WO2022194161A1 - 电子雾化装置、电源机构和雾化器的识别方法 - Google Patents

电子雾化装置、电源机构和雾化器的识别方法 Download PDF

Info

Publication number
WO2022194161A1
WO2022194161A1 PCT/CN2022/080990 CN2022080990W WO2022194161A1 WO 2022194161 A1 WO2022194161 A1 WO 2022194161A1 CN 2022080990 W CN2022080990 W CN 2022080990W WO 2022194161 A1 WO2022194161 A1 WO 2022194161A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
atomizer
resistance
power
value
Prior art date
Application number
PCT/CN2022/080990
Other languages
English (en)
French (fr)
Inventor
陈汉良
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP22770514.2A priority Critical patent/EP4309523A1/en
Publication of WO2022194161A1 publication Critical patent/WO2022194161A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the embodiments of the present application relate to the technical field of electronic atomization, and in particular, to an identification method of an electronic atomization device, a power supply mechanism and an atomizer.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke.
  • Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • An example of such a product is an electronic vaping product, which vaporizes a liquid substrate by heating it, thereby producing an inhalable vapor or aerosol.
  • the liquid base may contain nicotine and/or fragrance and/or aerosol-generating substances (eg, glycerin).
  • a replaceable nebulizer with storage components for containing the liquid matrix.
  • the liquid matrices stored in nebulizers may vary significantly in composition, taste, concentration, or other characteristics, and consumers may wish to interchange nebulizers at will. However, optimal vaporization conditions may depend on the composition of the liquid matrix stored in the nebulizer. Therefore, it would be desirable to include an automatic identification device in the nebulizer that can identify the replaceable nebulizer or liquid matrix stored therein in order to automatically change the control settings of the vaporization device accordingly.
  • An embodiment of the present application provides an electronic atomization device, including an atomizer for atomizing a liquid substrate to generate aerosol, and a power supply mechanism for supplying power to the atomizer; the atomizer includes an atomizer for heating atomization A heating element for a liquid substrate; the power supply mechanism includes:
  • a cell configured to supply power to the heating element
  • the controller identifies the atomizer based on the power provided by the battery to the heating element and the resistance change produced by the heating element.
  • the controller is configured to:
  • the TCR value of the heating element is determined based on the electric power provided by the cell to the heating element and the resistance change generated by the heating element; and the atomizer is identified according to the TCR value of the heating element.
  • the resistance change comprises a time curve of the resistance of the heating element.
  • the change in resistance comprises a rate of change in resistance of the heating element.
  • the change in resistance comprises the resistance value at which the resistance of the heating element rises to a substantially constant value, or a difference from an initial resistance value.
  • the controller is configured to:
  • the change in resistance of the heating element is compared to a threshold range, and the power provided by the cell to the heating element is varied based on the comparison.
  • the controller is configured to:
  • the controller is configured to:
  • the resistance of the heating element increases to a substantially constant resistance value or the difference between the initial resistance value and a threshold range, and when the resistance value or difference is greater than the maximum value of the threshold range or less than the maximum value of the threshold range.
  • the cell is prevented from supplying power to the heating element at the minimum value of the preset threshold range.
  • the cells are configured to provide predetermined electrical power to the heating element.
  • the cells are configured to power the heating element in a constant power output manner.
  • Yet another embodiment of the present application also provides a power supply mechanism for supplying power to an atomizer of an electronic atomization device;
  • the atomizer includes a heating element for heating an atomized liquid substrate to generate an aerosol;
  • the power supply Institutions include:
  • a cell configured to supply power to the heating element
  • the controller identifies the atomizer based on the power provided by the battery to the heating element and the resistance change produced by the heating element.
  • Yet another embodiment of the present application also provides a method for identifying an atomizer, the atomizer comprising a heating element for heating an atomized liquid substrate to generate an aerosol; the method includes the following steps:
  • the heating element is powered and the nebulizer is identified based on the power supplied to the heating element and the change in resistance produced by the heating element.
  • the above electronic atomization device automatically recognizes the atomizer through the resistance change of the heating element under the detection power.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application.
  • Fig. 2 is a schematic cross-sectional view of an embodiment of the atomizer in Fig. 1;
  • Fig. 3 is the structural representation of the porous body in Fig. 2 from a viewing angle
  • Fig. 4 is the structural representation of the porous body in Fig. 2 from another perspective;
  • Fig. 5 is a schematic cross-sectional view of another embodiment of the atomizer in Fig. 1;
  • FIG. 6 is a schematic diagram of a resistance detection circuit of one embodiment
  • FIG. 7 is a graph showing the change in resistance of the heating element of the nebulizer of one embodiment during a continuous puff representing one puff of the user;
  • FIG. 8 is a graph showing the change in resistance of the heating elements of a plurality of nebulizers of one embodiment during a continuous puff representing one puff of a user;
  • FIG. 9 is a schematic diagram of the rate of change of resistance of the heating element over a predetermined period of time for the plurality of atomizers in FIG. 8 .
  • the present application proposes an electronic atomization device, as shown in FIG. 1 , which includes an atomizer 100 that stores a liquid matrix and vaporizes it to generate an aerosol, and a power supply mechanism 200 that supplies power to the atomizer 100 .
  • the power supply mechanism 200 includes a receiving cavity 270 disposed at one end along the length direction for receiving and accommodating at least a part of the atomizer 100 , and at least a part of the receiving cavity 270 is exposed
  • the first electrical contact 230 on the surface of the receiving cavity 270 is used to form an electrical connection with the atomizer 100 when at least a part of the atomizer 100 is received and accommodated in the power supply mechanism 200 to supply power to the atomizer 100 .
  • the end of the atomizer 100 opposite to the power supply mechanism 200 in the longitudinal direction is provided with a second electrical contact 21 , and when at least a part of the atomizer 100 is received in the receiving cavity 270 When inside, the second electrical contact 21 is in contact with the first electrical contact 230 to form electrical conduction.
