JP4583082B2 - Boiling cooler - Google Patents

Boiling cooler Download PDF

Info

Publication number
JP4583082B2
JP4583082B2 JP2004184263A JP2004184263A JP4583082B2 JP 4583082 B2 JP4583082 B2 JP 4583082B2 JP 2004184263 A JP2004184263 A JP 2004184263A JP 2004184263 A JP2004184263 A JP 2004184263A JP 4583082 B2 JP4583082 B2 JP 4583082B2
Authority
JP
Japan
Prior art keywords
refrigerant
container member
boiling cooler
flow path
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004184263A
Other languages
Japanese (ja)
Other versions
JP2006012926A (en
Inventor
信也 長松
義弥 枝
誠三 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2004184263A priority Critical patent/JP4583082B2/en
Publication of JP2006012926A publication Critical patent/JP2006012926A/en
Application granted granted Critical
Publication of JP4583082B2 publication Critical patent/JP4583082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、沸騰冷却器に係わり、ファン等によって流動する空気等の冷却流体により発熱部位を強制空冷するための冷却器に関するものである。   The present invention relates to a boiling cooler and relates to a cooler for forcibly air-cooling a heat generating portion with a cooling fluid such as air flowing by a fan or the like.

従来より、大容量発熱素子を冷却する為には、様々な方式がとられている。例えば、パワーエレクトロニクスで用いられているIGBT(Insulated Gate Bipolar Transistor)のような大容量の発熱を処理するために、図7に示すような沸騰冷却方式が主として用いられている。
この沸騰冷却方式は、下方に発熱する素子を取り付けた基板部70があり、基板部70の上部には凝縮部71が設けられ、その凝縮部の上方にはヘッダー部72が設けられている。そして基板部70の、凝縮部71の底面に対応した部分には基板部内部に蒸発部73が設けられている。この蒸発部には、通常、その作動冷媒として、パーフルオロカーボン(以下、PFCという)が封入されている。74はPFC注入封止部を示す。
Conventionally, various methods have been used to cool a large-capacity heating element. For example, a boiling cooling system as shown in FIG. 7 is mainly used in order to process a large capacity heat generation such as an IGBT (Insulated Gate Bipolar Transistor) used in power electronics.
In this boiling cooling system, there is a substrate part 70 to which a heat generating element is attached below, a condensing part 71 is provided above the substrate part 70, and a header part 72 is provided above the condensing part. An evaporation unit 73 is provided inside the substrate unit at a portion of the substrate unit 70 corresponding to the bottom surface of the condensing unit 71. Normally, perfluorocarbon (hereinafter referred to as PFC) is sealed in the evaporation section as the working refrigerant. Reference numeral 74 denotes a PFC injection sealing portion.

パーフルオロカーボンは、無臭無害な冷媒であり、オゾン破壊係数がゼロである為、使用制限はないものである。図2にPFCの1例としてC14の特性を示す。同図において横軸が温度、縦軸が飽和蒸気圧である。これからわかるように、−20℃から80℃程度まで冷媒作動液として使用することが可能で沸騰冷却器用の冷媒作動液として広く用いられている。
この作動液を用いる沸騰冷却方式の最大の利点は、放熱性能のパフォーマンスの高さにあり、特に鉄道車両用のパワーインバータ系の半導体素子冷却用途として多く使用されている。
Perfluorocarbon is an odorless and harmless refrigerant and has an ozone depletion coefficient of zero, so there is no restriction on its use. FIG. 2 shows the characteristics of C 6 F 14 as an example of PFC. In the figure, the horizontal axis represents temperature, and the vertical axis represents saturated vapor pressure. As can be seen from this, it can be used as a refrigerant working fluid from about -20 ° C. to about 80 ° C. and is widely used as a refrigerant working fluid for a boiling cooler.
The greatest advantage of the boiling cooling system using this hydraulic fluid is the high performance of heat dissipation performance, and it is often used especially for power inverter system semiconductor element cooling applications for railway vehicles.

