WO2023072078A1 - 气溶胶生成装置及其控制方法 - Google Patents

气溶胶生成装置及其控制方法 Download PDF

Info

Publication number
WO2023072078A1
WO2023072078A1 PCT/CN2022/127396 CN2022127396W WO2023072078A1 WO 2023072078 A1 WO2023072078 A1 WO 2023072078A1 CN 2022127396 W CN2022127396 W CN 2022127396W WO 2023072078 A1 WO2023072078 A1 WO 2023072078A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
generating device
electrical characteristics
sampling resistor
ratio
Prior art date
Application number
PCT/CN2022/127396
Other languages
English (en)
French (fr)
Inventor
何焕杰
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023072078A1 publication Critical patent/WO2023072078A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating

Definitions

  • the embodiments of the present application relate to the technical field of electronic atomization, and in particular to an aerosol generating device and a control method thereof.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke.
  • Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • an example of such a product is a heat-not-burn device, which releases a compound by heating rather than burning a material; for example, the material could be tobacco or other non-tobacco products, which may or may not contain nicotine.
  • an vaping device typically contains a liquid that is heated by a heating element to vaporize it, thereby producing an inhalable aerosol; the liquid may contain nicotine and/or flavorants and/or aerosol-generating substances (eg, glycerin).
  • the above heating device usually determines the working temperature of the heating element by calculating the resistance value with a temperature coefficient; in order to avoid the interference problem caused by the unstable power supply, it is necessary to add a filter circuit to ensure the accuracy of the calculated resistance value.
  • An embodiment of the present application provides an aerosol generating device configured to heat an aerosol-forming substrate to generate an aerosol; comprising:
  • Thermistor its resistance value can change with the change of heating temperature
  • a sampling resistor is used to be electrically connected to the thermal element to form a detection loop
  • a controller configured to determine the heating temperature according to a ratio of any two electrical characteristics among the electrical characteristics of the detection loop, the electrical characteristics of the sampling resistor, and the electrical characteristics of the thermal element.
  • the controller is further configured to detect any two electrical characteristics.
  • the controller is further configured to obtain the heating temperature according to the ratio and the pre-stored correspondence between the ratio and the heating temperature.
  • the controller is further configured to search for the correspondence data.
  • the sampling resistor is connected in series with the thermal element.
  • the electrical characteristics include voltage
  • the ratio includes at least one of the following:
  • the ratio of the voltage across the detection loop to the voltage across the sampling resistor, the ratio of the voltage across the detection loop to the voltage across the thermal element, the voltage across the sampling resistor to the thermal element The ratio of the voltage across it.
  • the sampling resistor is connected in parallel with the thermal element.
  • the electrical characteristic comprises electric current
  • the ratio includes the ratio of the current flowing through the sampling resistor to the current flowing through the thermal element.
  • a switching tube is also included;
  • the controller is further configured to control the switch tube to turn on or off the electrical connection between the detection circuit and the battery cell.
  • thermosensitive element is disposed adjacent to the heating element.
  • the thermal element is configured to heat the aerosol-forming substrate.
  • the aerosol-forming substrate is in solid or liquid form.
  • An embodiment of the present application also provides an aerosol generating device configured to heat an aerosol-forming substrate to generate an aerosol; comprising:
  • Thermistor its resistance value can change with the change of heating temperature
  • a sampling resistor is used to be electrically connected to the thermal element to form a detection loop
  • a controller configured to control the ratio of any two of the electrical characteristics of the detection loop, the electrical characteristics of the sampling resistor, and the electrical characteristics of the thermal element to a preset value or within a preset range Inside.
  • An embodiment of the present application also provides an aerosol generating device, comprising:
  • a heating element for heating the aerosol-forming substrate to generate an aerosol
  • a sampling resistor is used to be electrically connected to the heating element to form a detection loop
  • the controller is configured to determine the heating temperature of the heating element according to the ratio of any two electrical characteristics of the detection loop, the sampling resistor, and the heating element.
  • Another embodiment of the present application also provides a method for controlling an aerosol generating device, the method comprising:
  • the ratio is determined to determine the temperature of the heated aerosol-forming substrate.
  • the above aerosol generating device constructs a detection circuit through the sampling resistor and the thermal element, and determines the heating aerosol according to the ratio of any two electrical characteristics of the detection circuit, the electrical characteristic of the sampling resistor, and the electrical characteristic of the thermal element
  • the temperature at which the matrix is formed is convenient for temperature control.
  • Fig. 1 is a schematic diagram of an aerosol generating device provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of another aerosol generating device provided in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of basic components of an embodiment of a circuit provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the basic components of another embodiment of the circuit provided by the embodiment of the present application.
  • Fig. 5 is a schematic diagram of the basic components of another embodiment of the circuit provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of the basic components of another embodiment of the circuit provided by the embodiment of the present application.
  • Fig. 7 is a schematic diagram of the control process of the aerosol generating device provided in the embodiment of the present application.
  • Fig. 1 is a schematic diagram of an aerosol generating device provided in an embodiment of the present application.
  • the aerosol generating device includes:
  • the heating element 10 when the aerosol-generating article B is received in the chamber A, the heating element 10 can be inserted into the aerosol-generating article B for heating to generate an aerosol;
  • the electric core 20 is used for power supply
  • the circuit 30 is arranged between the electric core 20 and the heating element 10 .
  • the circuit 30 is used to control the aerosol generating device; for example, the control cell 20 provides power to the heating element 10 .
  • the aerosol-generating product B is preferably a tobacco-containing material that releases volatile compounds from the substrate when heated; or it can also be a non-tobacco material that is suitable for electric heating and smoking after heating.
  • the aerosol-generating product B is preferably a solid substrate, which may include one or more of powder, granules, shredded strips, strips or flakes of one or more of vanilla leaves, tobacco leaves, homogenized tobacco, and expanded tobacco; Alternatively, the solid matrix may contain additional tobacco or non-tobacco volatile flavor compounds to be released when the matrix is heated.
  • the heating method of the heating element 10 includes but not limited to resistance heating, electromagnetic heating, and infrared heating.
  • the shape of the heating element 10 includes, but is not limited to, a needle shape, a pin shape, or a sheet shape.
  • the heating element 10 is configured to heat around at least part of the aerosol-generating product B, which is commonly referred to as circumferential heating or peripheral heating, etc. It is also feasible.
