid refrigerant can be brought into contact with the liquid refrigerant. Therefore, it is possible to prevent the region directly under the heating element from being partially dry-out, so that it is possible to effectively prevent the occurrence of local temperature rise (local decrease in cooling performance). Dryout is a state in which the liquid-phase refrigerant disappears from the heat transfer surface and the heat transfer surface is covered with gas-phase refrigerant (single-phase vapor state). rate drops significantly.
  • the boiling portion is inclined at an inclination angle of 5 degrees or more and less than 45 degrees with respect to the horizontal direction.
  • the boiling section preferably further includes a partition plate that divides the accommodation space into an upper space adjacent to the upper surface and a lower space adjacent to the lower surface.
  • the partition plate can prevent the refrigerant gas generated in the lower space of the accommodation space from moving to the upper space due to heat absorption from the heating element installed on the lower surface of the boiling section. Therefore, it is possible to prevent all the refrigerant gas from gathering on the inner upper surface of the housing space (upper space) and prevent contact between the refrigerant and the inner upper surface. can.
  • a state in which a liquid phase and a gas phase exist at an appropriate ratio is better along the heat transfer surface than a state in which the heat transfer surface is completely filled with a liquid phase.
  • the partition plate is provided at least in a range that overlaps in the thickness direction of the boiling portion with the installation region of the heating element on the upper surface. According to this configuration, the partition plate can prevent the refrigerant gas generated in the lower space from gathering in the area directly below the heating element on the upper surface of the boiling section in the inner upper surface of the housing space. Therefore, it is possible to effectively prevent the refrigerant gas from gathering in the area of the inner upper surface where the heat flux density is the highest and where dryout is likely to occur.
  • the partition plate is provided in a range overlapping the installation region of the heating element on the upper surface
  • the upper surface of the boiling section is formed with a through hole for communicating the accommodation space and the condensing section
  • the partition plate is and a first communication passage which is provided throughout the accommodation space and penetrates the partition plate to communicate the upper space and the lower space in a region vertically overlapping the through hole in the upper surface.
  • the refrigerant gas generated in the lower space moves along the partition plate, the refrigerant gas in the lower space can pass through the first communication passage and move toward the condensation section. Therefore, it is not necessary to form a passage for moving the refrigerant gas in the lower space to the condensation section in the boiling section separately from the partition plate, so that the structure of the boiling type cooler can be simplified.
  • a second communication path is preferably formed at one end portion located on the lower side of the accommodation space to communicate the upper space and the lower space.
  • the condensation section is provided so as to extend upward from the upper surface of the boiling section, and has an external fluid flow path that penetrates the condensation section in the horizontal direction.
  • the condensation section extends along the vertical direction, so that the external fluid can be sent horizontally to the condensation section.
  • the ebullient cooler when condensing the refrigerant gas in the condensing section by forced cooling in which the external fluid is fed by the driving source, it is not necessary to tilt the driving source or the flow path of the external fluid in accordance with the tilt of the boiling section. Therefore, when the ebullient cooler is combined with external equipment, the ebullient cooler can be easily adapted to the external equipment.
  • FIG. 2 is a schematic longitudinal sectional view along the YZ direction of the cooler of FIG. 1; It is a typical longitudinal cross-sectional view along the EZ direction showing the internal structure of the boiling section. It is a typical enlarged vertical cross-sectional view along the X direction of the boiling section. It is a schematic plan view showing the upper surface of the boiling section.
  • FIG. 4 is a schematic plan view showing a partition plate; It is a typical sectional view showing the second member of the boiling section. It is a schematic diagram for demonstrating operation
  • FIG. 16 is a graph summarizing the experimental results shown in FIGS. 13 to 15; FIG. It is a schematic diagram showing a modification of the direction of the condensation portion.
  • FIG. 1 The configuration of a boiling cooler 100 (hereinafter referred to as cooler 100) according to the first embodiment will be described with reference to FIGS. 1 to 8.
  • FIG. The cooler 100 is an ebullient cooling type cooler that absorbs heat from the heating element HS and radiates the heat to the outside by utilizing a phase change between vaporization and condensation of the refrigerant.
  • the cooler 100 cools the heating element HS by heat absorption of the refrigerant.
  • the refrigerant gas vaporized by endothermic cooling is condensed and returned to the liquid phase by being cooled by the external fluid.
  • the heating element HS is not particularly limited.
  • the heating element HS is, for example, a device with an electronic circuit. Specifically, it is a power module that constitutes a power conversion circuit such as an inverter device.
  • a power module is a circuit component that includes one or more switching elements for power conversion.
  • the power conversion switching element is, for example, an IGBT (insulated gate bipolar transistor) element.
  • the cooler 100 includes a boiling section 10, a condensing section 20, and a connecting section 30.
  • a space (see FIG. 2 ) for containing the refrigerant 1 is formed inside each of the boiling section 10 , the condensing section 20 and the connecting section 30 .
  • Cooler 100 has an internal space sealed by boiling section 10 , condensing section 20 , and connecting section 30 . Refrigerant 1 is accommodated in this sealed space.
  • Boiling section 10, condensing section 20, and connecting section 30 are made of a highly thermally conductive metal material such as aluminum (including aluminum alloy) or copper (including copper alloy).
  • the refrigerant 1 is not particularly limited as long as it changes phases between gas phase and liquid phase. Therefore, the coolant 1 may be selected from known ones according to the heating element HS, and may be fluorocarbon, hydrocarbon, water, or the like.
  • the internal space of the cooler 100 is decompressed to a substantially vacuum state, and is saturated with the vapor-phase refrigerant 1 .
  • the vapor-phase refrigerant 1 is referred to as refrigerant gas 1a (see FIG. 2)
  • the liquid-phase refrigerant 1 is referred to as refrigerant liquid 1b (see FIG. 2).
  • the two directions perpendicular to each other in the horizontal plane are the X direction and the Y direction, respectively.
  • the vertical direction orthogonal to the horizontal plane (XY plane) is defined as the Z direction.
  • the Z direction is substantially parallel to the direction of gravity, and gravity acts downward.
  • the direction in which the boiling portion 10 extends is defined as the E direction.
  • the E direction is a direction included in the YZ plane and inclined downward by an angle ⁇ with respect to the Y direction.
  • the upper surface 12 of the boiling section 10 is provided with installation areas for four heating elements HS
  • the lower surface 13 of the boiling section 10 is provided with installation areas for four heating elements HS. That is, on each of the upper surface 12 and the lower surface 13, there are installation areas of two columns in the X direction and two rows in the Y direction (strictly speaking, the E direction).
  • the cooler 100 has a structure in which a plurality of unit structures SU are arranged in the X direction, with one row as the unit structure SU. Each unit structure SU has substantially the same structure. Therefore, one unit structure SU will be described below.
  • FIG. 1 shows a configuration example with two unit structures SU
  • the cooler 100 may have only one unit structure SU, or may have three or more unit structures SU. may
  • a heating element HS is installed in the boiling section 10 .
  • the boiling section 10 has an accommodation space 11 that accommodates the refrigerant 1, as shown in FIG.
  • Refrigerant liquid 1b is stored in accommodation space 11 of boiling section 10 by the action of gravity.
  • the boiling section 10 is configured to boil the refrigerant 1 (refrigerant liquid 1b) by heat exchange with the heating element HS.
  • Boiling section 10 has an upper surface 12 and a lower surface 13 .
  • the boiling portion 10 has two side surfaces 14 (see FIG. 1) on both sides in the X direction, and an end face 15 at one end E1 and an end face 16 at the other end E2 in the E direction.
  • Boiling section 10 has a plate-like shape including upper surface 12 , lower surface 13 , two side surfaces 14 and two end surfaces 15 , 16 .
  • An installation area for the heating element HS is provided on the one end E1 side of the boiling section 10 .
  • the condensing section 20 is connected to the other end E2 side of the boiling section 10 via the connecting section 30 .
  • the boiling section 10 is provided so as to extend obliquely downward from a connecting portion (that is, a connecting section 30) with the condensing section 20. As shown in FIG.
  • the boiling section 10 is provided so as to be inclined downward by an angle ⁇ with respect to the horizontal direction (Y direction). Thereby, the boiling section 10 extends linearly in the E direction obliquely downward from the connecting portion with the condensing section 20 .
  • a through hole 12 a is formed in the upper surface 12 of the boiling section 10 to allow the accommodation space 11 and the condensation section 20 to communicate with each other.
  • the connecting portion 30 has a cylindrical shape extending in the Z direction.
  • the lower end surface of the connecting portion 30 is joined to the upper surface 12 of the boiling portion 10
  • the upper end surface of the connecting portion 30 is joined to the lower surface of the condensing portion 20 .
  • the lower end surface of the connecting portion 30 is inclined at an angle ⁇ in accordance with the upper surface 12 of the boiling portion 10 which is inclined obliquely downward.
  • the upper end surface of the connecting portion 30 extends along the horizontal plane (XY plane).
  • the connection part 30 is provided so as to surround the through hole 12a formed in the upper surface 12 of the boiling part 10 .
  • the connecting portion 30 connects the accommodation space 11 of the boiling portion 10 and the accommodation space 21a of the condensation portion 20 in an airtight state.
  • the connecting portion 30 forms a passage through which the refrigerant gas 1a vaporized in the boiling portion 10 moves to the condensing portion 20, and forms a passage through which the refrigerant liquid 1b condensed in the condensing portion 20 moves to the boiling portion 10.
  • the movement path of the refrigerant gas 1a and the movement path of the refrigerant liquid 1b are the same. That is, the boiling section 10 and the condensing section 20 are connected by a single passage (connecting section 30). In a single passage (connecting portion 30), a gas-liquid mixed phase state is established in which the refrigerant gas 1a moving to the condensing portion 20 and the refrigerant liquid 1b moving to the boiling portion 10 are mixed.
  • the device structure can be simplified.
  • the condensing section 20 is provided to extend upward from the upper surface 12 of the boiling section 10 via the connecting section 30 . Condensing section 20 communicates with boiling section 10 via connecting section 30 .
  • the condensation section 20 is configured to condense the refrigerant gas 1 a from the boiling section 10 by heat exchange with the external fluid 2 .
  • the condensation section 20 has an accommodation space 21a that accommodates the refrigerant 1 .
  • the condensation section 20 has a flow path 22 for the external fluid 2 that penetrates the condensation section 20 in the horizontal direction (Y direction).
  • the flow passage 22 is a passage opened to the outside of the condensation section 20 .
  • the accommodation space 21a (see FIG. 2) is an internal space of the condensation section 20 surrounded by the walls 24 that define the flow passages 22.
  • the housing space 21 a and the flow passage 22 are partitioned by the wall portion 24 that constitutes the condensation portion 20 so as not to communicate with each other.
  • the accommodation space 21a (see FIG. 2) is provided inside the refrigerant accommodation portion 21 in FIG.
  • a plurality of refrigerant storage sections 21 and a plurality of flow paths 22 are alternately arranged in the X direction.
  • Corrugated fins 23 are provided in the flow path 22 from one end to the other end in the Y direction.
  • the external fluid 2 passing through the flow path 22 is air.
  • a blower 3 that blows air in the Y direction along the flow path 22 is provided as a drive source for the external fluid 2 .
  • the housing space 21a is open on the lower side in the Z direction, and is surrounded by walls 24 on the upper side in the X, Y and Z directions. A lower end portion of the wall portion 24 is joined to an upper end portion of the connecting portion 30 .
  • the lower surface side of the opened accommodation space 21 a communicates with the accommodation space 11 of the boiling section 10 via the connecting portion 30 . Therefore, the cooler 100 has a closed internal space composed of the accommodation space 11 for the boiling section 10 , the interior of the connection section 30 , and the accommodation space 21 a for the condensation section 20 . A refrigerant 1 is enclosed in this internal space.
  • a fin 25 extending in the Z direction is provided in the housing space 21a.
  • the refrigerant 1 moves between the boiling section 10 and the condensing section 20 so as to repeat a phase change cycle of vaporization of the refrigerant 1 in the boiling section 10 and condensation of the refrigerant 1 in the condensing section 20. Circulate.
  • the boiling section 10 is inclined so that the liquid surface 1c of the refrigerant 1 (refrigerant liquid 1b) is positioned within the installation area of the heating element HS on the upper surface 12. . That is, the liquid surface 1c is located in a height range between the lower end position and the upper end position of the installation area of the heating element HS on the upper surface 12 . Specifically, the liquid surface 1c is positioned at a height that substantially coincides with the upper end of the installation area of the heating element HS on the upper surface 12 . The position of the liquid surface 1c is assumed to be the position when the cooler 100 is not in operation.
  • the installation area is an area (so-called footprint) covered with the heating element HS when the heating element HS is installed in the upper surface 12 .
  • the boiling section 10 is provided so as to be inclined at an inclination angle ⁇ of 5 degrees or more and less than 45 degrees with respect to the horizontal direction. In the example of FIG. 2, the tilt angle ⁇ is 10 degrees.
  • the boiling section 10 is configured in a hollow flat plate shape by joining lid members 43 to one end E1 and the other end E2 of a cylindrical case member 40, respectively.
  • a case member 40 has an upper surface 12, a lower surface 13 and two side surfaces 14 (see FIG. 1).
  • Two lid members 43 constitute the end surface 15 of the one end portion E1 and the end surface 16 of the other end portion E2.
  • the case member 40 includes an upper first member 41 including the upper surface 12 and a lower second member 42 including the lower surface 13 .
  • the housing space 11 is formed to extend in the E direction from one end E1 of the boiling portion 10 to the other end E2.
  • the inner surface of the accommodation space 11 on the upper surface 12 side will be referred to as an inner upper surface 41a
  • the inner surface of the accommodation space 11 on the lower surface 13 side will be referred to as an inner lower surface 42a.
  • the inner upper surface 41 a is the inner surface of the first member 41 and the upper surface 12 is the outer surface of the first member 41 .
  • the inner lower surface 42 a is the inner surface of the second member 42 and the lower surface 13 is the outer surface of the second member 42 .
  • a through-hole 12 a is formed in the first member 41 to allow communication between the accommodation space 11 , the interior of the connection portion 30 (see FIG. 2 ), and the accommodation space 21 a (see FIG. 2 ) of the condensation portion 20 .
  • the through hole 12a penetrates the first member 41 from the upper surface 12 to the inner upper surface 41a.
  • the boiling section 10 further includes a partition plate 44 that divides the accommodation space 11 into an upper space 11a adjacent to the upper surface 12 and a lower space 11b adjacent to the lower surface 13.
  • the partition plate 44 is a flat plate member extending along the E direction. As shown in FIG. 4 , the partition plate 44 is provided so as to be sandwiched between the first member 41 and the second member 42 .
  • the partition plate 44 divides the accommodation space 11 into two spaces, an upper space 11a and a lower space 11b.
  • Partition plate 44 is provided parallel to upper surface 12 and lower surface 13 . Therefore, the upper space 11a and the lower space 11b extend in the E direction and are provided parallel to each other. Both the upper space 11a and the lower space 11b are formed to extend in the E direction from one end E1 of the boiling section 10 to the other end E2.
  • the partition plate 44 divides the accommodation space 11 into two halves. That is, in the thickness direction of the boiling section 10, the height h1 of the upper space 11a and the height h2 of the lower space 11b are equal.
  • the partition plate 44 is provided at least in an area OA that overlaps the installation area of the heating element HS on the upper surface 12 and the boiling section 10 in the thickness direction.
  • the range of the length L1 in the E direction and the width W1 in the X direction is the installation area of the heating element HS on the upper surface 12.
  • the partition plate 44 is provided over a range that matches the range of the length L1 and the width W1 or is wider than the range of the length L1 and the width W1.
  • FIG 3 shows an example in which the position of the installation area of the upper surface 12 and the position of the installation area of the lower surface 13 are the same in the direction E, but the position of the installation area of the upper surface 12 and the position of the installation area of the lower surface 13 are the same.
  • the position of the installation area need not be the same, and may be different.
  • all the heating elements HS have the same shape (rectangular parallelepiped shape), but the individual heating elements HS may have different shapes. can also vary in size.
  • the partition plate 44 is provided over the entire housing space 11 (full length in the E direction and full width in the X direction). Therefore, the partition plate 44 completely divides the housing space 11 into the upper space 11a and the lower space 11b.
  • the accommodation space 11 has a length L in the E direction, a width W in the X direction (see FIG. 4), and a height H in the thickness direction of the boiling section 10 (see FIG. 4).
  • the partition plate 44 is formed within the range of length L and width W, and is arranged at a position that partitions the accommodation space 11 into height h1 and height h2 in the thickness direction.
  • the partition plate 44 has a first communication passage 45 that passes through the partition plate 44 and communicates the upper space 11a and the lower space 11b in a region that vertically overlaps the through hole 12a of the upper surface 12 .
  • the first communication path 45 is a path for moving the refrigerant gas 1a generated in the lower space 11b to the through hole 12a, and is a path for moving the refrigerant liquid 1b returning from the condensation section 20 to the boiling section 10 to the lower space 11b.
  • the first communication path 45 is a through hole penetrating through the partition plate 44 in the thickness direction.
  • a second communication passage 46 is formed at one end portion E1 located on the lower side of the housing space 11 to allow the upper space 11a and the lower space 11b to communicate with each other.
  • the one end portion E1 located on the lower side is the end portion of the boiling portion 10 extending obliquely downward (in the E direction), which is relatively located on the lower side in the Z direction. means the end of The other end E2 is located relatively on the upper side in the Z direction.
  • the second communication path 46 is a notch provided at one end of the partition plate 44 .
  • the second communication path 46 is provided at the one end E1 to allow the refrigerant liquid 1b to move between the upper space 11a and the lower space 11b at the lowermost portion of the housing space 11.
  • the liquid surface 1c of the refrigerant 1 is below the first communication path 45 (upper end of the installation area of the upper surface 12).
  • the partition plate 44 separates the refrigerant liquid 1b stored in the upper space 11a and the refrigerant liquid 1b stored in the lower space 11b.
  • the refrigerant liquid 1b can move between the upper space 11a and the lower space 11b via the second communication path 46, the liquid level in the upper space 11a and the liquid level in the lower space 11b should be aligned. , the amount of stored liquid can be adjusted.
  • FIG. 5 shows the planar shape of the first member 41 (boiling portion 10).
  • an installation area is formed with a length L1 and a width W1, and a through hole 12a is formed with a length L2.
  • a rectangular through-hole 12a extending in the X direction is formed within the range of length L2.
  • FIG. 6 shows the planar shape of the partition plate 44.
  • the partition plate 44 has a through hole forming the first communication path 45 and a notch forming the second communication path 46 .
  • a partition plate 44 is continuously formed between the first communication path 45 and the second communication path 46 without interruption.
  • the first communication path 45 is formed by a through hole 44a.
  • the through hole 44a has a rectangular shape.
  • the second communication path 46 has a rectangular shape extending in the X direction.
  • a partition plate 44 is provided in a part of the region overlapping the through hole 12a (see broken line) of the upper surface 12 in the thickness direction, on the one end E1 side.
  • a first communication path 45 is provided in a portion of the region overlapping the through hole 12a in the thickness direction, on the side of the other end E2.
  • the partition plate 44 is provided in a region of length L4 which is approximately half of the through hole 12a on the one end E1 side of the through hole 12a formed in the range of length L2.
  • a first communication path 45 (through hole 44a) is provided in a region of the through hole 12a, which has a length L3 that is approximately half the length of the through hole 12a on the other end E2 side.
  • the refrigerant liquid 1b returning to the boiling section 10 from the condensation section 20 through the substantially half area of the through hole 12a on the one end E1 side is received by the partition plate 44 and distributed to the upper space 11a.
  • Refrigerant liquid 1b returning to boiling section 10 from condensing section 20 through substantially half area of through hole 12a on the other end E2 side passes through first communication path 45 and is distributed to lower space 11b.
  • the partition plate 44 By forming the partition plate 44 on the one end E1 side and forming the first communication path 45 on the other end E2 side of the region overlapping the through hole 12a, the upper space of the condensed refrigerant liquid 1b is formed.
  • the distribution ratio to 11a and lower space 11b can be adjusted.
  • the partition plate 44 overlaps approximately half of the through hole 12a, and the first communication path 45 also overlaps approximately half of the through hole 12a, so the distribution ratio of the refrigerant liquid 1b is the same (1:1). .
  • the ratio of the forming area of the partition plate 44 to the forming area of the first communication path 45 depends on the heating element HS installed on the upper surface 12, for example. It can be set according to the ratio between the amount of heat generated and the amount of heat generated by the heating element HS installed on the lower surface 13 .