その1例として、特許文献1に記載の冷却器があげられる。このものは蒸発部と称される上記PFCを封入する部分と、凝縮部と称される発熱素子から受熱したことによる、PFCの蒸気が昇流する内部のアルミニウム製フィンを封入したコンテナ部(蒸発部とコンテナ部とは蒸発部に一定配置された穴によって連通している)と外部のファン等での冷却方式による放熱手段としての外部のアルミニウム製フィン(これは、蒸発部、コンテナ部とは連通なし)とで構成されている。更に、上部のコンテナ部の最上部間をヘッダーと称される同じくアルミニウム製のプレート材で接続されている。このアルミニウム製のプレート材を取り付けることにより、従来、この部分に大きな液溜まり部を設けていたのを不要にしている。   As an example, there is a cooler described in Patent Document 1. This part is a container part (evaporation part) that encloses the above-mentioned PFC called an evaporation part, and an aluminum fin inside which PFC vapor rises by receiving heat from a heating element called a condensation part. And the container part communicate with each other by a hole arranged in the evaporation part) and an external aluminum fin as a heat dissipation means by a cooling method with an external fan or the like (this is an evaporation part and a container part) No communication). Further, the uppermost part of the upper container part is connected by a plate member made of aluminum, also called a header. By attaching this aluminum plate material, it has become unnecessary to provide a large liquid reservoir in this portion.

しかし、この特許文献1の沸騰式冷却器は上記記載どおり、構成部材が多く、且つ、大型でPFCを封入する部分は蒸気レベルでの気密保持が必須となっており、通常、ヘリウムによる1×10−7 acc/secの気密試験をクリアすることが求められる。そのため気密に関与する接合部は、可能な限り少なくすることが重要である。しかし、放熱性能を劣化させることなく、且つ、大きさも拡大することなく、接合部を減らすことは困難であった。
特開2002−134670号
However, as described above, the boiling-type cooler of Patent Document 1 has a large number of constituent members, and a large portion that encloses the PFC is indispensable to be kept airtight at the vapor level. It is required to clear an airtight test of 10 −7 acc / sec. Therefore, it is important to reduce the number of joints involved in airtightness as much as possible. However, it has been difficult to reduce the number of joints without degrading the heat dissipation performance and without increasing the size.
JP 2002-134670 A

本発明の目的は、冷却性能を向上させた沸騰冷却器を提供することであり、従来の寸法を拡大せずに信頼性を向上させた沸騰冷却器を提供することにある。   An object of the present invention is to provide a boiling cooler with improved cooling performance, and to provide a boiling cooler with improved reliability without enlarging conventional dimensions.

本発明の上記の課題は次の手段により達成された。
(1)下面に発熱素子を取り付ける基板に形成された蒸発部と、前記蒸発部に連通して前記蒸発部の上面に設けた、内部にフィンを有する複数のコンテナ部材所定間隔で立設するとともに、該各コンテナ部材の外側で各コンテナ部材間の幅全体にコルゲートフィンを設けてなる凝縮部とよりなり、前記基板は、冷媒流路が形成された下板と、該下板の上面に設けられていて、該冷媒流路からの冷媒の蒸発上昇空間を形成する縦仕切枠と該縦仕切枠の側部に設けた複数の横仕切枠とが形成された上板とで構成され、前記縦仕切枠に切欠部を設けたことを特徴とする沸騰冷却器。
(2)前記コンテナ部材の内部に設けたフィン上端と前記コンテナ部材との間に冷媒が水平方向に移動しうる所定の高さの隙間を空けた事を特徴とする(1)記載の沸騰冷却器。
(3)冷媒蒸発部の冷媒が、平行した所定高さに設けられ、かつ、間欠的に切り欠きを設けた、複数の立体壁によって形成される溝構造からなる流路を流れる(1)又は(2)記載の沸騰冷却器。
(4)前記下板に形成された冷媒流路の底面に細かい溝加工されたことを特徴とする(1)または(2)のいずれか1項記載の沸騰冷却器。
(5)前記下板の表面はエッチング加工されたことを特徴とする(1)〜(4)のいずれか1項記載の沸騰冷却器。
The above object of the present invention has been achieved by the following means.
(1) an evaporation section formed on a substrate for mounting a heating element on the lower surface, provided on the upper surface of the evaporation portion communicates with the evaporator unit, erected a plurality of container member having a fin therein at predetermined intervals And a condensing part in which corrugated fins are provided in the entire width between the container members outside the container members, and the substrate is formed on a lower plate on which a refrigerant flow path is formed, and an upper surface of the lower plate. Provided with a vertical partition frame that forms an evaporation rising space of the refrigerant from the refrigerant flow path, and an upper plate on which a plurality of horizontal partition frames provided on the side of the vertical partition frame are formed, A boiling cooler characterized in that a notch is provided in the vertical partition frame.
(2) the refrigerant between the fin top end provided inside the container member and the container member is characterized in that spaced a predetermined gap height can move in the horizontal direction (1) boiling cooling according vessel.
(3) The refrigerant in the refrigerant evaporating section flows through a flow path having a groove structure formed by a plurality of three-dimensional walls provided at parallel predetermined heights and provided with intermittent cutouts (1) or (2) The boiling cooler as described.
(4) boiling cooler according to any one of the fine groove on a bottom surface of the refrigerant flow path formed in the lower plate is characterized by being facilities (1) or (2).
(5) surface of the lower plate is characterized in that etching is facilities (1) to the boiling cooler of any one of (4).