  • Fig. 2 is a schematic diagram of another aerosol generating device provided in an embodiment of the present application.
  • the aerosol generating device includes an atomizer 100 that stores a liquid aerosol-forming substrate and heats and atomizes it to generate an aerosol, and a power supply device 200 that supplies power to the atomizer 100 .
  • the power supply unit 200 includes a receiving cavity 270 disposed at one end along the length direction and used for receiving and accommodating at least a part of the atomizer 100 .
  • the power supply device 200 also includes a first electrical contact 230 at least partially exposed on the surface of the receiving cavity 270, for forming an electrical connection with the atomizer 100 when at least a part of the atomizer 100 is received and accommodated in the power supply device 200 and then Power the atomizer 100.
  • the atomizer 100 is provided with a second electrical contact 104 on the end opposite to the power supply device 200 along the length direction, so that when at least a part of the atomizer 100 is received in the receiving cavity 270 , the second electrical contact 104 contacts and abuts against the first electrical contact 230 to conduct electricity.
  • a sealing member 260 is disposed inside the power supply device 200 , and at least a part of the internal space of the power supply device 200 is separated by the sealing member 260 to form the above receiving cavity 270 .
  • the sealing member 260 is configured to extend along the cross-sectional direction of the power supply device 200, and is preferably made of a flexible material such as silica gel, thereby preventing seepage from the atomizer 100 into the receiving cavity.
  • the aerosol-forming substrate at 270 flows to components such as the circuit 220 and the airflow sensor 250 inside the power supply device 200 .
  • the power supply device 200 further includes an electric core 210 for power supply that is away from the receiving cavity 270 along the length direction.
  • the power supply device 200 also includes a circuit 220 operable to conduct electrical current between the battery cell 210 and the first electrical contact 230 .
  • the power supply device 200 also includes an airflow sensor 250 for sensing the suction airflow generated when the user inhales the atomizer 100 , and then the circuit 220 controls the electric core 210 to flow to the atomizer 100 according to the sensing signal of the airflow sensor 250 . output electricity.
  • the power supply device 200 is provided with a charging interface 240 at the other end away from the receiving cavity 270 for charging the battery cell 210 .
  • the atomizer 100 includes:
  • the liquid storage chamber 101 is used to store the liquid aerosol-forming substrate
  • a heating element 103 for heating the atomized liquid aerosol-forming substrate to generate an aerosol
  • the liquid guiding element 102 is used for transferring the liquid aerosol-forming substrate between the liquid storage chamber 101 and the heating element 103 .
  • the liquid aerosol-forming substrate preferably comprises a tobacco-containing material comprising volatile tobacco flavor compounds that are released from the liquid aerosol-forming substrate upon heating.
  • the liquid aerosol-forming substrate may comprise non-tobacco material.
  • Liquid aerosol-forming substrates may include water, ethanol or other solvents, plant extracts, nicotine solutions, and natural or artificial flavorings.
  • the liquid aerosol-forming substrate further comprises an aerosol-forming agent. Examples of suitable aerosol formers are glycerol and/or propylene glycol.
  • the liquid guiding element 102 is configured in the shape of a hollow column extending along the longitudinal direction of the atomizer 100 , and the heating element 103 is formed in the cylindrical hollow of the liquid guiding element 102 .
  • the liquid aerosol-forming matrix of the liquid storage chamber 101 is absorbed along the outer surface of the liquid guide element 102 in the radial direction, and then transferred to the heating element 103 on the inner surface to be heated and vaporized to form an aerosol;
  • the generated aerosol is output along the longitudinal direction of the nebulizer 100 from the columnar hollow of the liquid guiding element 102 , as shown by the arrow R2 in FIG. 1 .
  • the liquid-guiding element 102 includes flexible fibers, such as cotton fibers, non-woven fabrics, glass fiber ropes, etc., or porous ceramics with a microporous structure; the liquid-guiding element of porous ceramics is used in specific implementations.
  • the structure of 102 can be in various regular or irregular shapes, such as the shape described in patent CN212590248U.
  • the heating element 103 is a structure such as a heating wire or a heating sheet, which is combined with the liquid guiding element 102 through contact. Or in other variant implementations, the heating element 103 may be combined on the liquid guiding element 102 by printing, deposition, sintering or physical assembly. In some other variant implementations, the liquid-conducting element 102 using porous ceramics may have a flat or curved surface for supporting the heating element 103, and the heating element 103 is formed on the plane of the liquid-conducting element 102 by mounting, printing, deposition, etc. or on a surface.
  • the material of the heating element 103 may be a metal material, metal alloy, graphite, carbon, conductive ceramic or other composite material of ceramic material and metal material with suitable resistance.
  • Suitable metal or alloy materials include nickel, cobalt, zirconium, titanium, nickel alloys, cobalt alloys, zirconium alloys, titanium alloys, nickel-chromium alloys, nickel-iron alloys, iron-chromium alloys, iron-chromium-aluminum alloys, titanium alloys, iron-manganese-aluminum alloys At least one of alloy or stainless steel.
  • the real-time temperature of the heating element (10, 103) is sensed by a thermosensitive element disposed close to the heating element (10, 103).
  • the resistance value of the thermal element can change with the heating temperature; generally, it can be divided into positive temperature coefficient thermal element and negative temperature coefficient thermal element according to the temperature coefficient.
  • the heating element (10, 103) can be used not only to heat the aerosol-forming substrate, but also as a thermosensitive element to sense real-time temperature.
  • the resistance material of heating element 103 can be selected to have the metal or alloy material of suitable temperature coefficient of resistance, such as positive temperature coefficient or negative temperature coefficient, and heating element 103 can be used for heating like this, can be used for sensing heating element 103 again.
  • Real-time temperature sensor can be used not only to heat the aerosol-forming substrate, but also as a thermosensitive element to sense real-time temperature.
  • the heating element can not only be used to heat the aerosol-forming substrate, but also can be used as a thermal element for sensing real-time temperature, and is illustrated in conjunction with Figure 2:
  • FIG. 3 shows a schematic diagram of the basic components of one embodiment of circuit 220 .
  • the circuit 220 includes:
  • the first switching tube Q1 is positioned between the electric core 210 and the heating element 103 (shown by R2 in FIG. 3 ); when the first switching tube Q1 is turned on, it is used to make the electric core 210 provide power to the heating element 103;
  • the sampling resistor R1 is positioned between the second switch tube Q2 and the heating element 103 .
  • the first end of the sampling resistor R1 is connected to the second switch tube Q2, and the second end is connected to the heating element 103;
  • the sampling resistor R1 is a standard resistor with substantially constant resistance, and the resistance ranges from 0.1m ⁇ to 1000K ⁇ . It is used to form a series connection with the heating element 103 when the second switch tube Q2 is turned on, thereby forming a detection loop capable of detecting the voltage of the sampling resistor R1 and the heating element 103 through voltage division. Certainly, when no detection is required, the second switch tube Q2 is turned off to disconnect the detection loop.
