WO2011114616A1 - Ebullient cooling device - Google Patents

Ebullient cooling device Download PDF

Info

Publication number
WO2011114616A1
WO2011114616A1 PCT/JP2011/000667 JP2011000667W WO2011114616A1 WO 2011114616 A1 WO2011114616 A1 WO 2011114616A1 JP 2011000667 W JP2011000667 W JP 2011000667W WO 2011114616 A1 WO2011114616 A1 WO 2011114616A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing
fin
passage
cooling device
condensing unit
Prior art date
Application number
PCT/JP2011/000667
Other languages
French (fr)
Japanese (ja)
Inventor
聡 針生
康二 吉原
雄一朗 友野
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2011114616A1 publication Critical patent/WO2011114616A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a boiling cooling device that cools a heating element using a refrigerant.
  • the boiling cooling device is a device that cools the heating element using latent heat generated when the liquid refrigerant boils.
  • the boiling cooling device includes an accommodating portion that accommodates a liquid refrigerant.
  • the refrigerant (vapor refrigerant) boiled by the heat of the heating element in this housing portion flows into the condenser, where it is heat-exchanged and condensed.
  • the condensed liquid refrigerant circulates again to the storage unit.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-173115
  • a condenser is provided on the upper side of the housing portion. If it is this structure, the liquid refrigerant condensed in the condenser will flow through the bottom face in a condenser, and will circulate to an accommodating part. In the case where the condensed liquid refrigerant is dropped directly into the housing portion as in the conventional case, if the width of the condenser is increased in order to increase the condensation performance of the condenser, the width of the housing portion must be increased accordingly. The device becomes large.
  • positions a condenser to the upper part side of an accommodating part can change the magnitude
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a boiling cooling device that enables a gas-liquid split in a condensing section and improves heat exchange efficiency.
  • the boiling cooling device of the present invention accommodates a liquid refrigerant that boils by receiving heat from a heating element, a housing part having a communication chamber above the refrigerant liquid level, one end communicating with the communication chamber, and the other end closed.
  • a condensing unit that forms an internal space, and the lower end on the side of the communication chamber in the inner space is located below the lower end on the closed side, wherein the condensing unit is provided in the inner space of the condensing unit.
  • a plurality of fin portions extending from one side surface to the other side surface are arranged in parallel from the communication chamber side to the closing side, and at least the fin portion on the communication chamber side among the plurality of fin portions is the fin portion.
  • the distance between the upper end portion and the inner upper surface of the condensing portion is larger than the distance between the lower end portion of the fin portion and the inner lower surface of the condensing portion, and the passage cross-sectional area above the fin portion closest to the communication chamber is Of the fin portion closest to the communication chamber It is larger than the passage cross-sectional area of square.
  • the distance between the upper end part of the fin part and the inner upper surface of the condensing part (hereinafter also referred to as “upper distance”) is between the lower end part of the fin part and the inner lower surface of the condensing part.
  • the opening area of the upper surface side passage (hereinafter also referred to as “upper passage”) that is larger than the distance (hereinafter also referred to as “lower distance”) and is partitioned by the fin portion in the internal space of the condensing portion is the lower surface side passage (hereinafter referred to as “lower passage”). It is larger than the opening area of the “lower passage”.
  • the inflow resistance of the upper passage becomes smaller than that of the lower passage, and the vapor refrigerant becomes easier to flow into the upper passage than in the lower passage.
  • the above action suppresses the disturbance due to the inflow of the vapor refrigerant with respect to the flow of the liquid refrigerant flowing on the inner lower surface (bottom surface) and flowing out to the accommodating portion.
  • the vapor refrigerant mainly circulates in the upper passage, and the liquid refrigerant mainly circulates in the lower passage. That is, in the boiling cooling device of the present invention, the gas-liquid can be divided in the condensing part. Thereby, the refrigerant circulation is good and the heat exchange efficiency can be improved.
  • the fin portion is arranged so as to extend in the vertical direction.
  • a plurality of small passages are formed in the vertical direction by the plurality of fin portions, and the upper passage and the lower passage are communicated by the small passages. Since the small passage is partitioned by the fin portion, the passage has high heat transfer performance. And the said small channel
  • path is formed also in the communicating chamber side by arranging the fin part extended in the up-down direction in parallel. That is, the inflowing vapor refrigerant can be introduced into a small passage having a high heat transfer performance over a short distance, and heat exchange efficiency can be improved.
  • the upper distance is larger than the lower distance for all the fin portions.
  • the passage cross-sectional area of the upper passage is larger than that of the lower passage, and the resistance of the entire upper passage to the vapor refrigerant can be reduced. Therefore, the vapor refrigerant is more likely to flow into the upper passage.
  • the plurality of fin portions are preferably formed of corrugated fins whose corrugated tops are joined to the inner side surface of the condensing unit. Since a plurality of fin portions are formed only by installing one corrugated fin inside, manufacturing is facilitated. In addition, the heat transfer area with the refrigerant can be reliably increased.
  • the condensing part is preferably made of a tube member closed on one side.
  • the condensing part can be made compact (downsized).
  • the boiling cooling device of the present invention may include a plurality of condensing units.
  • adjacent condensing parts are connected with the outer fin arrange
  • the gas-liquid can be divided in the condensing part, and the heat exchange efficiency can be improved.
  • FIG. 1 is a perspective view showing a boiling cooling device 1.
  • FIG. 1 is a longitudinal sectional view showing a boiling cooling device 1.
  • FIG. 3 is a cross-sectional view taken along line AA showing the condensing unit 30.
  • FIG. 3 is a cross-sectional view taken along line BB showing the condensing unit 30.
  • FIG. 1 is a longitudinal sectional view showing a boiling cooling device 10.
  • FIG. 5 is a cross-sectional view taken along the line CC showing the condensing unit 30.
  • FIG. FIG. 6 is a cross-sectional view taken along line CC showing another aspect of the condensing unit 30.
  • FIG. 6 is a cross-sectional view taken along line CC showing another aspect of the condensing unit 30.
  • 3 is a cross-sectional view corresponding to a cross-sectional view taken along line AA showing the condensing unit 30.
  • FIG. 1 is a longitudinal sectional view showing a boiling cooling device 100.
  • FIG. 1 is a perspective view showing a boiling cooling device 1.
  • FIG. 2 is a longitudinal sectional view showing the boiling cooling device 1.
  • FIG. 3 is a cross-sectional view taken along the line AA showing the condensing unit 30.
  • FIG. 4 is a cross-sectional view taken along the line BB showing the condensing unit 30.
  • the boiling cooling device 1 includes a housing portion 2 and a condenser 3.
  • the accommodating part 2 is a metal container that accommodates a liquid refrigerant (for example, water, alcohol, chlorofluorocarbon, etc.) therein, and has a container part 21 and a communication part 22.
  • the container portion 21 is a bottomed rectangular tube-shaped container having an opening in the upper portion, and stores a liquid refrigerant therein.
  • the liquid level of the liquid refrigerant is located in the container portion 21 when the boiling cooling device 1 is stopped.
  • a heating element Z is attached to the outer side surface of the container part 21, and the side surface of the container part 21 transfers the heat of the heating element Z, and heat exchange is performed with the internal liquid refrigerant.
  • the heating element Z is, for example, a power module including a semiconductor element or the like.
  • the communication part 22 has a substantially hollow cylindrical shape and is located above the container part 21.
  • the internal space of the communication part 22 communicates with the internal space of the container part 21.
  • a communication chamber 2 a that communicates with the internal space of the condensing unit 3 is formed in the internal space above the liquid level in the storage unit 2 (in the communication unit 22 and the upper part in the container unit 21).
  • the shape of the accommodating part 2 is not restricted above.
  • the communication part 22 may have a planar shape in which the left wall in FIG. 2 extends vertically or a rectangular cross-sectional shape.
  • the condenser 3 includes a plurality of condensing units 30 and outer fins 301 that connect the condensing units 30.
  • the condensing unit 30 includes a case unit 31 and a plurality of fin units 32.
  • the case portion 31 is formed of a flat cylindrical metal member having one end opened and the other end closed. As shown in FIG. 3, the distance c between the inner side surfaces of the case portion 31 is substantially constant in the vertical direction.
  • the opening end of the case portion 31 is joined to the communication portion 22.
  • the internal space of the case part 31 leads to the communication chamber 2a.
  • the opening side lower end (communication chamber 2a side lower end) in internal space is located below the closure side lower end.
  • the inner bottom surface (corresponding to the “inner lower surface” of the present invention) of the case portion 31 is inclined so as to be higher as it goes from the open end to the closed end.
  • the inner bottom surface and the inner upper surface of the condensing unit 30 are substantially parallel.
  • the case portion 31 is composed of two parts. After a fin portion 32 (to be described later) is joined (welded or the like) to one side surface of the case portion 31, the one side surface member and the other side surface member of the case portion 31 are joined. Formed.
  • the fin portion 32 is formed of a plate-like metal member (for example, aluminum) having a high thermal conductivity.
  • the fin portion 32 is installed in the case portion 31 so as to extend from one side surface inside the case portion 31 to the other side surface.
  • left and right end portions (left and right end portions in FIG. 3) of the fin portion 32 are respectively joined to the inner side surface of the case portion 31.
  • only one edge part of the right-and-left end part of the fin part 32 is joined to the internal side surface of the case part 31, and the other edge part does not contact the internal side surface of the case part 31 (it does not reach). It may be a size.
  • the fin portion 32 is disposed so that one surface thereof intersects the direction from the open end of the case portion 31 toward the closed end (hereinafter also referred to as “longitudinal direction”). In the present embodiment, the fin portion 32 is disposed so that the one surface is substantially orthogonal to the longitudinal direction.
  • the plurality of fin portions 32 are arranged in parallel at intervals in the longitudinal direction of the condensing portion 30. As shown in FIGS. 3 and 4, the fin portion 32 extends in the vertical direction, and a small passage 30 c extending in the vertical direction is formed between the opposing fin portions 32. In all of the plurality of fin portions 32, the distance a between the upper end portion of the fin portion 32 and the inner upper surface of the case portion 31 is larger than the distance b between the lower end portion of the fin portion 32 and the inner bottom surface of the case portion 31. (A> b).