本発明により、従来の車両用に使用されている、沸騰冷却器の性能を低下させること無く、信頼性を更に向上させることが可能となった。また、ヘッダー部の接合をなくすことにより、組み立ての簡易性が向上し、1度のろう付け作業で全ての接合部の接続が完了し、その後は、PFCを脱気封入すれば製品が完成するという製造工程が可能となった為、大幅に製造コストを低減することが可能となった。
以上のように、本発明は放熱性能を従来製品と同等以上とした上で、寸法を小型化し、製造コストを大幅に改善することが出来る放熱器を提供することを可能とするものである。
According to the present invention, it is possible to further improve the reliability without deteriorating the performance of the boiling cooler used for conventional vehicles. Also, by eliminating the joining of the header part, the ease of assembly is improved, and the connection of all the joining parts is completed by one brazing operation, and then the product is completed by degassing and sealing the PFC. As a result, the manufacturing cost can be greatly reduced.
As described above, the present invention makes it possible to provide a radiator capable of reducing the size and greatly improving the manufacturing cost while making the heat dissipation performance equal to or higher than that of the conventional product.

本発明の具体的な内容を実施態様をもとに説明する。
図1は、本発明品の全体図である。図1に示した様に、構成部分は大別して、凝縮部の底面に対応させて設置した蒸発部1を有する基板2、蒸発部1の上に取り付けた前記の凝縮部3、とからなる。凝縮部3は、所定間隔で複数立設したコンテナ部材4と、コルゲートフィン5とを交互に配設して組立てる。
この凝縮部3を図3に斜視図で示す。コンテナ部材4は内部にフィン60(図6参照)を有し、該コンテナ部材4の上面及び両側部を略コの字形のサイドフレームで密閉してある。コルゲートフィン5の上部面及び底部面は、それぞれ、上面板6a、下面板6bで閉じてある。このように凝縮部3は所定間隔で立設したコンテナ部材を有している。図示しないが、基板の裏面(下面)には発熱素子が取付けられ、PFC注入封止部を有していることは従来と同様である。
このように本発明の実施態様では、凝縮部最上部間を連通させるヘッダー部がない構造になっている。凝縮部最上部間を連通させるヘッダーの機能の代わりに、蒸発部内部のアルミニウム押し出し成型品製の分割部材を接合部に切り欠きを設けてそこで連通を取らせている。
The specific contents of the present invention will be described an embodiment based.
FIG. 1 is an overall view of the product of the present invention. As shown in FIG. 1, component roughly comprises a substrate 2 having evaporation portion 1 which is disposed in correspondence with the bottom of the condensing unit 3, the condenser portion 3 mounted on the evaporating section 1, consisting of city . The condensing unit 3 is assembled by alternately arranging a plurality of container members 4 and corrugated fins 5 standing at predetermined intervals.
The condensing unit 3 is shown in a perspective view in FIG. The container member 4 has fins 60 (see FIG. 6) inside , and the upper surface and both side portions of the container member 4 are sealed with a substantially U-shaped side frame. The upper surface and the bottom surface of the corrugated fin 5 are closed by the upper surface plate 6a and the lower surface plate 6b, respectively. Thus, the condensing part 3 has the container member 4 standingly arranged by the predetermined space | interval. Although not shown in the drawing, a heating element is attached to the back surface (lower surface) of the substrate and has a PFC injection sealing portion as in the conventional case.
Thus, in the embodiment of the present invention, there is no header portion that allows communication between the uppermost portions of the condensing portion. Instead of the header function for communicating between the uppermost parts of the condensing part, a split member made of an aluminum extrusion molded product inside the evaporation part is provided with a notch in the joint part to communicate therewith.

