WO2022193414A1 - 阵列基板和显示装置 - Google Patents

阵列基板和显示装置 Download PDF

Info

Publication number
WO2022193414A1
WO2022193414A1 PCT/CN2021/091626 CN2021091626W WO2022193414A1 WO 2022193414 A1 WO2022193414 A1 WO 2022193414A1 CN 2021091626 W CN2021091626 W CN 2021091626W WO 2022193414 A1 WO2022193414 A1 WO 2022193414A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
array substrate
pixels
row
Prior art date
Application number
PCT/CN2021/091626
Other languages
English (en)
French (fr)
Inventor
张微
高永益
石佺
白珊珊
王红丽
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001057.1A priority Critical patent/CN115349172A/zh
Priority to PCT/CN2022/081216 priority patent/WO2022194215A1/zh
Priority to CN202280000465.XA priority patent/CN115349174B/zh
Priority to EP22770568.8A priority patent/EP4131417A4/en
Publication of WO2022193414A1 publication Critical patent/WO2022193414A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • Embodiments of the present disclosure relate to an array substrate and a display device.
  • organic light emitting diode (OLED) display devices are increasingly used in a wide range of applications.
  • OLED organic light emitting diode
  • the pixel arrangement or pixel arrangement structure has a great influence on the display quality and resolution, so it is also one of the important directions for research and improvement by major manufacturers.
  • Embodiments of the present disclosure provide an array substrate and a display device.
  • the first sub-pixel row includes a plurality of first sub-pixels and a plurality of second sub-pixels that are alternately arranged in the first direction, because the centers of adjacent first sub-pixels in the first sub-pixel row
  • the angle between the line connecting the center of the second sub-pixel and the first direction is less than 20 degrees, so the fluctuation of the sub-pixel row is smaller, and the human eye is closer to a straight line, which can reduce or even eliminate the "" "Wave” or "Jagged", and make the lines of the displayed picture more continuous and natural.
  • At least one embodiment of the present disclosure provides an array substrate comprising: a plurality of first sub-pixel rows, each of the first sub-pixel rows including a plurality of first sub-pixels and a plurality of first sub-pixels arranged alternately in a first direction two sub-pixels; and a plurality of second sub-pixel rows, each of the second sub-pixel rows including a plurality of third sub-pixels and a plurality of fourth sub-pixels alternately arranged in the first direction; the plurality of The first sub-pixel row and the plurality of second sub-pixel rows are alternately arranged along a second direction, the second direction intersects the first direction, and in the first sub-pixel row, the adjacent
  • the included angle between the center of the first sub-pixel and the center of the second sub-pixel and the first direction is less than 20 degrees.
  • the first sub-pixel is configured to emit light of a first color
  • the second sub-pixel is configured to emit light of a second color
  • the first sub-pixel is configured to emit light of a second color.
  • the color is the same as the second color.
  • the third sub-pixel is configured to emit light of a third color
  • the fourth sub-pixel is configured to emit light of a fourth color
  • the third sub-pixel is configured to emit light of a fourth color.
  • the color, the fourth color and the first color are different from each other, and the luminous efficiency of the third sub-pixel is greater than that of the fourth sub-pixel.
  • the array substrate provided by an embodiment of the present disclosure further includes: a plurality of pixel groups, each of which includes one of the first color sub-pixels, one of the second sub-pixels, one of the third sub-pixels, and One of the fourth sub-pixels, in each of the pixel groups, the first connecting line between the center of the first sub-pixel and the center of the second sub-pixel and the center of the third sub-pixel and the The second connecting lines at the centers of the fourth sub-pixels intersect, the plurality of pixel groups are arranged along the first direction to form N pixel group rows, and the N pixel group rows are arranged in the second direction, respectively.
  • the adjacent two pixel group rows are staggered in the first direction, and a plurality of the first sub-pixels in the i-th pixel group row and the i+1-th pixel group row
  • a plurality of the second sub-pixels are alternately arranged in the first direction to form a row of the first sub-pixels, a plurality of the third sub-pixels and a plurality of the third sub-pixels in the i-th row of the pixel group.
  • the fourth subpixels are alternately arranged in the first direction to form one row of the second subpixels, where N is a positive integer greater than or equal to 3, and i is a positive integer greater than or equal to 1 and less than or equal to N.
  • a line connecting the centers of the adjacent first sub-pixels and the centers of the second sub-pixels is connected to all the adjacent first sub-pixels.
  • the included angle of the first direction is less than 15 degrees.
  • a line connecting the centers of the adjacent first sub-pixels and the centers of the second sub-pixels is connected to all the adjacent first sub-pixels.
  • the included angle of the first direction is less than or equal to 10 degrees.
  • the plurality of first sub-pixels and the plurality of second sub-pixels in one of the first sub-pixel rows are both related to the first sub-pixels extending along the first direction.
  • the first virtual straight lines intersect.
  • the plurality of first sub-pixels and the plurality of second sub-pixels in one of the first sub-pixel rows are uniform in the first direction distributed.
  • the ratio of the maximum size of the third sub-pixel in the second direction to the maximum size of the third sub-pixel in the first direction is less than 2.
  • the ratio of the maximum size of the third sub-pixel in the second direction to the maximum size of the third sub-pixel in the first direction is less than 1.2.
  • the shape of the effective light-emitting region of the third sub-pixel includes a first parallel edge group, and the first parallel edge group includes a first parallel edge group extending along the second direction. a parallel side and a second parallel side, in one of the pixel groups, the first parallel side is located on the side of the second parallel side away from the fourth sub-pixel, and the length of the first parallel side is greater than the length of the second parallel side.
  • the shape of the effective light-emitting area of the fourth sub-pixel includes a second parallel edge group, and the second parallel edge group includes a first parallel edge group extending along the second direction.
  • the third parallel side is located on the side of the fourth parallel side away from the third sub-pixel, and the length of the third parallel side is greater than the length of the fourth parallel side.
  • the shape of the effective light-emitting area of the third sub-pixel includes a first vertex and a second vertex with the largest distance in the second direction, and the third sub-pixel has the largest distance in the second direction.
  • the shape of the effective light-emitting area of the pixel is divided into a first part and a second part by the connecting line of the first vertex and the second vertex, and in one of the pixel groups, the first part is located far from the second part.
  • the average size of the first portion in the second direction is larger than the average size of the second portion in the second direction.
  • the shape of the effective light-emitting area of the fourth sub-pixel includes a third vertex and a fourth vertex with the largest distance in the second direction, and the fourth sub-pixel has the largest distance in the second direction.
  • the shape of the effective light-emitting area of the pixel is divided into a third part and a fourth part by the connection line between the third vertex and the fourth vertex, and in one of the pixel groups, the third part is located in the fourth part.
  • the part is away from the side of the third sub-pixel, and the average size of the third part in the second direction is larger than the average size of the fourth part in the second direction.
  • the effective light-emitting area of the third sub-pixel in the i-th pixel group row and the i+1-th pixel group row in the effective light-emitting area is less than twice the shortest distance between the effective light-emitting area of the first sub-pixel and the effective light-emitting area of the third sub-pixel in the same pixel group.
  • the effective light-emitting area of the third sub-pixel in the i-th pixel group row and the i+1-th pixel group row in the effective light-emitting area is less than 1.5 times the shortest distance between the effective light-emitting area of the first sub-pixel and the effective light-emitting area of the third sub-pixel in the same pixel group.
  • the effective light-emitting area of the fourth sub-pixel in the i-th pixel group row and the i+1-th pixel group row in the effective light-emitting area is less than twice the shortest distance between the effective light-emitting areas of the first sub-pixel and the fourth sub-pixels in the same pixel group.
  • the effective light-emitting area of the fourth sub-pixel in the i-th pixel group row and the i+1-th pixel group row in the effective light-emitting area is less than 1.5 times the shortest distance between the effective light-emitting areas of the first sub-pixel and the fourth sub-pixels in the same pixel group.
  • the first subpixel in one of the pixel groups in the i-th pixel group row is at least partially located in the i+1-th pixel group row between two adjacent pixel groups.
  • the i-th pixel group row and the i+2-th pixel group row are aligned in a first direction, and the i-th pixel group row is aligned in a first direction.
  • One of the first sub-pixels and one of the second sub-pixels in the i+2 th pixel group row form a sub-pixel pair, in which the center of the first sub-pixel and the The third connecting line at the center of the second sub-pixel is parallel to the second direction.
  • the effective light-emitting area of the first sub-pixel and the effective light-emitting area of the second sub-pixel in the sub-pixel pair are farthest in the second direction The distance is greater than the size of the third subpixel in the second direction and the size of the fourth subpixel in the second direction.
  • the light-emitting layer of the first sub-pixel and the light-emitting layer of the second sub-pixel in the sub-pixel pair are integrated into the same light-emitting layer.
  • the array substrate provided by an embodiment of the present disclosure further includes: a spacer located between the adjacent first subpixels and the second subpixels in the first subpixel row.
  • the number of the plurality of second sub-pixel rows is K
  • the spacer is further located in the jth second sub-pixel row in the jth row Between the three sub-pixels and the fourth sub-pixel in the j+1 th second sub-pixel row, or the spacer is further located in the j-th second sub-pixel row Between the fourth subpixel and the third subpixel in the j+1th second subpixel row, K is a positive integer greater than or equal to 3
  • j is a positive integer greater than or equal to 1 and less than or equal to K.
  • At least one embodiment of the present disclosure further provides a display device including the array substrate described in any one of the above.
  • 1A is a schematic diagram of an array substrate
  • FIG. 1B is a schematic diagram of a sub-pixel row in an array substrate
  • FIG. 2A is a schematic diagram of an array substrate according to an embodiment of the disclosure.
  • 2B is a schematic diagram of a display effect of a sub-pixel row in an array substrate according to an embodiment of the disclosure
  • 3A is a partial schematic diagram of an array substrate according to an embodiment of the disclosure.
  • 3B is a schematic cross-sectional view of an array substrate according to an embodiment of the present disclosure along the AB direction in FIG. 3A;
  • FIG. 4 is a schematic diagram of another array substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another array substrate according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another array substrate according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another array substrate provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a display device according to an embodiment of the disclosure.
  • the resolution of a display device can be increased by reducing the size of pixels and reducing the spacing between pixels.
  • the reduction of the size of the pixels and the spacing between the pixels also requires higher and higher precision of the manufacturing process, which will lead to an increase in the difficulty of the manufacturing process and the increase in the manufacturing cost of the display device.
  • Sup-Pixel Rendering (SPR) technology can make use of the difference in the resolution of different color sub-pixels by the human eye to change the conventional red, green, and blue sub-pixels to simply define the mode of a pixel.
  • the pixel arrangement structure using the sub-pixel rendering (SPR) technology will have some adverse effects on the display quality, for example, the display image has a grainy and wavy feeling, and the lines in the display image are discontinuous.
  • FIG. 1A is a schematic diagram of an array substrate
  • FIG. 1B is a schematic diagram of a sub-pixel row in an array substrate.
  • the array substrate 10 includes a first sub-pixel 11 , a second sub-pixel 12 and a third sub-pixel 13 .
  • the color of the light emitted by the first sub-pixel 11 may be a color sensitive to human eyes, that is, when the human eye performs visual synthesis, the color of the light emitted by the first sub-pixel 11 accounts for a higher proportion. As shown in FIG.
  • the positions of the adjacent first sub-pixels 11 in the second direction are quite different, that is, the adjacent first sub-pixels 11 have relatively large differences in position in the second direction.
  • the centers of the pixels 11 are farther apart in the second direction; therefore, when the array substrate is used for a straight line, the "sawtooth feeling" of the straight line in human vision is stronger, which reduces the quality of the display image.
  • inventions of the present disclosure provide an array substrate and a display device.
  • the array substrate includes a plurality of pixel groups, each pixel group includes a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel; in each pixel group, the center of the first sub-pixel and the The first connecting line of the center of the second sub-pixel intersects the second connecting line of the center of the third sub-pixel and the center of the fourth sub-pixel; a plurality of pixel groups are arranged along the first direction to form N pixel group rows, N The pixel group rows are arranged in the second direction, and two adjacent pixel group rows are staggered in the first direction; a plurality of first sub-pixels in the i-th pixel group row and the i+1-th pixel group row A plurality of second sub-pixels are alternately arranged in the first direction to form a sub-pixel row.
  • the included angle is less than 20 degrees
  • N is a positive integer greater than or equal to 3
  • i is a positive integer greater than or equal to 1 and less than or equal to N.
  • the first sub-pixel and the second sub-pixel may be sub-pixels emitting light of the same color, and the color may be a sub-pixel sensitive to human eyes. Since the included angle between the center of the adjacent first sub-pixel and the center of the second sub-pixel in the sub-pixel row and the first direction is less than 20 degrees, the fluctuation of the sub-pixel row is smaller, and the human eye is visually impaired. It is closer to a straight line, which can reduce or even eliminate the "wavy feeling" or "jaggy feeling” of the display screen, and make the lines of the display screen more continuous and natural.
  • FIG. 2A is a schematic diagram of an array substrate according to an embodiment of the disclosure.
  • 2B is a schematic diagram of a display effect of a sub-pixel row in an array substrate according to an embodiment of the disclosure.