  • the internal space of the case portion 31 is divided into an upper passage 30a, a lower passage 30b, and a plurality of small passages 30c by a plurality of fin portions 32.
  • the upper passage 30 a is a passage formed above the fin portion 32 and extends along the inner upper surface of the case portion 31 from the open end to the closed end of the case portion 31.
  • the lower passage 30b is a passage formed below the fin portion 32 and extends along the inner bottom surface of the case portion 31 from the open end to the closed end of the case portion 31.
  • the small passage 30c is a passage extending vertically to communicate the upper passage 30a and the lower passage 30b.
  • the heat of the heating element Z is transmitted to the liquid refrigerant through the side surface of the container portion 21 to boil the liquid refrigerant.
  • the boiling vapor refrigerant rises as bubbles and flows out into the communication chamber 2a. Thereafter, the vapor refrigerant rises and flows into the condensing unit 30 from the communication chamber 2 a in the communication unit 22.
  • the vapor refrigerant that has flowed into the condensing unit 30 is cooled (heat exchanged) there and condensed to become a liquid refrigerant.
  • the condensed liquid refrigerant flows on the inner bottom surface of the condensing unit 30, flows out into the communication chamber 2 a, and then circulates in the container unit 21.
  • the fin portion 32 closest to the communication chamber 2a is arranged such that the distance a is larger than the distance b.
  • path 30a is larger than the opening area of the lower channel
  • all the fin portions 32 are arranged in a relationship of a> b, and the passage sectional area of the upper passage 30a is larger than the passage sectional area of the lower passage 30b.
  • the flow resistance becomes smaller in the upper passage 30a than in the lower passage 30b.
  • the vapor refrigerant flowing into the communication chamber 2a mainly flows into the upper passage 30a.
  • the vapor refrigerant that has flowed into the upper passage 30a proceeds toward the closed end in the condensing unit 30 and also flows into the small passage 30c.
  • the vapor refrigerant transfers heat to the wall surfaces of the fin portion 32 and the case portion 31 and is condensed to become a liquid refrigerant.
  • the vapor refrigerant is mainly condensed in the small passage 30 c including the heat transfer surface of the fin portion 32.
  • the condensed liquid refrigerant flows out to the lower passage 30b through the small passage 30c, and flows out to the communication chamber 2a through the lower passage 30b. Vapor refrigerant hardly flows from the communication chamber 2a into the lower passage 30b, and mainly condensed liquid refrigerant flows.
  • the vapor refrigerant mainly circulates in the upper passage 30a and the liquid refrigerant circulates in the lower passage 30b. That is, in the boiling cooling device 1, the gas-liquid splitting of the refrigerant is possible in the condensing unit 30. Thereby, the refrigerant
  • coolant can be efficiently distribute
  • the turbulent flow of the vapor refrigerant easily occurs in the upper passage 30a.
  • the turbulent flow of the vapor refrigerant occurs, heat exchange with the wall surfaces of the fin portion 32 and the case portion 31 is promoted, and the heat exchange efficiency of the condensing portion 30 is improved, which is advantageous.
  • the small passage 30c so as to extend in the vertical direction, the small passage 30a (that is, a passage having high condensation performance) can be formed on the vapor refrigerant inflow side (opening end side of the case portion 31).
  • path 30a can be adjusted only by changing the position of the fin part 32, manufacture or preparation is easy.
  • the configuration in which the plurality of small passages 30c communicate with the lower passage 30b as in the present embodiment can improve the condensing performance and reduce the portion (container portion 21) that accommodates the liquid refrigerant. Thereby, the mounting property to a vehicle etc. improves, and it is advantageous also in mounting property.
  • the boiling cooling device 1 of the present embodiment it is possible to make a gas-liquid flow in the condensing unit 30 and to improve the heat exchange efficiency.
  • FIG. 5 is a longitudinal sectional view showing the boiling cooling device 10.
  • FIG. 6 is a cross-sectional view taken along the line CC showing the condensing unit 30.
  • FIG. 7 is a cross-sectional view taken along line CC showing another aspect of the condensing unit 30.
  • FIG. 8 is a cross-sectional view taken along line CC showing another aspect of the condensing unit 30.
  • FIG. 9 is a cross-sectional view corresponding to the cross-sectional view taken along the line AA showing the condensing unit 30.
  • the condensing unit 30 includes a case unit 31 and corrugated fins 33.
  • Case part 31 consists of a metal tube member with one end closed. A corrugated fin 33 to be described later is inserted and fixed in the case portion 31.
  • the corrugated fins 33 are formed by forming a thin metal plate (for example, aluminum or the like) having a high heat transfer rate into a wave shape by alternately bending at a predetermined pitch. As shown in FIG. 6, the top of the corrugated fin 33 is joined to the inner side surface of the case 31. That is, the corrugated fin 33 includes a plurality of fin portions 331 extending from one side surface inside the case portion 31 to the other side surface. The fin part 331 is extended in the up-down direction like 1st embodiment. That is, like the first embodiment, the small passage 30c extends in the vertical direction.
  • a thin metal plate for example, aluminum or the like
  • the corrugated fins 33 are arranged in the case portion 31 so that all the fin portions 331 satisfy a> b. Thereby, also in 2nd embodiment, the effect similar to 1st embodiment is exhibited. Furthermore, in the second embodiment, it is only necessary to install one fin (corrugated fin 33) in which a plurality of fin portions 331 are formed in the case portion 31, and the manufacture of the condensing portion 30 becomes extremely easy. Moreover, since the tube member is used for the case part 31, the condensation part 30 and the condenser 3 can be manufactured easily and compactly.
  • the corrugated fins 33 are not limited to the above shape. For example, as shown in FIG. 7, the corrugated fins 33 may be bent into a square shape.
  • the plurality of fin portions 32 may not be separate from the case portion 31, and may be dimple fins as shown in FIG. This is formed by arranging a plurality of concave portions in parallel on one side wall of the case portion 31.
  • the inner side surface distance (the lateral width of the inner space corresponding to c in the first embodiment) of the case portion 31 is not limited to a constant value, and may be vertically symmetric as shown in FIG. That is, the width of the internal space of the condensing unit 30 (the distance between the inner side surfaces) may be symmetrical in the vertical direction or substantially constant in the vertical direction.
  • the distance a between the upper end portion of the fin portion 32 (331) and the inner upper surface of the condensing portion 3 is larger than the distance b between the lower end portion of the fin portion 32 (331) and the inner bottom surface of the condensing portion 3.
  • the passage sectional area of the upper passage 30a is always larger than the passage sectional area of the lower passage 30b.
  • the passage cross-sectional area of the upper passage 30a can be changed to the passage cross-sectional area of the lower passage 30b by making the distance a larger than the distance b. It only needs to be larger than.
  • FIG. 10 is a longitudinal sectional view showing the boiling cooling device 100.
  • the accommodating portion 2 has a partition wall portion 23 in the container portion 21.
  • the partition wall portion 23 is a plate-like member and is disposed to face the side wall of the container portion 21 to which the heating element Z is attached.
  • the partition wall part 23 partitions the internal space of the container part 21 into a boiling passage X and a reflux passage Y.
  • the partition wall portion 23 is joined to the inner side surface of the container portion 21, but is not joined to the inner bottom surface of the container portion 21. For this reason, the boiling passage X and the reflux passage Y are connected downward.
  • the upper end of the partition wall portion 23 is located in the communication portion 22.
  • the boiling passage X is a space surrounded by the inner side surface, the inner bottom surface, and the partition wall portion 23 of the container portion 21 and is a region on the heating element Z arrangement side (left side in FIG. 10).
  • the boiling passage X extends in the vertical direction, communicates with the communication chamber 2a at the upper end and communicates with the circulation passage Y at the lower end.
  • the boiling passage X is a passage through which the vapor refrigerant boiled by heat received from the side wall to which the heating element Z is attached flows out into the communication chamber 2a.
  • the circulation path Y is a space surrounded by the inner side surface, the inner bottom surface, and the partition wall portion 23 of the container portion 21, and is a region on the side where the heating element Z is not disposed (right side in FIG. 10).
  • the circulation passage Y extends in the vertical direction, communicates with the communication chamber 2a at the upper end, and communicates with the boiling passage X at the lower end.
  • the circulation passage Y is a passage through which liquid refrigerant condensed in the condensing unit 30 flows from the upper end and supplies the liquid refrigerant to the boiling passage X from the lower end.
  • the liquid refrigerant flows from the circulation passage Y toward the boiling passage X by its own weight (see arrow in FIG. 10).
  • the condenser 3 is attached to the opposite side (right side in FIG. 10) to the heating element Z (left side in FIG. 10). Therefore, the circulation passage Y is formed on the side where the heating element Z is not arranged, that is, the side where the condensing part 30 is arranged.
  • the gas-liquid flow of the refrigerant can be performed in the condensing unit 30 as in the second embodiment.
  • a boiling passage X through which the vapor refrigerant passes and a circulation passage Y through which the liquid refrigerant circulates are formed in the container portion 21. Since the reflux passage Y is located closer to the opening side of the condensing unit 30 than the boiling passage X, the liquid refrigerant that has flowed out of the condensing unit 30 (lower passage 30b) flows into the circulation passage Y. Moreover, since the upper end of the partition wall part 23 is located in the communicating part 22, the vapor refrigerant is more likely to flow into the upper passage 30a instead of the lower passage 30b.
  • a large flow of the refrigerant can be formed in the entire boiling cooling device 100 as shown by the arrows in FIG.
  • coolant can circulate through the boiling cooling device 100 efficiently and smoothly, and can improve heat exchange efficiency in the accommodating part 2 synergistically.
  • the fin portion 331 may be the fin portion 32 of the first embodiment.
  • the fin portion 32 (331) is opposed to the condensing portion 3 in the horizontal direction when the cross-sectional shape (cross section orthogonal to the longitudinal direction) of the condensing portion 3 (case portion 31) is circular or elliptical.
  • the two inner wall surfaces it may be formed so as to extend from one inner wall surface toward the other inner wall surface.
  • the “one side surface” inside the condensing unit includes one inner wall surface that faces in the horizontal direction in the condensing unit 3, and the “other side surface” faces the one inner wall surface in the condensing unit 3.
  • the other inner wall surface is included.
  • the inner upper surface is a line connecting the upper ends of the cross-sectional shape of the condensing part 3
  • the inner lower surface is a line connecting the lower ends of the cross-sectional area.