図4に、前記図1の冷却器から凝縮部3を取り外した基板2を斜視図で拡大して示す。図面に示すように、蒸発部1は、冷媒の流路を形成した下板8と、これと組合せた上板9とからなり、この態様では上板9は、上板の左板9a、上板の右板9bを接合してなる。下板8に流路11を形成する溝体10があり、一定間隔で、下板8に平行に列設されている。なお、下板8の表面はエッチングにより表面積を増すようにしてもよい。
上板9には、縦仕切枠9c、横仕切枠9dが形成されている。縦仕切枠9c、横仕切枠9dの間で形成される孔部が、冷媒流路からの冷媒の蒸発上昇空間であり、この部分を通って、前記の流路11から蒸発した前記コンテナ部材4の内部へと冷媒が上昇する。上板9縦仕切枠9c切欠部12を設けてある。
FIG. 4 is an enlarged perspective view of the substrate 2 from which the condenser 3 has been removed from the cooler of FIG. As shown in the drawings, the evaporation section 1 is composed of a lower plate 8 having a refrigerant flow path and an upper plate 9 combined therewith. In this embodiment, the upper plate 9 is an upper plate left plate 9a, upper plate 9a. The right plate 9b is joined. The lower plate 8 has Mizotai 10 to form the channel 11, at regular intervals, are arrayed in parallel to the lower plate 8. The surface of the lower plate 8 may be increased in surface area by etching.
The upper plate 9 is formed with a vertical partition frame 9c and a horizontal partition frame 9d. A hole formed between the vertical partition frame 9c and the horizontal partition frame 9d is a space where the refrigerant evaporates from the refrigerant flow path, and the container member 4 evaporated from the flow path 11 through this portion. The refrigerant rises into the interior. A notch 12 is provided in the vertical partition frame 9 c of the upper plate 9 .

車両用に用いられている沸騰冷却器はその取り付けるインバータ等に使用されるIGBT(Insulated Gate Bipolar Transistor)が大きく数量が多い為、基板2は約1m角のサイズ寸法が必要となる。その部材として通常使用されているアルミニウム材は上下に2分割構造となっており、これに、制限されるものではないが、通常平面部も左右に2分割された押し出しで製作されたアルミニウム部材をろう付けといわれる手段で接合する方法が用いられている。これは前述のとおりである。本発明ではこの場合に図4に示すように両部材の中央部で、下板8と上板9とからなる蒸発部1の枠部を切り欠いて切欠部12を設けこの部分で左右の蒸発空間を連通させる。
切欠部12は、図4のように少なくとも1個所設けるが、2個所以上設けて左右の板の前記の蒸発上昇空間を連続させてもよい。
本発明において、凝縮部3のコンテナ部材4の下部と蒸発部の横仕切枠9dとは互いに直交するように構成する。
Since the boiling cooler used for vehicles has a large number of IGBTs (Insulated Gate Bipolar Transistors) used for inverters and the like to be mounted thereon, the substrate 2 needs to have a size of about 1 m square. The aluminum material usually used as the member has a vertically divided structure, and although not limited to this, an aluminum member manufactured by extrusion in which the flat part is usually divided into right and left is also used. A method of joining by means of brazing is used. This is as described above. In this case, in the present invention, as shown in FIG. 4, the frame portion of the evaporation portion 1 composed of the lower plate 8 and the upper plate 9 is cut out at the center portion of both members to provide the notch portion 12 and the left and right evaporations are provided in this portion. Communicate the space.
As shown in FIG. 4, at least one notch 12 is provided, but two or more notches 12 may be provided so that the evaporation rising spaces of the left and right plates are continuous.
In the present invention, the lower part of the container member 4 of the condensing unit 3 and the horizontal partition frame 9d of the evaporating unit are configured to be orthogonal to each other.

さらに前記の冷媒の流路となる下板8の好ましい一例を拡大して図5に上方からの斜視図として示す。図示のように溝構造壁10には、切り欠き13を周期的に設けるのが好ましい。
この溝構造壁10と切り欠き13との幅(長さ)の比は特に制限するものではないが、3:1〜3:2、特に2:1の割合が良好である。切り欠きの効果としては、これがない押し出し材のままでは、横方向の冷媒(PFC液)の連通が取れなくなり、液の流れが阻害される。一方、本製品は、内部でPFC液が蒸発凝縮を繰り返す為、一定の耐圧強度が必要となる。これらを総合的に検討した結果、蒸発部ベース部分の切り欠きは前記割合がよい。この割合はPFC液の長手方向への直進性と横方向への移動との関係で定める。冷媒流路11の底面にさらに深く切り込んで設けたより細い溝孔ある。これを設ける理由は、毛細管現象により冷却器が傾いた時にも流路に必要な冷媒を保持する作用を付与するためである。
Further, a preferred example of the lower plate 8 serving as the refrigerant flow path is enlarged and shown as a perspective view from above in FIG. As shown in the drawing, the groove structure wall 10 is preferably provided with notches 13 periodically.
The ratio of the width (length) between the groove structure wall 10 and the notch 13 is not particularly limited, but a ratio of 3: 1 to 3: 2, particularly 2: 1 is good. As an effect of the notch, if the extruded material is not used, the lateral refrigerant (PFC liquid) cannot be communicated and the liquid flow is hindered. On the other hand, since this product repeats evaporation and condensation inside the PFC liquid, a certain pressure resistance is required. As a result of comprehensively examining these, the ratio of the notches in the base portion of the evaporation portion is good. This ratio is determined by the relationship between the straight advanceability of the PFC liquid in the longitudinal direction and the movement in the lateral direction. The bottom surface of the coolant channel 11 may further deeper cut in narrower than provided slot. The reason for providing this is to provide an action of holding the necessary refrigerant in the flow path even when the cooler is inclined due to capillary action.