  • the array substrate 100 includes a plurality of first sub-pixel rows 310 and a plurality of second sub-pixel rows 320 ; each first sub-pixel row 310 includes a plurality of first sub-pixel rows 310 alternately arranged in the first direction A sub-pixel 121 and a plurality of second sub-pixels 122; each second sub-pixel row 320 includes a plurality of third sub-pixels 123 and a plurality of fourth sub-pixels 124 arranged alternately in the first direction; a plurality of first sub-pixels
  • the pixel rows 310 and the plurality of second sub-pixel rows 320 are alternately arranged along the second direction.
  • the second direction intersects the first direction, eg, the second direction and the first direction are perpendicular to each other.
  • the above-mentioned "the second direction and the first direction are perpendicular to each other” includes the first direction and the second direction are strictly perpendicular to each other, that is, the angle between the first direction and the second direction is 90 degrees. This includes the case where the first direction and the second direction are substantially perpendicular to each other, that is, the included angle between the first direction and the second direction is in the range of 80-100 degrees.
  • the included angle between the center of the adjacent first sub-pixel 121 and the center of the second sub-pixel 122 and the first direction is less than 20 degrees.
  • the first sub-pixel 121 and the second sub-pixel 122 may be sub-pixels that emit light of the same color, and the color may be a sub-pixel that is sensitive to human eyes. Since the included angle ⁇ between the center of the first sub-pixel 121 and the center of the second sub-pixel 122 in the first sub-pixel row 310 and the first direction is less than 20 degrees, the first sub-pixel row The 310 has less fluctuation and is closer to a straight line in human vision, which can reduce or even eliminate the "fluctuation" or "jaggies" of the display screen, and make the lines of the display screen more continuous and natural.
  • the array substrate 100 includes a base substrate 110 and a plurality of pixel groups 120 located on the base substrate 110 ; each pixel group 120 includes a first sub-pixel 121 and a second sub-pixel 120 . A pixel 122 , a third sub-pixel 123 and a fourth sub-pixel 124 . In each pixel group 120 , a first connecting line CL1 between the center of the first sub-pixel 121 and the center of the second sub-pixel 122 and a second connecting line CL2 between the center of the third sub-pixel 123 and the center of the fourth sub-pixel 124 intersect.
  • the first sub-pixel 121 and the second sub-pixel 122 may be sub-pixels that emit light of the same color; in addition, the shapes of the first sub-pixel 121 and the second sub-pixel 122 may also be Likewise, the difference between the first subpixel 121 and the second subpixel 122 lies in their positions.
  • the above-mentioned “center” refers to the luminance center or the geometric center of the effective light-emitting area of the sub-pixel.
  • a plurality of pixel groups 120 are arranged along the first direction to form N pixel group rows 210 ; the N pixel group rows 210 are arranged in the second direction, and two adjacent pixel group rows 210 are arranged in the first direction. It is upwardly staggered, that is, the centers of the orthographic projections of the pixel groups of the same ordinal number in the two adjacent pixel group rows 210 on the reference straight line extending in the first direction do not overlap. Therefore, two adjacent pixel group rows 210 can be arranged closer and closer in the second direction, thereby improving pixel density or resolution.
  • the plurality of first sub-pixels 121 in the i-th pixel group row 210 and the plurality of second sub-pixels 122 in the i+1-th pixel group row 210 alternate in the first direction are arranged to form the above-mentioned first sub-pixel row 310; and, in a first sub-pixel row 310, the connecting line CL between the center of the adjacent first sub-pixel 121 and the center of the second sub-pixel 122 and the first direction
  • the included angle ⁇ is less than 20 degrees
  • N is a positive integer greater than or equal to 3
  • i is a positive integer greater than or equal to 1 and less than or equal to N.
  • the first sub-pixel 121 and the second sub-pixel 122 may be sub-pixels that emit light of the same color, and the color may be a sub-pixel that is sensitive to human eyes. Since the included angle ⁇ between the center of the first sub-pixel 121 and the center of the second sub-pixel 122 in the first sub-pixel row 310 and the first direction is less than 20 degrees, the first sub-pixel row The 310 has less fluctuation and is closer to a straight line in human vision, which can reduce or even eliminate the "fluctuation" or "jaggies" of the display screen, and make the lines of the display screen more continuous and natural.
  • a sub-pixel rendering (Sup-Pixel Rendering, SPR) technology can be used to make the first sub-pixel 121 and the second sub-pixel 122 borrow the third sub-pixel 123 and the fourth sub-pixel 124 respectively, so as to
  • the simulation forms two pixels, so that the pixel resolution can be improved, and the difficulty and cost of the manufacturing process can be reduced.
  • the plurality of third sub-pixels 123 and the plurality of fourth sub-pixels 124 in the i-th pixel group row 210 are alternately arranged in the first direction to form a second sub-pixel row 320 .
  • the first subpixel is configured to emit light of a first color and the second subpixel is configured to emit light of a second color, the first color and the second color being the same.
  • the first subpixel 121 and the second subpixel 122 are configured to emit green light, ie, both the first color and the second color are green. It should be noted that the green light is sensitive to the human eye, so in human vision, the brightness center of the pixel will be close to the brightness center of the green sub-pixel.
  • the third subpixel is configured to emit light of a third color
  • the fourth subpixel is configured to emit light of a fourth color
  • the third color, the fourth color and the first color are different from each other
  • the third The luminous efficiency of the sub-pixel is greater than that of the fourth sub-pixel.
  • the first and second colors are green
  • the third color is red
  • the fourth color is blue.
  • the embodiments of the present disclosure include but are not limited to this.
  • a line CL connecting the center of the adjacent first sub-pixel 121 and the center of the second sub-pixel 122 and the first direction The included angle ⁇ is less than 15 degrees. Since the included angle between the center of the first sub-pixel 121 and the center of the second sub-pixel 122 in the first sub-pixel row 310 and the first direction is less than 15 degrees, the first sub-pixel row 310 The fluctuation of the display can be further reduced, thereby further reducing or even eliminating the "fluctuation" or "jaggies" of the display screen.
  • the angle between the line CL connecting the center of the adjacent first sub-pixel 121 and the center of the second sub-pixel 122 and the first direction ⁇ is in the range of 9-11 degrees, eg 10 degrees. Therefore, the array substrate can make the included angle between the connection line CL and the first direction smaller by changing the aspect ratio of the third sub-pixel and the fourth sub-pixel, thereby further reducing or even eliminating the "sense of fluctuation" or even elimination of the display screen. "Jaggedness".
  • the orientations of the adjacent first subpixels 121 and the second subpixels 122 in the first subpixel row 310 are different, that is, the first subpixels 121 are located on the base substrate.
  • the shape of the orthographic projection on the 110 is exactly the same as the shape of the orthographic projection of the second sub-pixel 122 on the base substrate 110 after being rotated by a certain angle (for example, 180 degrees).
  • the shape of the orthographic projection of the first sub-pixel 121 on the base substrate 110 includes a first protrusion 1211
  • the positive projection of the second sub-pixel 122 on the base substrate 110 includes a first protrusion 1211
  • the projected shape includes a second protrusion 1221, and the first protrusion 1211 and the second protrusion 1221 are oriented in opposite directions.
  • the shape of the orthographic projection of the first sub-pixel 121 on the base substrate 110 further includes a first bottom edge 1212 opposite to the first protrusion 1211 , the second sub-pixel 121 .
  • the shape of the orthographic projection of the pixel 122 on the base substrate 110 includes a second bottom edge 1222 disposed opposite to the second protrusion 1221 , and the first bottom edge 1212 and the second bottom edge 1222 are not located on the same straight line.
  • the edges of adjacent first subpixels 121 and second subpixels 122 in the first subpixel row 310 close to the same second subpixel row are not flush (eg, FIG. The lower edge in 2A is not flush).
  • the plurality of first sub-pixels 121 and the plurality of second sub-pixels 122 in one first sub-pixel row 310 are both associated with the first dummy extending along the first direction. Lines intersect. That is, the first virtual straight line extending in the first direction simultaneously passes through the plurality of first subpixels 121 and the plurality of second subpixels 122 in one first subpixel row 310 .
  • the plurality of first sub-pixels 121 and the plurality of second sub-pixels 122 in a first sub-pixel row are closer to a straight line in human vision, thereby making the first sub-pixel row 310 feel fluctuating It can be further reduced, thereby further reducing or even eliminating the "wavy feeling” or "jaggy feeling” of the display screen.
  • the plurality of first sub-pixels 121 and the plurality of second sub-pixels 122 in one first sub-pixel row 310 are uniformly distributed in the first direction, thereby improving the display quality of the array substrate.
  • the centers of all the first sub-pixels 121 may be located on the same straight line; the centers of all the second sub-pixels 121 may be located on the same straight line; The centers of all the third sub-pixels 123 may be located on the same line; the centers of all the fourth sub-pixels 124 may be located on the same line.
  • each pixel group 120 no other sub-pixels are arranged between the first sub-pixel 121 and the third sub-pixel 123 , and no other sub-pixels are arranged between the first sub-pixel 121 and the fourth sub-pixel 124 .
  • No other sub-pixels are arranged; similarly, no other sub-pixels are arranged between the second sub-pixel 122 and the third sub-pixel 123 , and no other sub-pixels are arranged between the second sub-pixel 122 and the fourth sub-pixel 124 .
  • the array substrate 100 further includes: a sub-pixel interval 170 disposed between two adjacent sub-pixels, and the sub-pixels can be the above-mentioned first sub-pixel 121 and second sub-pixel 122 , any one of the third sub-pixel 123 and the fourth sub-pixel; each pixel group 120 includes only four sub-pixels separated by a sub-pixel interval 170 .
  • the array substrate 100 further includes spacers 250 , and the spacers 250 can be used to support the above-mentioned first sub-pixel, second Masks (eg, fine metal masks) for the sub-pixel, the third sub-pixel, and the fourth sub-pixel.
  • the spacer 250 is located between the adjacent first sub-image 121 and the second sub-pixel 122 in the first sub-pixel row 310 .
  • the included angle ⁇ between the center of the adjacent first sub-pixel 121 and the center of the second sub-pixel 122 in the first sub-pixel row 310 and the angle ⁇ in the first direction decreases is smaller, that is, the distance between the adjacent first sub-pixel 121 and the second sub-pixel 122 in the second direction is reduced, so the aspect ratio of the third sub-pixel and the fourth sub-pixel is reduced, so that the adjacent A blank area is left between the first sub-pixel 121 and the second sub-pixel 122.
  • the array substrate can use the blank area to set spacers, so as to prevent the spacers from rubbing against the opening edge of the mask during the fabrication process to generate particles (Particles), thereby preventing the particles from adversely affecting the display quality .
  • the number of the plurality of second sub-pixel rows 320 is K, and the spacers are also located at the third sub-pixel and the j+1-th sub-pixel in the j-th second sub-pixel row and the j+1-th sub-pixel row. Between the fourth sub-pixels in the two sub-pixel rows, or, the spacer is further located between the fourth sub-pixel in the j-th second sub-pixel row and the third sub-pixel in the j+1-th second sub-pixel row between pixels, K is a positive integer greater than or equal to 3, and j is a positive integer greater than or equal to 1 and less than or equal to K.
  • the array substrate 100 includes a plurality of spacers 250 , and the center lines of the plurality of spacers 250 may form a rectangular grid or a diamond grid.
  • the centers of all the third subpixels 123 and the fourth subpixels 124 in the second subpixel row 320 may be located on a virtual straight line extending in the first direction, so that the display may be improved symmetry.
  • FIG. 3A is a partial schematic diagram of an array substrate according to an embodiment of the disclosure
  • FIG. 3B is a schematic cross-sectional view of an array substrate according to an embodiment of the disclosure along the AB direction in FIG. 3A .
  • the ratio of the size of the third sub-pixel 123 in the second direction to the size of the third sub-pixel 123 in the first direction is less than 3.5. Therefore, by reducing the aspect ratio of the third sub-pixel 123, the centers of the adjacent first sub-pixels 121 and the centers of the second sub-pixels 122 in the first sub-pixel row 310 can be set closer, for example, so that the The included angle between the center of the adjacent first sub-pixel 121 and the center of the second sub-pixel 122 and the first direction is less than 15 degrees.
  • the size of the above-mentioned third sub-pixel may be the size of the effective light-emitting area of the third sub-pixel.
  • the ratio of the size of the third subpixel 123 in the second direction to the size of the third subpixel 123 in the first direction is less than 2. Therefore, by reducing the aspect ratio of the third sub-pixel 123, the centers of the adjacent first sub-pixels 121 and the centers of the second sub-pixels 122 in the first sub-pixel row 310 can be set closer, for example, so that the The included angle between the center of the adjacent first sub-pixel 121 and the center of the second sub-pixel 122 and the first direction is less than 15 degrees.
  • the size of the above-mentioned third sub-pixel may be the size of the effective light-emitting area of the third sub-pixel.
  • the ratio of the size of the third subpixel 123 in the second direction to the size of the third subpixel 123 in the first direction is less than 1.2. Therefore, the array substrate can further make the centers of the adjacent first sub-pixels and the centers of the second sub-pixels in the first sub-pixel row set closer, and also help to improve the display symmetry of the pixel group.