  • the power supply mechanism 200 is provided with a sealing member 260 , and at least a part of the inner space of the power supply mechanism 200 is partitioned by the sealing member 260 to form the above receiving cavity 270 .
  • the sealing member 260 is configured to extend along the cross-sectional direction of the power supply mechanism 200 , and is preferably made of a flexible material such as silica gel, so as to prevent seepage from the atomizer 100 to the receiver
  • the liquid matrix of the cavity 270 flows to the components such as the controller 220 , the sensor 250 and the like inside the power supply mechanism 200 .
  • the power supply mechanism 200 further includes a battery cell 210 for power supply that is away from the receiving cavity 270 in the length direction;
  • the controller 220 is operable to conduct electrical current between the cells 210 and the first electrical contacts 230 .
  • the power supply mechanism 200 includes a sensor 250 for sensing the suction airflow generated when the user sucks the atomizer 100 , and the controller 220 controls the battery 210 to output current to the atomizer 100 according to the detection signal of the sensor 250 .
  • the power supply mechanism 200 is provided with a charging interface 240 at the other end away from the receiving cavity 270 for charging the battery cells 210 .
  • FIGS. 2 to 4 show a schematic structural diagram of an embodiment of the atomizer 100 in FIG. 1 , which includes a main casing 10 , a porous body 30 and a heating element 40 :
  • the main casing 10 is roughly in the shape of a flat cylinder, and of course its interior is hollow, which is used to store the atomized liquid matrix and accommodate other necessary functional devices; the upper end of the main casing 10 is provided with a suction air The nozzle mouth A of the sol;
  • the interior of the main casing 10 is provided with a liquid storage cavity 12 for storing the liquid matrix; in a specific embodiment, the main casing 10 is provided with a flue gas transmission pipe 11 arranged in the axial direction, and the outer wall of the flue gas transmission pipe 11 is connected to the outer wall of the flue gas transmission pipe 11 .
  • the space between the inner walls of the main casing 10 forms a liquid storage cavity 12 for storing the liquid matrix; the upper end of the smoke transmission pipe 11 opposite to the proximal end 110 is communicated with the mouthpiece A;
  • the porous body 30 is used to obtain the liquid matrix in the liquid storage chamber 12 through the liquid channel 13, and the liquid matrix transfer is shown by the arrow R1 in FIG. 2; the porous body 30 has a flat atomization surface 310, and the atomization surface 310 A heating element 40 is formed that heats at least a portion of the liquid matrix drawn by the porous body 30 to generate an aerosol.
  • the side of the porous body 30 facing away from the atomizing surface 310 is in fluid communication with the liquid channel 13 to absorb the liquid matrix, and then transfer the liquid matrix to the atomizing surface 310 for heating and atomization.
  • the porous body 30 includes flexible fibers, such as cotton fibers, non-woven fabrics, glass fiber ropes, etc., or includes porous ceramics with a microporous structure, such as porous ceramics in the shapes shown in FIGS. 3 and 4 .
  • the specific structure of the ceramic body can be found in the patent application CNCN212590248U.
  • the heating element 40 may be combined on the atomizing surface 310 of the porous body 30 by means of printing, deposition, sintering, or physical assembly.
  • the porous body 30 may have a flat surface or a curved surface for supporting the heating element 40, and the heating element 40 is formed on the flat surface or curved surface of the porous body 30 by means of mounting, printing, deposition, or the like.
  • the material of the heating element 40 may be a metal material, metal alloy, graphite, carbon, conductive ceramic or other composite material of ceramic material and metal material with suitable impedance.
  • Suitable metal or alloy materials include nickel, cobalt, zirconium, titanium, nickel alloys, cobalt alloys, zirconium alloys, titanium alloys, nickel chromium alloys, nickel iron alloys, iron chromium alloys, iron chromium aluminum alloys, titanium alloys, iron manganese aluminum bases At least one of alloy or stainless steel, etc.
  • the resistance material of the heating element 40 can be selected from a metal or alloy material with a suitable resistance temperature coefficient, such as a positive temperature coefficient or a negative temperature coefficient, so that the heating circuit can not only be used to generate heat, but also can be used to sense the real-time temperature of the atomizing component. sensor.
  • FIG. 5 shows a schematic structural diagram of an atomizer 100a according to another embodiment
  • the porous body 30a is configured in the shape of a hollow cylinder extending in the longitudinal direction of the atomizer 100a
  • the heating element 40a is formed in the cylindrical hollow of the porous body 30a .
  • the liquid matrix of the liquid storage chamber 20a is absorbed along the outer surface of the porous body 30a in the radial direction, and then transferred to the heating element 40a on the inner surface to heat and vaporize to generate an aerosol; the generated aerosol It is output from the cylindrical hollow of the porous body 30a along the longitudinal direction of the atomizer 100a.
  • the controller 220 detects the resistance change of the heating element 40/40a during operation to perform the atomizer operation. 100/100a discrimination and judgment.
  • the power supply mechanism 200 further includes a resistance detection circuit for detecting the resistance value of the heating element 40/40a; the resistance detection circuit is described in the structure of a conventional embodiment. As shown in Figure 6, including:
  • the standard resistor R1 is used to form a voltage divider circuit in series with the connected heating element 40/40a; the series voltage divider is connected to the ground by the switch tube Q1 to form a loop.
  • the controller 220 can pass the sampling standard
  • the resistance value of the heating element 40/40a can be obtained by calculating the voltage Vabc of the resistor R1 to the ground, and then through the formula of the voltage division.
  • resistors R2, R3, and R4 in the circuit shown in FIG. 6 are the usual basic functions such as step-down and current-limiting.
  • the resistance detection circuit can also use a constant current source.
  • the heating element 40/40a is coupled to the circuit; then the constant current source is directed to the heating element 40/40a provides a constant current detection current, the controller 220 samples the voltage of the heating element 40/40a under the constant current through the sampling pin, and then calculates the resistance value of the heating element 40/40a.
  • the initial resistance value of the heating element 40 is 1.1 ohms
  • the constant output power of the power supply mechanism 200 to the heating element 40 is 10W (usually, the output voltage of the battery cell 210 in electronic atomization device products in the field is 3.5V after being fully charged). , combined with the actual output effective voltage of about 3.2V and heat loss, setting the output power constant to 10W is the most commonly used constant power output value).
  • the resistance value change of the heating element 40 includes three stages:
  • the first stage of S1 the initial heating stage, the heating element 40 starts to heat up rapidly from the normal temperature, and the temperature has not risen to higher than the boiling point of the liquid matrix; then most of the heat in this stage is absorbed by the heating element 40, and accordingly the heating element 40 due to With TCR, the resistance value also increases rapidly accordingly;
  • S2 second stage in this stage, when the heating element 40 continues to heat up, part of the heat of the heating element 40 is absorbed by low-boiling components (such as propylene glycol, flavor components, etc.) in the liquid matrix to form an aerosol.
  • low-boiling components such as propylene glycol, flavor components, etc.
  • the significant increase in the resistance can be expressed as the amount of change in the resistance per unit time (that is, the slope of the tangent line of the curve) or the increase in the resistance value to exceed a certain reference threshold, That is, it is considered that the resistance is significantly increased.
  • the following shows the sampling of the resistance value of the heating element 40 in the power supply test by the power supply mechanism 200 to 5 different atomizers 100 with a constant power of 7W. result.
  • the sampling of the atomizer 100 of each embodiment is repeated twice, which are denoted as "sample 1" and “sample 1" respectively. "Sampling 2".
  • the specific sampling results are shown in the following table.
  • the sampling results of each embodiment in the following table are averaged, and the curve of resistance variation with time is obtained by fitting, as shown in FIG. 8 .
  • the initial resistance value of the heating element 40 of the atomizer 100 of Example 1 is 0.75m ⁇ on average
  • the average initial resistance value of the heating element 40 of the atomizer 100 of Example 2 is 0.75m ⁇
  • the initial resistance value of the heating element 40 of the atomizer 100 of Example 3 was 0.75 m ⁇ on average
  • the average initial resistance value of the heating element 40 of the atomizer 100 of Example 4 was 0.71 m ⁇
  • the heating of the atomizer 100 of Example 5 The initial resistance value of element 40 averaged 0.71 m ⁇ .
  • the initial values of the heating elements 40 of Examples 1 to 3 are basically the same; the initial values of the heating elements 40 of Examples 4 and 5 are basically the same.
  • the material of the heating element 40 of the atomizer 100 in Example 1 is made of FeSi15 (FeSi alloy containing 15% Si), and its TCR value is 1443 ppm;
  • the material of the heating element 40 of the atomizer 100 in Example 2 is made of FeSi10, Its TCR value is 1245ppm;
  • the material of the heating element 40 of the atomizer 100 is made of stainless steel 304, and its TCR value is 1038ppm;
  • the material of the heating element 40 of the atomizer 100 is made of stainless steel 317L, and its TCR The value is 956ppm; in Example 5, the heating element 40 of the atomizer 100 is made of NiCr30Si1.45 alloy, and its TCR value is 890ppm.
  • the electric power provided by the battery cells 210 to them is predetermined; meanwhile, in order to avoid affecting the test results due to different supplied electric powers, the predetermined electric power provided to them is the same.
  • the controller 220 stores the most suitable threshold range of the resistance change of the heating element 40 in the atomizer 100; and then compares the sampled value of the resistance change obtained by sampling in the above detection process with the stored threshold range. , by comparing the results, it is possible to identify and judge whether the currently replaced atomizer 100 is the optimal atomizer 100 . Meanwhile, when the above comparison results are inconsistent, the controller 220 prevents the battery cell 210 from supplying power to the atomizer 100 .
  • the controller 220 can further calculate and obtain the TCR value of the heating element 40 according to the change in the resistance of the heating element 40 during operation, and then identify and judge whether the currently replaced atomizer 100 is based on the TCR value.
  • a suitable or adapted nebulizer 100 can be
  • the resistance value of the heating element 40 when the heating element 40 is raised to a substantially constant value and/or when the heating element 40 is raised to a substantially constant value.
  • the difference between the resistance value and the initial resistance value is different due to their different TCRs; in yet another embodiment, the controller 220 may be based on the resistance value when the heating element 40 is raised to a substantially constant value , and/or boost amplitude or difference, to identify and distinguish different nebulizers 100 .
  • FIG. 9 shows a schematic diagram of identifying the atomizer 100 within a predetermined time period of 0ms to 2000ms; according to FIG.
  • the resistance change curves corresponding to the atomizer 100 of different embodiments in this time period correspond to and the slopes of the resistance change curves L1 to L5 of the atomizers 100 in different embodiments are obviously different when they increase from the initial value to the basic stability, and then different atomizations can be identified and distinguished by calculating the slope. device 100.
  • the above predetermined time may also be selected from other time periods, such as 500ms-1600ms, 300ms-1200ms, and so on.
  • another embodiment of the present application also proposes a method for identifying and distinguishing different atomizers 100, including the following steps:
  • power is provided to the heating element 40 in a manner of constant power output.
  • the power provided to the atomizer 100 in the process of identifying and distinguishing different atomizers 100 above is the same as the output power set by the power supply mechanism 200 during the suction process, for example 7W or 10W of constant power as described above.
  • the above detection methods and steps are performed in the first puff after the user connects the atomizer 100 to the power supply mechanism 200, so as to avoid automatically performing the above steps in non-puffing to the mist.
  • the power provided by the vaporizer 100 results in smoke that is not produced by the user's puff.
  • the value of the temperature coefficient of resistance of the heating element 40 is determined, and the value of the temperature coefficient of resistance of the heating element 40 is determined.
  • a comparison is made with a stored threshold range, and the atomizer 100 is determined based on the comparison.
  • the contents of identifying and distinguishing the atomizer 100 include: liquid substrate type, heating mode, anti-counterfeiting information and so on. Further, the power supply mechanism 200 can prevent the battery cell 210 from outputting power when the content identified above is inconsistent with the atomizer 100 accepted by the power supply mechanism 200 .
  • the power provided by the battery cell 210 to the heating element 40 is changed or adjusted according to the comparison result.
  • changing or adjusting the power provided by the battery 210 to the heating element 40 may prevent power supply to the atomizer 100 when the comparison result exceeds a maximum or minimum value of a preset threshold.
  • the above preset thresholds include a plurality of preset thresholds, and each preset threshold corresponds to a different optimal heating curve or power; according to the comparison results, the battery cells 210 can be further correspondingly changed or adjusted.
  • the atomizer 100 is powered with the optimum heating profile or power.