  • the first end of the heating element 103 includes two paths; the first path is connected to the first switching tube Q1 , and the second path is used to form a series connection with the sampling resistor R1 .
  • the second end of the heating element 103 is grounded, so the potential of the second end of the heating element 103 is zero.
  • the first switching tube Q1 and the second switching tube Q2 are turned on and off by the controller 221 , and the first switching tube Q1 and the second switching tube Q2 are not turned on at the same time.
  • the controller 221 includes but is not limited to a single chip MCU. When it is necessary to supply power to the heating element 103 , the controller 221 controls the first switching tube Q1 to be turned on and the second switching tube Q2 to be turned off, so that the battery cell 210 supplies power to the heating element 103 .
  • the controller 221 controls the first switching tube Q1 to be turned off and the second switching tube Q2 to be turned on, and through the detection circuit, the sampling resistor R1, and the relevant electrical characteristics of the heating element 103, such as voltage, The heating temperature can be determined.
  • the voltage across the sampling resistor R1 is denoted as V1, and the voltage across the heating element 103 is denoted as V2; during the detection process, the controller 221 can denote the voltage at the first end of the sampling resistor R1, that is, the sampling point a1 in FIG. 3 as Va1 , the voltage is the voltage at both ends of the detection circuit; the first end of the sampling heating element 103 is the voltage Vb1 at the sampling point b1 in FIG. 3 .
  • the controller 221 can determine the key value K, so as to obtain the heating temperature corresponding to the key value K in the pre-stored correspondence relationship data between the key value and the heating temperature through the key value K.
  • the value of K is That is, the ratio of the voltage at both ends of the sampling resistor R1 to the voltage at both ends of the heating element 103; the sampling resistor R1 is a given standard resistance, and the resistance value is constant; R2 is the bulk resistance of the heating element 103;
  • a (KT) temperature table can be formed and stored in the controller 221 or memory. Afterwards, when determining the key value K, the corresponding heating temperature can be obtained through the (KT) thermometer.
  • the corresponding heating temperature can be obtained without calculating the bulk resistance R2 of the heating element 103; on the other hand, if the VCC voltage jitter changes, V a1 , The voltage values such as V b1 also change proportionally at the same time, and a good anti-interference effect can be achieved without additional filter circuits. It should be noted that the reverse of the above K value is also feasible, that is, the ratio between the voltage across the sampling resistor R1 and the voltage across the heating element 103 includes the K value
  • K is That is, the ratio of the voltage across the detection loop to the voltage across the heating element 103 ; for others, refer to method 1.
  • the value of K is That is, the ratio of the voltage at both ends of the detection circuit to the voltage at both ends of the sampling resistor R1; for others, refer to method 1.
  • FIG. 4 shows a schematic diagram of the basic components of another embodiment of the circuit 220; the difference from the example in FIG. 3 is that the positions of the sampling resistor R1 and the heating element 103 (shown as R2 in the figure) are exchanged.
  • the health value K can be determined in the following different ways, and then the heating temperature can be determined:
  • K value That is, it is the ratio of the voltage across the heating element 103 to the voltage across the sampling resistor R1.
  • K value That is, the ratio of the voltage at both ends of the detection circuit to the voltage at both ends of the sampling resistor R1.
  • K value That is, the ratio of the voltage across the detection loop to the voltage across the heating element 103 .
  • FIG. 5 shows a schematic diagram of the basic components of another embodiment of the circuit 220; the difference from the example in FIG. 3 is that the second end of the heating element 103 is not grounded, and the controller 221 samples or detects the second end c3 of the heating element 103 The voltage at is recorded as V c3 .
  • the health value K can be determined in the following different ways, and then the heating temperature can be determined:
  • the value of K is That is, the ratio of the voltage across the sampling resistor R1 to the voltage across the heating element 103 .
  • the value of K is That is, the ratio of the voltage across the detection loop to the voltage across the heating element 103 .
  • the value of K is That is, the ratio of the voltage at both ends of the detection circuit to the voltage at both ends of the sampling resistor R1.
  • FIG. 6 shows a schematic diagram of the basic components of another embodiment of the circuit 220; the difference from the example in FIG. 3 is that the sampling resistor R1 is connected in parallel with the heating element 103; the controller 221a controls the first switching tube Q1 and the second switching tube When Q2 is turned on at the same time, a detection loop is formed between the sampling resistor R1 and the heating element 103; when no detection is required, the second switch tube Q2 is controlled to be turned off.
  • the health value K can be determined in the following different ways, and then the heating temperature can be determined:
  • the value of K is That is, it is the ratio of the current flowing through the sampling resistor R1 to the current flowing through the heating element 103 .
  • the value of K is That is, it is the ratio of the current flowing through the heating element 103 to the current flowing through the sampling resistor R1.
  • the controller is configured to control the ratio of any two of the electrical characteristics of the detection loop, the electrical characteristics of the sampling resistor, and the electrical characteristics of the thermal element to a preset value or within a preset range .
  • the temperature of the heating element 10 needs to reach the maximum temperature quickly, and then maintain at the maximum temperature for a period of time. Time; in the suction stage or constant temperature stage, it is necessary to control the temperature of the heating element 10 to a preset value or within a preset temperature range. Therefore, the temperature of the heating element 10 can be controlled by directly controlling the ratio of any two electrical characteristics to a preset value or within a preset range by the controller.
  • the controller can determine whether the ratio of any two electrical characteristics reaches a preset value, and then determine whether the temperature of the heating element 10 reaches the maximum temperature, thereby controlling the battery cell 20 to provide power to the heating element 30 .
  • the ratio of any two electrical characteristics can refer to FIG. 3-FIG. 6 and the description of the foregoing content, and details are not repeated here.
  • Another embodiment of the present application also provides a method for controlling an aerosol generating device, and for the aerosol generating device, reference may be made to the above content.
  • the methods include:
  • the ratio is determined to determine the temperature of the heated aerosol-forming substrate.
  • Step S11 controlling the first switching transistor Q1 to be turned off and controlling the second switching transistor Q2 to be turned on.
  • Step S12 open the detection port, and detect the voltage at the sampling point a1 and the voltage at the sampling point b1; wherein, the voltage at a1 is denoted as Va1, and the voltage at the sampling point b1 is denoted as Vb1.
  • Step S13 according to the voltage at the sampling point a1 and the voltage at the sampling point b1, calculate the key value K; where K is That is, the ratio of the voltage across the sampling resistor R1 to the voltage across the heating element 103 .
  • Step S14 in the pre-stored correspondence relationship data between the key value and the heating temperature, look up the heating temperature corresponding to the key value K; in the pre-existing (KT) temperature table, look up the key value corresponding heating temperature.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