  • the lower space 11 b is defined by the bottom plate portion 42 b of the second member 42 , two side wall portions 42 c on both sides in the X direction, and the lower surface of the partition plate 44 . Furthermore, as shown in FIG. 7, the lower space 11b is partitioned into a plurality of refrigerant passages 42e by partition walls 42d extending in the E direction. In the example of FIG. 7, three partitions 42d are provided, and the lower space 11b is partitioned into four refrigerant passages 42e. As shown in FIG. 4 , the upper surfaces of the two side wall portions 42 c on both sides in the X direction and the upper surfaces of the three partition wall portions 42 d are in contact with the lower surface of the partition plate 44 .
  • the through hole 44a (see FIG. 6) forming the first communication path 45 is formed so as to straddle the formation positions of the four coolant paths 42e in the lower space 11b.
  • the width of the through hole 44a in the X direction is approximately equal to the total width of the coolant passages 42e in the X direction.
  • the first member 41 forming the upper space 11a substantially matches the structure of the second member 42, which is vertically symmetrical, except that the through hole 12a (see FIG. 5) is formed. do.
  • the upper space 11 a is defined by the top plate portion 41 b of the first member 41 , two side wall portions 41 c on both sides in the X direction, and the upper surface of the partition plate 44 .
  • the upper space 11a is partitioned into a plurality of coolant passages 41e by partition walls 41d extending in the E direction. In the example of FIG. 4, three partition walls 41d are provided, and the upper space 11a is partitioned into four refrigerant passages 41e.
  • the bottom surface of each of the two side wall portions 41 c on both sides in the X direction and the bottom surfaces of the three partition wall portions 41 d are in contact with the upper surface of the partition plate 44 .
  • the length in the X direction of the second communication path 46 (see FIG. 6) formed in a notch shape in the partition plate 44 is equal to the length of the pair of side wall portions 42c (the pair of side wall portions 41c) on both sides in the X direction shown in FIG. ) is approximately equal to the interval of That is, the second communication path 46 is formed across the four coolant paths 42e in the lower space 11b and the four coolant paths 41e in the upper space 11a. Thereby, the second communication path 46 is configured to allow a plurality of (eight) paths provided in the upper space 11a and the lower space 11b to communicate with each other.
  • the partition plate 44 is made of a brazing sheet provided with brazing material on both sides.
  • the upper and lower surfaces of the partition plate 44 are flat surfaces.
  • the boiling section 10 is formed by arranging lid members 43 on one end E1 and the other end E2 of the assembly (case member 40) of the first member 41, the second member 42, and the partition plate 44 and brazing them. ,It is configured.
  • FIG. 8 is a schematic diagram of the boiling section 10 of the cooler 100.
  • the heating element HS generates heat
  • the heat generated by the refrigerant 1 in the boiling section 10 is absorbed.
  • the heat of the heating element HS arranged on the upper surface 12 is absorbed by the refrigerant 1 accommodated in the upper space 11a, and the heat of the heating element HS arranged on the lower surface 13 is absorbed by the refrigerant 1 accommodated in the lower space 11b.
  • the boiling portion 10 is inclined downward at an angle ⁇ , and the liquid surface 1c of the refrigerant 1 is positioned at the upper end of the installation area.
  • the inner upper surface 41a is prevented from being covered with the refrigerant gas 1a due to disappearance of the refrigerant liquid 1b.
  • the heat-absorbing refrigerant 1 boils and evaporates into a refrigerant gas 1a.
  • the refrigerant gas 1a generated in the upper space 11a moves along the inner upper surface 41a toward the other end E2. Since the inner upper surface 41a is inclined upward at an angle ⁇ toward the other end E2, the refrigerant gas 1a is prevented from remaining on the inner upper surface 41a without moving.
  • the refrigerant gas 1a discharged from the liquid surface 1c reaches the formation position of the through hole 12a, the refrigerant gas 1a moves into the connecting portion 30 through the through hole 12a.
  • the refrigerant gas 1a generated in the lower space 11b moves upward in the lower space 11b, contacts the lower surface of the partition plate 44, and moves along the partition plate 44 toward the other end E2.
  • the partition plate 44 prevents the refrigerant gas 1a generated in the lower space 11b from moving upward to the inner upper surface 41a of the upper space 11a and excessively concentrating the refrigerant gas 1a on the inner upper surface 41a.
  • the refrigerant gas 1a released from the liquid surface 1c reaches the formation position of the first communication path 45, the refrigerant gas 1a passes through the first communication path 45 and moves into the upper space 11a.
  • the refrigerant gas 1a that has moved into the upper space 11a passes upward through the upper space 11a and moves into the connecting portion 30 through the through hole 12a.
  • the refrigerant gas 1a passes upward through the connection portion 30 and flows into the accommodation space 21a of the condensation portion 20 located above. Inside the housing space 21 a , the refrigerant gas 1 a moves upward while diffusing through the gaps between the fins 25 .
  • the boiling portion 10 is provided so as to extend obliquely downward from the connecting portion (connecting portion 30) with the condensing portion 20.
  • the internal upper surface 41a can be inclined with respect to the liquid surface 1c of the refrigerant liquid 1b so that the internal upper surface 41a of the housing space 11 can be continuously in contact with the refrigerant liquid 1b. Since the accommodation space 11 is inclined upward toward the condensation section 20 , the refrigerant gas 1 a vaporized inside the accommodation space 11 moves toward the condensation section 20 along the inclined accommodation space 11 . Therefore, it is possible to prevent the refrigerant gas 1a from staying excessively on the inner upper surface 41a of the housing space 11 .
  • the boiling section 10 is inclined at an inclination angle ⁇ of 5 degrees or more and less than 45 degrees with respect to the horizontal direction, so that the height dimension of the boiling cooler 100 is A horizontal ebullient cooler 100 that has the merit of the horizontal ebullient cooler 100 that it is possible to suppress heat generation and has a larger installation area for the heat generator HS by enabling the heat generator HS to be installed on the upper surface 12 of the boiling section 10. - ⁇ is obtained.
  • the boiling section 10 includes the partition plate 44 that divides the accommodation space 11 into the upper space 11a adjacent to the upper surface 12 and the lower space 11b adjacent to the lower surface 13. Further, since it is included, the partition plate 44 can block the refrigerant gas 1a generated in the lower space 11b of the accommodation space 11 from moving to the upper space 11a. Therefore, it is possible to prevent the entire refrigerant gas 1a from gathering on the inner upper surface 41a and preventing the contact between the refrigerant liquid 1b and the inner upper surface 41a. can be done.
  • the partition plate 44 is provided at least in the range OA that overlaps the installation region of the heating element HS on the upper surface 12 and the boiling section 10 in the thickness direction.
  • the partition plate 44 prevents the refrigerant gas 1a generated in the lower space 11b from gathering in the area directly below the heating element HS on the upper surface 12 of the boiling section 10 in the inner upper surface 41a. Therefore, it is possible to effectively prevent the refrigerant gas 1a from concentrating on the region of the inner upper surface 41a where dryout is most likely to occur.
  • the partition plate 44 is provided over the entire housing space 11, so that the refrigerant gas 1a generated in the lower space 11b does not reach the inner upper surface 41a of the housing space 11. You can definitely prevent them from gathering.
  • the partition plate 44 has a first communication passage 45 penetrating through the partition plate 44 and communicating the upper space 11a and the lower space 11b in a region vertically overlapping the through hole 12a of the upper surface 12. Therefore, the lower space 11b can pass through the first communication passage 45 and move toward the condensation section 20 . Therefore, it is not necessary to form a passage in the boiling section 10 separately from the partition plate 44 for moving the refrigerant gas 1a in the lower space 11b to the condensation section 20, thereby simplifying the structure of the boiling type cooler.
  • the second communication path 46 that connects the upper space 11a and the lower space 11b is formed at the lower end E1 of the accommodation space 11. Therefore, even when the accommodation space 11 is divided into the upper space 11a and the lower space 11b, the refrigerant liquid 1b can be moved through the second communication path 46. As shown in FIG. Therefore, the storage amount of the refrigerant liquid 1b can be made uniform between the upper space 11a and the lower space 11b without the refrigerant liquid 1b being unevenly stored in one of the upper space 11a and the lower space 11b.
  • the second communication path 46 communicates the four refrigerant passages 42e in the lower space 11b and the four refrigerant passages 41e in the upper space 11a with each other. It is also possible to suppress the variation in the amount of the refrigerant liquid 1b contained.
  • the condensation section 20 is provided so as to extend upward from the upper surface 12 of the boiling section 10, and the flow path 22 for the external fluid 2 that penetrates the condensation section 20 in the horizontal direction. Therefore, even when the boiling section 10 is tilted obliquely downward, the external fluid 2 can be sent horizontally to the condensing section 20 extending along the vertical direction. Therefore, in the configuration in which the refrigerant gas 1a in the condensation section 20 is condensed by forced cooling in which the external fluid 2 is sent by the drive source (blower 3), the drive source and the circulation path of the external fluid 2 are tilted according to the inclination of the boiling section 10. You don't have to put it all together. Therefore, when combining the ebullient cooler 100 with an external device, the ebullient cooler 100 can be easily adapted to the external device.
  • cooler 200 a boiling cooler 200 (hereinafter referred to as cooler 200) according to a second embodiment of the present invention.
  • cooler 200 unlike the first embodiment in which the partition plate 44 is provided in the accommodation space 11 of the boiling section 10, an example in which the partition plate 44 is not provided in the accommodation space 11 of the boiling section 10 will be described.
  • the same reference numerals are used for the same configuration as in the first embodiment, and the description thereof is omitted.
  • the external shape of the boiling section 10 other than the internal structure of the boiling section 10 and the configurations of the condensing section 20 and the connecting section 30 are the same as those of the first embodiment shown in FIG.
  • the boiling section 10 is provided so as to extend obliquely downward from a connecting portion (connecting section 30) with the condensing section 20, and extends in the horizontal direction (Y direction). is inclined downward by an angle ⁇ with respect to Only the internal structure of the boiling section 10 will be described below.
  • the partition plate 44 is not provided in the housing space 11 of the boiling section 10 in the second embodiment. That is, the accommodation space 11 is not partitioned into the upper space 11a and the lower space 11b, but is a continuous space as a whole.
  • the accommodation space 11 includes an inner upper surface 41 a of the first member 41 , an inner lower surface 42 a of the second member 42 , a side wall portion 41 c of the first member 41 and a side wall portion 42 c of the second member 42 . , a lid member 43 (see FIG. 9) at one end E1 and a lid member 43 (see FIG. 9) at the other end E2.
  • the housing space 11 is partitioned into four refrigerant passages by three partition walls 41d and 42d, as in the first embodiment. Since the partition plate 44 is not provided, each refrigerant passage is formed from the inner lower surface 42 a to the inner upper surface 41 a and has a height equal to the height H of the housing space 11 .
  • the case member 40 does not have to be composed of two members, the first member 41 and the second member 42 .
  • the cylindrical case member 40 may be formed as a single member by integrating the first member 41 and the second member 42 by extrusion molding.
  • the refrigerant gas 1a generated near the inner lower surface 42a of the accommodation space 11 by the heat of the heating element HS provided on the lower surface 13 moves toward the inner upper surface 41a without being blocked on the way. Therefore, in the second embodiment, both the refrigerant gas 1a generated on the inner upper surface 41a side and the refrigerant gas 1a generated on the inner lower surface 42a side move along the inner upper surface 41a toward the other end E2. . Since the inner upper surface 41a is inclined upward at an angle ⁇ toward the other end E2, it is possible to prevent the refrigerant gas 1a from remaining on the inner upper surface 41a without moving.
  • the refrigerant gas 1a When the refrigerant gas 1a reaches the position where the through hole 12a is formed, the refrigerant gas 1a moves into the connecting portion 30 through the through hole 12a.
  • Other operations of the cooler 100 are the same as those of the first embodiment.
  • the boiling section 10 is provided so as to extend obliquely downward from the connection section 30 with the condensing section 20, so that the inner upper surface 41a of the accommodation space 11 and the refrigerant liquid 1b can be continuously brought into contact with each other, and the refrigerant gas 1a can be prevented from remaining excessively on the inner upper surface 41a.
  • sufficient cooling performance can be exhibited even for the heating element HS installed on the upper surface 12 of the boiling section 10, so that the heating element HS can be installed not only on the lower surface 13 of the boiling section 10 but also on the upper surface 12.
  • the installation area of the heating element HS can be increased.
  • cooling performance was measured under the same operating conditions for each of the cooler 100 of the first embodiment and the cooler 200 of the second embodiment. Specifically, as variations in the structure of the boiling section 10, the cooling performance was measured for two types of boiling sections, one with the partition plate 44 (first embodiment) and the other without the partition plate 44 (second embodiment).
  • 13 to 15 are graphs showing the measurement results of cooling performance. 13 to 15 show the measurement results of heat generation conditions with a heat generation amount of 50%, a heat generation amount of 100%, and a heat generation amount of 150%, respectively.
  • the horizontal axis of each graph in FIGS. 13 to 15 indicates the temperature measurement position.
  • the temperature measurement positions are each of six measurement positions set at intervals along the E direction in the installation area of the heating element HS in the boiling section 10 . In the installation area, the measurement position No. 1 is closest to the one end E1, and the measurement position No. 6 is closest to the other end E2.
  • the vertical axis of each graph indicates the difference value ⁇ T[K] between the mounting surface temperature of the heating element HS and the internal coolant temperature at each temperature measurement position.
  • each graph shows the design value (theoretical value) of the difference value ⁇ T calculated from the specifications of the boiling section 10 and the set value of the heat generation amount of the heating element HS without considering the behavior of the refrigerant gas 1a.
  • a line (thick line) is shown as a guide for cooling performance evaluation.
  • the baseline values differ according to the calorific value conditions (50%, 100%, 150%).
  • FIG. 16 A graph that summarizes the graphs in FIGS. 13 to 15 is shown in FIG.
  • the vertical axis in FIG. 16 is the same difference value ⁇ T[K] as in FIGS.
  • the horizontal axis represents the experimental conditions, and shows the values of the top surface and the bottom surface for each of the six types of combinations of the presence or absence of the partition plate and the inclination angle ⁇ .
  • the measurement results of the calorific value of 50% see FIG. 13
  • the calorific value of 100% see FIG. 14
  • the calorific value of 150% are indicated by different hatching.
  • Each measurement result is shown as a bar graph showing the range of maximum and minimum values of ⁇ T at six temperature measurement positions. The lower the position of the plotted bar, the lower the value of ⁇ T, and the shorter the length of the bar, the smaller the difference between the maximum and minimum values of ⁇ T.
  • Plots B1 and B2 in which the boiling section 10 is inclined are positioned below plot B3 of the comparative example.
  • Plots B1 and B2 have smaller variations in ⁇ T than plot B3.
  • the measurement results of the lower surface 13 do not differ as much as the measurement results of the upper surface 12 (B1 to B3).
  • the gap with (A1, A2, B1, B2) is also large.
  • the value of ⁇ T is smaller than or equal to .
  • the cooling performance on the upper surface 12 is improved, and the cooling performance on the lower surface 13 is equal to or lower than that on the lower surface 13 It was confirmed that the above cooling performance can also be obtained on the upper surface 12 .
  • the value of ⁇ T is smaller with the partition plate.
  • the provision of the partition plate 44 greatly reduces the value of ⁇ T.
  • the provision of the partition plate 44 can improve the cooling performance (reduce the value of ⁇ T).
  • the cooling performance under high load conditions can be greatly improved by increasing the inclination angle ⁇ . It has been confirmed that it is possible to improve the cooling performance by providing them.
  • the heating element HS is a power module used in a power conversion device, but the present invention is not limited to this.
  • the heating element can be of any kind.
  • the heating element may be a semiconductor chip such as a CPU or an electronic circuit mounted in an electronic device such as a server.
  • the condensation section 20 is provided to extend upward from the upper surface 12 of the boiling section 10, and has the flow path 22 for the external fluid 2 that penetrates the condensation section 20 in the horizontal direction.
  • the condensation section 20 may be provided so as to extend in a direction other than the upward direction, and the flow path 22 for the external fluid 2 may be provided so as to pass through the condensation section 20 in a direction other than the horizontal direction.
  • the condensation section 20 is provided so as to protrude in the horizontal direction (Y direction) with respect to the connection section 30 rising upward from the boiling section 10 .
  • a flow passage 22 for the external fluid 2 is provided so as to pass through the condensation section 20 in the vertical direction (Z direction).
  • the external fluid 2 is passed upward through the flow passage 22 by, for example, the blower 3 arranged below the condenser section 20 .
  • the external fluid 2 may be passed downward through the flow passage 22 by means of a blower arranged above the condenser section 20 .
  • the condensing section 20 may be directly connected to the top surface 12 of the boiling section 10 . That is, the lower end of the housing space 21a of the condensation unit 20 communicates with the through hole 12a of the upper surface 12 of the boiling unit 10, and the wall 24 of the condensation unit 20 is formed such that the housing space 21a and the housing space 11 are closed spaces. may be joined to the upper surface 12 of the boiling portion 10 .
  • a first passage for passing the refrigerant gas 1a moving to the condensing section 20 and a second passage for passing the refrigerant liquid 1b moving to the boiling section 10 are provided to form a circulation path for the refrigerant 1. It may be configured in a loop shape.
  • the examples where the angle ⁇ of the boiling section 10 is 5 degrees and 10 degrees are shown, but the present invention is not limited to this.
  • the angle ⁇ may be an angle of 5 degrees or more and less than 10 degrees, or may be an angle of more than 10 degrees.
  • the installation area of the upper surface 12 and the installation area of the lower surface 13 of the boiling section 10 are provided at the same position and in the same range (length L1 range) in the direction E.
  • the installation area of the upper surface 12 and the installation area of the lower surface 13 may be provided at different positions and in different ranges.
  • the upper surface 12 of the boiling section 10 is provided with two installation areas, and the lower surface 13 is provided with three installation areas.
  • the installation area on the other end E2 side of the lower surface 13 is arranged at a position aligned with the condensation section 20 in the Z direction. According to the configuration of this modification, more heating elements HS can be installed.
  • the liquid surface 1c of the refrigerant 1 is set within the installation area of the heating element HS on the upper surface 12 of the boiling section 10 when the cooler is not in operation.
  • the present invention is not limited to this.
  • the liquid surface 1c may be set at a position above the installation area of the heating element HS on the upper surface 12. FIG. With this configuration, the entire area of the inner upper surface 41a of the housing space 11 facing the installation area of the heat generating element HS (the area immediately below the heat generating element HS) can be brought into contact with the refrigerant liquid 1b.
  • the partition plate 44 may be locally provided in part of the housing space 11 .
  • the partition plate 44 is provided in the area OA where the heating element HS installation area on the upper surface 12 overlaps the boiling section 10 in the thickness direction, and is not provided in other areas. Even in this case, the partition plate 44 can prevent the refrigerant gas 1a from the lower space 11b from gathering on the inner upper surface 41a directly below the area where the heating element HS is installed on the upper surface 12 .
  • the present invention is not limited to this.
  • the height h1 of the upper space 11a and the height h2 of the lower space 11b may be different.
  • the height h1 of the upper space 11a and the height h2 of the lower space 11b are changed according to the amount of heat generated by the heating element HS installed on the upper surface 12 and the amount of heat generated by the heating element HS installed on the lower surface 13. May be set.
  • the partition plate 44 is formed only with the first communication passage 45 formed of a through hole and the second communication passage 46 formed of a notch.
  • the partition plate 44 may be provided with a through hole or a notch for adjusting the passage amount of the refrigerant gas 1a.
  • the partition plate 44 is provided with a plurality of through holes 441 .
  • the through-hole 441 is provided in a range overlapping the installation region of the heating element HS on the upper surface 12 and the boiling section 10 in the thickness direction.
  • the through hole 441 is configured to allow part of the refrigerant gas 1a generated in the lower space 11b to pass through to the upper space 11a.
  • the through hole 441 is formed to have a size that allows the amount of refrigerant gas 1a passing through the through hole 441 to be an appropriate amount.
  • the first communication path 45 is formed by a through hole formed in the partition plate 44
  • the present invention is not limited to this.
  • the partition plate 44 is partially provided in the accommodation space 11 as shown in FIG.
  • the first communication path 45 may not be provided.
  • the first communication passage 45 is configured by a notch formed in the other end portion of the partition plate 44 in the same manner as the second communication passage 46.
  • a lid member 43 closing the other end E2 of the boiling section 10 is formed with a recess 43a extending over the upper space 11a and the lower space 11b.
  • a passageway 45 may be configured.
  • the second communication path 46 is formed by a notch formed in the partition plate 44, but the present invention is not limited to this.
  • the second communication path 46 may be configured by a through hole formed in the partition plate 44 in the same manner as the first communication path 45 .
  • the lid member 43 closing the one end E1 of the boiling section 10 is formed with a recess 43b extending over the upper space 11a and the lower space 11b. 46 may be configured.
  • the second communication path 46 may not be provided.
  • each of the upper space 11a and the lower space 11b is partitioned into a plurality (four) of refrigerant passages 41e and 42e by the partition walls 41d and 42d
  • the present invention is not limited to this. In the present invention, the accommodation space 11 (upper space 11a and lower space 11b) does not have to be partitioned into a plurality of refrigerant passages.

