WO2022193857A1 - 一种自极柱端部注液的电池结构及电池注液方法 - Google Patents

一种自极柱端部注液的电池结构及电池注液方法 Download PDF

Info

Publication number
WO2022193857A1
WO2022193857A1 PCT/CN2022/074757 CN2022074757W WO2022193857A1 WO 2022193857 A1 WO2022193857 A1 WO 2022193857A1 CN 2022074757 W CN2022074757 W CN 2022074757W WO 2022193857 A1 WO2022193857 A1 WO 2022193857A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
liquid injection
cell
electrolyte
battery structure
Prior art date
Application number
PCT/CN2022/074757
Other languages
English (en)
French (fr)
Inventor
陈海峰
Original Assignee
贵州中瑞丰泰新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州中瑞丰泰新能源科技有限公司 filed Critical 贵州中瑞丰泰新能源科技有限公司
Publication of WO2022193857A1 publication Critical patent/WO2022193857A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of batteries, in particular to a battery structure and a battery injection method for injecting liquid from the end of a pole column.
  • the battery injection technology is generally the process of injecting liquid electrolyte into the battery from the injection port.
  • the main purpose is to form an ion channel, so as to ensure that enough lithium ions can migrate between the positive and negative plates during the charging and discharging process of the battery. Reversible cycle.
  • the common liquid injection methods are mainly divided into two categories, one is to inject liquid directly through the liquid injection hole, which is also the most mainstream method, and the other is to put the battery into the electrolyte Let the electrolyte infiltrate the battery; if the injection hole injection method is used, it can be divided into single injection and multiple injection according to the injection volume.
  • any method that uses injection holes to implement immersion injection all need to try to promote cell infiltration.
  • the researchers of the technical solution of the present invention have analyzed the previous similar battery injection technology and found that the previous battery injection technology is affected by the injection method, the specific location of the injection, the sealing method at the injection location, and the degree of cell infiltration, etc. Due to the influence of factors, the ideal injection effect cannot be obtained.
  • the specific analysis is as follows:
  • the developers of the technical solution of the present invention have obtained through the above feasibility analysis of several commonly used battery injection methods, how to reasonably arrange the injection molding on the surface of the battery on the same side of the electrode column without affecting the structural stability of the battery itself. It is a technical problem that needs to be solved urgently at present to ensure that the battery cell is fully infiltrated during the smooth liquid injection process. After the demonstration of different technical means, the R&D personnel determined that it is necessary to rationally design the structure of the battery itself as the premise, and arrange the corresponding technical means.
  • the present invention provides a battery structure with liquid injection from the end of the pole column and a battery injection method designed according to the battery structure, which does not require a battery case.
  • a hole is opened at any position on the body surface, but only the electrode column is used to configure the liquid injection hole for liquid injection, and the battery liquid injection is improved by cleverly using the space at the center of the internal cell and matching the corresponding diversion structure. The smoothness of operation and the sufficient infiltration of the battery cells will not affect the stability and sealing of the battery itself.
  • the present invention adopts the following technical solutions:
  • a battery structure with liquid injection from the end of the pole column is used to maintain the sealing of the battery structure and improve the smoothness of the battery injection operation.
  • the upper surface of the battery case is provided with holes for assembling electrode posts, and the battery structure includes:
  • a battery cell which is horizontally arranged inside the battery casing, and a central space area is provided at the center of the battery cell;
  • the electrode column is provided with liquid injection holes running through its upper and lower surfaces, the liquid injection holes communicate with the middle space region, and the electrolyte is injected into the inner cavity of the battery case from top to bottom through the liquid injection holes, so that The electrolyte is directly dispersed and guided to various areas on the surface of the cell through the liquid injection hole through the central space area of the cell, so that the surface of the cell can be fully infiltrated.
  • a hole for assembling the electrode post is provided at the center position of the upper surface of the battery case.
  • the upper end of the liquid injection hole is provided with a conical port
  • the battery structure also includes a tapered seal assembly that cooperates with the tapered port to seal off the injection port.
  • the battery case is no longer provided with any holes; the electrolyte after the cell infiltration is dispersed and rushed to the space area on the outer edge of the cell.
  • the electrode column can use molybdenum or copper metal components
  • the conical sealing component can use nickel or aluminum metal components
  • the electrode column is equipped with a metal ring.
  • the metal ring is close to the top surface of the battery case, and an insulating layer is installed in the gap between the electrode column and the metal ring, and the insulating layer can be a glass layer.
  • the battery structure further includes a support assembly disposed on the inner bottom surface of the battery case;
  • the battery cell is fixedly assembled on the support assembly.
  • the battery junction further includes a guide support 1 and a guide support two respectively arranged above the support assembly, at least part of the battery cells are fixedly assembled on the guide support 1, and at least part of the guide support The electric core is fixedly assembled on the second guide support.
  • the cross-sections of the first guide support and the second guide support are both annular structures, and the first guide support is arranged on the inner side of the second guide support.
  • a battery injection method for improving the smoothness of battery injection operation comprising the following steps:
  • the electrolyte is injected into the battery from top to bottom from the set injection hole, so that the electrolyte is dispersed and guided to various areas on the surface of the battery cell through the central space area, so that the battery core can be fully infiltrated and the smoothness of the battery injection can be improved. sex;
  • the battery structure implemented by the present invention does not need to open holes at any position on the surface of the battery case, but only uses electrode columns to configure liquid injection holes for liquid injection, and cleverly uses the space at the center of the internal cell and cooperates
  • the corresponding diversion structure can improve the smoothness of the battery injection operation and ensure sufficient infiltration of the battery cells without affecting the stability and sealing of the battery itself.
  • the liquid injection method of opening holes on the surface can show obvious advantages.
  • Fig. 1 is the battery structure implemented by the present invention with liquid injection at the end of the self-electrode column, and its external schematic diagram;
  • FIG. 2 is a schematic top view of a battery structure with liquid injection from the end of a pole column implemented in the present invention
  • Fig. 3 is the A-A direction sectional schematic diagram of Fig. 2;
  • FIG. 4 is a schematic diagram of the internal structure of a specific battery case that can be implemented by the battery structure of the self-pole end of the liquid injection according to the present invention
  • Fig. 5 is the enlarged schematic diagram of part 4A of Fig. 4;
  • FIG. 6 is a schematic diagram of the internal support of the battery structure implemented by the self-pole end of the liquid injection according to the present invention.
  • FIG. 7 is an exploded schematic diagram of a part of the battery structure with liquid injection from the end of the pole column according to the present invention.
  • the purpose of the battery structure for injecting liquid from the end of the pole column to be implemented in the present invention the technical means implemented are to achieve the purpose of solving the problem of the previous battery injection operation due to the separate removal of the battery cell for injection, or the random configuration from the surface of the battery case.
  • the liquid injection hole is used for liquid injection, which makes it impossible to improve the smoothness of the battery injection operation and the sufficient infiltration of the battery cell on the basis of ensuring the sealing stability of the battery itself.
  • the technical solution implemented by the present invention mainly uses the electrode column to add liquid injection holes from top to bottom and supplemented by conical sealing components, and then uses the cavity in the central area of the cell to guide the injected electrolyte to apply the electrolyte to the cell. Evenly and fully infiltrate, and at the same time improve the smoothness of the battery injection operation.
  • an optimized battery structure is also formed.
  • the battery to which the liquid structure can be applied (especially the metal packaged battery) can be easily implemented by the skilled person according to the technical means implemented in the present invention. Therefore, including the battery size, model, material, material of the pole, the position where the tab is arranged, etc., these all belong to the conventional technical means in the art, and for these conventional technical means that are not within the scope of the technical solution of the present invention, the present invention is implemented. There is no need to detail every detail, it is unrealistic to list them all.
  • the technical solution implemented by the present invention is actually a battery structure that allows those skilled in the art to refer to and implement the liquid injection at the end of the self-pole column in combination with conventional technical means.
  • the product formed according to the technical solution of the present invention can be actually applied and tested, and a series of advantages brought by it can be actually obtained, and these advantages will be gradually reflected in the analysis of the structure below.
  • the battery structure with liquid injection from the end of the pole column implemented by the technical solution of the present invention includes a battery case 1 with a cylindrical structure, the interior of which is set as The hollow structure is used to assemble the battery cell 2 and hold the injected electrolyte.
  • the center position of the battery core 2 is equipped with an electrode column 5 with a reserved through hole.
  • the column 5 passes through the battery case 1 from bottom to top and extends to the outside of the battery case 1, wherein the provided opening is also used to install the annular metal ring 3 that can seal and fix the assembled battery cell 2 to a certain extent.
  • the metal ring 3 is close to the top surface of the battery case 1 and an annular insulating layer 4 is installed in the gap between the electrode post 5 and the metal ring 3.
  • the structure implemented above forms the basic part of the battery structure.
  • the R&D personnel of technical solutions in the field are based on this basic part to further implement corresponding technical means, as follows:
  • the reserved through hole is set as the liquid injection hole 6. Since the liquid injection hole 6 is located in the center of the electrode column 5 and runs through the upper and lower bottom surfaces of the entire electrode column 5, it can pass through the electrode column 5. The liquid injection hole 6 injects liquid into the interior of the battery case 1 from the outside to the inside, and there is no need to open holes at any position on the surface of the battery case 1, which directly ensures the original sealing performance and structural stability of the battery case 1. ;
  • the bottom of the liquid injection hole 6 can be directly opposite to the position of the middle space area 10, that is, the liquid injection hole 6 is communicated with the middle space area 10, so that the injected
  • the electrolyte is directly dispersed to various areas on the surface of the battery core 2 through the liquid injection hole 6 through the central space area 10 of the internal battery core 2 to ensure the smoothness of the battery injection operation and the sufficient infiltration of the battery core 2;