本申请提出一种气溶胶生成装置及其控制方法;其中,气溶胶生成装置包括:电芯,用于供电;热敏元件,其电阻值可随着加热温度的变化而改变;采样电阻,用于与所述热敏元件电连接从而形成检测回路;控制器,被配置为根据所述检测回路的电特性、所述采样电阻的电特性、所述热敏元件的电特性中的任意两个电特性的比值,确定所述加热温度。以上气溶胶生成装置,通过采样电阻与热敏元件构建检测回路,并根据检测回路的电特性、采样电阻的电特性、热敏元件的电特性中的任意两个电特性的比值确定加热气溶胶形成基质的温度,便于温度控制。

Description

气溶胶生成装置及其控制方法
相关申请的交叉参考
本申请要求于2021年10月27日提交中国专利局,申请号为202111252866.8,发明名称为“气溶胶生成装置及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子雾化技术领域,尤其涉及一种气溶胶生成装置及其控制方法。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为加热不燃烧装置,其通过加热而不是燃烧材料来释放化合物;例如,该材料可为烟草或其它非烟草产品,这些非烟草产品可包含或可不包含尼古丁。作为另一示例的电子雾化装置,通常包含液体,该液体被加热元件加热以使其发生汽化,从而产生可吸入的气溶胶;该液体可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油)。
以上加热装置,通常是通过计算出具有温度系数的电阻阻值来确定加热元件的工作温度;为了避免电源不稳定导致的干扰问题,需要增加滤波电路以确保计算出的电阻阻值的准确性。
发明内容
本申请的一个实施例提供一种气溶胶生成装置,被配置为用于加热气溶胶形成基质以生成气溶胶;包括:
电芯,用于供电;
热敏元件,其电阻值可随着加热温度的变化而改变;
采样电阻,用于与所述热敏元件电连接从而形成检测回路;
控制器,被配置为根据所述检测回路的电特性、所述采样电阻的电特性、所述热敏元件的电特性中的任意两个电特性的比值,确定所述加热温度。
在一示例中,所述控制器还被配置为,检测所述任意两个电特性。
在一示例中,所述控制器还被配置为,根据所述比值、以及预先存储的比值与加热温度的对应关系数据,得到所述加热温度。
在一示例中,所述控制器还被配置为,查找所述对应关系数据。
在一示例中,所述采样电阻与所述热敏元件串联连接。
其中,所述电特性包括电压;
所述比值包括以下至少之一:
所述检测回路两端的电压与所述采样电阻两端的电压的比值、所述检测回路两端的电压与所述热敏元件两端的电压的比值、所述采样电阻两端的电压与所述热敏元件两端的电压的比值。
在一示例中,所述采样电阻与所述热敏元件并联连接。
其中,所述电特性包括电流;
所述比值包括流经所述采样电阻的电流与流经所述热敏元件的电流的比值。
在一示例中,还包括开关管;
所述控制器还被配置为,控制所述开关管以导通或者断开所述检测回路与所述电芯之间的电连接。
在一示例中,还包括加热元件,用于加热气溶胶形成基质;
所述热敏元件靠近所述加热元件设置。
在一示例中,所述热敏元件被配置为可用于加热气溶胶形成基质。
在一示例中,所述气溶胶形成基质呈固体形式或者液体形式。
本申请的一个实施例还提供一种气溶胶生成装置,被配置为用于加热气溶胶形成基质以生成气溶胶;包括:
电芯,用于供电;
热敏元件,其电阻值可随着加热温度的变化而改变;
采样电阻,用于与所述热敏元件电连接从而形成检测回路;
控制器,被配置为控制所述检测回路的电特性、所述采样电阻的电特性、所述热敏元件的电特性中的任意两个电特性的比值保持为预设值或者处于预设范围内。
本申请的一个实施例还提供一种气溶胶生成装置,包括:
电芯,用于供电;
加热元件,用于加热气溶胶形成基质以生成气溶胶;
采样电阻,用于与所述加热元件电连接从而形成检测回路;
控制器,被配置为根据所述检测回路的电特性、所述采样电阻的电特性、所述加热元件的电特性中的任意两个电特性的比值,确定所述加热元件的加热温度。
本申请的又一个实施例还提供一种气溶胶生成装置的控制方法,所述方法包括:
根据检测回路的电特性、采样电阻的电特性、热敏元件的电特性中的任意两个电特性确定比值,确定加热气溶胶形成基质的温度。
以上气溶胶生成装置,通过采样电阻与热敏元件构建检测回路,并根据检测回路的电特性、采样电阻的电特性、热敏元件的电特性中的任意两个电特性的比值确定加热气溶胶形成基质的温度,便于温度控制。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的一种气溶胶生成装置的示意图;
图2是本申请实施例提供的另一种气溶胶生成装置的示意图;
图3是本申请实施例提供的电路一个实施例的基本组件的示意图;
图4是本申请实施例提供的电路另一个实施例的基本组件的示意图;
图5是本申请实施例提供的电路又一个实施例的基本组件的示意图;
图6是本申请实施例提供的电路又一个实施例的基本组件的示意图;
图7是本申请实施例提供的气溶胶生成装置控制过程示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详 细的说明。
图1是本申请实施方式提供的一种气溶胶生成装置示意图。
如图1所示,气溶胶生成装置包括:
腔室A,气溶胶生成制品B可移除地接收于腔室A内;
加热元件10,当气溶胶生成制品B接收于所述腔室A内时,加热元件10可插入至气溶胶生成制品B中进行加热,以生成气溶胶;
电芯20,用于供电;
电路30,设置在电芯20和加热元件10之间。电路30用于对气溶胶生成装置进行控制;例如,控制电芯20向加热元件10提供电力。
气溶胶生成制品B优选采用加热时从基质中释放挥发性化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟的非烟草材料。气溶胶生成制品B优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,固体基质可以包含附加的烟草或非烟草的挥发性香味化合物,以在基质受热时被释放。