Landscapes

  • Control Of Resistance Heating (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种电子雾化装置、电源机构(200)和雾化器(100)的识别方法,电子雾化装置包括雾化液体基质生成气溶胶的雾化器(100)以及为雾化器(100)供电的电源机构(200);雾化器(100)包括用于加热雾化液体基质的加热元件(40);电源机构(200)包括:电芯(210),被配置为向加热元件(40)供电;控制器(220),基于电芯(210)提供给加热元件(40)的电力和加热元件(40)产生的电阻变化,识别雾化器(100)。

Description

电子雾化装置、电源机构和雾化器的识别方法
相关申请的交叉参考
本申请要求于2021年3月16日提交中国专利局,申请号为202110284535.6,发明名称为“电子雾化装置、电源机构和雾化器的识别方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子雾化技术领域,尤其涉及一种电子雾化装置、电源机构和雾化器的识别方法。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为电子雾化产品,其通过加热液体基质以使其发生汽化,从而产生可吸入蒸汽或气溶胶。该液体基质可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油)。对于此类频繁使用的电子雾化产品,具有模块化构造且通常包括可更换的雾化器,可更换的雾化器具有用于容纳液体基质的存储部件。存储在雾化器中的液体基质可能在组成、味道、浓度或其它特性方面变化显著,消费者可能希望随意互换雾化器。然而,最优汽化条件可取决于存储在雾化器中的液体基质的组成。因此,期望的是在雾化器中包含自动辨识装置,其可识别存储在其中的可更换的雾化器或液体基质,以便相应地自动改变对汽化设备的控制设定。
发明内容
本申请的一个实施例提供一种电子雾化装置,包括雾化液体基质生成气溶胶的雾化器、以及为所述雾化器供电的电源机构;所述雾化器包括用于加热雾化液体基质的加热元件;所述电源机构包括:
电芯,被配置为向所述加热元件供电;
控制器,基于所述电芯提供给加热元件的电力和加热元件产生的电阻变化,识别所述雾化器。
在优选的实施例中,所述控制器被配置为:
基于所述电芯提供给加热元件的电力和加热元件产生的电阻变化,确定所述加热元件的TCR值;再根据所述加热元件的TCR值,识别所述雾化器。
在优选的实施例中,所述电阻变化包括所述加热元件的电阻随时间的变化曲线。
在优选的实施例中,所述电阻变化包括所述加热元件的电阻变化率。
在优选的实施例中,所述电阻变化包括所述加热元件的电阻升高到基本恒定时的电阻值,或者与初始电阻值之间的差值。
在优选的实施例中,所述控制器被配置为:
将所述加热元件的电阻变化与阈值范围比较,基于比较结果改变所述电芯向加热元件提供的电力。
在优选的实施例中,所述控制器被配置为:
将所述加热元件的电阻变化率或者预设时间内的电阻变化量与阈值范围比较,并在所述电阻变化率或电阻变化量大于所述阈值范围的最大值或小于所述预设阈值范围的最小值时阻止所述电芯向加热元件供电。
在优选的实施例中,所述控制器被配置为:
将所述加热元件的电阻升高到基本恒定时的电阻值或者与初始电阻值之间的差值与阈值范围比较,并在所述电阻值或差值大于所述阈值范围的最大值或小于所述预设阈值范围的最小值时阻止所述电芯向加热元件供电。
在优选的实施例中,所述电芯被配置为将预定的电力提供至所述加热元件。
在优选的实施例中,所述电芯被配置为按照恒定功率输出的方式向所述加热元件供电。
本申请的又一个实施例还提出一种电源机构,用于对电子雾化装置的雾化器供电;所述雾化器包括用于加热雾化液体基质生成气溶胶的加热元件;所述电源机构包括:
电芯,被配置为向所述加热元件供电;
控制器,基于所述电芯提供给加热元件的电力和加热元件产生的电阻变化,识别所述雾化器。
本申请的又一个实施例还提出一种雾化器的识别方法,所述雾化器包括用于加热雾化液体基质生成气溶胶的加热元件;所述方法包括如下步骤:
对所述加热元件进行供电,并基于提供给加热元件的电力和加热元件产生的电阻变化,识别所述雾化器。
以上电子雾化装置,通过在检测电力下的加热元件的电阻变化自动辨识雾化器。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标 号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例提供的电子雾化装置的结构示意图;
图2是图1中雾化器一个实施例的剖面示意图;
图3是图2中多孔体一个视角的结构示意图;
图4是图2中多孔体又一个视角的结构示意图;
图5是图1中雾化器又一个实施例的剖面示意图;
图6是一个实施例的电阻检测电路的示意图;
图7是一个实施例的雾化器的加热元件在表示用户抽吸一次的持续抽吸过程中电阻的变化曲线;
图8是一个实施例的多个雾化器的加热元件在表示用户抽吸一次的持续抽吸过程中电阻的变化曲线;
图9是图8中多个雾化器的预定时间内的加热元件的电阻变化率的示意图。
具体实施例方式
为了便于理解本申请,下面结合附图和具体实施例方式,对本申请进行更详细的说明。
本申请提出一种电子雾化装置,可以参见图1所示,包括存储有液体基质并对其进行汽化生成气溶胶的雾化器100、以及为雾化器100供电的电源机构200。
在一个可选的实施例方案中,比如图1所示,电源机构200包括设置于沿长度方向的一端、用于接收和容纳雾化器100的至少一部分的接 收腔270,以及至少部分裸露在接收腔270表面的第一电触头230,用于当雾化器100的至少一部分接收和容纳在电源机构200内时与雾化器100的形成电连接进而为雾化器100供电。
根据图1所示的优选实施例方案,雾化器100沿长度方向与电源机构200相对的端部上设置有第二电触头21,进而当雾化器100的至少一部分接收于接收腔270内时,第二电触头21通过与第一电触头230接触抵靠进而形成导电。
电源机构200内设置有密封件260,并通过该密封件260将电源机构200的内部空间的至少一部分分隔形成以上接收腔270。在图1所示的优选实施例方案中,该密封件260被构造成沿电源机构200的横截面方向延伸,并且优选是采用具有柔性材质例如硅胶制备,进而阻止由雾化器100渗流至接收腔270的液体基质流向电源机构200内部的控制器220、传感器250等部件。
在图1所示的优选实施例中,电源机构200还包括沿长度方向背离接收腔270的用于供电的电芯210;以及设置于电芯210与容纳腔之间的控制器220,该控制器220可操作地在电芯210与第一电触头230之间引导电流。
电源机构200包括有传感器250,用于感测用户对雾化器100抽吸时产生的抽吸气流,进而控制器220根据该传感器250的检测信号控制电芯210向雾化器100输出电流。
进一步在图1所示的优选实施例中,电源机构200在背离接收腔270的另一端设置有充电接口240,用于对电芯210充电。
图2至图4的实施例示出了图1中雾化器100一个实施例的结构示意图,其包括有主壳体10、多孔体30以及加热元件40:
根据图2所示,该主壳体10大致呈扁形的筒状,当然其内部是中 空,用于存储雾化液体基质和收纳其它必要功能器件;主壳体10的上端设置有用于抽吸气溶胶的吸嘴口A;
主壳体10的内部设置有用于存储液体基质的储液腔12;具体实施例中,主壳体10内设有沿轴向设置的烟气传输管11,该烟气传输管11的外壁与主壳体10内壁之间的空间形成用于存储液体基质的储液腔12;该烟气传输管11相对近端110的上端与吸嘴口A连通;
多孔体30用于通过液体通道13获取储液腔12内的液体基质,液体基质传递如图2中箭头R1所示;该多孔体30具有一个平坦的雾化面310,该雾化面310上形成有加热多孔体30所吸取的至少部分液体基质生成气溶胶的加热元件40。
具体参见图3和图4所示,多孔体30背离雾化面310的一侧与液体通道13流体连通进而吸收液体基质,而后再将液体基质传递至雾化面310上加热雾化。
在装配后加热元件40的两端是与第二电触头21抵靠进而导电的,加热元件40在通电过程中加热多孔体30的至少部分液体基质生成气溶胶。在可选的实施例中,多孔体30包括柔性的纤维,例如棉纤维、无纺布、玻纤绳等等,或者包括具有微孔构造的多孔陶瓷,例如图3和图4所示形状的多孔陶瓷体,其具体结构可参见专利申请CNCN212590248U所记载。
加热元件40可以是通过印刷、沉积、烧结或物理装配等方式结合在多孔体30的雾化面310上的。在一些其他的变化实施例方式中,多孔体30可以具有用于支撑加热元件40的平面或曲面,加热元件40通过贴装、印刷、沉积等方式形成于多孔体30的平面或曲面上。
加热元件40的材料可以是具有适当阻抗的金属材料、金属合金、石墨、碳、导电陶瓷或其它陶瓷材料和金属材料的复合材料。适当的金 属或合金材料包括镍、钴、锆、钛、镍合金、钴合金、锆合金、钛合金、镍铬合金、镍铁合金、铁铬合金、铁铬铝合金、钛合金、铁锰铝基合金或不锈钢等中的至少一种。加热元件40的电阻材料可以选取具有适合电阻温度系数的金属或合金材料,例如正温度系数或负温度系数,这样发热线路既可以用来发热,又可以作为用来感测雾化组件实时温度的传感器。
图5示出了又一个实施例的雾化器100a的结构示意图;多孔体30a被构造成沿雾化器100a的纵向延伸的中空柱状的形状,加热元件40a形成于多孔体30a的柱状中空内。在使用中如箭头R1所示,储液腔20a的液体基质沿多孔体30a的径向方向的外表面被吸收,而后传递至内表面的加热元件40a内加热汽化生成气溶胶;生成的气溶胶由多孔体30a的柱状中空内沿雾化器100a的纵向输出。
为使在能辨别所更换的雾化器100/100a是否为能适配的类型,本申请的一个实施例中通过控制器220检测工作中加热元件40/40a的电阻变化,来进行雾化器100/100a的辨别和判断。
通常由于不同的雾化器100/100a具有不同材质或型号规格的加热元件40/40a,则在加热过程中它们由于初始电阻值、各自材料TCR(电阻温度系数)不同,则升温的过程中它们的电阻变化是具有显著区别的,则根据这一电阻变化即可进行雾化器100/100a的辨别和判断。
进一步为了使电源机构200能实时检测加热元件40/40a的电阻变化,电源机构200还包括有用于检测加热元件40/40a电阻值的电阻检测电路;该电阻检测电路在一个常规实施例的结构参见图6所示,包括:
标准电阻R1,用于与接入的加热元件40/40a构建成串联的分压电路;该串联的分压电路由开关管Q1导通接地后形成回路,此时控制器220即可通过采样标准电阻R1的对地电压Vabc,而后通过分压的公式 既能计算获得加热元件40/40a的电阻值。
当然,图6所示的电路中其他的电阻R2、R3、R4为通常的降压、限流等基础常规功能。
在其他的变化实施例中,电阻检测电路还可以采用一个恒流源,当雾化器100/100a结合至电源机构200内使加热元件40/40a耦合至电路时;则恒流源向加热元件40/40a提供一恒流检测电流,控制器220通过采样引脚采样在该恒流电流下加热元件40/40a的电压,而后计算后既能获得加热元件40/40a的电阻值。
例如图7示出了一个实施例的雾化器100的加热元件40在表示用户抽吸一次的持续抽吸过程中电阻的变化曲线;根据测试的曲线中,时间轴每个单位是60ms,总共检测的数据采样时长总共为60×60=3600ms=3.6s。测试的过程中,加热元件40的初始电阻值为1.1欧姆,电源机构200恒定输出给加热元件40的功率为10W(通常本领域的电子雾化装置产品中电芯210充满之后输出电压为3.5V,结合实际输出的有效电压大约3.2V和热损,设定输出功率恒定为10W是最常采用的恒功率输出值)。图7的曲线中,加热元件40的电阻值变化包括三个阶段:
S1第一阶段:初始加热阶段,加热元件40由常温开始迅速升温,同时温度还没有提升到高于液体基质的沸点;则这一阶段大部分热量被加热元件40吸收,相应地加热元件40由于具有TCR则电阻值也相应地迅速提升;
S2第二阶段:在该阶段加热元件40继续升温中,加热元件40部分热量被液体基质中低沸点的成分(如丙二醇、香精成分等)吸收形成气溶胶,该阶段中加热元件40的电阻值升高效率逐渐降低;
S3第三阶段:在该阶段中由于加热元件40温度升高到液体基质大 量汽化的温度,加热元件40的发热效率与液体基质的汽化效率达到平衡;该阶段中加热元件40的电阻值基本恒定,大致上在较小的范围内波动,直至抽吸结束。
以上结合具体实施例中检测的实际电阻的变化中,电阻的显著上升可以表述为电阻的在单位时间内的变化量(即曲线切线的斜率)或者是电阻值升高到超过某一参考阈值,即认为电阻是显著上升的。
为了对各种不同的雾化器100进行识别和分辨,以下分别示出了电源机构200均以7W的恒功率向5个不同的雾化器100进行供电测试中加热元件40的电阻值的采样结果。当然,为了使每个实施例的雾化器100的采样检测结果消除单次采样的误差,每个实施例的雾化器100的采样均按照2次重复进行,分别记为“采样1”和“采样2”。具体采样的结果如下表,将下表中各实施例的采样结果取平均值,通过拟合得到电阻随时间的变化曲线如图8所示。
Figure PCTCN2022080990-appb-000001
Figure PCTCN2022080990-appb-000002
Figure PCTCN2022080990-appb-000003
Figure PCTCN2022080990-appb-000004
表1
从上表1和图8中可以看出,每个实施例中雾化器100的2次重复对照“采样1”和“采样2”的差值小于采样数据的1%,可以认为采样误差是符合要求的。如果要求数据具有更高的准确性,可以增加更多采样次数,而后结合以上“采样1”和“采样2”的数据取它们的平均值作为检测结果是更好的。
进一步根据上表1,实施例1的雾化器100的加热元件40的初始电阻值平均为0.75mΩ、实施例2的雾化器100的加热元件40的初始电阻值平均为0.75mΩ、实施例3的雾化器100的加热元件40的初始电阻值平均为0.75mΩ、实施例4的雾化器100的加热元件40的初始电阻值平均为0.71mΩ、实施例5的雾化器100的加热元件40的初始电阻值平均为0.71mΩ。其中,实施例1至实施例3的加热元件40初始值基本相同;实施例4和实施例5的加热元件40的初始值基本相同。
进一步,实施例1中雾化器100的加热元件40材质采用FeSi15(含Si15%的FeSi合金)制备,其TCR值为1443ppm;实施例2中雾化器100的加热元件40材质采用FeSi10制备,其TCR值为1245ppm;实施例3中雾化器100的加热元件40材质采用不锈钢304制备,其TCR值为1038ppm;实施例4中雾化器100的加热元件40材质采用不锈钢317L制备,其TCR值为956ppm;实施例5中雾化器100的加热元件40材质采用NiCr30Si1.45合金,其TCR值为890ppm。
图8中实施例1至实施例5的采样的电阻值-时间的曲线;从图8中可以显著看出,各实施例的雾化器100在抽吸测试中由于加热元件40分别具有不同的TCR值,则以本领域通常恒功率输出模式雾化液体基质生成气溶胶的过程中,它们的电阻是呈差异变化的;进而可以通过以上电阻值-时间的曲线,或者电阻值的变化率即可用于识别和分辨不同的雾化器100。
进一步各实施例的雾化器100的测试过程中,电芯210向它们提供的电力是预定的;同时为了保证避免由于供应的电力不同影响检测结果,则对它们提供的预定电力是相同的。
则进一步地,控制器220中存储有最适配雾化器100中加热元件40的电阻变化的阈值范围;而后根据以上检测过程中所采样获得的电阻变化的采样值与存储的阈值范围进行比较,通过比较结果即可辨别和判断当前所更换的雾化器100是否为最适雾化器100。同时,当以上比较结果不符时,控制器220阻止电芯210向雾化器100提供功率。
进一步在优选的实施例中,控制器220根据工作中加热元件40的电阻的变化,可以进一步计算获取加热元件40的TCR值,而后根据该TCR值辨别和判断当前所更换的雾化器100是否为合适或适配的雾化器100。
进一步根据图8和上表的采样数据可以看出,不同的雾化器100在恒功率下,加热元件40升高到基本恒定时的电阻值、和/或加热元件40升高到基本恒定时的电阻值与初始电阻值的差值是不同的,这是由于它们的TCR不同所导致的;进而在又一个实施例中,控制器220可以根据加热元件40升高到基本恒定时的电阻值,和/或升高幅度或差值,识别和分辨不同的雾化器100。
进一步根据图8和上表的采样数据可以看出,不同的雾化器100在恒功率下,由于它们的TCR不同则电阻变化率也是由差异的,则预定时间内加热元件40的电阻变化率是不同的。进而控制器220可以根据预定时间内加热元件40的电阻变化率,识别和分辨不同的雾化器100。例如图9示出了一个通过在预定时间0ms~2000ms的时段内识别雾化器100的示意图;根据图9所示,在该时间段内不同实施例雾化器100对应的电阻变化曲线分别对应L1~L5所示;并且不同实施例雾化器100的电阻变化曲线L1~L5的由初始值升高到基本稳定时的斜率是明显不同的,进而可以通过计算斜率识别和分辨不同的雾化器100。
在其他的可选实施例中,以上预定时间还可以选取其他的时段例如500ms~1600ms、300ms~1200ms等等。
基于以上,本申请的又一个实施例还提出一种识别和分辨不同的雾化器100的方法,包括如下步骤:
S10,基于提供给雾化器100的加热元件40的功率和所产生的加热元件40的电阻值的变化之间的关系,以确定雾化器100的信息。
以上功率提供的过程中,根据本领域产品的通常实施例,更加优选的实施例中,以恒功率输出的方式向加热元件40提供功率。在更加优选的实施例中,以上识别和分别不同雾化器100的过程中向雾化器100所提供的功率,与电源机构200设定的在抽吸过程中的输出功率是相同 的,例如以上所述的7W或10W的恒定功率。
进一步在优选的实施例中,以上检测的方法和步骤是在当用户将雾化器100结合至电源机构200后的第一口抽吸中进行,避免在非抽吸中自动执行以上步骤向雾化器100提供功率导致并非由用户抽吸产生的出烟。
进一步地,基于提供给雾化器100的加热元件40的功率和所产生的加热元件40的电阻值的变化之间的关系,确定加热元件40的电阻温度系数值,并将该电阻温度系数值与存储的阈值范围进行比较,并根据比较结果确定雾化器100。
识别和分辨雾化器100的内容包括:液体基质类型、加热模式、防伪信息等等。进一步电源机构200可以在以上辨识的内容与电源机构200所能接受的雾化器100不符时,则可以阻止电芯210输出功率。
进一步地,基于将预定时间内的加热元件40所产生的电阻值的变化与预设阈值进行比较,根据比较结果改变或者调节电芯210向加热元件40提供的功率。在可选的实施例中,改变或者调节电芯210向加热元件40提供的功率可以是当比较结果超过预设阈值的最大值或最小值时,阻止向雾化器100供电。或者在进一步的可选实施例中,以上预设阈值包括有多个,每个预设阈值各自对应有不同的最适的加热曲线或功率;根据比较结果可以进一步分别对应改变或调节电芯210以最适的加热曲线或功率向雾化器100供电。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (11)

  1. 一种电子雾化装置,包括雾化液体基质生成气溶胶的雾化器、以及为所述雾化器供电的电源机构;所述雾化器包括用于加热雾化液体基质的加热元件;其特征在于,所述电源机构包括:
    电芯,被配置为向所述加热元件供电;
    控制器,基于所述电芯提供给加热元件的电力和所述加热元件产生的电阻变化,识别所述雾化器。
  2. 如权利要求1所述的电子雾化装置,其特征在于,所述电阻变化包括所述加热元件的电阻随时间的变化曲线。
  3. 如权利要求1所述的电子雾化装置,其特征在于,所述电阻变化包括所述加热元件的电阻变化率。
  4. 如权利要求1所述的电子雾化装置,其特征在于,所述电阻变化包括所述加热元件的电阻升高到基本恒定时的电阻值,或者与初始电阻值之间的差值。
  5. 如权利要求1所述的电子雾化装置,其特征在于,所述控制器被配置为:
    将所述加热元件的电阻变化与阈值范围比较,基于比较结果改变所述电芯向加热元件提供的电力。
  6. 如权利要求5所述的电子雾化装置,其特征在于,所述控制器 被配置为:
    将所述加热元件的电阻变化率或者预设时间内的电阻变化量与阈值范围比较,并在所述电阻变化率或电阻变化量大于所述阈值范围的最大值或小于所述预设阈值范围的最小值时阻止所述电芯向加热元件供电。
  7. 如权利要求5所述的电子雾化装置,其特征在于,所述控制器被配置为:
    将所述加热元件的电阻升高到基本恒定时的电阻值或者与初始电阻值之间的差值与阈值范围比较,并在所述电阻值或差值大于所述阈值范围的最大值或小于所述预设阈值范围的最小值时阻止所述电芯向加热元件供电。
  8. 如权利要求1至7任一项所述的电子雾化装置,其特征在于,所述电芯被配置为将预定的电力提供至所述加热元件。
  9. 如权利要求8所述的电子雾化装置,其特征在于,所述电芯被配置为按照恒定功率输出的方式向所述加热元件供电。
  10. 一种电源机构,用于对电子雾化装置的雾化器供电;所述雾化器包括用于加热雾化液体基质生成气溶胶的加热元件;其特征在于,所述电源机构包括:
    电芯,被配置为向所述加热元件供电;
    控制器,基于所述电芯提供给加热元件的电力和所述加热元件产生的电阻变化,识别所述雾化器。
  11. 一种雾化器的识别方法,所述雾化器包括用于加热雾化液体基质生成气溶胶的加热元件;其特征在于,所述方法包括如下步骤:
    对所述加热元件进行供电,并基于提供给加热元件的电力和所述加热元件产生的电阻变化,识别所述雾化器。
PCT/CN2022/080990 2021-03-16 2022-03-15 电子雾化装置、电源机构和雾化器的识别方法 WO2022194161A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22770514.2A EP4309523A1 (en) 2021-03-16 2022-03-15 Electronic atomizing device, power supply mechanism, and recognition method for atomizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110284535.6 2021-03-16
CN202110284535.6A CN115067564A (zh) 2021-03-16 2021-03-16 电子雾化装置、电源机构和雾化器的识别方法

Publications (1)

Publication Number Publication Date
WO2022194161A1 true WO2022194161A1 (zh) 2022-09-22

Family

ID=83245839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080990 WO2022194161A1 (zh) 2021-03-16 2022-03-15 电子雾化装置、电源机构和雾化器的识别方法

Country Status (3)

Country Link
EP (1) EP4309523A1 (zh)
CN (1) CN115067564A (zh)
WO (1) WO2022194161A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150231340A1 (en) * 2012-10-17 2015-08-20 Nektar Therapeutics Methods and systems for identifying dry nebulizer elements
CN204613780U (zh) * 2015-05-06 2015-09-02 陈镇江 一种可恒温控制的电子烟控制电路
CN106604654A (zh) * 2014-08-26 2017-04-26 尼科创业控股有限公司 电子烟雾供应系统
CN106820275A (zh) * 2017-03-22 2017-06-13 颐中(青岛)实业有限公司 一种可适配多种发热丝的温控电子烟
CN206714080U (zh) * 2017-03-22 2017-12-08 颐中(青岛)实业有限公司 一种可适配多种发热丝的温控电子烟
CN109330032A (zh) * 2018-11-30 2019-02-15 昂纳自动化技术(深圳)有限公司 一种电子烟控制方法及电子烟
CN109588785A (zh) * 2019-01-21 2019-04-09 深圳市太美亚电子科技有限公司 一种电子烟的防干烧控制电路
US20200237013A1 (en) * 2017-10-24 2020-07-30 Japan Tobacco Inc. Aerosol generating apparatus
CN112931962A (zh) * 2021-03-15 2021-06-11 深圳麦克韦尔科技有限公司 一种识别雾化器的方法及其应用的电池杆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150231340A1 (en) * 2012-10-17 2015-08-20 Nektar Therapeutics Methods and systems for identifying dry nebulizer elements
CN106604654A (zh) * 2014-08-26 2017-04-26 尼科创业控股有限公司 电子烟雾供应系统
CN204613780U (zh) * 2015-05-06 2015-09-02 陈镇江 一种可恒温控制的电子烟控制电路
CN106820275A (zh) * 2017-03-22 2017-06-13 颐中(青岛)实业有限公司 一种可适配多种发热丝的温控电子烟
CN206714080U (zh) * 2017-03-22 2017-12-08 颐中(青岛)实业有限公司 一种可适配多种发热丝的温控电子烟
US20200237013A1 (en) * 2017-10-24 2020-07-30 Japan Tobacco Inc. Aerosol generating apparatus
CN109330032A (zh) * 2018-11-30 2019-02-15 昂纳自动化技术(深圳)有限公司 一种电子烟控制方法及电子烟
CN109588785A (zh) * 2019-01-21 2019-04-09 深圳市太美亚电子科技有限公司 一种电子烟的防干烧控制电路
CN112931962A (zh) * 2021-03-15 2021-06-11 深圳麦克韦尔科技有限公司 一种识别雾化器的方法及其应用的电池杆

Also Published As

Publication number Publication date
EP4309523A1 (en) 2024-01-24
CN115067564A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
EP3695867B1 (en) Aerosol delivery device
CN108430244B (zh) 具有温度传感器的电操作气溶胶生成系统
JP7072561B2 (ja) エアロゾル送達装置のための流体制御
CN111726996B (zh) 气溶胶生成装置、其控制方法以及计算机可读记录介质
US20190133193A1 (en) Electronic vaping device and elements thereof
CN103997921B (zh) 具有消耗监视和反馈的气溶胶产生系统
CN108697166B (zh) 具有倾斜传感器的电操作气溶胶生成系统
US20240081425A1 (en) Electrically operated aerosol-generating system and methods for detecting heater conditions in the system
KR20190078647A (ko) 온도 모니터링을 위한 통합된 무선 연결성을 가진 에어로졸 전달 장치
JP2023156399A (ja) エアロゾル送達装置のためのインテリジェントな充電器
RU2740355C2 (ru) Аналоговый управляющий компонент для устройства доставки аэрозоля
CN112006334A (zh) 气溶胶吸入器及其控制装置、控制方法
KR20140094513A (ko) 향상된 에어로졸 생산을 가진 에어로졸 발생시스템
EP3801080A1 (en) Detection of adverse heater conditions in an electrically heated aerosol generating system
KR20190085538A (ko) 에어로졸 전달 장치용 충전식 리튬이온 배터리
TW202137897A (zh) 氣溶膠供給裝置
WO2022194161A1 (zh) 电子雾化装置、电源机构和雾化器的识别方法
CN215347063U (zh) 电子雾化装置及电源机构
WO2022258050A1 (zh) 电子雾化装置、电源机构及控制方法
WO2023072078A1 (zh) 气溶胶生成装置及其控制方法
CN214431824U (zh) 用于电子雾化装置的电源机构及电子雾化装置
CN114468381A (zh) 雾化器或电子雾化装置的检测方法及装置
CN117642094A (zh) 气溶胶生成装置和方法
CN116763009A (zh) 电子雾化装置及电子雾化装置的控制方法
CN114727671A (zh) 包括电极的气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022770514

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022770514

Country of ref document: EP

Effective date: 20231016