Abstract

Disclosed is a ebullient cooling device capable of improving heat exchange efficiency, and which allows the division of the liquid and gas components of a refrigerant in the condensing unit (30). The disclosed ebullient cooling device is provided with a housing unit housing a liquid refrigerant, and a condensing unit which forms an inner space, one end of which communicates with a communicating chamber, and the other end of which is sealed, and in which the bottom end of the communicating chamber side of the inner space is lower than the bottom end of the sealed side thereof. In the inner space of the condensing unit, multiple fins extending from one to the other lateral surface in the condensing unit are arranged in a row from the communicating chamber side toward the sealed side, and, at least for those of the multiple fins nearest the communicating chamber, the distance (a) between the top of the fins and the top surface in the condensing unit is greater than the distance (b) between the bottom of the fins and the bottom surface in the condensing unit, and the cross-section area of the passage above the fins on the side nearest the communicating chamber is greater than cross-section area of the passage below the fins on the side nearest the communicating chamber.

Description

沸騰冷却装置Boiling cooler
 本発明は、冷媒を用いて発熱体を冷却する沸騰冷却装置に関するものである。 The present invention relates to a boiling cooling device that cools a heating element using a refrigerant.
 沸騰冷却装置は、液体冷媒が沸騰する際の潜熱を利用して発熱体を冷却する装置である。沸騰冷却装置は液体冷媒を収容する収容部を備える。この収容部において発熱体の熱により沸騰した冷媒(蒸気冷媒)は、凝縮器内に流入し、そこで熱交換されて凝縮される。凝縮した液体冷媒は、再び収容部に環流する。このような沸騰冷却装置は、例えば、特開平10-173115号公報(特許文献1)に記載されている。 The boiling cooling device is a device that cools the heating element using latent heat generated when the liquid refrigerant boils. The boiling cooling device includes an accommodating portion that accommodates a liquid refrigerant. The refrigerant (vapor refrigerant) boiled by the heat of the heating element in this housing portion flows into the condenser, where it is heat-exchanged and condensed. The condensed liquid refrigerant circulates again to the storage unit. Such a boiling cooling device is described in, for example, Japanese Patent Laid-Open No. 10-173115 (Patent Document 1).
 昨今では、小型化及び凝縮性能向上の観点から、凝縮器を収容部の上部側方に設ける構成となっている。この構成であれば、凝縮器内で凝縮された液体冷媒は、凝縮器内の底面を流れて収容部に環流する。従来のように凝縮した液体冷媒が直接収容部に滴下する構成にした場合、凝縮器の凝縮性能を上げるために凝縮器の横幅を大きくすると、その分収容部の横幅も大きくしなければならず、装置が大型化してしまう。凝縮器を収容部の上部側方に配置する構成は、収容部の大きさを変えずに凝縮器の大きさを変えることができ、小型化と凝縮性能向上の点で有利な構成となる。 Recently, from the viewpoint of downsizing and improvement of condensation performance, a condenser is provided on the upper side of the housing portion. If it is this structure, the liquid refrigerant condensed in the condenser will flow through the bottom face in a condenser, and will circulate to an accommodating part. In the case where the condensed liquid refrigerant is dropped directly into the housing portion as in the conventional case, if the width of the condenser is increased in order to increase the condensation performance of the condenser, the width of the housing portion must be increased accordingly. The device becomes large. The structure which arrange | positions a condenser to the upper part side of an accommodating part can change the magnitude | size of a condenser, without changing the magnitude | size of an accommodating part, and becomes an advantageous structure at the point of size reduction and a condensation performance improvement.
特開平10-173115号公報JP-A-10-173115
 しかしながら、上記構成において、凝縮器の内部空間では、蒸気冷媒と液体冷媒とが混在する状態となり、蒸気冷媒の凝縮器内への流入と液体冷媒の収容部への流出とが必ずしも効率よく行われていなかった。 However, in the above configuration, in the internal space of the condenser, the vapor refrigerant and the liquid refrigerant are mixed, and the inflow of the vapor refrigerant into the condenser and the outflow of the liquid refrigerant into the storage portion are not necessarily performed efficiently. It wasn't.
 本発明は、このような事情に鑑みて為されたものであり、凝縮部内における気液の分流を可能とし、熱交換効率を向上させることができる沸騰冷却装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a boiling cooling device that enables a gas-liquid split in a condensing section and improves heat exchange efficiency.
 本発明の沸騰冷却装置は、発熱体の熱を受けて沸騰する液体冷媒を収容し、冷媒液面の上方に連通室を有する収容部と、一端が前記連通室に通じ他端が閉塞された内部空間を形成し、前記内部空間における前記連通室側下端が閉塞側下端よりも下方に位置する凝縮部と、を備える沸騰冷却装置であって、前記凝縮部の内部空間には、前記凝縮部内部の一方側面から他方側面に延びる複数のフィン部が前記連通室側から閉塞側に向かって並設され、前記複数のフィン部のうち少なくとも最も前記連通室側のフィン部は、前記フィン部の上端部と前記凝縮部の内部上面との距離が、前記フィン部の下端部と前記凝縮部の内部下面との距離よりも大きく、前記最も前記連通室側のフィン部の上方の通路断面積が前記最も前記連通室側のフィン部の下方の通路断面積よりも大きいことを特徴とする。 The boiling cooling device of the present invention accommodates a liquid refrigerant that boils by receiving heat from a heating element, a housing part having a communication chamber above the refrigerant liquid level, one end communicating with the communication chamber, and the other end closed. A condensing unit that forms an internal space, and the lower end on the side of the communication chamber in the inner space is located below the lower end on the closed side, wherein the condensing unit is provided in the inner space of the condensing unit. A plurality of fin portions extending from one side surface to the other side surface are arranged in parallel from the communication chamber side to the closing side, and at least the fin portion on the communication chamber side among the plurality of fin portions is the fin portion. The distance between the upper end portion and the inner upper surface of the condensing portion is larger than the distance between the lower end portion of the fin portion and the inner lower surface of the condensing portion, and the passage cross-sectional area above the fin portion closest to the communication chamber is Of the fin portion closest to the communication chamber It is larger than the passage cross-sectional area of square.
 本発明によれば、傾斜した凝縮部において、フィン部の上端部と凝縮部の内部上面との距離(以下「上部距離」とも称する)が、フィン部の下端部と凝縮部の内部下面との距離(以下「下部距離」とも称する)よりも大きく、凝縮部の内部空間におけるフィン部で仕切られた上面側の通路(以下「上部通路」とも称する)の開口面積が、下面側の通路(以下「下部通路」とも称する)の開口面積より大きくなっている。 According to the present invention, in the inclined condensing part, the distance between the upper end part of the fin part and the inner upper surface of the condensing part (hereinafter also referred to as “upper distance”) is between the lower end part of the fin part and the inner lower surface of the condensing part. The opening area of the upper surface side passage (hereinafter also referred to as “upper passage”) that is larger than the distance (hereinafter also referred to as “lower distance”) and is partitioned by the fin portion in the internal space of the condensing portion is the lower surface side passage (hereinafter referred to as “lower passage”). It is larger than the opening area of the “lower passage”.
 これにより、上部通路の流入抵抗が下部通路よりも小さくなり、蒸気冷媒は、下部通路よりも上部通路に流入し易くなる。また、下部通路においては、上記作用により、内部下面(底面)上を流れて収容部に流出する液体冷媒の流れに対し、蒸気冷媒の流入による妨害が抑制される。これによれば、蒸気冷媒は主に上部通路を流通し、液体冷媒は主に下部通路を流通することとなる。つまり、本発明の沸騰冷却装置では、凝縮部内における気液の分流が可能となる。これにより、冷媒循環が良好となり、熱交換効率の向上が可能となる。 Thereby, the inflow resistance of the upper passage becomes smaller than that of the lower passage, and the vapor refrigerant becomes easier to flow into the upper passage than in the lower passage. Further, in the lower passage, the above action suppresses the disturbance due to the inflow of the vapor refrigerant with respect to the flow of the liquid refrigerant flowing on the inner lower surface (bottom surface) and flowing out to the accommodating portion. According to this, the vapor refrigerant mainly circulates in the upper passage, and the liquid refrigerant mainly circulates in the lower passage. That is, in the boiling cooling device of the present invention, the gas-liquid can be divided in the condensing part. Thereby, the refrigerant circulation is good and the heat exchange efficiency can be improved.
 ここで、フィン部は、上下方向に延在するよう配置されることが好ましい。複数のフィン部により上下方向に複数の小通路が形成され、当該小通路により上部通路と下部通路が連通される。この小通路は、フィン部により区画されるため伝熱性能が高い通路となる。そして、上下方向に延在したフィン部を並設することで、当該小通路は、連通室側にも形成される。つまり、流入した蒸気冷媒を、短距離で伝熱性能の高い小通路に流入させることができ、熱交換効率を向上させることができる。 Here, it is preferable that the fin portion is arranged so as to extend in the vertical direction. A plurality of small passages are formed in the vertical direction by the plurality of fin portions, and the upper passage and the lower passage are communicated by the small passages. Since the small passage is partitioned by the fin portion, the passage has high heat transfer performance. And the said small channel | path is formed also in the communicating chamber side by arranging the fin part extended in the up-down direction in parallel. That is, the inflowing vapor refrigerant can be introduced into a small passage having a high heat transfer performance over a short distance, and heat exchange efficiency can be improved.
 ここで、すべてのフィン部について、上部距離が下部距離よりも大きいことが好ましい。これにより、上部通路の通路断面積が下部通路よりも大きくなり、蒸気冷媒に対する上部通路全体の抵抗を小さくすることができる。したがって、蒸気冷媒は、さらに上部通路に流入しやすくなる。 Here, it is preferable that the upper distance is larger than the lower distance for all the fin portions. Thereby, the passage cross-sectional area of the upper passage is larger than that of the lower passage, and the resistance of the entire upper passage to the vapor refrigerant can be reduced. Therefore, the vapor refrigerant is more likely to flow into the upper passage.
 ここで、複数のフィン部は、波形頂部が凝縮部の内部側面に接合する波形フィンからなることが好ましい。内部に1つの波形フィンを設置するだけで複数のフィン部が形成されるため、製造が容易となる。また、冷媒との伝熱面積を確実に増大させることができる。 Here, the plurality of fin portions are preferably formed of corrugated fins whose corrugated tops are joined to the inner side surface of the condensing unit. Since a plurality of fin portions are formed only by installing one corrugated fin inside, manufacturing is facilitated. In addition, the heat transfer area with the refrigerant can be reliably increased.
