WO2022193439A1 - 阵列基板及制作方法、显示面板 - Google Patents

阵列基板及制作方法、显示面板 Download PDF

Info

Publication number
WO2022193439A1
WO2022193439A1 PCT/CN2021/096974 CN2021096974W WO2022193439A1 WO 2022193439 A1 WO2022193439 A1 WO 2022193439A1 CN 2021096974 W CN2021096974 W CN 2021096974W WO 2022193439 A1 WO2022193439 A1 WO 2022193439A1
Authority
WO
WIPO (PCT)
Prior art keywords
array substrate
substrate
sensing unit
base substrate
area
Prior art date
Application number
PCT/CN2021/096974
Other languages
English (en)
French (fr)
Inventor
王海军
姚江波
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/420,100 priority Critical patent/US20230194943A1/en
Publication of WO2022193439A1 publication Critical patent/WO2022193439A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136218Shield electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • the present invention relates to the field of display technology, and in particular, to an array substrate and a manufacturing method thereof, and a display panel.
  • Thin film transistor liquid crystal display is widely used in the flat panel display industry due to its characteristics of lightness, thinness and small size, as well as low power consumption, no radiation, and relatively low manufacturing cost. .
  • TFT-LCD Thin film transistor liquid crystal display
  • many functions are now integrated into liquid crystal displays, such as color temperature sensing, laser sensing, gas sensing, etc., which improves the application scenarios of liquid crystal displays.
  • many integrated functions are in the new development stage, and there are still many technological processes and related designs that need to be improved in order to improve the performance of the liquid crystal display with multiple integrated functions.
  • FIG. 1 is a schematic plan view of the existing multi-function display panel provided by the application
  • FIGS. 2 a to 2b are stacks of the existing multi-function display panel provided by the embodiment of the application.
  • the display panel is composed of a lower polarizer 10, an array substrate 11, a liquid crystal layer 12, a color filter substrate 13, an upper polarizer 14 and a backlight module 15.
  • the overall structure of the display panel is divided into a display area 100 and a functional area 110.
  • the display area 100 is responsible for the color conversion and display functions of the display panel.
  • the functional area 110 is responsible for environmental sensing functions such as color temperature sensing and laser sensing.
  • the functional thin film transistor 113 , the switching thin film transistor 114 and the storage capacitor 115 need to work together in the functional area.
  • the introduction of the functional area 110 is bound to enrich the overall functions of the display panel.
  • the metal layers are opaque, resulting in lower light transmittance in the functional area 110 covered with metal, while The area without metal covering has a high light transmittance, which causes the light and shade of different positions of the functional area 110 to be different, which affects the overall visual effect of the display panel.
  • the display area 100 applies a voltage to the pixel electrode 112 through the driving thin film transistor 111, and a voltage difference is formed with the common electrode 131 on the color filter substrate 13, and the liquid crystal molecules in the liquid crystal layer 12 It is deflected under the action of the electric field, so that the light emitted by the backlight module in this area passes through the lower polarizer 10 , the array substrate 11 , the liquid crystal layer 12 , the color filter substrate 13 and the upper polarizer 14 , and penetrates the entire display panel.
  • the display panel is in the bright state, light cannot penetrate in the functional area 110 covered with metal, and light can penetrate in the position without metal coverage.
  • the different functional areas 110 have different signals.
  • the difference in voltage between the metal-covered area and the common electrode 131 is different, resulting in different deflection angles of liquid crystal molecules between different metal-free areas in the functional area 110 and the common electrode 131 , resulting in a significant difference in brightness and darkness of the functional area 110 .
  • the voltages of the pixel electrodes 112 and the common electrode 131 in the display area 100 are the same, the liquid crystal molecules in the display area 100 are not deflected, and the backlight cannot penetrate the display panel. Due to the different signals of each functional device in the functional area 110, different voltage differences exist between different non-metal-covered areas in the functional area 110 and the common electrode 131, causing the liquid crystal molecules in the functional area 110 to be deflected in different directions, resulting in The functional area 110 has a problem of light leakage, which leads to a decrease in the contrast ratio of the display panel.
  • Embodiments of the present application provide an array substrate, a method for manufacturing the same, and a display panel, which are used to solve the problem of the difference between light and dark in an area used for environmental sensing in an existing display panel.
  • An embodiment of the present application provides an array substrate, the array substrate includes a display area, the display area includes at least one functional area, and the array substrate further includes:
  • the sensing unit is used for environmental sensing, and the sensing unit is arranged on the portion of the base substrate corresponding to the functional area;
  • the flat layer is disposed on the base substrate and covers the sensing unit;
  • At least one pixel electrode the pixel electrode is disposed on the side of the flat layer away from the base substrate, and in the thickness direction of the array substrate, each of the sensing units is aligned with one of the pixel electrodes set up.
  • a portion of the flat layer corresponding to the functional region is provided with a plurality of diffusion particles.
  • the diffusion particles include at least one of silicon dioxide particles, titanium dioxide particles and barium sulfate particles.
  • the diameter of the diffusing particles is greater than or equal to 1 nanometer and less than or equal to 1 micrometer.
  • a plurality of pixel units are disposed on the array substrate, the pixel units have a first driving thin film transistor, and the first driving thin film transistor is connected to a corresponding one of the pixel electrodes.
  • the sensing unit has a second driving thin film transistor, and the second driving thin film transistor is connected to a corresponding one of the pixel electrodes.
  • a portion of the array substrate corresponding to the functional area is provided with at least one repeating unit
  • the repeating unit includes one pixel unit and one sensing unit arranged adjacently, and each repeating unit and one of the pixel electrodes are arranged in alignment with each other in the thickness direction of the array substrate.
  • the array substrate further includes:
  • the shielding electrode is arranged on the side of the flat layer away from the base substrate, in the thickness direction of the array substrate, each of the sensing units is paired with one of the shielding electrodes bit set;
  • the insulating layer is arranged on the side of the flat layer away from the base substrate and covers the shielding electrode, and the pixel electrode is arranged on the side of the insulating layer away from the base substrate .
  • An embodiment of the present application provides a display panel, and the display panel includes:
  • a color filter substrate arranged opposite to the array substrate
  • the liquid crystal layer is disposed between the array substrate and the color filter substrate.
  • the array substrate includes a display area, the display area includes at least one functional area, and the array substrate further includes:
  • the sensing unit is used for environmental sensing, and the sensing unit is arranged on the portion of the base substrate corresponding to the functional area;
  • the flat layer is disposed on the base substrate and covers the sensing unit;
  • each of the sensing units and one of the pixel electrodes Alignment settings.
  • a portion of the flat layer corresponding to the functional region is provided with a plurality of diffusion particles.
  • the diffusion particles include at least one of silicon dioxide particles, titanium dioxide particles and barium sulfate particles.
  • the diameter of the diffusing particles is greater than or equal to 1 nanometer and less than or equal to 1 micrometer.
  • a plurality of pixel units are disposed on the array substrate, the pixel units have a first driving thin film transistor, and the first driving thin film transistor is connected to a corresponding one of the pixel electrodes.
  • the sensing unit has a second driving thin film transistor, and the second driving thin film transistor is connected to a corresponding one of the pixel electrodes.
  • a portion of the array substrate corresponding to the functional area is provided with at least one repeating unit
  • the repeating unit includes one of the pixel units and one of the sensing units arranged adjacently, and each of the repeating units and one of the pixel electrodes are arranged in alignment with each other in the thickness direction of the array substrate.
  • the array substrate further includes:
  • the shielding electrode is arranged on the side of the flat layer away from the base substrate, in the thickness direction of the array substrate, each of the sensing units is paired with one of the shielding electrodes bit set;
  • the insulating layer is arranged on the side of the flat layer away from the base substrate and covers the shielding electrode, and the pixel electrode is arranged on the side of the insulating layer away from the base substrate .
  • Embodiments of the present application further provide a method for fabricating an array substrate, and the method for fabricating the array substrate includes:
  • a base substrate includes a display area, the display area includes at least one functional area, and at least one sensing unit is formed on a portion of the base substrate corresponding to the functional area;
  • a plurality of pixel electrodes are formed on the side of the flat layer away from the base substrate, and each of the sensing units is positioned in alignment with one of the pixel electrodes in the thickness direction of the base substrate.
  • the embodiments of the present application provide an array substrate, a manufacturing method, and a display panel, wherein the array substrate includes a display area, the display area includes at least one functional area, and the array substrate further includes a substrate a substrate, at least one sensing unit, a flat layer and at least one pixel electrode, the sensing unit is used for environmental sensing, the sensing unit is arranged on the part of the base substrate corresponding to the functional area, the A flat layer is arranged on the base substrate and covers the sensing unit, and the pixel electrodes are arranged on the side of the flat layer away from the base substrate.
  • each One of the sensing units and one of the pixel electrodes are positioned in alignment, and by applying a voltage to the pixel electrodes, the metal-covered area and the metal-free area in the functional area can be formed the same as the common electrode of the display panel.
  • pressure difference so that the deflection angles of the liquid crystal molecules corresponding to the metal-covered area and the metal-free area in the functional area are consistent, so that the metal-covered area and the metal-free area in the functional area have the same brightness.
  • FIG. 1 is a schematic plan view of the existing multi-function display panel provided by the present application.
  • FIGS. 2a to 2b are schematic diagrams of stacked structures of a conventional multi-function display panel according to an embodiment of the present application
  • FIG. 3 is a schematic plan view of an array substrate provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a stacked structure of a first array substrate provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a stacked structure of a second array substrate provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a stacked structure of a third array substrate provided by an embodiment of the present application.
  • FIG. 7a and 7b are schematic structural diagrams of a display panel provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for fabricating an array substrate according to an embodiment of the present application.
  • 9a to 9e are schematic structural diagrams of an array substrate corresponding to a method for fabricating an array substrate according to an embodiment of the present application.
  • FIG. 3 is a schematic plan view of the array substrate provided by the embodiment of the present application.
  • the array substrate 200 includes a display area 210 and a non-display area surrounding the display area. area (not shown in the figure), the display area 210 includes at least one functional area 211 .
  • the display area 210 is responsible for the color conversion and display functions of the liquid crystal display panel composed of the array substrate 200, the color filter substrate, the liquid crystal layer and the backlight module (not shown in the figure).
  • the functional area 211 is responsible for the above-mentioned functions. In addition to color conversion and display functions, it can also have environmental sensing functions such as color temperature sensing and laser sensing.
  • FIG. 4 is a schematic diagram of the stacking structure of the first array substrate provided by the embodiment of the present application.
  • the array substrate 200 includes a base substrate 220 , at least one sensing unit 230 , a flat layer 240 and A plurality of pixel electrodes 250, and the sensing unit 230 is used to realize the above-mentioned functions of environmental sensing such as color temperature sensing, laser sensing and the like.
  • the sensing unit 230 is disposed on the portion of the base substrate 220 corresponding to the functional area 211
  • the flat layer 240 is disposed on the base substrate 220 and covers the sensing unit 230 .
  • a plurality of the pixel electrodes 250 are disposed on the side of the flat layer 240 away from the base substrate 220 .
  • each of the sensing units 230 and one of the pixel electrodes 250 are positioned in alignment, that is, each of the sensor
  • the orthographic projection area of the sensing unit 230 on the base substrate 220 overlaps with the orthographic projection area of a corresponding one of the pixel electrodes 250 on the base substrate.
  • Overlapping pixel electrodes 250 are arranged on the sensing unit 230.
  • the same voltage difference can be formed between the covered area and the common electrode, so that the deflection angles of the liquid crystal molecules corresponding to the metal-covered area and the non-metal-covered area in the sensing unit 230 are consistent, so that the display panel is in a bright state.
  • the brightness of the metal-covered area and the non-metal-covered area in the functional area 211 are the same, so as to improve the problem of brightness difference in the existing functional area.
  • the voltages of the pixel electrodes 250 and the common electrodes are the same, and the liquid crystal molecules corresponding to each area of the functional area 211 are not deflected, so that no light penetrates in each area of the functional area 211, thereby solving the problem of functional The problem of light leakage in area 211.
  • a plurality of diffusion particles are disposed in the portion of the flat layer 240 corresponding to the functional area 211 .
  • the diffusing particles can diffuse the light, so that the light can be diffused to the metal-covered area in the functional area 211 , thereby reducing the metal-covered area and the metal-free area in the functional area 211 .
  • the brightness difference of the functional area 211 makes the brightness of the functional area 211 more uniform, thereby improving the problem of the difference between light and dark in the functional area 211 and improving the brightness of the functional area 211 .
  • the positions of the diffusion particles can be selected according to the requirements, not only in the above-mentioned functional areas, but also in the parts of the flat layer 240 corresponding to the functional areas 211 and other display areas. overall brightness.
  • the diffusion particles are silica particles.
  • the type of diffusion particles can be selected according to requirements, not limited to the above-mentioned silica particles, but also silica particles or barium sulfate particles, as well as silica particles, titanium dioxide particles and barium sulfate particles. A mixture of two or more particles.
  • the diameter of the diffusing particles is 20 nm.
  • the diameter of the diffusing particles can be selected according to requirements, and is not limited to the above-mentioned 20 nm, and the diameter of the diffusing particles can also be 1 nm, 10 nm, 100 nm, 500 nm or 1 ⁇ m.
  • the particle diameters of the diffusion particles in the flat layer 240 may be the same, or two or more types of particles with different diameters may be included at the same time.
  • a plurality of pixel units 260 are disposed on the array substrate, each of the pixel units 260 has a first driving thin film transistor T1, and the first driving thin film The transistor T1 is connected to a corresponding one of the pixel electrodes 250 .
  • FIG. 3 and FIG. 4 only illustrate the plane structure and film layer structure of one pixel unit 260 and one sensing unit 230 disposed on the base substrate 220 , and do not represent the actual application. The number of pixel units 260 and sensing units 230 provided on the base substrate 220 .
  • the first driving thin film transistor T1 includes a first gate electrode 261 , a first active layer 262 , a first source electrode 263 and a first drain electrode 264 .
  • the first gate 261 of the transistor T1 is connected to the scan line 265
  • the first source 263 is connected to the data line 266
  • the first drain is connected to a corresponding pixel electrode 250 for applying a voltage to the pixel electrode 250 .
  • the sensing unit 230 has a second driving thin film transistor T2 , and the second driving thin film transistor T2 is connected to a corresponding one of the pixel electrodes 250 .
  • the second driving thin film transistor T2 includes a second gate electrode 231 , a second active layer 232 , a second source electrode 233 and a second drain electrode 234 .
  • 231 is connected to the scan line 265
  • the second source electrode 233 is connected to the data line 266
  • the second drain electrode 234 is connected to a corresponding pixel electrode 250 for applying a voltage to the pixel electrode 250 .
  • the sensing unit 230 further includes a functional thin film transistor T3, a switching thin film transistor T4 and a storage capacitor Cst.
  • the functional thin film transistor T3 is a photoelectric thin film transistor, which is used to convert the optical signal in the external environment into an electrical signal and store it in the storage capacitor Cst, and the switching thin film transistor T4 is controlled by the timing signal.
  • the processor Periodically transmit the electrical signal stored in the storage capacitor Cst to the processor, the processor can convert the electrical signal into a digital signal and make corresponding adjustments according to the digital signal, so as to achieve color temperature sensing, laser sensing, gas Sensing and other functions.
  • the circuit structure and sensing function of the sensing unit 230 can be set according to requirements, and are not limited to the above-mentioned circuit structure and sensing function.
  • the structure of the switching thin film transistor T4 is the same as that of the second driving thin film transistor T2, and the structure of the storage capacitor Cst is also the same as that of the storage capacitor in the prior art, which is not repeated here.
  • crosstalk is generated to the voltage signal of the pixel electrode 250 .
  • the thickness of the flat layer 240 can be increased to more than 10 ⁇ m, so that the parasitic capacitance can be reduced by increasing the distance between the pixel electrode 250 and the sensing unit 230 , thereby reducing the voltage signal of each device in the sensing unit 230 to the pixel electrode 250 produce crosstalk effects.
  • an insulating layer can also be added between the flat layer 240 and the pixel electrode 250 , and the thickness of the insulating layer should be more than 10 ⁇ m, which can also reduce the crosstalk generated by each device in the sensing unit 230 to the voltage signal of the pixel electrode 250 Impact.
  • the pixel unit 260 and the sensing unit 230 are independent of each other, and each has a driving thin film transistor and a corresponding pixel electrode, and the sensing unit 230 can realize the same color as the pixel unit 260 Therefore, the sensing unit 230 can be regarded as a pixel unit with an environment sensing function.
  • color resistors can be provided on the color filter substrate corresponding to the pixel unit 260 and the sensing unit 230, so that the sensing unit 230 can achieve the same performance as the pixel unit 260. function, so that the resolution of the portion of the array substrate 200 and the display panel corresponding to the functional area 211 can be improved.
  • the pixel unit 260 is disposed in other areas of the display area 210 except the functional area 211 , and a plurality of the sensing units 230 arranged in an array are disposed in the functional area 211 , since the sensing unit 230 has the same function as the pixel unit 260 , the functional area 211 can achieve the same display effect as other areas of the display area 210 except the functional area 211 .
  • the pixel unit 260 and the sensing unit 230 may also be provided in the functional area 211 at the same time, and the sensing unit 230 may be interspersed among a plurality of pixel units 260 .
  • the display area 210 includes five functional areas 211 , and the five functional areas 211 are respectively disposed at four corners and a center portion of the display area 210 .
  • the number and location of the functional areas 211 can be set according to requirements, not limited to the above-mentioned number and location, and can also be 1, 3, or more than 5, and the entire display area 210 can also be set as a functional area 211 , distributing the sensing units 230 in each area of the display area 210 .
  • FIG. 5 is a schematic diagram of the stacking structure of the second type of array substrate provided by the embodiment of the present application, and FIG. 5 only illustrates the functional area 211 of the array substrate 200 .
  • the structure of the second type of array substrate shown in FIG. 5 is substantially the same as that of the first type of array substrate shown in FIG.
  • At least one repeating unit 270 the repeating unit 270 includes a pixel unit 260 and a sensing unit 230 arranged adjacently, in the thickness direction of the array substrate 200, each of the repeating units 270 and one of the pixels
  • the electrodes 250 are positioned in alignment, that is, the orthographic projection area of the repeating unit 270 on the base substrate 220 overlaps with the orthographic projection area of a corresponding pixel electrode 250 on the base substrate 220 .
  • a portion of the base substrate 220 corresponding to the functional area 211 is provided with a plurality of repeating units 270, and each repeating unit 270 is composed of a pixel unit 260 and a sensing unit 230 that are arranged adjacently. 5. Only one repeating unit 270 in the functional area 211 is illustrated.
  • One repeating unit 270 corresponds to one pixel electrode 250
  • the pixel unit 260 includes a first driving thin film transistor T1 .
  • the first driving thin film transistor T1 is connected to the pixel electrode 250 for applying a voltage to the pixel electrode 250 .
  • the sensing unit 230 is not provided with a second driving thin film transistor T2.
  • the sensing unit 230 is composed of a functional thin film transistor T3, a switching thin film transistor T4 and a storage capacitor Cst, which is connected to the first driving thin film transistor T1.
  • the orthographic projection area of the pixel electrode 250 on the base substrate 220 overlaps the orthographic projection area of the sensing unit 230 on the base substrate.
  • one repeating unit 270 on the array substrate 200 can correspond to one color resistor, so one repeating unit 270 can also be used as a pixel unit 260 and a sensing unit A collection of 230.
  • the repeating unit 270 may not only be disposed in the functional area 211 , but also may be disposed in other areas of the display area 210 other than the functional area 211 .
  • the first driving thin film transistor T1 can also be disposed in the sensing unit 230 , and the first driving thin film transistor T1 is not disposed in the pixel unit 260 , which can further increase the opening of the pixel unit 260 Rate.
  • FIG. 6 is a schematic diagram of the stacking structure of a third array substrate provided by an embodiment of the present application.
  • the structure of the array substrate shown in FIG. 6 is substantially the same as that of the array substrate shown in FIG. 4 , except for the differences.
  • the array substrate 200 further includes at least one shielding electrode 280 .
  • the array substrate 200 includes a plurality of shielding electrodes 280 , and the shielding electrodes 280 are disposed on a side of the flat layer 240 away from the base substrate 220 , within the thickness of the array substrate 200 .
  • each of the sensing units 230 is positioned in alignment with one of the shielding electrodes 280, that is, the orthographic projection area of each of the shielding electrodes 280 on the base substrate corresponds to a corresponding one of the sensing units 280.
  • the orthographic projection regions of the cells 230 on the base substrate partially overlap.
  • the shielding electrode 280 is a floating electrode and is not connected to any electrical signal.
  • the pixel electrode 250 can be separated from each device in the sensing unit 230, so as to shield the signal of each device in the sensing unit 230, thereby reducing the sensitivity of the sensor.
  • the array substrate 200 further includes an insulating layer 290, the insulating layer 290 is disposed on the side of the flat layer 240 away from the base substrate 220 and covers the shielding electrode 280, and the pixel electrode 250 is disposed on the side of the flat layer 240 away from the base substrate 220. A side of the insulating layer 290 facing away from the base substrate 220 .
  • Embodiments of the present application further provide a display panel, as shown in FIGS. 7 a to 7 b .
  • FIGS. 7 a and 7 b are schematic structural diagrams of a display panel 300 provided in an embodiment of the present application.
  • the array substrate 200, the display panel 300 further includes a color filter substrate 310, a liquid crystal layer 320 disposed between the array substrate 200 and the color filter substrate 310, and a lower polarized light disposed on the light incident side of the array substrate 200
  • the film 330 , the upper polarizer 340 disposed on the light-emitting side of the color filter substrate 310 , and the backlight module 350 disposed on the side of the lower polarizer 330 away from the array substrate 200 .
  • the color filter substrate 310 includes a color resist layer (not shown in the figure) and a common electrode layer 311.
  • the color resist layer is composed of a plurality of color resists of different colors arranged in an array.
  • Each pixel unit 260 corresponds to a color resistor
  • each sensing unit 230 corresponds to a color resistor, so that the color conversion and display functions of the sensing unit 230 can be realized, and the environment sensing function of the sensing unit 230 can also be realized.
  • the shielding electrode 280 can shield the signals of the various devices in the sensing unit 230, thereby reducing the signal crosstalk of the signals of the various devices in the sensing unit 230 to the pixel electrodes 250, Thus, the stability of the signal of the pixel electrode 250 is ensured.
  • the voltages of the pixel electrode 250 and the common electrode layer 311 are equal, the liquid crystal molecules in the liquid crystal layer 320 are not deflected, the light emitted by the backlight module 350 cannot penetrate the display panel 300, and the display panel 300 is in a dark state.
  • the shielding electrode 280 can also shield the signals of each device in the sensing unit 230 , thereby ensuring the stability of the signal of the pixel electrode 250 .
  • An electric field is formed between the pixel electrode 250 and the common electrode layer 311, and the liquid crystal molecules in the liquid crystal layer 320 are controlled to be deflected.
  • the deflection angles of the liquid crystal molecules corresponding to the liquid crystal layer 320 and the functional area 211 are the same, so that the light can be uniformly transmitted from the display panel.
  • the functional area 211 of the display panel 300 is emitted, thereby improving the problem of the difference in brightness and darkness of the functional area 211 of the display panel 300 .
  • the array substrate in the display panel shown in FIG. 7a and FIG. 7b only refers to the structure of the array substrate shown in FIG.
  • the structure is also applicable to the display panel provided by the embodiment of the present application, and the array substrate 200 in the display panel provided by the embodiment of the present application can also achieve the same technical effect as the array substrate 200 provided by the above-mentioned embodiment, which is omitted here. Repeat.
  • Embodiments of the present application further provide a method for fabricating an array substrate, as shown in FIGS. 8 to 9e
  • FIG. 8 is a schematic flowchart of a method for fabricating an array substrate provided by an embodiment of the present application
  • FIGS. 9a to 9e are embodiments of the present application
  • a schematic structural diagram of an array substrate corresponding to the manufacturing method provided in the example, the manufacturing method includes:
  • Step S10 providing a base substrate 220 , the base substrate 220 includes a display area 210 , the display area 210 includes at least one functional area 211 , and at least one functional area 211 is formed on a portion of the base substrate 220 corresponding to the functional area 211 .
  • a sensing unit 230 is provided.
  • the pixel units 260 include a first driving thin film transistor T1, the transmission
  • the sensing unit 230 includes a second driving thin film transistor T2, a functional thin film transistor T3, a switching thin film transistor T4 and a storage capacitor Cst.
  • the steps of forming the above thin film transistor and the storage capacitor can be formed by using the prior art to form the thin film transistor and the storage capacitor. process, which will not be repeated here.
  • a first insulating layer 212 needs to be formed on the sensing unit 230 and the pixel unit 260 .
  • Step S20 forming a flat layer 240 on the base substrate 220 , the flat layer 240 covering the sensing unit 230 .
  • the flat layer 240 is formed on the base substrate 220 and the first insulating layer 212, and the flat layer 240 is used to cover the pixel unit 260 and all the The sensing unit 230 is described.
  • the surfaces of the pixel unit 260 and the sensing unit 230 can be flattened, which is beneficial to the uniform alignment and turning of liquid crystals at various positions of the display panel, so that the brightness of each position of the display panel is uniform.
  • a plurality of diffusion particles are disposed in the portion of the flat layer 240 corresponding to the functional area 211 .
  • the diffusing particles can diffuse the light, so that the light can be diffused to the area covered by metal in the functional area 211, thereby reducing the brightness difference between the area covered with metal and the area without metal coverage in the functional area 211, so that the brightness of the functional area 211 is reduced. It is more uniform, thereby improving the problem of the difference between light and dark in the functional area 211 and improving the brightness of the functional area 211 .
  • the positions of the diffusion particles can be selected according to the requirements, not only in the above-mentioned functional areas, but also in the parts of the flat layer 240 corresponding to the functional areas 211 and other display areas. overall brightness.
  • the diffusion particles are silica particles.
  • the type of diffusion particles can be selected according to requirements, not limited to the above-mentioned silica particles, but also silica particles or barium sulfate particles, as well as silica particles, titanium dioxide particles and barium sulfate particles. A mixture of two or more particles.
  • the diameter of the diffusing particles is 20 nm.
  • the diameter of the diffusing particles can be selected according to requirements, and is not limited to the above-mentioned 20 nm, and the diameter of the diffusing particles can also be 1 nm, 10 nm, 100 nm, 500 nm or 1 ⁇ m.
  • the particle diameters of the diffusion particles in the flat layer 240 may be the same, or two or more types of particles with different diameters may be included at the same time.
  • Step S30 forming a plurality of pixel electrodes 250 on the side of the flat layer 240 away from the base substrate 220 , in the thickness direction of the base substrate 220 , each of the sensing units 230 and one of the The pixel electrodes 250 are arranged in alignment.
  • the step S30 includes:
  • Step S301 As shown in FIG. 9 c , at least one shielding electrode 280 is formed on the side of the flat layer 240 away from the base substrate 220 .
  • the sensing unit 230 is aligned with one of the shielding electrodes 280 . That is, the orthographic projection area of the shielding electrode 280 on the base substrate 220 partially overlaps the orthographic projection area of the sensing unit 230 on the base substrate 220;
  • Step S302 as shown in FIG. 9d , an insulating layer 290 is formed on the flat layer 240 , and the insulating layer 290 covers the shielding electrode 280 ;
  • Step S303 as shown in FIG. 9e , a plurality of pixel electrodes 250 are formed on the insulating layer 290 .
  • each of the sensing units 230 and one of the pixel electrodes 250 are formed. Alignment settings. That is, the orthographic projection area of each sensing unit 230 on the base substrate 220 overlaps with the orthographic projection area of a corresponding one of the pixel electrodes 250 on the base substrate 220 .
  • the metal-covered area and the metal-free area in the functional area 211 can form the same voltage difference with the common electrode of the display panel, so that the metal-covered area in the functional area 211 can form the same voltage difference.
  • the deflection angles of the liquid crystal molecules corresponding to the area and the area without metal coverage are the same, so that the area with metal coverage and the area without metal coverage in the functional area 211 have the same brightness, which solves the problem that the existing display panel is used for environmental sensing. The problem of light and dark differences.
  • the shielding electrode 280 is a floating electrode and is not connected to any electrical signal, so that the pixel electrode 250 can be separated from each device in the sensing unit 230, Therefore, the signals of the various devices in the sensing unit 230 are shielded, thereby reducing the crosstalk caused by the signals of the various devices in the sensing unit 230 to the pixel electrodes 250 .
  • embodiments of the present application provide an array substrate, a manufacturing method, and a display panel, wherein the array substrate includes a display area, the display area includes at least one functional area, and the array substrate further includes a base substrate, at least one A sensing unit, a flat layer and at least one pixel electrode, the sensing unit is used for environmental sensing, the sensing unit is arranged on the portion of the base substrate corresponding to the functional area, and the flat layer is arranged on the base substrate and cover the sensing unit, the pixel electrodes are arranged on the side of the flat layer away from the base substrate, and in the thickness direction of the array substrate, each of the The sensing unit is positioned in alignment with one of the pixel electrodes, and by applying a voltage to the pixel electrodes, the metal-covered area and the metal-free area in the functional area can form the same voltage difference with the common electrode of the display panel, In this way, the deflection angles of the liquid crystal molecules corresponding to the metal-covered area and the non-metal-covered area in

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种阵列基板及制作方法、显示面板,该阵列基板的显示区包括功能区,传感单元设置于衬底基板对应功能区的部分上,传感单元与像素电极对位设置,功能区内有金属覆盖的区域和无金属覆盖的区域与公共电极能形成相同的压差,使得功能区内各部分液晶分子的偏转角度一致,解决显示面板亮暗差异的问题。

Description

阵列基板及制作方法、显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种阵列基板及制作方法、显示面板。
背景技术
薄膜晶体管液晶显示器(thin film transistor liquid crystal display, TFT-LCD)因具有轻、薄、小等特点,同时功耗低、无辐射、制造成本相对较低的优势,在目前平板显示行业应用较为广泛。为拓宽液晶显示器商用及家用功能,现将诸多功能集成在液晶显示器中,如色温感测、激光感测、气体感测等,提高了液晶显示器可应用场景。但诸多集成功能均处在新开发阶段,尚有较多工艺制程及相关设计需要完善,以便提高多种集成功能液晶显示器的性能。
技术问题
如图1、图2a以及图2b所示,图1为本申请提供的现有多功能显示面板的平面结构示意图,图2a至图2b为本申请实施例提供的现有多功能显示面板的叠构示意图,显示面板由下偏光片10、阵列基板11、液晶层12、彩膜基板13、上偏光片14和背光模组15构成,显示面板的整体结构划分为显示区100和功能区110,显示区100负责显示面板的色彩转换和显示功能。功能区110负责如色温感测、激光感测等环境感测功能,为实现上述功能,需要通过设置于功能区的功能薄膜晶体管113、开关薄膜晶体管114和存储电容115共同作用。功能区110的引入,势必会丰富显示面板的整体功能,但是由于功能区110存在多层金属层,金属层不透光,会导致功能区110有金属覆盖的区域光线穿透率较低,而无金属覆盖的区域光线穿透率较高,导致功能区110不同位置的明暗不同,影响显示面板整体的视觉效果。
如图2a所示,当显示面板处于亮态时,显示区100通过驱动薄膜晶体管111向像素电极112施加电压,与彩膜基板13上的公共电极131形成压差,液晶层12中的液晶分子在电场的作用下发生偏转,从而使该区域的背光模组发出的光经过下偏光片10、阵列基板11、液晶层12、彩膜基板13和上偏光片14,穿透整个显示面板。在显示面板处于亮态时,功能区110有金属覆盖的区域光线无法穿透,无金属覆盖的位置光线可以穿透,由于功能区110内不同功能器件的信号不同,使得功能区110内不同无金属覆盖的区域与公共电极131所形成的压差不同,导致功能区110内不同无金属覆盖的区域与公共电极131之间液晶分子偏转的角度不同,导致功能区110存在明显的亮暗差异。
如图2b所示,当显示面板处于暗态时,显示区100内的像素电极112与公共电极131的电压相同,显示区100内的液晶分子不发生偏转,背光无法穿透显示面板。由于功能区110内各个功能器件的信号不同,导致功能区110内不同无金属覆盖的区域与公共电极131之间存在不同的压差,导致功能区110内的液晶分子发生不同方向的偏转,造成功能区110产生漏光的问题,导致显示面板的对比度降低。
综上所述,现有显示面板用于环境感测的区域存在亮暗差异的问题。故,有必要提供一种阵列基板及制作方法、显示面板来改善这一缺陷。
技术解决方案
本申请实施例提供一种阵列基板及制作方法、显示面板,用于解决现有显示面板用于环境感测的区域存在亮暗差异的问题。
本申请实施例提供一种阵列基板,所述阵列基板包括显示区,所述显示区包括至少一个功能区,所述阵列基板还包括:
衬底基板;
至少一个传感单元,所述传感单元用于环境感测,所述传感单元设置于所述衬底基板对应所述功能区的部分上;
平坦层,所述平坦层设置于所述衬底基板上,并且覆盖所述传感单元;以及
至少一个像素电极,所述像素电极设置于所述平坦层背离所述衬底基板的一侧,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述像素电极对位设置。
根据本申请一实施例,所述平坦层与所述功能区对应的部分中设置有多个扩散粒子。
根据本申请一实施例,所述扩散粒子包括二氧化硅粒子、二氧化钛粒子和硫酸钡粒子中的至少一种。
根据本申请一实施例,所述扩散粒子的直径大于或等于1纳米且小于或等于1微米。
根据本申请一实施例,所述阵列基板上设置有多个像素单元,所述像素单元具有一个第一驱动薄膜晶体管,所述第一驱动薄膜晶体管与对应的一个所述像素电极连接。
根据本申请一实施例,所述传感单元具有一个第二驱动薄膜晶体管,所述第二驱动薄膜晶体管与对应的一个所述像素电极连接。
根据本申请一实施例,所述阵列基板对应所述功能区的部分上设置有至少一个重复单元;
其中,所述重复单元包括相邻设置的一个像素单元和一个所述传感单元,在所述阵列基板的厚度方向上,每一个所述重复单元与一个所述像素电极对位设置。
根据本申请一实施例,所述阵列基板还包括:
至少一个屏蔽电极,所述屏蔽电极设置于所述平坦层背离所述衬底基板的一侧上,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述屏蔽电极对位设置;
绝缘层,所述绝缘层设置于所述平坦层背离所述衬底基板的一侧上,并且覆盖所述屏蔽电极,所述像素电极设置于所述绝缘层背离所述衬底基板的一侧。
本申请实施例提供一种显示面板,所述显示面板包括:
阵列基板;
彩膜基板,与所述阵列基板相对设置;
液晶层,设置于所述阵列基板与所述彩膜基板之间。
其中,所述阵列基板包括显示区,所述显示区包括至少一个功能区,所述阵列基板还包括:
衬底基板;
至少一个传感单元,所述传感单元用于环境感测,所述传感单元设置于所述衬底基板对应所述功能区的部分上;
平坦层,所述平坦层设置于所述衬底基板上,并且覆盖所述传感单元;以及
多个像素电极,多个所述像素电极设置于所述平坦层背离所述衬底基板的一侧,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述像素电极对位设置。
根据本申请一实施例,所述平坦层与所述功能区对应的部分中设置有多个扩散粒子。
根据本申请一实施例,所述扩散粒子包括二氧化硅粒子、二氧化钛粒子和硫酸钡粒子中的至少一种。
根据本申请一实施例,所述扩散粒子的直径大于或等于1纳米且小于或等于1微米。
根据本申请一实施例,所述阵列基板上设置有多个像素单元,所述像素单元具有一个第一驱动薄膜晶体管,所述第一驱动薄膜晶体管与对应的一个所述像素电极连接。
根据本申请一实施例,所述传感单元具有一个第二驱动薄膜晶体管,所述第二驱动薄膜晶体管与对应的一个所述像素电极连接。
根据本申请一实施例,所述阵列基板对应所述功能区的部分上设置有至少一个重复单元;
其中,所述重复单元包括相邻设置的一个所述像素单元和一个所述传感单元,在所述阵列基板的厚度方向上,每一个所述重复单元与一个所述像素电极对位设置。
根据本申请一实施例,所述阵列基板还包括:
至少一个屏蔽电极,所述屏蔽电极设置于所述平坦层背离所述衬底基板的一侧上,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述屏蔽电极对位设置;
绝缘层,所述绝缘层设置于所述平坦层背离所述衬底基板的一侧上,并且覆盖所述屏蔽电极,所述像素电极设置于所述绝缘层背离所述衬底基板的一侧。
本申请实施例还提供一种阵列基板的制作方法,所述阵列基板的制作方法包括:
提供衬底基板,所述衬底基板包括显示区,所述显示区包括至少一个功能区,在所述衬底基板对应所述功能区的部分上形成至少一个传感单元;
在所述衬底基板上形成平坦层,所述平坦层覆盖所述传感单元;以及
在所述平坦层背离所述衬底基板的一侧形成多个像素电极,在所述衬底基板的厚度方向上,每一个所述传感单元与一个所述像素电极对位设置。
有益效果
本揭示实施例的有益效果:本申请实施例提供一种阵列基板及制作方法、显示面板,所述阵列基板包括显示区,所述显示区包括至少一个功能区,所述阵列基板还包括衬底基板、至少一个传感单元、平坦层以及至少一个像素电极,所述传感单元用于环境感测,所述传感单元设置于所述衬底基板对应所述功能区的部分上,所述平坦层设置于所述衬底基板上,并且覆盖所述传感单元,所述像素电极设置于所述平坦层背离所述衬底基板的一侧,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述像素电极对位设置,通过对所述像素电极施加电压,可以使得功能区内有金属覆盖的区域和无金属覆盖的区域与显示面板的公共电极形成相同的压差,以此使得功能区内有金属覆盖的区域和无金属覆盖的区域对应的液晶分子的偏转角度一致,从而使功能区内有金属覆盖的区域和无金属覆盖的区域的亮度相同,解决现有显示面板用于环境感测的区域存在亮暗差异的问题。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的现有多功能显示面板的平面结构示意图;
图2a至图2b为本申请实施例提供的现有多功能显示面板的叠构示意图;
图3为本申请实施例提供的阵列基板的平面结构示意图;
图4为本申请实施例提供的第一种阵列基板的叠构示意图;
图5为本申请实施例提供的第二种阵列基板的叠构示意图;
图6为本申请实施例提供的第三种阵列基板的叠构示意图;
图7a和7b为本申请实施例提供的显示面板的结构示意图;
图8为本申请实施例提供的阵列基板的制作方法的流程示意图;
图9a至图9e为本申请实施例提供的与阵列基板的制作方法对应的阵列基板的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
下面结合附图和具体实施例对本揭示做进一步的说明:
本申请实施例提供一种阵列基板,如图3所示,图3为本申请实施例提供的阵列基板的平面结构示意图,所述阵列基板200包括显示区210和围绕所述显示区的非显示区(图中未示出),所述显示区210包括至少一个功能区211。
所述显示区210负责由所述阵列基板200和彩膜基板、液晶层以及背光模组(图中未示出)构成的液晶显示面板的色彩转换和显示功能,所述功能区211在负责上述色彩转换和显示功能的同时,还可以具备如色温感测、激光感测等环境感测的功能。
结合图3和图4所示,图4为本申请实施例提供的第一种阵列基板的叠构示意图,所述阵列基板200包括衬底基板220、至少一个传感单元230、平坦层240和多个像素电极250,所述传感单元230用于实现上述如色温感测、激光感测等环境感测的功能。所述传感单元230设置于所述衬底基板220对应所述功能区211的部分上,所述平坦层240设置于所述衬底基板220上,并且覆盖所述传感单元230。多个所述像素电极250设置于所述平坦层240背离所述衬底基板220的一侧。
在本申请实施例中,如图4所示,在所述阵列基板200的厚度方向上,每一个所述传感单元230与一个所述像素电极250对位设置,也即每一个所述传感单元230在所述衬底基板220上的正投影区域,与对应的一个所述像素电极250在所述衬底基板上的正投影区域重叠。在传感单元230上设置重叠的像素电极250,可以通过对该像素电极250施加电压,控制传感单元230上的液晶分子的偏转角度,使得传感单元230内有金属覆盖的区域和无金属覆盖的区域与公共电极之间可以形成相同的压差,以此使得传感单元230内有金属覆盖的区域和无金属覆盖的区域对应的液晶分子的偏转角度一致,从而在显示面板处于亮态时,功能区211内有金属覆盖的区域和无金属覆盖的区域的亮度相同,以此改善现有功能区存在亮度差异的问题。同时,在显示面板处于暗态时,像素电极250与公共电极的电压相同,功能区211各个区域对应的液晶分子均不发生偏转,使得功能区211的各个区域均无光线穿透,从而解决功能区211漏光的问题。
在一实施例中,所述平坦层240与所述功能区211对应的部分中设置有多个扩散粒子。当背光源发出的光线经过平坦层240时,扩散粒子可以将光线扩散,使光线可以扩散至功能区211内被金属覆盖的区域,以此降低功能区211内有金属覆盖的区域和无金属覆盖的区域的亮度差异,使得功能区211的亮度更加均匀,从而改善功能区211内亮暗差异的问题,并提高功能区211的亮度。在实际应用中,可以根据需求选择扩散粒子设置的位置,而不仅限于上述的功能区,也可以在平坦层240对应功能区211以及其他显示区的部分中设置扩散粒子,以此提高阵列基板200整体的亮度。
具体的,所述扩散粒子为二氧化硅粒子。在实际应用中,可以根据需求选择扩散粒子的种类,而不限于上述的二氧化硅粒子,也可以是二氧化硅粒子或者硫酸钡粒子,还可以为二氧化硅粒子、二氧化钛粒子和硫酸钡粒子中两种及以上粒子的混合。
具体的,所述扩散粒子的直径为20nm。在实际应用中,可以根据需求选择所述扩散粒子的直径,而不限于上述的20nm,所述扩散粒子的直径也可以为1nm、10nm、100nm、500nm或者1μm。平坦层240中扩散粒子的粒径可以相同,也可以同时包括2种或2种以上直径不同的粒子。
在一实施例中,如图3和图4所示,所述阵列基板上设置有多个像素单元260,每一所述像素单元260具有一个第一驱动薄膜晶体管T1,所述第一驱动薄膜晶体管T1与对应的一个所述像素电极250连接。需要说明的是,图3和图4中仅对设置于衬底基板220上的一个像素单元260和一个传感单元230的平面结构和膜层结构进行了示意,并不代表实际应用中所述衬底基板220上设置的像素单元260和传感单元230的数量。
具体地,在本申请实施例中,所述第一驱动薄膜晶体管T1包括第一栅极261、第一有源层262、第一源极263和第一漏极264,所述第一驱动薄膜晶体管T1的第一栅极261与扫描线265连接,第一源极263与数据线266连接,第一漏极与对应的一个像素电极250连接,用于为像素电极250施加电压。
进一步的,所述传感单元230具有一个第二驱动薄膜晶体管T2,所述第二驱动薄膜晶体管T2与对应的一个所述像素电极250连接。
具体地,在本申请实施例中,所述第二驱动薄膜晶体管T2包括第二栅极231、第二有源层232、第二源极233和第二漏极234,所述第二栅极231与扫描线265连接,所述第二源极233与数据线266连接,所述第二漏极234与对应的一个像素电极250连接,用于为所述像素电极250施加电压。
进一步的,所述传感单元230还包括一个功能薄膜晶体管T3、一个开关薄膜晶体管T4和一个存储电容Cst。在本申请实施例中,所述功能薄膜晶体管T3为光电薄膜晶体管,用于将外界环境中的光信号转换为电信号并存储至存储电容Cst中,开关薄膜晶体管T4在时序信号的控制下,周期性的将存储电容Cst中存储的电信号传递至处理器,处理器可以将电信号转换为数字信号并根据数字信号做出相应的调整,如此可以实现如色温感测、激光感测、气体感测等功能。在实际应用中,传感单元230的电路结构和感测功能可以根据需求进行设置,而不限于上述的电路结构和感测功能。在本申请实施例中,开关薄膜晶体管T4与上述第二驱动薄膜晶体管T2的结构相同,存储电容Cst与现有技术中的存储电容的结构也相同,此处不做赘述。
更进一步的,为避免传感单元230内上述各个器件与像素电极250之间产生的寄生电容,对像素电极250的电压信号产生串扰。可以将平坦层240的厚度增加至10μm以上,如此可以通过增加像素电极250与传感单元230之间的距离,减小寄生电容,从而降低传感单元230内各个器件对像素电极250的电压信号产生串扰的影响。在实际应用中,还可以在平坦层240和像素电极250之间增设绝缘层,绝缘层的厚度应该为10μm以上,如此也可以降低传感单元230内各个器件对像素电极250的电压信号产生串扰的影响。
在本申请实施例中,所述像素单元260和所述传感单元230相互独立,且各自均具有一个驱动薄膜晶体管和对应的一个像素电极,传感单元230可以实现与像素单元260一样的色彩转换和明暗转化内的功能,因此传感单元230可以视为一个具有环境感测功能的像素单元。在于彩膜基板和液晶层构成的显示面板中,可以在彩膜基板上与像素单元260和传感单元230对应的部分均设置色阻,如此可以使传感单元230实现与像素单元260相同的功能,从而可以提高阵列基板200和显示面板对应所述功能区211的部分的分辨率。
在本申请实施例中,所述像素单元260设置于所述显示区210除所述功能区211以外的其他区域,所述功能区211内设置有呈阵列分布的多个所述传感单元230,由于所述传感单元230具有与所述像素单元260相同的功能,因此所述功能区211可以实现与显示区210除所述功能区211以外其他的区域相同的显示效果。在其他一些实施例中,也可以在功能区211内同时设置像素单元260和传感单元230,传感单元230可以穿插设置于多个像素单元260之间。
在本申请实施例中,所述显示区210包括5个功能区211,该5个功能区211分别设置于显示区210的四个角落和中心部分。在实际应用中,可以根据需求设置功能区211的数量和位置,而不限于上述的数量和位置,也可以为1个、3个或5个以上,还可以将整个显示区210设置为功能区211,将传感单元230分布于显示区210的各个区域。
如图5所示,图5为本申请实施例提供的第二种阵列基板的叠构示意图,且图5仅对阵列基板200的功能区211进行了示意。图5所示的第二种阵列基板的结构与图4所示的第一种阵列基板的结构大致相同,区别之处在于,所述衬底基板220对应所述功能区211的部分上设置有至少一个重复单元270,所述重复单元270包括相邻设置的一个像素单元260和一个传感单元230,在所述阵列基板200的厚度方向上,每一个所述重复单元270与一个所述像素电极250对位设置,即所述重复单元270在所述衬底基板220上的正投影区域,与对应的一个像素电极250在所述衬底基板220上的正投影区域重叠。
在一实施例中,衬底基板220对应所述功能区211的部分上设置有多个重复单元270,每一个重复单元270由相邻设置的一个像素单元260和一个传感单元230构成,图5仅对功能区211内的一个重复单元270进行了示意。一个重复单元270对应一个像素电极250,像素单元260包括第一驱动薄膜晶体管T1,第一驱动薄膜晶体管T1与所述像素电极250连接,用于为所述像素电极250施加电压。
所述传感单元230内并未设置有第二驱动薄膜晶体管T2,传感单元230由一个功能薄膜晶体管T3、一个开关薄膜晶体管T4和一个存储电容Cst构成,与第一驱动薄膜晶体管T1连接的像素电极250在衬底基板220上的正投影区域,与所述传感单元230在所述衬底基板上的正投影区域重叠。在由所述阵列基板200和彩膜基板构成的显示面板中,阵列基板200上的一个重复单元270可以对应一个色阻,因此也可以将一个重复单元270作为一个像素单元260和一个传感单元230的集合。在实际应用中,重复单元270不仅可以设置于功能区211内,还可以设置于显示区210除功能区211以外的其他区域。
在其他一些实施例中,也可以将第一驱动薄膜晶体管T1设置于传感单元230内,像素单元260内并未设置有所述第一驱动薄膜晶体管T1,如此可以进一步提高像素单元260的开口率。
如图6所示,图6为本申请实施例提供的第三种阵列基板的叠构示意图,图6所示的阵列基板的结构与图4所示的阵列基板的结构大致相同,区别之处在于,图6所示的阵列基板中,所述阵列基板200还包括至少一个屏蔽电极280。
在一实施例中,所述阵列基板200包括多个屏蔽电极280,所述屏蔽电极280设置于所述平坦层240背离所述衬底基板220的一侧上,在所述阵列基板200的厚度方向上,每一个所述传感单元230与一个所述屏蔽电极280对位设置,即每一个所述屏蔽电极280在所述衬底基板上的正投影区域,与对应的一个所述传感单元230在所述衬底基板上的正投影区域部分重叠。
屏蔽电极280为浮置电极,并未接入任何电信号,可以将像素电极250与传感单元230内各个器件隔开,从而将传感单元230内各个器件的信号屏蔽,以此降低传感单元230内各个器件的信号对像素电极250产生的串扰。
所述阵列基板200还包括绝缘层290,所述绝缘层290设置于所述平坦层240背离所述衬底基板220的一侧上,并且覆盖所述屏蔽电极280,所述像素电极250设置于所述绝缘层290背离所述衬底基板220的一侧。
本申请实施例还提供一种显示面板,如图7a至7b所示,图7a和7b为本申请实施例提供的显示面板300的结构示意图,所述显示面板300包括如上述实施例所提供的阵列基板200,所述显示面板300还包括彩膜基板310、设置于所述阵列基板200和所述彩膜基板310之间的液晶层320,设置于所述阵列基板200入光侧的下偏光片330、设置于所述彩膜基板310出光侧的上偏光片340以及设置于所述下偏光片330背离所述阵列基板200一侧的背光模组350。
图7a和图7b所示的显示面板中的阵列基板的结构,与图6所示的阵列基板的结构相同,此处不再赘述。图7a和图7b所示的显示面板中,彩膜基板310包括色阻层(图中未示出)和公共电极层311,色阻层由阵列排布的多个颜色不同的色阻组成,每一个像素单元260对应一个色阻,每一个传感单元230对应一个色阻,如此可以实现传感单元230的色彩转换、显示功能的同时,还可以实现传感单元230的环境感测功能。
如图7a所示,当显示面板300处于暗态时,屏蔽电极280可以屏蔽传感单元230内各个器件的信号,以此降低传感单元230内各个器件的信号对像素电极250的信号串扰,从而保证像素电极250信号的稳定性。像素电极250与公共电极层311的电压相等,液晶层320中的液晶分子不发生偏转,背光模组350发出的光线无法穿透显示面板300,显示面板300处于暗态。
如图7b所示,当显示面板300处于亮态时,屏蔽电极280同样可以屏蔽传感单元230内各个器件的信号,从而保证像素电极250信号的稳定性。像素电极250与公共电极层311之间形成电场,并控制液晶层320中的液晶分子发生偏转,液晶层320与功能区211对应的液晶分子的偏转角度均相同,使得光线可以均匀的从显示面板300的功能区211射出,从而改善显示面板300的功能区211亮暗差异的问题。
需要说明的是,本申请实施例中,图7a和图7b所示的显示面板中的阵列基板,仅引用了图6所示的阵列基板的结构,图3至图5所示的阵列基板的结构同样适用于本申请实施例所提供的显示面板,且本申请实施例提供的显示面板中的阵列基板200同样可以实现与上述实施例所提供的阵列基板200相同的技术效果,此处不再赘述。
本申请实施例还提供一种阵列基板的制作方法,如图8至图9e所示,图8为本申请实施例提供的阵列基板的制作方法的流程示意图,图9a至图9e为本申请实施例提供的与所述制作方法对应的阵列基板的结构示意图,所述制作方法包括:
步骤S10:提供衬底基板220,所述衬底基板220包括显示区210,所述显示区210包括至少一个功能区211,在所述衬底基板220对应所述功能区211的部分上形成至少一个传感单元230。
如图9a所示,在所述步骤S10中,在形成所述传感单元230的同时,还可以形成多个像素单元260,所述像素单元260包括一个第一驱动薄膜晶体管T1,所述传感单元230包括一个第二驱动薄膜晶体管T2、一个功能薄膜晶体管T3、一个开关薄膜晶体管T4和一个存储电容Cst,形成上述薄膜晶体管和存储电容的步骤可以采用现有技术中形成薄膜晶体管和存储电容的工艺制程,此处不做赘述。
在所述步骤S10中,在制备形成所述传感单元230和所述像素单元260后,需要在所述传感单元230和所述像素单元260上形成一层第一绝缘层212。
步骤S20:在所述衬底基板220上形成平坦层240,所述平坦层240覆盖所述传感单元230。
如图9b所示,在所述步骤S20中,在所述衬底基板220和所述第一绝缘层212上形成所述平坦层240,利用所述平坦层240覆盖所述像素单元260和所述传感单元230。如此,可以将所述像素单元260和所述传感单元230的表面平坦化,该平坦化有利于液晶在显示面板的各个位置均匀配向和转向,使得显示面板各个位置亮度均匀。
在一实施例中,所述平坦层240与所述功能区211对应的部分中设置有多个扩散粒子。扩散粒子可以将光线扩散,使光线可以扩散至功能区211内被金属覆盖的区域,以此降低功能区211内有金属覆盖的区域和无金属覆盖的区域的亮度差异,使得功能区211的亮度更加均匀,从而改善功能区211内亮暗差异的问题,并提高功能区211的亮度。在实际应用中,可以根据需求选择扩散粒子设置的位置,而不仅限于上述的功能区,也可以在平坦层240对应功能区211以及其他显示区的部分中设置扩散粒子,以此提高阵列基板200整体的亮度。
具体的,所述扩散粒子为二氧化硅粒子。在实际应用中,可以根据需求选择扩散粒子的种类,而不限于上述的二氧化硅粒子,也可以是二氧化硅粒子或者硫酸钡粒子,还可以为二氧化硅粒子、二氧化钛粒子和硫酸钡粒子中两种及以上粒子的混合。
具体的,所述扩散粒子的直径为20nm。在实际应用中,可以根据需求选择所述扩散粒子的直径,而不限于上述的20nm,所述扩散粒子的直径也可以为1nm、10nm、100nm、500nm或者1μm。平坦层240中扩散粒子的粒径可以相同,也可以同时包括2种或2种以上直径不同的粒子。
步骤S30:在所述平坦层240背离所述衬底基板220的一侧形成多个像素电极250,在所述衬底基板220的厚度方向上,每一个所述传感单元230与一个所述像素电极250对位设置。
在一实施例中,所述步骤S30包括:
步骤S301:如图9c所示,在所述平坦层240背离所述衬底基板220的一侧上形成至少一个屏蔽电极280,在所述衬底基板220的厚度方向上,每一个所述传感单元230与一个所述屏蔽电极280对位设置。即所述屏蔽电极280在所述衬底基板220上的正投影区域,与所述传感单元230在所述衬底基板220上的正投影区域部分重叠;
步骤S302:如图9d所示,在所述平坦层240上形成绝缘层290,所述绝缘层290覆盖所述屏蔽电极280;
步骤S303:如图9e所示,在所述绝缘层290上形成多个像素电极250,在所述衬底基板220的厚度方向上,每一个所述传感单元230与一个所述像素电极250对位设置。即每一个所述传感单元230在所述衬底基板220上的正投影区域,与对应的一个所述像素电极250在所述衬底基板220上的正投影区域重叠。
通过对所述像素电极250施加电压,可以使得功能区211内有金属覆盖的区域和无金属覆盖的区域与显示面板的公共电极形成相同的压差,以此使得功能区211内有金属覆盖的区域和无金属覆盖的区域对应的液晶分子的偏转角度一致,从而使功能区211内有金属覆盖的区域和无金属覆盖的区域的亮度相同,解决现有显示面板用于环境感测的区域存在亮暗差异的问题。通过在传感单元230和像素电极250之间设置屏蔽电极280,该屏蔽电极280为浮置电极,并未接入任何电信号,可以将像素电极250与传感单元230内各个器件隔开,从而将传感单元230内各个器件的信号屏蔽,以此降低传感单元230内各个器件的信号对像素电极250产生的串扰。
综上所述,本申请实施例提供一种阵列基板及制作方法、显示面板,所述阵列基板包括显示区,所述显示区包括至少一个功能区,所述阵列基板还包括衬底基板、至少一个传感单元、平坦层以及至少一个像素电极,所述传感单元用于环境感测,所述传感单元设置于所述衬底基板对应所述功能区的部分上,所述平坦层设置于所述衬底基板上,并且覆盖所述传感单元,所述像素电极设置于所述平坦层背离所述衬底基板的一侧,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述像素电极对位设置,通过对所述像素电极施加电压,可以使得功能区内有金属覆盖的区域和无金属覆盖的区域与显示面板的公共电极形成相同的压差,以此使得功能区内有金属覆盖的区域和无金属覆盖的区域对应的液晶分子的偏转角度一致,从而使功能区内有金属覆盖的区域和无金属覆盖的区域的亮度相同,解决现有显示面板用于环境感测的区域存在亮暗差异的问题。
综上所述,虽然本申请以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为基准。

Claims (17)

  1. 一种阵列基板,所述阵列基板包括显示区,所述显示区包括至少一个功能区,所述阵列基板还包括:
    衬底基板;
    至少一个传感单元,所述传感单元用于环境感测,所述传感单元设置于所述衬底基板对应所述功能区的部分上;
    平坦层,所述平坦层设置于所述衬底基板上,并且覆盖所述传感单元;以及
    多个像素电极,多个所述像素电极设置于所述平坦层背离所述衬底基板的一侧,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述像素电极对位设置。
  2. 如权利要求1所述的阵列基板,其中,所述平坦层与所述功能区对应的部分中设置有多个扩散粒子。
  3. 如权利要求2所述的阵列基板,其中,所述扩散粒子包括二氧化硅粒子、二氧化钛粒子和硫酸钡粒子中的至少一种。
  4. 如权利要求3所述的阵列基板,其中,所述扩散粒子的直径大于或等于1纳米且小于或等于1微米。
  5. 如权利要求1所述的阵列基板,其中,所述阵列基板上设置有多个像素单元,所述像素单元具有一个第一驱动薄膜晶体管,所述第一驱动薄膜晶体管与对应的一个所述像素电极连接。
  6. 如权利要求5所述的阵列基板,其中,所述传感单元具有一个第二驱动薄膜晶体管,所述第二驱动薄膜晶体管与对应的一个所述像素电极连接。
  7. 如权利要求5所述的阵列基板,其中,所述阵列基板对应所述功能区的部分上设置有至少一个重复单元;
    其中,所述重复单元包括相邻设置的一个所述像素单元和一个所述传感单元,在所述阵列基板的厚度方向上,每一个所述重复单元与一个所述像素电极对位设置。
  8. 如权利要求5述的阵列基板,其中,所述阵列基板还包括:
    至少一个屏蔽电极,所述屏蔽电极设置于所述平坦层背离所述衬底基板的一侧上,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述屏蔽电极对位设置;
    绝缘层,所述绝缘层设置于所述平坦层背离所述衬底基板的一侧上,并且覆盖所述屏蔽电极,所述像素电极设置于所述绝缘层背离所述衬底基板的一侧。
  9. 一种显示面板,所述显示面板包括:
    阵列基板;
    彩膜基板,与所述阵列基板相对设置;
    液晶层,设置于所述阵列基板与所述彩膜基板之间;
    其中,所述阵列基板包括显示区,所述显示区包括至少一个功能区,所述阵列基板还包括:
    衬底基板;
    至少一个传感单元,所述传感单元用于环境感测,所述传感单元设置于所述衬底基板对应所述功能区的部分上;
    平坦层,所述平坦层设置于所述衬底基板上,并且覆盖所述传感单元;以及
    多个像素电极,多个所述像素电极设置于所述平坦层背离所述衬底基板的一侧,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述像素电极对位设置。
  10. 如权利要求9所述的显示面板,其中,所述平坦层与所述功能区对应的部分中设置有多个扩散粒子。
  11. 如权利要求10所述的显示面板,其中,所述扩散粒子包括二氧化硅粒子、二氧化钛粒子和硫酸钡粒子中的至少一种。
  12. 如权利要求11所述的显示面板,其中,所述扩散粒子的直径大于或等于1纳米且小于或等于1微米。
  13. 如权利要求9所述的显示面板,其中,所述阵列基板上设置有多个像素单元,所述像素单元具有一个第一驱动薄膜晶体管,所述第一驱动薄膜晶体管与对应的一个所述像素电极连接。
  14. 如权利要求13所述的显示面板,其中,所述传感单元具有一个第二驱动薄膜晶体管,所述第二驱动薄膜晶体管与对应的一个所述像素电极连接。
  15. 如权利要求13所述的显示面板,其中,所述阵列基板对应所述功能区的部分上设置有至少一个重复单元;
    其中,所述重复单元包括相邻设置的一个所述像素单元和一个所述传感单元,在所述阵列基板的厚度方向上,每一个所述重复单元与一个所述像素电极对位设置。
  16. 如权利要求13述的显示面板,其中,所述阵列基板还包括:
    至少一个屏蔽电极,所述屏蔽电极设置于所述平坦层背离所述衬底基板的一侧上,在所述阵列基板的厚度方向上,每一个所述传感单元与一个所述屏蔽电极对位设置;
    绝缘层,所述绝缘层设置于所述平坦层背离所述衬底基板的一侧上,并且覆盖所述屏蔽电极,所述像素电极设置于所述绝缘层背离所述衬底基板的一侧。
  17. 一种阵列基板的制作方法,所述阵列基板的制作方法包括:
    提供衬底基板,所述衬底基板包括显示区,所述显示区包括至少一个功能区,在所述衬底基板对应所述功能区的部分上形成至少一个传感单元;
    在所述衬底基板上形成平坦层,所述平坦层覆盖所述传感单元;以及
    在所述平坦层背离所述衬底基板的一侧形成多个像素电极,在所述衬底基板的厚度方向上,每一个所述传感单元与一个所述像素电极对位设置。
PCT/CN2021/096974 2021-03-19 2021-05-28 阵列基板及制作方法、显示面板 WO2022193439A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/420,100 US20230194943A1 (en) 2021-03-19 2021-05-28 Array substrate, manufacturing method thereof, and panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110296422.8 2021-03-19
CN202110296422.8A CN113064307B (zh) 2021-03-19 2021-03-19 阵列基板及制作方法、显示面板

Publications (1)

Publication Number Publication Date
WO2022193439A1 true WO2022193439A1 (zh) 2022-09-22

Family

ID=76562481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096974 WO2022193439A1 (zh) 2021-03-19 2021-05-28 阵列基板及制作方法、显示面板

Country Status (3)

Country Link
US (1) US20230194943A1 (zh)
CN (1) CN113064307B (zh)
WO (1) WO2022193439A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137278A (ko) * 2014-05-29 2015-12-09 엘지디스플레이 주식회사 어레이 기판 및 이를 포함하는 액정 표시 장치
CN105136378A (zh) * 2015-09-24 2015-12-09 京东方科技集团股份有限公司 一种显示基板及显示装置、压力检测系统及其检测方法
CN204988604U (zh) * 2015-09-24 2016-01-20 京东方科技集团股份有限公司 一种显示基板及显示装置、压力检测系统
CN108269817A (zh) * 2018-01-19 2018-07-10 京东方科技集团股份有限公司 X射线传感器的阵列基板、制造方法及x射线传感器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027465B2 (ja) * 1997-07-01 2007-12-26 株式会社半導体エネルギー研究所 アクティブマトリクス型表示装置およびその製造方法
JP4044187B2 (ja) * 1997-10-20 2008-02-06 株式会社半導体エネルギー研究所 アクティブマトリクス型表示装置およびその作製方法
JP5058046B2 (ja) * 2008-03-31 2012-10-24 三菱電機株式会社 光センサ内蔵表示装置
JP5137680B2 (ja) * 2008-05-08 2013-02-06 株式会社ジャパンディスプレイウェスト 液晶表示装置
WO2010055708A1 (ja) * 2008-11-14 2010-05-20 シャープ株式会社 容量変化検出回路
WO2010058636A1 (ja) * 2008-11-20 2010-05-27 シャープ株式会社 表示装置、及びアクティブマトリクス基板
US8803151B2 (en) * 2010-04-16 2014-08-12 Sharp Kabushiki Kaisha Semiconductor device
KR20120115841A (ko) * 2011-04-11 2012-10-19 삼성디스플레이 주식회사 유기 발광 표시 장치
KR101520423B1 (ko) * 2011-04-21 2015-05-14 엘지디스플레이 주식회사 터치센서 인셀 타입 액정표시장치용 어레이 기판 및 이의 제조방법
KR101892710B1 (ko) * 2011-05-26 2018-08-29 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조방법
CN103135861B (zh) * 2013-01-25 2016-04-13 京东方科技集团股份有限公司 一种光电传感器及光电触摸屏
CN109212800B (zh) * 2017-07-03 2020-12-01 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN108461529A (zh) * 2018-03-29 2018-08-28 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN109521596B (zh) * 2018-12-26 2020-09-01 武汉华星光电技术有限公司 阵列基板、显示面板以及显示面板的控制方法
KR20210055858A (ko) * 2019-11-07 2021-05-18 삼성디스플레이 주식회사 유기 발광 표시 장치
CN111725276B (zh) * 2020-06-11 2024-01-30 武汉华星光电半导体显示技术有限公司 发光器件、显示装置及发光器件的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137278A (ko) * 2014-05-29 2015-12-09 엘지디스플레이 주식회사 어레이 기판 및 이를 포함하는 액정 표시 장치
CN105136378A (zh) * 2015-09-24 2015-12-09 京东方科技集团股份有限公司 一种显示基板及显示装置、压力检测系统及其检测方法
CN204988604U (zh) * 2015-09-24 2016-01-20 京东方科技集团股份有限公司 一种显示基板及显示装置、压力检测系统
CN108269817A (zh) * 2018-01-19 2018-07-10 京东方科技集团股份有限公司 X射线传感器的阵列基板、制造方法及x射线传感器

Also Published As

Publication number Publication date
US20230194943A1 (en) 2023-06-22
CN113064307A (zh) 2021-07-02
CN113064307B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US7227185B2 (en) Thin film transistor liquid crystal display
US8531641B2 (en) Liquid crystal display device and method of manufacturing the same
US11719983B2 (en) Display panel, manufacturing method thereof and display device
TWI518382B (zh) 畫素結構及具有此畫素結構的顯示面板
JP2007293155A (ja) 液晶表示装置
WO2021056729A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
WO2021184506A1 (zh) 液晶显示面板
WO2022156131A1 (zh) 阵列基板、阵列基板的制作方法以及显示面板
JP2010060907A (ja) 表示装置
US7212261B2 (en) Color filter panel and liquid crystal display including the same
WO2021012360A1 (zh) 显示面板及制作方法、显示装置
US20220107528A1 (en) Liquid crystal display panel and manufacturing method thereof
US11714322B2 (en) Display panel and manufacturing method thereof
WO2013037236A1 (zh) 阵列基板及液晶显示面板
TWI344560B (en) Array substrate and panel of liquid crystal display
WO2021082213A1 (zh) 液晶显示面板及液晶显示装置
CN102279483A (zh) 显示设备
US20070058112A1 (en) Liquid crystal display panel, color filter, and manufacturing method thereof
US20240201546A1 (en) Liquid crystal display panel and display device
WO2022193439A1 (zh) 阵列基板及制作方法、显示面板
US10268093B2 (en) Array substrate and the preparation method thereof, liquid crystal panel
JP5664102B2 (ja) 液晶装置、液晶装置の製造方法、及び電子機器
US20180180956A1 (en) Method For Manufacturing COA Type Liquid Crystal Panel, and COA Type Liquid Crystal Panel
CN114077108A (zh) 一种显示面板及显示装置
WO2017096659A1 (zh) 薄膜晶体管阵列基板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931024

Country of ref document: EP

Kind code of ref document: A1