需要说明的是,加热元件10的加热方式包括但不限于电阻加热、电磁加热、红外加热。加热元件10的形状包括但不限于针状、销钉状、或者薄片状。
还需要说明的是,与图1示例不同的是,在其它示例中,加热元件10被构造成围绕至少部分气溶胶生成制品B进行加热,即通常所说的周向加热或者外围加热等等,也是可行的。
图2是本申请实施方式提供的另一种气溶胶生成装置示意图。
如图2所示,该气溶胶生成装置包括存储有液体气溶胶形成基质并对其进行加热雾化生成气溶胶的雾化器100、以及为雾化器100供电的电源装置200。
在一个可选的实施方案中,比如图2所示,电源装置200包括设置于沿长度方向的一端、并用于接收和容纳雾化器100的至少一部分的接收腔270。电源装置200还包括至少部分裸露在接收腔270表面的第一电触头230,用于当雾化器100的至少一部分接收和容纳在电源装置200内时与雾化器100的形成电连接进而为雾化器100供电。
根据图2所示的优选实施方案,雾化器100沿长度方向与电源装置200相对的端部上设置有第二电触头104,进而当雾化器100的至少一部分接收于接收 腔270内时,第二电触头104通过与第一电触头230接触抵靠进而形成导电。
电源装置200内设置有密封件260,并通过该密封件260将电源装置200的内部空间的至少一部分分隔形成以上接收腔270。在图2所示的优选实施方案中,该密封件260被构造成沿电源装置200的横截面方向延伸,并且优选是采用具有柔性材质例如硅胶制备,进而阻止由雾化器100渗流至接收腔270的气溶胶形成基质流向电源装置200内部的电路220、气流传感器250等部件。
在图2所示的优选实施中,电源装置200还包括沿长度方向背离接收腔270的用于供电的电芯210。
电源装置200还包括电路220,该电路220可操作地在电芯210与第一电触头230之间引导电流。
电源装置200还包括有气流传感器250,用于感测用户对雾化器100抽吸时产生的抽吸气流,进而电路220根据该气流传感器250的感测信号控制电芯210向雾化器100输出电力。
进一步在图2所示的优选实施中,电源装置200在背离接收腔270的另一端设置有充电接口240,用于对电芯210充电。
在一个可选的实施例中,例如图2所示的实施例中,雾化器100包括有:
储液腔101,用于存储液体气溶胶形成基质;
加热元件103,用于加热雾化液体气溶胶形成基质以生成气溶胶;
导液元件102,用于在储液腔101与加热元件103之间传递液体气溶胶形成基质。
在一个可选的实施中,液体气溶胶形成基质优选包括含烟草的材料,含烟草的材料包括在加热时从液体气溶胶形成基质释放的挥发性烟草香味化合物。替代地或另外,液体气溶胶形成基质可以包含非烟草材料。液体气溶胶形成基质可以包括水、乙醇或其它溶剂、植物提取物、尼古丁溶液和天然或人造的调味剂。优选的是,液体气溶胶形成基质进一步包含气溶胶形成剂。合适的气溶胶形成剂的实例是甘油和/或丙二醇。
在图2所示的实施例中,导液元件102被构造成沿雾化器100的纵向延伸的中空柱状的形状,加热元件103形成于导液元件102的柱状中空内。在使用中如箭头R1所示,储液腔101的液体气溶胶形成基质沿导液元件102的径向方向的外表面被吸收,而后传递至内表面的加热元件103内加热汽化生成气溶胶; 生成的气溶胶由导液元件102的柱状中空内沿雾化器100的纵向输出,如图1中箭头R2所示。
在其它的变化实施中,导液元件102包括柔性的纤维,例如棉纤维、无纺布、玻纤绳等等,或者包括具有微孔构造的多孔陶瓷;具体的实施中采用多孔陶瓷的导液元件102的结构可以呈多种规则或不规则的任意形状,例如专利CN212590248U所记载的形状。
在一些实施例中,加热元件103是发热丝或发热片等等的构造,通过接触的方式结合于导液元件102。或者在其它的变化实施中,加热元件103可以是通过印刷、沉积、烧结或物理装配等方式结合在导液元件102上的。在一些其它的变化实施方式中,采用多孔陶瓷的导液元件102可以具有用于支撑加热元件103的平面或曲面,加热元件103通过贴装、印刷、沉积等方式形成于导液元件102的平面或曲面上。
加热元件103的材料可以是具有适当阻抗的金属材料、金属合金、石墨、碳、导电陶瓷或其它陶瓷材料和金属材料的复合材料。适当的金属或合金材料包括镍、钴、锆、钛、镍合金、钴合金、锆合金、钛合金、镍铬合金、镍铁合金、铁铬合金、铁铬铝合金、钛合金、铁锰铝基合金或不锈钢等中的至少一种。
基于图1和图2所示的气溶胶生成装置,需要监控加热元件(10、103)加热气溶胶形成基质的温度,以便控制电芯(20、220)向加热元件(10、103)提供电力,进而使得用户得到更好的体验。
在一个可选的实施中,通过靠近加热元件(10、103)设置的热敏元件来感测加热元件(10、103)的实时温度。热敏元件的电阻值可随着加热温度的变化而改变;一般的,按照温度系数不同分为正温度系数热敏元件和负温度系数热敏元件。
在另一个可选的实施中,加热元件(10、103)既可以用来加热气溶胶形成基质,又可以作为用来感测实时温度的热敏元件。例如:加热元件103的电阻材料可以选取具有适合电阻温度系数的金属或合金材料,例如正温度系数或负温度系数,这样加热元件103既可以用来发热,又可以作为用来感测加热元件103实时温度的传感器。
为了便于说明,以下示例针对加热元件既可以用来加热气溶胶形成基质,又可以作为用来感测实时温度的热敏元件,并结合图2进行说明:
图3示出了电路220一个实施例的基本组件的示意图。
如图3所示,电路220包括:
第一开关管Q1,定位于电芯210与加热元件103(图3中的R2所示)之间;当第一开关管Q1导通时,用于使电芯210对加热元件103提供电力;
采样电阻R1,定位于第二开关管Q2与加热元件103之间。具体地,采样电阻R1的第一端与第二开关管Q2连接、第二端与加热元件103连接;该采样电阻R1是阻值基本恒定的标准电阻,阻值范围介于0.1mΩ~1000KΩ,用于在当第二开关管Q2导通时与加热元件103形成串联,进而形成可以通过分压检测采样电阻R1和加热元件103的电压的检测回路。当然,在不需要进行检测时,第二开关管Q2断开以断开检测回路。