 ここで、凝縮部は、一方が閉塞されたチューブ部材からなることが好ましい。製造が容易となる上、凝縮部のコンパクト化(小型化)が可能となる。さらに、本発明の沸騰冷却装置は、複数の凝縮部を備えてもよい。また、この複数の凝縮部は、隣り合う凝縮部間に配置されたアウターフィンにより隣り合う凝縮部同士が連結されていることが好ましい。コンパクトで、且つ、効率よく凝縮性能を向上させることができる。 Here, the condensing part is preferably made of a tube member closed on one side. In addition to being easy to manufacture, the condensing part can be made compact (downsized). Furthermore, the boiling cooling device of the present invention may include a plurality of condensing units. Moreover, it is preferable that adjacent condensing parts are connected with the outer fin arrange | positioned between adjacent condensing parts. It is compact and can improve the condensation performance efficiently.
 本発明の沸騰冷却装置によれば、凝縮部内における気液の分流を可能とし、熱交換効率を向上させることができる。 According to the boiling cooling device of the present invention, the gas-liquid can be divided in the condensing part, and the heat exchange efficiency can be improved.
沸騰冷却装置1を示す斜視図である。1 is a perspective view showing a boiling cooling device 1. FIG. 沸騰冷却装置1を示す縦断面図である。1 is a longitudinal sectional view showing a boiling cooling device 1. FIG. 凝縮部30を示すA-A線断面図である。3 is a cross-sectional view taken along line AA showing the condensing unit 30. FIG. 凝縮部30を示すB-B線断面図である。3 is a cross-sectional view taken along line BB showing the condensing unit 30. FIG. 沸騰冷却装置10を示す縦断面図である。1 is a longitudinal sectional view showing a boiling cooling device 10. FIG. 凝縮部30を示すC-C線断面図である。5 is a cross-sectional view taken along the line CC showing the condensing unit 30. FIG. 凝縮部30の他の態様を示すC-C線断面図である。FIG. 6 is a cross-sectional view taken along line CC showing another aspect of the condensing unit 30. 凝縮部30の他の態様を示すC-C線断面図である。FIG. 6 is a cross-sectional view taken along line CC showing another aspect of the condensing unit 30. 凝縮部30を示すA-A線断面図に相当する断面図である。3 is a cross-sectional view corresponding to a cross-sectional view taken along line AA showing the condensing unit 30. FIG. 沸騰冷却装置100を示す縦断面図である。1 is a longitudinal sectional view showing a boiling cooling device 100. FIG.
 次に、実施形態を挙げ、本発明をより詳しく説明する。 Next, the present invention will be described in more detail with reference to embodiments.
 <第一実施形態>
 第一実施形態の沸騰冷却装置1について図1~図4を参照して説明する。図1は、沸騰冷却装置1を示す斜視図である。図2は、沸騰冷却装置1を示す縦断面図である。図3は、凝縮部30を示すA-A線断面図である。図4は、凝縮部30を示すB-B線断面図である。
<First embodiment>
A boiling cooling device 1 according to a first embodiment will be described with reference to FIGS. FIG. 1 is a perspective view showing a boiling cooling device 1. FIG. 2 is a longitudinal sectional view showing the boiling cooling device 1. FIG. 3 is a cross-sectional view taken along the line AA showing the condensing unit 30. FIG. 4 is a cross-sectional view taken along the line BB showing the condensing unit 30.
 図1に示すように、沸騰冷却装置1は、収容部2と、凝縮器3と、を備えている。収容部2は、内部に液体冷媒(例えば水、アルコール、フロン等)を収容する金属容器であって、容器部21と、連通部22と、を有している。容器部21は、上部に開口を有する有底角筒状の容器であって、内部に液体冷媒を収容する。液体冷媒の液面は、沸騰冷却装置1停止時に、容器部21内に位置している。容器部21の外部側面には発熱体Zが取り付けられ、容器部21の側面が発熱体Zの熱を伝熱し、内部の液体冷媒とで熱交換が行われる。発熱体Zは、例えば半導体素子等を含んだパワーモジュール等である。 As shown in FIG. 1, the boiling cooling device 1 includes a housing portion 2 and a condenser 3. The accommodating part 2 is a metal container that accommodates a liquid refrigerant (for example, water, alcohol, chlorofluorocarbon, etc.) therein, and has a container part 21 and a communication part 22. The container portion 21 is a bottomed rectangular tube-shaped container having an opening in the upper portion, and stores a liquid refrigerant therein. The liquid level of the liquid refrigerant is located in the container portion 21 when the boiling cooling device 1 is stopped. A heating element Z is attached to the outer side surface of the container part 21, and the side surface of the container part 21 transfers the heat of the heating element Z, and heat exchange is performed with the internal liquid refrigerant. The heating element Z is, for example, a power module including a semiconductor element or the like.
 連通部22は、略中空円柱状であり、容器部21の上方に位置している。連通部22の内部空間は、容器部21の内部空間に通じている。収容部2における液面上方の内部空間(連通部22内及び容器部21内上部)には、凝縮部3の内部空間に通じる連通室2aが形成されている。なお、収容部2の形状は、上記に限られない。例えば、連通部22は、図2左側の壁が上下に延在する平面状であるものや、断面形状が矩形であるものでもよい。 The communication part 22 has a substantially hollow cylindrical shape and is located above the container part 21. The internal space of the communication part 22 communicates with the internal space of the container part 21. A communication chamber 2 a that communicates with the internal space of the condensing unit 3 is formed in the internal space above the liquid level in the storage unit 2 (in the communication unit 22 and the upper part in the container unit 21). In addition, the shape of the accommodating part 2 is not restricted above. For example, the communication part 22 may have a planar shape in which the left wall in FIG. 2 extends vertically or a rectangular cross-sectional shape.
 凝縮器3は、複数の凝縮部30と、それら凝縮部30を連結するアウターフィン301と、を備えている。凝縮部30は、ケース部31と、複数のフィン部32と、からなっている。ケース部31は、一端が開口し、他端が閉塞された扁平筒状の金属部材で形成されている。図3に示すように、ケース部31の内部側面同士の離間距離cは、上下方向においてほぼ一定となっている。ケース部31の開口端部は、連通部22に接合されている。ケース部31の内部空間は、連通室2aに通じている。ケース部31は、内部空間における開口側下端(連通室2a側下端)が閉塞側下端よりも下方に位置している。つまり、ケース部31の内部底面(本発明の「内部下面」に相当する)は、開口端から閉塞端に向かうほど上方となるように傾斜している。本実施形態では、凝縮部30の内部底面と内部上面とは略平行となっている。なお、ケース部31は、2部品からなり、後述するフィン部32をケース部31の一方側面に接合(溶接等)した後に、ケース部31の一方側面側部材と他方側面側部材とを接合して形成される。 The condenser 3 includes a plurality of condensing units 30 and outer fins 301 that connect the condensing units 30. The condensing unit 30 includes a case unit 31 and a plurality of fin units 32. The case portion 31 is formed of a flat cylindrical metal member having one end opened and the other end closed. As shown in FIG. 3, the distance c between the inner side surfaces of the case portion 31 is substantially constant in the vertical direction. The opening end of the case portion 31 is joined to the communication portion 22. The internal space of the case part 31 leads to the communication chamber 2a. As for case part 31, the opening side lower end (communication chamber 2a side lower end) in internal space is located below the closure side lower end. That is, the inner bottom surface (corresponding to the “inner lower surface” of the present invention) of the case portion 31 is inclined so as to be higher as it goes from the open end to the closed end. In the present embodiment, the inner bottom surface and the inner upper surface of the condensing unit 30 are substantially parallel. The case portion 31 is composed of two parts. After a fin portion 32 (to be described later) is joined (welded or the like) to one side surface of the case portion 31, the one side surface member and the other side surface member of the case portion 31 are joined. Formed.
 フィン部32は、熱伝導率が高い板状の金属部材(例えばアルミニウム)で形成されている。フィン部32は、ケース部31内において、ケース部31内部の一方側面から他方側面に延びるように設置されている。具体的には、フィン部32の左右端部(図3における左右方向端部)がケース部31の内部側面にそれぞれ接合されている。なお、フィン部32は、フィン部32の左右端部の一方の端部のみがケース部31の内部側面に接合されて、他方の端部がケース部31の内部側面に接しない(届かない)大きさになっていてもよい。フィン部32は、一方の面が、ケース部31の開口端から閉塞端に向かう方向(以下、「長手方向」とも称する)に交差するように配置されている。本実施形態では、フィン部32は、前記一方の面が長手方向に対してほぼ直交するように配置されている。フィン部32により、凝縮部30における冷媒蒸気との伝熱面積は増大する。 The fin portion 32 is formed of a plate-like metal member (for example, aluminum) having a high thermal conductivity. The fin portion 32 is installed in the case portion 31 so as to extend from one side surface inside the case portion 31 to the other side surface. Specifically, left and right end portions (left and right end portions in FIG. 3) of the fin portion 32 are respectively joined to the inner side surface of the case portion 31. In addition, as for the fin part 32, only one edge part of the right-and-left end part of the fin part 32 is joined to the internal side surface of the case part 31, and the other edge part does not contact the internal side surface of the case part 31 (it does not reach). It may be a size. The fin portion 32 is disposed so that one surface thereof intersects the direction from the open end of the case portion 31 toward the closed end (hereinafter also referred to as “longitudinal direction”). In the present embodiment, the fin portion 32 is disposed so that the one surface is substantially orthogonal to the longitudinal direction. By the fin part 32, the heat transfer area with the refrigerant | coolant vapor | steam in the condensation part 30 increases.
 複数のフィン部32は、凝縮部30の長手方向に間隔を空けて並設されている。図3及び図4に示すように、フィン部32は、上下方向に延在し、対向するフィン部32同士の間には上下に延びる小通路30cが形成されている。複数のフィン部32は、すべて、フィン部32の上端部とケース部31の内部上面との距離aが、フィン部32の下端部とケース部31の内部底面との距離bよりも大きくなるように配置されている(a>b)。 The plurality of fin portions 32 are arranged in parallel at intervals in the longitudinal direction of the condensing portion 30. As shown in FIGS. 3 and 4, the fin portion 32 extends in the vertical direction, and a small passage 30 c extending in the vertical direction is formed between the opposing fin portions 32. In all of the plurality of fin portions 32, the distance a between the upper end portion of the fin portion 32 and the inner upper surface of the case portion 31 is larger than the distance b between the lower end portion of the fin portion 32 and the inner bottom surface of the case portion 31. (A> b).