  • the first sub-pixels 121 in one pixel group 120 in the i-th pixel group row 210 are at least partially located in two adjacent ones in the i+1-th pixel group row 210 Between the pixel groups 120 , for example, between adjacent third sub-pixels 123 and fourth sub-pixels 124 . That is to say, the orthographic projection of the i-th pixel group row 210 on the reference line extending along the second direction partially overlaps the orthographic projection of the i+1-th pixel group row 210 on the reference line extending along the second direction . Therefore, the array substrate can arrange two adjacent pixel group rows 210 more closely, thereby improving the pixel density and the aperture ratio.
  • the orthographic projection of the first sub-pixel 121 in one pixel group 120 in the i-th pixel group row 210 on the reference line extending along the second direction is the same as the i+1-th pixel
  • the orthographic projections of two adjacent pixel groups 120 in the group row 210 on the reference line extending in the second direction overlap at least partially; the first subpixel 121 in one pixel group 120 in the i-th pixel group row 210 is at least partially overlapping.
  • the orthographic projection on the reference line extending in the second direction is the same as the positive projection of the two adjacent third sub-pixels 123 and fourth sub-pixels 124 in the i+1 th pixel group row 210 on the reference line extending in the second direction
  • the projections overlap at least partially.
  • the i-th pixel group row 210 is aligned with the i+2-th pixel group row 210 in a first direction, and one of the i-th pixel group rows 210 is the first
  • the sub-pixel 121 and one second sub-pixel 122 in the i+2 th pixel group row 210 form a sub-pixel pair 125 in which the center of the first sub-pixel 121 and the center of the second sub-pixel 122 are separated.
  • the third connection line CL3 is parallel to the second direction. Therefore, the array substrate has better display quality.
  • the farthest distance in the second direction of the effective light-emitting area of the first sub-pixel 121 and the effective light-emitting area of the second sub-pixel 122 in the sub-pixel pair 125 is greater than that of the first sub-pixel 121 in the second direction.
  • the size of the three sub-pixels 123 in the second direction and the size of the fourth sub-pixel 124 in the second direction is greater than that of the first sub-pixel 121 in the second direction.
  • the array substrate 100 further includes a first color pixel electrode 141 , a second color pixel electrode 142 , a third color pixel electrode 143 and a fourth color pixel electrode 141 on the base substrate 110 144; the pixel defining layer 150 located on the side of the first color pixel electrode 141, the second color pixel electrode 142, the third color pixel electrode 143 and the fourth color pixel electrode 144 away from the base substrate 110; and the pixel defining layer 150 The first color light emitting layer 161 , the second color light emitting layer 162 , the third color light emitting layer 163 and the fourth color light emitting layer 164 on the side away from the base substrate 110 .
  • the pixel defining layer 150 includes a first opening 151, a second opening 152, a third opening 153 and a fourth opening 154.
  • the first opening 151 exposes the pixel electrode 141 of the first color
  • the second opening 152 exposes the pixel electrode 142 of the second color.
  • the three openings 153 expose the third-color pixel electrode 143
  • the fourth opening 154 exposes the fourth-color pixel electrode 144
  • the first-color light-emitting layer 161 contacts the first-color pixel electrode 141 exposed by the first opening 151 through the first opening 151
  • the second color light emitting layer 162 is arranged in contact with the part of the second color pixel electrode 142 exposed by the second opening 152 through the second opening 152
  • the third color light emitting layer 163 is connected to the third color pixel electrode 143 through the third opening 153
  • the exposed part of the third opening 153 is arranged in contact;
  • the shape and size of the effective light-emitting area of the first sub-pixel 121 are defined by the first opening 151
  • the shape and size of the effective light-emitting area of the second sub-pixel 122 are defined by the second opening 152
  • the effective light-emitting area of the third sub-pixel 123 The shape and size of the light emitting area are defined by the third opening
  • the pixel electrode 141 of the first color is configured to drive the light emitting layer 161 of the first color to emit light of the first color
  • the pixel electrode 142 of the second color is configured to drive the light emitting layer 162 of the second color to emit light of the second color
  • the color pixel electrodes 143 are configured to drive the third color light emitting layer 163 to emit light of the third color
  • the fourth color pixel electrodes 144 are configured to drive the fourth color light emitting layer 164 to emit light of the fourth color.
  • the first color and the second color are both green, the third color is red, and the fourth color is blue.
  • the embodiments of the present disclosure include but are not limited to this.
  • the first-color light-emitting layer 161 of the first sub-pixel 121 and the second-color light-emitting layer 162 of the second sub-pixel 122 in the sub-pixel pair 125 are integrated into the same light-emitting layer. That is, the first color light emitting layer 161 of the first subpixel 121 and the second color light emitting layer 162 of the second subpixel 122 in the subpixel pair 125 may be formed through the same opening of the same fine mask (FMM).
  • FMM fine mask
  • the first subpixel 121 and the second subpixel 122 may be configured to emit light of the same color.
  • the first color light-emitting layer 161 and the second sub-pixel 122 of the first sub-pixel 121 in the same pixel group 120 The second color light emitting layers 162 may not be integrated together.
  • the first-color light-emitting layer 161 of the first sub-pixel 121 and the second-color light-emitting layer 162 of the second sub-pixel 122 in 125 may be integrated into the same light-emitting layer.
  • the first sub-pixel 121 may include the above-mentioned first-color pixel electrode 141 and the first-color light-emitting layer 161 disposed on the first-color pixel electrode 141 ; the second sub-pixel 121
  • the pixel 122 includes a second color pixel electrode 142 and a second color light-emitting layer 162 disposed on the second color pixel electrode 142 ;
  • the third sub-pixel 123 includes a third color pixel electrode 143 and a second color pixel electrode 143 disposed on the third color pixel electrode 143.
  • each of the above-mentioned light-emitting layers may only include light-emitting layers that emit light directly, and may also include auxiliary functional film layers such as electron transport layers, electron injection layers, hole transport layers, and hole injection layers.
  • the shape and size of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel can be the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel
  • the shape and size of the effective light-emitting area of the pixel may be defined by the above-mentioned first via hole, second via hole, third via hole and fourth via hole. Therefore, the shapes of the first color pixel electrode, the second color pixel electrode, the third color pixel electrode and the fourth color pixel electrode can be similar to the above-mentioned first subpixel, second subpixel, third subpixel and fourth subpixel different shapes.
  • the embodiments of the present disclosure include, but are not limited to, the first color pixel electrode, the second color pixel electrode, the third color pixel electrode, and the fourth color pixel electrode.
  • the shapes of the pixel, the third sub-pixel and the fourth sub-pixel are the same.
  • the specific shapes of the first-color light-emitting layer, the second-color light-emitting layer, the third-color light-emitting layer, and the fourth-color light-emitting layer can be set according to the preparation process, which is not limited in this embodiment of the present disclosure.
  • the shape of the light-emitting layer of the first color may be determined by the shape of the opening of the mask plate in the manufacturing process.
  • the size of the pixel electrode 141 of the first color is larger than that of the first opening 151
  • the size of the pixel electrode 142 of the second color is larger than the size of the second opening 152
  • the size of the pixel electrode 143 of the third color is larger than that of the second opening 152 .
  • the size is larger than that of the third opening 153
  • the size of the pixel electrode 144 of the fourth color is larger than that of the fourth opening 154 .
  • the distance of the pixel electrode 141 of the first color beyond the first opening 151, the distance of the pixel electrode 142 of the second color beyond the second opening 152, the distance of the pixel electrode 143 of the third color beyond the third opening 153 are approximately equal to the distance of the pixel electrode of the fourth color
  • the distances of the electrodes 144 beyond the fourth openings 154 are approximately equal.
  • the shortest distance between the edge of the pixel electrode 141 of the first color and the edge of the first opening 151 , the shortest distance between the edge of the pixel electrode 142 of the second color and the edge of the second opening 152 , the edge of the pixel electrode 143 of the third color The shortest distance from the edge of the third opening 153 and the shortest distance between the edge of the fourth color pixel electrode 144 and the edge of the fourth opening 154 are approximately equal.
  • FIG. 4 is a schematic diagram of another array substrate according to an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of another array substrate according to an embodiment of the disclosure.
  • the shape of the effective light-emitting area of the first sub-pixel 121 and the shape of the effective light-emitting area of the second sub-pixel 122 may both be symmetrical polygons.
  • embodiments of the present disclosure include But not limited to this.
  • the shape of the effective light-emitting area of the third sub-pixel 123 and the shape of the effective light-emitting area of the fourth sub-pixel 124 may be a non-centrosymmetric polygon, so that the array substrate can be fully utilized area, thereby increasing the aperture ratio.
  • the number of sides of each of the above-described shape of the effective light emitting area of the first subpixel 121 , the shape of the effective light emitting area of the second subpixel 122 , and the shape of the effective light emitting area of the third subpixel 123 is greater than five.
  • the shape of the effective light-emitting area of the third sub-pixel 123 includes a first parallel side group 410
  • the first parallel side group 410 includes a first parallel side 411 and a second parallel side extending along the second direction.
  • Two parallel sides 412 in one pixel group 120 , the first parallel side 411 is located on the side of the second parallel side 412 away from the fourth sub-pixel 124 , and the length of the first parallel side 411 is greater than the length of the second parallel side 412 .
  • the center line CL1 of the first sub-pixel 121 and the second sub-pixel 122 is located between the center of the third sub-pixel 123 and the center of the fourth sub-pixel 124, so the effective The light emitting area and the effective light emitting area of the fourth sub-pixel 124 have a larger space on the side away from the center connection line CL1. Therefore, by setting the length of the first parallel side to be greater than the length of the second parallel side, on the one hand, the area of the effective light-emitting region of the third sub-pixel can be increased, and on the other hand, the space utilization rate and aperture ratio can be improved. It should be noted that the above-mentioned aperture ratio may be the ratio of the sum of the areas of the effective light-emitting regions of each sub-pixel in the array substrate to the area of the array substrate.
  • the shape of the effective light emitting area of the fourth sub-pixel 124 includes a second parallel side group 420 including a third parallel side extending in the second direction 421 and the fourth parallel side 422; in one pixel group 120, the third parallel side 421 is located on the side of the fourth parallel side 422 away from the third sub-pixel 123, and the length of the third parallel side 421 is greater than the length of the fourth parallel side 422. length.
  • the center line CL1 of the first sub-pixel 121 and the second sub-pixel 122 is located between the center of the third sub-pixel 123 and the center of the fourth sub-pixel 124, so the effective The light emitting area and the effective light emitting area of the fourth sub-pixel 124 have a larger space on the side away from the center connection line CL1. Therefore, by making the length of the third parallel side larger than the length of the fourth parallel side, on the one hand, the area of the effective light-emitting region of the fourth sub-pixel can be increased, and on the other hand, the space utilization rate and the aperture ratio can be improved.
  • the above-mentioned first parallel sides, second parallel sides, third parallel sides and fourth parallel sides extend in the same direction , and the extending direction can be the stretching direction of the fine metal mask (FMM), so as to facilitate the transmission of the tension force of the fine metal mask (FMM), thereby improving the product yield.
  • FMM Fine Metal Mask
  • the shape of the effective light-emitting area of the third sub-pixel 123 includes the first vertex P1 and the second vertex P2 with the largest distance in the second direction, the effective light-emitting area of the third sub-pixel 123
  • the shape is divided into a first part 1231 and a second part 1232 by the connection line between the first vertex P1 and the second vertex P2; in a pixel group 120, the first part 1231 is located on the side of the second part 1232 away from the fourth sub-pixel 124 , the average size of the first portion 1231 in the second direction is larger than the average size of the second portion 1232 in the second direction.
  • the center line CL1 of the first sub-pixel 121 and the second sub-pixel 122 is located between the center of the third sub-pixel 123 and the center of the fourth sub-pixel 124, so the effective The light emitting area and the effective light emitting area of the fourth sub-pixel 124 have a larger space on the side away from the center connection line CL1. Therefore, by setting the size of the first part in the second direction to be larger than the size of the second part in the second direction, on the one hand, the area of the effective light-emitting region of the third sub-pixel can be increased, and on the other hand, the space utilization rate can be improved and opening rate. It should be noted that the above-mentioned "average size" may be the weighted average size of the first part or the second part in the second direction.
  • the shape of the effective light-emitting area of the fourth sub-pixel 124 includes a third vertex P3 and a fourth vertex P4 with the largest distance in the second direction, and the fourth sub-pixel 124 has a
  • the shape of the effective light-emitting area is divided into a third part 1243 and a fourth part 1244 by the connection line between the third vertex P3 and the fourth vertex P4; in a pixel group 120, the third part 1243 is located in the fourth part 1244 away from the third sub-section
  • the average size of the third portion 1243 in the second direction is larger than the average size of the fourth portion 1244 in the second direction.
  • the center line CL1 of the first sub-pixel 121 and the second sub-pixel 122 is located between the center of the third sub-pixel 123 and the center of the fourth sub-pixel 124, so the effective The light emitting area and the effective light emitting area of the fourth sub-pixel 124 have a larger space on the side away from the center connection line CL1. Therefore, by setting the size of the third part in the second direction to be larger than the size of the fourth part in the second direction, on the one hand, the area of the effective light-emitting region of the fourth sub-pixel can be increased, and on the other hand, the space utilization can be improved rate and opening rate.
  • the effective light-emitting area of the fourth sub-pixel 124 may only be expanded outward to increase the number of fourth sub-pixels The area of the effective light-emitting area. At this time, the effective light-emitting area of the third sub-pixel 123 can still adopt a symmetrical shape.
  • the effective light-emitting area of the third sub-pixel 123 in the i-th pixel group row 210 is the same as the fourth sub-pixel 124 in the i+1-th pixel group row 210 .
  • the shortest distance D1 of the effective light-emitting area is less than twice the shortest distance between the effective light-emitting area of the first sub-pixel 121 and the effective light-emitting area of the third sub-pixel 123 in the same pixel group 120 .
  • the shortest distance between the effective light-emitting area of the third sub-pixel in the i-th pixel group row and the effective light-emitting area of the fourth sub-pixel in the i+1-th pixel group row is relatively large.
  • the provided array substrate can increase the third sub-pixel by setting the above-mentioned shortest distance D1 to be less than twice the shortest distance between the effective light-emitting area of the first sub-pixel and the effective light-emitting area of the third sub-pixel in the same pixel group. area and increase the aperture ratio.
  • the effective light-emitting area of the third sub-pixel 123 in the i-th pixel group row 210 is the same as the fourth sub-pixel 124 in the i+1-th pixel group row 210 .
  • the shortest distance D1 of the effective light-emitting area is less than 1.5 times the shortest distance between the effective light-emitting area of the first sub-pixel 121 and the effective light-emitting area of the third sub-pixel 123 in the same pixel group 120 . Therefore, the array substrate can further increase the area of the third sub-pixel and improve the aperture ratio.
  • the effective light-emitting area of the fourth sub-pixel 124 in the i-th pixel group row 210 and the effective light-emitting area of the third sub-pixel 123 in the i+1-th pixel group row 210 The shortest distance D2 is less than twice the shortest distance between the effective light-emitting area of the first sub-pixel 121 and the effective light-emitting area of the fourth sub-pixel 124 in the same pixel group 120 .
  • the shortest distance between the effective light-emitting area of the fourth sub-pixel in the i-th pixel group row and the effective light-emitting area of the third sub-pixel in the i+1-th pixel group row is relatively large.
  • the provided array substrate can increase the fourth sub-pixel by setting the above-mentioned shortest distance D2 to be less than twice the shortest distance between the effective light-emitting area of the first sub-pixel and the effective light-emitting area of the fourth sub-pixel in the same pixel group. area and increase the aperture ratio.
  • the edge of the effective light emitting area of the fourth sub-pixel 124 may include a curve.
  • the first sub-pixels 121 in one pixel group 120 in the i-th pixel group row 210 are at least partially located two adjacent ones in the i+1-th pixel group row 210 Between the pixel groups 120 , for example, between adjacent third sub-pixels 123 and fourth sub-pixels 124 . Therefore, the array substrate can arrange two adjacent pixel group rows 210 more closely, thereby improving the pixel density and the aperture ratio.
  • FIG. 6 is a schematic diagram of another array substrate according to an embodiment of the disclosure
  • FIG. 7 is a schematic diagram of another array substrate according to an embodiment of the disclosure.
  • the array substrate 100 includes a base substrate 110 and a plurality of pixel groups 120 located on the base substrate 110 ; each pixel group 120 includes a first sub-pixel 121 and a second sub-pixel 122 , a third sub-pixel 123 and a fourth sub-pixel 124 .
  • a first connecting line CL1 between the center of the first sub-pixel 121 and the center of the second sub-pixel 122 and a second connecting line CL2 between the center of the third sub-pixel 123 and the center of the fourth sub-pixel 124 intersect.
  • the first sub-pixel 121 and the second sub-pixel 122 may be sub-pixels that emit light of the same color; in addition, the shapes of the first sub-pixel 121 and the second sub-pixel 122 may also be Likewise, the difference between the first subpixel 121 and the second subpixel 122 lies in their positions.
  • the above-mentioned “center” refers to the luminance center or the geometric center of the effective light-emitting area of the sub-pixel.
  • the plurality of first sub-pixels 121 in the i-th pixel group row 210 and the plurality of second sub-pixels 122 in the i+1-th pixel group row 210 alternate in the first direction are arranged to form a first sub-pixel row 310; and, in a first sub-pixel row 310, the connection line CL between the centers of the adjacent first sub-pixels 121 and the centers of the second sub-pixels 122 and the first direction
  • the included angle ⁇ is less than or equal to 10 degrees
  • N is a positive integer greater than or equal to 3
  • i is a positive integer greater than or equal to 1 and less than or equal to N.
  • the first sub-pixel 121 and the second sub-pixel 122 may be sub-pixels that emit light of the same color, and the color may be a sub-pixel that is sensitive to human eyes. Since the included angle ⁇ between the center of the first sub-pixel 121 and the center of the second sub-pixel 122 in the first sub-pixel row 310 and the first direction is less than or equal to 10 degrees, the first sub-pixel The line 310 has less fluctuation and is closer to a straight line in human vision, thereby reducing or even eliminating the "fluctuation" or "jaggies" of the display screen, and making the lines of the display screen more continuous and natural.
  • the included angle ⁇ between the center of the adjacent first sub-pixel 121 and the center of the second sub-pixel 122 and the first direction is equal to 0 degrees; that is, The centers of all the first sub-pixels 121 and the centers of the second sub-pixels 122 in a first sub-pixel row 310 may be located on the same straight line, and the straight line is parallel to the first direction. Therefore, the array substrate can eliminate the wavy feeling of the first sub-pixel row 310, thereby eliminating the "wavy feeling" or "jaggy feeling” of the display screen.
  • the first sub-pixel rows 310 may be uniformly arranged in the second direction, that is, the distance between any two adjacent first sub-pixel rows 310 Therefore, the uniformity and symmetry of the pixel arrangement of the array substrate can be further improved, so that the display quality can be further improved.
  • the effective light-emitting area of the fourth sub-pixel 124 may be expanded outward to increase the luminous intensity of the fourth sub-pixel 124 The area of the effective light-emitting area.
  • the shape of the effective light-emitting area of the fourth sub-pixel 124 includes a second parallel side group 420, and the second parallel side group 420 includes a third parallel side 421 and a fourth parallel side extending along the second direction 422;
  • the third parallel side 421 is located on the side of the fourth parallel side 422 away from the third sub-pixel 123, and the length of the third parallel side 421 is greater than the length of the fourth parallel side 422.
  • the center line CL1 of the first sub-pixel 121 and the second sub-pixel 122 is located between the center of the third sub-pixel 123 and the center of the fourth sub-pixel 124, so the effective The light emitting area and the effective light emitting area of the fourth sub-pixel 124 have a larger space on the side away from the center connection line CL1. Therefore, by making the length of the third parallel side larger than the length of the fourth parallel side, on the one hand, the area of the effective light-emitting region of the fourth sub-pixel can be increased, and on the other hand, the space utilization rate and the aperture ratio can be improved.
  • the luminous efficiency of the third sub-pixel 123 is greater than that of the fourth sub-pixel 124 , and the area of the effective light-emitting region of the fourth sub-pixel 124 is greater than that of the third sub-pixel 123 . Due to the difference in the structure design and material system of the light-emitting device, the lifetime of the sub-pixels that emit light of different colors is different. Therefore, by setting the area of the effective light-emitting region of the fourth sub-pixel to be larger than that of the third sub-pixel, the above-mentioned difference in lifetime can be balanced and the overall lifetime of the array substrate can be improved.
  • FIG. 8 is a schematic diagram of a display device according to an embodiment of the disclosure.
  • the display device 500 includes the above-mentioned array substrate 100 . Since the included angle between the array substrate and the first direction is less than 20 degrees by connecting the center of the first sub-pixel adjacent to the center of the second sub-pixel and the center of the second sub-pixel in the first sub-pixel row, the wave of the first sub-pixel row can be reduced. The motion is smaller, and the human eye is visually closer to a straight line, which can reduce or even eliminate the "wavy feeling" or "jaggy feeling” of the display screen, so the display device can have a higher resolution while having a higher display. quality.
  • the display device may be any product or component with a display function, such as a smart phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a smart phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例提供一种阵列基板和显示装置。该阵列基板包括多个第一子像素行,各第一子像素行包括在第一方向上交替排列的多个第一子像素和多个第二子像素;以及多个第二子像素行,各第二子像素行包括在第一方向上交替排列的多个第三子像素和多个第四子像素;多个第一子像素行和多个第二子像素行沿第二方向交替排列,第二方向与第一方向相交,在第一子像素行中,相邻的第一子像素的中心和第二子像素的中心的连线与第一方向的夹角小于20度。该阵列基板可减轻甚至消除显示画面的"波动感"或"锯齿感"。

Description

阵列基板和显示装置
本申请要求于2021年03月16日递交的PCT申请PCT/CN2021/081026的优先权,在此全文引用上述PCT申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种阵列基板和显示装置。
背景技术
随着显示技术的不断发展,人们对于显示装置的显示品质的要求也越来越高。由于具有色域广、响应速度快、可折叠、可弯曲以及高对比度等优点,有机发光二极管(OLED)显示装置的应用范围越来越广泛。另一方面,人们对于有机发光二极管(OLED)显示装置的分辨率的要求也越来越高。
在有机发光二极管(OLED)显示装置中,像素排列方式或像素排列结构对显示品质和分辨率具有较大的影响,因此也是各大厂商研究和改进的重要方向之一。
发明内容
本公开实施例提供一种阵列基板和显示装置。在该阵列基板中,第一子像素行包括在第一方向上交替排列的多个第一子像素和多个第二子像素,由于该第一子像素行中相邻的第一子像素中心和第二子像素的中心的连线与第一方向的夹角小于20度,因此该子像素行的波动感更小,人眼视觉上更接近一条直线,从而可减轻甚至消除显示画面的“波动感”或“锯齿感”,并使得显示画面的线条更加连续,自然。
本公开至少一个实施例提供一种阵列基板,其包括:多个第一子像素行,各所述第一子像素行包括在第一方向上交替排列的多个第一子像素和多个第二子像素;以及多个第二子像素行,各所述第二子像素行包括在所述第一方向上交替排列的多个第三子像素和多个第四子像素;所述多个第一子像素行和所述多个第二子像素行沿第二方向交替排列,所述第二方向与所述第一方向相交,在所述第一子像素行中,相邻的所述第一子像素的中心和所述第二子像素的中心的连线与所述第一方向的夹角小于20度。
例如,在本公开一实施例提供的阵列基板中,所述第一子像素被配置为发第一颜色的光,所述第二子像素被配置为发第二颜色的光,所述第一颜色和所述第二颜色相同。
例如,在本公开一实施例提供的阵列基板中,所述第三子像素被配置为发第三颜色的光,所述第四子像素被配置为发第四颜色的光,所述第三颜色、所述第四颜色和所述第一颜色互不相同,所述第三子像素的发光效率大于所述第四子像素的发光效率。
例如,本公开一实施例提供的阵列基板还包括:多个像素组,各所述像素组包括一个所述第一颜色子像素、一个所述第二子像素、一个所述第三子像素和一个所述第四子像素, 在各所述像素组中,所述第一子像素的中心和所述第二子像素的中心的第一连线与所述第三子像素的中心和所述第四子像素的中心的第二连线相交,所述多个像素组沿所述第一方向排列形成N个像素组行,所述N个像素组行在所述第二方向上排列,相邻的两个所述像素组行在所述第一方向上错位设置,第i个所述像素组行中的多个所述第一子像素和第i+1个所述像素组行中的多个所述第二子像素在所述第一方向上交替排列,以形成一个所述第一子像素行,第i个所述像素组行中的多个所述第三子像素和多个所述第四子像素在所述第一方向上交替排列,以形成一个所述第二子像素行,N为大于等于3的正整数,i为大于等于1,小于等于N的正整数。
例如,在本公开一实施例提供的阵列基板中,在一个所述第一子像素行中,相邻的所述第一子像素的中心和所述第二子像素的中心的连线与所述第一方向的夹角小于15度。
例如,在本公开一实施例提供的阵列基板中,在一个所述第一子像素行中,相邻的所述第一子像素的中心和所述第二子像素的中心的连线与所述第一方向的夹角小于等于10度。
例如,在本公开一实施例提供的阵列基板中,在一个所述第一子像素行中的所述多个第一子像素和所述多个第二子像素均与沿第一方向延伸的第一虚拟直线相交。
例如,在本公开一实施例提供的阵列基板中,在一个所述第一子像素行中的所述多个第一子像素和所述多个第二子像素在所述第一方向上均匀分布。
例如,在本公开一实施例提供的阵列基板中,所述第三子像素在所述第二方向上的最大尺寸与所述第三子像素在所述第一方向上的最大尺寸之比小于2。
例如,在本公开一实施例提供的阵列基板中,所述第三子像素在所述第二方向上的最大尺寸与所述第三子像素在所述第一方向上的最大尺寸之比小于1.2。
例如,在本公开一实施例提供的阵列基板中,所述第三子像素的有效发光区的形状包括第一平行边组,所述第一平行边组包括沿所述第二方向延伸的第一平行边和第二平行边,在一个所述像素组中,所述第一平行边位于所述第二平行边远离所述第四子像素的一侧,所述第一平行边的长度大于所述第二平行边的长度。
例如,在本公开一实施例提供的阵列基板中,所述第四子像素的有效发光区的形状包括第二平行边组,所述第二平行边组包括沿所述第二方向延伸的第三平行边和第四平行边,在一个所述像素组中,所述第三平行边位于所述第四平行边远离所述第三子像素的一侧,所述第三平行边的长度大于所述第四平行边的长度。
例如,在本公开一实施例提供的阵列基板中,所述第三子像素的有效发光区的形状包括在所述第二方向上距离最大的第一顶点和第二顶点,所述第三子像素的有效发光区的形状被所述第一顶点和所述第二顶点的连线划分为第一部分和第二部分,在一个所述像素组中,所述第一部分位于所述第二部分远离所述第四子像素的一侧,所述第一部分在所述第二方向上的平均尺寸大于所述第二部分在所述第二方向上的平均尺寸。
例如,在本公开一实施例提供的阵列基板中,所述第四子像素的有效发光区的形状包 括在所述第二方向上距离最大的第三顶点和第四顶点,所述第四子像素的有效发光区的形状被所述第三顶点和所述第四顶点的连线划分为第三部分和第四部分,在一个所述像素组中,所述第三部分位于所述第四部分远离所述第三子像素的一侧,所述第三部分在所述第二方向上的平均尺寸大于所述第四部分在所述第二方向上的平均尺寸。
例如,在本公开一实施例提供的阵列基板中,第i个所述像素组行中的所述第三子像素的有效发光区与第i+1个所述像素组行中的所述第四子像素的有效发光区的最短距离D1小于同一像素组中所述第一子像素的有效发光区与所述第三子像素的有效发光区的最短距离的2倍。
例如,在本公开一实施例提供的阵列基板中,第i个所述像素组行中的所述第三子像素的有效发光区与第i+1个所述像素组行中的所述第四子像素的有效发光区的最短距离D1小于同一像素组中所述第一子像素的有效发光区与所述第三子像素的有效发光区的最短距离的1.5倍。
例如,在本公开一实施例提供的阵列基板中,第i个所述像素组行中的所述第四子像素的有效发光区与第i+1个所述像素组行中的所述第三子像素的有效发光区的最短距离D2小于同一像素组中所述第一子像素的有效发光区与所述第四子像素的有效发光区的最短距离的2倍。
例如,在本公开一实施例提供的阵列基板中,第i个所述像素组行中的所述第四子像素的有效发光区与第i+1个所述像素组行中的所述第三子像素的有效发光区的最短距离D2小于同一像素组中所述第一子像素的有效发光区与所述第四子像素的有效发光区的最短距离的1.5倍。
例如,在本公开一实施例提供的阵列基板中,第i个所述像素组行中一个所述像素组中的所述第一子像素至少部分位于第i+1个所述像素组行中两个相邻的所述像素组之间。
例如,在本公开一实施例提供的阵列基板中,第i个所述像素组行与第i+2个所述像素组行在第一方向上对齐,第i个所述像素组行中的一个所述第一子像素和第i+2个所述像素组行中的一个所述第二子像素形成子像素对,在所述子像素对中,所述第一子像素的中心与所述第二子像素的中心的第三连线与所述第二方向平行。
例如,在本公开一实施例提供的阵列基板中,所述子像素对中的所述第一子像素的有效发光区和所述第二子像素的有效发光区在第二方向上的最远距离大于所述第三子像素在所述第二方向上的尺寸和所述第四子像素在所述第二方向上的尺寸。
例如,在本公开一实施例提供的阵列基板中,所述子像素对中的所述第一子像素的发光层和所述第二子像素的发光层集成为同一发光层。
例如,本公开一实施例提供的阵列基板还包括:隔垫物,位于所述第一子像素行中相邻的第一子像素和所述第二子像素之间。
例如,在本公开一实施例提供的阵列基板中,所述多个第二子像素行的数量为K,所述隔垫物还位于第j个所述第二子像素行中的所述第三子像素和第j+1个所述第二子像素行 中的所述第四子像素之间,或者,所述隔垫物还位于第j个所述第二子像素行中的所述第四子像素和第j+1个所述第二子像素行中的所述第三子像素之间,K为大于等于3的正整数,j为大于等于1,小于等于K的正整数。
本公开至少一个实施例还提供一种显示装置,其包括上述任一项所述的阵列基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种阵列基板的示意图;
图1B为一种阵列基板中一个子像素列的示意图;
图2A为本公开一实施例提供的一种阵列基板的示意图;
图2B为本公开一实施例提供的一种阵列基板中一个子像素行的显示效果示意图;
图3A为本公开一实施例提供的一种阵列基板的局部示意图;
图3B为本公开一实施例提供的一种阵列基板沿图3A中AB方向的剖面示意图;
图4为本公开一实施例提供的另一种阵列基板的示意图;
图5为本公开一实施例提供的另一种阵列基板的示意图;
图6为本公开一实施例提供的另一种阵列基板的示意图;
图7为本公开一实施例提供的另一种阵列基板的示意图;以及
图8为本公开一实施例提供的一种显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
通常,可通过减小像素的尺寸和减小像素间的间距来提高显示装置的分辨率。然而,像素的尺寸和像素间的间距的减少对制作工艺的精度要求也越来越高,从而会导致显示装置的制作工艺的难度和制作成本的增加。另一方面,子像素渲染(Sup-Pixel Rendering,SPR)技术可以利用人眼对不同色彩子像素的分辨率的差异,改变常规的红、绿、蓝三色子像素 简单定义一个像素的模式,通过不同的像素间共享某些位置分辨率不敏感颜色的子像素,用相对较少的子像素数,模拟实现相同的像素分辨率表现能力,从而降低制作工艺的难度和制作成本。然而,采用子像素渲染(SPR)技术的像素排列结构会对显示品质产生一些不利影响,例如,显示画面有颗粒感、波动感,显示画面中的线条不连续等。
图1A为一种阵列基板的示意图;图1B为一种阵列基板中一个子像素列的示意图。如图1A所示,该阵列基板10包括第一子像素11、第二子像素12和第三子像素13。第一子像素11发出的光的颜色可为人眼敏感的颜色,也就是说,人眼在进行视觉合成的时候,第一子像素11发出的光的颜色所占的比重更高。如图1B所示,在第一子像素11沿第一方向形成的子像素行20中,相邻的第一子像素11在第二方向上的位置差异较大,即相邻的第一子像素11的中心在第二方向上距离较大;因此,在该阵列基板用于直线时,人眼视觉中的直线的“波动感”获“锯齿感”较强,使得显示画面的品质降低。
对此,本公开实施例提供一种阵列基板和显示装置。该阵列基板包括多个像素组,各像素组包括一个第一子像素、一个第二子像素、一个第三子像素和一个第四子像素;在各像素组中,第一子像素的中心和第二子像素的中心的第一连线与第三子像素的中心和第四子像素的中心的第二连线相交;多个像素组沿第一方向排列形成N个像素组行,N个像素组行在第二方向上排列,相邻的两个像素组行在第一方向上错位设置;第i个像素组行中的多个第一子像素和第i+1个像素组行中的多个第二子像素在第一方向上交替排列,以形成子像素行,在一个子像素行中,相邻的第一子像素中心和第二子像素的中心的连线与第一方向的夹角小于20度,N为大于等于3的正整数,i为大于等于1,小于等于N的正整数。在该阵列基板中,第一子像素和第二子像素可为发出同一颜色的光的子像素,并且该颜色可为人眼敏感的子像素。由于该子像素行中相邻的第一子像素中心和第二子像素的中心的连线与第一方向的夹角小于20度,因此该子像素行的波动感更小,人眼视觉上更接近一条直线,从而可减轻甚至消除显示画面的“波动感”或“锯齿感”,并使得显示画面的线条更加连续,自然。
下面,结合附图对本公开实施例提供的阵列基板和显示装置进行详细的说明。
本公开一实施例提供一种阵列基板。图2A为本公开一实施例提供的一种阵列基板的示意图。图2B为本公开一实施例提供的一种阵列基板中一个子像素行的显示效果示意图。
如图2A和2B所示,该阵列基板100包括多个第一子像素行310和多个第二子像素行320;各第一子像素行310包括在第一方向上交替排列的多个第一子像素121和多个第二子像素122;各第二子像素行320包括在第一方向上交替排列的多个第三子像素123和多个第四子像素124;多个第一子像素行310和多个第二子像素行320沿第二方向交替排列。第二方向与第一方向相交,例如,第二方向与第一方向相互垂直。需要说明的是,上述的“第二方向与第一方向相互垂直”包括第一方向和第二方向严格相互垂直,即第一方向和第二方向之间的夹角为90度的情况,也包括第一方向和第二方向大致相互垂直,即第一方向和第二方向之间的夹角在80-100度的范围的情况。
如图2A和2B所示,在第一子像素行310中,相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角小于20度。
在本公开实施例提供的阵列基板中,第一子像素121和第二子像素122可为发同样颜色光的子像素,并且该颜色可为人眼敏感的子像素。由于该第一子像素行310中相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ小于20度,因此该第一子像素行310的波动感更小,在人眼视觉中更接近一条直线,从而可减轻甚至消除显示画面的“波动感”或“锯齿感”,并使得显示画面的线条更加连续,自然。
在一些示例中,如图2A所示,该阵列基板100包括衬底基板110和位于衬底基板110上的多个像素组120;各像素组120包括一个第一子像素121、一个第二子像素122、一个第三子像素123和一个第四子像素124。在各像素组120中,第一子像素121的中心和第二子像素122的中心的第一连线CL1与第三子像素123的中心和第四子像素124的中心的第二连线CL2相交。需要说明的是,在该像素组120中,第一子像素121和第二子像素122可为发同样颜色光的子像素;另外,第一子像素121和第二子像素122的形状也可相同,第一子像素121和第二子像素122之间的区别在于它们的位置不同。另外,上述的“中心”是指子像素有效发光区域的亮度中心或者几何中心。
如图2A所示,多个像素组120沿第一方向排列形成N个像素组行210;N个像素组行210在第二方向上排列,相邻的两个像素组行210在第一方向上错位设置,也就是说,相邻的两个像素组行210中同样序数的像素组在沿第一方向上延伸的参考直线上的正投影的中心不重叠。因此,相邻的两个像素组行210在第二方向上可以设置的更近,更紧密,从而可提高像素密度或分辨率。
如图2A和图2B所示,第i个像素组行210中的多个第一子像素121和第i+1个像素组行210中的多个第二子像素122在第一方向上交替排列,以形成上述第一子像素行310;并且,在一个第一子像素行310中,相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ小于20度,N为大于等于3的正整数,i为大于等于1,小于等于N的正整数。
在本公开实施例提供的阵列基板中,第一子像素121和第二子像素122可为发同样颜色光的子像素,并且该颜色可为人眼敏感的子像素。由于该第一子像素行310中相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ小于20度,因此该第一子像素行310的波动感更小,在人眼视觉中更接近一条直线,从而可减轻甚至消除显示画面的“波动感”或“锯齿感”,并使得显示画面的线条更加连续,自然。
另外,在一个像素组120中,可采用子像素渲染(Sup-Pixel Rendering,SPR)技术使得第一子像素121和第二子像素122分别借用第三子像素123和第四子像素124,以模拟形成两个像素,从而可提高像素分辨率,并降低制作工艺的难度和制作成本。
例如,第i个所述像素组行210中的多个第三子像素123和多个第四子像素124在第一方向上交替排列,以形成一个第二子像素行320。
在一些示例中,第一子像素被配置为发第一颜色的光,第二子像素被配置为发第二颜色的光,第一颜色和第二颜色相同。例如,第一子像素121和第二子像素122被配置为发绿光,即第一颜色和第二颜色均为绿色。需要说明的是,绿光为人眼敏感的光,因此在人眼视觉中,像素的亮度中心会靠近绿色子像素的亮度中心。
在一些示例中,第三子像素被配置为发第三颜色的光,第四子像素被配置为发第四颜色的光,第三颜色、第四颜色和第一颜色互不相同,第三子像素的发光效率大于第四子像素的发光效率。例如,第一颜色和第二颜色为绿色,第三颜色为红色,第四颜色为蓝色。当然,本公开实施例包括但不限于此。
在一些示例中,如图2A所示,进一步地,在一个第一子像素行310中,相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ小于15度。由于该第一子像素行310中相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角小于15度,因此该第一子像素行310的波动感可以进一步减小,从而可进一步减轻甚至消除显示画面的“波动感”或“锯齿感”。
在一些示例中,如图2A所示,在一个第一子像素行310中,相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ的范围在9-11度,例如10度。由此,该阵列基板可通过改变第三子像素和第四子像素的长宽比来使得连线CL与第一方向的夹角更小,从而进一步减轻甚至消除显示画面的“波动感”或“锯齿感”。
在一些示例中,如图2A和图2B所示,在第一子像素行310中相邻的第一子像素121和第二子像素122的朝向不同,即第一子像素121在衬底基板110上的正投影的形状旋转一定角度(例如180度)之后与第二子像素122在衬底基板110上的正投影的形状完全相同。
在一些示例中,如图2A和图2B所示,第一子像素121在衬底基板110上的正投影的形状包括第一突出部1211,第二子像素122在衬底基板110上的正投影的形状包括第二突出部1221,第一突出部1211和第二突出部1221的朝向相反。
在一些示例中,如图2A和图2B所示,第一子像素121在衬底基板110上的正投影的形状还包括与第一突出部1211相对设置的第一底边1212,第二子像素122在衬底基板110上的正投影的形状包括与第二突出部1221相对设置的第二底边1222,第一底边1212和第二底边1222不位于同一直线上。
在一些示例中,如图2A和图2B所示,在第一子像素行310中相邻的第一子像素121和第二子像素122靠近同一第二子像素行的边缘不平齐(例如图2A中的下边缘是不平齐的)。
在一些示例中,如图2A和图2B所示,在一个第一子像素行310中的多个第一子像素121和多个第二子像素122均与沿第一方向延伸的第一虚拟直线相交。也就是说,沿第一方向延伸的第一虚拟直线同时穿过在一个第一子像素行310中的多个第一子像素121和多个第二子像素122。由此,在一个第一子像素行中的多个第一子像素121和多个第二子像素 122在人眼视觉中更接近一条直线,从而可使得该第一子像素行310的波动感可以进一步减小,从而可进一步减轻甚至消除显示画面的“波动感”或“锯齿感”。
在一些示例中,如图2A和图2B所示,在一个第一子像素行310中的多个第一子像素121和多个第二子像素122在第一方向上均匀分布,从而可提高该阵列基板的显示品质。
在一些示例中,如图2A所示,在同一像素组行120之中,所有的第一子像素121的中心可位于同一直线上;所有的第二子像素121的中心可位于同一直线上;所有的第三子像素123的中心可位于同一直线上;所有的第四子像素124的中心可位于同一直线上。
在一些示例中,如图2A所示,在各像素组120中,第一子像素121和第三子像素123之间不设置其他子像素,第一子像素121和第四子像素124之间不设置其他子像素;同样的,第二子像素122和第三子像素123之间不设置其他子像素,第二子像素122和第四子像素124之间不设置其他子像素。
在一些示例中,如图2A所示,该阵列基板100还包括:子像素间隔170,设置在相邻的两个子像素之间,子像素可为上述的第一子像素121、第二子像素122、第三子像素123和第四子像素中的任意一种;各像素组120仅包括被子像素间隔170分隔开的四个子像素。
在一些示例中,如图2A所示,该阵列基板100还包括隔垫物250,隔垫物250可在该阵列基板的制作过程中用于支撑用于形成上述的第一子像素、第二子像素、第三子像素和第四子像素的掩膜板(例如,精细金属掩膜板)。隔垫物250位于第一子像素行310中相邻的第一子像121素和第二子像素122之间。
在本公开实施例提供的阵列基板中,由于第一子像素行310中相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ减小了,即相邻的第一子像素121和第二子像素122在第二方向上的距离减小了,因此第三子像素和第四子像素的长宽比降低,从而会在相邻的第一子像素121和第二子像素122之间留下空白区域。该阵列基板可利用该空白区域来设置隔垫物,从而可避免隔垫物在制作过程中与掩膜板的开口边缘发生摩擦而产生颗粒物(Particle),进而可避免颗粒物对显示品质造成不利影响。
在一些示例中,如图2A所示,多个第二子像素行320的数量为K,隔垫物还位于第j个第二子像素行中的第三子像素和第j+1个第二子像素行中的第四子像素之间,或者,隔垫物还位于第j个第二子像素行中的第四子像素和第j+1个第二子像素行中的第三子像素之间,K为大于等于3的正整数,j为大于等于1,小于等于K的正整数。在一些示例中,如图2A所示,该阵列基板100包括多个隔垫物250,多个隔垫物250的中心连线可形成矩形网格或者菱形网格。
在一些示例中,如图2A所示,在第二子像素行320中所有的第三子像素123和第四子像素124的中心可位于沿第一方向延伸的虚拟直线上,从而可提高显示对称性。
图3A为本公开一实施例提供的一种阵列基板的局部示意图;图3B为本公开一实施例提供的一种阵列基板沿图3A中AB方向的剖面示意图。
在一些示例中,如图2A和图3A所示,第三子像素123在第二方向上的尺寸与第三子 像素123在第一方向上的尺寸之比小于3.5。由此,通过降低第三子像素123的长宽比,可使得第一子像素行310中相邻的第一子像素121的中心和第二子像素122的中心设置得更近,例如使得相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角小于15度。另一方面,通过将第三子像素123在第二方向上的尺寸与第三子像素123在第一方向上的尺寸之比设置为小于3.5,还可利于提高像素组的显示对称性。需要说明的是,上述的第三子像素的尺寸可为第三子像素的有效发光区的尺寸。
在一些示例中,如图2A和图3A所示,第三子像素123在第二方向上的尺寸与第三子像素123在第一方向上的尺寸之比小于2。由此,通过降低第三子像素123的长宽比,可使得第一子像素行310中相邻的第一子像素121的中心和第二子像素122的中心设置得更近,例如使得相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角小于15度。另一方面,通过将第三子像素123在第二方向上的尺寸与第三子像素123在第一方向上的尺寸之比设置为小于2,还可利于提高像素组的显示对称性。需要说明的是,上述的第三子像素的尺寸可为第三子像素的有效发光区的尺寸。
在一些示例中,如图2A和图3A所示,第三子像素123在第二方向上的尺寸与第三子像素123在第一方向上的尺寸之比小于1.2。由此,该阵列基板可进一步使得第一子像素行中相邻的第一子像素的中心和第二子像素的中心设置得更近,并且还可利于提高像素组的显示对称性。
在一些示例中,如图2A和图3A所示,第i个像素组行210中一个像素组120中的第一子像素121至少部分位于第i+1个像素组行210中两个相邻的像素组120之间,例如,位于相邻的第三子像素123和第四子像素124之间。也就是说,第i个像素组行210在沿第二方向延伸的参考直线上的正投影与第i+1个像素组行210在沿第二方向延伸的参考直线上的正投影部分交叠。由此,该阵列基板可将相邻的两个像素组行210设置得更紧密,从而可提高像素密度和开口率。
例如,如图2A和图3A所示,第i个像素组行210中一个像素组120中的第一子像素121在沿第二方向延伸的参考直线上的正投影与第i+1个像素组行210中两个相邻的像素组120在沿第二方向延伸的参考直线上的正投影至少部分重叠;第i个像素组行210中一个像素组120中的第一子像素121在沿第二方向延伸的参考直线上的正投影与第i+1个像素组行210中两个相邻的第三子像素123和第四子像素124在沿第二方向延伸的参考直线上的正投影至少部分重叠。
在一些示例中,如图2A和图3A所示,第i个像素组行210与第i+2个像素组行210在第一方向上对齐,第i个像素组行210中的一个第一子像素121和第i+2个像素组行210中的一个第二子像素122形成子像素对125,在子像素对125中,第一子像素121的中心与第二子像素122的中心的第三连线CL3与第二方向平行。由此,该阵列基板具有较好的显示品质。
在一些示例中,如图2A和图3A所示,子像素对125中的第一子像素121的有效发光 区和第二子像素122的有效发光区在第二方向上的最远距离大于第三子像素123在第二方向上的尺寸和第四子像素124在第二方向上的尺寸。
在一些示例中,如图3B所示,该阵列基板100还包括位于衬底基板110上的第一颜色像素电极141、第二颜色像素电极142、第三颜色像素电极143和第四颜色像素电极144;位于第一颜色像素电极141、第二颜色像素电极142、第三颜色像素电极143和第四颜色像素电极144远离衬底基板110的一侧的像素限定层150;以及位于像素限定层150远离衬底基板110的一侧的第一颜色发光层161、第二颜色发光层162、第三颜色发光层163和第四颜色发光层164。像素限定层150包括第一开口151、第二开口152、第三开口153和第四开口154,第一开口151暴露第一颜色像素电极141,第二开口152暴露第二颜色像素电极142,第三开口153暴露第三颜色像素电极143,第四开口154暴露第四颜色像素电极144;第一颜色发光层161通过第一开口151与第一颜色像素电极141被第一开口151暴露的部分接触设置;第二颜色发光层162通过第二开口152与第二颜色像素电极142被第二开口152暴露的部分接触设置;第三颜色发光层163通过第三开口153与第三颜色像素电极143被第三开口153暴露的部分接触设置;第四颜色发光层164通过第四开口154与第四颜色像素电极144被第四开口154暴露的部分接触设置。此时,第一子像素121的有效发光区的形状和尺寸被第一开口151限定,第二子像素122的有效发光区的形状和尺寸被第二开口152限定,第三子像素123的有效发光区的形状和尺寸被第三开口153限定,第四子像素124的有效发光区的形状和尺寸被第四开口154限定。
例如,第一颜色像素电极141被配置为驱动第一颜色发光层161发第一颜色的光;第二颜色像素电极142被配置为驱动第二颜色发光层162发第二颜色的光;第三颜色像素电极143被配置为驱动第三颜色发光层163发第三颜色的光;第四颜色像素电极144被配置为驱动第四颜色发光层164发第四颜色的光。
例如,第一颜色和第二颜色均为绿色,第三颜色为红色,第四颜色为蓝色。当然,本公开实施例包括但不限于此。
在一些示例中,如图3A所示,子像素对125中的第一子像素121的第一颜色发光层161和第二子像素122的第二颜色发光层162集成为同一发光层。也就是说,子像素对125中的第一子像素121的第一颜色发光层161和第二子像素122的第二颜色发光层162可通过同一精细掩模板(FMM)的同一开口形成。
例如,如图3A所示,第一子像素121和第二子像素122可被配置为发相同颜色的光。然而,由于同一像素组120中的第三子像素123与第四子像素124的距离较近,因此同一像素组120中的第一子像素121的第一颜色发光层161和第二子像素122的第二颜色发光层162可不集成在一起。相反,125中的第一子像素121的第一颜色发光层161和第二子像素122的第二颜色发光层162可集成为同一发光层。
在一些示例中,如图3A和图3B所示,第一子像素121可包括上述的第一颜色像素电极141以及设置在第一颜色像素电极141上的第一颜色发光层161;第二子像素122包括第 二颜色像素电极142以及设置在第二颜色像素电极142上的第二颜色发光层162;第三子像素123包括第三颜色像素电极143以及设置在第三颜色像素电极143上的第三颜色发光层163;第四子像素124包括第四颜色像素电极144以及设置在第四颜色像素电极144上的第四颜色发光层164。需要说明的是,上述的各个发光层可仅包括直接进行发光的发光层,也可包括电子传输层、电子注入层、空穴传输层、空穴注入层等辅助功能膜层。
需要说明的是,上述的第一子像素、第二子像素、第三子像素和第四子像素的形状和尺寸可为第一子像素、第二子像素、第三子像素和第四子像素的有效发光区域的形状和尺寸,其可以被上述的第一过孔、第二过孔、第三过孔和第四过孔限定。因此,第一颜色像素电极、第二颜色像素电极、第三颜色像素电极和第四颜色像素电极的形状可与上述的第一子像素、第二子像素、第三子像素和第四子像素的形状不同。当然,本公开实施例包括但不限于此,第一颜色像素电极、第二颜色像素电极、第三颜色像素电极和第四颜色像素电极的形状也可与上述的第一子像素、第二子像素、第三子像素和第四子像素的形状相同。
另一方面,第一颜色发光层、第二颜色发光层、第三颜色发光层和第四颜色发光层的具体形状可根据制备工艺进行设置,本公开实施例在此不作限制。例如,第一颜色发光层的形状可由制备工艺中的掩模板开孔的形状决定。
在一些示例中,如图3B所示,第一颜色像素电极141的尺寸大于第一开口151的尺寸,第二颜色像素电极142的尺寸大于第二开口152的尺寸,第三颜色像素电极143的尺寸大于第三开口153的尺寸,第四颜色像素电极144的尺寸大于第四开口154的尺寸。并且,第一颜色像素电极141超出第一开口151的距离、第二颜色像素电极142超出第二开口152的距离、第三颜色像素电极143超出第三开口153的距离大致相等和第四颜色像素电极144超出第四开口154的距离大致相等。也就是说,第一颜色像素电极141的边缘与第一开口151的边缘的最短距离、第二颜色像素电极142的边缘与第二开口152的边缘的最短距离、第三颜色像素电极143的边缘和第三开口153的边缘的最短距离和第四颜色像素电极144的边缘和第四开口154的边缘的最短距离大致相等。
图4为本公开一实施例提供的另一种阵列基板的示意图;图5为本公开一实施例提供的另一种阵列基板的示意图。
在一些示例中,如图4和图5所示,第一子像素121的有效发光区的形状和第二子像素122的有效发光区的形状可均为对称多边形,当然,本公开实施例包括但不限于此。
在一些实例中,如图4和图5所示,第三子像素123的有效发光区形状和第四子像素124的有效发光区的形状可为非中心对称多边形,从而可充分地利用阵列基板的面积,从而提高开口率。
例如,上述的第一子像素121的有效发光区的形状、第二子像素122的有效发光区的形状和第三子像素123的有效发光区的形状中的每个的边的数量大于5。
在一些示例中,如图4所示,第三子像素123的有效发光区的形状包括第一平行边组410,第一平行边组410包括沿第二方向延伸的第一平行边411和第二平行边412;在一个 像素组120中,第一平行边411位于第二平行边412远离第四子像素124的一侧,第一平行边411的长度大于第二平行边412的长度。在一个像素组120中,第一子像素121和第二子像素122的中心连线CL1位于第三子像素123的中心和第四子像素124的中心之间,因此第三子像素123的有效发光区和第四子像素124的有效发光区远离中心连线CL1的一侧具有较大的空间。因此,通过将第一平行边的长度设置为大于第二平行边的长度,一方面可增加第三子像素的有效发光区的面积,另一方面可提高空间利用率和开口率。需要说明的是,上述的开口率可为阵列基板中各个子像素的有效发光区的面积之和与阵列基板的面积的比值。
在一些示例中,如图4和图5所示,第四子像素124的有效发光区的形状包括第二平行边组420,第二平行边组420包括沿第二方向延伸的第三平行边421和第四平行边422;在一个像素组120中,第三平行边421位于第四平行边422远离第三子像素123的一侧,第三平行边421的长度大于第四平行边422的长度。在一个像素组120中,第一子像素121和第二子像素122的中心连线CL1位于第三子像素123的中心和第四子像素124的中心之间,因此第三子像素123的有效发光区和第四子像素124的有效发光区远离中心连线CL1的一侧具有较大的空间。因此,通过将第三平行边的长度大于第四平行边的长度,一方面可增加第四子像素的有效发光区的面积,另一方面可提高空间利用率和开口率。
值得注意的是,在采用精细金属掩膜(Fine Metal Mask,FMM)制作上述的阵列基板时,上述的第一平行边、第二平行边、第三平行边和第四平行边的延伸方向相同,并且该延伸方向可为精细金属掩膜(FMM)的拉伸方向,从而可有利于精细金属掩膜(FMM)张网力的传递,进而可提高产品良率。
在一些示例中,如图4所示,第三子像素123的有效发光区的形状包括在第二方向上距离最大的第一顶点P1和第二顶点P2,第三子像素123的有效发光区的形状被第一顶点P1和第二顶点P2的连线划分为第一部分1231和第二部分1232;在一个像素组120中,第一部分1231位于第二部分1232远离第四子像素124的一侧,第一部分1231在第二方向上的平均尺寸大于第二部分1232在第二方向上的平均尺寸。在一个像素组120中,第一子像素121和第二子像素122的中心连线CL1位于第三子像素123的中心和第四子像素124的中心之间,因此第三子像素123的有效发光区和第四子像素124的有效发光区远离中心连线CL1的一侧具有较大的空间。因此,通过将第一部分在第二方向上的尺寸设置为大于第二部分在第二方向上的尺寸,一方面可增加第三子像素的有效发光区的面积,另一方面可提高空间利用率和开口率。需要说明的是,上述的“平均尺寸”可为第一部分或第二部分在第二方向上加权平均尺寸。
在一些示例中,如图4和图5所示,第四子像素124的有效发光区的形状包括在第二方向上距离最大的第三顶点P3和第四顶点P4,第四子像素124的有效发光区的形状被第三顶点P3和第四顶点P4的连线划分为第三部分1243和第四部分1244;在一个像素组120中,第三部分1243位于第四部分1244远离第三子像素123的一侧,第三部分1243在第二 方向上的平均尺寸大于第四部分1244在第二方向上的平均尺寸。在一个像素组120中,第一子像素121和第二子像素122的中心连线CL1位于第三子像素123的中心和第四子像素124的中心之间,因此第三子像素123的有效发光区和第四子像素124的有效发光区远离中心连线CL1的一侧具有较大的空间。因此,通过将第三部分在第二方向上的尺寸设置为大于第四部分在第二方向上的尺寸,一方面可增加第四子像素的有效发光区的面积,另一方面可提高空间利用率和开口率。
在一些示例中,如图5所示,由于第四子像素124的发光效率降低,寿命也较低,因此可仅将第四子像素124的有效发光区向外扩展,以增加第四子像素的有效发光区的面积。此时,第三子像素123的有效发光区仍然可采用对称的形状。
在一些示例中,第三子像素123的发光效率大于第四子像素124的发光效率,此时第四子像素124的有效发光区的面积大于第三子像素123的有效发光区的面积。由于发光器件结构设计和材料体系的不同,发不同颜色的光的子像素的寿命存在差异。因此,通过将第四子像素的有效发光区的面积设置为大于第三子像素的有效发光区的面积,可以平衡上述的寿命差异,提高阵列基板的整体寿命。
在一些示例中,如图4和图5所示,第i个像素组行210中的第三子像素123的有效发光区与第i+1个像素组行210中的第四子像素124的有效发光区的最短距离D1小于同一像素组120中第一子像素121的有效发光区与第三子像素123的有效发光区的最短距离的2倍。在通常的阵列基板中,第i个像素组行中的第三子像素的有效发光区与第i+1个像素组行中的第四子像素的有效发光区的最短距离较大,该示例提供的阵列基板通过将上述的最短距离D1设置为小于同一像素组中第一子像素的有效发光区与第三子像素的有效发光区的最短距离的2倍,从而可增大第三子像素的面积,并提高开口率。
在一些示例中,如图4和图5所示,第i个像素组行210中的第三子像素123的有效发光区与第i+1个像素组行210中的第四子像素124的有效发光区的最短距离D1小于同一像素组120中第一子像素121的有效发光区与第三子像素123的有效发光区的最短距离的1.5倍。由此,该阵列基板可进一步增加第三子像素的面积,并提高开口率。
在一些示例中,如图5所示,第i个像素组行210中的第四子像素124的有效发光区与第i+1个像素组行210中的第三子像素123的有效发光区的最短距离D2小于同一像素组120中第一子像素121的有效发光区与第四子像素124的有效发光区的最短距离的2倍。在通常的阵列基板中,第i个像素组行中的第四子像素的有效发光区与第i+1个像素组行中的第三子像素的有效发光区的最短距离较大,该示例提供的阵列基板通过将上述的最短距离D2设置为小于同一像素组中第一子像素的有效发光区与第四子像素的有效发光区的最短距离的2倍,从而可增大第四子像素的面积,并提高开口率。
在一些示例中,如图5所示,第i个像素组行210中的第四子像素124的有效发光区与第i+1个像素组行210中的第三子像素123的有效发光区的最短距离D2小于同一像素组120中第一子像素121的有效发光区与第四子像素124的有效发光区的最短距离的1.5倍。由此, 该阵列基板可进一步增加第三子像素的面积,并提高开口率。
在一些示例中,如图5所示,第四子像素124的有效发光区的边缘可包括曲线。
在一些示例中,如图4和图5所示,第i个像素组行210中一个像素组120中的第一子像素121至少部分位于第i+1个像素组行210中两个相邻的像素组120之间,例如,位于相邻的第三子像素123和第四子像素124之间。由此,该阵列基板可将相邻的两个像素组行210设置得更紧密,从而可提高像素密度和开口率。
图6为本公开一实施例提供的另一种阵列基板的示意图;图7为本公开一实施例提供的另一种阵列基板的示意图。
如图6和图7所示,该阵列基板100包括衬底基板110和位于衬底基板110上的多个像素组120;各像素组120包括一个第一子像素121、一个第二子像素122、一个第三子像素123和一个第四子像素124。在各像素组120中,第一子像素121的中心和第二子像素122的中心的第一连线CL1与第三子像素123的中心和第四子像素124的中心的第二连线CL2相交。需要说明的是,在该像素组120中,第一子像素121和第二子像素122可为发同样颜色光的子像素;另外,第一子像素121和第二子像素122的形状也可相同,第一子像素121和第二子像素122之间的区别在于它们的位置不同。另外,上述的“中心”是指子像素有效发光区域的亮度中心或者几何中心。
如图6和图7所示,多个像素组120沿第一方向排列形成N个像素组行210;N个像素组行210在第二方向上排列,相邻的两个像素组行210在第一方向上错位设置,也就是说,相邻的两个像素组行210中同样序数的像素组在沿第一方向上延伸的参考直线上的正投影的中心不重叠。因此,相邻的两个像素组行210在第二方向上可以设置的更近,更紧密,从而可提高像素密度或分辨率。
如图6和图7所示,第i个像素组行210中的多个第一子像素121和第i+1个像素组行210中的多个第二子像素122在第一方向上交替排列,以形成第一子像素行310;并且,在一个第一子像素行310中,相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ小于等于10度,N为大于等于3的正整数,i为大于等于1,小于等于N的正整数。
在本公开实施例提供的阵列基板中,第一子像素121和第二子像素122可为发同样颜色光的子像素,并且该颜色可为人眼敏感的子像素。由于该第一子像素行310中相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ小于等于10度,因此该第一子像素行310的波动感更小,在人眼视觉中更接近一条直线,从而可减轻甚至消除显示画面的“波动感”或“锯齿感”,并使得显示画面的线条更加连续,自然。
例如,在一个第一子像素行310中,相邻的第一子像素121的中心和第二子像素122的中心的连线CL与第一方向的夹角θ等于0度;也就是说,在一个第一子像素行310中所有的第一子像素121的中心和第二子像素122的中心可位于同一直线上,且该直线平行于第一方向。因此,该阵列基板可消除该第一子像素行310的波动感,从而消除显示画面的 “波动感”或“锯齿感”。
在一些示例中,如图6和图7所示,第一子像素行310可在第二方向上均匀排布,也就是说,任意两个相邻的第一子像素行310之间的距离相等,从而进一步提高该阵列基板的像素排布的均匀度和对称性,从而可进一步提高显示品质。
在一些示例中,如图7所示,由于第四子像素124的发光效率降低,寿命也较低,因此可将第四子像素124的有效发光区向外扩展,以增加第四子像素的有效发光区的面积。
例如,如图7所示,第四子像素124的有效发光区的形状包括第二平行边组420,第二平行边组420包括沿第二方向延伸的第三平行边421和第四平行边422;在一个像素组120中,第三平行边421位于第四平行边422远离第三子像素123的一侧,第三平行边421的长度大于第四平行边422的长度。在一个像素组120中,第一子像素121和第二子像素122的中心连线CL1位于第三子像素123的中心和第四子像素124的中心之间,因此第三子像素123的有效发光区和第四子像素124的有效发光区远离中心连线CL1的一侧具有较大的空间。因此,通过将第三平行边的长度大于第四平行边的长度,一方面可增加第四子像素的有效发光区的面积,另一方面可提高空间利用率和开口率。
在一些示例中,第三子像素123的发光效率大于第四子像素124的发光效率,此时第四子像素124的有效发光区的面积大于第三子像素123的有效发光区的面积。由于发光器件结构设计和材料体系的不同,发不同颜色的光的子像素的寿命存在差异。因此,通过将第四子像素的有效发光区的面积设置为大于第三子像素的有效发光区的面积,可以平衡上述的寿命差异,提高阵列基板的整体寿命。
本公开至少一个实施例还提供一种显示装置。图8为本公开一实施例提供的一种显示装置的示意图。如图8所示,该显示装置500包括上述的阵列基板100。由于该阵列基板通过将第一子像素行中相邻的第一子像素中心和第二子像素的中心的连线与第一方向的夹角小于20度,可该第一子像素行的波动感更小,人眼视觉上更接近一条直线,从而可减轻甚至消除显示画面的“波动感”或“锯齿感”,因此该显示装置可在具有较高分辨率的同时,具有较高的显示品质。
例如,在一些示例中,该显示装置可以为智能手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种阵列基板,包括:
    多个第一子像素行,各所述第一子像素行包括在第一方向上交替排列的多个第一子像素和多个第二子像素;以及
    多个第二子像素行,各所述第二子像素行包括在所述第一方向上交替排列的多个第三子像素和多个第四子像素;
    其中,所述多个第一子像素行和所述多个第二子像素行沿第二方向交替排列,所述第二方向与所述第一方向相交,
    在所述第一子像素行中,相邻的所述第一子像素的中心和所述第二子像素的中心的连线与所述第一方向的夹角小于20度。
  2. 根据权利要求1所述的阵列基板,其中,所述第一子像素被配置为发第一颜色的光,所述第二子像素被配置为发第二颜色的光,所述第一颜色和所述第二颜色相同。
  3. 根据权利要求2所述的阵列基板,其中,所述第三子像素被配置为发第三颜色的光,所述第四子像素被配置为发第四颜色的光,所述第三颜色、所述第四颜色和所述第一颜色互不相同,所述第三子像素的发光效率大于所述第四子像素的发光效率。
  4. 根据权利要求1-3中任一项所述的阵列基板,还包括:
    多个像素组,各所述像素组包括一个所述第一颜色子像素、一个所述第二子像素、一个所述第三子像素和一个所述第四子像素,
    其中,在各所述像素组中,所述第一子像素的中心和所述第二子像素的中心的第一连线与所述第三子像素的中心和所述第四子像素的中心的第二连线相交,
    所述多个像素组沿所述第一方向排列形成N个像素组行,所述N个像素组行在所述第二方向上排列,相邻的两个所述像素组行在所述第一方向上错位设置,
    第i个所述像素组行中的多个所述第一子像素和第i+1个所述像素组行中的多个所述第二子像素在所述第一方向上交替排列,以形成一个所述第一子像素行,第i个所述像素组行中的多个所述第三子像素和多个所述第四子像素在所述第一方向上交替排列,以形成一个所述第二子像素行,N为大于等于3的正整数,i为大于等于1,小于等于N的正整数。
  5. 根据权利要求1-4中任一项所述的阵列基板,其中,在一个所述第一子像素行中,相邻的所述第一子像素的中心和所述第二子像素的中心的连线与所述第一方向的夹角小于15度。
  6. 根据权利要求5所述的阵列基板,其中,在一个所述第一子像素行中,相邻的所述第一子像素的中心和所述第二子像素的中心的连线与所述第一方向的夹角小于等于10度。
  7. 根据权利要求1-6中任一项所述的阵列基板,其中,在一个所述第一子像素行中的所述多个第一子像素和所述多个第二子像素均与沿第一方向延伸的第一虚拟直线相交。
  8. 根据权利要求1-7中任一项所述的阵列基板,其中,在一个所述第一子像素行中的 所述多个第一子像素和所述多个第二子像素在所述第一方向上均匀分布。
  9. 根据权利要求1-8中任一项所述的阵列基板,其中,所述第三子像素在所述第二方向上的最大尺寸与所述第三子像素在所述第一方向上的最大尺寸之比小于2。
  10. 根据权利要求9所述的阵列基板,其中,所述第三子像素在所述第二方向上的最大尺寸与所述第三子像素在所述第一方向上的最大尺寸之比小于1.2。
  11. 根据权利要求1-10中任一项所述的阵列基板,其中,所述第三子像素的有效发光区的形状包括第一平行边组,所述第一平行边组包括沿所述第二方向延伸的第一平行边和第二平行边,
    在一个所述像素组中,所述第一平行边位于所述第二平行边远离所述第四子像素的一侧,所述第一平行边的长度大于所述第二平行边的长度。
  12. 根据权利要求1-11中任一项所述的阵列基板,其中,所述第四子像素的有效发光区的形状包括第二平行边组,所述第二平行边组包括沿所述第二方向延伸的第三平行边和第四平行边,
    在一个所述像素组中,所述第三平行边位于所述第四平行边远离所述第三子像素的一侧,所述第三平行边的长度大于所述第四平行边的长度。
  13. 根据权利要求1-10中任一项所述的阵列基板,其中,所述第三子像素的有效发光区的形状包括在所述第二方向上距离最大的第一顶点和第二顶点,所述第三子像素的有效发光区的形状被所述第一顶点和所述第二顶点的连线划分为第一部分和第二部分,
    在一个所述像素组中,所述第一部分位于所述第二部分远离所述第四子像素的一侧,所述第一部分在所述第二方向上的平均尺寸大于所述第二部分在所述第二方向上的平均尺寸。
  14. 根据权利要求1-10中任一项所述的阵列基板,其中,所述第四子像素的有效发光区的形状包括在所述第二方向上距离最大的第三顶点和第四顶点,所述第四子像素的有效发光区的形状被所述第三顶点和所述第四顶点的连线划分为第三部分和第四部分,
    在一个所述像素组中,所述第三部分位于所述第四部分远离所述第三子像素的一侧,所述第三部分在所述第二方向上的平均尺寸大于所述第四部分在所述第二方向上的平均尺寸。
  15. 根据权利要求4所述的阵列基板,其中,第i个所述像素组行中的所述第三子像素的有效发光区与第i+1个所述像素组行中的所述第四子像素的有效发光区的最短距离D1小于同一像素组中所述第一子像素的有效发光区与所述第三子像素的有效发光区的最短距离的2倍。
  16. 根据权利要求15所述的阵列基板,其中,第i个所述像素组行中的所述第三子像素的有效发光区与第i+1个所述像素组行中的所述第四子像素的有效发光区的最短距离D1小于同一像素组中所述第一子像素的有效发光区与所述第三子像素的有效发光区的最短距离的1.5倍。
  17. 根据权利要求4所述的阵列基板,其中,第i个所述像素组行中的所述第四子像素的有效发光区与第i+1个所述像素组行中的所述第三子像素的有效发光区的最短距离D2小于同一像素组中所述第一子像素的有效发光区与所述第四子像素的有效发光区的最短距离的2倍。
  18. 根据权利要求17所述的阵列基板,其中,第i个所述像素组行中的所述第四子像素的有效发光区与第i+1个所述像素组行中的所述第三子像素的有效发光区的最短距离D2小于同一像素组中所述第一子像素的有效发光区与所述第四子像素的有效发光区的最短距离的1.5倍。
  19. 根据权利要求4所述的阵列基板,其中,第i个所述像素组行中一个所述像素组中的所述第一子像素至少部分位于第i+1个所述像素组行中两个相邻的所述像素组之间。
  20. 根据权利要求4所述的阵列基板,其中,第i个所述像素组行与第i+2个所述像素组行在第一方向上对齐,第i个所述像素组行中的一个所述第一子像素和第i+2个所述像素组行中的一个所述第二子像素形成子像素对,
    在所述子像素对中,所述第一子像素的中心与所述第二子像素的中心的第三连线与所述第二方向平行。
  21. 根据权利要求20所述的阵列基板,其中,所述子像素对中的所述第一子像素的有效发光区和所述第二子像素的有效发光区在第二方向上的最远距离大于所述第三子像素在所述第二方向上的尺寸和所述第四子像素在所述第二方向上的尺寸。
  22. 根据权利要求20所述的阵列基板,其中,所述子像素对中的所述第一子像素的发光层和所述第二子像素的发光层集成为同一发光层。
  23. 根据权利要求1-22中任一项所述的阵列基板,还包括:
    隔垫物,位于所述第一子像素行中相邻的第一子像素和所述第二子像素之间。
  24. 根据权利要求23所述的阵列基板,其中,所述多个第二子像素行的数量为K,
    所述隔垫物还位于第j个所述第二子像素行中的所述第三子像素和第j+1个所述第二子像素行中的所述第四子像素之间,或者,所述隔垫物还位于第j个所述第二子像素行中的所述第四子像素和第j+1个所述第二子像素行中的所述第三子像素之间,K为大于等于3的正整数,j为大于等于1,小于等于K的正整数。
  25. 一种显示装置,包括根据权利要求1-24中任一项所述的阵列基板。
PCT/CN2021/091626 2021-03-16 2021-04-30 阵列基板和显示装置 WO2022193414A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180001057.1A CN115349172A (zh) 2021-03-16 2021-04-30 阵列基板和显示装置
PCT/CN2022/081216 WO2022194215A1 (zh) 2021-03-16 2022-03-16 阵列基板和显示装置
CN202280000465.XA CN115349174B (zh) 2021-03-16 2022-03-16 阵列基板和显示装置
EP22770568.8A EP4131417A4 (en) 2021-03-16 2022-03-16 ARRAY SUBSTRATE AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/081026 2021-03-16
PCT/CN2021/081026 WO2022193121A1 (zh) 2021-03-16 2021-03-16 阵列基板和显示装置

Publications (1)

Publication Number Publication Date
WO2022193414A1 true WO2022193414A1 (zh) 2022-09-22

Family

ID=83321423

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2021/081026 WO2022193121A1 (zh) 2021-03-16 2021-03-16 阵列基板和显示装置
PCT/CN2021/091626 WO2022193414A1 (zh) 2021-03-16 2021-04-30 阵列基板和显示装置
PCT/CN2022/081216 WO2022194215A1 (zh) 2021-03-16 2022-03-16 阵列基板和显示装置
PCT/CN2022/081196 WO2022194204A1 (zh) 2021-03-16 2022-03-16 阵列基板和显示装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081026 WO2022193121A1 (zh) 2021-03-16 2021-03-16 阵列基板和显示装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/081216 WO2022194215A1 (zh) 2021-03-16 2022-03-16 阵列基板和显示装置
PCT/CN2022/081196 WO2022194204A1 (zh) 2021-03-16 2022-03-16 阵列基板和显示装置

Country Status (5)

Country Link
EP (2) EP4131416A4 (zh)
JP (1) JP2024509657A (zh)
KR (1) KR20230157288A (zh)
CN (4) CN115428161A (zh)
WO (4) WO2022193121A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269411A (zh) * 2014-09-11 2015-01-07 京东方科技集团股份有限公司 显示面板、有机发光二极管显示器和显示装置
CN107644888A (zh) * 2016-07-22 2018-01-30 京东方科技集团股份有限公司 像素排列结构、显示基板、显示装置、制作方法及掩膜版
CN207883217U (zh) * 2018-02-09 2018-09-18 京东方科技集团股份有限公司 显示基板和显示装置
CN111341817A (zh) * 2020-03-11 2020-06-26 昆山国显光电有限公司 像素排布结构、显示面板及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597655B (zh) * 2015-02-13 2017-06-27 京东方科技集团股份有限公司 一种像素排列结构、显示面板及显示装置
KR20160104804A (ko) * 2015-02-26 2016-09-06 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105552102B (zh) * 2015-12-23 2019-07-02 昆山国显光电有限公司 像素排布结构及其制造方法,显示器
CN205355055U (zh) * 2016-02-18 2016-06-29 京东方科技集团股份有限公司 一种像素排列结构、显示面板及显示装置
US11264430B2 (en) * 2016-02-18 2022-03-01 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel arrangement structure with misaligned repeating units, display substrate, display apparatus and method of fabrication thereof
CN107968103B (zh) * 2016-10-20 2020-03-17 昆山国显光电有限公司 像素结构及其制造方法、显示装置
CN106298865B (zh) * 2016-11-16 2019-10-18 京东方科技集团股份有限公司 像素排列结构、有机电致发光器件、显示装置、掩模板
CN114994973B (zh) * 2018-02-09 2023-04-28 京东方科技集团股份有限公司 显示基板和显示装置
CN208077981U (zh) * 2018-02-09 2018-11-09 京东方科技集团股份有限公司 像素排布结构、显示面板、高精度金属掩模板及显示装置
KR20200115944A (ko) * 2019-03-29 2020-10-08 삼성디스플레이 주식회사 유기발광표시장치
CN110599954B (zh) * 2019-08-02 2021-09-07 北京集创北方科技股份有限公司 子像素渲染方法和显示驱动装置
CN110459574A (zh) * 2019-08-20 2019-11-15 武汉天马微电子有限公司 一种显示面板及显示装置
CN110690266A (zh) * 2019-10-31 2020-01-14 广州番禺职业技术学院 一种像素结构及其渲染方法、显示装置
CN112038375B (zh) * 2020-09-02 2022-11-15 昆山国显光电有限公司 显示面板和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269411A (zh) * 2014-09-11 2015-01-07 京东方科技集团股份有限公司 显示面板、有机发光二极管显示器和显示装置
CN107644888A (zh) * 2016-07-22 2018-01-30 京东方科技集团股份有限公司 像素排列结构、显示基板、显示装置、制作方法及掩膜版
CN207883217U (zh) * 2018-02-09 2018-09-18 京东方科技集团股份有限公司 显示基板和显示装置
CN111341817A (zh) * 2020-03-11 2020-06-26 昆山国显光电有限公司 像素排布结构、显示面板及显示装置

Also Published As

Publication number Publication date
CN115349174A (zh) 2022-11-15
WO2022193121A1 (zh) 2022-09-22
EP4131416A4 (en) 2023-10-25
CN115349175A (zh) 2022-11-15
KR20230157288A (ko) 2023-11-16
EP4131417A4 (en) 2023-11-15
CN115428161A (zh) 2022-12-02
EP4131416A1 (en) 2023-02-08
EP4131417A1 (en) 2023-02-08
CN115349174B (zh) 2024-03-08
CN115349172A (zh) 2022-11-15
JP2024509657A (ja) 2024-03-05
WO2022194215A1 (zh) 2022-09-22
WO2022194204A1 (zh) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2019153951A1 (zh) 像素排列结构、显示基板、显示装置和掩模板组
CN215933610U (zh) 显示基板以及显示装置
WO2021008164A1 (zh) 像素排布结构、显示面板及显示装置
WO2019153950A1 (zh) 像素排列结构、显示基板、显示装置和掩模板组
US20220328572A1 (en) Display substrate and display device
WO2020020337A1 (zh) 子像素排列结构、掩膜装置、显示面板及装置
TWI763475B (zh) 顯示面板
CN109994503B (zh) 一种像素排布结构及相关装置
WO2019134439A1 (zh) 一种显示面板、高精度金属掩模板组及显示装置
CN109935617A (zh) 像素排列结构、显示基板以及掩模板组
US10395576B2 (en) Display panel utilizing sub-pixel rendering technology
TWI780694B (zh) 像素排布結構、顯示面板及顯示裝置
US11985853B2 (en) Display panel and display device
WO2023109186A1 (zh) 像素排布结构、显示面板和显示装置
KR102331850B1 (ko) 픽셀 배열 구조체, 픽셀 배열 구조체의 디스플레이 방법 및 제조 방법, 및 디스플레이 기판
WO2022193414A1 (zh) 阵列基板和显示装置
CN113257882B (zh) 显示基板和显示装置
US11195882B2 (en) Pixel arrangement structure, display substrate and display device
US20240179991A1 (en) Array substrate and display device
WO2023205921A1 (zh) 像素排列结构、显示面板、显示装置及掩膜板
CN116469879A (zh) 无机发光二极管显示器
CN116390554A (zh) 一种显示面板及显示装置
CN115884631A (zh) 像素排列结构、金属掩模板、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.02.2024)