在图3中所示的具体实施中,加热元件103的第一端包括两路;其中第一路与第一开关管Q1连接,第二路用于与采样电阻R1形成串联。加热元件103的第二端是接地的,则加热元件103的第二端的电势为0。
进一步在图3所示的具体实施中,第一开关管Q1和第二开关管Q2是由控制器221控制通断的,并且第一开关管Q1和第二开关管Q2是不同时导通的。控制器221包括但不限于单片机MCU。在需要对加热元件103供电时,则控制器221控制第一开关管Q1导通、第二开关管Q2断开,使电芯210对加热元件103供电。在需要检测加热元件103的加热温度时,则控制器221控制第一开关管Q1断开、第二开关管Q2导通,通过检测回路、采样电阻R1、加热元件103的相关电特性例如电压,可以确定加热温度。
将采样电阻R1两端的电压记为V1,加热元件103两端的电压记为V2;检测的过程中,控制器221可以采样电阻R1的第一端即图3中采样点a1处的电压记为Va1,该电压即为检测回路两端的电压;采样加热元件103的第一端即图3中采样点b1处的电压Vb1。基于图3中加热元件103的第二端接地,则采样点b1处的电压Vb1=V2,而采样电阻R1两端的电压V1=Va1-V2。
基于上述的相关电特性,控制器221可以确定健值K,以通过该健值K,在预先存储的健值与加热温度的对应关系数据中,查找得到该健值K对应的加热温度。
具体地,可以通过以下不同方式实现:
1)、
Figure PCTCN2022127396-appb-000001
其中,K值为
Figure PCTCN2022127396-appb-000002
即为采样电阻R1两端的电压与加 热元件103两端的电压的比值;采样电阻R1为给定的标准电阻,阻值是恒定不变的;R2为加热元件103的体电阻;在建立健值与加热温度的对应关系数据时,需要根据TCR计算公式(若为单独的热敏元件可根据分度表)、并结合采样电阻R1的阻值,将
Figure PCTCN2022127396-appb-000003
换算成对应的加热温度,从而可形成(K-T)温度表并存储在控制器221或者存储器中。之后,在确定健值K时,通过(K-T)温度表即可得到对应的加热温度。从该方式可以看出,无需计算出加热元件103的体电阻R2,即可得到对应的加热温度;另一方面,若VCC电压抖动变化,V a1
Figure PCTCN2022127396-appb-000004
V b1等电压值也同时等比例变化,不需要额外的滤波电路就能达到很好的抗干扰效果。需要说明的是,上述K值反之也是可行的,即采样电阻R1两端的电压与加热元件103两端的电压之间的比值包括K值为
Figure PCTCN2022127396-appb-000005
2)、
Figure PCTCN2022127396-appb-000006
其中,K值为
Figure PCTCN2022127396-appb-000007
即为检测回路两端的电压与加热元件103两端的电压的比值;其它可参考方式1。
3)、
Figure PCTCN2022127396-appb-000008
其中,K值为
Figure PCTCN2022127396-appb-000009
即为检测回路两端的电压与采样电阻R1两端的电压的比值;其它可参考方式1。
进一步图4示出了电路220又一个实施例的基本组件的示意图;与图3示例不同的是,采样电阻R1与加热元件103(图中的R2所示)的位置交换了。
与图3类似的,可以通过以下不同方式确定健值K,进而确定加热温度:
11)、
Figure PCTCN2022127396-appb-000010
K值为
Figure PCTCN2022127396-appb-000011
即为加热元件103两端的电压与采样电阻R1两端的电压的比值。
12)、
Figure PCTCN2022127396-appb-000012
K值为
Figure PCTCN2022127396-appb-000013
即为检测回路两端的电压与采样电阻R1两端的电压的比值。
13)、
Figure PCTCN2022127396-appb-000014
K值为
Figure PCTCN2022127396-appb-000015
即为检测回路两端的电压与加热元件103两端的电压的比值。
进一步图5示出了电路220又一个实施例的基本组件的示意图;与图3示例不同的是,加热元件103的第二端不接地,控制器221采样或者检测加热元件103的第二端c3处的电压记为V c3
与图3类似的,可以通过以下不同方式确定健值K,进而确定加热温度:
21)、
Figure PCTCN2022127396-appb-000016
其中,K值为
Figure PCTCN2022127396-appb-000017
即为采样电阻R1两端的电压与加热元件103两端的电压的比值。
22)、
Figure PCTCN2022127396-appb-000018
其中,K值为
Figure PCTCN2022127396-appb-000019
即为检测回路两端的电压与加热元件103两端的电压的比值。
23)、
Figure PCTCN2022127396-appb-000020
其中,K值为
Figure PCTCN2022127396-appb-000021
即为检测回路两端的电压与采样电阻R1两端的电压的比值。
很容易想象得到的,与图4类似的,将图5中的采样电阻R1与加热元件103的位置交换,也可以确定对应的健值K,进而确定加热温度。
进一步图6示出了电路220又一个实施例的基本组件的示意图;与图3示例不同的是,采样电阻R1与加热元件103并联连接;控制器221a控制第一开关管Q1和第二开关管Q2同时导通时,采样电阻R1与加热元件103之间形成了检测回路;在不需要进行检测时,控制第二开关管Q2断开。
与图3类似的,可以通过以下不同方式确定健值K,进而确定加热温度:
31)、
Figure PCTCN2022127396-appb-000022
其中,K值为
Figure PCTCN2022127396-appb-000023
即为流经采样电阻R1的电流与流经加热元件103的电流的比值。
32)、
Figure PCTCN2022127396-appb-000024
其中,K值为