また、図示しないが、本発明においては、蒸発冷媒の流通効果を高めるためには上板9において横仕切枠9dの幅を中央から離れて端部へ行く程細くし、結果、横仕切枠間で形成される空間(冷媒蒸発空間)が縦仕切枠9cから横方向に遠くなるほど拡がるようにするのが好ましい。
すなわち、蒸発部と凝縮部との接合面は端部ほど、蒸発上昇空間を大きく取り、中央部ほどそれを小さくするパターンを設けた。このことの効果は、蒸発部の平面部の大きさに対して凝縮部は、外部に取り付けられている、外部のアルミニウム製のフィンの許容される、圧力損失の影響の為に、蒸発部並行面に比べてサイズ寸法が小さくなってしまう。この為、蒸発部端部に近いところほど、大きく切り欠き、周囲に液が循環して全体として液の流れを改善することができる。
このようにすることにより、凝縮部最上部の連通用のヘッダーを不要とできる。この効果としては、ヘッダー部と凝縮部最上面部とを接続する個所が不要になり、気密保持不完全の危険性が大きく減少する。更に、ヘッダー部がなくなるため、凝縮部最上位部はフラットな面となり、高さ寸法も小さくすることが出来る。
Although not shown in the drawings, in the present invention, in order to enhance the distribution effect of the evaporative refrigerant, the width of the horizontal partition frame 9d in the upper plate 9 is made narrower toward the end portion away from the center. It is preferable that the space (refrigerant evaporation space) formed by is expanded as the distance from the vertical partition frame 9c increases in the horizontal direction.
That is, a pattern is provided in which the joining surface between the evaporation part and the condensing part has a larger evaporation rising space at the end part and a smaller part at the central part. The effect of this is that for the size of the flat part of the evaporation part, the condensation part is attached to the outside, and due to the influence of the allowable pressure loss of the external aluminum fins, The size dimension is smaller than the surface. For this reason, the closer to the end of the evaporation section, the larger the notch, and the liquid can circulate around it, improving the liquid flow as a whole.
By doing in this way, the header for communication of the condensation part uppermost part can be made unnecessary. As an effect, a portion for connecting the header portion and the uppermost surface portion of the condensing portion becomes unnecessary, and the risk of imperfect airtightness is greatly reduced. Further, since the header portion is eliminated, the uppermost portion of the condensing portion becomes a flat surface, and the height dimension can be reduced.

次に、本発明では、図1に示したように、凝縮部3に用いられているコルゲートフィン5を両面はさみこんだコンテナ部材4は、図6に示すように、内部にアルミニウム製のフィン60(オフセットフィン)を有している。図6は、このコンテナ部材の内部の状態を一部切欠して示した。フィン60を最上端まで延ばさず、好ましくは高さ5mmから10mmの空間部61を設けて、そのまま上部にフタをし密閉して接合するのが好ましい。この部分の機能は、蒸発部のPFCの蒸気が昇流し、その最上部では蒸気が凝縮して液状態へ戻らなければならない。更に、液状態に戻ったPFCは同じ流路を通って下部の蒸発部に戻っていく。そのため、蒸気から液に戻る為のスペースは重要となる。そのため、この実施態様によって、フィン60の長さ自体を短くして、凝縮部の熱特性の低下以上に、冷媒液の還流が促進され、熱輸送特性は従来以上に向上することができる。 Next, in the present invention, as shown in FIG. 1, the container member 4 in which the corrugated fins 5 used in the condensing unit 3 are sandwiched on both sides is formed with aluminum fins inside as shown in FIG. It has 60 (offset fin) . FIG. 6 shows a state in which the container member is partially cut away. It is preferable that the fin 60 is not extended to the uppermost end, and preferably a space 61 having a height of 5 mm to 10 mm is provided, and the lid is placed on the upper portion as it is, and then sealed and joined. The function of this part is that the vapor of the PFC in the evaporation part rises, and the vapor condenses at the uppermost part to return to the liquid state. Furthermore, the PFC that has returned to the liquid state returns to the lower evaporation section through the same flow path. Therefore, the space for returning from the vapor to the liquid is important. Therefore, according to this embodiment, the length of the fin 60 itself is shortened, and the recirculation of the refrigerant liquid is promoted more than the deterioration of the thermal characteristics of the condensing part, and the heat transport characteristics can be improved more than before.