Abstract

This boiling-type cooler (100) comprises: a boiling unit (10) that has a storage space (11) for storing a refrigerant (1), said boiling unit (10) boiling the refrigerant by exchanging heat with a heating element (HS); and a condensing unit (20) that communicates with the boiling unit and condenses refrigerant gas (1a) from the boiling unit by exchanging heat with an external fluid (2). The boiling unit: is formed in a plate shape having an upper surface (12) and a lower surface (13), each having a heating element installed thereon; and is provided so as to extend diagonally downward from a portion (30) connecting to the condensing unit.

Description

沸騰式冷却器boiling cooler
 この発明は、沸騰式冷却器に関し、特に、冷媒を沸騰させる沸騰部と気化した冷媒を凝縮させる凝縮部との間で冷媒を循環させる沸騰式冷却器に関する。 The present invention relates to an ebullient cooler, and more particularly to an ebullient cooler that circulates the refrigerant between a boiling section that boils the refrigerant and a condensing section that condenses the vaporized refrigerant.
 従来、沸騰部と凝縮部との間で冷媒を循環させる沸騰式冷却器が知られている。このような沸騰式冷却器は、たとえば、特開2002-134670号公報に開示されている。 Conventionally, a boiling cooler that circulates a refrigerant between a boiling section and a condensing section is known. Such a boiling type cooler is disclosed, for example, in Japanese Patent Application Laid-Open No. 2002-134670.
 上記特開2002-134670号公報には、水平配置される蒸発部(沸騰部)の上面に、逆T字型にプレートフィン型熱交換器の構成からなる凝縮部を接合した構造を有する。蒸発部の内部に冷媒が封入されている。蒸発部の下面に、半導体素子の載置用プレートが設けられている。 The above Japanese Patent Application Laid-Open No. 2002-134670 has a structure in which a condensing section composed of a plate-fin heat exchanger is joined in an inverted T shape to the upper surface of a horizontally arranged evaporating section (boiling section). Refrigerant is sealed inside the evaporator. A plate for mounting a semiconductor element is provided on the lower surface of the evaporating section.
特開2002-134670号公報JP-A-2002-134670
 本明細書では、特開2002-134670号公報に開示された沸騰式冷却器のように、沸騰部が横方向に延びるタイプの沸騰式冷却器を「横型」の沸騰式冷却器と呼ぶ。横型の沸騰式冷却器では、発熱体を沸騰部の下面に設置する必要がある。沸騰部の内部のうち、下側に液相の冷媒が溜まり、上側に気相の冷媒ガスが集まるので、沸騰部の上面に発熱体を設置しても十分な冷却性能を得にくいためである。そのため、横型の沸騰式冷却器において、発熱体の設置面積を確保しにくいという課題がある。 In this specification, an ebullient cooler in which the boiling portion extends in the lateral direction, such as the ebullient cooler disclosed in JP-A-2002-134670, is referred to as a "horizontal" ebullition cooler. In a horizontal boiling type cooler, it is necessary to install a heating element on the bottom surface of the boiling section. This is because the liquid-phase refrigerant collects in the lower part of the boiling section and the vapor-phase refrigerant gas collects in the upper part, so it is difficult to obtain sufficient cooling performance even if a heating element is installed on the upper surface of the boiling section. . Therefore, in the horizontal boiling type cooler, there is a problem that it is difficult to secure an installation area for the heating element.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、横型の沸騰式冷却器であっても、発熱体の設置面積を大きくすることが可能な沸騰式冷却器を提供することである。 The present invention has been made to solve the above problems, and one object of the present invention is to make it possible to increase the installation area of a heating element even in a horizontal boiling type cooler. To provide an efficient boiling type cooler.
 上記目的を達成するために、本発明による沸騰式冷却器は、冷媒を収容する収容空間を有し、発熱体との熱交換により、冷媒を沸騰させる沸騰部と、沸騰部と連通し、沸騰部からの冷媒ガスを外部流体との熱交換により凝縮させる凝縮部と、を備え、沸騰部は、それぞれ発熱体が設置される上面および下面を有する板状形状に形成され、凝縮部との接続部分から斜め下方に向けて延びるように設けられている。 In order to achieve the above object, a boiling type cooler according to the present invention has a housing space for housing a refrigerant, a boiling section for boiling the refrigerant by heat exchange with a heating element, and a boiling section for communicating with the boiling section to boil the refrigerant. a condensing section for condensing the refrigerant gas from the section by heat exchange with an external fluid, wherein the boiling section is formed in a plate-like shape having an upper surface and a lower surface on which a heating element is installed, and is connected to the condensing section. It is provided so as to extend obliquely downward from the portion.
 この発明による沸騰式冷却器では、上記のように、沸騰部が、凝縮部との接続部分から斜め下方に向けて延びるように設けられているので、冷媒の収容空間の内部上面を冷媒の液面に対して傾斜させ、収容空間の内部上面を液体の冷媒と継続的に接触させることができる。そして、収容空間は凝縮部に向けて上り傾斜となるので、収容空間の内部で気化した冷媒ガスは、傾斜した収容空間に沿って凝縮部に向けて移動していく。そのため、収容空間の内部上面において冷媒ガスが過剰に滞留することを防止できる。これらの結果、沸騰部の上面に設置された発熱体に対しても十分な冷却性能を発揮できるので、沸騰部の下面だけでなく上面にも発熱体を設置可能とすることにより、横型の沸騰式冷却器であっても、発熱体の設置面積を大きくすることができる。なお、本明細書において、横型の沸騰式冷却器とは、沸騰部の上下方向の寸法よりも水平方向の寸法が大きければ、沸騰部が水平方向から傾斜している場合も含むものとする。すなわち、沸騰部が単純な平板形状を有する場合、沸騰部が水平方向に対して45度未満の傾斜角度で設けられていれば、「横型」の沸騰式冷却器に含まれるものとする。 In the boiling type cooler according to the present invention, as described above, the boiling section is provided so as to extend obliquely downward from the connecting portion with the condensing section. It can be inclined with respect to the plane so that the internal top surface of the containment space is in continuous contact with the liquid coolant. Since the accommodation space slopes upward toward the condensation section, the refrigerant gas vaporized inside the accommodation space moves toward the condensation section along the inclined accommodation space. Therefore, it is possible to prevent the refrigerant gas from staying excessively on the inner upper surface of the accommodation space. As a result, the heating element installed on the upper surface of the boiling section can exhibit sufficient cooling performance. Even with a type cooler, the installation area of the heating element can be increased. In this specification, the term "horizontal boiling cooler" includes the case where the boiling section is inclined from the horizontal direction as long as the horizontal dimension is larger than the vertical dimension of the boiling section. In other words, when the boiling section has a simple flat plate shape, if the boiling section is provided at an angle of inclination of less than 45 degrees with respect to the horizontal direction, it is included in the "horizontal type" boiling type cooler.
 上記発明において、好ましくは、沸騰部は、冷媒の液面が、上面における発熱体の設置領域内または発熱体の設置領域よりも上方に位置するように傾斜している。このように構成すれば、収容空間の内部上面のうち、発熱体の設置領域と対向する領域(発熱体の直下の領域)を液体の冷媒と接触させることができる。そのため、発熱体の直下の領域が部分的にドライアウト状態になることを抑制できるので、局所的な温度上昇(局所的な冷却性能の低下)が発生することを効果的に抑制できる。ドライアウトとは、伝熱面において液相の冷媒が消失して伝熱面が気相の冷媒に覆われる状態(蒸気単相状態)になることであり、ドライアウトが発生した領域では熱伝達率が大きく減少してしまう。 In the above invention, preferably, the boiling portion is inclined so that the liquid level of the coolant is positioned within or above the area where the heating element is installed on the upper surface. According to this configuration, of the inner upper surface of the housing space, the area facing the installation area of the heat generating element (the area immediately below the heat generating element) can be brought into contact with the liquid refrigerant. Therefore, it is possible to prevent the region directly under the heating element from being partially dry-out, so that it is possible to effectively prevent the occurrence of local temperature rise (local decrease in cooling performance). Dryout is a state in which the liquid-phase refrigerant disappears from the heat transfer surface and the heat transfer surface is covered with gas-phase refrigerant (single-phase vapor state). rate drops significantly.
 上記発明において、好ましくは、沸騰部は、水平方向に対して5度以上45度未満の傾斜角度で傾斜している。このように構成すれば、沸騰式冷却器の高さ寸法が抑制できるという横型の沸騰式冷却器のメリットを得ながら、沸騰部の上面にも発熱体を設置可能とすることで発熱体の設置面積を大きくした横型の沸騰式冷却器が得られる。 In the above invention, preferably, the boiling portion is inclined at an inclination angle of 5 degrees or more and less than 45 degrees with respect to the horizontal direction. With this configuration, the heating element can be installed on the upper surface of the boiling section while obtaining the merit of the horizontal boiling type cooler that the height dimension of the boiling type cooler can be suppressed. A horizontal boiling type cooler with an enlarged area is obtained.
 上記発明において、好ましくは、沸騰部は、収容空間を、上面と隣り合う上部空間と、下面と隣り合う下部空間と、に区画する仕切板をさらに含む。このように構成すれば、沸騰部の下面に設置された発熱体からの吸熱により収容空間の下部空間で発生した冷媒ガスが上部空間へ移動することを、仕切板によって遮ることができる。そのため、全ての冷媒ガスが収容空間(上部空間)の内部上面に集まって冷媒と内部上面との接触が妨げられることを抑制できるので、沸騰部の上面における発熱体の冷却性能を向上させることができる。また、熱交換器において、伝熱面が完全に液相で満たされている状態よりも、液相と気相とが適度な割合で存在している状態の方が、伝熱面に沿った液膜の蒸発の影響により冷却性能が向上する現象が知られている。そのため、下部空間で発生した冷媒ガスを仕切板により遮る結果、上部空間の内部上面における液相と気相とが適度な割合となる場合には、上面における冷却性能のさらに効果的な改善が見込める。 In the above invention, the boiling section preferably further includes a partition plate that divides the accommodation space into an upper space adjacent to the upper surface and a lower space adjacent to the lower surface. With this configuration, the partition plate can prevent the refrigerant gas generated in the lower space of the accommodation space from moving to the upper space due to heat absorption from the heating element installed on the lower surface of the boiling section. Therefore, it is possible to prevent all the refrigerant gas from gathering on the inner upper surface of the housing space (upper space) and prevent contact between the refrigerant and the inner upper surface. can. In addition, in a heat exchanger, a state in which a liquid phase and a gas phase exist at an appropriate ratio is better along the heat transfer surface than a state in which the heat transfer surface is completely filled with a liquid phase. A phenomenon is known in which the cooling performance is improved due to the effect of the evaporation of the liquid film. Therefore, as a result of blocking the refrigerant gas generated in the lower space by the partition plate, if the ratio of the liquid phase and the gas phase on the inner upper surface of the upper space becomes appropriate, further effective improvement of the cooling performance on the upper surface can be expected. .
 この場合、好ましくは、仕切板は、少なくとも、上面における発熱体の設置領域と沸騰部の厚み方向において重なる範囲に設けられている。このように構成すれば、収容空間の内部上面のうち、沸騰部の上面における発熱体の直下の領域に対して、下部空間で発生した冷媒ガスが集まることを仕切板によって遮ることができる。そのため、内部上面のうちで最も熱流束密度が大きく、ドライアウトが発生しやすい領域に、冷媒ガスが集まることを効果的に抑制できる。 In this case, preferably, the partition plate is provided at least in a range that overlaps in the thickness direction of the boiling portion with the installation region of the heating element on the upper surface. According to this configuration, the partition plate can prevent the refrigerant gas generated in the lower space from gathering in the area directly below the heating element on the upper surface of the boiling section in the inner upper surface of the housing space. Therefore, it is possible to effectively prevent the refrigerant gas from gathering in the area of the inner upper surface where the heat flux density is the highest and where dryout is likely to occur.
 上記仕切板が上面における発熱体の設置領域と重なる範囲に設けられる構成において、好ましくは、沸騰部の上面には、収容空間と凝縮部とを連通させる貫通孔が形成されており、仕切板は、収容空間の全体に亘って設けられ、かつ、上面の貫通孔と上下に重なる領域において、仕切板を貫通して上部空間と下部空間とを連通させる第1連通路を有する。このように構成すれば、仕切板が収容空間の全体に亘って設けられるので、収容空間の内部上面に対して、下部空間で発生した冷媒ガスが集まることを確実に抑制できる。また、下部空間において発生した冷媒ガスは仕切板に沿って移動するので、下部空間の冷媒ガスが第1連通路を通過して凝縮部へ向けて移動できる。このため、下部空間の冷媒ガスを凝縮部へ移動させるための通路を仕切板とは別個に沸騰部に形成する必要がなく、沸騰型冷却器の構造を簡素化できる。 In the configuration in which the partition plate is provided in a range overlapping the installation region of the heating element on the upper surface, preferably, the upper surface of the boiling section is formed with a through hole for communicating the accommodation space and the condensing section, and the partition plate is and a first communication passage which is provided throughout the accommodation space and penetrates the partition plate to communicate the upper space and the lower space in a region vertically overlapping the through hole in the upper surface. With this configuration, the partition plate is provided over the entire housing space, so that it is possible to reliably prevent the refrigerant gas generated in the lower space from gathering on the inner upper surface of the housing space. Further, since the refrigerant gas generated in the lower space moves along the partition plate, the refrigerant gas in the lower space can pass through the first communication passage and move toward the condensation section. Therefore, it is not necessary to form a passage for moving the refrigerant gas in the lower space to the condensation section in the boiling section separately from the partition plate, so that the structure of the boiling type cooler can be simplified.
 上記沸騰部が仕切板を含む構成において、好ましくは、収容空間のうち、下側に位置する一端部において、上部空間と下部空間とを連通させる第2連通路が形成されている。このように構成すれば、収容空間が上部空間と下部空間とに仕切られている場合でも、第2連通路を介して液相の冷媒を移動させることができる。そのため、上部空間と下部空間との一方に冷媒が偏って収容されることなく、上部空間と下部空間との間で冷媒の収容量を均一化することができる。 In the configuration in which the boiling section includes a partition plate, a second communication path is preferably formed at one end portion located on the lower side of the accommodation space to communicate the upper space and the lower space. With this configuration, even when the accommodation space is divided into an upper space and a lower space, the liquid-phase refrigerant can be moved through the second communication path. Therefore, the amount of refrigerant contained can be made uniform between the upper space and the lower space without the refrigerant being concentrated in one of the upper space and the lower space.
 上記発明において、好ましくは、凝縮部は、沸騰部の上面から上方向に延びるように設けられ、凝縮部を水平方向に貫通する外部流体の流通路を有する。このように構成すれば、沸騰部を斜め下方に向けて傾斜させた場合でも、凝縮部は上下方向に沿って延びるので、凝縮部に対して外部流体を水平方向に送り込むことができる。たとえば駆動源によって外部流体を送り込む強制冷却により凝縮部の冷媒ガスを凝縮させる場合、沸騰部の傾斜に合わせて駆動源や外部流体の流通経路を傾けた配置にせずに済む。そのため、沸騰式冷却器を外部機器と組み合わせる場合に、沸騰式冷却器を外部機器に容易に適合させることができる。 In the above invention, preferably, the condensation section is provided so as to extend upward from the upper surface of the boiling section, and has an external fluid flow path that penetrates the condensation section in the horizontal direction. With this configuration, even when the boiling section is tilted obliquely downward, the condensation section extends along the vertical direction, so that the external fluid can be sent horizontally to the condensation section. For example, when condensing the refrigerant gas in the condensing section by forced cooling in which the external fluid is fed by the driving source, it is not necessary to tilt the driving source or the flow path of the external fluid in accordance with the tilt of the boiling section. Therefore, when the ebullient cooler is combined with external equipment, the ebullient cooler can be easily adapted to the external equipment.
 本発明によれば、上記のように、横型の沸騰式冷却器であっても、発熱体の設置面積を大きくすることができる。 According to the present invention, as described above, it is possible to increase the installation area of the heating element even in a horizontal ebullient cooler.
第1実施形態による冷却器の全体構成を示した模式的な斜視図である。It is a typical perspective view showing the whole cooler composition by a 1st embodiment. 図1の冷却器のYZ方向に沿った模式的な縦断面図である。FIG. 2 is a schematic longitudinal sectional view along the YZ direction of the cooler of FIG. 1; 沸騰部の内部構造を示したEZ方向に沿った模式的な縦断面図である。It is a typical longitudinal cross-sectional view along the EZ direction showing the internal structure of the boiling section. 沸騰部のX方向に沿った模式的な拡大縦断面図である。It is a typical enlarged vertical cross-sectional view along the X direction of the boiling section. 沸騰部の上面を示した模式的な平面図である。It is a schematic plan view showing the upper surface of the boiling section. 仕切板を示した模式的な平面図である。FIG. 4 is a schematic plan view showing a partition plate; 沸騰部の第2部材を示した模式的な断面図である。It is a typical sectional view showing the second member of the boiling section. 第1実施形態における冷却器の動作を説明するための模式図である。It is a schematic diagram for demonstrating operation|movement of the cooler in 1st Embodiment. 第2実施形態による沸騰部のEZ方向に沿った模式的な縦断面図である。It is a typical longitudinal cross-sectional view along the EZ direction of the boiling section according to the second embodiment. 第2実施形態による沸騰部のX方向に沿った模式的な縦断面図である。It is a typical longitudinal cross-sectional view along the X direction of the boiling section by 2nd Embodiment. 第2実施形態における冷却器の動作を説明するための模式図である。It is a mimetic diagram for explaining operation of a cooler in a 2nd embodiment. 比較例による沸騰部を示した模式図である。It is a schematic diagram which showed the boiling part by a comparative example. 実施例による発熱量50%の実験結果1を示したグラフである。4 is a graph showing Experimental Result 1 with a calorific value of 50% according to an example. 実施例による発熱量100%の実験結果2を示したグラフである。10 is a graph showing Experimental Result 2 with a calorific value of 100% according to the example. 実施例による発熱量150%の実験結果3を示したグラフである。10 is a graph showing Experimental Result 3 with a calorific value of 150% according to the example. 図13~図15に示した実験結果をまとめたグラフである。FIG. 16 is a graph summarizing the experimental results shown in FIGS. 13 to 15; FIG. 凝縮部の向きの変形例を示した模式図である。It is a schematic diagram showing a modification of the direction of the condensation portion. 沸騰部の傾斜角度の変形例を示した模式図である。It is the schematic diagram which showed the modification of the inclination-angle of a boiling part. 仕切板の形成範囲の変形例を示した模式図である。It is a schematic diagram showing a modification of the formation range of the partition plate. 仕切板に貫通孔を形成した変形例を示した模式図である。It is a schematic diagram showing a modification in which a through hole is formed in the partition plate. 第1連通部および第2連通部の変形例を示した模式図である。It is a schematic diagram showing a modification of the first communication portion and the second communication portion.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
[第1実施形態]
 図1~図8を参照して、第1実施形態による沸騰式冷却器100(以下、冷却器100という)の構成について説明する。冷却器100は、冷媒の気化と凝縮との相変化を利用して、発熱体HSからの熱を吸収して、外部に放熱する沸騰冷却方式による冷却器である。冷却器100は、冷媒の吸熱により発熱体HSを冷却する。吸熱により気化した冷媒ガスが、外部流体により冷却されることにより、凝縮して液相に戻る。
[First embodiment]
The configuration of a boiling cooler 100 (hereinafter referred to as cooler 100) according to the first embodiment will be described with reference to FIGS. 1 to 8. FIG. The cooler 100 is an ebullient cooling type cooler that absorbs heat from the heating element HS and radiates the heat to the outside by utilizing a phase change between vaporization and condensation of the refrigerant. The cooler 100 cools the heating element HS by heat absorption of the refrigerant. The refrigerant gas vaporized by endothermic cooling is condensed and returned to the liquid phase by being cooled by the external fluid.
 発熱体HSは、特に限定されない。発熱体HSは、たとえば電子回路を備えた機器である。具体的には、インバータ装置などの電力変換回路を構成するパワーモジュールである。パワーモジュールは、1つまたは複数の電力変換用スイッチング素子を備えた回路部品である。電力変換用スイッチング素子は、たとえばIGBT(絶縁ゲートバイポーラトランジスタ)素子である。 The heating element HS is not particularly limited. The heating element HS is, for example, a device with an electronic circuit. Specifically, it is a power module that constitutes a power conversion circuit such as an inverter device. A power module is a circuit component that includes one or more switching elements for power conversion. The power conversion switching element is, for example, an IGBT (insulated gate bipolar transistor) element.
(冷却器の全体構成)
 図1に示すように、冷却器100は、沸騰部10と、凝縮部20と、接続部30と、を備えている。沸騰部10、凝縮部20および接続部30の各々の内部には、冷媒1を収容するための空間(図2参照)が形成されている。冷却器100は、沸騰部10と、凝縮部20と、接続部30とによって、密閉された内部空間を有している。この密閉空間内に、冷媒1が収容されている。沸騰部10、凝縮部20および接続部30は、たとえばアルミニウム(アルミニウム合金を含む)、銅(銅合金を含む)などの熱伝導性の高い金属材料により形成されている。
(Overall configuration of cooler)
As shown in FIG. 1, the cooler 100 includes a boiling section 10, a condensing section 20, and a connecting section 30. As shown in FIG. A space (see FIG. 2 ) for containing the refrigerant 1 is formed inside each of the boiling section 10 , the condensing section 20 and the connecting section 30 . Cooler 100 has an internal space sealed by boiling section 10 , condensing section 20 , and connecting section 30 . Refrigerant 1 is accommodated in this sealed space. Boiling section 10, condensing section 20, and connecting section 30 are made of a highly thermally conductive metal material such as aluminum (including aluminum alloy) or copper (including copper alloy).