 ケース部31の内部空間は、複数のフィン部32により、上部通路30a、下部通路30b、及び、複数の小通路30cに区画されている。上部通路30aは、フィン部32の上方に形成された通路であって、ケース部31の開口端から閉塞端にかけてケース部31の内部上面に沿って延びる通路である。下部通路30bは、フィン部32の下方に形成された通路であって、ケース部31の開口端から閉塞端にかけてケース部31の内部底面に沿って延びる通路である。小通路30cは、上部通路30aと下部通路30bとを連通する上下に延びる通路である。 The internal space of the case portion 31 is divided into an upper passage 30a, a lower passage 30b, and a plurality of small passages 30c by a plurality of fin portions 32. The upper passage 30 a is a passage formed above the fin portion 32 and extends along the inner upper surface of the case portion 31 from the open end to the closed end of the case portion 31. The lower passage 30b is a passage formed below the fin portion 32 and extends along the inner bottom surface of the case portion 31 from the open end to the closed end of the case portion 31. The small passage 30c is a passage extending vertically to communicate the upper passage 30a and the lower passage 30b.
 ここで、沸騰冷却装置1の作用効果について説明する。発熱体Zの熱は、容器部21の側面を介して液体冷媒に伝わり、液体冷媒を沸騰させる。沸騰した蒸気冷媒は、気泡となって上昇し、連通室2aへ流出する。その後、蒸気冷媒は、上昇し、連通部22内の連通室2aから凝縮部30内に流入する。凝縮部30内に流入した蒸気冷媒は、そこで冷却(熱交換)され、凝縮して液体冷媒となる。凝縮された液体冷媒は、凝縮部30の内部底面上を流れ、連通室2aに流出した後、容器部21内に環流する。 Here, the effect of the boiling cooling device 1 will be described. The heat of the heating element Z is transmitted to the liquid refrigerant through the side surface of the container portion 21 to boil the liquid refrigerant. The boiling vapor refrigerant rises as bubbles and flows out into the communication chamber 2a. Thereafter, the vapor refrigerant rises and flows into the condensing unit 30 from the communication chamber 2 a in the communication unit 22. The vapor refrigerant that has flowed into the condensing unit 30 is cooled (heat exchanged) there and condensed to become a liquid refrigerant. The condensed liquid refrigerant flows on the inner bottom surface of the condensing unit 30, flows out into the communication chamber 2 a, and then circulates in the container unit 21.
 本実施形態において、まず、最も連通室2a側のフィン部32は、距離bより距離aが大きくなるように配置されている。このため、凝縮部30内において、上部通路30aの開口面積は、下部通路30bの開口面積より大きい。つまり、蒸気冷媒の上部通路30aへの流入抵抗が、下部通路30bへの流入抵抗よりも小さい。これにより、蒸気冷媒は、連通室2aから凝縮部30内に流入するにあたり、上部通路30aに流入し易くなる。 In the present embodiment, first, the fin portion 32 closest to the communication chamber 2a is arranged such that the distance a is larger than the distance b. For this reason, in the condensing part 30, the opening area of the upper channel | path 30a is larger than the opening area of the lower channel | path 30b. That is, the inflow resistance of the vapor refrigerant to the upper passage 30a is smaller than the inflow resistance to the lower passage 30b. Accordingly, the vapor refrigerant easily flows into the upper passage 30a when flowing into the condensing unit 30 from the communication chamber 2a.
 さらに、本実施形態では、すべてのフィン部32がa>bの関係で配置されており、上部通路30aの通路断面積は、下部通路30bの通路断面積より大きい。これにより、凝縮部30内全域において、下部通路30bよりも上部通路30aのほうが流れ抵抗が小さくなる。連通室2aに流入した蒸気冷媒は、主として上部通路30aに流入するようになる。 Furthermore, in the present embodiment, all the fin portions 32 are arranged in a relationship of a> b, and the passage sectional area of the upper passage 30a is larger than the passage sectional area of the lower passage 30b. Thereby, in the whole condensing part 30, the flow resistance becomes smaller in the upper passage 30a than in the lower passage 30b. The vapor refrigerant flowing into the communication chamber 2a mainly flows into the upper passage 30a.
 そして、上部通路30aに流入した蒸気冷媒は、凝縮部30内を閉塞端に向けて進むと共に、小通路30cにも流入する。蒸気冷媒は、フィン部32やケース部31の壁面に熱を伝熱し、凝縮されて液体冷媒となる。蒸気冷媒は、フィン部32の伝熱面を含む小通路30cにて主に凝縮される。凝縮された液体冷媒は、小通路30cを介して下部通路30bへ流出し、下部通路30bを通って連通室2aへ流出する。下部通路30bには、連通室2aから蒸気冷媒が流入しにくく、主に凝縮した液体冷媒が流れるようになる。 The vapor refrigerant that has flowed into the upper passage 30a proceeds toward the closed end in the condensing unit 30 and also flows into the small passage 30c. The vapor refrigerant transfers heat to the wall surfaces of the fin portion 32 and the case portion 31 and is condensed to become a liquid refrigerant. The vapor refrigerant is mainly condensed in the small passage 30 c including the heat transfer surface of the fin portion 32. The condensed liquid refrigerant flows out to the lower passage 30b through the small passage 30c, and flows out to the communication chamber 2a through the lower passage 30b. Vapor refrigerant hardly flows from the communication chamber 2a into the lower passage 30b, and mainly condensed liquid refrigerant flows.
 このように、本実施形態によれば、主として、上部通路30aに蒸気冷媒が流通し、下部通路30bに液体冷媒が流通する。つまり、沸騰冷却装置1では、凝縮部30内で冷媒の気液分流が可能となる。これにより、凝縮部30内を効率よく冷媒流通させ、熱交換効率を向上させることができる。さらに、本実施形態では、伝熱面積を増大させるフィン部32により内部空間を区画しているため、気液分流と伝熱面積増大の相乗効果により熱交換効率を向上させることができる。 Thus, according to the present embodiment, the vapor refrigerant mainly circulates in the upper passage 30a and the liquid refrigerant circulates in the lower passage 30b. That is, in the boiling cooling device 1, the gas-liquid splitting of the refrigerant is possible in the condensing unit 30. Thereby, the refrigerant | coolant can be efficiently distribute | circulated through the condensation part 30, and heat exchange efficiency can be improved. Furthermore, in this embodiment, since the internal space is partitioned by the fin part 32 that increases the heat transfer area, the heat exchange efficiency can be improved by the synergistic effect of the gas-liquid split flow and the heat transfer area increase.
 また、複数の小通路30aが並列配置されているため、上部通路30a内で蒸気冷媒の乱流が生じやすくなる。蒸気冷媒の乱流が生じると、フィン部32やケース部31の壁面との熱交換が促進され、凝縮部30の熱交換効率が向上するため有利である。また、小通路30cを上下方向に延びるように形成することで、小通路30a(すなわち凝縮性能が高い通路)を蒸気冷媒流入側(ケース部31の開口端側)に形成することができる。これにより、蒸気冷媒を短い流通距離で凝縮させることができ、凝縮効率を向上させることができる。また、フィン部32の位置を変更するだけで、上部通路30aの開口面積を調整できるため、製造又は調製が容易である。 Further, since the plurality of small passages 30a are arranged in parallel, the turbulent flow of the vapor refrigerant easily occurs in the upper passage 30a. When the turbulent flow of the vapor refrigerant occurs, heat exchange with the wall surfaces of the fin portion 32 and the case portion 31 is promoted, and the heat exchange efficiency of the condensing portion 30 is improved, which is advantageous. Further, by forming the small passage 30c so as to extend in the vertical direction, the small passage 30a (that is, a passage having high condensation performance) can be formed on the vapor refrigerant inflow side (opening end side of the case portion 31). Thereby, a vapor refrigerant can be condensed with a short distribution distance, and condensation efficiency can be improved. Moreover, since the opening area of the upper channel | path 30a can be adjusted only by changing the position of the fin part 32, manufacture or preparation is easy.
 また、本実施形態のように下部通路30bに複数の小通路30cが通じる構成は、凝縮性能を向上させると共に、液体冷媒を収容する部位(容器部21)を小さくすることができる。これにより、車両等への搭載性も向上し、搭載性においても有利である。 Further, the configuration in which the plurality of small passages 30c communicate with the lower passage 30b as in the present embodiment can improve the condensing performance and reduce the portion (container portion 21) that accommodates the liquid refrigerant. Thereby, the mounting property to a vehicle etc. improves, and it is advantageous also in mounting property.
 このように、本実施形態の沸騰冷却装置1によれば、凝縮部30内での気液分流を可能とし、熱交換効率を向上させることができる。 Thus, according to the boiling cooling device 1 of the present embodiment, it is possible to make a gas-liquid flow in the condensing unit 30 and to improve the heat exchange efficiency.
 <第二実施形態>
 第二実施形態の沸騰冷却装置10は、第一実施形態の凝縮部を変更したものであり、他の構成については、同符号を付して説明を省略する。以下、第二実施形態について図5~図9を参照して説明する。図5は、沸騰冷却装置10を示す縦断面図である。図6は、凝縮部30を示すC-C線断面図である。図7は、凝縮部30の他の態様を示すC-C線断面図である。図8は、凝縮部30の他の態様を示すC-C線断面図である。図9は、凝縮部30を示すA-A線断面図に相当する断面図である。
<Second embodiment>
The boiling cooling device 10 of the second embodiment is obtained by changing the condensing unit of the first embodiment, and the other components are denoted by the same reference numerals and description thereof is omitted. The second embodiment will be described below with reference to FIGS. FIG. 5 is a longitudinal sectional view showing the boiling cooling device 10. FIG. 6 is a cross-sectional view taken along the line CC showing the condensing unit 30. FIG. 7 is a cross-sectional view taken along line CC showing another aspect of the condensing unit 30. FIG. 8 is a cross-sectional view taken along line CC showing another aspect of the condensing unit 30. FIG. 9 is a cross-sectional view corresponding to the cross-sectional view taken along the line AA showing the condensing unit 30.
 図5に示すように、凝縮部30は、ケース部31と、波形フィン33と、からなっている。ケース部31は、一端が閉塞された金属製のチューブ部材からなっている。ケース部31内には、後述の波形フィン33が挿入され固定される。 As shown in FIG. 5, the condensing unit 30 includes a case unit 31 and corrugated fins 33. Case part 31 consists of a metal tube member with one end closed. A corrugated fin 33 to be described later is inserted and fixed in the case portion 31.
 波形フィン33は、熱伝達率の高い薄い金属板(例えばアルミニウム等)を、所定のピッチで交互に折り曲げて波状に成形したものである。図6に示すように、波形フィン33における波形の頂部は、ケース部31の内部側面に接合されている。つまり、波形フィン33は、ケース部31内部の一方側面から他方側面に延びる複数のフィン部331を備えている。フィン部331は、第一実施形態同様、上下方向に延在している。つまり、第一実施形態同様、小通路30cは、上下方向に延びている。 The corrugated fins 33 are formed by forming a thin metal plate (for example, aluminum or the like) having a high heat transfer rate into a wave shape by alternately bending at a predetermined pitch. As shown in FIG. 6, the top of the corrugated fin 33 is joined to the inner side surface of the case 31. That is, the corrugated fin 33 includes a plurality of fin portions 331 extending from one side surface inside the case portion 31 to the other side surface. The fin part 331 is extended in the up-down direction like 1st embodiment. That is, like the first embodiment, the small passage 30c extends in the vertical direction.