内部のフィン60の挿入状態は、図では、オフセットフィンを呼ばれるアルミニウム製のフィンが両側のアルミニウム製の板ではさまれた構造(これをコンテナ部材と呼んでいる)になっている。コンテナ部材内部では下部の蒸発部から上昇した蒸気がこのフィン60の間を縫うようにして上昇していく。その過程で、外部のコルゲートフィン5へと熱交換し放熱する構造となっている。従来のものは内部フィンがコンテナ部材の内部で頂部まで伸びており、蒸気はその上に設けたヘッダー部のみによって連通が取られていた。
しかしながら、オフセットフィンと呼ばれる内部フィン60は、構造上入り組んだ構造で且つ、平面方向の蒸気の移動が困難な構造となっている。つまり、ヘッダー部のみの連通では、個々の上記コンテナ部内の蒸気を均一に回らせることが困難である。このヘッダー部の重要な機能として、内部フィン60が無い部分なので、この部分でPFC蒸気がPFC液に戻り、それが、個々のコンテナ部を通って蒸発部へと戻っていく。
In FIG. 6 , the internal fin 60 is inserted into a structure in which an aluminum fin called an offset fin is sandwiched between aluminum plates on both sides (this is called a container member). Inside the container member, the steam that has risen from the lower evaporation section rises as if it is sewn between the fins 60 . In this process, heat is exchanged with the external corrugated fin 5 to dissipate heat. Those prior extends to the top of the inside of the fin inside the container member, the steam communicates by only the header portion provided thereon has been taken.
However, the interior fins 60, called offset fins, and in structurally intricate structure, the movement of the plane direction vapor has a hard structure. That is, in the communication of the header portion only, it is difficult to from turning uniform vapor in individual the container member. An important function of the header portion, since part inside of the fin 60 is not, PFC vapor in this section is returned to the PFC liquid, it goes back to the evaporator portion through the individual containers member.

そのため従来の冷却器としての性能の良否は、蒸発部から凝縮部の最上部まで効率的に蒸気を昇らせ、且つ、ヘッダー部で迅速に凝縮させ、PFC液の状態で蒸発部にPFC液を戻す一連の工程がうまく循環するかにかかっている。   For this reason, the performance of the conventional cooler is as follows. The steam efficiently rises from the evaporation section to the top of the condensing section, condenses quickly at the header section, and the PFC liquid is supplied to the evaporation section in the PFC liquid state. It depends on the succession of the return sequence.

これに対し上記実施態様に示した本発明では個々のコンテナ部材毎に最上部に5mmから10mmの空隙を設けて、この部分で蒸気の液化を促進させる手法を採用した。その結果、コンテナ部材内部のフィン60を最上部に5mmから10mm短くしても従来のヘッダーの部分で蒸気の液化を促進させることができ、逆に放熱性能が向上するという結果が得られた。この理由として、幅の狭いヘッダー部に蒸気の集約が進まなければ蒸気の液化を促進しにくい従来技術に対して、上記実施態様では個々のコンテナ部毎に蒸気の液化が促進され、これが内部のフィン60を短くすることによる伝熱面積減少効果を上回ることがある。 On the other hand, in the present invention shown in the above embodiment, a method of providing a gap of 5 mm to 10 mm at the uppermost portion for each individual container member and promoting the liquefaction of steam at this portion is adopted. As a result, even if the fin 60 inside the container member is shortened by 5 mm to 10 mm at the top, the liquefaction of the steam can be promoted in the conventional header portion, and conversely the heat dissipation performance is improved. . The reason for the narrow header part in promoting hard prior art liquefaction of unless the vapor aggregation progress of the steam width, in the above embodiment the liquefaction of the vapor is accelerated to each individual container member, which internal The heat transfer area reduction effect by shortening the fins 60 may be exceeded.