 冷媒1は、気相と液相とに相変化するものであれば、特に限定されない。したがって、冷媒1は、発熱体HSに応じて公知のものから選択されればよく、たとえばフルオロカーボン、ハイドロカーボン、水などを採用しうる。冷却器100の内部空間は、略真空状態に減圧されており、気相の冷媒1によって飽和蒸気状態となっている。冷媒1の状態を区別する場合、便宜的に、気相の冷媒1を冷媒ガス1a(図2参照)といい、液相の冷媒1を冷媒液1b(図2参照)という。 The refrigerant 1 is not particularly limited as long as it changes phases between gas phase and liquid phase. Therefore, the coolant 1 may be selected from known ones according to the heating element HS, and may be fluorocarbon, hydrocarbon, water, or the like. The internal space of the cooler 100 is decompressed to a substantially vacuum state, and is saturated with the vapor-phase refrigerant 1 . When distinguishing the states of the refrigerant 1, for convenience, the vapor-phase refrigerant 1 is referred to as refrigerant gas 1a (see FIG. 2), and the liquid-phase refrigerant 1 is referred to as refrigerant liquid 1b (see FIG. 2).
 以下では、水平面内において、互いに直交する2つの方向を、それぞれX方向およびY方向とする。水平面(X-Y平面)と直交する上下方向を、Z方向とする。なお、Z方向は重力方向と略平行で、下方向に重力が作用するものとする。後述するが、沸騰部10の延びる方向を、E方向とする。以下の説明では、E方向は、Y-Z平面に含まれ、Y方向に対して下側へ角度θだけ傾斜した方向である。 In the following, the two directions perpendicular to each other in the horizontal plane are the X direction and the Y direction, respectively. The vertical direction orthogonal to the horizontal plane (XY plane) is defined as the Z direction. Note that the Z direction is substantially parallel to the direction of gravity, and gravity acts downward. As will be described later, the direction in which the boiling portion 10 extends is defined as the E direction. In the following description, the E direction is a direction included in the YZ plane and inclined downward by an angle θ with respect to the Y direction.
 図1に示す例では、沸騰部10の上面12に4つの発熱体HSの設置領域が設けられ、沸騰部10の下面13に4つの発熱体HSの設置領域が設けられている。つまり、上面12および下面13の各々において、X方向に2列、Y方向(厳密にはE方向)に2行の設置領域がある。冷却器100は、1列分を単位構造SUとして、複数の単位構造SUをX方向に並べた構造を有する。各々の単位構造SUは、実質的に同一構造である。そのため、以下では、1つの単位構造SUについて説明する。なお、図1では2つの単位構造SUを備えた構成例を示しているが、冷却器100は、単位構造SUを1つだけ備えていてもよいし、3つ以上の単位構造SUを備えていてもよい。 In the example shown in FIG. 1, the upper surface 12 of the boiling section 10 is provided with installation areas for four heating elements HS, and the lower surface 13 of the boiling section 10 is provided with installation areas for four heating elements HS. That is, on each of the upper surface 12 and the lower surface 13, there are installation areas of two columns in the X direction and two rows in the Y direction (strictly speaking, the E direction). The cooler 100 has a structure in which a plurality of unit structures SU are arranged in the X direction, with one row as the unit structure SU. Each unit structure SU has substantially the same structure. Therefore, one unit structure SU will be described below. Although FIG. 1 shows a configuration example with two unit structures SU, the cooler 100 may have only one unit structure SU, or may have three or more unit structures SU. may
 沸騰部10には、発熱体HSが設置される。沸騰部10は、図2に示すように、冷媒1を収容する収容空間11を有する。沸騰部10の収容空間11には、重力の作用により冷媒液1bが貯留される。沸騰部10は、発熱体HSとの熱交換により、冷媒1(冷媒液1b)を沸騰させるように構成されている。沸騰部10は、上面12および下面13を有する。沸騰部10は、X方向の両側の2つの側面14(図1参照)と、E方向の一端部E1の端面15および他端部E2の端面16とを有する。沸騰部10は、上面12、下面13、2つの側面14および2つの端面15、16を含む板状形状を有する。 A heating element HS is installed in the boiling section 10 . The boiling section 10 has an accommodation space 11 that accommodates the refrigerant 1, as shown in FIG. Refrigerant liquid 1b is stored in accommodation space 11 of boiling section 10 by the action of gravity. The boiling section 10 is configured to boil the refrigerant 1 (refrigerant liquid 1b) by heat exchange with the heating element HS. Boiling section 10 has an upper surface 12 and a lower surface 13 . The boiling portion 10 has two side surfaces 14 (see FIG. 1) on both sides in the X direction, and an end face 15 at one end E1 and an end face 16 at the other end E2 in the E direction. Boiling section 10 has a plate-like shape including upper surface 12 , lower surface 13 , two side surfaces 14 and two end surfaces 15 , 16 .
 沸騰部10の一端部E1側には、発熱体HSの設置領域が設けられている。沸騰部10の他端部E2側には、接続部30を介して凝縮部20が接続されている。沸騰部10は、凝縮部20との接続部分(すなわち、接続部30)から斜め下方に向けて延びるように設けられている。沸騰部10は、水平方向(Y方向)に対して、下側へ角度θだけ傾斜するように設けられている。これにより、沸騰部10は、凝縮部20との接続部分から斜め下方となるE方向に直線状に延びている。沸騰部10の上面12には、収容空間11と凝縮部20とを連通させる貫通孔12aが形成されている。 An installation area for the heating element HS is provided on the one end E1 side of the boiling section 10 . The condensing section 20 is connected to the other end E2 side of the boiling section 10 via the connecting section 30 . The boiling section 10 is provided so as to extend obliquely downward from a connecting portion (that is, a connecting section 30) with the condensing section 20. As shown in FIG. The boiling section 10 is provided so as to be inclined downward by an angle θ with respect to the horizontal direction (Y direction). Thereby, the boiling section 10 extends linearly in the E direction obliquely downward from the connecting portion with the condensing section 20 . A through hole 12 a is formed in the upper surface 12 of the boiling section 10 to allow the accommodation space 11 and the condensation section 20 to communicate with each other.
 接続部30は、Z方向に延びる筒状形状を有する。接続部30の下端面が沸騰部10の上面12に接合され、接続部30の上端面が凝縮部20の下面に接合されている。接続部30の下端面は、斜め下向きに傾斜した沸騰部10の上面12に合わせて、角度θで傾斜している。接続部30の上端面は水平面(X-Y平面)に沿っている。接続部30は、沸騰部10の上面12に形成された貫通孔12aを取り囲むように設けられている。接続部30は、沸騰部10の収容空間11と、凝縮部20の収容空間21aとの間を気密状態で接続している。 The connecting portion 30 has a cylindrical shape extending in the Z direction. The lower end surface of the connecting portion 30 is joined to the upper surface 12 of the boiling portion 10 , and the upper end surface of the connecting portion 30 is joined to the lower surface of the condensing portion 20 . The lower end surface of the connecting portion 30 is inclined at an angle θ in accordance with the upper surface 12 of the boiling portion 10 which is inclined obliquely downward. The upper end surface of the connecting portion 30 extends along the horizontal plane (XY plane). The connection part 30 is provided so as to surround the through hole 12a formed in the upper surface 12 of the boiling part 10 . The connecting portion 30 connects the accommodation space 11 of the boiling portion 10 and the accommodation space 21a of the condensation portion 20 in an airtight state.
 接続部30は、沸騰部10で気化した冷媒ガス1aが凝縮部20へ移動する通路を構成し、凝縮部20で凝縮した冷媒液1bが沸騰部10へ移動する通路を構成する。第1実施形態では、冷媒ガス1aの移動経路と、冷媒液1bの移動経路とが、同じ経路となっている。つまり、沸騰部10と凝縮部20との間が単一の通路(接続部30)によって接続されている。単一の通路(接続部30)では、凝縮部20へ移動する冷媒ガス1aと沸騰部10へ移動する冷媒液1bとが混在する気液混相の状態とされている。このため、沸騰部10と凝縮部20との間を、冷媒ガス1a専用の通路と冷媒液1b専用の通路とで別々に接続するループ状の内部空間を形成するタイプの冷却器と比較して、装置構造を簡素化できる。 The connecting portion 30 forms a passage through which the refrigerant gas 1a vaporized in the boiling portion 10 moves to the condensing portion 20, and forms a passage through which the refrigerant liquid 1b condensed in the condensing portion 20 moves to the boiling portion 10. In the first embodiment, the movement path of the refrigerant gas 1a and the movement path of the refrigerant liquid 1b are the same. That is, the boiling section 10 and the condensing section 20 are connected by a single passage (connecting section 30). In a single passage (connecting portion 30), a gas-liquid mixed phase state is established in which the refrigerant gas 1a moving to the condensing portion 20 and the refrigerant liquid 1b moving to the boiling portion 10 are mixed. For this reason, compared to a type of cooler that forms a loop-shaped internal space in which the boiling section 10 and the condensing section 20 are separately connected by a passage dedicated to the refrigerant gas 1a and a passage dedicated to the refrigerant liquid 1b. , the device structure can be simplified.
 凝縮部20は、接続部30を介して、沸騰部10の上面12から上方向に延びるように設けられている。凝縮部20は、接続部30を介して沸騰部10と連通している。凝縮部20は、沸騰部10からの冷媒ガス1aを外部流体2との熱交換により凝縮させるように構成されている。 The condensing section 20 is provided to extend upward from the upper surface 12 of the boiling section 10 via the connecting section 30 . Condensing section 20 communicates with boiling section 10 via connecting section 30 . The condensation section 20 is configured to condense the refrigerant gas 1 a from the boiling section 10 by heat exchange with the external fluid 2 .
 凝縮部20は、冷媒1を収容する収容空間21aを有する。図1に示すように、凝縮部20は、凝縮部20を水平方向(Y方向)に貫通する外部流体2の流通路22を有する。流通路22は、凝縮部20の外部に開放された通路である。収容空間21a(図2参照)は、流通路22を区画する壁部24によって囲まれた凝縮部20の内部空間である。つまり、収容空間21aと、流通路22とは、凝縮部20を構成する壁部24によって互いに非連通となるように区画されている。収容空間21a(図2参照)は、図1において、冷媒収容部21の内部に設けられている。 The condensation section 20 has an accommodation space 21a that accommodates the refrigerant 1 . As shown in FIG. 1 , the condensation section 20 has a flow path 22 for the external fluid 2 that penetrates the condensation section 20 in the horizontal direction (Y direction). The flow passage 22 is a passage opened to the outside of the condensation section 20 . The accommodation space 21a (see FIG. 2) is an internal space of the condensation section 20 surrounded by the walls 24 that define the flow passages 22. As shown in FIG. In other words, the housing space 21 a and the flow passage 22 are partitioned by the wall portion 24 that constitutes the condensation portion 20 so as not to communicate with each other. The accommodation space 21a (see FIG. 2) is provided inside the refrigerant accommodation portion 21 in FIG.
 凝縮部20において、複数の冷媒収容部21と、複数の流通路22とが、X方向に交互に配置されている。流通路22には、Y方向の一端から他端までにわたってコルゲートフィン23が設けられている。流通路22を通過する外部流体2は、空気である。図2に示すように、冷却器100の稼働時には、流通路22に沿ったY方向に向けて空気を送り込む送風機3が外部流体2の駆動源として設けられる。 In the condenser section 20, a plurality of refrigerant storage sections 21 and a plurality of flow paths 22 are alternately arranged in the X direction. Corrugated fins 23 are provided in the flow path 22 from one end to the other end in the Y direction. The external fluid 2 passing through the flow path 22 is air. As shown in FIG. 2 , when the cooler 100 is in operation, a blower 3 that blows air in the Y direction along the flow path 22 is provided as a drive source for the external fluid 2 .
 収容空間21aは、Z方向下側が開放され、X方向、Y方向およびZ方向上側が壁部24により囲まれている。壁部24の下端部が、接続部30の上端部と接合されている。開放された収容空間21aの下面側が、接続部30を介して沸騰部10の収容空間11と連通している。このため、冷却器100は、沸騰部10の収容空間11と、接続部30の内部と、凝縮部20の収容空間21aと、により構成された閉じた内部空間を有している。この内部空間に、冷媒1が封入されている。 The housing space 21a is open on the lower side in the Z direction, and is surrounded by walls 24 on the upper side in the X, Y and Z directions. A lower end portion of the wall portion 24 is joined to an upper end portion of the connecting portion 30 . The lower surface side of the opened accommodation space 21 a communicates with the accommodation space 11 of the boiling section 10 via the connecting portion 30 . Therefore, the cooler 100 has a closed internal space composed of the accommodation space 11 for the boiling section 10 , the interior of the connection section 30 , and the accommodation space 21 a for the condensation section 20 . A refrigerant 1 is enclosed in this internal space.
 収容空間21aには、Z方向に延びるフィン25が設けられている。 A fin 25 extending in the Z direction is provided in the housing space 21a.
 図2に示すように、沸騰部10で気化した冷媒ガス1aが、接続部30を通って凝縮部20の収容空間21a内に流入すると、フィン25の間を通って上方へ拡散される。凝縮部20は、収容空間21a内に流入した冷媒ガス1aの熱を、流通路22(図1参照)を通過する外部流体2に伝達し、冷媒ガス1aを凝縮(液化)させる。外部流体2との熱交換によって凝縮した冷媒液1bは、主として重力の作用により、接続部30を介して沸騰部10へ戻される。 As shown in FIG. 2, when the refrigerant gas 1a vaporized in the boiling section 10 flows into the housing space 21a of the condensing section 20 through the connecting section 30, it passes through the fins 25 and diffuses upward. The condenser 20 transfers the heat of the refrigerant gas 1a flowing into the housing space 21a to the external fluid 2 passing through the flow path 22 (see FIG. 1) to condense (liquefy) the refrigerant gas 1a. The refrigerant liquid 1b condensed by heat exchange with the external fluid 2 is returned to the boiling section 10 via the connection section 30 mainly by the action of gravity.
 この結果、冷却器100の内部では、沸騰部10における冷媒1の気化と、凝縮部20における冷媒1の凝縮との相変化のサイクルを繰り返すように冷媒1が沸騰部10と凝縮部20とを循環する。 As a result, inside the cooler 100, the refrigerant 1 moves between the boiling section 10 and the condensing section 20 so as to repeat a phase change cycle of vaporization of the refrigerant 1 in the boiling section 10 and condensation of the refrigerant 1 in the condensing section 20. Circulate.
(沸騰部の傾斜角度)
 図2に示すように、第1実施形態では、沸騰部10は、冷媒1(冷媒液1b)の液面1cが、上面12における発熱体HSの設置領域内に位置するように傾斜している。つまり、液面1cが、上面12における発熱体HSの設置領域の下端位置から上端位置の間の高さ範囲に位置している。具体的には、液面1cは、上面12における発熱体HSの設置領域の上端と略一致する高さに位置する。液面1cの位置は、冷却器100の非稼働状態における位置とする。設置領域は、上面12の中で発熱体HSが設置されることにより発熱体HSに覆われる領域(いわゆるフットプリント)である。沸騰部10は、水平方向に対して5度以上45度未満の傾斜角度θで傾斜するように設けられている。図2の例では、傾斜角度θは、10度である。
(Inclination angle of boiling part)
As shown in FIG. 2, in the first embodiment, the boiling section 10 is inclined so that the liquid surface 1c of the refrigerant 1 (refrigerant liquid 1b) is positioned within the installation area of the heating element HS on the upper surface 12. . That is, the liquid surface 1c is located in a height range between the lower end position and the upper end position of the installation area of the heating element HS on the upper surface 12 . Specifically, the liquid surface 1c is positioned at a height that substantially coincides with the upper end of the installation area of the heating element HS on the upper surface 12 . The position of the liquid surface 1c is assumed to be the position when the cooler 100 is not in operation. The installation area is an area (so-called footprint) covered with the heating element HS when the heating element HS is installed in the upper surface 12 . The boiling section 10 is provided so as to be inclined at an inclination angle θ of 5 degrees or more and less than 45 degrees with respect to the horizontal direction. In the example of FIG. 2, the tilt angle θ is 10 degrees.
(沸騰部の構造)
 次に、図3~図7を参照して、沸騰部10の構造について詳細に説明する。図3に示すように、沸騰部10は、筒状のケース部材40の一端部E1および他端部E2に、それぞれ蓋部材43が接合されることによって中空の平板形状に構成されている。ケース部材40が上面12、下面13、2つの側面14(図1参照)を有する。2つの蓋部材43が一端部E1の端面15と他端部E2の端面16とを構成する。ケース部材40は、上面12を含む上側の第1部材41と、下面13を含む下側の第2部材42と、を含んでいる。
(Structure of boiling part)
Next, the structure of the boiling section 10 will be described in detail with reference to FIGS. 3 to 7. FIG. As shown in FIG. 3, the boiling section 10 is configured in a hollow flat plate shape by joining lid members 43 to one end E1 and the other end E2 of a cylindrical case member 40, respectively. A case member 40 has an upper surface 12, a lower surface 13 and two side surfaces 14 (see FIG. 1). Two lid members 43 constitute the end surface 15 of the one end portion E1 and the end surface 16 of the other end portion E2. The case member 40 includes an upper first member 41 including the upper surface 12 and a lower second member 42 including the lower surface 13 .
 収容空間11は、沸騰部10の一端部E1から他端部E2までE方向に延びるように形成されている。以下、収容空間11の上面12側の内表面を、内部上面41aといい、収容空間11の下面13側の内表面を、内部下面42aという。内部上面41aは第1部材41の内面であり、上面12が第1部材41の外面である。内部下面42aは第2部材42の内面であり、下面13が第2部材42の外面である。収容空間11と、接続部30(図2参照)の内部と、凝縮部20の収容空間21a(図2参照)とを連通させるための貫通孔12aは、第1部材41に形成されている。貫通孔12aは、第1部材41を上面12から内部上面41aまで貫通している。 The housing space 11 is formed to extend in the E direction from one end E1 of the boiling portion 10 to the other end E2. Hereinafter, the inner surface of the accommodation space 11 on the upper surface 12 side will be referred to as an inner upper surface 41a, and the inner surface of the accommodation space 11 on the lower surface 13 side will be referred to as an inner lower surface 42a. The inner upper surface 41 a is the inner surface of the first member 41 and the upper surface 12 is the outer surface of the first member 41 . The inner lower surface 42 a is the inner surface of the second member 42 and the lower surface 13 is the outer surface of the second member 42 . A through-hole 12 a is formed in the first member 41 to allow communication between the accommodation space 11 , the interior of the connection portion 30 (see FIG. 2 ), and the accommodation space 21 a (see FIG. 2 ) of the condensation portion 20 . The through hole 12a penetrates the first member 41 from the upper surface 12 to the inner upper surface 41a.
 第1実施形態では、沸騰部10は、収容空間11を、上面12と隣り合う上部空間11aと、下面13と隣り合う下部空間11bと、に区画する仕切板44をさらに含む。仕切板44は、E方向に沿って延びる平板部材である。図4に示すように、仕切板44は、第1部材41と第2部材42との間に挟まれるように設けられている。 In the first embodiment, the boiling section 10 further includes a partition plate 44 that divides the accommodation space 11 into an upper space 11a adjacent to the upper surface 12 and a lower space 11b adjacent to the lower surface 13. The partition plate 44 is a flat plate member extending along the E direction. As shown in FIG. 4 , the partition plate 44 is provided so as to be sandwiched between the first member 41 and the second member 42 .
 仕切板44は、収容空間11を、上部空間11aと下部空間11bとの2つの空間に区画している。仕切板44は、上面12および下面13と平行に設けられている。このため、上部空間11aと下部空間11bとは、E方向に延び、互いに平行に設けられている。上部空間11aと下部空間11bとは、共に、沸騰部10の一端部E1から他端部E2までE方向に延びるように形成されている。図4の例では、仕切板44は、収容空間11を、2等分するように区画している。すなわち、沸騰部10の厚み方向において、上部空間11aの高さh1と、下部空間11bの高さh2とが、等しい。 The partition plate 44 divides the accommodation space 11 into two spaces, an upper space 11a and a lower space 11b. Partition plate 44 is provided parallel to upper surface 12 and lower surface 13 . Therefore, the upper space 11a and the lower space 11b extend in the E direction and are provided parallel to each other. Both the upper space 11a and the lower space 11b are formed to extend in the E direction from one end E1 of the boiling section 10 to the other end E2. In the example of FIG. 4, the partition plate 44 divides the accommodation space 11 into two halves. That is, in the thickness direction of the boiling section 10, the height h1 of the upper space 11a and the height h2 of the lower space 11b are equal.
 図3に示すように、仕切板44は、少なくとも、上面12における発熱体HSの設置領域と沸騰部10の厚み方向において重なる範囲OAに設けられている。E方向における長さL1の範囲、X方向における幅W1(図5参照)が、上面12における発熱体HSの設置領域である。仕切板44は、この長さL1、幅W1の範囲と一致するか、長さL1、幅W1の範囲よりも広い範囲にわたって設けられる。 As shown in FIG. 3, the partition plate 44 is provided at least in an area OA that overlaps the installation area of the heating element HS on the upper surface 12 and the boiling section 10 in the thickness direction. The range of the length L1 in the E direction and the width W1 in the X direction (see FIG. 5) is the installation area of the heating element HS on the upper surface 12. As shown in FIG. The partition plate 44 is provided over a range that matches the range of the length L1 and the width W1 or is wider than the range of the length L1 and the width W1.
 なお、図3では、E方向において、上面12の設置領域の位置と、下面13の設置領域の位置とが同一である例を示しているが、上面12の設置領域の位置と、下面13の設置領域の位置とが同一である必要はなく、異なっていてもよい。第1実施形態では、一例として、全ての発熱体HSが同一形状(直方体形状)を有する例を示しているが、個々の発熱体HSの形状が異なっていてもよく、その場合には設置領域の大きさも異なりうる。 3 shows an example in which the position of the installation area of the upper surface 12 and the position of the installation area of the lower surface 13 are the same in the direction E, but the position of the installation area of the upper surface 12 and the position of the installation area of the lower surface 13 are the same. The position of the installation area need not be the same, and may be different. In the first embodiment, as an example, all the heating elements HS have the same shape (rectangular parallelepiped shape), but the individual heating elements HS may have different shapes. can also vary in size.