 波形フィン33は、ケース部31内において、すべてのフィン部331がa>bとなるように配置されている。これにより、第二実施形態においても、第一実施形態と同様の効果が発揮される。さらに、第二実施形態では、ケース部31内に複数のフィン部331が形成された1つのフィン(波形フィン33)を設置するだけでよく、凝縮部30の製造が極めて容易となる。また、ケース部31にチューブ部材を用いているため、凝縮部30及び凝縮器3を、容易且つコンパクトに製造することができる。なお、波形フィン33は、上記形状に限られない。波形フィン33は、例えば、図7に示すように、角状に折れ曲がったものでもよい。 The corrugated fins 33 are arranged in the case portion 31 so that all the fin portions 331 satisfy a> b. Thereby, also in 2nd embodiment, the effect similar to 1st embodiment is exhibited. Furthermore, in the second embodiment, it is only necessary to install one fin (corrugated fin 33) in which a plurality of fin portions 331 are formed in the case portion 31, and the manufacture of the condensing portion 30 becomes extremely easy. Moreover, since the tube member is used for the case part 31, the condensation part 30 and the condenser 3 can be manufactured easily and compactly. The corrugated fins 33 are not limited to the above shape. For example, as shown in FIG. 7, the corrugated fins 33 may be bent into a square shape.
 また、複数のフィン部32(331)は、ケース部31と別体でなくともよく、図8に示すように、ディンプルフィンであってもよい。これは、ケース部31の一方側壁に複数の凹部を並設することで形成される。 Further, the plurality of fin portions 32 (331) may not be separate from the case portion 31, and may be dimple fins as shown in FIG. This is formed by arranging a plurality of concave portions in parallel on one side wall of the case portion 31.
 また、ケース部31の内部側面距離(第一実施形態のcに相当する内部空間の横幅)は、一定に限られず、図9に示すように、上下対称になっていてもよい。つまり、凝縮部30の内部空間の横幅(内部側面同士の離間距離)は上下対称か、あるいは上下方向にほぼ一定となっていればよい。この場合、フィン部32(331)の上端部と凝縮部3の内部上面との距離aが、フィン部32(331)の下端部と凝縮部3の内部底面との距離bよりも大きくなれば、必ず上部通路30aの通路断面積が下部通路30bの通路断面積よりも大きくなる。ただし、ケース部31の内部側面距離が上下方向で一定もしくは上下対称となっていなくても、距離aを距離bよりも大きくすることで上部通路30aの通路断面積が下部通路30bの通路断面積よりも大きくなっていればよい。 Further, the inner side surface distance (the lateral width of the inner space corresponding to c in the first embodiment) of the case portion 31 is not limited to a constant value, and may be vertically symmetric as shown in FIG. That is, the width of the internal space of the condensing unit 30 (the distance between the inner side surfaces) may be symmetrical in the vertical direction or substantially constant in the vertical direction. In this case, if the distance a between the upper end portion of the fin portion 32 (331) and the inner upper surface of the condensing portion 3 is larger than the distance b between the lower end portion of the fin portion 32 (331) and the inner bottom surface of the condensing portion 3. The passage sectional area of the upper passage 30a is always larger than the passage sectional area of the lower passage 30b. However, even if the inner side surface distance of the case portion 31 is not constant or symmetrical in the vertical direction, the passage cross-sectional area of the upper passage 30a can be changed to the passage cross-sectional area of the lower passage 30b by making the distance a larger than the distance b. It only needs to be larger than.
 <第三実施形態>
 第三実施形態の沸騰冷却装置100は、第二実施形態の収容部を変更したものであり、他の構成は、同符号を付して説明を省略する。図10は、沸騰冷却装置100を示す縦断面図である。
<Third embodiment>
The boiling cooling device 100 of the third embodiment is obtained by changing the housing portion of the second embodiment, and the other components are denoted by the same reference numerals and description thereof is omitted. FIG. 10 is a longitudinal sectional view showing the boiling cooling device 100.
 図10に示すように、収容部2は、容器部21内に仕切壁部23を有している。仕切壁部23は、板状部材であって、発熱体Zが取り付けられた容器部21の側壁に対向して配置されている。仕切壁部23は、容器部21の内部空間を沸騰通路Xと環流通路Yとに仕切っている。仕切壁部23は、容器部21内部側面に接合されているが、容器部21の内部底面には接合されていない。このため、沸騰通路Xと環流通路Yとは下方でつながっている。仕切壁部23の上端は、連通部22内に位置している。 As shown in FIG. 10, the accommodating portion 2 has a partition wall portion 23 in the container portion 21. The partition wall portion 23 is a plate-like member and is disposed to face the side wall of the container portion 21 to which the heating element Z is attached. The partition wall part 23 partitions the internal space of the container part 21 into a boiling passage X and a reflux passage Y. The partition wall portion 23 is joined to the inner side surface of the container portion 21, but is not joined to the inner bottom surface of the container portion 21. For this reason, the boiling passage X and the reflux passage Y are connected downward. The upper end of the partition wall portion 23 is located in the communication portion 22.
 沸騰通路Xは、容器部21の内部側面、内部底面、および、仕切壁部23で囲まれた空間であって、発熱体Z配置側(図10における左側)の領域である。沸騰通路Xは、上下方向に延び、上端で連通室2aに通じ、下端で環流通路Yに通じている。沸騰通路Xは、発熱体Zの取り付けられた側壁からの受熱により沸騰した蒸気冷媒を連通室2aに流出させる通路である。 The boiling passage X is a space surrounded by the inner side surface, the inner bottom surface, and the partition wall portion 23 of the container portion 21 and is a region on the heating element Z arrangement side (left side in FIG. 10). The boiling passage X extends in the vertical direction, communicates with the communication chamber 2a at the upper end and communicates with the circulation passage Y at the lower end. The boiling passage X is a passage through which the vapor refrigerant boiled by heat received from the side wall to which the heating element Z is attached flows out into the communication chamber 2a.
 環流通路Yは、容器部21の内部側面、内部底面、および、仕切壁部23で囲まれた空間であって、発熱体Zが配置されていない側(図10における右側)の領域である。環流通路Yは、上下方向に延び、上端で連通室2aに通じ、下端で沸騰通路Xに通じている。環流通路Yは、上端から凝縮部30で凝縮された液体冷媒が流入し、下端から沸騰通路Xに液体冷媒を供給する通路である。液体冷媒は、自重により環流通路Yから沸騰通路Xに向かって流れる(図10矢印参照)。凝縮器3は、発熱体Z(図10の左側)とは反対側(図10の右側)に取り付けられている。したがって、環流通路Yは、発熱体Zが配置されていない側、すなわち凝縮部30が配置されている側に形成されている。 The circulation path Y is a space surrounded by the inner side surface, the inner bottom surface, and the partition wall portion 23 of the container portion 21, and is a region on the side where the heating element Z is not disposed (right side in FIG. 10). The circulation passage Y extends in the vertical direction, communicates with the communication chamber 2a at the upper end, and communicates with the boiling passage X at the lower end. The circulation passage Y is a passage through which liquid refrigerant condensed in the condensing unit 30 flows from the upper end and supplies the liquid refrigerant to the boiling passage X from the lower end. The liquid refrigerant flows from the circulation passage Y toward the boiling passage X by its own weight (see arrow in FIG. 10). The condenser 3 is attached to the opposite side (right side in FIG. 10) to the heating element Z (left side in FIG. 10). Therefore, the circulation passage Y is formed on the side where the heating element Z is not arranged, that is, the side where the condensing part 30 is arranged.
 第三実施形態の沸騰冷却装置100によれば、第二実施形態同様、凝縮部30内で冷媒の気液分流が可能となる。さらに、容器部21内においては、蒸気冷媒の通る沸騰通路Xと液体冷媒が環流する環流通路Yとが形成されている。還流通路Yは、沸騰通路Xよりも凝縮部30の開口側に位置しているため、凝縮部30(下部通路30b)から流出した液体冷媒は、環流通路Yに流入する。また、仕切壁部23の上端が連通部22内に位置しているため、蒸気冷媒は、さらに下部通路30bでなく、上部通路30aに流入し易くなっている。つまり、第三実施形態の沸騰冷却装置100によれば、図10の矢印に示すように、沸騰冷却装置100全体において、冷媒の大きな流れが形成可能となる。これにより、冷媒は、沸騰冷却装置100内を効率よく且つスムーズに循環でき、収容部2での相乗的に熱交換効率を向上させることができる。なお、フィン部331は、第一実施形態のフィン部32でもよい。 According to the boiling cooling device 100 of the third embodiment, the gas-liquid flow of the refrigerant can be performed in the condensing unit 30 as in the second embodiment. Further, a boiling passage X through which the vapor refrigerant passes and a circulation passage Y through which the liquid refrigerant circulates are formed in the container portion 21. Since the reflux passage Y is located closer to the opening side of the condensing unit 30 than the boiling passage X, the liquid refrigerant that has flowed out of the condensing unit 30 (lower passage 30b) flows into the circulation passage Y. Moreover, since the upper end of the partition wall part 23 is located in the communicating part 22, the vapor refrigerant is more likely to flow into the upper passage 30a instead of the lower passage 30b. That is, according to the boiling cooling device 100 of the third embodiment, a large flow of the refrigerant can be formed in the entire boiling cooling device 100 as shown by the arrows in FIG. Thereby, a refrigerant | coolant can circulate through the boiling cooling device 100 efficiently and smoothly, and can improve heat exchange efficiency in the accommodating part 2 synergistically. The fin portion 331 may be the fin portion 32 of the first embodiment.
 なお、フィン部32(331)は、凝縮部3(ケース部31)内部空間の断面形状(長手方向に直交する断面)が円形や楕円形の場合、凝縮部3内で水平方向において対向する2つの内壁面のうち、一方の内壁面から他方の内壁面に向けて延びるよう形成されればよい。つまり、凝縮部内部の「一方側面」には、凝縮部3内で水平方向に対向する一方の内壁面が含まれ、「他方側面」には、凝縮部3内で当該一方の内壁面に対向する他方の内壁面が含まれる。また、この場合、内部上面は、凝縮部3の断面形状における上端部をつないだ線状となり、内部下面は、当該断面積における下端部をつないだ線状となる。 The fin portion 32 (331) is opposed to the condensing portion 3 in the horizontal direction when the cross-sectional shape (cross section orthogonal to the longitudinal direction) of the condensing portion 3 (case portion 31) is circular or elliptical. Of the two inner wall surfaces, it may be formed so as to extend from one inner wall surface toward the other inner wall surface. In other words, the “one side surface” inside the condensing unit includes one inner wall surface that faces in the horizontal direction in the condensing unit 3, and the “other side surface” faces the one inner wall surface in the condensing unit 3. The other inner wall surface is included. In this case, the inner upper surface is a line connecting the upper ends of the cross-sectional shape of the condensing part 3, and the inner lower surface is a line connecting the lower ends of the cross-sectional area.
1、10、100:沸騰冷却装置、
2:収容部、 21:容器部、 22:連通部、 2a:連通室、 23:仕切壁部、
3:凝縮器、 30:凝縮部、 31:ケース部、 32、331:フィン部、
33:波形フィン、 
30a:上部通路、 30b:下部通路、 30c:小通路、
X:沸騰通路、 Y:環流通路、 Z:発熱体
1, 10, 100: boiling cooling device,
2: storage part, 21: container part, 22: communication part, 2a: communication room, 23: partition wall part,
3: Condenser, 30: Condensing part, 31: Case part, 32, 331: Fin part,
33: Corrugated fin,
30a: upper passage, 30b: lower passage, 30c: small passage,
X: Boiling passage, Y: Circulation passage, Z: Heating element

Claims (7)

  1.  発熱体の熱を受けて沸騰する液体冷媒を収容し、冷媒液面の上方に連通室を有する収容部と、
     一端が前記連通室に通じ他端が閉塞された内部空間を形成し、前記内部空間における前記連通室側下端が閉塞側下端よりも下方に位置する凝縮部と、
     を備える沸騰冷却装置であって、
     前記凝縮部の内部空間には、前記凝縮部内部の一方側面から他方側面に向かって延びる複数のフィン部が前記連通室側から閉塞側に向かって並設され、
     前記複数のフィン部のうち少なくとも最も前記連通室側のフィン部は、前記フィン部の上端部と前記凝縮部の内部上面との距離が、前記フィン部の下端部と前記凝縮部の内部下面との距離よりも大きく、前記最も前記連通室側のフィン部の上方の通路断面積が前記最も前記連通室側のフィン部の下方の通路断面積よりも大きいことを特徴とする沸騰冷却装置。
    A liquid refrigerant that boils by receiving heat from the heating element is housed, and a housing part that has a communication chamber above the liquid surface of the refrigerant,
    A condensing part in which one end communicates with the communication chamber and the other end is closed to form an internal space, and the communication chamber side lower end in the internal space is located below the closed side lower end;
    A boiling cooling device comprising:
    In the internal space of the condensing unit, a plurality of fins extending from one side surface to the other side surface inside the condensing unit are arranged in parallel from the communication chamber side to the closing side,
    Among the plurality of fin portions, at least the fin portion on the side of the communication chamber has a distance between the upper end portion of the fin portion and the inner upper surface of the condensing portion, and the lower end portion of the fin portion and the inner lower surface of the condensing portion. And a passage cross-sectional area above the fin portion closest to the communication chamber is larger than a cross-sectional area below the fin portion closest to the communication chamber.
  2.  前記フィン部は、上下方向に延在するよう配置される請求項1に記載の沸騰冷却装置。 The boiling cooling device according to claim 1, wherein the fin portion is arranged to extend in a vertical direction.
  3.  前記複数のフィン部のすべてのフィン部は、前記フィン部の上端部と前記凝縮部の内部上面との距離が、前記フィン部の下端部と前記凝縮部の内部下面との距離よりも大きい請求項1又は2に記載の沸騰冷却装置。 In all the fin portions of the plurality of fin portions, the distance between the upper end portion of the fin portion and the inner upper surface of the condensing portion is larger than the distance between the lower end portion of the fin portion and the inner lower surface of the condensing portion. Item 3. The boiling cooling device according to Item 1 or 2.
  4.  前記複数のフィン部は、波形頂部が前記凝縮部の内部側面に接合する波状のフィンからなる請求項1~3の何れか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 3, wherein the plurality of fin portions are wavy fins whose corrugated top portions are joined to the inner side surface of the condensing portion.
  5.  前記凝縮部は、一端が閉塞されたチューブ部材からなる請求項1~4の何れか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 4, wherein the condensing part is made of a tube member closed at one end.
  6.  複数の前記凝縮部を備える請求項1~5の何れか一項に記載の沸騰冷却装置。 The boiling cooling device according to any one of claims 1 to 5, comprising a plurality of the condensing units.
  7.  前記複数の凝縮部は、隣り合う前記凝縮部間に配置されたアウターフィンにより前記隣り合う凝縮部同士が連結されている請求項6に記載の沸騰冷却装置 The boiling cooling device according to claim 6, wherein the plurality of condensing units are connected to each other by an outer fin disposed between the condensing units adjacent to each other.
PCT/JP2011/000667 2010-03-19 2011-02-07 Ebullient cooling device WO2011114616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-065171 2010-03-19
JP2010065171A JP2011196632A (en) 2010-03-19 2010-03-19 Ebullient cooling device

Publications (1)

Publication Number Publication Date
WO2011114616A1 true WO2011114616A1 (en) 2011-09-22

Family

ID=44648732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000667 WO2011114616A1 (en) 2010-03-19 2011-02-07 Ebullient cooling device

Country Status (2)

Country Link
JP (1) JP2011196632A (en)
WO (1) WO2011114616A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022184244A1 (en) * 2021-03-03 2022-09-09 Huawei Technologies Co., Ltd. Heat sink comprising container for accommodating cooling fluid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073696A1 (en) * 2011-11-18 2013-05-23 日本電気株式会社 Cooling device and electronic device using same
TW201346500A (en) * 2012-05-02 2013-11-16 Microtips Electronics Co Ltd Heat dissipation device
KR101749927B1 (en) * 2015-12-01 2017-06-22 대덕이엠지호렙산전력 주식회사 Fast Heat Transferring Device Using Refrigerant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878589A (en) * 1994-07-04 1996-03-22 Nippondenso Co Ltd Boiling/cooling device
JPH10173115A (en) * 1996-12-06 1998-06-26 Toshiba Corp Ebullient cooling device and its manufacture
JP2007327719A (en) * 2006-06-09 2007-12-20 Denso Corp Exhaust heat recovery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878589A (en) * 1994-07-04 1996-03-22 Nippondenso Co Ltd Boiling/cooling device
JPH10173115A (en) * 1996-12-06 1998-06-26 Toshiba Corp Ebullient cooling device and its manufacture
JP2007327719A (en) * 2006-06-09 2007-12-20 Denso Corp Exhaust heat recovery device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022184244A1 (en) * 2021-03-03 2022-09-09 Huawei Technologies Co., Ltd. Heat sink comprising container for accommodating cooling fluid

Also Published As

Publication number Publication date
JP2011196632A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
US6863119B2 (en) Cooling device boiling and condensing refrigerant
WO2011114616A1 (en) Ebullient cooling device
EP3742101B1 (en) Ebullient cooler
US10729040B2 (en) Cooler, power conversion apparatus, and cooling system
JP2011108685A (en) Natural circulation type boiling cooler
KR20070115312A (en) A heatpipe module for cooling devices
JP2012234928A (en) Ebullient cooling device
JP5827559B2 (en) Cooler
JP3924674B2 (en) Boiling cooler for heating element
JP7002410B2 (en) Parts cooling device
JP2014033015A (en) Cooler
CN219392576U (en) Immersed liquid cooling server
JP2019079836A (en) Liquid-cooled cooler
KR101855850B1 (en) Integrated heat exchanger
JP2001068611A (en) Boiling cooler
KR102623209B1 (en) Cooling device
KR20090094917A (en) Radiator with built-in oil cooler
JPH10321778A (en) Ebullition-cooling equipment
JP2000156445A (en) Boiling cooling device
JP3975252B2 (en) Boiling cooler for electric vehicles
CN113641231A (en) Cold drawing device and server
JP2000205721A (en) Evaporative cooling device
JP2000049265A (en) Boiling cooler
JP2000065454A (en) Ebullient cooler
JP2000065455A (en) Ebullient cooler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755809

Country of ref document: EP

Kind code of ref document: A1