Figure PCTCN2022127396-appb-000025
即为流经加热元件103的电流与流经采样电阻R1的电流的比值。
在另一实施例中,控制器被配置为控制检测回路的电特性、采样电阻的电特性、热敏元件的电特性中的任意两个电特性的比值为预设值或者处于预设范围内。
具体地,基于图1所示的气溶胶生成装置,需要在不同阶段控制加热元件10的温度,例如:在预热阶段需要加热元件10的温度快速地达到最大温度,然后在最大温度下维持一段时间;在抽吸阶段或者恒温阶段,需要控制加热元件10的温度为预设值或者处于预设温度范围内。因此,通过控制器直接控制任意两个电特性的比值为预设值或者处于预设范围内,即可控制加热元件10的温度。以预热阶段为例,控制器可判断任意两个电特性的比值是否达到预设值,进而判断加热元件10的温度是否达到最大温度,从而控制电芯20向加热元件30提供电力。
在该实施例中,任意两个电特性的比值可参考图3-图6、以及前述内容的描述,在此不作赘述。
本申请另一实施方式还提供一种气溶胶生成装置的控制方法,气溶胶生成装置可参考前述内容。
所述方法包括:
根据检测回路的电特性、采样电阻的电特性、热敏元件的电特性中的任意两个电特性确定比值,确定加热气溶胶形成基质的温度。
以下结合图3和图7对图2中的气溶胶生成装置的控制过程进行说明:
步骤S11、控制第一开关管Q1断开并控制第二开关管Q2导通。
步骤S12、打开检测端口,检测采样点a1处的电压和采样点b1处的电压;其中,a1处的电压记为Va1,采样点b1处的电压记为Vb1。
步骤S13、根据采样点a1处的电压和采样点b1处的电压,计算健值K;其中,K值为
Figure PCTCN2022127396-appb-000026
即为采样电阻R1两端的电压与加热元件103两端的电压的比值。
步骤S14、在预先存储的健值与加热温度的对应关系数据中,查找得到该健值K对应的加热温度;在预先存在中的(K-T)温度表,查找健值
Figure PCTCN2022127396-appb-000027
对应的加热温度。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种气溶胶生成装置,被配置为用于加热气溶胶形成基质以生成气溶胶;其特征在于,包括:
    电芯,用于供电;
    热敏元件,其电阻值可随着加热温度的变化而改变;
    采样电阻,用于与所述热敏元件电连接从而形成检测回路;
    控制器,被配置为根据所述检测回路的电特性、所述采样电阻的电特性、所述热敏元件的电特性中的任意两个电特性的比值,确定所述加热温度。
  2. 如权利要求1所述的气溶胶生成装置,其特征在于,所述控制器还被配置为,检测所述任意两个电特性。
  3. 如权利要求1所述的气溶胶生成装置,其特征在于,所述控制器还被配置为,根据所述比值、以及预先存储的比值与加热温度的对应关系数据,得到所述加热温度。
  4. 如权利要求3所述的气溶胶生成装置,其特征在于,所述控制器还被配置为,查找所述对应关系数据。
  5. 如权利要求1所述的气溶胶生成装置,其特征在于,所述采样电阻与所述热敏元件串联连接。
  6. 如权利要求5所述的气溶胶生成装置,其特征在于,所述电特性包括电压;
    所述比值包括以下至少之一:
    所述检测回路两端的电压与所述采样电阻两端的电压的比值、所述检测回路两端的电压与所述热敏元件两端的电压的比值、所述采样电阻两端的电压与所述热敏元件两端的电压的比值。
  7. 如权利要求1所述的气溶胶生成装置,其特征在于,所述采样电阻与所述热敏元件并联连接。
  8. 如权利要求7所述的气溶胶生成装置,其特征在于,所述电特性包括电流;
    所述比值包括流经所述采样电阻的电流与流经所述热敏元件的电流的比值。
  9. 如权利要求1所述的气溶胶生成装置,其特征在于,还包括开关管;
    所述控制器还被配置为,控制所述开关管以导通或者断开所述检测回路与所述电芯之间的电连接。
  10. 如权利要求1所述的气溶胶生成装置,其特征在于,还包括加热元件,用于加热气溶胶形成基质;
    所述热敏元件靠近所述加热元件设置。
  11. 如权利要求1所述的气溶胶生成装置,其特征在于,所述热敏元件被配置为可用于加热气溶胶形成基质。
  12. 如权利要求1所述的气溶胶生成装置,其特征在于,所述气溶胶形成基质呈固体形式或者液体形式。
  13. 一种气溶胶生成装置,被配置为用于加热气溶胶形成基质以生成气溶胶;其特征在于,包括:
    电芯,用于供电;
    热敏元件,其电阻值可随着加热温度的变化而改变;
    采样电阻,用于与所述热敏元件电连接从而形成检测回路;
    控制器,被配置为控制所述检测回路的电特性、所述采样电阻的电特性、所述热敏元件的电特性中的任意两个电特性的比值为预设值或者处于预设范围内。
  14. 一种气溶胶生成装置,其特征在于,包括:
    电芯,用于供电;
    加热元件,用于加热气溶胶形成基质以生成气溶胶;
    采样电阻,用于与所述加热元件电连接从而形成检测回路;
    控制器,被配置为根据所述检测回路的电特性、所述采样电阻的电特性、所述加热元件的电特性中的任意两个电特性的比值,确定所述加热元件的加热温度。
  15. 一种气溶胶生成装置的控制方法,其特征在于,所述方法包括:
    根据检测回路的电特性、采样电阻的电特性、热敏元件的电特性中的任意两个电特性确定比值,确定加热气溶胶形成基质的温度。
PCT/CN2022/127396 2021-10-27 2022-10-25 气溶胶生成装置及其控制方法 WO2023072078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111252866.8 2021-10-27
CN202111252866.8A CN116019263A (zh) 2021-10-27 2021-10-27 气溶胶生成装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2023072078A1 true WO2023072078A1 (zh) 2023-05-04

Family

ID=86073169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127396 WO2023072078A1 (zh) 2021-10-27 2022-10-25 气溶胶生成装置及其控制方法

Country Status (2)

Country Link
CN (1) CN116019263A (zh)
WO (1) WO2023072078A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027016A (zh) * 2012-09-11 2015-11-04 菲利普莫里斯生产公司 用于控制电加热器以限制温度的装置及方法
US20200237013A1 (en) * 2017-10-24 2020-07-30 Japan Tobacco Inc. Aerosol generating apparatus
CN212590248U (zh) 2020-04-30 2021-02-26 深圳市合元科技有限公司 雾化器以及电子烟
CN214229854U (zh) * 2020-12-22 2021-09-21 深圳市合元科技有限公司 一种气溶胶生成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027016A (zh) * 2012-09-11 2015-11-04 菲利普莫里斯生产公司 用于控制电加热器以限制温度的装置及方法
US20200237013A1 (en) * 2017-10-24 2020-07-30 Japan Tobacco Inc. Aerosol generating apparatus
CN212590248U (zh) 2020-04-30 2021-02-26 深圳市合元科技有限公司 雾化器以及电子烟
CN214229854U (zh) * 2020-12-22 2021-09-21 深圳市合元科技有限公司 一种气溶胶生成装置

Also Published As

Publication number Publication date
CN116019263A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN111050581B (zh) 具备加热器的气溶胶生成装置
US11140923B2 (en) Inductive heating arrangement comprising a temperature sensor
WO2019161633A1 (zh) 一种气溶胶生成装置及气溶胶生成制品
KR102290037B1 (ko) 향상된 에어로졸 생산을 가진 에어로졸 발생시스템
CN107692316B (zh) 加热式气溶胶产生装置及产生特性一致的气溶胶的方法
CN111726996B (zh) 气溶胶生成装置、其控制方法以及计算机可读记录介质
US20220175022A1 (en) Aerosol-generating article having a tubular support element
CN109688851B (zh) 用于气溶胶递送设备的模拟控制部件
CN213344346U (zh) 气雾生成装置
KR20210044064A (ko) 복수의 서셉터를 포함하는 에어로졸 발생 물품
WO2021105379A1 (en) Aerosol generation device, controller for an aerosol generation device, method of controlling an aerosol generation device
KR20230056581A (ko) 전자 무화장치 및 이의 가열 제어 장치와 가열 제어 방법
WO2022033583A1 (zh) 气雾生成装置
WO2023072078A1 (zh) 气溶胶生成装置及其控制方法
KR102065073B1 (ko) 히터를 구비한 에어로졸 생성 장치
CN215347063U (zh) 电子雾化装置及电源机构
WO2022194161A1 (zh) 电子雾化装置、电源机构和雾化器的识别方法
RU2810158C2 (ru) Изделие для генерирования аэрозоля, имеющее трубчатый опорный элемент, и система для генерирования аэрозоля
KR102625768B1 (ko) 에어로졸 생성 장치 및 그 제어 방법
US20240008540A1 (en) Heater for use in aerosol generation device, and aerosol generation device
EP4353103A1 (en) Electronic atomization device, power mechanism and control method
JP7390483B2 (ja) 電極を含むエアロゾル生成装置
KR20230061630A (ko) 무연 기능을 구비한 에어로졸 발생 장치
JP2023507972A (ja) 正温度係数のサーミスタを備えるエアロゾル形成基体用ヒーター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885955

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885955

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885955

Country of ref document: EP

Effective date: 20240328