  • the port of the liquid injection hole 6 located outside the battery case can be designed as a tapered structure according to the corresponding sealing design requirements to form a tapered port, that is, the liquid injection hole 6.
  • the hole wall of the upper end has a certain degree of taper, and the diameter of the hole decreases sequentially from top to bottom.
  • the corresponding conical sealing assembly 12 is additionally configured, and the conical sealing assembly 12 is taken out.
  • the liquid injection hole 6 can inject electrolyte into the inner cavity of the battery case 1 from top to bottom through the tapered port.
  • the tapered sealing component 12 closes the tapered port, due to the existence of the taper, it is beneficial to alleviate or avoid the outflow of liquid inside the battery case 1; in addition, the electrode column 5 is drilled with a liquid injection hole 6, which is also beneficial to directly lead out the conductor.
  • the electrode column 5 can be made of metal components such as molybdenum or copper
  • the conical sealing component 12 can be made of metal components such as nickel or aluminum
  • insulating The layer 4 can be a glass layer.
  • other feasible components are not repeated here.
  • the present invention is based on the existing technology, combined with practical application experience, and proposes to further optimize the liquid injection technology in the battery technology field.
  • the number of openings on the casing is based on the stability and sealing of the battery casing; and by cleverly utilizing the space at the center of the internal cell and cooperating with the corresponding diversion structure, the smoothness of the battery injection operation is improved and Make sure that the cells are fully wetted.
  • a corresponding flow-guiding structure (or bottom support) can also be provided at the bottom of the battery cell 2 to promote electrolysis After the liquid enters through the liquid injection hole, it is guided and dispersed to other areas through the central space area 10 of the battery cell 2 smoothly.
  • a corresponding flow-guiding structure or bottom support
  • the battery structure with liquid injection from the end of the pole column implemented in the second embodiment of the present invention is the supplement and improvement of the technical means implemented in the first embodiment, which is beneficial to the improvement of the battery injection operation.
  • technicians can further implement corresponding technical means to form corresponding technical solutions, including:
  • the technician can add a ring-shaped support component 7 horizontally on the bottom surface of the inner cavity of the battery case 1.
  • the specific material of the support component 7 can be selected as a component that has no effect on the performance of the battery core 2.
  • the implemented support component 7 Two layers of guide supports are arranged above, and from the inside to the outside are the guide supports 1 8 and the guide supports 2 9.
  • the cross-section of each guide support is a ring structure, so that it can be placed after the battery core 2.
  • the cell 2 can be horizontally fixed above the two guide supports and within the encirclement of the second guide supports 9 .
  • the electrolyte is injected from the liquid injection hole 6 reserved in the electrode column 5 from top to bottom, and is first guided through the middle space area 10 of the battery cell 2 to the Each area on the surface of the cell 2 can gradually be fully infiltrated on the surface of the cell 2, and then, the electrolyte after the cell infiltration can be dispersed and rushed to the periphery of the cell 2, as well as the outer edge of the cell 2 and the current conduction.
  • the side space area 11 between the second supports 9 it can be seen that by adding the first guide support 8 and the second guide support 9, the basic drainage function can also be played.
  • the battery core 2 can also be increased.
  • the technician can use components that do not affect the application performance of the cell 2, do not undergo chemical reactions, and do not cause corrosion.
  • the selections are all routine selections that can be made by those skilled in the art according to their technical common sense, and will not be repeated here.
  • the third embodiment of the present invention implements a battery liquid injection method, which is a supplement and improvement to the technical means implemented in the first or second embodiment.
  • technicians can further implement corresponding technical means according to the battery structure to form corresponding method steps, including:
  • the electrolyte is injected into the interior of the battery from top to bottom from the set liquid injection hole 6, so that the electrolyte is dispersed and guided to various areas on the surface of the battery cell 2 through the central space area 10, so that the battery core 2 is fully infiltrated, and the battery is improved.
  • the advantages of the battery liquid injection method can be further improved by combining the technical means of the diversion support used in the second embodiment.
  • connection can be a fixed connection or a connection without affecting the relationship between components and technology. The effect is performed indirectly through intermediate components, and may also be connected integrally or partially. As in the case of this example, those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific circumstances.
  • the technical means of injecting liquid, and the expected effect does not exceed the present invention; 2 the equivalent replacement of some features of the technical solution of the present invention by using known technology, the resulting technical effect is the same as the technical effect of the present invention, for example, to The size of the battery case or the electrode column, the model of the battery core, etc. are replaced by equivalent; 3. Based on the technical solution of the present invention, the essential content of the expanded technical solution does not exceed the technical solution of the present invention; 4.
  • the equivalent transformation made by the content recorded in the invention text is the solution of applying the obtained technical means to other related technical fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

本发明涉及一种自极柱端部注液的电池结构,其电池壳体表面仅于其上表面中心位置处设置用于装配电极柱的孔位,该电池结构包括一电极柱,其预留有贯穿于其上下表面的注液孔,此注液孔上端设置锥形端口,通过注液孔由上至下而向电池壳体内部空腔注入电解液,使得电解液直接由注液孔经过电芯的中部空间区域分散引导至电芯表面的各个区域。本发明利用电极柱来配置注液孔进行注液,利用内部电芯中心位置处的空间来提高电池注液操作的流畅性以及确保电芯充分的浸润,且不会影响电池自身结构的稳定性与密封性。

Description

一种自极柱端部注液的电池结构及电池注液方法 技术领域
本发明涉及电池技术领域,尤其涉及一种自极柱端部注液的电池结构及电池注液方法。
背景技术
电池注液技术,一般是使液体电解质从注液口注入电池的过程,主要目的是形成离子通道,从而保证电池在充放电过程中有足够的锂离子能够在正、负极片间进行迁移,实现可逆循环。
目前,本领域技术人员均知晓,常见的注液方式主要分为两类,一种是通过注液孔直接注液,此亦为最主流的方式,另外一种是将电池放入到电解液之中让电解液渗入电池;若采用注液孔注液的方式,根据注液量又可以分为单倍注液和多倍注液,但是,任何采用注液孔实施浸入式注液的方式,都需要设法促进电芯浸润。
本发明技术方案之研发人员针对以往同类的电池注液技术进行分析之后发现,以往电池注液技术受到其注液方式、注液具体位置、注液位置处的密封手段、以及电芯浸润程度等因素的影响,而无法取得理想的注液效果,具体分析如下:
其一、目前大多数厂家在对电池注入电解液时,很多都是由电池上表面开孔而向下注液或由电池下表面开孔而向上注液,这样便在电池上表面或下表面形成了两个孔位,其一是用于注入电解液的注液孔,另一个则是用于引出电极的电极孔,电池壳体上表面需要针对这两个孔位分别设置两套相互之间不关联的密封结构,这从加工成本、操作难易度、以及电池应用过程中的结构稳定性等方面来分析,都是极其不利的,实际上,已经破坏了电池自身的密封性;
其二、即便很多生产厂家为了操作方便,采用直接从上方注液孔注液的方 式并且分别施以密封结构,然而,却无法确保电池内部电芯能够充分的浸润,甚至还会造成电解液的浪费;
其三、经过不同阶段的试验可知,若采用电池下表面开设注液孔或电池上表面设置注液孔的方式,还需要进一步进行相应的优化来缓解或解决电解液容易外流的问题;
其四、对于电池的加工操作,往往习惯于集中于一侧(即电池壳体上表面或下表面)。
因此,对于目前电池注液所采用的技术手段,既不适合采用单独取出电芯注液的注液方式,又不适合采用电池上、下表面任意位置处随意配置注液孔进行注液的方式。
本发明技术方案之研发人员通过以上对目前常用的几种电池注液方式的可行性分析得出,如何在不影响电池自身结构稳定性的前提下,于电极柱同一侧的电池表面合理设置注液孔来确保电芯在顺畅的注液过程中得到充足的浸润,是目前亟待解决的技术问题,经过对不同技术手段的论证,研发人员确定需要以合理设计电池自身结构为前提,布置相应的技术手段。
发明内容
为克服上述问题或者至少部分地解决或缓减解决上述问题,本发明提供一种自极柱端部注液的电池结构以及根据该电池结构设计而成的电池注液方法,其无需于电池壳体表面任意位置处另行开孔,而是仅利用电极柱来配置注液孔进行注液,并且通过巧妙地利用内部电芯中心位置处的空间并且配合相应的导流结构,来提高电池注液操作的流畅性以及确保电芯充分的浸润,且不会影响电池自身结构的稳定性与密封性。
为实现上述目的,本发明采用以下技术方案:
一种自极柱端部注液的电池结构,用于保持电池结构的密封性且提高电池注液操作的流畅性,其电池壳体内部设置有用于装配电芯及盛装电解液的中空 腔室,电池壳体的上表面设置用于装配电极柱的孔位,该电池结构包括:
电芯,其水平设置于电池壳体内部,此电芯中心位置处设有中部空间区域;
电极柱,其设有贯穿其上下表面的注液孔,所述注液孔与所述中部空间区域连通,并且通过注液孔由上至下而向电池壳体内部空腔注入电解液,使得电解液直接由注液孔经过电芯的中部空间区域分散引导至电芯表面的各个区域,以便电芯表面充分浸润。
优选的,所述电池壳体的上表面中心位置处设置用于装配电极柱的孔位。
所述注液孔上端设置锥形端口;
所述电池结构还包括锥形密封组件,其与所述锥形端口配合以使注液端口封闭。
对于以上技术方案,技术人员还可结合实际应用状况采用相适宜的技术手段进一步补充或限定,包括以下:
除设置用于装配电极柱的孔位之外,此电池壳体不再设置任意孔位;电芯浸润之后的电解液分散涌向至电芯外边缘的空间区域。
相应地,技术人员还可对组件进行适配性的选择,例如,电极柱可采用钼或铜金属组件,锥形密封组件可采用镍或铝金属组件,电极柱外围装配金属圈。
其中,金属圈贴紧电池壳体的顶面,并且于电极柱与金属圈之间的空隙装入绝缘层,绝缘层可采用玻璃层。
此外,所述电池结构还包括设于所述电池壳体内部底面的支撑组件;
所述电芯固定装配在所述支撑组件上。
所述电池结还包括分别设于所述支撑组件上方的导流支座一及导流支座二,至少部分所述电芯固定装配在所述导流支座一上,且至少部分所述电芯固定装配在所述导流支座二上。
所述导流支座一与所述导流支座二的横截面均为环形结构,所述导流支座一设于所述导流支座二内侧。
对于以上技术方案,在同一构思的前提下,本领域技术人员还可实施相应技术手段来形成相应的技术方案,包括:
一种电池注液方法,用于提高电池注液操作的流畅性,包括以下步骤:
Ⅰ、选择要注入电解液的电池,通过所述电池的电极柱开设的一上下贯通的注液孔向电池内部装配电芯时,使该电芯的中部空间区域对准该注液孔,以便注液孔与中部空间区域保持连通;
Ⅱ、自所设置的注液孔由上向下往电池内部注入电解液,使电解液经由中部空间区域分散引导至电芯表面各个区域,从而使电芯充分浸润,且提升电池注液的流畅性;
Ⅲ、电芯浸润的同时,余下的电解液涌向电芯外围并充满所述电池的电池壳体。
本发明所实施之电池结构无需于电池壳体表面任意位置处另行开孔,而是仅利用电极柱来配置注液孔进行注液,并且通过巧妙地利用内部电芯中心位置处的空间并且配合相应的导流结构,来提高电池注液操作的流畅性以及确保电芯充分的浸润,且不会影响电池自身结构的稳定性与密封性,相比以往单独取出电芯注液方式或由电池表面另行开孔的注液方式,能够体现出明显的优越性。
附图说明
下面根据附图对本发明作进一步详细说明。
图1是本发明所实施的自极柱端部注液的电池结构,其外部示意图;
图2是本发明所实施的自极柱端部注液的电池结构,其俯视示意图;
图3是图2的A-A方向剖面示意图;
图4是本发明所实施的自极柱端部注液的电池结构,其可实施的具体的电池壳体内部结构示意图;
图5是图4的4A部分放大示意图;
图6是本发明所实施的自极柱端部注液的电池结构,其内部支座示意图;
图7是本发明所实施的自极柱端部注液的电池结构,其部分组件分解示意图。
图中:
1、电池壳体;
2、电芯;
3、金属圈;
4、绝缘层;
5、电极柱;
6、注液孔;
7、支撑组件;
8、导流支座一;
9、导流支座二;
10、中部空间区域;
11、侧部空间区域;
12、锥形密封组件。
具体实施方式
本发明拟实施的自极柱端部注液的电池结构,所实施的技术手段要达到的目的在于,解决以往电池注液操作因单独取出电芯进行注液、或由电池壳体表面随意配置注液孔进行注液,而导致无法在确保电池自身密封稳定性的基础上来提高电池注液操作的流畅性以及电芯充分的浸润。
本发明所实施之技术方案,主要利用电极柱增设由上向下的注液孔并辅以锥形密封组件,再利用电芯中心区域的腔室进行引导而使注入的电解液对电芯施行均匀、充分地浸润,同时提升电池注液操作的流畅性,实际上,根据该注液技术手段同时也形成了一种优化的电池结构。然而,除了这些结构之外,由于本发明技术方案所涉及到的电池类型范围之广,对于电池壳体、电极柱等组件不便于详细限制其具体的尺寸、型号以及材质,凡是本发明之注液结构能够应用于的电池(特别是金属包装的电池),技术人员都可以依据本发明所实施的技术手段来轻易地实施。因而,包括电池尺寸、型号、材质、极柱的材质、极耳设置的位置等,这些均属于本领域常规技术手段,对于不在本发明技术方案范围之内的这些常规技术手段,本发明具体实施方式无必要将每一个细节都细化出来,若要全部列举出来是不现实的。显然,本发明所实施的技术方案实际上是一种能够让本领域技术人员结合常规技术手段参照及实施的自极柱端部注液的电池结构,技术人员根据不同的应用条件以及使用需求,按照本发明技术方案形成的产品进行实际应用与测试,能够实际获得其带来的一系列优势,这些优势将会在以下对结构的解析中逐步体现出来。
实施例一
如图1、图2、图3、图5、图7所示,本发明技术方案所实施的自极柱端部注液的电池结构,包括柱形结构的电池壳体1,其内部设置为中空结构,以便用于装配电芯2以及盛装所注入的电解液,此电芯2的中心位置处配置预留通孔的电极柱5,由于电池壳体1顶部设置一开口,可使电极柱5由下至上穿过电池壳体1而延伸至电池壳体1外部,其中,所设置的开口亦用于安装能够对所装配之电芯2起一定密封作用与固定作用的环形金属圈3,此金属圈3贴 紧电池壳体1的顶面并且于电极柱5与金属圈3之间的空隙装入一环形的绝缘层4,以上所实施之结构即形成电池结构的基础部分,本领域技术方案之研发人员正是基于该基础部分进一步实施相应的技术手段,具体如下:
以上所实施的电极柱5其预留通孔设置为注液孔6,由于该注液孔6处于电极柱5的中心位置且贯穿于整根电极柱5上、下底面,因此,能够通过该注液孔6由外向内对电池壳体1内部进行注液操作,而无需另行在电池壳体1表面任意位置实施开孔,直接确保了电池壳体1原有的密封性、结构的稳定性;
相应地,由于现有的电芯2均具备中部空间区域10,可令注液孔6下方正对着中部空间区域10所在位置,即注液孔6与中部空间区域10连通,从而使注入的电解液,直接由注液孔6经过内部电芯2的中部空间区域10分散至电芯2表面的各个区域,确保电池注液操作的流畅性以及电芯2浸润充分;
进一步地,对于电极柱5所留有的注液孔6,注液孔6位于电池壳体外部的端口可根据相应的密封设计需求而设计为锥形结构形成锥形端口,即注液孔6上端部的孔壁具有一定的锥度,且自上至下孔径依次递减,同时,根据该锥形端口的孔壁的形态另外配置相应的锥形密封组件12,在取出锥形密封组件12的状态下,可由该注液孔6可通过锥形端口由上至下而向电池壳体1内部空腔注入电解液,在锥形密封组件12封闭锥形端口的状态下,则由于锥度的存在,相比以往孔径一致且无锥度的孔位,有利于缓解或避免电池壳体1内部的液体外流;此外,对于电极柱5钻有注液孔6,也有利于直接引出导体。
对于所实施的各个组件,技术人员能够根据不同设计需求而施以不同的选择,例如,电极柱5可采用钼或铜等金属组件,锥形密封组件12可采用镍或铝等金属组件,绝缘层4可采用玻璃层,当然,其它的可行组件,此处不再赘述。
综上,本发明正是在现有技术的基础上,结合实际应用经验,对电池技术领域的注液技术手段提出进一步优化,仅利用电池电极柱配置注液孔进行注液,通过减少在电池壳体上开孔数以该电池壳体的稳定性及密封性;以及,通过巧妙地利用内部电芯中心位置处的空间并且配合相应的导流结构,来提高电池注 液操作的流畅性以及确保电芯充分的浸润。
以上本发明所实施的自极柱端部注液的电池结构,为确保电池注液状态的稳定性,还可于电芯2底部设置相应的导流结构(或底面支座),以便促进电解液由注液孔进入之后顺利地经由电芯2的中部空间区域10引导分散至其他区域,对于具体组件的设置结构与方式,可参见以下技术手段。
实施例二
如图4、图6所示,本发明实施例二所实施之自极柱端部注液的电池结构,是在实施例一所实施技术手段的补充与完善,在利于提升电池注液操作的流畅性这一前提下,技术人员还可进一步实施相应的技术手段,形成相应的技术方案,具体包括:
技术人员可于电池壳体1内腔底面水平增设一环形的支撑组件7,当然,对于支撑组件7具体的材质可选取对电芯2性能无影响的组件,进一步地,所实施的支撑组件7上方设置两层导流支座,且由内向外依次为导流支座一8、导流支座二9,每一导流支座的横截面均为环形结构,以便置入电芯2之后,能够使电芯2水平固定于两个导流支座的上方且处于导流支座二9的包围内。
本实施例二通过以上技术手段的设置,在进行注液时,电解液由电极柱5预留的注液孔6由上至下注入,先经过经过电芯2的中部空间区域10而引导至电芯2表面的各个区域,能够逐渐让电芯2表面的各个区域充分浸润,然后,再使电芯浸润之后的电解液分散涌向至电芯2外围、以及电芯2外边缘与导流支座二9之间的侧部空间区域11位置处,可见,通过增设导流支座一8及导流支座二9,还能起到基本的引流作用,另外,也可提高电芯2表面电解液浸润的均匀度。相比以往由注液孔将电解液随意直接灌入壳体内部空间的方式,本发明所实施的技术手段在注入的同时即可使电芯2表面充分浸润。
当然,在注入电解液时,电解液大部分经过电芯2的中部空间区域10,也会有一部分直接浸润电芯2其它区域表面,但这并不影响电芯2整体浸润充分。
相应地,与支撑组件7的选择标准相同,对于导流支座的选择,技术人员可采用不影响电芯2应用性能、不会发生化学反应、以及不会产生腐蚀现象的组件,这些组件的选择都是本领域技术人员能够根据其技术常识进行的常规选择,此处不再赘述。
实施例三
如图1-5所示,本发明实施例三实施一种电池注液方法,是对实施例一或实施例二所实施之技术手段的补充与完善,在确保不破坏电池自身密封性以及提升电池注液操作的流畅性这一前提下,技术人员还可根据电池结构进一步实施相应的技术手段,形成相应的方法步骤,具体包括:
⑴选择要注入电解液的电池,在其电极柱5中心位置处钻有一上下贯通的注液孔6,并且在向电池内部装配电芯2时,使该电芯2的中部空间区域10对准该注液孔6,以便注液孔6与中部空间区域10保持连通;
⑵自所设置的注液孔6由上向下往电池内部注入电解液,使电解液经由中部空间区域10分散引导至电芯2表面各个区域,从而使电芯2充分浸润,且提升了电池注液的流畅性;
⑶电芯2浸润的同时,余下的电解液涌向电芯2外围并充满电池的电池壳体。
此外,还可结合实施例二所采用的导流支座技术手段来进一步提升电池注液方法的优越性,具体方法可参考实施例二相应技术手段,此处不再赘述。
在本说明书的描述中,若出现术语“实施例一”、“本实施例”、“具体实施”等描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明或发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例;而且,所描述的具体特征、结构、材料或特点可以在任何一个或多个实施例或示例中以恰当的方式结合。
在本说明书的描述中,术语“连接”、“安装”、“固定”、“设置”、“具有” 等均做广义理解,例如,“连接”可以是固定连接或在不影响部件关系与技术效果的基础上通过中间组件间接进行,也可以是一体连接或部分连接,如同此例的情形对于本领域普通技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
上述对实施例的描述是为了便于该技术领域的普通技术人员能够理解和应用,熟悉本领域技术的人员显然可轻易对这些实例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必经过创造性的劳动。因此,本案不限于以上实施例,对于以下几种情形的修改,都应该在本案的保护范围内:①以本发明技术方案为基础并结合现有公知常识所实施的新的技术方案,该新的技术方案所产生的技术效果并没有超出本发明技术效果之外,例如,采用电极柱中心位置处增设注液孔且通过电芯中间区域引导电解液,所形成的技术方案用于各种电池注液的技术手段,并且产生的预期效果并未超出本发明之外;②采用公知技术对本发明技术方案的部分特征的等效替换,所产生的技术效果与本发明技术效果相同,例如,对电池壳体或电极柱的尺寸、电芯的型号等进行等效替换;③以本发明技术方案为基础进行拓展,拓展后的技术方案的实质内容没有超出本发明技术方案之外;④利用本发明文本记载内容所作的等效变换,将所得技术手段应用在其它相关技术领域的方案。

Claims (12)

  1. 一种自极柱端部注液的电池结构,所述电池壳体内部设置有用于装配电芯及盛装电解液的中空腔室,其特征在于,所述电池壳体的上表面设置用于装配电极柱的孔位,所述电池结构包括:
    电芯,其水平设置于所述电池壳体内部,所述电芯中心位置处设有中部空间区域;
    电极柱,其设有贯穿其上下表面的注液孔,所述注液孔与所述中部空间区域连通,并且通过所述注液孔由上至下而向所述电池壳体内部空腔注入电解液。
  2. 根据权利要求1所述的自极柱端部注液的电池结构,其特征在于,所述注液孔上端设置锥形端口;
    所述电池结构还包括锥形密封组件,其与所述锥形端口配合以使所述注液端口封闭。
  3. 根据权利要求2所述的自极柱端部注液的电池结构,其特征在于:电芯浸润之后的电解液分散涌向至电芯外边缘的空间区域。
  4. 根据权利要求1-3任一项所述的自极柱端部注液的电池结构,其特征在于:所述电极柱采用钼或铜金属组件。
  5. 根据权利要求1-3任一项所述的自极柱端部注液的电池结构,其特征在于:所述锥形密封组件采用镍或铝金属组件。
  6. 根据权利要求1所述的自极柱端部注液的电池结构,其特征在于:所述电极柱外围装配金属圈。
  7. 根据权利要求6所述的自极柱端部注液的电池结构,其特征在于:所述金属圈贴紧所述电池壳体的顶面,并且于所述电极柱与所述金属圈之间的空隙装入绝缘层。
  8. 根据权利要求7所述的自极柱端部注液的电池结构,其特征在于:所述绝缘层采用玻璃层。
  9. 根据权利要求1所述的自极柱端部注液的电池结构,其特征在于:所述电池结构还包括设于所述电池壳体内部底面的支撑组件;
    所述电芯固定装配在所述支撑组件上。
  10. 根据权利要求9所述的自极柱端部注液的电池结构,其特征在于:所述电池结还包括分别设于所述支撑组件上方的导流支座一及导流支座二,至少部分所述电芯固定装配在所述导流支座一上,且至少部分所述电芯固定装配在所述导流支座二上。
  11. 根据权利要求10所述的自极柱端部注液的电池结构,其特征在于:所述导流支座一与所述导流支座二的横截面均为环形结构,所述导流支座一设于所述导流支座二内侧。
  12. 一种基于权利要求1~11任意一项所述电池结构的电池注液方法,其特征在于,包括以下步骤:
    Ⅰ、选择要注入电解液的电池,通过所述电池的电极柱开设的一上下贯通的注液孔向电池内部装配电芯时,使该电芯的中部空间区域对准该注液孔,以便注液孔与中部空间区域保持连通;
    Ⅱ、自所设置的注液孔由上向下往电池内部注入电解液,使电解液经由中部空间区域分散引导至电芯表面各个区域,从而使电芯充分浸润,且提升电池注液的流畅性;
    Ⅲ、电芯浸润的同时,余下的电解液涌向电芯外围并充满所述电池的电池壳体。
PCT/CN2022/074757 2021-03-15 2022-01-28 一种自极柱端部注液的电池结构及电池注液方法 WO2022193857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110276744.6 2021-03-15
CN202110276744.6A CN112886156B (zh) 2021-03-15 2021-03-15 一种自极柱端部注液的电池结构及电池注液方法

Publications (1)

Publication Number Publication Date
WO2022193857A1 true WO2022193857A1 (zh) 2022-09-22

Family

ID=76042029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074757 WO2022193857A1 (zh) 2021-03-15 2022-01-28 一种自极柱端部注液的电池结构及电池注液方法

Country Status (2)

Country Link
CN (1) CN112886156B (zh)
WO (1) WO2022193857A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886156B (zh) * 2021-03-15 2023-10-24 贵州中瑞丰泰新能源科技有限公司 一种自极柱端部注液的电池结构及电池注液方法
CN114883757A (zh) * 2022-05-31 2022-08-09 远景动力技术(江苏)有限公司 一种圆柱电池及电子设备
CN115312929B (zh) * 2022-10-12 2023-01-06 深圳海润新能源科技有限公司 顶盖组件、电池及电池的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149917A (ja) * 1998-11-12 2000-05-30 Toshiba Battery Co Ltd オキシハライド−リチウム電池
CN201673939U (zh) * 2010-04-29 2010-12-15 北京天路能源有限公司 一种锂离子电池输出装置及应用该装置的锂离子电池
CN207398244U (zh) * 2017-12-25 2018-05-22 北京乐华锂能科技有限公司 圆柱锂离子电池的负极垫片
CN208970618U (zh) * 2018-11-30 2019-06-11 北京好风光储能技术有限公司 一种极柱、电池壳体及圆柱形锂电池
CN112290131A (zh) * 2020-11-18 2021-01-29 江门市元熙科技有限公司 一种扣式电池
CN112886156A (zh) * 2021-03-15 2021-06-01 贵州中瑞丰泰新能源科技有限公司 一种自极柱端部注液的电池结构及电池注液方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204991830U (zh) * 2015-09-24 2016-01-20 宁德时代新能源科技有限公司 动力电池
CN111969177A (zh) * 2020-09-21 2020-11-20 厦门海辰新能源科技有限公司 一种集成注液孔的极柱组件、电池顶盖及注液方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149917A (ja) * 1998-11-12 2000-05-30 Toshiba Battery Co Ltd オキシハライド−リチウム電池
CN201673939U (zh) * 2010-04-29 2010-12-15 北京天路能源有限公司 一种锂离子电池输出装置及应用该装置的锂离子电池
CN207398244U (zh) * 2017-12-25 2018-05-22 北京乐华锂能科技有限公司 圆柱锂离子电池的负极垫片
CN208970618U (zh) * 2018-11-30 2019-06-11 北京好风光储能技术有限公司 一种极柱、电池壳体及圆柱形锂电池
CN112290131A (zh) * 2020-11-18 2021-01-29 江门市元熙科技有限公司 一种扣式电池
CN112886156A (zh) * 2021-03-15 2021-06-01 贵州中瑞丰泰新能源科技有限公司 一种自极柱端部注液的电池结构及电池注液方法

Also Published As

Publication number Publication date
CN112886156B (zh) 2023-10-24
CN112886156A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022193857A1 (zh) 一种自极柱端部注液的电池结构及电池注液方法
WO2022193858A1 (zh) 一种自底部注液的电池结构及电池注液方法
CN214672898U (zh) 一种自极柱端部注液的电池结构
WO2021174932A1 (zh) 一种利于促进量产化的穿戴电池结构
WO2023143083A1 (zh) 电池盖板组件、电池外壳以及电池
CN113571815A (zh) 扣式电池及其制造方法
CN214898622U (zh) 电池盖板组件和电池
CN214013123U (zh) 一种电池电解液缓存多孔囊
CN104597408A (zh) 一种锂-空气电池测试模具及其装配方法
CN214378768U (zh) 一种自底部注液的电池结构
CN206349438U (zh) 电池顶盖的注液结构
CN213752784U (zh) 一种圆柱形电池
CN220753708U (zh) 一种注液结构、盖板结构及锂离子电池
CN218569177U (zh) 一种电芯及电芯模组
CN216015531U (zh) 扣式电池
CN220400727U (zh) 电池盖板、极组及储能装置
CN111599951A (zh) 电池盖板组件
CN215578622U (zh) 一种锂电池正负极板装置
CN220585339U (zh) 一种盖板及具有该盖板的单体电池
CN220774647U (zh) 一种可充电电池结构
CN220272701U (zh) 一种胶囊胃窥镜专用锂电池
CN220895650U (zh) 盖板组件及电池
CN219476830U (zh) 端盖和盖板组件
CN218123672U (zh) 一种集成式电池结构
CN220692293U (zh) 一种电池壳体及圆柱电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770216

Country of ref document: EP

Kind code of ref document: A1