また、従来ヘッダー部は最後に取り付けなければならず、強度面から考慮してろう付けでの接続が困難であった為に、この接続個所だけは、溶接接続しなければならないという製造上の問題点があったが、本発明では、全ての接合部がろう付けで可能となったため、1度のろう付け作業で全ての部材を接続し、その後、PFCを脱気封入すれば製品が完成するという効率の良い製造工程が可能となった。   In addition, the conventional header section must be installed last, and it is difficult to connect by brazing in consideration of strength. Therefore, only this connection point must be welded. However, in the present invention, since all the joints can be brazed, all the members are connected by one brazing operation, and then the PFC is deaerated and sealed to complete the product. An efficient manufacturing process is now possible.

本発明の沸騰冷却器の組立てはろう材をクラッドした各部材のろう付け接合により行うことができる。例えばコンテナ材4の内部フィン60はろう材がクラッドされており、コンテナ4の両側プレートと接合する。また凝縮部3の底面端面は基板2上にろう付接合される。
以上のように、本発明は、蒸発部と凝縮部とのPFCの液の流れを改善する手法を採用したことにより、性能劣化を起こすことなく、ヘッダー部を削除することが可能となった。このことにより、接続個所を減らすことが出来、気密保持の信頼性が向上し、且つ、沸騰冷却器の高さ寸法を小さくすることが可能となった。
The boiling cooler of the present invention can be assembled by brazing and joining each member clad with a brazing material. For example the interior of the fin 60 of the container member 4, the brazing material has been clad, joined with both sides of the plate of the container member 4. Further, the bottom end face of the condensing unit 3 is brazed onto the substrate 2.
As described above, according to the present invention, it is possible to delete the header portion without causing performance deterioration by adopting a method for improving the flow of the PFC liquid between the evaporation portion and the condensation portion. As a result, the number of connection points can be reduced, the reliability of hermetic retention is improved, and the height dimension of the boiling cooler can be reduced.

本発明の沸騰冷却器一例の斜視図である。It is a perspective view of an example of the boiling cooler of this invention. PFCの飽和蒸発圧曲線である。It is a saturated evaporation pressure curve of PFC. 本発明の沸騰冷却器の凝縮部の好ましい一実施態様を示す斜視図である。It is a perspective view which shows one preferable embodiment of the condensation part of the boiling cooler of this invention. 本発明の沸騰冷却器の蒸発部の好ましい一実施態様を示す斜視図である。It is a perspective view which shows one preferable embodiment of the evaporation part of the boiling cooler of this invention. 本発明の沸騰冷却器の蒸発部の下面部の好ましい一実施態様を示す上方からの斜視図である。It is a perspective view from the top which shows one preferable embodiment of the lower surface part of the evaporation part of the boiling cooler of this invention. 本発明に用いられるコンテナ部材の一部を切欠して、内部の状態を示す斜視図である。It is a perspective view which notches some container members used for this invention, and shows an internal state. 従来の沸騰冷却器の代表的な例の斜視図である。It is a perspective view of the typical example of the conventional boiling cooler.

符号の説明Explanation of symbols

1 蒸発部
基板
3 凝縮部
4 コンテナ部材
5 コルゲートフィン
6a 上面板
6b 下面板
8 下板
9 上板
9a 上板の左板
9b 上板の右板
9c 縦仕切
9d 横仕切
10 溝構造壁
11 冷媒の流路
12 切欠部
13 切り欠き部
DESCRIPTION OF SYMBOLS 1 Evaporating part 2 Substrate 3 Condensing part 4 Container member 5 Corrugated fin 6a Upper surface board 6b Lower surface board 8 Lower board 9 Upper board 9a Upper board left board 9b Upper board right board 9c Vertical partition frame 9d Horizontal partition frame 10 Groove structure wall 11 Refrigerant flow path 12 Notch 13 Notch

Claims (5)