 第1実施形態では、仕切板44は、収容空間11の全体(E方向の全長およびX方向の全幅)に亘って設けられている。したがって、仕切板44によって、収容空間11が上部空間11aと下部空間11bとに完全に分割されている。具体的には、収容空間11は、E方向において長さL、X方向において幅W(図4参照)、沸騰部10の厚み方向において高さH(図4参照)、を有する。仕切板44は、この長さL、幅Wの範囲に形成され、厚み方向において収容空間11を高さh1と高さh2とに仕切る位置に配置されている。 In the first embodiment, the partition plate 44 is provided over the entire housing space 11 (full length in the E direction and full width in the X direction). Therefore, the partition plate 44 completely divides the housing space 11 into the upper space 11a and the lower space 11b. Specifically, the accommodation space 11 has a length L in the E direction, a width W in the X direction (see FIG. 4), and a height H in the thickness direction of the boiling section 10 (see FIG. 4). The partition plate 44 is formed within the range of length L and width W, and is arranged at a position that partitions the accommodation space 11 into height h1 and height h2 in the thickness direction.
 仕切板44が収容空間11の全体を仕切る構成では、図3に示すように、上部空間11aは貫通孔12aと直接連通するが、下部空間11bと貫通孔12aとの間は仕切板44によって区画される。そこで、仕切板44は、上面12の貫通孔12aと上下に重なる領域において、仕切板44を貫通して上部空間11aと下部空間11bとを連通させる第1連通路45を有する。第1連通路45は、下部空間11bにおいて発生した冷媒ガス1aを貫通孔12aへ移動させる通路であり、凝縮部20から沸騰部10に戻る冷媒液1bを下部空間11bへ移動させる通路である。図3の例では、第1連通路45は、仕切板44を厚み方向に貫通する貫通孔である。 In the configuration in which the partition plate 44 partitions the entire housing space 11, as shown in FIG. be done. Therefore, the partition plate 44 has a first communication passage 45 that passes through the partition plate 44 and communicates the upper space 11a and the lower space 11b in a region that vertically overlaps the through hole 12a of the upper surface 12 . The first communication path 45 is a path for moving the refrigerant gas 1a generated in the lower space 11b to the through hole 12a, and is a path for moving the refrigerant liquid 1b returning from the condensation section 20 to the boiling section 10 to the lower space 11b. In the example of FIG. 3, the first communication path 45 is a through hole penetrating through the partition plate 44 in the thickness direction.
 また、第1実施形態では、収容空間11のうち、下側に位置する一端部E1において、上部空間11aと下部空間11bとを連通させる第2連通路46が形成されている。なお、下側に位置する一端部E1とは、図2に示したように、斜め下方(E方向)に延びる沸騰部10の両端部のうち、相対的にZ方向の下側に位置する方の端部を意味する。相対的にZ方向の上側に位置するのが他端部E2である。図3の例では、第2連通路46は、仕切板44の一端部に設けられた切欠である。 In addition, in the first embodiment, a second communication passage 46 is formed at one end portion E1 located on the lower side of the housing space 11 to allow the upper space 11a and the lower space 11b to communicate with each other. As shown in FIG. 2, the one end portion E1 located on the lower side is the end portion of the boiling portion 10 extending obliquely downward (in the E direction), which is relatively located on the lower side in the Z direction. means the end of The other end E2 is located relatively on the upper side in the Z direction. In the example of FIG. 3 , the second communication path 46 is a notch provided at one end of the partition plate 44 .
 第2連通路46は、一端部E1に設けられることによって、収容空間11のうち最も下方となる箇所で、上部空間11aと下部空間11bとの間での冷媒液1bの移動を許容する。ここで、図2に示した例では、冷媒1の液面1cが第1連通路45よりも下側(上面12の設置領域の上端)にある。この場合、上部空間11a内に貯留される冷媒液1bと、下部空間11b内に貯留される冷媒液1bとが、仕切板44によって分断されることになる。しかし、第2連通路46を介して上部空間11aと下部空間11bとで冷媒液1bの移動が可能となるので、上部空間11aにおける液面位置と下部空間11bにおける液面位置とを揃えるように、貯留液量を調整できる。 The second communication path 46 is provided at the one end E1 to allow the refrigerant liquid 1b to move between the upper space 11a and the lower space 11b at the lowermost portion of the housing space 11. As shown in FIG. Here, in the example shown in FIG. 2, the liquid surface 1c of the refrigerant 1 is below the first communication path 45 (upper end of the installation area of the upper surface 12). In this case, the partition plate 44 separates the refrigerant liquid 1b stored in the upper space 11a and the refrigerant liquid 1b stored in the lower space 11b. However, since the refrigerant liquid 1b can move between the upper space 11a and the lower space 11b via the second communication path 46, the liquid level in the upper space 11a and the liquid level in the lower space 11b should be aligned. , the amount of stored liquid can be adjusted.
 図5は第1部材41(沸騰部10)の平面形状を示す。沸騰部10の上面12には、長さL1、幅W1の範囲で設置領域が形成され、貫通孔12aが長さL2の範囲で形成されている。図5の例では、長さL2の範囲に、X方向に延びる矩形形状の貫通孔12aが形成されている。 FIG. 5 shows the planar shape of the first member 41 (boiling portion 10). On the upper surface 12 of the boiling section 10, an installation area is formed with a length L1 and a width W1, and a through hole 12a is formed with a length L2. In the example of FIG. 5, a rectangular through-hole 12a extending in the X direction is formed within the range of length L2.
 図6は、仕切板44の平面形状を示す。仕切板44には、第1連通路45を構成する貫通孔と、第2連通路46を構成する切欠とが形成されている。第1連通路45と第2連通路46との間は、途切れることなく連続して仕切板44が形成されている。第1連通路45は、貫通孔44aにより形成されている。貫通孔44aは矩形形状を有する。第2連通路46は、X方向に延びる矩形形状を有する。 6 shows the planar shape of the partition plate 44. FIG. The partition plate 44 has a through hole forming the first communication path 45 and a notch forming the second communication path 46 . A partition plate 44 is continuously formed between the first communication path 45 and the second communication path 46 without interruption. The first communication path 45 is formed by a through hole 44a. The through hole 44a has a rectangular shape. The second communication path 46 has a rectangular shape extending in the X direction.
 図6の例では、上面12の貫通孔12a(破線参照)と厚み方向に重なる領域のうち、一端部E1側の一部には、仕切板44が設けられている。そして、貫通孔12aと厚み方向に重なる領域のうち、他端部E2側の一部には、第1連通路45が設けられている。図6の例では、長さL2の範囲に形成された貫通孔12aのうち、一端部E1側の貫通孔12aの略半分の長さL4の領域に、仕切板44が設けられている。貫通孔12aのうち、他端部E2側の貫通孔12aの略半分の長さL3の領域に、第1連通路45(貫通孔44a)が設けられている。 In the example of FIG. 6, a partition plate 44 is provided in a part of the region overlapping the through hole 12a (see broken line) of the upper surface 12 in the thickness direction, on the one end E1 side. A first communication path 45 is provided in a portion of the region overlapping the through hole 12a in the thickness direction, on the side of the other end E2. In the example of FIG. 6, the partition plate 44 is provided in a region of length L4 which is approximately half of the through hole 12a on the one end E1 side of the through hole 12a formed in the range of length L2. A first communication path 45 (through hole 44a) is provided in a region of the through hole 12a, which has a length L3 that is approximately half the length of the through hole 12a on the other end E2 side.
 このため、凝縮部20から一端部E1側の貫通孔12aの略半分の領域を通過して沸騰部10へ戻る冷媒液1bは、仕切板44により受け止められて上部空間11aへ分配される。凝縮部20から他端部E2側の貫通孔12aの略半分の領域を通過して沸騰部10へ戻る冷媒液1bは、第1連通路45を通過して下部空間11bへ分配される。 Therefore, the refrigerant liquid 1b returning to the boiling section 10 from the condensation section 20 through the substantially half area of the through hole 12a on the one end E1 side is received by the partition plate 44 and distributed to the upper space 11a. Refrigerant liquid 1b returning to boiling section 10 from condensing section 20 through substantially half area of through hole 12a on the other end E2 side passes through first communication path 45 and is distributed to lower space 11b.
 このように、貫通孔12aと重なる領域のうち、一端部E1側に仕切板44を形成し、他端部E2側に第1連通路45を形成することによって、凝縮した冷媒液1bの上部空間11aおよび下部空間11bへの分配割合を調整できる。仕切板44の形成領域の割合を大きくすれば上部空間11aへの冷媒液1bの分配割合が大きくなり、第1連通路45の形成領域の割合を大きくすれば下部空間11bへの冷媒液1bの分配割合が大きくなる。図6の例では、仕切板44は貫通孔12aの略半分と重なり、第1連通路45も貫通孔12aの略半分と重なるため、冷媒液1bの分配割合は同等(1:1)である。仕切板44の形成領域と第1連通路45の形成領域との割合(長さL2の範囲に占める長さL4と長さL3との割合)は、たとえば上面12に設置される発熱体HSの発熱量と、下面13に設置される発熱体HSの発熱量との割合に応じて設定されうる。 By forming the partition plate 44 on the one end E1 side and forming the first communication path 45 on the other end E2 side of the region overlapping the through hole 12a, the upper space of the condensed refrigerant liquid 1b is formed. The distribution ratio to 11a and lower space 11b can be adjusted. By increasing the ratio of the forming area of the partition plate 44, the distribution ratio of the refrigerant liquid 1b to the upper space 11a is increased. The distribution ratio increases. In the example of FIG. 6, the partition plate 44 overlaps approximately half of the through hole 12a, and the first communication path 45 also overlaps approximately half of the through hole 12a, so the distribution ratio of the refrigerant liquid 1b is the same (1:1). . The ratio of the forming area of the partition plate 44 to the forming area of the first communication path 45 (the ratio of the length L4 and the length L3 to the range of the length L2) depends on the heating element HS installed on the upper surface 12, for example. It can be set according to the ratio between the amount of heat generated and the amount of heat generated by the heating element HS installed on the lower surface 13 .
 図4に示すように、下部空間11bは、第2部材42の底板部42b、X方向両側の2つの側壁部42c、および仕切板44の下側表面によって区画されている。さらに、図7に示すように、下部空間11bは、E方向に延びる隔壁部42dによって複数の冷媒通路42eに区画されている。図7の例では、3つの隔壁部42dが設けられ、下部空間11bが4本の冷媒通路42eに区画されている。図4に示すように、X方向両側の2つの側壁部42cの各々の上面と、3つの隔壁部42dの上面とが、仕切板44の下側表面と接触している。 As shown in FIG. 4 , the lower space 11 b is defined by the bottom plate portion 42 b of the second member 42 , two side wall portions 42 c on both sides in the X direction, and the lower surface of the partition plate 44 . Furthermore, as shown in FIG. 7, the lower space 11b is partitioned into a plurality of refrigerant passages 42e by partition walls 42d extending in the E direction. In the example of FIG. 7, three partitions 42d are provided, and the lower space 11b is partitioned into four refrigerant passages 42e. As shown in FIG. 4 , the upper surfaces of the two side wall portions 42 c on both sides in the X direction and the upper surfaces of the three partition wall portions 42 d are in contact with the lower surface of the partition plate 44 .
 なお、第1連通路45を構成する貫通孔44a(図6参照)は、下部空間11bの4本の冷媒通路42eの形成位置を跨がるように形成されている。貫通孔44aのX方向の幅は、個々の冷媒通路42eのX方向の幅の合計と概ね等しい。 The through hole 44a (see FIG. 6) forming the first communication path 45 is formed so as to straddle the formation positions of the four coolant paths 42e in the lower space 11b. The width of the through hole 44a in the X direction is approximately equal to the total width of the coolant passages 42e in the X direction.
 図4に示すように、上部空間11aを構成する第1部材41は、貫通孔12a(図5参照)が形成されている事を除いて、第2部材42を上下対称にした構造と略一致する。上部空間11aは、第1部材41の天板部41b、X方向両側の2つの側壁部41c、および仕切板44の上側表面によって区画されている。上部空間11aは、E方向に延びる隔壁部41dによって複数の冷媒通路41eに区画されている。図4の例では、3つの隔壁部41dが設けられ、上部空間11aが4本の冷媒通路41eに区画されている。X方向両側の2つの側壁部41cの各々の下面と、3つの隔壁部41dの下面とが、仕切板44の上側表面と接触している。 As shown in FIG. 4, the first member 41 forming the upper space 11a substantially matches the structure of the second member 42, which is vertically symmetrical, except that the through hole 12a (see FIG. 5) is formed. do. The upper space 11 a is defined by the top plate portion 41 b of the first member 41 , two side wall portions 41 c on both sides in the X direction, and the upper surface of the partition plate 44 . The upper space 11a is partitioned into a plurality of coolant passages 41e by partition walls 41d extending in the E direction. In the example of FIG. 4, three partition walls 41d are provided, and the upper space 11a is partitioned into four refrigerant passages 41e. The bottom surface of each of the two side wall portions 41 c on both sides in the X direction and the bottom surfaces of the three partition wall portions 41 d are in contact with the upper surface of the partition plate 44 .
 なお、仕切板44に切欠状に形成された第2連通路46(図6参照)のX方向の長さは、図7に示したX方向両側の一対の側壁部42c(一対の側壁部41c)の間隔と略等しい。つまり、第2連通路46は、下部空間11bの4本の冷媒通路42e、および上部空間11aの4本の冷媒通路41eに跨がって形成されている。これにより、第2連通路46は、上部空間11aおよび下部空間11bに設けられた複数(8本)の通路を互いに連通させるように構成されている。 The length in the X direction of the second communication path 46 (see FIG. 6) formed in a notch shape in the partition plate 44 is equal to the length of the pair of side wall portions 42c (the pair of side wall portions 41c) on both sides in the X direction shown in FIG. ) is approximately equal to the interval of That is, the second communication path 46 is formed across the four coolant paths 42e in the lower space 11b and the four coolant paths 41e in the upper space 11a. Thereby, the second communication path 46 is configured to allow a plurality of (eight) paths provided in the upper space 11a and the lower space 11b to communicate with each other.
 図4に示すように、第1部材41と第2部材42とは、互いに仕切板44に接合され一体化している。仕切板44は、両面にろう材が設けられたブレージングシートからなる。仕切板44の上側表面および下側表面は、平坦面となっている。沸騰部10は、第1部材41と第2部材42と仕切板44との組立体(ケース部材40)の一端部E1および他端部E2にそれぞれ蓋部材43を配置し、ろう付けすることにより、構成されている。 As shown in FIG. 4, the first member 41 and the second member 42 are joined to the partition plate 44 and integrated. The partition plate 44 is made of a brazing sheet provided with brazing material on both sides. The upper and lower surfaces of the partition plate 44 are flat surfaces. The boiling section 10 is formed by arranging lid members 43 on one end E1 and the other end E2 of the assembly (case member 40) of the first member 41, the second member 42, and the partition plate 44 and brazing them. ,It is configured.
(冷却器の動作)
 冷却器100の動作を説明する。図8は、冷却器100の沸騰部10の模式図である。発熱体HSが発熱すると、沸騰部10内の冷媒1により発生した熱が吸収される。上面12に配置された発熱体HSの熱は、上部空間11aに収容された冷媒1により吸収され、下面13に配置された発熱体HSの熱は、下部空間11bに収容された冷媒1により吸収される。沸騰部10が角度θで下向きに傾斜し、冷媒1の液面1cが設置領域内の上端に位置するので、上部空間11aの内部上面41aのうち設置領域と重なる範囲は、常時、冷媒液1bと接触した状態となる。そのため、内部上面41aにおいて、冷媒液1bが消失して冷媒ガス1aに覆われるドライアウト状態になることが防止される。上部空間11aおよび下部空間11bの各々において、吸熱した冷媒1が沸騰することによって気化して冷媒ガス1aになる。
(Operation of cooler)
The operation of cooler 100 will be described. FIG. 8 is a schematic diagram of the boiling section 10 of the cooler 100. As shown in FIG. When the heating element HS generates heat, the heat generated by the refrigerant 1 in the boiling section 10 is absorbed. The heat of the heating element HS arranged on the upper surface 12 is absorbed by the refrigerant 1 accommodated in the upper space 11a, and the heat of the heating element HS arranged on the lower surface 13 is absorbed by the refrigerant 1 accommodated in the lower space 11b. be done. The boiling portion 10 is inclined downward at an angle θ, and the liquid surface 1c of the refrigerant 1 is positioned at the upper end of the installation area. is in contact with Therefore, the inner upper surface 41a is prevented from being covered with the refrigerant gas 1a due to disappearance of the refrigerant liquid 1b. In each of the upper space 11a and the lower space 11b, the heat-absorbing refrigerant 1 boils and evaporates into a refrigerant gas 1a.
 上部空間11aで発生した冷媒ガス1aは、内部上面41aに沿って他端部E2へ向けて移動する。内部上面41aは、他端部E2へ向けて角度θの上向き傾斜となるので、冷媒ガス1aが内部上面41aにおいて移動せずに滞留することが回避される。液面1cから放出された冷媒ガス1aが貫通孔12aの形成位置まで到達すると、冷媒ガス1aが貫通孔12aを通過して接続部30内へ移動する。 The refrigerant gas 1a generated in the upper space 11a moves along the inner upper surface 41a toward the other end E2. Since the inner upper surface 41a is inclined upward at an angle θ toward the other end E2, the refrigerant gas 1a is prevented from remaining on the inner upper surface 41a without moving. When the refrigerant gas 1a discharged from the liquid surface 1c reaches the formation position of the through hole 12a, the refrigerant gas 1a moves into the connecting portion 30 through the through hole 12a.
 下部空間11bで発生した冷媒ガス1aは、下部空間11b内で上方移動して仕切板44の下側表面と接触し、仕切板44に沿って他端部E2へ向けて移動する。仕切板44によって、下部空間11bで発生した冷媒ガス1aが上部空間11aの内部上面41aまで上方移動して内部上面41aに冷媒ガス1aが過剰に集中することが回避される。液面1cから放出された冷媒ガス1aが第1連通路45の形成位置まで到達すると、冷媒ガス1aが第1連通路45を通過して上部空間11a内へ移動する。上部空間11a内へ移動した冷媒ガス1aは、そのまま上部空間11aを上方へ通過して、貫通孔12aから接続部30内へ移動する。 The refrigerant gas 1a generated in the lower space 11b moves upward in the lower space 11b, contacts the lower surface of the partition plate 44, and moves along the partition plate 44 toward the other end E2. The partition plate 44 prevents the refrigerant gas 1a generated in the lower space 11b from moving upward to the inner upper surface 41a of the upper space 11a and excessively concentrating the refrigerant gas 1a on the inner upper surface 41a. When the refrigerant gas 1a released from the liquid surface 1c reaches the formation position of the first communication path 45, the refrigerant gas 1a passes through the first communication path 45 and moves into the upper space 11a. The refrigerant gas 1a that has moved into the upper space 11a passes upward through the upper space 11a and moves into the connecting portion 30 through the through hole 12a.
 冷媒ガス1aは、接続部30内を上方へ通過して、上方にある凝縮部20の収容空間21a内へ流入する。収容空間21a内で、冷媒ガス1aはフィン25の隙間を縫うように拡散しつつ上方移動する。 The refrigerant gas 1a passes upward through the connection portion 30 and flows into the accommodation space 21a of the condensation portion 20 located above. Inside the housing space 21 a , the refrigerant gas 1 a moves upward while diffusing through the gaps between the fins 25 .
 図2に示したように、凝縮部20では、収容空間21a内の冷媒ガス1aと、流通路22(図1参照)を通過する外部流体2との間で熱交換が行われる。熱交換により、冷媒ガス1aが凝縮熱を外部流体2に放出し、凝縮して冷媒液1bになる。凝縮した冷媒液1bは、収容空間21aから接続部30内へ落下し、貫通孔12aを通って沸騰部10に貯留されている冷媒液1bに戻される。 As shown in FIG. 2, in the condenser section 20, heat exchange takes place between the refrigerant gas 1a in the housing space 21a and the external fluid 2 passing through the flow passage 22 (see FIG. 1). Through heat exchange, the refrigerant gas 1a releases the heat of condensation to the external fluid 2 and condenses into the refrigerant liquid 1b. The condensed refrigerant liquid 1b drops from the housing space 21a into the connecting portion 30 and returns to the refrigerant liquid 1b stored in the boiling section 10 through the through hole 12a.
(第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effect of the first embodiment)
The following effects can be obtained in the first embodiment.
 第1実施形態では、上記のように、沸騰部10が、凝縮部20との接続部分(接続部30)から斜め下方に向けて延びるように設けられているので、冷媒1の収容空間11の内部上面41aを冷媒液1bの液面1cに対して傾斜させ、収容空間11の内部上面41aを冷媒液1bと継続的に接触させることができる。そして、収容空間11は凝縮部20に向けて上り傾斜となるので、収容空間11の内部で気化した冷媒ガス1aは、傾斜した収容空間11に沿って凝縮部20に向けて移動していく。そのため、収容空間11の内部上面41aにおいて冷媒ガス1aが過剰に滞留することを防止できる。これらの結果、沸騰部10の上面12に設置された発熱体HSに対しても十分な冷却性能を発揮できるので、沸騰部10の下面13だけでなく上面12にも発熱体HSを設置可能とすることにより、横型の沸騰式冷却器100であっても、発熱体HSの設置面積を大きくすることができる。 In the first embodiment, as described above, the boiling portion 10 is provided so as to extend obliquely downward from the connecting portion (connecting portion 30) with the condensing portion 20. The internal upper surface 41a can be inclined with respect to the liquid surface 1c of the refrigerant liquid 1b so that the internal upper surface 41a of the housing space 11 can be continuously in contact with the refrigerant liquid 1b. Since the accommodation space 11 is inclined upward toward the condensation section 20 , the refrigerant gas 1 a vaporized inside the accommodation space 11 moves toward the condensation section 20 along the inclined accommodation space 11 . Therefore, it is possible to prevent the refrigerant gas 1a from staying excessively on the inner upper surface 41a of the housing space 11 . As a result, sufficient cooling performance can be exhibited even for the heating element HS installed on the upper surface 12 of the boiling section 10, so that the heating element HS can be installed not only on the lower surface 13 of the boiling section 10 but also on the upper surface 12. By doing so, even in the horizontal ebullient cooler 100, the installation area of the heating element HS can be increased.
 また、第1実施形態では、上記のように、沸騰部10は、水平方向に対して5度以上45度未満の傾斜角度θで傾斜しているので、沸騰式冷却器100の高さ寸法が抑制できるという横型の沸騰式冷却器100のメリットを得ながら、沸騰部10の上面12にも発熱体HSを設置可能とすることで発熱体HSの設置面積を大きくした横型の沸騰式冷却器100が得られる。 Further, in the first embodiment, as described above, the boiling section 10 is inclined at an inclination angle θ of 5 degrees or more and less than 45 degrees with respect to the horizontal direction, so that the height dimension of the boiling cooler 100 is A horizontal ebullient cooler 100 that has the merit of the horizontal ebullient cooler 100 that it is possible to suppress heat generation and has a larger installation area for the heat generator HS by enabling the heat generator HS to be installed on the upper surface 12 of the boiling section 10. - 特許庁is obtained.
 また、第1実施形態では、上記のように、沸騰部10は、収容空間11を、上面12と隣り合う上部空間11aと、下面13と隣り合う下部空間11bと、に区画する仕切板44をさらに含むので、収容空間11の下部空間11bで発生した冷媒ガス1aが上部空間11aへ移動することを、仕切板44によって遮ることができる。そのため、全ての冷媒ガス1aが内部上面41aに集まって冷媒液1bと内部上面41aとの接触が妨げられることを抑制できるので、沸騰部10の上面12における発熱体HSの冷却性能を向上させることができる。また、熱交換器において、伝熱面が完全に液相で満たされている状態よりも、液相と気相とが適度な割合で存在している状態の方が、伝熱面に沿った液膜の蒸発の影響により冷却性能が向上する現象が知られている。そのため、下部空間11bで発生した冷媒ガス1aを仕切板44により遮る結果、上部空間11aの内部上面41aにおける液相と気相とが適度な割合となる場合には、上面12における冷却性能のさらに効果的な改善が見込める。 In the first embodiment, as described above, the boiling section 10 includes the partition plate 44 that divides the accommodation space 11 into the upper space 11a adjacent to the upper surface 12 and the lower space 11b adjacent to the lower surface 13. Further, since it is included, the partition plate 44 can block the refrigerant gas 1a generated in the lower space 11b of the accommodation space 11 from moving to the upper space 11a. Therefore, it is possible to prevent the entire refrigerant gas 1a from gathering on the inner upper surface 41a and preventing the contact between the refrigerant liquid 1b and the inner upper surface 41a. can be done. In addition, in a heat exchanger, a state in which a liquid phase and a gas phase exist at an appropriate ratio is better along the heat transfer surface than a state in which the heat transfer surface is completely filled with a liquid phase. A phenomenon is known in which the cooling performance is improved due to the effect of the evaporation of the liquid film. Therefore, as a result of blocking the refrigerant gas 1a generated in the lower space 11b by the partition plate 44, when the ratio of the liquid phase and the gas phase in the inner upper surface 41a of the upper space 11a becomes appropriate, the cooling performance in the upper surface 12 is further improved. Effective improvement is expected.
 また、第1実施形態では、上記のように、仕切板44は、少なくとも、上面12における発熱体HSの設置領域と沸騰部10の厚み方向において重なる範囲OAに設けられているので、収容空間11の内部上面41aのうち、沸騰部10の上面12における発熱体HSの直下の領域に対して、下部空間11bで発生した冷媒ガス1aが集まることを仕切板44によって遮ることができる。そのため、内部上面41aのうちで最もドライアウトが発生しやすい領域に、冷媒ガス1aが集まることを効果的に抑制できる。 In addition, in the first embodiment, as described above, the partition plate 44 is provided at least in the range OA that overlaps the installation region of the heating element HS on the upper surface 12 and the boiling section 10 in the thickness direction. The partition plate 44 prevents the refrigerant gas 1a generated in the lower space 11b from gathering in the area directly below the heating element HS on the upper surface 12 of the boiling section 10 in the inner upper surface 41a. Therefore, it is possible to effectively prevent the refrigerant gas 1a from concentrating on the region of the inner upper surface 41a where dryout is most likely to occur.
 また、第1実施形態では、上記のように、仕切板44が収容空間11の全体に亘って設けられるので、収容空間11の内部上面41aに対して、下部空間11bで発生した冷媒ガス1aが集まることを確実に抑制できる。また、仕切板44は、上面12の貫通孔12aと上下に重なる領域において、仕切板44を貫通して上部空間11aと下部空間11bとを連通させる第1連通路45を有するので、下部空間11bの冷媒ガス1aが第1連通路45を通過して凝縮部20へ向けて移動できる。このため、下部空間11bの冷媒ガス1aを凝縮部20へ移動させるための通路を仕切板44とは別個に沸騰部10に形成する必要がなく、沸騰型冷却器の構造を簡素化できる。 In addition, in the first embodiment, as described above, the partition plate 44 is provided over the entire housing space 11, so that the refrigerant gas 1a generated in the lower space 11b does not reach the inner upper surface 41a of the housing space 11. You can definitely prevent them from gathering. Further, the partition plate 44 has a first communication passage 45 penetrating through the partition plate 44 and communicating the upper space 11a and the lower space 11b in a region vertically overlapping the through hole 12a of the upper surface 12. Therefore, the lower space 11b can pass through the first communication passage 45 and move toward the condensation section 20 . Therefore, it is not necessary to form a passage in the boiling section 10 separately from the partition plate 44 for moving the refrigerant gas 1a in the lower space 11b to the condensation section 20, thereby simplifying the structure of the boiling type cooler.
 また、第1実施形態では、上記のように、収容空間11のうち、下側に位置する一端部E1において、上部空間11aと下部空間11bとを連通させる第2連通路46が形成されているので、収容空間11が上部空間11aと下部空間11bとに仕切られている場合でも、第2連通路46を介して冷媒液1bを移動させることができる。そのため、上部空間11aと下部空間11bとの一方に冷媒液1bが偏って収容されることなく、上部空間11aと下部空間11bとの間で冷媒液1bの収容量を均一化することができる。また、第1実施形態では、第2連通路46が、下部空間11bの4本の冷媒通路42eおよび上部空間11aの4本の冷媒通路41eを相互に連通させるので、個々の冷媒通路の間での冷媒液1bの収容量のばらつきも抑制できる。 In addition, in the first embodiment, as described above, the second communication path 46 that connects the upper space 11a and the lower space 11b is formed at the lower end E1 of the accommodation space 11. Therefore, even when the accommodation space 11 is divided into the upper space 11a and the lower space 11b, the refrigerant liquid 1b can be moved through the second communication path 46. As shown in FIG. Therefore, the storage amount of the refrigerant liquid 1b can be made uniform between the upper space 11a and the lower space 11b without the refrigerant liquid 1b being unevenly stored in one of the upper space 11a and the lower space 11b. In addition, in the first embodiment, the second communication path 46 communicates the four refrigerant passages 42e in the lower space 11b and the four refrigerant passages 41e in the upper space 11a with each other. It is also possible to suppress the variation in the amount of the refrigerant liquid 1b contained.
 また、第1実施形態では、上記のように、凝縮部20は、沸騰部10の上面12から上方向に延びるように設けられ、凝縮部20を水平方向に貫通する外部流体2の流通路22を有するので、沸騰部10を斜め下方に向けて傾斜させた場合でも、上下方向に沿って延びる凝縮部20に対して、外部流体2を水平方向に送り込むことができる。このため、駆動源(送風機3)によって外部流体2を送り込む強制冷却により凝縮部20の冷媒ガス1aを凝縮させる構成において、沸騰部10の傾斜に合わせて駆動源や外部流体2の流通経路を傾けた配置にせずに済む。したがって、沸騰式冷却器100を外部機器と組み合わせる場合に、沸騰式冷却器100を外部機器に容易に適合させることができる。 Further, in the first embodiment, as described above, the condensation section 20 is provided so as to extend upward from the upper surface 12 of the boiling section 10, and the flow path 22 for the external fluid 2 that penetrates the condensation section 20 in the horizontal direction. Therefore, even when the boiling section 10 is tilted obliquely downward, the external fluid 2 can be sent horizontally to the condensing section 20 extending along the vertical direction. Therefore, in the configuration in which the refrigerant gas 1a in the condensation section 20 is condensed by forced cooling in which the external fluid 2 is sent by the drive source (blower 3), the drive source and the circulation path of the external fluid 2 are tilted according to the inclination of the boiling section 10. You don't have to put it all together. Therefore, when combining the ebullient cooler 100 with an external device, the ebullient cooler 100 can be easily adapted to the external device.
[第2実施形態]
 次に、図9~図11を参照して、本発明の第2実施形態による沸騰式冷却器200(以下、冷却器200という)の構成について説明する。第2実施形態では、沸騰部10の収容空間11に仕切板44を設けた上記第1実施形態とは異なり、沸騰部10の収容空間11に仕切板44が設けられていない例について説明する。
[Second embodiment]
Next, referring to FIGS. 9 to 11, the configuration of a boiling cooler 200 (hereinafter referred to as cooler 200) according to a second embodiment of the present invention will be described. In the second embodiment, unlike the first embodiment in which the partition plate 44 is provided in the accommodation space 11 of the boiling section 10, an example in which the partition plate 44 is not provided in the accommodation space 11 of the boiling section 10 will be described.
 なお、第2実施形態では、上記第1実施形態と同様の構成については、同一の符号を用いるとともに説明を省略する。特に、第2実施形態において、沸騰部10の内部構造以外の沸騰部10の外形形状、凝縮部20および接続部30の各構成は、図1に示した上記第1実施形態と同様である。図12に示すように、第2実施形態でも、沸騰部10は、凝縮部20との接続部分(接続部30)から斜め下方に向けて延びるように設けられており、水平方向(Y方向)に対して下側へ角度θだけ傾斜している。以下では、沸騰部10の内部構造のみについて説明する。 In addition, in the second embodiment, the same reference numerals are used for the same configuration as in the first embodiment, and the description thereof is omitted. In particular, in the second embodiment, the external shape of the boiling section 10 other than the internal structure of the boiling section 10, and the configurations of the condensing section 20 and the connecting section 30 are the same as those of the first embodiment shown in FIG. As shown in FIG. 12, also in the second embodiment, the boiling section 10 is provided so as to extend obliquely downward from a connecting portion (connecting section 30) with the condensing section 20, and extends in the horizontal direction (Y direction). is inclined downward by an angle θ with respect to Only the internal structure of the boiling section 10 will be described below.
 図9に示すように、第2実施形態では、沸騰部10の収容空間11に仕切板44が設けられていない。つまり、収容空間11は、上部空間11aと下部空間11bとに区画されておらず、全体として連続した空間となっている。図10に示すように、収容空間11は、第1部材41の内部上面41aと、第2部材42の内部下面42aと、第1部材41の側壁部41cおよび第2部材42の側壁部42cと、一端部E1の蓋部材43(図9参照)と、他端部E2の蓋部材43(図9参照)と、によって区画されている。なお、収容空間11は、上記第1実施形態と同様に、3つの隔壁部41d、42dによって4本の冷媒通路に区画されている。仕切板44が設けられていないため、個々の冷媒通路は、内部下面42aから内部上面41aまでに亘って形成され、収容空間11の高さHと等しい高さを有する。 As shown in FIG. 9, the partition plate 44 is not provided in the housing space 11 of the boiling section 10 in the second embodiment. That is, the accommodation space 11 is not partitioned into the upper space 11a and the lower space 11b, but is a continuous space as a whole. As shown in FIG. 10 , the accommodation space 11 includes an inner upper surface 41 a of the first member 41 , an inner lower surface 42 a of the second member 42 , a side wall portion 41 c of the first member 41 and a side wall portion 42 c of the second member 42 . , a lid member 43 (see FIG. 9) at one end E1 and a lid member 43 (see FIG. 9) at the other end E2. The housing space 11 is partitioned into four refrigerant passages by three partition walls 41d and 42d, as in the first embodiment. Since the partition plate 44 is not provided, each refrigerant passage is formed from the inner lower surface 42 a to the inner upper surface 41 a and has a height equal to the height H of the housing space 11 .
 第2実施形態では、仕切板44が設けられていないため、ケース部材40を第1部材41と第2部材42との2部材で構成しなくてもよい。たとえば押出成型によって、第1部材41と第2部材42とを一体化した筒状のケース部材40を単一部材として形成してもよい。 In the second embodiment, since the partition plate 44 is not provided, the case member 40 does not have to be composed of two members, the first member 41 and the second member 42 . For example, the cylindrical case member 40 may be formed as a single member by integrating the first member 41 and the second member 42 by extrusion molding.
 第2実施形態のその他の構成は、上記第1実施形態と同様である。 Other configurations of the second embodiment are the same as those of the first embodiment.
(冷却器の動作)
 図11に示すように、第2実施形態でも、上記第1実施形態と同様に、沸騰部10が角度θで下向きに傾斜し、冷媒1の液面1cが設置領域内の上端となる高さに位置する。そのため、上部空間11aの内部上面41aは、常時、冷媒液1bと接触した状態となる。
(Operation of cooler)
As shown in FIG. 11, in the second embodiment, similarly to the first embodiment, the boiling section 10 is inclined downward at an angle θ, and the liquid surface 1c of the refrigerant 1 is at the upper end of the installation area. Located in Therefore, the inner upper surface 41a of the upper space 11a is always in contact with the refrigerant liquid 1b.
 第2実施形態では、下面13に設けられた発熱体HSの熱により収容空間11の内部下面42a付近で発生する冷媒ガス1aが、途中で遮られずに内部上面41aへ向けて移動する。そのため、第2実施形態では、内部上面41a側で発生した冷媒ガス1aと、内部下面42a側で発生した冷媒ガス1aとの両方が、内部上面41aに沿って他端部E2へ向けて移動する。内部上面41aは、他端部E2へ向けて角度θの上向き傾斜となるので、冷媒ガス1aが内部上面41aにおいて移動せずに滞留することが回避できる。 In the second embodiment, the refrigerant gas 1a generated near the inner lower surface 42a of the accommodation space 11 by the heat of the heating element HS provided on the lower surface 13 moves toward the inner upper surface 41a without being blocked on the way. Therefore, in the second embodiment, both the refrigerant gas 1a generated on the inner upper surface 41a side and the refrigerant gas 1a generated on the inner lower surface 42a side move along the inner upper surface 41a toward the other end E2. . Since the inner upper surface 41a is inclined upward at an angle θ toward the other end E2, it is possible to prevent the refrigerant gas 1a from remaining on the inner upper surface 41a without moving.
 冷媒ガス1aが貫通孔12aの形成位置まで到達すると、冷媒ガス1aが貫通孔12aを通過して接続部30内へ移動する。その他の冷却器100の動作は、上記第1実施形態と同様である。 When the refrigerant gas 1a reaches the position where the through hole 12a is formed, the refrigerant gas 1a moves into the connecting portion 30 through the through hole 12a. Other operations of the cooler 100 are the same as those of the first embodiment.
(第2実施形態の効果)
 第2実施形態では、上記第1実施形態と同様に、沸騰部10が、凝縮部20との接続部30から斜め下方に向けて延びるように設けられているので、収容空間11の内部上面41aと冷媒液1bとを継続的に接触させることができるとともに、内部上面41aにおいて冷媒ガス1aが過剰に滞留することを防止できる。これらの結果、沸騰部10の上面12に設置された発熱体HSに対しても十分な冷却性能を発揮できるので、沸騰部10の下面13だけでなく上面12にも発熱体HSを設置可能とすることにより、横型の沸騰式冷却器100であっても、発熱体HSの設置面積を大きくすることができる。
(Effect of Second Embodiment)
In the second embodiment, as in the first embodiment, the boiling section 10 is provided so as to extend obliquely downward from the connection section 30 with the condensing section 20, so that the inner upper surface 41a of the accommodation space 11 and the refrigerant liquid 1b can be continuously brought into contact with each other, and the refrigerant gas 1a can be prevented from remaining excessively on the inner upper surface 41a. As a result, sufficient cooling performance can be exhibited even for the heating element HS installed on the upper surface 12 of the boiling section 10, so that the heating element HS can be installed not only on the lower surface 13 of the boiling section 10 but also on the upper surface 12. By doing so, even in the horizontal ebullient cooler 100, the installation area of the heating element HS can be increased.
 第2実施形態のその他の効果は、上記第1実施形態と同様である。 Other effects of the second embodiment are the same as those of the first embodiment.
[実施例]
 次に、第1実施形態の冷却器100および第2実施形態の冷却器200の効果を確認するための実験結果について説明する。
[Example]
Next, experimental results for confirming the effects of the cooler 100 of the first embodiment and the cooler 200 of the second embodiment will be described.
(沸騰部の構造)
 実施例では、第1実施形態の冷却器100、第2実施形態の冷却器200、のそれぞれについて、同一の稼働条件での冷却性能を測定した。すなわち、沸騰部10の構造のバリエーションとして、仕切板44あり(第1実施形態)と、仕切板44なし(第2実施形態)との2種類の沸騰部で冷却性能を測定した。
(Structure of boiling section)
In the example, cooling performance was measured under the same operating conditions for each of the cooler 100 of the first embodiment and the cooler 200 of the second embodiment. Specifically, as variations in the structure of the boiling section 10, the cooling performance was measured for two types of boiling sections, one with the partition plate 44 (first embodiment) and the other without the partition plate 44 (second embodiment).
(傾斜角度)
 沸騰部10の角度θについて、複数の条件で冷却性能の測定を行った。具体的には、θ=5度、θ=10度、比較例として図12に示すθ=0度(水平)、の3種類の条件で測定を行った。
(tilt angle)
Regarding the angle θ of the boiling section 10, the cooling performance was measured under a plurality of conditions. Specifically, the measurement was performed under three conditions of θ=5 degrees, θ=10 degrees, and θ=0 degrees (horizontal) shown in FIG. 12 as a comparative example.
(稼働条件)
 また、実際の稼働時には発熱体HSの発熱量が変化することを想定して、複数の発熱条件で測定を行った。具体的には、パワーモジュールからなる発熱体HSについて仮定した定格動作時の発熱量を100%として、50%、100%、150%の3種類の条件で測定を行った。
(Operating conditions)
Also, assuming that the amount of heat generated by the heating element HS changes during actual operation, measurements were performed under a plurality of heat generation conditions. Specifically, the amount of heat generated during rated operation assumed for the heating element HS made up of the power module was assumed to be 100%, and measurements were made under three conditions of 50%, 100%, and 150%.
 したがって、仕切板あり、なしの2種の構造について、3種の傾斜角度θ=10度、5度、0度(0度は比較例)を組み合わせた6通りの形態について、50%、100%、150%の3種の稼働条件での冷却性能の測定を行った。 Therefore, 50%, 100% for 6 types of combinations of 3 types of inclination angles θ = 10 degrees, 5 degrees, 0 degrees (0 degrees is a comparative example) for 2 types of structures with and without partition plates. , 150% cooling performance was measured.
 図13~図15は、冷却性能の測定結果を示すグラフである。図13~図15は、それぞれ、発熱量50%、発熱量100%、発熱量150%の発熱条件の測定結果を示す。図13~図15の各グラフの横軸は、温度測定位置を示す。温度測定位置は、沸騰部10における発熱体HSの設置領域にE方向に沿って間隔をあけて設定した6点の測定位置の各々を示す。設置領域のうちで、1番の測定位置が最も一端部E1に近く、6番の測定位置が最も他端部E2に近い。各グラフの縦軸は、各温度測定位置における、発熱体HSの取付面温度と内部の冷媒温度との差分値ΔT[K]を示す。発熱体HSは、上面12および下面13にそれぞれ設置されるため、同一の温度測定位置について、上面12の測定値と、下面13の測定値と、が取得される。差分値ΔTが小さいほど冷却性能が高く、各温度測定位置における差分値ΔTのばらつきが小さいほど局所的な性能変動がないこと(冷却性能が安定していること)を示す。各グラフには、冷媒ガス1aの挙動などを考慮せずに、沸騰部10の仕様と発熱体HSの発熱量の設定値とから算出される差分値ΔTの設計値(理論値)を示す基準線(太線)を、冷却性能評価の目安として示す。基準線の値は、発熱量の条件(50%、100%、150%)に応じて異なる。 13 to 15 are graphs showing the measurement results of cooling performance. 13 to 15 show the measurement results of heat generation conditions with a heat generation amount of 50%, a heat generation amount of 100%, and a heat generation amount of 150%, respectively. The horizontal axis of each graph in FIGS. 13 to 15 indicates the temperature measurement position. The temperature measurement positions are each of six measurement positions set at intervals along the E direction in the installation area of the heating element HS in the boiling section 10 . In the installation area, the measurement position No. 1 is closest to the one end E1, and the measurement position No. 6 is closest to the other end E2. The vertical axis of each graph indicates the difference value ΔT[K] between the mounting surface temperature of the heating element HS and the internal coolant temperature at each temperature measurement position. Since the heating element HS is installed on each of the upper surface 12 and the lower surface 13, the measured value of the upper surface 12 and the measured value of the lower surface 13 are obtained for the same temperature measurement position. The smaller the difference value ΔT, the higher the cooling performance. Each graph shows the design value (theoretical value) of the difference value ΔT calculated from the specifications of the boiling section 10 and the set value of the heat generation amount of the heating element HS without considering the behavior of the refrigerant gas 1a. A line (thick line) is shown as a guide for cooling performance evaluation. The baseline values differ according to the calorific value conditions (50%, 100%, 150%).
 図13~図15の各グラフをまとめたグラフを、図16に示す。図16の縦軸は図13~図15と同じ差分値ΔT[K]である。横軸は、実験条件を表し、仕切板の有無と傾斜角度θとを組み合わせた6通りの形態について、それぞれ上面および下面の値を示している。図16では、発熱量50%の測定結果(図13参照)、発熱量100%の測定結果(図14参照)発熱量150%の測定結果(図15参照)を、それぞれ異なるハッチングで示している。それぞれの測定結果は、6点の温度測定位置におけるΔTの最大値と最小値との範囲を示す棒グラフとして示している。プロットされた棒の位置が低いほど、ΔTが低値であり、棒の長さが短いほどΔTの最大値と最小値との差が小さい。 A graph that summarizes the graphs in FIGS. 13 to 15 is shown in FIG. The vertical axis in FIG. 16 is the same difference value ΔT[K] as in FIGS. The horizontal axis represents the experimental conditions, and shows the values of the top surface and the bottom surface for each of the six types of combinations of the presence or absence of the partition plate and the inclination angle θ. In FIG. 16, the measurement results of the calorific value of 50% (see FIG. 13), the calorific value of 100% (see FIG. 14), and the calorific value of 150% (see FIG. 15) are indicated by different hatching. . Each measurement result is shown as a bar graph showing the range of maximum and minimum values of ΔT at six temperature measurement positions. The lower the position of the plotted bar, the lower the value of ΔT, and the shorter the length of the bar, the smaller the difference between the maximum and minimum values of ΔT.
(傾斜角度の比較)
 図13~図15を参照して、傾斜角度による冷却性能の影響を検討する。プロットA1、A2およびA3が、仕切板ありの沸騰部10の上面12について、θ=10度、5度、0度の各測定結果を表す。沸騰部10が傾斜したプロットA1、A2は、比較例であるプロットA3よりも下側に位置している。また、プロットA1、A2は、プロットA3と比べてΔTのばらつきが小さい。
(Comparison of tilt angles)
13 to 15, the influence of the tilt angle on the cooling performance will be studied. Plots A1, A2 and A3 represent measurement results of θ=10 degrees, 5 degrees and 0 degrees for the upper surface 12 of the boiling section 10 with the partition plate. Plots A1 and A2 in which the boiling section 10 is inclined are positioned below plot A3 of the comparative example. Also, the plots A1 and A2 have smaller variations in ΔT than the plot A3.
 プロットA4、A5およびA6が、仕切板ありの沸騰部10の下面13について、θ=10度、5度、0度の各測定結果を表す。これらの下面13の測定結果は、上面12の測定結果(A1~A3)ほど大きな差異がない。 Plots A4, A5 and A6 represent measurement results of θ=10 degrees, 5 degrees and 0 degrees for the lower surface 13 of the boiling section 10 with the partition plate. These measurement results of the lower surface 13 do not differ as much as the measurement results of the upper surface 12 (A1 to A3).
 プロットB1、B2およびB3が、仕切板なしの沸騰部10の上面12について、θ=10度、5度、0度の各測定結果を表す。沸騰部10が傾斜したプロットB1、B2は、比較例であるプロットB3よりも下側に位置している。また、プロットB1、B2は、プロットB3と比べてΔTのばらつきが小さい。 Plots B1, B2, and B3 represent measurement results for θ=10 degrees, 5 degrees, and 0 degrees for the upper surface 12 of the boiling section 10 without a partition plate. Plots B1 and B2 in which the boiling section 10 is inclined are positioned below plot B3 of the comparative example. Plots B1 and B2 have smaller variations in ΔT than plot B3.
 プロットB4、B5およびB6が、仕切板ありの沸騰部10の下面13について、θ=10度、5度、0度の各測定結果を表す。下面13の測定結果は、上面12の測定結果(B1~B3)ほど大きな差異がない。 Plots B4, B5 and B6 represent measurement results of θ=10 degrees, 5 degrees, and 0 degrees for the lower surface 13 of the boiling section 10 with the partition plate. The measurement results of the lower surface 13 do not differ as much as the measurement results of the upper surface 12 (B1 to B3).
 上面12の測定結果に着目すると、θ=10度およびθ=5度の測定結果(A1、A2、B1、B2)は、図13~図15において一貫してΔTが基準線の付近に収まっている。これに対して、比較例によるθ=0度(A3、B3)の測定結果は、図13~図15においてΔTが基準線よりも上側にあり、θ=10度およびθ=5度の測定結果(A1、A2、B1、B2)とのかい離も大きい。上面12におけるθ=10度およびθ=5度の測定結果(A1、A2、B1、B2)は、下面13におけるθ=10度およびθ=5度の測定結果(A4、A5、B4、B5)と同等か、よりΔTの値が小さい。 Focusing on the measurement results of the upper surface 12, the measurement results (A1, A2, B1, B2) at θ=10 degrees and θ=5 degrees consistently show that ΔT falls near the reference line in FIGS. there is On the other hand, the measurement results of θ=0 degrees (A3, B3) according to the comparative example show that ΔT is above the reference line in FIGS. The gap with (A1, A2, B1, B2) is also large. The measurement results (A1, A2, B1, B2) at θ=10 degrees and θ=5 degrees on the upper surface 12 are the measurement results (A4, A5, B4, B5) at θ=10 degrees and θ=5 degrees on the lower surface 13. The value of ΔT is smaller than or equal to .
 このことから、第1実施形態および第2実施形態のように、沸騰部10を水平方向よりも斜め下方に向けて傾斜させることで、上面12における冷却性能を向上させ、下面13と同等かそれ以上の冷却性能が上面12でも得られることが確認された。 For this reason, by inclining the boiling section 10 obliquely downward from the horizontal direction as in the first and second embodiments, the cooling performance on the upper surface 12 is improved, and the cooling performance on the lower surface 13 is equal to or lower than that on the lower surface 13 It was confirmed that the above cooling performance can also be obtained on the upper surface 12 .
 また、発熱量が大きい条件である図15では、θ=5度の測定結果(A2、B2)のΔTの値が大きくなり、各温度測定位置の間でのΔTのばらつきが大きくなっている。これに対して、θ=10度の測定結果(A1、B1)は、どの温度測定位置でもΔTが基準線よりも下側の値となり、ばらつきが小さいことが分かる。この傾向は、発熱量50%(図13)および発熱量100%(図14)では見られない。このことから、傾斜角度θを大きくすることが、特に発熱量が大きい高負荷条件での冷却性能の維持(発熱量の許容範囲の拡大)に効果的であることが確認された。 In addition, in FIG. 15, which is a condition in which the amount of heat generated is large, the value of ΔT in the measurement results (A2, B2) at θ=5 degrees is large, and the variation in ΔT between the temperature measurement positions is large. On the other hand, in the measurement results (A1, B1) when θ=10 degrees, ΔT is a value below the reference line at any temperature measurement position, and it can be seen that the variation is small. This trend is not seen at calorific value of 50% (Fig. 13) and calorific value of 100% (Fig. 14). From this, it was confirmed that increasing the inclination angle θ is effective in maintaining the cooling performance (expanding the permissible range of the heat generation amount) especially under high load conditions where the heat generation amount is large.
(仕切板の有無の比較)
 次に、仕切板の有無による冷却性能の影響を検討する。θ=10度、上面12における仕切板あり(A1)と仕切板なし(B1)とを比較すると、仕切板ありの方が、ΔTの値が同等かまたは小さい。
(Comparison with and without partition plate)
Next, the influence of the presence or absence of the partition plate on the cooling performance will be examined. When .theta.=10 degrees and the case where the partition plate is present (A1) and the case where the partition plate is not present (B1) are compared on the upper surface 12, the value of .DELTA.T is the same or smaller in the case where the partition plate is present.
 θ=5度、上面12における仕切板あり(A2)と仕切板なし(B2)とを比較すると、仕切板ありの方が、ΔTの値が小さい。特に、発熱量150%の高負荷条件では、仕切板44を設けることでΔTの値が大きく低下している。このように、仕切板44を設けることによって、冷却性能を改善できる(ΔTの値を低下させる)ことが確認された。また、傾斜角度θの検討結果から、高負荷条件での冷却性能は傾斜角度θを大きくすることで大きく改善できるが確認されたが、角度θを十分に大きくできない場合には、仕切板44を設けることで冷却性能の改善を図ることが可能であることが確認できた。 When θ=5 degrees and the upper surface 12 with the partition plate (A2) and without the partition plate (B2) are compared, the value of ΔT is smaller with the partition plate. In particular, under high-load conditions where the amount of heat generated is 150%, the provision of the partition plate 44 greatly reduces the value of ΔT. Thus, it was confirmed that the provision of the partition plate 44 can improve the cooling performance (reduce the value of ΔT). Further, from the results of examination of the inclination angle θ, it was confirmed that the cooling performance under high load conditions can be greatly improved by increasing the inclination angle θ. It has been confirmed that it is possible to improve the cooling performance by providing them.
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
It should be noted that the embodiments disclosed this time should be considered as examples and not restrictive in all respects. The scope of the present invention is indicated by the scope of the claims rather than the above description of the embodiments, and includes all modifications (modifications) within the scope and meaning equivalent to the scope of the claims.
 たとえば、上記第1および第2実施形態では、発熱体HSが電力変換装置に用いられるパワーモジュールである例を示したが、本発明はこれに限られない。本発明では、発熱体はどのような物であってもよい。発熱体は、サーバ等の電子機器に搭載されるCPUなどの半導体チップや電子回路であってもよい。 For example, in the above-described first and second embodiments, the heating element HS is a power module used in a power conversion device, but the present invention is not limited to this. In the present invention, the heating element can be of any kind. The heating element may be a semiconductor chip such as a CPU or an electronic circuit mounted in an electronic device such as a server.
 また、上記第1および第2実施形態では、凝縮部20が沸騰部10の上面12から上方向に延びるように設けられ、凝縮部20を水平方向に貫通する外部流体2の流通路22を有する例を示したが、本発明はこれに限られない。本発明では、凝縮部20が上方向以外の方向に延びるように設けられていてもよいし、外部流体2の流通路22が凝縮部20を水平方向以外の方向に貫通するように設けられていてもよい。 In addition, in the first and second embodiments, the condensation section 20 is provided to extend upward from the upper surface 12 of the boiling section 10, and has the flow path 22 for the external fluid 2 that penetrates the condensation section 20 in the horizontal direction. Although an example has been given, the invention is not so limited. In the present invention, the condensation section 20 may be provided so as to extend in a direction other than the upward direction, and the flow path 22 for the external fluid 2 may be provided so as to pass through the condensation section 20 in a direction other than the horizontal direction. may
 たとえば図17に示す例では、凝縮部20は、沸騰部10から上方に立ち上がる接続部30に対して、水平方向(Y方向)に突出するように設けられている。外部流体2の流通路22は、凝縮部20を上下方向(Z方向)に貫通するように設けられている。外部流体2は、たとえば凝縮部20に対して下方に配置された送風機3によって、流通路22を上方向に通過する。反対に、外部流体2は、凝縮部20に対して上方に配置された送風機によって、流通路22を下方向に通過してもよい。 For example, in the example shown in FIG. 17, the condensation section 20 is provided so as to protrude in the horizontal direction (Y direction) with respect to the connection section 30 rising upward from the boiling section 10 . A flow passage 22 for the external fluid 2 is provided so as to pass through the condensation section 20 in the vertical direction (Z direction). The external fluid 2 is passed upward through the flow passage 22 by, for example, the blower 3 arranged below the condenser section 20 . Conversely, the external fluid 2 may be passed downward through the flow passage 22 by means of a blower arranged above the condenser section 20 .
 また、上記第1および第2実施形態では、凝縮部20と沸騰部10とを接続する接続部30を設けた例を示したが、本発明はこれに限られない。本発明では、凝縮部20が沸騰部10の上面12に直接接続されていてもよい。つまり、凝縮部20の収容空間21aの下端部が、沸騰部10の上面12の貫通孔12aと連通し、収容空間21aおよび収容空間11が閉じた空間となるように凝縮部20の壁部24が沸騰部10の上面12に接合される構成でもよい。 Also, in the first and second embodiments, an example in which the connecting portion 30 is provided to connect the condensing portion 20 and the boiling portion 10 is shown, but the present invention is not limited to this. In the present invention, the condensing section 20 may be directly connected to the top surface 12 of the boiling section 10 . That is, the lower end of the housing space 21a of the condensation unit 20 communicates with the through hole 12a of the upper surface 12 of the boiling unit 10, and the wall 24 of the condensation unit 20 is formed such that the housing space 21a and the housing space 11 are closed spaces. may be joined to the upper surface 12 of the boiling portion 10 .
 また、上記第1および第2実施形態では、沸騰部10と凝縮部20との間を単一の通路(接続部30)によって接続した例を示したが、本発明はこれに限られない。本発明では、たとえば凝縮部20へ移動する冷媒ガス1aを通過させる第1の通路と、沸騰部10へ移動する冷媒液1bを通過させる第2の通路とを設けて、冷媒1の循環経路をループ状に構成してもよい。 Also, in the first and second embodiments, an example in which the boiling section 10 and the condensing section 20 are connected by a single passage (connecting section 30) is shown, but the present invention is not limited to this. In the present invention, for example, a first passage for passing the refrigerant gas 1a moving to the condensing section 20 and a second passage for passing the refrigerant liquid 1b moving to the boiling section 10 are provided to form a circulation path for the refrigerant 1. It may be configured in a loop shape.
 また、上記第1および第2実施形態では、沸騰部10の角度θが5度の例および10度の例を示したが、本発明はこれに限られない。角度θは、5度以上10度未満の角度でもよいし、10度より大きい角度でもよい。たとえば図18に示す例では、θ=30度の例を示している。 In addition, in the first and second embodiments, the examples where the angle θ of the boiling section 10 is 5 degrees and 10 degrees are shown, but the present invention is not limited to this. The angle θ may be an angle of 5 degrees or more and less than 10 degrees, or may be an angle of more than 10 degrees. For example, the example shown in FIG. 18 shows an example of θ=30 degrees.
 また、上記第1および第2実施形態では、沸騰部10の上面12の設置領域と、下面13の設置領域とが、E方向において同一の位置および同一の範囲(長さL1の範囲)に設けられている例を示したが、本発明はこれに限られない。上面12の設置領域と、下面13の設置領域とが、異なる位置および異なる範囲で設けられていてもよい。たとえば図18に示した例では、沸騰部10の上面12に2つの設置領域が設けられ、下面13に3つの設置領域が設けられている。特に、下面13の他端部E2側の設置領域は、凝縮部20とZ方向に並ぶ位置に配置されている。この変形例の構成によれば、より多くの発熱体HSを設置できる。 In addition, in the first and second embodiments, the installation area of the upper surface 12 and the installation area of the lower surface 13 of the boiling section 10 are provided at the same position and in the same range (length L1 range) in the direction E. However, the present invention is not limited to this. The installation area of the upper surface 12 and the installation area of the lower surface 13 may be provided at different positions and in different ranges. For example, in the example shown in FIG. 18, the upper surface 12 of the boiling section 10 is provided with two installation areas, and the lower surface 13 is provided with three installation areas. In particular, the installation area on the other end E2 side of the lower surface 13 is arranged at a position aligned with the condensation section 20 in the Z direction. According to the configuration of this modification, more heating elements HS can be installed.
 また、上記第1および第2実施形態では、冷却器の非稼働状態で、冷媒1の液面1cが沸騰部10の上面12における発熱体HSの設置領域内に設定されている例を示したが、本発明はこれに限られない。本発明では、液面1cが上面12における発熱体HSの設置領域よりも上方の位置に設定されていてもよい。このように構成すれば、収容空間11の内部上面41aのうち、発熱体HSの設置領域と対向する領域(発熱体HSの直下の領域)の全体を冷媒液1bと接触させることができる。 In addition, in the first and second embodiments, the liquid surface 1c of the refrigerant 1 is set within the installation area of the heating element HS on the upper surface 12 of the boiling section 10 when the cooler is not in operation. However, the present invention is not limited to this. In the present invention, the liquid surface 1c may be set at a position above the installation area of the heating element HS on the upper surface 12. FIG. With this configuration, the entire area of the inner upper surface 41a of the housing space 11 facing the installation area of the heat generating element HS (the area immediately below the heat generating element HS) can be brought into contact with the refrigerant liquid 1b.
 また、上記第1実施形態では、仕切板44が、収容空間11の全体に亘って設けられる例を示したが、本発明はこれに限られない。本発明では、仕切板44が収容空間11の一部に局所的に設けられていてもよい。たとえば図19に示す例では、仕切板44は、上面12における発熱体HSの設置領域と沸騰部10の厚み方向において重なる範囲OAに設けられ、その他の範囲には設けられていない。この場合でも、仕切板44によって、上面12における発熱体HSの設置領域の直下の内部上面41aに、下部空間11bからの冷媒ガス1aが集まることを抑制できる。 Also, in the first embodiment, an example in which the partition plate 44 is provided over the entire accommodation space 11 was shown, but the present invention is not limited to this. In the present invention, the partition plate 44 may be locally provided in part of the housing space 11 . For example, in the example shown in FIG. 19, the partition plate 44 is provided in the area OA where the heating element HS installation area on the upper surface 12 overlaps the boiling section 10 in the thickness direction, and is not provided in other areas. Even in this case, the partition plate 44 can prevent the refrigerant gas 1a from the lower space 11b from gathering on the inner upper surface 41a directly below the area where the heating element HS is installed on the upper surface 12 .
 また、上記第1実施形態では、上部空間11aの高さh1と、下部空間11bの高さh2とが等しい例を示したが、本発明はこれに限られない。本発明では、上部空間11aの高さh1と、下部空間11bの高さh2とが異なっていてもよい。たとえば、上面12に設置された発熱体HSの発熱量と、下面13に設置された発熱体HSの発熱量とに応じて、上部空間11aの高さh1と下部空間11bの高さh2とを設定してもよい。 Also, in the first embodiment, an example in which the height h1 of the upper space 11a and the height h2 of the lower space 11b are equal was shown, but the present invention is not limited to this. In the present invention, the height h1 of the upper space 11a and the height h2 of the lower space 11b may be different. For example, the height h1 of the upper space 11a and the height h2 of the lower space 11b are changed according to the amount of heat generated by the heating element HS installed on the upper surface 12 and the amount of heat generated by the heating element HS installed on the lower surface 13. May be set.
 また、上記第1実施形態では、仕切板44には、貫通孔からなる第1連通路45および切欠からなる第2連通路46が形成されているのみで、その他の部分には貫通孔や切欠が形成されていない例を示したが、本発明はこれに限られない。本発明では、仕切板44に、冷媒ガス1aの通過量を調整するための貫通孔や切欠を設けてもよい。たとえば図20の例では、仕切板44には、複数の貫通孔441が設けられている。貫通孔441は、上面12における発熱体HSの設置領域と沸騰部10の厚み方向において重なる範囲に設けられている。貫通孔441は、下部空間11bで発生した冷媒ガス1aの一部を、上部空間11aへ通過させるように構成されている。貫通孔441は、貫通孔441を通過する冷媒ガス1aの量が適正量となる大きさに形成される。これにより、内部上面41aにおける冷媒液1bの量と冷媒ガス1aの量との割合を調整でき、冷媒液1bと冷媒ガス1aとが適正割合で存在する条件化では上面12側の冷却性能を効果的に改善できる。 In addition, in the first embodiment, the partition plate 44 is formed only with the first communication passage 45 formed of a through hole and the second communication passage 46 formed of a notch. Although an example in which is not formed has been shown, the present invention is not limited to this. In the present invention, the partition plate 44 may be provided with a through hole or a notch for adjusting the passage amount of the refrigerant gas 1a. For example, in the example of FIG. 20, the partition plate 44 is provided with a plurality of through holes 441 . The through-hole 441 is provided in a range overlapping the installation region of the heating element HS on the upper surface 12 and the boiling section 10 in the thickness direction. The through hole 441 is configured to allow part of the refrigerant gas 1a generated in the lower space 11b to pass through to the upper space 11a. The through hole 441 is formed to have a size that allows the amount of refrigerant gas 1a passing through the through hole 441 to be an appropriate amount. As a result, the ratio between the amount of the refrigerant liquid 1b and the amount of the refrigerant gas 1a on the inner upper surface 41a can be adjusted, and the cooling performance on the upper surface 12 side can be effectively improved under the condition that the refrigerant liquid 1b and the refrigerant gas 1a exist in an appropriate ratio. can be significantly improved.
 また、上記第1実施形態では、仕切板44に形成した貫通孔からなる第1連通路45を設けた例を示したが、本発明はこれに限られない。たとえば図19に示したように仕切板44が収容空間11内で部分的に設けられる場合、上部空間11aと下部空間11bとは、仕切板44が設けられていない領域で連通しているため、第1連通路45を設けなくてもよい。また、仕切板44が、収容空間11の全体に亘って設けられる場合、第1連通路45を、第2連通路46と同じように、仕切板44の他端部に形成した切欠によって構成してもよい。また、たとえば図21に示すように、沸騰部10の他端部E2を塞ぐ蓋部材43に、上部空間11aと下部空間11bとに跨がる凹部43aを形成し、この凹部43aによって第1連通路45を構成してもよい。 In addition, in the above-described first embodiment, an example in which the first communication path 45 is formed by a through hole formed in the partition plate 44 is shown, but the present invention is not limited to this. For example, when the partition plate 44 is partially provided in the accommodation space 11 as shown in FIG. The first communication path 45 may not be provided. Further, when the partition plate 44 is provided over the entire housing space 11, the first communication passage 45 is configured by a notch formed in the other end portion of the partition plate 44 in the same manner as the second communication passage 46. may For example, as shown in FIG. 21, a lid member 43 closing the other end E2 of the boiling section 10 is formed with a recess 43a extending over the upper space 11a and the lower space 11b. A passageway 45 may be configured.
 また、上記第1実施形態では、仕切板44に形成した切欠からなる第2連通路46を設けた例を示したが、本発明はこれに限られない。たとえば第2連通路46を、第1連通路45と同じように、仕切板44に形成した貫通孔によって構成してもよい。また、たとえば図21に示すように、沸騰部10の一端部E1を塞ぐ蓋部材43に、上部空間11aと下部空間11bとに跨がる凹部43bを形成し、この凹部43bによって第2連通路46を構成してもよい。また、本発明では、第2連通路46を設けなくてもよい。 Further, in the first embodiment, an example is shown in which the second communication path 46 is formed by a notch formed in the partition plate 44, but the present invention is not limited to this. For example, the second communication path 46 may be configured by a through hole formed in the partition plate 44 in the same manner as the first communication path 45 . Further, as shown in FIG. 21, for example, the lid member 43 closing the one end E1 of the boiling section 10 is formed with a recess 43b extending over the upper space 11a and the lower space 11b. 46 may be configured. Also, in the present invention, the second communication path 46 may not be provided.
 また、上記第1実施形態では、上部空間11aおよび下部空間11bの各々を隔壁部41d、42dによって複数(4本)の冷媒通路41e、42eに区画する例を示し、上記第2実施形態では、収容空間11を隔壁部41d、42dによって複数(4本)の冷媒通路に区画する例を示したが、本発明はこれに限られない。本発明では、収容空間11(上部空間11aおよび下部空間11b)を複数の冷媒通路に区画しなくてもよい。 Further, in the above-described first embodiment, an example in which each of the upper space 11a and the lower space 11b is partitioned into a plurality (four) of refrigerant passages 41e and 42e by the partition walls 41d and 42d is shown, and in the above-described second embodiment, Although an example in which the accommodation space 11 is partitioned into a plurality of (four) refrigerant passages by the partition walls 41d and 42d has been shown, the present invention is not limited to this. In the present invention, the accommodation space 11 (upper space 11a and lower space 11b) does not have to be partitioned into a plurality of refrigerant passages.
 1 冷媒
 1a 冷媒ガス
 1b 冷媒液
 1c、1d 液面
 2 外部流体
 10 沸騰部
 11 収容空間
 11a 上部空間
 11b 下部空間
 12 上面
 12a 貫通孔
 13 下面
 20 凝縮部
 22 流通路
 30 接続部
 44 仕切板
 45 第1連通路
 46 第2連通路
 100、200 冷却器(沸騰式冷却器)
 E1 一端部
 E2 他端部
 HS 発熱体
 θ 傾斜角度
 
REFERENCE SIGNS LIST 1 refrigerant 1a refrigerant gas 1b refrigerant liquid 1c, 1d liquid surface 2 external fluid 10 boiling section 11 accommodation space 11a upper space 11b lower space 12 upper surface 12a through hole 13 lower surface 20 condensing section 22 flow path 30 connection section 44 partition plate 45 first first Communication path 46 Second communication path 100, 200 Cooler (boiling cooler)
E1 One end E2 Other end HS Heating element θ Inclination angle

Claims (8)

  1.  冷媒を収容する収容空間を有し、発熱体との熱交換により、前記冷媒を沸騰させる沸騰部と、
     前記沸騰部と連通し、前記沸騰部からの冷媒ガスを外部流体との熱交換により凝縮させる凝縮部と、を備え、
     前記沸騰部は、それぞれ前記発熱体が設置される上面および下面を有する板状形状に形成され、前記凝縮部との接続部分から斜め下方に向けて延びるように設けられている、沸騰式冷却器。
    a boiling portion that has an accommodation space that accommodates a refrigerant and causes the refrigerant to boil by heat exchange with a heating element;
    a condensing section that communicates with the boiling section and condenses the refrigerant gas from the boiling section by heat exchange with an external fluid;
    The boiling section is formed in a plate-like shape having an upper surface and a lower surface on which the heating element is installed, respectively, and is provided so as to extend obliquely downward from a connection portion with the condensation section. .
  2.  前記沸騰部は、前記冷媒の液面が、前記上面における前記発熱体の設置領域内または前記発熱体の設置領域よりも上方に位置するように傾斜している、請求項1に記載の沸騰式冷却器。 2. The boiling type according to claim 1, wherein the boiling portion is inclined so that the liquid level of the refrigerant is positioned within or above the installation area of the heating element on the upper surface. Cooler.
  3.  前記沸騰部は、水平方向に対して5度以上45度未満の傾斜角度で傾斜している、請求項2に記載の沸騰式冷却器。 The boiling type cooler according to claim 2, wherein the boiling section is inclined at an inclination angle of 5 degrees or more and less than 45 degrees with respect to the horizontal direction.
  4.  前記沸騰部は、前記収容空間を、前記上面と隣り合う上部空間と、前記下面と隣り合う下部空間と、に区画する仕切板をさらに含む、請求項1に記載の沸騰式冷却器。 The boiling type cooler according to claim 1, wherein the boiling section further includes a partition plate that divides the housing space into an upper space adjacent to the upper surface and a lower space adjacent to the lower surface.
  5.  前記仕切板は、少なくとも、前記上面における前記発熱体の設置領域と前記沸騰部の厚み方向において重なる範囲に設けられている、請求項4に記載の沸騰式冷却器。 The boiling type cooler according to claim 4, wherein the partition plate is provided in a range that overlaps at least the installation region of the heating element on the upper surface and the boiling section in the thickness direction.
  6.  前記沸騰部の前記上面には、前記収容空間と前記凝縮部とを連通させる貫通孔が形成されており、
     前記仕切板は、前記収容空間の全体に亘って設けられ、かつ、前記上面の前記貫通孔と上下に重なる領域において、前記仕切板を貫通して前記上部空間と前記下部空間とを連通させる第1連通路を有する、請求項5に記載の沸騰式冷却器。
    A through-hole is formed in the upper surface of the boiling section for communicating the accommodation space and the condensation section,
    The partition plate is provided over the entire housing space, and penetrates the partition plate to communicate the upper space and the lower space in a region vertically overlapping the through hole of the upper surface. 6. Evaporative cooler according to claim 5, having one communication passage.
  7.  前記収容空間のうち、下側に位置する一端部において、前記上部空間と前記下部空間とを連通させる第2連通路が形成されている、請求項4に記載の沸騰式冷却器。 The boiling type cooler according to claim 4, wherein a second communication passage is formed at one end portion located on the lower side of the housing space for communicating the upper space and the lower space.
  8.  前記凝縮部は、前記沸騰部の前記上面から上方向に延びるように設けられ、前記凝縮部を水平方向に貫通する前記外部流体の流通路を有する、請求項1に記載の沸騰式冷却器。 2. The boiling type cooler according to claim 1, wherein said condensation section extends upward from said upper surface of said boiling section and has a flow path for said external fluid that horizontally penetrates said condensation section.
PCT/JP2021/010598 2021-03-16 2021-03-16 Boiling-type cooler WO2022195719A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023506441A JPWO2022195719A1 (en) 2021-03-16 2021-03-16
PCT/JP2021/010598 WO2022195719A1 (en) 2021-03-16 2021-03-16 Boiling-type cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010598 WO2022195719A1 (en) 2021-03-16 2021-03-16 Boiling-type cooler

Publications (1)

Publication Number Publication Date
WO2022195719A1 true WO2022195719A1 (en) 2022-09-22

Family

ID=83320143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010598 WO2022195719A1 (en) 2021-03-16 2021-03-16 Boiling-type cooler

Country Status (2)

Country Link
JP (1) JPWO2022195719A1 (en)
WO (1) WO2022195719A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882551A (en) * 1981-11-11 1983-05-18 Hitachi Ltd Boiled cooling apparatus
JPH0351697A (en) * 1989-07-19 1991-03-06 Showa Alum Corp Heat pipe
JPH0579259U (en) * 1992-03-16 1993-10-29 株式会社フジクラ Inclined type long heat pipe
JPH0886551A (en) * 1994-07-19 1996-04-02 Nippondenso Co Ltd Boiling cooler
JP2000205721A (en) * 1999-01-13 2000-07-28 Denso Corp Evaporative cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882551A (en) * 1981-11-11 1983-05-18 Hitachi Ltd Boiled cooling apparatus
JPH0351697A (en) * 1989-07-19 1991-03-06 Showa Alum Corp Heat pipe
JPH0579259U (en) * 1992-03-16 1993-10-29 株式会社フジクラ Inclined type long heat pipe
JPH0886551A (en) * 1994-07-19 1996-04-02 Nippondenso Co Ltd Boiling cooler
JP2000205721A (en) * 1999-01-13 2000-07-28 Denso Corp Evaporative cooling device

Also Published As

Publication number Publication date
JPWO2022195719A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US6863119B2 (en) Cooling device boiling and condensing refrigerant
US6360814B1 (en) Cooling device boiling and condensing refrigerant
JP3918502B2 (en) Boiling cooler
JP2003234590A (en) Boiling/cooling device
JP3890685B2 (en) Boiling cooler
WO2019142310A1 (en) Ebullient cooler
JP3549933B2 (en) Plate fin type element cooler
WO2022195719A1 (en) Boiling-type cooler
JP2003247790A (en) Boiling/cooling device
WO2011114616A1 (en) Ebullient cooling device
JPH10256445A (en) Boiling and cooling device and its manufacture
JP7299441B1 (en) boiling cooler
JP5860728B2 (en) Electronic equipment cooling system
WO2013102974A1 (en) Cooling system
WO2022270083A1 (en) Heat sink
JP2002206880A (en) Boiling cooler
JP4583082B2 (en) Boiling cooler
JP2000156445A (en) Boiling cooling device
JPH1187583A (en) Boiling cooler
JP2004241580A (en) Boiling cooler
JP2022143796A (en) Evaporative cooling device and cooling method of electric heating element
JP2005201539A (en) Thermo-siphon type heat transfer body
JP2000049265A (en) Boiling cooler
TW202405361A (en) Manufacturing method of boiling type cooler and boiling type cooler
JP2000091482A (en) Cooler for semiconductor element and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931471

Country of ref document: EP

Kind code of ref document: A1