下面に発熱素子を取り付ける基板に形成された蒸発部と、
前記蒸発部に連通して前記蒸発部の上面に設けた、内部にフィンを有する複数のコンテナ部材所定間隔で立設するとともに、該各コンテナ部材の外側で各コンテナ部材間の幅全体にコルゲートフィンを設けてなる凝縮部とよりなり、
前記基板は、冷媒流路が形成された下板と、該下板の上面に設けられていて、該冷媒流路からの冷媒の蒸発上昇空間を形成する縦仕切枠と該縦仕切枠の側部に設けた複数の横仕切枠とが形成された上板とで構成され、
前記縦仕切枠に切欠部を設けた
ことを特徴とする沸騰冷却器。
An evaporation section formed on a substrate on which a heating element is attached to the lower surface;
Provided on the upper surface of the evaporation portion communicates with the evaporator unit, with erected a plurality of container member having fins at predetermined intervals therein, corrugated across the width between the outside the container member of the respective container member Consists of a condensing part with fins,
The substrate is provided with a lower plate on which a refrigerant flow path is formed, a vertical partition frame provided on an upper surface of the lower plate, and forming a space where the refrigerant evaporates from the refrigerant flow path, and a side of the vertical partition frame It is composed of an upper plate on which a plurality of horizontal partition frames provided in the part are formed,
A boiling cooler characterized in that a notch is provided in the vertical partition frame.
前記コンテナ部材の内部に設けたフィン上端と前記コンテナ部材との間に冷媒が水平方向に移動しうる所定の高さの隙間を空けたことを特徴とする請求項1記載の沸騰冷却器。 Boiling cooler according to claim 1, wherein the refrigerant has a predetermined gap height can move in the horizontal direction between the container member and the fin top end provided inside of the container member. 冷媒蒸発部の冷媒が、平行した所定高さに設けられ、かつ、間欠的に切り欠きを設けた、複数の立体壁によって形成される溝構造からなる流路を流れる請求項1又は2記載の沸騰冷却器。   The refrigerant of the refrigerant evaporating section flows through a flow path having a groove structure formed by a plurality of three-dimensional walls provided at parallel predetermined heights and intermittently provided with cutouts. Boiling cooler. 前記下板に形成された冷媒流路の底面に細かい溝加工されたことを特徴とする請求項1または請求項2のいずれか1項記載の沸騰冷却器。 Boiling cooler according to any one of claims 1 or claim 2 bottom fine grooving of the refrigerant flow path formed in the lower plate is characterized by being facilities. 前記下板の表面はエッチング加工されたことを特徴とする請求項1〜請求項4のいずれか1項記載の沸騰冷却器。 Boiling cooler according to any one of claims 1 to 4 the surface of the lower plate, characterized in that the etching is facilities.
JP2004184263A 2004-06-22 2004-06-22 Boiling cooler Expired - Fee Related JP4583082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184263A JP4583082B2 (en) 2004-06-22 2004-06-22 Boiling cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184263A JP4583082B2 (en) 2004-06-22 2004-06-22 Boiling cooler

Publications (2)

Publication Number Publication Date
JP2006012926A JP2006012926A (en) 2006-01-12
JP4583082B2 true JP4583082B2 (en) 2010-11-17

Family

ID=35779828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184263A Expired - Fee Related JP4583082B2 (en) 2004-06-22 2004-06-22 Boiling cooler

Country Status (1)

Country Link
JP (1) JP4583082B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023186A (en) * 2011-07-26 2013-02-04 Toyota Motor Corp Cooling apparatus
CN105452908B (en) * 2013-08-27 2017-11-21 琳得科株式会社 Hard conating stack and its manufacture method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186208A (en) * 1994-12-28 1996-07-16 Nippondenso Co Ltd Boiling cooling device
JP2002261217A (en) * 2001-03-02 2002-09-13 Mitsubishi Alum Co Ltd Boiling cooler and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186208A (en) * 1994-12-28 1996-07-16 Nippondenso Co Ltd Boiling cooling device
JP2002261217A (en) * 2001-03-02 2002-09-13 Mitsubishi Alum Co Ltd Boiling cooler and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006012926A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP3451737B2 (en) Boiling cooling device
KR100606283B1 (en) Heat pipe unit and heat pipe type heat exchanger
KR100260676B1 (en) Cooling apparatus boling and condensing refrigerant
US6719040B2 (en) Cooling apparatus boiling and condensing refrigerant with improved tunnel structure
US20050274496A1 (en) Boiling cooler
US7093647B2 (en) Ebullition cooling device for heat generating component
US6749013B2 (en) Heat sink
JP2000065456A (en) Ebullient cooler
WO2013005622A1 (en) Cooling device and method for manufacturing same
JP4583082B2 (en) Boiling cooler
JP2003247790A (en) Boiling/cooling device
JP3924674B2 (en) Boiling cooler for heating element
JPH05304384A (en) Heat pipe type heat sink
JP2006234267A (en) Ebullient cooling device
JP2001068611A (en) Boiling cooler
JP7299441B1 (en) boiling cooler
JPH05304383A (en) Heat sink for high output electronic apparatus
JP2015140949A (en) Cooling device and data center including the same
KR20180109668A (en) heat exchanger for cooling electric element
JP3810119B2 (en) Boiling cooler
JP2000269393A (en) Boiling/cooling device
WO2013073696A1 (en) Cooling device and electronic device using same
JPH0412376Y2 (en)
JP2007115940A (en) Thermal dissipation plate
JP2002261217A (en) Boiling cooler and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4583082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees