US20220328572A1 - Display substrate and display device - Google Patents

Display substrate and display device Download PDF

Info

Publication number
US20220328572A1
US20220328572A1 US17/847,548 US202217847548A US2022328572A1 US 20220328572 A1 US20220328572 A1 US 20220328572A1 US 202217847548 A US202217847548 A US 202217847548A US 2022328572 A1 US2022328572 A1 US 2022328572A1
Authority
US
United States
Prior art keywords
sub
pixel
pixels
adjacent
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/847,548
Inventor
Libin Liu
Qian Yang
Hongli Wang
Lujiang HUANGFU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to US17/847,548 priority Critical patent/US20220328572A1/en
Assigned to BOE TECHNOLOGY GROUP CO., LTD. reassignment BOE TECHNOLOGY GROUP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANGFU, LUJIANG, LIU, Libin, WANG, HONGLI, YANG, QIAN
Publication of US20220328572A1 publication Critical patent/US20220328572A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • H01L27/3218
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • H01L27/3213
    • H01L27/3216
    • H01L27/326
    • H01L27/3272
    • H01L51/5275
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]

Definitions

  • Embodiments of the present disclosure relates to a display substrate and a display device.
  • the resolution of a display device can be improved by reducing the size of pixels and reducing the spacing between pixels.
  • the reduction in the size of pixels and the spacing between pixels also requires higher and higher precision of the manufacturing process, which leads to the increase in the difficulty of the manufacturing process and the manufacturing cost of the display device.
  • sub-pixel rendering (SPR) technology can make use of the difference of human eyes' resolution to sub-pixels of different colors, change the mode of defining a pixel simply by conventional red, green and blue sub-pixels, share sub-pixels of certain position resolution insensitive colors among different pixels, and use relatively few sub-pixels to simulate and realize the same pixel resolution performance capability, thus reducing the difficulty of the manufacturing process and the manufacturing cost.
  • SPR sub-pixel rendering
  • spacers are usually provided to play a supporting role.
  • Embodiments of the present disclosure provide a display substrate and a display device to reduce color shift under different viewing angles and improve display quality.
  • At least one embodiment of the present disclosure provides a display substrate, including: a first sub-pixel, a second sub-pixel and a first spacer; a connection line between a center of the first sub-pixel and a center of the second sub-pixel is a center connection line, the center connection line is not perpendicular to a first direction, and the first direction is at least one selected from the group consisting of a row direction and a column direction; the first spacer is between the first sub-pixel and the second sub-pixel, and an extension direction of the first spacer between the first sub-pixel and the second sub-pixel is not perpendicular to the first direction.
  • the extension direction of the first spacer has an included angle with the first direction, and a range of the included angle is 40°-50° or 130°-140°.
  • the included angle is 45° or 135°.
  • the center connection line is not parallel to the first direction.
  • the display substrate includes a plurality of pixel groups, each of the plurality of pixel groups includes one first sub-pixel, one second sub-pixel, one third sub-pixel and one fourth sub-pixel; and the first spacer is between the first sub-pixel and the second sub-pixel which belong to different ones of the plurality of pixel groups.
  • a connection line between the center of the second sub-pixel and a center of the third sub-pixel is a first line segment; the first sub-pixel and the fourth sub-pixel are between the second sub-pixel and the third sub-pixel and are respectively on two sides of the first line segment; a connection line between the center of the first sub-pixel and a center of the fourth sub-pixel is a second line segment; a length of the second line segment is smaller than a length of the first line segment.
  • a ratio of the length of the second line segment to the length of the first line segment is less than or equal to 3 ⁇ 4.
  • the display substrate further includes: a second spacer, the second spacer is between two adjacent ones of the plurality of pixel groups, and the second spacer is between the fourth sub-pixel and the second sub-pixel which belong to different ones of the plurality of pixel groups, or between the fourth sub-pixel and the third sub-pixel which belong to different ones of the plurality of pixel groups; an extension direction of the second spacer between the fourth sub-pixel and the second sub-pixel or between the fourth sub-pixel and the third sub-pixel is not perpendicular to the first direction.
  • the first spacer is between the first sub-pixel and the second sub-pixel which belong to two adjacent ones of the plurality of pixel groups, and/or between the first sub-pixel and the fourth sub-pixel which belong to two adjacent ones of the plurality of pixel groups.
  • first spacer and the second spacer around the second sub-pixel or the fourth sub-pixel form a spacer pair, and the first spacer and the second spacer in the spacer pair are on the same side of the second sub-pixel or the third sub-pixel.
  • no spacer is among the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel.
  • the first sub-pixel and the fourth sub-pixel are both strip-shaped, and an extension direction of the first sub-pixel and an extension direction of the fourth sub-pixel do not coincide.
  • an included angle between the extension direction of the first sub-pixel and the extension direction of the fourth sub-pixel ranges from 70° to 100°.
  • first sub-pixel and the fourth sub-pixel are symmetrically arranged relative to the first line segment, and/or the second sub-pixel and the third sub-pixel are symmetrically arranged relative to the second line segment.
  • the first line segment extends in the first direction and the second line segment extends in a second direction;
  • the plurality of pixel groups are arranged in an array to form a plurality of rows and a plurality of columns, and pixel groups of even rows and pixel groups of odd rows are arranged in a staggered way;
  • a length of a center connection line between the second sub-pixel and third sub-pixel which are adjacent to each other in two adjacent ones of the plurality of pixel groups in the first direction is less than the length of the first line segment; in two adjacent ones of the odd rows or in two adjacent ones of the even rows, a length of a center connection line between the first sub-pixel and fourth sub-pixel which are adjacent to each other in two adjacent ones of the plurality of pixel groups in the second direction is greater than the length of the second line segment.
  • an extension line of the second line segment of each pixel group passes through a midpoint of a center connection line between two pixel groups which are adjacent to the pixel group in the second direction and are in the same row.
  • an intersection point of a center connection line between two third sub-pixels in two adjacent ones of the plurality of pixel groups arranged in the second direction and the first line segment in one pixel group between the two third sub-pixels is between a center of the first line segment and the center of the second sub-pixel of the one pixel group.
  • At least one selected from the group consisting of the first sub-pixel and the fourth sub-pixel is a sub-pixel with a human eye sensitive color.
  • widths of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel are the same.
  • first line segment extends in the first direction and the second line segment extends in the second direction
  • first spacer and the second spacer have elongated shapes, and extension directions of the elongated shapes are different from the first direction and the second direction.
  • At least one selected from the group consisting of the first spacer and the second spacer does not overlap with the center connection line between the first sub-pixel and the third sub-pixel.
  • the first line segment extends in the first direction and the second line segment extends in the second direction, and an orthographic projection of the first spacer on a straight line in the first direction does not overlap or partially overlap with an orthographic projection of at least one selected from the group consisting of the second sub-pixel and the third sub-pixel on a straight line in the first direction.
  • a ratio of a sum of numbers of the first spacer and the second spacer to a number of sub-pixels is 0 . 3 - 1
  • the sub-pixels include the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel.
  • the first spacer and the second spacer are both transparent spacers.
  • At least one embodiment of the present disclosure further provides a display substrate, including:
  • a pixel arrangement structure including a plurality of pixel groups; each of the plurality of pixel groups includes a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel; in each of the plurality of pixel groups, a connection line between a center of the second sub-pixel and a center of the third sub-pixel is a first line segment; the first sub-pixel and the fourth sub-pixel are between the second sub-pixel and the third sub-pixel and are respectively at two sides of the first line segment; a connection line between a center of the first sub-pixel and the center of the fourth sub-pixel is a second line segment; a length of the second line segment is less than a length of the first line segment;
  • the display substrate further includes at least one of the following spacers:
  • the plurality of pixel groups are arranged in an array to form a plurality of rows and a plurality of columns, and pixel groups of even rows and pixel groups of odd rows are arranged in a staggered way.
  • the pixel groups of the even rows and the pixel groups of the odd rows are offset by a length of half a pixel group in a first direction, and the first direction is a row direction.
  • At least one embodiment of the present disclosure further provides a display device, including the display substrate according to at least one embodiment of the present disclosure.
  • FIG. 1A is a schematic diagram of a display substrate
  • FIG. 1B is a schematic cross-sectional view of a display substrate
  • FIG. 1C is a schematic view of a display device viewed at a certain viewing angle
  • FIG. 2A is a schematic diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 2B is a schematic diagram of a display substrate according to another embodiment of the present disclosure.
  • FIG. 2C is a schematic diagram of a display substrate according to another embodiment of the present disclosure.
  • FIG. 2D is a schematic diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 2E is a schematic diagram of a pixel arrangement structure in a display substrate according to an embodiment of the present disclosure
  • FIG. 3A is a schematic diagram of a pixel arrangement structure in a display substrate according to an embodiment of the present disclosure
  • FIG. 3B is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure.
  • FIG. 3C is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a pixel arrangement structure in a display substrate according to an embodiment of the present disclosure
  • FIG. 5A is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure.
  • FIG. 5B is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a pixel arrangement structure in a display substrate according to an embodiment of the present disclosure
  • FIG. 7A is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure.
  • FIG. 7B is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a pixel arrangement structure, drive lines and data lines of a display substrate according to another embodiment of the present disclosure.
  • FIG. 9 shows a schematic view of a display substrate
  • FIG. 10 shows a schematic diagram of a display substrate according to one or more embodiments of the present disclosure.
  • FIG. 11 shows a schematic diagram of a display substrate according to one or more embodiments of the present disclosure.
  • FIG. 12 is a cross-sectional view of a display substrate according to an embodiment of the present disclosure.
  • FIG. 1A illustrates a display substrate.
  • the display substrate includes a pixel arrangement structure, which is a typical pentile arrangement.
  • a minimum repeating unit includes two green sub-pixels 0111 , a red sub-pixel 0112 and a blue sub-pixel 0113 .
  • the pixels are uniformly distributed, and high pixel per inch (PPI) display is easy to realize.
  • PPI pixel per inch
  • the minimum repeating units are arranged in a first direction X, and spacers 010 are provided between adjacent sub-pixels that are in the same minimum repeating unit or between different minimum repeating units.
  • the spacers 010 extend in a second direction Y.
  • the first direction X is perpendicular to the second direction Y.
  • FIG. 1B illustrates a schematic cross-sectional view of a display substrate, which may be a cross-sectional view taken along the direction AB in FIG. 1A .
  • a green sub-pixel 0111 a red sub-pixel 0112 , a blue sub-pixel 0113 , and spacers 010 are disposed on a base substrate 101 .
  • the spacers Upon the display substrate being viewed at a certain angle, the spacers have different influence on the luminous brightness of each sub-pixel, resulting in viewing angle color shift.
  • the spacers 010 block light of some sub-pixels from entering the human eye, thereby forming color shift at different viewing angles. That is, upon the same picture being viewed from the left and right sides of FIG. 1B , there is a viewing angle color shift.
  • FIG. 1C illustrates a schematic view of a display device viewed at a certain viewing angle.
  • FIG. 1C shows an example of a display device being viewing on the right side of the display device. Because the spacers 010 block light of some sub-pixels, upon the display device being viewed from the left side, the color of the same picture is different from that when viewing from the right side.
  • FIG. 2A illustrates a display substrate according to at least one embodiment of the present disclosure.
  • the display substrate includes a first sub-pixel 111 , a second sub-pixel 112 , and a first spacer 0101 .
  • a connection line between a center C 1 of the first sub-pixel 111 and a center C 2 of the second sub-pixel 112 is a center connection line CL 1 , which is not perpendicular to the first direction X, and the first direction X is at least one of the row direction or the column direction.
  • the first spacer 0101 is disposed between the first sub-pixel 111 and the second sub-pixel 112 , and an extension direction of the first spacer 0101 between the first sub-pixel 111 and the second sub-pixel 112 is not perpendicular to the first direction X.
  • the first spacer 0101 extends between the first sub-pixel 111 and the second sub-pixel 112 , and the extension direction E 01 of the first spacer 0101 is not perpendicular to the first direction X.
  • the first direction X being the row direction is taken as an example to explain.
  • the extension direction E 01 of the first spacer 0101 is different from the first direction and the second direction.
  • the arrangement mode of the spacers is adjusted, and upon the extension direction E 01 of the first spacer 0101 being not perpendicular to the first direction X, the shielding of the first spacer to the first sub-pixel 111 can be reduced, and the viewing angle color shift when viewing a picture under different viewing angles can be further reduced.
  • the extension direction E 01 of the first spacer 0101 has an included angle ⁇ 1 with the first direction X.
  • the included angle ⁇ 1 ranges from 40 to 50 degrees or from 130 to 140 degrees. Further, for example, the included angle ⁇ 1 is 45 degrees or 135 degrees.
  • the first spacer 0101 has the smallest shielding to the first sub-pixel 111 , which can greatly improve the viewing angle color shift.
  • the center connection line CL 1 is not parallel to the first direction X.
  • the second sub-pixel 112 is included in the first pixel group 011 and the first sub-pixel 111 is included in the second pixel group 012 .
  • the first pixel group 011 further includes one first sub-pixel 111 , one third sub-pixel 113 , and one fourth sub-pixel 114
  • the second pixel group 012 further includes one second sub-pixel 112 , one third sub-pixel 113 , and one fourth sub-pixel 114 .
  • a connection line between the center C 2 of the second sub-pixel 112 and the center C 3 of the third sub-pixel 113 is a first line segment LS 1 ; the first sub-pixel 111 and the fourth sub-pixel 114 are located between the second sub-pixel 112 and the third sub-pixel 113 , and are respectively located on both sides of the first line segment LS 1 .
  • the first pixel group 011 and the second pixel group 012 are adjacent in the column direction and staggered in the row direction.
  • both the first pixel group 011 and the second pixel group 012 can be referred to as pixel group 01 .
  • a connection line between the center C 1 of the first sub-pixel 111 and the center C 4 of the fourth sub-pixel 114 is a second line segment LS 2 ; the ratio of the length of the second line segment LS 2 to the length of the first line segment LS 1 is less than or equal to 3 ⁇ 4.
  • the light emitting layer patterns of the first sub-pixel 111 and the fourth sub-pixel 114 in the same pixel group 01 can be formed by vapor deposition using the same opening of the mask plate.
  • the first spacer 0101 may be disposed between the first sub-pixel 111 and the second sub-pixel 112 of two adjacent ones of the plurality of pixel groups and/or disposed between the first sub-pixel 111 and the fourth sub-pixel 114 of two adjacent ones of the plurality of pixel groups.
  • the display substrate according to one or more embodiments of the present disclosure further includes a second spacer 0102 , the second spacer 0102 is located between adjacent pixel groups 01 , the second spacer 0102 is located between the fourth sub-pixel 114 and the second sub-pixel 112 which belong to different ones of the plurality of pixel groups 01 , or is located between the fourth sub-pixel 114 and the third sub-pixel 113 which belong to different ones of the plurality of pixel groups; an extension direction of the second spacer 0102 between the fourth sub-pixel 114 and the second sub-pixel 112 or between the fourth sub-pixel 114 and the third sub-pixel 113 is not perpendicular to the first direction X.
  • the second spacer 0102 extends between the fourth sub-pixel 114 and the second sub-pixel 112 which belong to different ones of the plurality of pixel groups 01 , or extends between the fourth sub-pixel 114 and the third sub-pixel 113 which belong to different ones of the plurality of pixel groups 01 .
  • the extension direction E 02 of the second spacer 0102 is not perpendicular to the first direction X.
  • the extension direction E 02 of the second spacer 0102 is different from the first direction and the second direction.
  • the display substrate includes a plurality of first pixel groups 011 located in odd rows and a plurality of second pixel groups 012 located in even rows.
  • the display substrate further includes a second spacer 0102 , and the second spacer 0102 extends between the fourth sub-pixel 114 in at least one selected from the group consisting of the first pixel group 011 and the second pixel group 012 and at least one selected from the group consisting of the second sub-pixel 112 and the third sub-pixel 113 adjacent thereto in the column direction.
  • the extension direction E 02 of the second spacer 0102 is not perpendicular to the first direction X.
  • the extension direction E 02 of the second spacer 0102 has an included angle ⁇ 2 with the first direction X.
  • the included angle ⁇ 2 ranges from 40 to 50 degrees or from 130 to 140 degrees. Further, for example, the included angle ⁇ 2 is 45 degrees or 135 degrees.
  • the second spacer has the smallest shielding to the fourth sub-pixel 114 , which can further reduce the shielding to the pixels sensitive to human eyes and greatly improve the viewing angle color shift.
  • the spacers can have elongated shapes, and their extension directions are different from the first direction and the second direction.
  • the spacers include a first spacer 0101 and a second spacer 0102 .
  • the shapes of the spacers are orthographic projections of the spacers on the base substrate.
  • the shapes of the sub-pixels are the shapes of the orthographic projections of the sub-pixels on the base substrate.
  • a connection line between the center of the fourth sub-pixel 114 in the second pixel group 012 and the center of the third sub-pixel 113 or the fourth sub-pixel 114 in the first pixel group 011 adjacent to the fourth sub-pixel 114 is a center line CL 2 , and the center line CL 2 is not perpendicular to the first direction X.
  • At least one of the first sub-pixel 111 and the fourth sub-pixel 114 is a sub-pixel with a human eye sensitive color.
  • the second sub-pixel 112 and the third sub-pixel 113 can be sub-pixels of color insensitive to human eyes.
  • the shielding of the sensitive color sub-pixels by the first spacer and/or the second spacer can be reduced, so that the color shift under different viewing angles can be reduced.
  • the first spacer and/or the second spacer can be located between sub-pixels of sensitive color and sub-pixels of non-sensitive color.
  • the first spacer 0101 and the second spacer 0102 located around the second sub-pixel 112 or the fourth sub-pixel 114 form a spacer pair 01012
  • the first spacer 0101 and the second spacer 0102 in the spacer pair 01012 are located on the same side of the second sub-pixel 112 or the third sub-pixel 113
  • the spacer pair 01012 is illustrated as being located on the same side of the second sub-pixel 112 .
  • the spacer pair 01012 is located around the non-sensitive color sub-pixels, thereby reducing the influence of the spacer pair 01012 on the display color and reducing the viewing angle color shift.
  • spacers have two functions. One function is to support the mask plate for vapor deposition of the light emitting layer pattern, and the other function is to support the cover plate during packaging.
  • spacers are not provided between the first sub-pixel 111 , the second sub-pixel 112 , the third sub-pixel 113 and the fourth sub-pixel 114 in at least one of the first pixel group 011 and the second pixel group 012 (in the same pixel group 01 ).
  • spacer pairs can be provided between the pixel groups 01 .
  • three spacer pairs can be formed around each pixel group 01 , thereby facilitating the support of the mask plate during the fabrication of the light emitting layer.
  • FIG. 2B illustrates a display substrate provided by at least one embodiment of the present disclosure.
  • the first spacer 0101 and the second spacer 0102 of the spacer pair 01012 are located on the same side of the third sub-pixel 113 .
  • FIG. 2C illustrates a display substrate provided by at least one embodiment of the present disclosure.
  • the display substrate includes two types of spacer pairs 01012 .
  • One type of spacer pair 01012 is located on the same side (e.g., left side) of the third sub-pixel 113 in the first pixel group 011 .
  • Another type of spacer pair 01012 is located on the same side (e.g., right side) of the second sub-pixel 112 in the second pixel group 012 .
  • FIG. 2D illustrates a display substrate provided by at least one embodiment of the present disclosure.
  • the display substrate includes a first spacer 0101 and a third spacer 0103 .
  • the third spacer 0103 can be disposed between two non-sensitive colors of different pixel groups 01 . For example, between the second sub-pixel 112 and the third sub-pixel 113 .
  • the spacer in the display substrate is removed upon the pixel arrangement structure being described below.
  • the first spacer 0101 , the second spacer 0102 , the third spacer 0103 and the like in this embodiment of the present disclosure may be disposed in the pixel arrangement structure described below.
  • the pixel arrangement structure includes a plurality of pixel groups 01 .
  • Each of the plurality of pixel group 01 includes one first sub-pixel 111 , one second sub-pixel 112 , one third sub-pixel 113 , and one fourth sub-pixel 114 .
  • the connection line between the center C 2 of the second sub-pixel 112 and the center C 3 of the third sub-pixel 113 is a first line segment LS 1 ; the first sub-pixel 111 and the fourth sub-pixel 114 are located between the second sub-pixel 112 and the third sub-pixel 113 and are respectively located on both sides of the first line segment LS 1 .
  • a connection line between the center C 1 of the first sub-pixel 111 and the center C 4 of the fourth sub-pixel 114 is a second line segment LS 2 .
  • the length of the second line segment LS 2 is smaller than the length of the first line segment LS 1 .
  • the ratio of the lengths of the second line segment LS 2 and the first line segment LS 1 is less than or equal to 3 ⁇ 4.
  • the distance between the first sub-pixel and the fourth sub-pixel in the same pixel group is reduced, on the one hand, the pixel arrangement can be made tighter, the color mixing risk can be reduced, the color edge can be improved, and the visual graininess can be improved.
  • the spacing between sub-pixels can be widened to facilitate fabrication.
  • each sub-pixel given in the embodiments of the present disclosure can be defined by a pixel defining layer, but is not limited thereto.
  • each sub-pixel in the figure is an actual light emitting area.
  • the specific shape of each sub-pixel can be set according to the preparation process.
  • the actual light emitting area can be determined by the shape of at least one of the electrode, the light emitting layer, and the pixel defining layer.
  • the light emitting layer patterns of the first sub-pixel and the fourth sub-pixel in the same pixel group can also be formed by vapor deposition using the same opening of the mask plate.
  • the first sub-pixel 111 and the fourth sub-pixel 114 can be sub-pixels of human eye sensitive color, for example, may be green sub-pixels, yellow sub-pixels, white sub-pixels, etc.
  • the areas of the first sub-pixel 111 and the fourth sub-pixel 114 are relatively small compared to the second sub-pixel 112 and the third sub-pixel 113 .
  • the area of the first sub-pixel 111 is smaller than the area of the second sub-pixel 112
  • the area of the first sub-pixel 111 is smaller than the area of the third sub-pixel 113 .
  • the fourth sub-pixel 114 may refer to the above description of the area of the first sub-pixel 111 . That is, the area of the fourth sub-pixel 114 is smaller than the area of the second sub-pixel 112 , and/or the area of the fourth sub-pixel 114 is smaller than the area of the third sub-pixel 113 .
  • the pixel arrangement structure can improve the distribution uniformity of the sensitive color sub-pixels by adjusting the spacing of the sensitive color sub-pixels in the visual position, thereby improving the visual resolution of the pixel arrangement structure and improving the display quality.
  • the second sub-pixel 112 and the third sub-pixel 113 may be sub-pixels of color insensitive to human eyes.
  • one of the second sub-pixel 112 and the third sub-pixel 113 is a red sub-pixel and the other is a blue sub-pixel, but is not limited thereto.
  • the second sub-pixel 112 is a red sub-pixel and the third sub-pixel 113 is a blue sub-pixel.
  • the above-mentioned human eye sensitive color can be green.
  • the first line segment LS 1 can extend in the first direction X and the second line segment LS 2 can extend in the second direction Y.
  • the first direction X is perpendicular to the second direction Y.
  • the first sub-pixel 111 and the fourth sub-pixel 114 are arranged with the first direction X as an axis of symmetry, so that the pixel structure is arranged more uniformly.
  • the first sub-pixel 111 is uniformly arranged relative to the second sub-pixel 112 and the third sub-pixel 113 , and is kept consistent, so that the pixel structure is arranged more uniformly.
  • the second line segment LS 2 is perpendicular to the first line segment LS 1 .
  • the pixel arrangement can be made more uniform.
  • the second line segment LS 2 is located on the perpendicular bisector of the first line segment LS 1 .
  • the widths of sub-pixels of each color in the first direction X can be the same, but are not limited thereto. Therefore, the pixel structure distribution can be made more uniform, the picture display quality is higher, and the problem of display graininess at lower PPI is improved.
  • each dashed frame has a length of 1 / 2 L, and four dashed frames can form a square with an edge length of L.
  • the pixel group 01 can be the minimum repeating unit of the pixel arrangement structure.
  • the pixel arrangement structure can be obtained by translating and copying the minimum repeating unit.
  • sub-units that can be translated and repeated to be arranged to form a pixel structure are not included in the minimum repeating unit.
  • the dark rectangular dashed frame has a length of 2 L and a width of L.
  • the first line segment SL 1 is perpendicular to the second line segment SL 2 and is vertically bisected with each other.
  • the first line segment SL 1 vertically bisects the second line segment SL 2 .
  • the second line segment SL 2 also vertically bisects the first line segment SL 1 .
  • the maximum area enclosed by the connection lines between the centers of the first sub-pixel 111 , the second sub-pixel 112 , the fourth sub-pixel 114 and the third sub-pixel 113 is rhombus
  • the first line segment SL 1 and the second line segment SL 2 are respectively diagonal lines of the rhombus.
  • the distance between the center C 1 of the first sub-pixel 111 and the center C 4 of the fourth sub-pixel 114 can be greater than or equal to 1 ⁇ 2L, for example, the distance can range from 1 ⁇ 2L to L.
  • the first sub-pixel 111 and the fourth sub-pixel may adopt sub-pixels of the same color.
  • the setting of the distance can also avoid the situation that two adjacent first sub-pixels are difficult to distinguish due to the close distance between the adjacent first sub-pixels and are combined into one by human vision, thus avoiding the graininess caused thereby. Therefore, the pixel arrangement structure can improve the distribution uniformity of the first sub-pixels, thereby improving the visual resolution and also improving the display quality.
  • the distance between the center C 3 of the third sub-pixel 113 and the center C 2 of the second sub-pixel 112 can be 4/3L.
  • the distance between the third sub-pixel 113 and the second sub-pixel 112 in the same pixel group can be increased and/or the distance between the first sub-pixel 111 and the fourth sub-pixel 114 can be decreased under the condition permitted by the process.
  • the ratio of the lengths of the second line segment LS 2 and the first line segment LS 1 can be greater than or equal to 3 ⁇ 8.
  • At least one of the first spacer 0101 and the second spacer 0102 does not overlap with the center connection line between the first sub-pixel 111 and the third sub-pixel 113 .
  • at least one of the first spacer 0101 and the second spacer 0102 does not overlap with the center connection line between the blue sub-pixel and the green sub-pixel.
  • the orthographic projection of the first spacer 0101 on a straight line in the first direction does not overlap or partially overlap with the orthographic projection of at least one of the second sub-pixel 112 and the third sub-pixel 113 on the straight line in the first direction.
  • the ratio of the sum of the numbers of the first spacers 0101 and the second spacers 0102 to the number of sub-pixels is 0.3-1.
  • the sub-pixels include the first sub-pixels 111 , the second sub-pixels 112 , the third sub-pixels 113 , and the fourth sub-pixels 114 .
  • the ratio of the sum of the numbers of the first spacer 0101 and the second spacer 0102 to the number of sub-pixels is 0.3-1.
  • a transparent spacer can be used to prevent angle color shift.
  • the position of the transparent spacer is not limited to the above position.
  • the transparent spacer can use a material with high light transmittance or even full transparency and meeting other alternative requirements instead of polyimide material with poor light transmittance.
  • Alternative materials for the spacer may be organic silicone.
  • Organic silicone films have excellent heat resistance, low temperature flexibility, high dielectric constant, and insulation properties.
  • organic silicon films such as high molecular polymer films using dimethyl siloxane (PDMS) as raw materials, are colorless and optically transparent, and can still achieve very high or even more than 90% light transmittance at millimeter-level thickness, thus enabling the spacer to have good transparency in the visible light range.
  • PDMS dimethyl siloxane
  • organic silicon material N-(trimethoxysiliconpropyl)-4-azide-2,3,5,6-tetrafluorobenzamide PFPA-silane
  • the organic silicon material has high light transmittance (close to 80%) and has little difference in light transmittance at different wavelengths.
  • the material of the spacer can also be modified, colorless and transparent new polyimide material. Due to many excellent properties of polyimide itself and its modified high light transmittance in the whole visible light band, polyimide can be used as a transparent spacer material. For example, polyimide and silicon dioxide PI/SiO 2 composite films can be used. After being modified, the light transmittance of the modified PI/S i O 2 composite film is greatly improved compared with that of pure polyimide, and has almost no selectivity to wavelengths in the visible light range, and the light transmittance at different wavelengths is almost the same. Both high transmittance and non-selectivity of light transmittance to wavelength are beneficial to the improvement of angle color shift.
  • FIG. 3A illustrates the pixel arrangement structure with the dashed lines in FIG. 2E removed.
  • the dashed lines, centers, etc. given in the embodiments of the present disclosure are for convenience of describing the given virtual lines, virtual centers.
  • the center can be the center of gravity, the intersection point of perpendicular bisector of opposite sides, etc., but is not limited thereto.
  • FIG. 3B illustrates a display substrate provided by one or more embodiments of the present disclosure.
  • the first sub-pixel 111 and the fourth sub-pixel 114 adopt the same color.
  • both are the first sub-pixel 111 .
  • the light emitting layer patterns of the first sub-pixel 111 and the fourth sub-pixel 114 in the same pixel group 01 can be vapor deposited using the same opening of the mask plate, thereby being beneficial to the screening of the mask plate, having small screening pressure and improving the quality of the screening.
  • the pixel arrangement structure can improve the visual resolution.
  • FIG. 3C illustrates a display substrate provided by one or more embodiments of the present disclosure.
  • the first sub-pixel 111 and the fourth sub-pixel 114 are sub-pixels of the same color, and can include, for example, two types of pixel groups, in which pairs of sub-pixels of the same color in one type of pixel group are first sub-pixels (e.g., green sub-pixels), and pairs of sub-pixels of the same color in another type of pixel group are fourth sub-pixels (e.g., white sub-pixels or yellow sub-pixels).
  • first sub-pixels e.g., green sub-pixels
  • fourth sub-pixels e.g., white sub-pixels or yellow sub-pixels
  • the colors of the two sub-pixels arranged in pairs between the second sub-pixel and the third sub-pixel in the pixel group adjacent in the diagonal direction of each pixel group are different from the colors of the sub-pixels arranged in pairs between the second sub-pixel and the third sub-pixel in the pixel group.
  • FIG. 4 illustrates a display substrate provided by one or more embodiments of the present disclosure.
  • the first line segment LS 1 can extend in the first direction X, and a length D 1 of a center connection line LS 3 between adjacent second sub-pixels 112 and third sub-pixels 113 in two adjacent pixel groups 01 in the first direction X is less than a length of the first line segment LS 1 , so that pixels can be closely arranged.
  • the length of the first line segment LS 1 is 4/3L, but is not limited thereto.
  • the length of the first line segment LS 1 can range from 11/9L to 13/9L.
  • the ratio of the length D 1 of the center connection line LS 3 between the center of the adjacent second sub-pixel 112 and the center of the third sub-pixel 113 in the two adjacent pixel groups 01 in the first direction to the length of the first line segment LS 1 is less than or equal to 1 ⁇ 2.
  • the length D 1 is 2 ⁇ 3L, but it is not limited thereto.
  • the length D 1 can range from 5/9L to 7/9L.
  • a plurality of pixel groups 01 are arranged in an array, a plurality of rows and a plurality of columns are included, for example, the pixel arrangement structure includes a plurality of first pixel groups 011 located in odd rows and a plurality of second pixel groups 012 located in even rows.
  • pixel groups of even rows and pixel groups of odd rows are arranged in a staggered way.
  • the second line segment LS 2 can extend in the second direction Y.
  • the length D 2 of the center connection line L 14 between the first sub-pixel 111 and the fourth sub-pixel 114 which are adjacent to each other in two adjacent ones of the plurality of pixel groups 01 in the second direction Y is greater than the length of the second line segment LS 2 .
  • the ratio of the length D 2 of the center connection line L 14 between the adjacent first sub-pixel 111 and the fourth sub-pixel 114 in the adjacent two pixel groups 01 in the second direction Y to the length of the second line segment LS 2 ranges from 1 to 3.
  • the length D 2 of the center connection line L 14 between the adjacent first sub-pixel 111 and the fourth sub-pixel 114 in the adjacent two pixel groups 01 in the second direction Y is greater than the length of the second line segment LS 2 .
  • a pixel structure in which 6 pixel groups are closely arranged around one pixel group can be formed.
  • the odd row pixel groups and the even row pixel groups are staggered.
  • the odd row pixel groups and the even row pixel groups are offset in the first direction X by the length of half a pixel group in the first direction X, for example, the offset length is L, but is not limited thereto.
  • the ratio of the length D 2 of the center connection line between the adjacent first sub-pixel 111 and the fourth sub-pixel 114 in the adjacent two pixel groups 01 in the second direction Y to the length of the second line segment LS 2 ranges 1 to 3.
  • an extension line of the second line segment LS 2 of each pixel group 01 passes through a midpoint CO of a center connection line LSC between two pixel groups 01 adjacent to the pixel group 01 in the second direction Y and located in the same row.
  • the center of each pixel group 01 is C 1
  • the connection line between the centers C 1 of two adjacent pixel groups 01 is the center connection line LSC.
  • the center C 1 of the pixel group 01 may be the intersection point of the first line segment LS 1 and the second line segment LS 2 .
  • the extension line of the second line segment LS 2 of each first pixel group 011 passes through the center C 5 of the center connection line LS 3 between the adjacent third sub-pixel 113 and the second sub-pixel 112 of the two second pixel groups 012 adjacent to the first pixel group 011 and located in the same row.
  • the center C 5 and the center CO can be the same point.
  • an intersection point IP 1 of the center connection line LS 4 between two third sub-pixels 113 in two adjacent pixel groups 01 (two adjacent first pixel groups 011 or two adjacent second pixel groups 012 ) arranged in the second direction Y and the first line segment LS 1 in one pixel group 01 located between the two third sub-pixels 113 is located between a center IPO of the first line segment LS 1 and a center C 2 of the second sub-pixel 112 of the one pixel group 01 .
  • the center IPO of the first line segment LS 1 can be the center C 1 of the pixel group 01 .
  • the intersection point IP 1 is located at the midpoint of the connection line between the center IPO of the first line segment LS 1 and the center C 2 of the second sub-pixel 112 .
  • the intersection point IP 1 of the center connection line LS 4 between the two third sub-pixels 113 of the adjacent first pixel groups 011 located in the same column and the first line segment LS 1 of the second pixel group 012 adjacent to the third sub-pixel 113 is located at a position between the intersection point IPO of the first line segment LS 1 and the second line segment LS 2 of the second pixel group 012 and the center C 2 of the second sub-pixel 112 .
  • the third sub-pixel 113 above-mentioned can also be replaced by the second sub-pixel 112 .
  • the intersection point of the center connection line between two second sub-pixels 112 in two adjacent pixel groups 01 (two adjacent first pixel groups 011 or two adjacent second pixel groups 012 ) arranged in the second direction Y and the first line segment LS 1 in the pixel group 01 located between the two second sub-pixels 112 is located between the center IPO of the first line segment LS 1 and the center C 3 of the third sub-pixel 113 .
  • the intersection point is located at the midpoint of the connection line between the center IPO of the first line segment LS 1 and the center C 3 of the third sub-pixel 113 .
  • the first spacer 0101 is disposed between adjacent pixel groups of different rows.
  • the second spacer 0102 is disposed between adjacent pixel groups of different rows.
  • the closest distance between the second sub-pixel 112 and the first sub-pixel 111 is L 1
  • the closest distance between the second sub-pixel 112 and the fourth sub-pixel 114 is L 2
  • the closest distance between the third sub-pixel 113 and the first sub-pixel 111 is L 3
  • the closest distance between the third sub-pixel 113 and the fourth sub-pixel 114 is L 4
  • the closest distance between the second sub-pixel 112 and one of the first sub-pixel 111 and the fourth sub-pixel 114 is L 5
  • the closet distance between the third sub-pixel 113 and one of the first sub-pixel 111 and the fourth sub-pixel 114 is L 6
  • the second sub-pixel 112 and the third sub-pixel 113 are in a pixel group being adjacent to the first sub-pixel or the fourth sub-pixel in the second direction and are not in the same row with the first sub-pixel or the fourth sub-pixel
  • L 5 L 6 .
  • each nearest distance is the minimum distance between two sub-pixels.
  • Ll, L 2 , L 3 , L 4 , L 5 , and L 6 can be made as close as possible to the minimum process spacing d during actual fabrication.
  • the closest distance is the distance between the closest two points on the outer edge of the two sub-pixels.
  • the opposite sides of adjacent pixies are approximately parallel or have an included angle less than 45 degrees, and the adjacent sub-pixels include any two adjacent ones of the first sub-pixel 111 , the second sub-pixel 112 , the third sub-pixel 113 , and the fourth sub-pixel 114 .
  • the first sub-pixel 111 and the fourth sub-pixel 114 are both strip-shaped, and the extension direction Al of the first sub-pixel 111 does not coincide with the extension direction A 2 of the fourth sub-pixel 114 .
  • the extension direction Al of the first sub-pixel 111 intersects or has an included angle with the extension direction A 2 of the fourth sub-pixel 114 .
  • the first sub-pixel 111 and the fourth sub-pixel 114 are arranged with the first direction X as an axis of symmetry and inclined at a certain angle.
  • the included angle between the inclination angle and the first direction X ranges from 30 to 50 degrees, and further for example, the included angle is 45 degrees, but is not limited thereto.
  • the extension direction Al of the first sub-pixel 111 can be the long axis direction of the first sub-pixel 111 , but is not limited thereto.
  • the extension direction A 2 of the fourth sub-pixel 114 can be the long axis direction of the fourth sub-pixel 114 , but is not limited thereto.
  • the first sub-pixel 111 and the fourth sub-pixel 114 are symmetrically arranged with respect to the first line segment LS 1 .
  • the first sub-pixel 111 and the fourth sub-pixel 114 are asymmetrically arranged with respect to the second line segment LS 2 .
  • the second sub-pixel 112 and the third sub-pixel 113 are symmetrically arranged with respect to the second line segment LS 2 , but is not limited thereto.
  • the strip shape refers to a shape in which a length in one direction is greater than a length in another direction, or a dimension in one direction is greater than a dimension in other directions.
  • the strip shape is not limited to a rectangle, and can be other shapes, for example, may be a long hexagonal shape, an oblong shape, a trapezoid shape, or other shapes.
  • the shape of each sub-pixel is not limited to a regular shape, and can be an irregular shape.
  • the included angle between the extension direction Al of the first sub-pixel 111 and the extension direction A 2 of the fourth sub-pixel 114 ranges from 70 degrees to 100 degrees, further, the included angle can range from 80 degrees to 95 degrees, further, the included angle can be 90 degrees (a right angle), so that the first sub-pixel 111 and the fourth sub-pixel 114 forming a larger area can be utilized to improve the light emitting area and is beneficial to the screening of the mask plate during fabricating the mask plate of the light emitting layer pattern.
  • the included angle is a right angle
  • deviations of up and down several degrees can be allowed. For example, it can deviate from 90 degrees by 5 degrees.
  • FIG. 5B illustrates a display substrate provided by one or more embodiments of the present disclosure, in a pixel arrangement structure of the display substrate, an included angle between an extension direction Al of the first sub-pixel 111 and an extension direction A 2 of the fourth sub-pixel 114 is a right angle, and in the same pixel group 01 , the first sub-pixel 111 and the fourth sub-pixel 114 are sub-pixels of the same color.
  • FIG. 6 illustrates a display substrate provided by one or more embodiments of the present disclosure.
  • the second sub-pixel 112 and the third sub-pixel 113 can be rhombus or approximately rhombus.
  • Approximate rhombus includes, for example, rounded rhombus, chamfered rhombus, etc., but is not limited thereto.
  • the sub-pixel shape of rhombus or approximately rhombus shape is more favorable for pixel dense arrangement.
  • the first sub-pixel 111 can be relatively symmetrical around the third sub-pixel 113 and the second sub-pixel 112 , with the long sides of the first sub-pixel 111 all facing the second sub-pixel 112 and the short sides all facing the third sub-pixel 113 to ensure the uniformity of pixel arrangement to the greatest extent.
  • the arrangement of the first sub-pixels 111 is more uniform, which can improve the color edge to a certain extent, is conducive to the realization of high PPI, and can improve the pixel aperture ratio as high as possible.
  • each sub-pixel is not limited to the above, and the shapes of the sub-pixels can be adjusted as required. Maximizing the area is the main principle for determining the shape of sub-pixels.
  • the spacing between different color sub-pixels should be greater than the minimum process spacing d of the patterning process, and some special process symmetry requirements should be considered.
  • the FMM screening requires symmetrical opening patterns and distribution, and the shapes of the first sub-pixel and the fourth sub-pixel can be symmetrical pentagons with right-angle bottom corners respectively (as illustrated by FIG. 2E ). It can be seen that the spacing between the second and third sub-pixel of adjacent pixel groups using symmetrically shaped sub-pixels are significantly larger than other spacing between different color sub-pixels (the minimum process spacing d), i.e., there is still usable area in design. Under the condition that FMM screening technology allows or adopts other symmetry insensitive (e.g. CF) processes, asymmetrical sub-pixel shapes can be adopted to realize maximum sub-pixel area.
  • FIGS. 7A and 7B illustrate pixel arrangement structures in a display substrate provided by one or more embodiments of the present disclosure.
  • the shapes of the second sub-pixel 112 and the third sub-pixel 113 can be right-angle trapezoids or right-angle trapezoids with acute angles cut off, so as to maximize the area.
  • the shapes of the second sub-pixel 112 and the third sub-pixel 113 are both right-angle trapezoids, compared to the case where the shapes of the second sub-pixel 112 and the third sub-pixel 113 are both hexagonal (a hexagonal shape formed by combining two pentagons with symmetrical right-angle bottom angles), the acute angle portions 190 of the second sub-pixel 112 and the third sub-pixel 113 can further improve the areas of the second sub-pixel 112 and the third sub-pixel 113 , and thus further improve the space utilization rate in the pixel group.
  • the pixel arrangement structure can improve the space utilization rate in the pixel group.
  • the shapes of the second sub-pixel 112 and the third sub-pixel 113 are both isosceles trapezoids with acute angles cut off. Therefore, when the process accuracy is constant, that is, when the distances between the first sub-pixel 111 and the second sub-pixel 112 and between the first sub-pixel 111 and the third sub-pixel 113 are constant, the areas of the second sub-pixel 112 and the third sub-pixel 113 are increased, thereby improving the utilization rate of the space within the pixel group.
  • the shapes of the second sub-pixel 112 and the third sub-pixel 113 include at least one of isosceles trapezoid, hexagon and rhombus, and the shape of the second sub-pixel 112 includes at least one of pentagon, rectangle and approximate rectangle.
  • the approximate rectangle includes, for example, but is not limited to, a rounded rectangle.
  • FIG. 8 illustrates a display substrate provided by one or more embodiments of the present disclosure.
  • the third sub-pixel 113 and the first sub-pixel 111 can be driven by the first drive line DL 1
  • the second sub-pixel 112 and the fourth sub-pixel 114 can be driven by the second drive line DL 2 .
  • the first drive line DL 1 extends in the direction E 1
  • the second drive line DL 2 extends in the direction E 1 .
  • the direction E 1 is parallel to the first direction X.
  • the first sub-pixel 111 and the fourth sub-pixel 114 in the odd column pixel group can use the first data line DT 1 to input data signals
  • the second sub-pixel 112 and the third sub-pixel 113 located between the adjacent two first data lines DT 1 can use the second data line DT 2 to input data signals.
  • the data signal includes a voltage and/or a current.
  • the first data line DT 1 extends in the direction E 2
  • the second data line DT 2 also extends in the direction E 2 , which is parallel to the second direction Y.
  • FIG. 9 illustrates a schematic diagram of a display substrate.
  • the widths of the sub-pixels in the first direction X are different. Because the widths of the sub-pixels are different, it is easy to produce color shift when viewing at different viewing angles.
  • FIG. 10 illustrates a schematic diagram of a display substrate provided by one or more embodiments of the present disclosure.
  • the widths of the first sub-pixel 111 , the second sub-pixel 112 , the third sub-pixel 113 , and the fourth sub-pixel 114 are the same in the first direction X. Therefore, the viewing angle color shift when viewing at different viewing angles can be reduced.
  • one pixel group includes two pixel units, for example, the first sub-pixel 111 and the second sub-pixel 112 form a pixel unit, the third sub-pixel 113 and the fourth sub-pixel 114 form the other pixel unit.
  • Each pixel unit can share the third sub-pixel 113 or the fourth sub-pixel 114 adjacent thereto for full color display.
  • the display is realized by sub-pixel sharing.
  • the division of pixel cells is not limited to the above description.
  • the pixel unit herein can be referred to as a virtual pixel.
  • the division of virtual pixels is related to the driving mode.
  • the specific division mode of the virtual pixels can be determined according to the actual driving mode, and the present disclosure is not specifically limited to this.
  • FIG. 11 illustrates a schematic diagram of a display substrate provided by one or more embodiments of the present disclosure.
  • the display substrate includes a third spacer 0103 located between the first sub-pixel 111 and the fourth sub-pixel 114 in the pixel group 01 .
  • the first sub-pixel 111 and the fourth sub-pixel 114 can be both green sub-pixels, but are not limited thereto.
  • the light emission of each sub-pixel is not shielded by the third spacer 0103 , thereby improving the color asymmetry phenomenon at the left and right view angles when displaying a white picture to a certain extent, and improving the image quality and the display effect.
  • the third spacer 0103 By arranging the third spacer 0103 , the problem of inconsistent light shielding for each sub-pixel in the left and right directions is basically eliminated, and further the phenomenon of color asymmetry at left and right angles can be eliminated to a great extent.
  • the third spacer only shields the first sub-pixel and the fourth sub-pixel, even if the angle color shift is generated due to the shielding for the first sub-pixel and the fourth sub-pixel, the phenomenon of angle color shift does not exist because the shielding for the first sub-pixel and the fourth sub-pixel are consistent under the same angle in the up and down directions.
  • the shielding degree of the third spacer 0103 to the first sub-pixel 111 and the fourth sub-pixel 114 can be adjusted, thereby adjusting the angle color shift degree in the up and down directions.
  • the extension direction E 03 of the third spacer 0103 is perpendicular to the connection line CLO between the center C 1 of the first sub-pixel 111 and the center C 4 of the fourth sub-pixel 114 , but is not limited thereto.
  • the length of the third spacer 0103 in the first direction X is greater than the length of at least one of the first sub-pixel 111 and the fourth sub-pixel 114 in the first direction X.
  • the shapes of the first sub-pixel 111 and the fourth sub-pixel 114 are both pentagon.
  • the pentagon includes a group of parallel opposite sides and a vertical side, and the vertical side is perpendicular to the group of parallel opposite sides.
  • the third spacer 0103 is parallel to the vertical side of the pentagon.
  • FIG. 12 is a cross-sectional view of a display substrate provided by an embodiment of the present disclosure.
  • the structure includes a base substrate 001 , and a buffer layer 002 , a first gate insulation layer 003 , a second gate insulation layer 004 , an interlayer dielectric layer 005 , a planarization layer 006 , and a pixel defining layer 007 sequentially located on the base substrate 001 .
  • a thin film transistor structure including a gate electrode 302 , an active layer 301 , and a drain electrode 303 .
  • the thin film transistor can be one of the thin film transistors in a pixel drive circuit, and the connection relationship with other components can be set according to the specific pixel circuit arrangement, which is not illustrated by detail herein.
  • a signal line 304 can also be included at a position on the same layer as the drain electrode 303 , and the signal line 304 can also be used as a signal line of a specific function according to different pixel circuit arrangements, for example, a data line or a gate line, etc.
  • the pixel defining layer 007 can include openings defining sub-pixels.
  • the anode 403 of the sub-pixel and the light emitting layer 503 of the third sub-pixel are located in the openings of the pixel defining layer 007 . It should be noted that the structure of the display substrate is not limited to that illustrated by FIG. 12 .
  • the anode 403 and the light emitting layer 503 are in contact with each other, so that the light emitting layer can be driven to emit light at a portion in contact with each other, and therefore, the portion in contact with each other between the anode 403 and the light emitting layer 503 is an effective portion in which the sub-pixel can emit light.
  • the anode 403 serves as a pixel electrode so that different data voltages can be applied to different sub-pixels.
  • the electrode used as the pixel electrode of the sub-pixel is not limited to the anode, and the cathode of the light emitting diode may also be used as the pixel electrode.
  • the shape of the sub-pixel can refer to the shape of a portion where the pixel electrode and the light emitting layer contact each other.
  • the area of the pixel electrode can be slightly larger than the area of the light emitting layer, or the area of the light emitting layer can be slightly larger than the area of the pixel electrode, and the embodiments of the present disclosure is not particularly limited to this.
  • the light emitting layer here can include the electroluminescent layer itself and other function layers located on both sides of the electroluminescent layer, for example, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like.
  • the shape of a pixel can also be defined by a pixel defining layer.
  • a lower electrode e.g., an anode
  • a light emitting diode can be disposed below a pixel defining layer including an opening for defining a pixel that exposes a portion of the lower electrode.
  • the pixel circuit includes at least one transistor including a gate, an active layer, and source and drain electrodes.
  • the signal line is electrically connected to the source electrode or drain electrode of the corresponding transistor through a via hole penetrating through the insulation layer below it.
  • the active layer of the transistor is formed of a polysilicon layer. On both sides of the channel region of the active layer, the polysilicon layer is conductive to form the source and drain electrodes.
  • the signal line is electrically connected to the polysilicon source or drain electrodes formed by conducting through a via hole.
  • the transistor is a top gate transistor, and a via hole for electrically connecting the signal line to the source or drain electrodes of the corresponding transistor passes through the gate metal layer and the data metal layer, and a portion of the metal pattern of the gate metal layer and the data metal layer can be used as a relay connector for electrically connecting the via hole, but embodiments of the present disclosure are not limited thereto.
  • the shapes of the various sub-pixels described in the embodiments of the present disclosure are all approximate shapes.
  • the edges of the sub-pixels are strictly straight lines and the corners are strictly angular.
  • the light emitting layer can be formed by a mask vapor deposition process, and therefore, its corners can be rounded.
  • metal etching can have a draft angle, so when forming a light emitting layer of a sub-pixel by vapor deposition, one angle of the light emitting layer can be removed.
  • the shapes of each sub-pixel are all rounded corners.
  • the first sub-pixel 111 and the second sub-pixel 112 are sub-pixels of different colors
  • the first sub-pixel 111 and the second sub-pixel 112 form a pixel P
  • the third sub-pixel 113 and the fourth sub-pixel 114 are sub-pixels of different colors
  • the third sub-pixel 113 and the fourth sub-pixel 114 form a pixel P
  • sub-pixels of other surrounding pixels need to be borrowed for color display when displaying an image.
  • the first sub-pixel 111 and the fourth sub-pixel 114 are green sub-pixels
  • the second sub-pixel 112 is red sub-pixel
  • the third sub-pixel 113 is blue sub-pixel.
  • a red sub-pixel and a green sub-pixel form a pixel
  • a blue sub-pixel and a green sub-pixel form a pixel
  • the pixel P here only includes sub-pixels of two colors. When displaying an image, it is necessary to use sub-pixels of other surrounding pixels for color display. Therefore, the pixel P here can also be referred to as a virtual pixel. In a case of high resolution, green sub-pixels play a decisive role in the perceived luminance center position of each pixel.
  • the luminance center of a pixel formed by one red sub-pixel and one green sub-pixel is located between the red sub-pixel and the green sub-pixel and closer to the green sub-pixel
  • the luminance center of a pixel formed by one blue sub-pixel and one green sub-pixel is located between the blue sub-pixel and the green sub-pixel and closer to the green sub-pixel.
  • the shapes of the second sub-pixel and the third sub-pixel are both hexagon, and the three groups of opposite sides of the hexagon are all parallel;
  • the shapes of the first sub-pixel and the fourth sub-pixel are both pentagon, the pentagon includes a group of parallel opposite sides and a vertical side, and the vertical side is vertical to the group of parallel opposite sides;
  • the vertical edges of the first sub-pixel and the fourth sub-pixel are adj acently arranged; a group of longer parallel opposite sides in the second sub-pixel, a group of long parallel opposite sides in the third sub-pixel, a group of parallel opposite sides in the first sub-pixel and a group of parallel opposite sides in the fourth sub-pixel are parallel.
  • the sub-pixels are generally designed into regular shapes, such as hexagons, pentagons, trapezoids or other shapes.
  • the center of the sub-pixel can be the geometric center of the above regular shape.
  • the shape of the formed sub-pixel will generally deviate from the regular shape of the above design.
  • the corners of the above regular shape may become rounded corners, so the shape of the sub-pixel can be rounded corners.
  • the shape of the actually manufactured sub-pixel may also have other changes from the designed shape.
  • the shape of a sub-pixel designed as a hexagon may become approximately oval in the actual manufacturing process.
  • the center of the sub-pixel may not be the strict geometric center of the irregular shape of the formed sub-pixel.
  • the center of the sub-pixel can have a certain offset from the geometric center of the shape of the sub-pixel.
  • the center of a sub-pixel refers to any point in an area bounded by a specific point on a radiation line segment starting from the geometric center of the sub-pixel to each point on the edge of the sub-pixel, and the specific point on the radiation line segment is 1 ⁇ 3 of the length of the radiation line segment from the geometric center.
  • the definition of sub-pixel center is applicable to the center of sub-pixel shape with regular shape as well as the center of sub-pixel with irregular shape.
  • the shapes of the actually manufactured sub-pixels may deviate from the designed shapes of the sub-pixels. Therefore, in the present disclosure, there may be certain errors regarding the position of the sub-pixel center and the relationships between the sub-pixel center and the positions of other objects. For example, if the lines between the sub-pixel centers or the lines passing through the sub-pixel centers satisfy other corresponding restrictions (e.g., the extension direction), the lines need only pass through the area enclosed by the centers of the above-mentioned radiation line segments. Further for example, the center of the sub-pixel is located on a certain line, which refers to that the line passes through the area enclosed by the center of the above-mentioned radiation line segment.
  • shapes of each sub-pixel in the drawings include an angle strictly formed by two line segments
  • shapes of each sub-pixel can be a rounded corner pattern. That is, on the basis of the above various graphic shapes, the corners of each sub-pixel are rounded. For example, upon the light emitting layer being evaporated through a mask, the corner portion of the light emitting layer may naturally form a rounded shape.
  • At least one embodiment of the present disclosure provides a display device including any of the above display substrates. Therefore, the color shift of different viewing angles can be improved, and the display quality can be improved.
  • the display device adopts the display panel with the pixel arrangement structure provided by the embodiments of the present disclosure the resolution of the display device can be further improved, and a display device with real high resolution can be further provided.
  • the pixel arrangement structure provided by the embodiments of the present disclosure can have better symmetry, further, the uniformity of pixel distribution can be improved, and the display effect of the display device can be improved.
  • the display device can be any product or component with display function such as a smart phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc.

Abstract

A display substrate and a display device. The display substrate includes a first sub-pixel (111), a second sub-pixel (112), and a first spacer (0101). A line connecting the center (C1) of the first sub-pixel (111) and the center (C2) of the second sub-pixel (112) is a center line (CL1); the center line (CL1) is not perpendicular to a first direction (X); the first direction (X) is at least one of the row direction or the column direction. The first spacer (0101) is disposed between the first sub-pixel (111) and the second sub-pixel (112), and the extension direction (E01) of first spacer (0101) between the first sub-pixel (111) and the second sub-pixel (112) is not perpendicular to the first direction (X). Therefore, the display substrate can improve the different viewing angle color cast and improve the display quality.

Description

  • This application is a continuation application of U.S. Ser. No. 16/622,045 filed on Dec. 12, 2019 which is a national stage application of PCT/CN2018/124881 filed on Dec. 28, 2018, which claims priority of the Chinese Patent Application No. 201810135948.6, filed on Feb. 9, 2018, the disclosure of which is incorporated herein by reference in its entirety as part of the present application.
  • TECHNICAL FIELD
  • Embodiments of the present disclosure relates to a display substrate and a display device.
  • BACKGROUND
  • With the continuous development of display technology, people have higher and higher requirements for the resolution of display devices. Due to the advantages of high display quality, the application range of high-resolution display devices is becoming wider and wider. In general, the resolution of a display device can be improved by reducing the size of pixels and reducing the spacing between pixels. However, the reduction in the size of pixels and the spacing between pixels also requires higher and higher precision of the manufacturing process, which leads to the increase in the difficulty of the manufacturing process and the manufacturing cost of the display device.
  • On the other hand, sub-pixel rendering (SPR) technology can make use of the difference of human eyes' resolution to sub-pixels of different colors, change the mode of defining a pixel simply by conventional red, green and blue sub-pixels, share sub-pixels of certain position resolution insensitive colors among different pixels, and use relatively few sub-pixels to simulate and realize the same pixel resolution performance capability, thus reducing the difficulty of the manufacturing process and the manufacturing cost.
  • In display devices, spacers are usually provided to play a supporting role.
  • SUMMARY
  • Embodiments of the present disclosure provide a display substrate and a display device to reduce color shift under different viewing angles and improve display quality.
  • At least one embodiment of the present disclosure provides a display substrate, including: a first sub-pixel, a second sub-pixel and a first spacer; a connection line between a center of the first sub-pixel and a center of the second sub-pixel is a center connection line, the center connection line is not perpendicular to a first direction, and the first direction is at least one selected from the group consisting of a row direction and a column direction; the first spacer is between the first sub-pixel and the second sub-pixel, and an extension direction of the first spacer between the first sub-pixel and the second sub-pixel is not perpendicular to the first direction.
  • For example, the extension direction of the first spacer has an included angle with the first direction, and a range of the included angle is 40°-50° or 130°-140°.
  • For example, the included angle is 45° or 135°.
  • For example, the center connection line is not parallel to the first direction.
  • For example, the display substrate includes a plurality of pixel groups, each of the plurality of pixel groups includes one first sub-pixel, one second sub-pixel, one third sub-pixel and one fourth sub-pixel; and the first spacer is between the first sub-pixel and the second sub-pixel which belong to different ones of the plurality of pixel groups.
  • For example, in each of the plurality of pixel groups, a connection line between the center of the second sub-pixel and a center of the third sub-pixel is a first line segment; the first sub-pixel and the fourth sub-pixel are between the second sub-pixel and the third sub-pixel and are respectively on two sides of the first line segment; a connection line between the center of the first sub-pixel and a center of the fourth sub-pixel is a second line segment; a length of the second line segment is smaller than a length of the first line segment.
  • For example, a ratio of the length of the second line segment to the length of the first line segment is less than or equal to ¾.
  • For example, the display substrate further includes: a second spacer, the second spacer is between two adjacent ones of the plurality of pixel groups, and the second spacer is between the fourth sub-pixel and the second sub-pixel which belong to different ones of the plurality of pixel groups, or between the fourth sub-pixel and the third sub-pixel which belong to different ones of the plurality of pixel groups; an extension direction of the second spacer between the fourth sub-pixel and the second sub-pixel or between the fourth sub-pixel and the third sub-pixel is not perpendicular to the first direction.
  • For example, the first spacer is between the first sub-pixel and the second sub-pixel which belong to two adjacent ones of the plurality of pixel groups, and/or between the first sub-pixel and the fourth sub-pixel which belong to two adjacent ones of the plurality of pixel groups.
  • For example, the first spacer and the second spacer around the second sub-pixel or the fourth sub-pixel form a spacer pair, and the first spacer and the second spacer in the spacer pair are on the same side of the second sub-pixel or the third sub-pixel.
  • For example, in the same one of the plurality of pixel groups, no spacer is among the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel.
  • For example, in each of the plurality of pixel groups, the first sub-pixel and the fourth sub-pixel are both strip-shaped, and an extension direction of the first sub-pixel and an extension direction of the fourth sub-pixel do not coincide.
  • For example, an included angle between the extension direction of the first sub-pixel and the extension direction of the fourth sub-pixel ranges from 70° to 100°.
  • For example, the first sub-pixel and the fourth sub-pixel are symmetrically arranged relative to the first line segment, and/or the second sub-pixel and the third sub-pixel are symmetrically arranged relative to the second line segment.
  • For example, the first line segment extends in the first direction and the second line segment extends in a second direction; the plurality of pixel groups are arranged in an array to form a plurality of rows and a plurality of columns, and pixel groups of even rows and pixel groups of odd rows are arranged in a staggered way; a length of a center connection line between the second sub-pixel and third sub-pixel which are adjacent to each other in two adjacent ones of the plurality of pixel groups in the first direction is less than the length of the first line segment; in two adjacent ones of the odd rows or in two adjacent ones of the even rows, a length of a center connection line between the first sub-pixel and fourth sub-pixel which are adjacent to each other in two adjacent ones of the plurality of pixel groups in the second direction is greater than the length of the second line segment.
  • For example, an extension line of the second line segment of each pixel group passes through a midpoint of a center connection line between two pixel groups which are adjacent to the pixel group in the second direction and are in the same row.
  • For example, in two adjacent ones of the odd rows or in two adjacent ones of the even rows, an intersection point of a center connection line between two third sub-pixels in two adjacent ones of the plurality of pixel groups arranged in the second direction and the first line segment in one pixel group between the two third sub-pixels is between a center of the first line segment and the center of the second sub-pixel of the one pixel group.
  • For example, at least one selected from the group consisting of the first sub-pixel and the fourth sub-pixel is a sub-pixel with a human eye sensitive color.
  • For example, in the first direction, widths of the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel are the same.
  • For example, the first line segment extends in the first direction and the second line segment extends in the second direction, the first spacer and the second spacer have elongated shapes, and extension directions of the elongated shapes are different from the first direction and the second direction.
  • For example, at least one selected from the group consisting of the first spacer and the second spacer does not overlap with the center connection line between the first sub-pixel and the third sub-pixel.
  • For example, the first line segment extends in the first direction and the second line segment extends in the second direction, and an orthographic projection of the first spacer on a straight line in the first direction does not overlap or partially overlap with an orthographic projection of at least one selected from the group consisting of the second sub-pixel and the third sub-pixel on a straight line in the first direction.
  • For example, a ratio of a sum of numbers of the first spacer and the second spacer to a number of sub-pixels is 0.3-1, and the sub-pixels include the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel.
  • For example, the first spacer and the second spacer are both transparent spacers.
  • At least one embodiment of the present disclosure further provides a display substrate, including:
  • a pixel arrangement structure including a plurality of pixel groups; each of the plurality of pixel groups includes a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel; in each of the plurality of pixel groups, a connection line between a center of the second sub-pixel and a center of the third sub-pixel is a first line segment; the first sub-pixel and the fourth sub-pixel are between the second sub-pixel and the third sub-pixel and are respectively at two sides of the first line segment; a connection line between a center of the first sub-pixel and the center of the fourth sub-pixel is a second line segment; a length of the second line segment is less than a length of the first line segment;
  • the display substrate further includes at least one of the following spacers:
  • a first spacer between the first sub-pixel and the second sub-pixel which are adjacent to each other in two adjacent ones of the plurality of pixel groups;
  • a second spacer between the fourth sub-pixel and the second sub-pixel which are adjacent to each other in two adjacent ones of the plurality of pixel groups; and
  • a third spacer between the first sub-pixel and the fourth sub-pixel in each of the plurality of pixel groups.
  • For example, the plurality of pixel groups are arranged in an array to form a plurality of rows and a plurality of columns, and pixel groups of even rows and pixel groups of odd rows are arranged in a staggered way.
  • For example, the pixel groups of the even rows and the pixel groups of the odd rows are offset by a length of half a pixel group in a first direction, and the first direction is a row direction.
  • At least one embodiment of the present disclosure further provides a display device, including the display substrate according to at least one embodiment of the present disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to clearly illustrate the technical solution of the embodiments of the present disclosure, the drawings of the embodiments will be briefly described in the following; it is obvious that the described drawings are only related to some embodiments of the present disclosure and thus are not limitative of the present disclosure.
  • FIG. 1A is a schematic diagram of a display substrate;
  • FIG. 1B is a schematic cross-sectional view of a display substrate;
  • FIG. 1C is a schematic view of a display device viewed at a certain viewing angle;
  • FIG. 2A is a schematic diagram of a display substrate according to an embodiment of the present disclosure;
  • FIG. 2B is a schematic diagram of a display substrate according to another embodiment of the present disclosure;
  • FIG. 2C is a schematic diagram of a display substrate according to another embodiment of the present disclosure;
  • FIG. 2D is a schematic diagram of a display substrate according to an embodiment of the present disclosure;
  • FIG. 2E is a schematic diagram of a pixel arrangement structure in a display substrate according to an embodiment of the present disclosure;
  • FIG. 3A is a schematic diagram of a pixel arrangement structure in a display substrate according to an embodiment of the present disclosure;
  • FIG. 3B is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure;
  • FIG. 3C is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure;
  • FIG. 4 is a schematic diagram of a pixel arrangement structure in a display substrate according to an embodiment of the present disclosure;
  • FIG. 5A is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure;
  • FIG. 5B is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure;
  • FIG. 6 is a schematic diagram of a pixel arrangement structure in a display substrate according to an embodiment of the present disclosure;
  • FIG. 7A is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure;
  • FIG. 7B is a schematic diagram of a pixel arrangement structure in a display substrate according to another embodiment of the present disclosure;
  • FIG. 8 is a schematic diagram of a pixel arrangement structure, drive lines and data lines of a display substrate according to another embodiment of the present disclosure;
  • FIG. 9 shows a schematic view of a display substrate;
  • FIG. 10 shows a schematic diagram of a display substrate according to one or more embodiments of the present disclosure;
  • FIG. 11 shows a schematic diagram of a display substrate according to one or more embodiments of the present disclosure; and
  • FIG. 12 is a cross-sectional view of a display substrate according to an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • In order to make objects, technical details and advantages of the embodiments of the present disclosure apparent, the technical solutions of the embodiment will be described in a clearly and fully understandable way in connection with the drawings related to the embodiments of the present disclosure. It is obvious that the described embodiments are just a part but not all of the embodiments of the present disclosure. Based on the described embodiments herein, those skilled in the art can obtain other embodiment(s), without any inventive work, which should be within the scope of the present disclosure.
  • Unless otherwise defined, all the technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the present disclosure belongs. The terms “first,” “second,” etc., which are used in the description and the claims of the present application for disclosure, are not intended to indicate any sequence, amount or importance, but distinguish various components. The terms “comprise,” “comprising,” “include,” “including,” etc., are intended to specify that the elements or the objects stated before these terms encompass the elements or the objects and equivalents thereof listed after these terms, but do not preclude the other elements or objects. The phrases “connect”, “connected”, etc., are not intended to define a physical connection or mechanical connection, but may include an electrical connection, directly or indirectly.
  • FIG. 1A illustrates a display substrate. As illustrated by FIG. 1A, the display substrate includes a pixel arrangement structure, which is a typical pentile arrangement. A minimum repeating unit includes two green sub-pixels 0111, a red sub-pixel 0112 and a blue sub-pixel 0113. The pixels are uniformly distributed, and high pixel per inch (PPI) display is easy to realize. In each row, the minimum repeating units are arranged in a first direction X, and spacers 010 are provided between adjacent sub-pixels that are in the same minimum repeating unit or between different minimum repeating units. The spacers 010 extend in a second direction Y. The first direction X is perpendicular to the second direction Y.
  • FIG. 1B illustrates a schematic cross-sectional view of a display substrate, which may be a cross-sectional view taken along the direction AB in FIG. 1A. As illustrated by FIG. 1B, a green sub-pixel 0111, a red sub-pixel 0112, a blue sub-pixel 0113, and spacers 010 are disposed on a base substrate 101. Upon the display substrate being viewed at a certain angle, the spacers have different influence on the luminous brightness of each sub-pixel, resulting in viewing angle color shift. For example, upon the display substrate being viewed at different angles along the first direction X, the spacers 010 block light of some sub-pixels from entering the human eye, thereby forming color shift at different viewing angles. That is, upon the same picture being viewed from the left and right sides of FIG. 1B, there is a viewing angle color shift.
  • FIG. 1C illustrates a schematic view of a display device viewed at a certain viewing angle. FIG. 1C shows an example of a display device being viewing on the right side of the display device. Because the spacers 010 block light of some sub-pixels, upon the display device being viewed from the left side, the color of the same picture is different from that when viewing from the right side.
  • FIG. 2A illustrates a display substrate according to at least one embodiment of the present disclosure. The display substrate includes a first sub-pixel 111, a second sub-pixel 112, and a first spacer 0101. A connection line between a center C1 of the first sub-pixel 111 and a center C2 of the second sub-pixel 112 is a center connection line CL1, which is not perpendicular to the first direction X, and the first direction X is at least one of the row direction or the column direction.
  • The first spacer 0101 is disposed between the first sub-pixel 111 and the second sub-pixel 112, and an extension direction of the first spacer 0101 between the first sub-pixel 111 and the second sub-pixel 112 is not perpendicular to the first direction X.
  • For example, the first spacer 0101 extends between the first sub-pixel 111 and the second sub-pixel 112, and the extension direction E01 of the first spacer 0101 is not perpendicular to the first direction X. In this embodiment of the present disclosure, the first direction X being the row direction is taken as an example to explain. The extension direction E01 of the first spacer 0101 is different from the first direction and the second direction.
  • In the display substrate provided by at least one embodiment of the present disclosure, the arrangement mode of the spacers is adjusted, and upon the extension direction E01 of the first spacer 0101 being not perpendicular to the first direction X, the shielding of the first spacer to the first sub-pixel 111 can be reduced, and the viewing angle color shift when viewing a picture under different viewing angles can be further reduced.
  • As illustrated by FIG. 2A, in the display substrate provided by one or more embodiments of the present disclosure, in order to reduce the shielding of the first sub-pixel 111 by the first spacer 0101, the extension direction E01 of the first spacer 0101 has an included angle θ1 with the first direction X. For example, the included angle θ1 ranges from 40 to 50 degrees or from 130 to 140 degrees. Further, for example, the included angle θ1 is 45 degrees or 135 degrees. In this case, the first spacer 0101 has the smallest shielding to the first sub-pixel 111, which can greatly improve the viewing angle color shift.
  • As illustrated by FIG. 2A, in the display substrate provided by one or more embodiments of the present disclosure, the center connection line CL1 is not parallel to the first direction X.
  • As illustrated by FIG. 2A, in the display substrate provided by one or more embodiments of the present disclosure, the second sub-pixel 112 is included in the first pixel group 011 and the first sub-pixel 111 is included in the second pixel group 012. The first pixel group 011 further includes one first sub-pixel 111, one third sub-pixel 113, and one fourth sub-pixel 114, and the second pixel group 012 further includes one second sub-pixel 112, one third sub-pixel 113, and one fourth sub-pixel 114. In the first pixel group 011 and the second pixel group 012, a connection line between the center C2 of the second sub-pixel 112 and the center C3 of the third sub-pixel 113 is a first line segment LS1; the first sub-pixel 111 and the fourth sub-pixel 114 are located between the second sub-pixel 112 and the third sub-pixel 113, and are respectively located on both sides of the first line segment LS1. The first pixel group 011 and the second pixel group 012 are adjacent in the column direction and staggered in the row direction. For example, both the first pixel group 011 and the second pixel group 012 can be referred to as pixel group 01.
  • As illustrated by FIG. 2A, in the display substrate provided by one or more embodiments of the present disclosure, in the first pixel group 011 and the second pixel group 012, a connection line between the center C1 of the first sub-pixel 111 and the center C4 of the fourth sub-pixel 114 is a second line segment LS2; the ratio of the length of the second line segment LS2 to the length of the first line segment LS1 is less than or equal to ¾. Thus, upon the first sub-pixel 111 and the fourth sub-pixel 114 being sub-pixels of the same color, the light emitting layer patterns of the first sub-pixel 111 and the fourth sub-pixel 114 in the same pixel group 01 can be formed by vapor deposition using the same opening of the mask plate.
  • In the display substrate provided by one or more embodiments of the present disclosure, the first spacer 0101 may be disposed between the first sub-pixel 111 and the second sub-pixel 112 of two adjacent ones of the plurality of pixel groups and/or disposed between the first sub-pixel 111 and the fourth sub-pixel 114 of two adjacent ones of the plurality of pixel groups.
  • As illustrated by FIG. 2A, the display substrate according to one or more embodiments of the present disclosure further includes a second spacer 0102, the second spacer 0102 is located between adjacent pixel groups 01, the second spacer 0102 is located between the fourth sub-pixel 114 and the second sub-pixel 112 which belong to different ones of the plurality of pixel groups 01, or is located between the fourth sub-pixel 114 and the third sub-pixel 113 which belong to different ones of the plurality of pixel groups; an extension direction of the second spacer 0102 between the fourth sub-pixel 114 and the second sub-pixel 112 or between the fourth sub-pixel 114 and the third sub-pixel 113 is not perpendicular to the first direction X.
  • For example, the second spacer 0102 extends between the fourth sub-pixel 114 and the second sub-pixel 112 which belong to different ones of the plurality of pixel groups 01, or extends between the fourth sub-pixel 114 and the third sub-pixel 113 which belong to different ones of the plurality of pixel groups 01. The extension direction E02 of the second spacer 0102 is not perpendicular to the first direction X. For example, the extension direction E02 of the second spacer 0102 is different from the first direction and the second direction.
  • For example, the display substrate includes a plurality of first pixel groups 011 located in odd rows and a plurality of second pixel groups 012 located in even rows. The display substrate further includes a second spacer 0102, and the second spacer 0102 extends between the fourth sub-pixel 114 in at least one selected from the group consisting of the first pixel group 011 and the second pixel group 012 and at least one selected from the group consisting of the second sub-pixel 112 and the third sub-pixel 113 adjacent thereto in the column direction. The extension direction E02 of the second spacer 0102 is not perpendicular to the first direction X.
  • For example, in order to reduce the shielding of the fourth sub-pixel 114 by the second spacer 0102, the extension direction E02 of the second spacer 0102 has an included angle θ2 with the first direction X. For example, the included angle θ2 ranges from 40 to 50 degrees or from 130 to 140 degrees. Further, for example, the included angle θ2 is 45 degrees or 135 degrees. In this case, the second spacer has the smallest shielding to the fourth sub-pixel 114, which can further reduce the shielding to the pixels sensitive to human eyes and greatly improve the viewing angle color shift.
  • As illustrated by FIG. 2A, the spacers can have elongated shapes, and their extension directions are different from the first direction and the second direction. The spacers include a first spacer 0101 and a second spacer 0102. For example, the shapes of the spacers are orthographic projections of the spacers on the base substrate. Similarly, the shapes of the sub-pixels are the shapes of the orthographic projections of the sub-pixels on the base substrate.
  • As illustrated by FIG. 2A, a connection line between the center of the fourth sub-pixel 114 in the second pixel group 012 and the center of the third sub-pixel 113 or the fourth sub-pixel 114 in the first pixel group 011 adjacent to the fourth sub-pixel 114 is a center line CL2, and the center line CL2 is not perpendicular to the first direction X.
  • In the display substrate provided by one or more embodiments of the present disclosure, at least one of the first sub-pixel 111 and the fourth sub-pixel 114 is a sub-pixel with a human eye sensitive color. For example, the second sub-pixel 112 and the third sub-pixel 113 can be sub-pixels of color insensitive to human eyes. In this embodiment of the present disclosure, the shielding of the sensitive color sub-pixels by the first spacer and/or the second spacer can be reduced, so that the color shift under different viewing angles can be reduced. For example, the first spacer and/or the second spacer can be located between sub-pixels of sensitive color and sub-pixels of non-sensitive color.
  • As illustrated by FIG. 2A, in the display substrate provided by one or more embodiments of the present disclosure, the first spacer 0101 and the second spacer 0102 located around the second sub-pixel 112 or the fourth sub-pixel 114 form a spacer pair 01012, and the first spacer 0101 and the second spacer 0102 in the spacer pair 01012 are located on the same side of the second sub-pixel 112 or the third sub-pixel 113. In FIG. 2A, the spacer pair 01012 is illustrated as being located on the same side of the second sub-pixel 112. The spacer pair 01012 is located around the non-sensitive color sub-pixels, thereby reducing the influence of the spacer pair 01012 on the display color and reducing the viewing angle color shift.
  • For AMOLED display substrates, spacers have two functions. One function is to support the mask plate for vapor deposition of the light emitting layer pattern, and the other function is to support the cover plate during packaging.
  • As illustrated by FIG. 2A, in the display substrate provided by one or more embodiments of the present disclosure, in order to reduce the number of spacers in the display substrate and reduce color shift at different viewing angles, spacers are not provided between the first sub-pixel 111, the second sub-pixel 112, the third sub-pixel 113 and the fourth sub-pixel 114 in at least one of the first pixel group 011 and the second pixel group 012 (in the same pixel group 01). For example, in this case, spacer pairs can be provided between the pixel groups 01. For example, three spacer pairs can be formed around each pixel group 01, thereby facilitating the support of the mask plate during the fabrication of the light emitting layer.
  • FIG. 2B illustrates a display substrate provided by at least one embodiment of the present disclosure. In the display substrate, the first spacer 0101 and the second spacer 0102 of the spacer pair 01012 are located on the same side of the third sub-pixel 113.
  • FIG. 2C illustrates a display substrate provided by at least one embodiment of the present disclosure. The display substrate includes two types of spacer pairs 01012. One type of spacer pair 01012 is located on the same side (e.g., left side) of the third sub-pixel 113 in the first pixel group 011. Another type of spacer pair 01012 is located on the same side (e.g., right side) of the second sub-pixel 112 in the second pixel group 012.
  • FIG. 2D illustrates a display substrate provided by at least one embodiment of the present disclosure. The display substrate includes a first spacer 0101 and a third spacer 0103. The third spacer 0103 can be disposed between two non-sensitive colors of different pixel groups 01. For example, between the second sub-pixel 112 and the third sub-pixel 113.
  • In order to facilitate the description of the pixel arrangement structure, the spacer in the display substrate is removed upon the pixel arrangement structure being described below. The first spacer 0101, the second spacer 0102, the third spacer 0103 and the like in this embodiment of the present disclosure may be disposed in the pixel arrangement structure described below.
  • As illustrated by FIG. 2E, at least one embodiment of the present disclosure provides a display substrate, and the pixel arrangement structure includes a plurality of pixel groups 01. Each of the plurality of pixel group 01 includes one first sub-pixel 111, one second sub-pixel 112, one third sub-pixel 113, and one fourth sub-pixel 114. The connection line between the center C2 of the second sub-pixel 112 and the center C3 of the third sub-pixel 113 is a first line segment LS1; the first sub-pixel 111 and the fourth sub-pixel 114 are located between the second sub-pixel 112 and the third sub-pixel 113 and are respectively located on both sides of the first line segment LS1. For example, a connection line between the center C1 of the first sub-pixel 111 and the center C4 of the fourth sub-pixel 114 is a second line segment LS2. The length of the second line segment LS2 is smaller than the length of the first line segment LS1. For example, in order to obtain a better pixels per inch arrangement effect, the ratio of the lengths of the second line segment LS2 and the first line segment LS1 is less than or equal to ¾.
  • In the display substrate provided by at least one embodiment of the present disclosure, in the pixel arrangement structure of the display substrate, the distance between the first sub-pixel and the fourth sub-pixel in the same pixel group is reduced, on the one hand, the pixel arrangement can be made tighter, the color mixing risk can be reduced, the color edge can be improved, and the visual graininess can be improved. On the other hand, the spacing between sub-pixels can be widened to facilitate fabrication. Alternatively, a balance can be found between the tightness of pixel arrangement and the spacing between sub-pixels, so that the pixel arrangement is relatively tight and the spacing between sub-pixels (pixel defining layer spacing) is widened to a certain extent, which is beneficial to reducing the risk of color mixing, improving color edges, improving the visual graininess and widening the spacing between sub-pixels. For example, the shape of each sub-pixel given in the embodiments of the present disclosure can be defined by a pixel defining layer, but is not limited thereto. For example, each sub-pixel in the figure is an actual light emitting area. The specific shape of each sub-pixel can be set according to the preparation process. For example, the actual light emitting area can be determined by the shape of at least one of the electrode, the light emitting layer, and the pixel defining layer.
  • For example, upon the pixel arrangement structure being applied to an OLED display substrate and the first sub-pixel and the fourth sub-pixel are of the same color, the light emitting layer patterns of the first sub-pixel and the fourth sub-pixel in the same pixel group can also be formed by vapor deposition using the same opening of the mask plate.
  • For example, the first sub-pixel 111 and the fourth sub-pixel 114 can be sub-pixels of human eye sensitive color, for example, may be green sub-pixels, yellow sub-pixels, white sub-pixels, etc. For example, the areas of the first sub-pixel 111 and the fourth sub-pixel 114 are relatively small compared to the second sub-pixel 112 and the third sub-pixel 113. For example, the area of the first sub-pixel 111 is smaller than the area of the second sub-pixel 112, and/or the area of the first sub-pixel 111 is smaller than the area of the third sub-pixel 113. Similarly, the fourth sub-pixel 114 may refer to the above description of the area of the first sub-pixel 111. That is, the area of the fourth sub-pixel 114 is smaller than the area of the second sub-pixel 112, and/or the area of the fourth sub-pixel 114 is smaller than the area of the third sub-pixel 113.
  • In the display substrate provided by at least one embodiment of the present disclosure, the pixel arrangement structure can improve the distribution uniformity of the sensitive color sub-pixels by adjusting the spacing of the sensitive color sub-pixels in the visual position, thereby improving the visual resolution of the pixel arrangement structure and improving the display quality.
  • The second sub-pixel 112 and the third sub-pixel 113 may be sub-pixels of color insensitive to human eyes. For example, one of the second sub-pixel 112 and the third sub-pixel 113 is a red sub-pixel and the other is a blue sub-pixel, but is not limited thereto. In this embodiment of the present disclosure, the second sub-pixel 112 is a red sub-pixel and the third sub-pixel 113 is a blue sub-pixel. It should be noted that when the pixel arrangement structure adopts the red green blue (RGB) mode, the above-mentioned human eye sensitive color can be green.
  • As illustrated by FIG. 2E, the first line segment LS1 can extend in the first direction X and the second line segment LS2 can extend in the second direction Y. For example, the first direction X is perpendicular to the second direction Y. For example, in each pixel group 01, the first sub-pixel 111 and the fourth sub-pixel 114 are arranged with the first direction X as an axis of symmetry, so that the pixel structure is arranged more uniformly. For example, the first sub-pixel 111 is uniformly arranged relative to the second sub-pixel 112 and the third sub-pixel 113, and is kept consistent, so that the pixel structure is arranged more uniformly.
  • As illustrated by FIG. 2E, in the pixel arrangement structure of the display substrate provided by one or more embodiments of the present disclosure, the second line segment LS2 is perpendicular to the first line segment LS1. Thus, the pixel arrangement can be made more uniform. For example, the second line segment LS2 is located on the perpendicular bisector of the first line segment LS1. In this case, the widths of sub-pixels of each color in the first direction X can be the same, but are not limited thereto. Therefore, the pixel structure distribution can be made more uniform, the picture display quality is higher, and the problem of display graininess at lower PPI is improved.
  • As illustrated by FIG. 2E, for convenience of description, a plurality of square dashed frames are provided, each dashed frame has a length of 1/2L, and four dashed frames can form a square with an edge length of L. In FIG. 2E, there is a pixel group 01 in the dark rectangle dashed frame. The pixel group 01 can be the minimum repeating unit of the pixel arrangement structure. For example, the pixel arrangement structure can be obtained by translating and copying the minimum repeating unit. For example, sub-units that can be translated and repeated to be arranged to form a pixel structure are not included in the minimum repeating unit. For example, as illustrated by FIG. 2, the dark rectangular dashed frame has a length of 2L and a width of L.
  • As illustrated by FIG. 2E, the first line segment SL1 is perpendicular to the second line segment SL2 and is vertically bisected with each other. The first line segment SL1 vertically bisects the second line segment SL2. The second line segment SL2 also vertically bisects the first line segment SL1. For example, in the pixel group 01, the maximum area enclosed by the connection lines between the centers of the first sub-pixel 111, the second sub-pixel 112, the fourth sub-pixel 114 and the third sub-pixel 113 is rhombus, and the first line segment SL1 and the second line segment SL2 are respectively diagonal lines of the rhombus.
  • As illustrated by FIG. 2E, in the pixel group 01, the distance between the center C1 of the first sub-pixel 111 and the center C4 of the fourth sub-pixel 114 can be greater than or equal to ½L, for example, the distance can range from ½L to L. For example, the first sub-pixel 111 and the fourth sub-pixel may adopt sub-pixels of the same color. When the first sub-pixel 111 and the fourth sub-pixel adopt sub-pixels of the same color, such as the first sub-pixel 111, the setting of the distance can also avoid the situation that two adjacent first sub-pixels are difficult to distinguish due to the close distance between the adjacent first sub-pixels and are combined into one by human vision, thus avoiding the graininess caused thereby. Therefore, the pixel arrangement structure can improve the distribution uniformity of the first sub-pixels, thereby improving the visual resolution and also improving the display quality.
  • As illustrated by FIG. 2E, the distance between the center C3 of the third sub-pixel 113 and the center C2 of the second sub-pixel 112 can be 4/3L. In order to make the ratio of the length of the second line segment LS2 to the length of the first line segment LS1 less than or equal to ¾, the distance between the third sub-pixel 113 and the second sub-pixel 112 in the same pixel group can be increased and/or the distance between the first sub-pixel 111 and the fourth sub-pixel 114 can be decreased under the condition permitted by the process.
  • As illustrated by FIG. 2E, in the display substrate provided by one or more embodiments of the present disclosure, in order to obtain a closely arranged pixel structure, the ratio of the lengths of the second line segment LS2 and the first line segment LS1 can be greater than or equal to ⅜.
  • Please continue to refer to FIG. 2A, as illustrated by FIG. 2A, at least one of the first spacer 0101 and the second spacer 0102 does not overlap with the center connection line between the first sub-pixel 111 and the third sub-pixel 113. For example, at least one of the first spacer 0101 and the second spacer 0102 does not overlap with the center connection line between the blue sub-pixel and the green sub-pixel.
  • For example, in order to reduce color shift at different viewing angles, the orthographic projection of the first spacer 0101 on a straight line in the first direction does not overlap or partially overlap with the orthographic projection of at least one of the second sub-pixel 112 and the third sub-pixel 113 on the straight line in the first direction.
  • For example, the ratio of the sum of the numbers of the first spacers 0101 and the second spacers 0102 to the number of sub-pixels is 0.3-1. For example, the sub-pixels include the first sub-pixels 111, the second sub-pixels 112, the third sub-pixels 113, and the fourth sub-pixels 114. For example, in the same pixel group, the ratio of the sum of the numbers of the first spacer 0101 and the second spacer 0102 to the number of sub-pixels is 0.3-1.
  • The position design of the spacer to prevent angle color shift has been described above. However, embodiments of the present disclosure also provide another solution for spacers. For example, a transparent spacer can be used to prevent angle color shift. The position of the transparent spacer is not limited to the above position. For example, the transparent spacer can use a material with high light transmittance or even full transparency and meeting other alternative requirements instead of polyimide material with poor light transmittance. At this time, no matter from which angle the screen is viewed, since the selected material has high light transmittance and has no selectivity for light transmission of different wavelengths, both red light and blue light can normally emit without being blocked by the spacer. The normal light emission has nothing to do with the observation angle, thus to some extent improving the problem of angle color shift and asymmetry of left and right viewing angles under the white screen.
  • Alternative materials for the spacer may be organic silicone. Organic silicone films have excellent heat resistance, low temperature flexibility, high dielectric constant, and insulation properties. In addition, organic silicon films, such as high molecular polymer films using dimethyl siloxane (PDMS) as raw materials, are colorless and optically transparent, and can still achieve very high or even more than 90% light transmittance at millimeter-level thickness, thus enabling the spacer to have good transparency in the visible light range. Taking an organic silicon material N-(trimethoxysiliconpropyl)-4-azide-2,3,5,6-tetrafluorobenzamide (PFPA-silane) as an example, it is shown that the organic silicon material has high light transmittance (close to 80%) and has little difference in light transmittance at different wavelengths.
  • In addition, the material of the spacer can also be modified, colorless and transparent new polyimide material. Due to many excellent properties of polyimide itself and its modified high light transmittance in the whole visible light band, polyimide can be used as a transparent spacer material. For example, polyimide and silicon dioxide PI/SiO2 composite films can be used. After being modified, the light transmittance of the modified PI/SiO2 composite film is greatly improved compared with that of pure polyimide, and has almost no selectivity to wavelengths in the visible light range, and the light transmittance at different wavelengths is almost the same. Both high transmittance and non-selectivity of light transmittance to wavelength are beneficial to the improvement of angle color shift.
  • FIG. 3A illustrates the pixel arrangement structure with the dashed lines in FIG. 2E removed. The dashed lines, centers, etc. given in the embodiments of the present disclosure are for convenience of describing the given virtual lines, virtual centers. For example, the center can be the center of gravity, the intersection point of perpendicular bisector of opposite sides, etc., but is not limited thereto.
  • FIG. 3B illustrates a display substrate provided by one or more embodiments of the present disclosure. In the same pixel group 01, the first sub-pixel 111 and the fourth sub-pixel 114 adopt the same color. For example, both are the first sub-pixel 111. Since the sub-pixels of the same color do not have the problem of color mixing, the light emitting layer patterns of the first sub-pixel 111 and the fourth sub-pixel 114 in the same pixel group 01 can be vapor deposited using the same opening of the mask plate, thereby being beneficial to the screening of the mask plate, having small screening pressure and improving the quality of the screening.
  • As illustrated by FIG. 3B, because the slope of the first sub-pixels 111 of the same row is low, upon the first sub-pixels 111 belonging to the same row displaying a straight line together, the fluctuation amplitude of the first sub-pixels of adjacent pixel groups is small due to the low slope (dashed line with dense dots in FIG. 3B), thus avoiding the situation that two straight lines generated by interlocking with straight lines displayed in adjacent rows due to large fluctuation amplitude are difficult to distinguish and are combined into one visually by human eyes. Therefore, the pixel arrangement structure can improve the visual resolution.
  • FIG. 3C illustrates a display substrate provided by one or more embodiments of the present disclosure. As illustrated by FIG. 3C, in each pixel group 01, the first sub-pixel 111 and the fourth sub-pixel 114 are sub-pixels of the same color, and can include, for example, two types of pixel groups, in which pairs of sub-pixels of the same color in one type of pixel group are first sub-pixels (e.g., green sub-pixels), and pairs of sub-pixels of the same color in another type of pixel group are fourth sub-pixels (e.g., white sub-pixels or yellow sub-pixels). The colors of the two sub-pixels arranged in pairs between the second sub-pixel and the third sub-pixel in the pixel group adjacent in the diagonal direction of each pixel group are different from the colors of the sub-pixels arranged in pairs between the second sub-pixel and the third sub-pixel in the pixel group.
  • FIG. 4 illustrates a display substrate provided by one or more embodiments of the present disclosure. As illustrated by FIG. 4, the first line segment LS1 can extend in the first direction X, and a length D1 of a center connection line LS3 between adjacent second sub-pixels 112 and third sub-pixels 113 in two adjacent pixel groups 01 in the first direction X is less than a length of the first line segment LS1, so that pixels can be closely arranged. In FIG. 4, the length of the first line segment LS1 is 4/3L, but is not limited thereto. For example, the length of the first line segment LS1 can range from 11/9L to 13/9L.
  • For example, in order to allow the tight arrangement of pixels and process conditions to be combined, the ratio of the length D1 of the center connection line LS3 between the center of the adjacent second sub-pixel 112 and the center of the third sub-pixel 113 in the two adjacent pixel groups 01 in the first direction to the length of the first line segment LS1 is less than or equal to ½. In FIG. 4, the length D1 is ⅔L, but it is not limited thereto. For example, the length D1 can range from 5/9L to 7/9L.
  • As illustrated by FIG. 4, in the pixel arrangement structure of the display substrate provided by one or more embodiments of the present disclosure, a plurality of pixel groups 01 are arranged in an array, a plurality of rows and a plurality of columns are included, for example, the pixel arrangement structure includes a plurality of first pixel groups 011 located in odd rows and a plurality of second pixel groups 012 located in even rows. For example, pixel groups of even rows and pixel groups of odd rows are arranged in a staggered way. The second line segment LS2 can extend in the second direction Y. For example, in order to realize pixel arrangement density in the column direction, in the adjacent odd row or in the adjacent even row, the length D2 of the center connection line L14 between the first sub-pixel 111 and the fourth sub-pixel 114 which are adjacent to each other in two adjacent ones of the plurality of pixel groups 01 in the second direction Y is greater than the length of the second line segment LS2. For example, in two adjacent ones of the odd rows or in two adjacent ones of the even rows, the ratio of the length D2 of the center connection line L14 between the adjacent first sub-pixel 111 and the fourth sub-pixel 114 in the adjacent two pixel groups 01 in the second direction Y to the length of the second line segment LS2 ranges from 1 to 3.
  • For example, in adjacent odd rows or in adjacent even rows, the length D2 of the center connection line L14 between the adjacent first sub-pixel 111 and the fourth sub-pixel 114 in the adjacent two pixel groups 01 in the second direction Y is greater than the length of the second line segment LS2.
  • Thus, a pixel structure in which 6 pixel groups are closely arranged around one pixel group can be formed. The odd row pixel groups and the even row pixel groups are staggered. For example, the odd row pixel groups and the even row pixel groups are offset in the first direction X by the length of half a pixel group in the first direction X, for example, the offset length is L, but is not limited thereto. For example, in adjacent odd rows or in adjacent even rows, the ratio of the length D2 of the center connection line between the adjacent first sub-pixel 111 and the fourth sub-pixel 114 in the adjacent two pixel groups 01 in the second direction Y to the length of the second line segment LS2 ranges 1 to 3.
  • As illustrated by FIG. 4, in the pixel arrangement structure of the display substrate provided by one or more embodiments of the present disclosure, an extension line of the second line segment LS2 of each pixel group 01 passes through a midpoint CO of a center connection line LSC between two pixel groups 01 adjacent to the pixel group 01 in the second direction Y and located in the same row. The center of each pixel group 01 is C1, and the connection line between the centers C1 of two adjacent pixel groups 01 is the center connection line LSC. For example, the center C1 of the pixel group 01 may be the intersection point of the first line segment LS1 and the second line segment LS2.
  • For example, the extension line of the second line segment LS2 of each first pixel group 011 passes through the center C5 of the center connection line LS3 between the adjacent third sub-pixel 113 and the second sub-pixel 112 of the two second pixel groups 012 adjacent to the first pixel group 011 and located in the same row. For example, the center C5 and the center CO can be the same point.
  • As illustrated by FIG. 4, in the display substrate provided by one or more embodiments of the present disclosure, in two adjacent odd rows or two adjacent even rows, an intersection point IP1 of the center connection line LS4 between two third sub-pixels 113 in two adjacent pixel groups 01 (two adjacent first pixel groups 011 or two adjacent second pixel groups 012) arranged in the second direction Y and the first line segment LS1 in one pixel group 01 located between the two third sub-pixels 113 is located between a center IPO of the first line segment LS1 and a center C2 of the second sub-pixel 112 of the one pixel group 01. For example, the center IPO of the first line segment LS1 can be the center C 1 of the pixel group 01. For example, the intersection point IP1 is located at the midpoint of the connection line between the center IPO of the first line segment LS1 and the center C2 of the second sub-pixel 112.
  • For example, in adjacent odd rows, the intersection point IP1 of the center connection line LS4 between the two third sub-pixels 113 of the adjacent first pixel groups 011 located in the same column and the first line segment LS1 of the second pixel group 012 adjacent to the third sub-pixel 113 is located at a position between the intersection point IPO of the first line segment LS1 and the second line segment LS2 of the second pixel group 012 and the center C2 of the second sub-pixel 112. The third sub-pixel 113 above-mentioned can also be replaced by the second sub-pixel 112.
  • For example, in adjacent odd rows or adjacent even rows, the intersection point of the center connection line between two second sub-pixels 112 in two adjacent pixel groups 01 (two adjacent first pixel groups 011 or two adjacent second pixel groups 012) arranged in the second direction Y and the first line segment LS1 in the pixel group 01 located between the two second sub-pixels 112 is located between the center IPO of the first line segment LS1 and the center C3 of the third sub-pixel 113. For example, the intersection point is located at the midpoint of the connection line between the center IPO of the first line segment LS1 and the center C3 of the third sub-pixel 113.
  • For example, the first spacer 0101 is disposed between adjacent pixel groups of different rows. For example, the second spacer 0102 is disposed between adjacent pixel groups of different rows.
  • As illustrated by FIG. 4, in the pixel arrangement structure provided by one or more embodiments of the present disclosure, in the same pixel group, the closest distance between the second sub-pixel 112 and the first sub-pixel 111 is L1, the closest distance between the second sub-pixel 112 and the fourth sub-pixel 114 is L2, the closest distance between the third sub-pixel 113 and the first sub-pixel 111 is L3, the closest distance between the third sub-pixel 113 and the fourth sub-pixel 114 is L4, L1=L2=L3=L4.
  • As illustrated by FIG. 4, in the pixel arrangement structure provided by one or more embodiments of the present disclosure, the closest distance between the second sub-pixel 112 and one of the first sub-pixel 111 and the fourth sub-pixel 114 is L5, the closet distance between the third sub-pixel 113 and one of the first sub-pixel 111 and the fourth sub-pixel 114 is L6, the second sub-pixel 112 and the third sub-pixel 113 are in a pixel group being adjacent to the first sub-pixel or the fourth sub-pixel in the second direction and are not in the same row with the first sub-pixel or the fourth sub-pixel, and L5=L6.
  • For example, in an embodiment, L1=L2=L3=L4=L5=L6.
  • For example, with respect to L1, L2, L3, L4, L5, and L6, the marks about the minimum process spacing d in FIGS. 7A and 7B can also be referred to. Each nearest distance is the minimum distance between two sub-pixels. For example, Ll, L2, L3, L4, L5, and L6 can be made as close as possible to the minimum process spacing d during actual fabrication. For example, the closest distance is the distance between the closest two points on the outer edge of the two sub-pixels.
  • As illustrated by FIG. 4, in the pixel arrangement structure provided by one or more embodiments of the present disclosure, the opposite sides of adjacent pixies are approximately parallel or have an included angle less than 45 degrees, and the adjacent sub-pixels include any two adjacent ones of the first sub-pixel 111, the second sub-pixel 112, the third sub-pixel 113, and the fourth sub-pixel 114.
  • As illustrated by FIG. 5A, in the pixel arrangement structure of the display substrate provided by one or more embodiments of the present disclosure, the first sub-pixel 111 and the fourth sub-pixel 114 are both strip-shaped, and the extension direction Al of the first sub-pixel 111 does not coincide with the extension direction A2 of the fourth sub-pixel 114. For example, the extension direction Al of the first sub-pixel 111 intersects or has an included angle with the extension direction A2 of the fourth sub-pixel 114. For example, in each pixel group, the first sub-pixel 111 and the fourth sub-pixel 114 are arranged with the first direction X as an axis of symmetry and inclined at a certain angle. For example, the included angle between the inclination angle and the first direction X ranges from 30 to 50 degrees, and further for example, the included angle is 45 degrees, but is not limited thereto. For example, the extension direction Al of the first sub-pixel 111 can be the long axis direction of the first sub-pixel 111, but is not limited thereto. For example, the extension direction A2 of the fourth sub-pixel 114 can be the long axis direction of the fourth sub-pixel 114, but is not limited thereto.
  • As illustrated by FIG. 5A, in each pixel group 01 of the pixel arrangement structure provided by one or more embodiments of the present disclosure, the first sub-pixel 111 and the fourth sub-pixel 114 are symmetrically arranged with respect to the first line segment LS1. For example, in each pixel group 01, the first sub-pixel 111 and the fourth sub-pixel 114 are asymmetrically arranged with respect to the second line segment LS2.
  • For example, the second sub-pixel 112 and the third sub-pixel 113 are symmetrically arranged with respect to the second line segment LS2, but is not limited thereto.
  • For example, in this embodiment of the present disclosure, the strip shape refers to a shape in which a length in one direction is greater than a length in another direction, or a dimension in one direction is greater than a dimension in other directions. The strip shape is not limited to a rectangle, and can be other shapes, for example, may be a long hexagonal shape, an oblong shape, a trapezoid shape, or other shapes. In the embodiments of the present disclosure, the shape of each sub-pixel is not limited to a regular shape, and can be an irregular shape.
  • For example, the included angle between the extension direction Al of the first sub-pixel 111 and the extension direction A2 of the fourth sub-pixel 114 ranges from 70 degrees to 100 degrees, further, the included angle can range from 80 degrees to 95 degrees, further, the included angle can be 90 degrees (a right angle), so that the first sub-pixel 111 and the fourth sub-pixel 114 forming a larger area can be utilized to improve the light emitting area and is beneficial to the screening of the mask plate during fabricating the mask plate of the light emitting layer pattern. For example, in a case where the included angle is a right angle, deviations of up and down several degrees can be allowed. For example, it can deviate from 90 degrees by 5 degrees.
  • FIG. 5B illustrates a display substrate provided by one or more embodiments of the present disclosure, in a pixel arrangement structure of the display substrate, an included angle between an extension direction Al of the first sub-pixel 111 and an extension direction A2 of the fourth sub-pixel 114 is a right angle, and in the same pixel group 01, the first sub-pixel 111 and the fourth sub-pixel 114 are sub-pixels of the same color.
  • FIG. 6 illustrates a display substrate provided by one or more embodiments of the present disclosure. As illustrated by FIG. 6, the second sub-pixel 112 and the third sub-pixel 113 can be rhombus or approximately rhombus. Approximate rhombus includes, for example, rounded rhombus, chamfered rhombus, etc., but is not limited thereto. The sub-pixel shape of rhombus or approximately rhombus shape is more favorable for pixel dense arrangement. For example, the first sub-pixel 111 can be relatively symmetrical around the third sub-pixel 113 and the second sub-pixel 112, with the long sides of the first sub-pixel 111 all facing the second sub-pixel 112 and the short sides all facing the third sub-pixel 113 to ensure the uniformity of pixel arrangement to the greatest extent. The arrangement of the first sub-pixels 111 is more uniform, which can improve the color edge to a certain extent, is conducive to the realization of high PPI, and can improve the pixel aperture ratio as high as possible.
  • The shape of each sub-pixel is not limited to the above, and the shapes of the sub-pixels can be adjusted as required. Maximizing the area is the main principle for determining the shape of sub-pixels.
  • In order to avoid color mixing, the spacing between different color sub-pixels should be greater than the minimum process spacing d of the patterning process, and some special process symmetry requirements should be considered. For example, the FMM screening requires symmetrical opening patterns and distribution, and the shapes of the first sub-pixel and the fourth sub-pixel can be symmetrical pentagons with right-angle bottom corners respectively (as illustrated by FIG. 2E). It can be seen that the spacing between the second and third sub-pixel of adjacent pixel groups using symmetrically shaped sub-pixels are significantly larger than other spacing between different color sub-pixels (the minimum process spacing d), i.e., there is still usable area in design. Under the condition that FMM screening technology allows or adopts other symmetry insensitive (e.g. CF) processes, asymmetrical sub-pixel shapes can be adopted to realize maximum sub-pixel area.
  • FIGS. 7A and 7B illustrate pixel arrangement structures in a display substrate provided by one or more embodiments of the present disclosure. As illustrated by FIGS. 7A and 7B, under the condition that asymmetric sub-pixel shapes are allowed to be adopted, according to the minimum process spacing d of different patterning processes, the shapes of the second sub-pixel 112 and the third sub-pixel 113 can be right-angle trapezoids or right-angle trapezoids with acute angles cut off, so as to maximize the area.
  • As illustrated by FIG. 7A, because the shapes of the second sub-pixel 112 and the third sub-pixel 113 are both right-angle trapezoids, compared to the case where the shapes of the second sub-pixel 112 and the third sub-pixel 113 are both hexagonal (a hexagonal shape formed by combining two pentagons with symmetrical right-angle bottom angles), the acute angle portions 190 of the second sub-pixel 112 and the third sub-pixel 113 can further improve the areas of the second sub-pixel 112 and the third sub-pixel 113, and thus further improve the space utilization rate in the pixel group. The pixel arrangement structure can improve the space utilization rate in the pixel group.
  • As illustrated by FIG. 7B, the shapes of the second sub-pixel 112 and the third sub-pixel 113 are both isosceles trapezoids with acute angles cut off. Therefore, when the process accuracy is constant, that is, when the distances between the first sub-pixel 111 and the second sub-pixel 112 and between the first sub-pixel 111 and the third sub-pixel 113 are constant, the areas of the second sub-pixel 112 and the third sub-pixel 113 are increased, thereby improving the utilization rate of the space within the pixel group.
  • In the pixel arrangement structure in the display substrate provided by one or more embodiments of the present disclosure, the shapes of the second sub-pixel 112 and the third sub-pixel 113 include at least one of isosceles trapezoid, hexagon and rhombus, and the shape of the second sub-pixel 112 includes at least one of pentagon, rectangle and approximate rectangle. The approximate rectangle includes, for example, but is not limited to, a rounded rectangle.
  • FIG. 8 illustrates a display substrate provided by one or more embodiments of the present disclosure. As illustrated by FIG. 8, in the same row of pixel groups, the third sub-pixel 113 and the first sub-pixel 111 can be driven by the first drive line DL1, and the second sub-pixel 112 and the fourth sub-pixel 114 can be driven by the second drive line DL2. The first drive line DL1 extends in the direction E1 and the second drive line DL2 extends in the direction E1. For example, the direction E1 is parallel to the first direction X.
  • As illustrated by FIG. 8, the first sub-pixel 111 and the fourth sub-pixel 114 in the odd column pixel group can use the first data line DT1 to input data signals, and the second sub-pixel 112 and the third sub-pixel 113 located between the adjacent two first data lines DT1 can use the second data line DT2 to input data signals. For example, the data signal includes a voltage and/or a current. The first data line DT1 extends in the direction E2, and the second data line DT2 also extends in the direction E2, which is parallel to the second direction Y.
  • FIG. 9 illustrates a schematic diagram of a display substrate. In the display substrate, the widths of the sub-pixels in the first direction X are different. Because the widths of the sub-pixels are different, it is easy to produce color shift when viewing at different viewing angles.
  • FIG. 10 illustrates a schematic diagram of a display substrate provided by one or more embodiments of the present disclosure. In the first direction X, the widths of the first sub-pixel 111, the second sub-pixel 112, the third sub-pixel 113, and the fourth sub-pixel 114 are the same in the first direction X. Therefore, the viewing angle color shift when viewing at different viewing angles can be reduced.
  • For example, one pixel group includes two pixel units, for example, the first sub-pixel 111 and the second sub-pixel 112 form a pixel unit, the third sub-pixel 113 and the fourth sub-pixel 114 form the other pixel unit. Each pixel unit can share the third sub-pixel 113 or the fourth sub-pixel 114 adjacent thereto for full color display. The display is realized by sub-pixel sharing. The division of pixel cells is not limited to the above description. The pixel unit herein can be referred to as a virtual pixel. The division of virtual pixels is related to the driving mode. The specific division mode of the virtual pixels can be determined according to the actual driving mode, and the present disclosure is not specifically limited to this.
  • FIG. 11 illustrates a schematic diagram of a display substrate provided by one or more embodiments of the present disclosure. As illustrated by FIG. 11, the display substrate includes a third spacer 0103 located between the first sub-pixel 111 and the fourth sub-pixel 114 in the pixel group 01. For example, the first sub-pixel 111 and the fourth sub-pixel 114 can be both green sub-pixels, but are not limited thereto.
  • At the side view angle, the light emission of each sub-pixel is not shielded by the third spacer 0103, thereby improving the color asymmetry phenomenon at the left and right view angles when displaying a white picture to a certain extent, and improving the image quality and the display effect. By arranging the third spacer 0103, the problem of inconsistent light shielding for each sub-pixel in the left and right directions is basically eliminated, and further the phenomenon of color asymmetry at left and right angles can be eliminated to a great extent. For the up and down directions, because the third spacer only shields the first sub-pixel and the fourth sub-pixel, even if the angle color shift is generated due to the shielding for the first sub-pixel and the fourth sub-pixel, the phenomenon of angle color shift does not exist because the shielding for the first sub-pixel and the fourth sub-pixel are consistent under the same angle in the up and down directions. For example, by adjusting the size and thickness of the third spacer 0103, the shielding degree of the third spacer 0103 to the first sub-pixel 111 and the fourth sub-pixel 114 can be adjusted, thereby adjusting the angle color shift degree in the up and down directions.
  • As illustrated by FIG. 11, the extension direction E03 of the third spacer 0103 is perpendicular to the connection line CLO between the center C1 of the first sub-pixel 111 and the center C4 of the fourth sub-pixel 114, but is not limited thereto.
  • As illustrated by FIG. 11, the length of the third spacer 0103 in the first direction X is greater than the length of at least one of the first sub-pixel 111 and the fourth sub-pixel 114 in the first direction X.
  • As illustrated by FIG. 11, the shapes of the first sub-pixel 111 and the fourth sub-pixel 114 are both pentagon. The pentagon includes a group of parallel opposite sides and a vertical side, and the vertical side is perpendicular to the group of parallel opposite sides. The third spacer 0103 is parallel to the vertical side of the pentagon.
  • FIG. 12 is a cross-sectional view of a display substrate provided by an embodiment of the present disclosure. As illustrated by FIG. 12, the structure includes a base substrate 001, and a buffer layer 002, a first gate insulation layer 003, a second gate insulation layer 004, an interlayer dielectric layer 005, a planarization layer 006, and a pixel defining layer 007 sequentially located on the base substrate 001. As can be seen from FIG. 12, below the sub-pixel, there is a thin film transistor structure including a gate electrode 302, an active layer 301, and a drain electrode 303. The thin film transistor can be one of the thin film transistors in a pixel drive circuit, and the connection relationship with other components can be set according to the specific pixel circuit arrangement, which is not illustrated by detail herein. In addition, a signal line 304 can also be included at a position on the same layer as the drain electrode 303, and the signal line 304 can also be used as a signal line of a specific function according to different pixel circuit arrangements, for example, a data line or a gate line, etc. As can be seen from FIG. 12, the pixel defining layer 007 can include openings defining sub-pixels. The anode 403 of the sub-pixel and the light emitting layer 503 of the third sub-pixel are located in the openings of the pixel defining layer 007. It should be noted that the structure of the display substrate is not limited to that illustrated by FIG. 12.
  • For example, the anode 403 and the light emitting layer 503 are in contact with each other, so that the light emitting layer can be driven to emit light at a portion in contact with each other, and therefore, the portion in contact with each other between the anode 403 and the light emitting layer 503 is an effective portion in which the sub-pixel can emit light. Here, the anode 403 serves as a pixel electrode so that different data voltages can be applied to different sub-pixels. However, in the embodiments according to the present disclosure, the electrode used as the pixel electrode of the sub-pixel is not limited to the anode, and the cathode of the light emitting diode may also be used as the pixel electrode. Therefore, in the embodiments of the present disclosure, the shape of the sub-pixel can refer to the shape of a portion where the pixel electrode and the light emitting layer contact each other. For example, for each sub-pixel, the area of the pixel electrode can be slightly larger than the area of the light emitting layer, or the area of the light emitting layer can be slightly larger than the area of the pixel electrode, and the embodiments of the present disclosure is not particularly limited to this. For example, the light emitting layer here can include the electroluminescent layer itself and other function layers located on both sides of the electroluminescent layer, for example, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like. In some embodiments, the shape of a pixel can also be defined by a pixel defining layer. For example, a lower electrode (e.g., an anode) for a light emitting diode can be disposed below a pixel defining layer including an opening for defining a pixel that exposes a portion of the lower electrode. When the light emitting layer is formed in the opening in the pixel defining layer described above, the light emitting layer contacts the lower electrode so that the light emitting layer can be driven to emit light at this portion. Therefore, in this case, the opening of the pixel defining layer defines the shape of the sub-pixel.
  • For example, the pixel circuit includes at least one transistor including a gate, an active layer, and source and drain electrodes. In one example, the signal line is electrically connected to the source electrode or drain electrode of the corresponding transistor through a via hole penetrating through the insulation layer below it. In one example, the active layer of the transistor is formed of a polysilicon layer. On both sides of the channel region of the active layer, the polysilicon layer is conductive to form the source and drain electrodes. For example, the signal line is electrically connected to the polysilicon source or drain electrodes formed by conducting through a via hole. For example, the transistor is a top gate transistor, and a via hole for electrically connecting the signal line to the source or drain electrodes of the corresponding transistor passes through the gate metal layer and the data metal layer, and a portion of the metal pattern of the gate metal layer and the data metal layer can be used as a relay connector for electrically connecting the via hole, but embodiments of the present disclosure are not limited thereto.
  • For example, the shapes of the various sub-pixels described in the embodiments of the present disclosure are all approximate shapes. When forming the light emitting layer or various electrode layers, it is not guaranteed that the edges of the sub-pixels are strictly straight lines and the corners are strictly angular. For example, the light emitting layer can be formed by a mask vapor deposition process, and therefore, its corners can be rounded. In some cases, metal etching can have a draft angle, so when forming a light emitting layer of a sub-pixel by vapor deposition, one angle of the light emitting layer can be removed. For example, in the embodiments of the present disclosure, the shapes of each sub-pixel are all rounded corners.
  • For example, as illustrated by FIG. 2A, in a pixel group, the first sub-pixel 111 and the second sub-pixel 112 are sub-pixels of different colors, the first sub-pixel 111 and the second sub-pixel 112 form a pixel P, the third sub-pixel 113 and the fourth sub-pixel 114 are sub-pixels of different colors, the third sub-pixel 113 and the fourth sub-pixel 114 form a pixel P, and sub-pixels of other surrounding pixels need to be borrowed for color display when displaying an image. For example, the first sub-pixel 111 and the fourth sub-pixel 114 are green sub-pixels, the second sub-pixel 112 is red sub-pixel, and the third sub-pixel 113 is blue sub-pixel. For example, a red sub-pixel and a green sub-pixel form a pixel, and a blue sub-pixel and a green sub-pixel form a pixel. The pixel P here only includes sub-pixels of two colors. When displaying an image, it is necessary to use sub-pixels of other surrounding pixels for color display. Therefore, the pixel P here can also be referred to as a virtual pixel. In a case of high resolution, green sub-pixels play a decisive role in the perceived luminance center position of each pixel. For example, the luminance center of a pixel formed by one red sub-pixel and one green sub-pixel is located between the red sub-pixel and the green sub-pixel and closer to the green sub-pixel, and the luminance center of a pixel formed by one blue sub-pixel and one green sub-pixel is located between the blue sub-pixel and the green sub-pixel and closer to the green sub-pixel.
  • For example, as illustrated by FIG. 2A, the shapes of the second sub-pixel and the third sub-pixel are both hexagon, and the three groups of opposite sides of the hexagon are all parallel; the shapes of the first sub-pixel and the fourth sub-pixel are both pentagon, the pentagon includes a group of parallel opposite sides and a vertical side, and the vertical side is vertical to the group of parallel opposite sides; the vertical edges of the first sub-pixel and the fourth sub-pixel are adj acently arranged; a group of longer parallel opposite sides in the second sub-pixel, a group of long parallel opposite sides in the third sub-pixel, a group of parallel opposite sides in the first sub-pixel and a group of parallel opposite sides in the fourth sub-pixel are parallel.
  • When designing the pixel arrangement structure, the sub-pixels are generally designed into regular shapes, such as hexagons, pentagons, trapezoids or other shapes. When designing, the center of the sub-pixel can be the geometric center of the above regular shape. However, in the actual manufacturing process, the shape of the formed sub-pixel will generally deviate from the regular shape of the above design. For example, the corners of the above regular shape may become rounded corners, so the shape of the sub-pixel can be rounded corners. In addition, the shape of the actually manufactured sub-pixel may also have other changes from the designed shape. For example, the shape of a sub-pixel designed as a hexagon may become approximately oval in the actual manufacturing process. Therefore, the center of the sub-pixel may not be the strict geometric center of the irregular shape of the formed sub-pixel. In the embodiments of the present disclosure, the center of the sub-pixel can have a certain offset from the geometric center of the shape of the sub-pixel. The center of a sub-pixel refers to any point in an area bounded by a specific point on a radiation line segment starting from the geometric center of the sub-pixel to each point on the edge of the sub-pixel, and the specific point on the radiation line segment is ⅓ of the length of the radiation line segment from the geometric center. The definition of sub-pixel center is applicable to the center of sub-pixel shape with regular shape as well as the center of sub-pixel with irregular shape.
  • As mentioned above, due to various manufacturing errors, the shapes of the actually manufactured sub-pixels may deviate from the designed shapes of the sub-pixels. Therefore, in the present disclosure, there may be certain errors regarding the position of the sub-pixel center and the relationships between the sub-pixel center and the positions of other objects. For example, if the lines between the sub-pixel centers or the lines passing through the sub-pixel centers satisfy other corresponding restrictions (e.g., the extension direction), the lines need only pass through the area enclosed by the centers of the above-mentioned radiation line segments. Further for example, the center of the sub-pixel is located on a certain line, which refers to that the line passes through the area enclosed by the center of the above-mentioned radiation line segment.
  • In addition, although the shapes of each sub-pixel in the drawings include an angle strictly formed by two line segments, in some embodiments, shapes of each sub-pixel can be a rounded corner pattern. That is, on the basis of the above various graphic shapes, the corners of each sub-pixel are rounded. For example, upon the light emitting layer being evaporated through a mask, the corner portion of the light emitting layer may naturally form a rounded shape.
  • At least one embodiment of the present disclosure provides a display device including any of the above display substrates. Therefore, the color shift of different viewing angles can be improved, and the display quality can be improved. When the display device adopts the display panel with the pixel arrangement structure provided by the embodiments of the present disclosure, the resolution of the display device can be further improved, and a display device with real high resolution can be further provided. In addition, because the pixel arrangement structure provided by the embodiments of the present disclosure can have better symmetry, further, the uniformity of pixel distribution can be improved, and the display effect of the display device can be improved.
  • For example, in some examples, the display device can be any product or component with display function such as a smart phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc.
  • The following statements should be noted:
  • (1) The accompanying drawings involve only the structure(s) in connection with the embodiment(s) of the present disclosure, and other structure(s) can be referred to common design(s).
  • (2) In case of no conflict, features in one embodiment or in different embodiments can be combined.
  • What have been described above are only specific implementations of the present disclosure, the protection scope of the present disclosure is not limited thereto. Any changes or substitutions easily occur to those skilled in the art within the technical scope of the present disclosure should be covered in the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure should be based on the protection scope of the claims.

Claims (20)

What is claimed is:
1. A display substrate, comprising: a plurality of first sub-pixels, a plurality of second sub-pixels, a plurality of third sub-pixels, and a plurality of fourth sub-pixels,
the plurality of second sub-pixels and the plurality of third sub-pixels are arranged in a plurality of groups in a first direction, the plurality of first sub-pixels and the plurality of fourth sub-pixels are arranged in a plurality of groups in a second direction, and the first direction intersects with the second direction,
in the first direction, a distance between one of the plurality of second sub-pixels and one of the plurality of third sub-pixels that are adjacent to each other at least comprises a first distance and a second distance, and the first distance is less than the second distance,
in the second direction, a distance between one of the plurality of first sub-pixels and one of the plurality of fourth sub-pixels that are adjacent to each other at least comprises a third distance and a fourth distance, and the third distance is less than the fourth distance.
2. The display substrate according to claim 1, wherein, in the first direction, distances between two adjacent sub-pixels of the plurality of second sub-pixels and the plurality of third sub-pixels are arranged in an alternating manner of the first distance and the second distance, and in the second direction, distances between two adjacent sub-pixels of the plurality of first sub-pixels and the plurality of fourth sub-pixels are arranged in an alternating manner of the third distance and the fourth distance.
3. The display substrate according to claim 1, wherein the plurality of second sub-pixels and the plurality of third sub-pixels are arranged in the first direction and in the second direction, center connection lines of second sub-pixels and third sub-pixels that are adjacent to each other in the first direction are substantially on a straight line, and center connection lines of second sub-pixels and third sub-pixels that are adjacent to each other in the second direction are at least partially not on a straight line.
4. The display substrate according to claim 2, wherein among the second sub-pixels and the third sub-pixels that are adjacent to each other in the second direction, orthographic projections of the second sub-pixels on a straight line extending in the first direction overlap with orthographic projections of the third sub-pixels on the straight line extending in the first direction, and among first sub-pixels and fourth sub-pixels that are adjacent to each other in the first direction, orthographic projections of first sub-pixels on a straight line extending in the second direction overlap with orthographic projections of the fourth sub-pixels on the straight line extending in the second direction.
5. The display substrate according to claim 1, wherein the plurality of first sub-pixels and the plurality of fourth sub-pixels are arranged in the first direction and in the second direction, center connection lines of first sub-pixels and fourth sub-pixels that are adjacent to each other in the second direction are substantially on a straight line, and center connection lines of the first sub-pixels and the fourth sub-pixels that are adjacent to each other in the first direction are at least partially not on a straight line.
6. The display substrate according to claim 1, wherein, among second sub-pixels and third sub-pixels that are adjacent to each other in the second direction, center connection lines of the second sub-pixels are substantially on a straight line, and center connection lines of the third sub-pixels are substantially on a straight line.
7. The display substrate according to claim 1, wherein
a center connection line of the second sub-pixel and the third sub-pixel that are adjacent to each other and with the first distance in the first direction intersects with a center connection line of the first sub-pixel and the fourth sub-pixel that are adjacent to each other and with the fourth distance in the second direction;
a center connection line of the second sub-pixel and the third sub-pixel that are adjacent to each other and with the second distance in the first direction intersects with a center connection line of one of the plurality of first sub-pixels and one of the plurality of fourth sub-pixels that are adjacent to each other and with the third distance in the second direction.
8. The display substrate according to claim 1, wherein a center connection line of the second sub-pixel and the third sub-pixel with the second distance in the first direction is substantially perpendicular to a center connection line of the first sub-pixel and the fourth sub-pixel with the third distance in the second direction, and a center connection line of the second sub-pixel and the third sub-pixel with the first distance in the first direction is substantially perpendicular to a center connection line of the first sub-pixel and the fourth sub-pixel with the fourth distance in the second direction.
9. The display substrate according to claim 1, wherein a center connection line of two first sub-pixels and two fourth sub-pixels surrounding one second sub-pixel or one third sub-pixel and adjacent to the second sub-pixel or the third sub-pixel is substantially in a shape of a trapezoid.
10. The display substrate according to claim 1, wherein a center connection line of two second sub-pixels and two third sub-pixels surrounding one first sub-pixel or one fourth sub-pixel and adjacent to the first sub-pixel or the fourth sub-pixel is substantially in a shape of a trapezoid.
11. The display substrate according to claim 9, wherein at least one diagonal line of the trapezoid does not pass through a center of an intermediate sub-pixel located in the trapezoid, and the intermediate sub-pixel is one sub-pixel surrounded by four sub-pixels at four vertices of the trapezoid.
12. The display substrate according to claim 11, wherein two diagonal lines of the trapezoid have different distances from a center of the intermediate subpixel.
13. The display substrate according to claim 1, wherein the first sub-pixel has unequal distances with two second sub-pixels adjacent thereto, or the first sub-pixel has unequal distances with two third sub-pixels adjacent thereto; the fourth sub-pixel has unequal distances with two second sub-pixels adjacent thereto, or the fourth sub-pixel has unequal distances with two third sub-pixels adjacent thereto.
14. The display substrate according to claim 1, wherein the first sub-pixel has unequal distances with two second sub-pixels adjacent thereto, the first sub-pixel has an equal distance with two third sub-pixels adjacent thereto, or the first sub-pixel has an equal distance with two second sub-pixels adjacent thereto, and the first sub-pixel has unequal distances with two third sub-pixels adjacent thereto;
the fourth sub-pixel has unequal distances with two second sub-pixels adjacent thereto, and the fourth sub-pixel has an equal distance with two third sub-pixels adjacent thereto, or the fourth sub-pixel has an equal distance with two second sub-pixels adjacent thereto, and the fourth sub-pixel has unequal distances with two third sub-pixels adjacent thereto.
15. The display substrate according to claim 1, wherein a shape of the first sub-pixel comprises a rounded rectangle, and a shape of the fourth sub-pixel comprises a rounded rectangle, and two fourth sub-pixels adjacent to a same first sub-pixel in the second direction have different length direction from that of the first sub-pixel.
16. The display substrate according to claim 1, wherein a shape of at least one of the second sub-pixel and the third sub-pixel comprises at least one selected from the group consisting of a diamond, a rounded diamond, or a chamfered diamond.
17. The display substrate according to claim 1, wherein the first sub-pixel and the fourth sub-pixel are configured to emit light of a same color, and the second sub-pixel and the third sub-pixel are configured to emit light of different colors.
18. A display substrate, comprising a plurality of pixel groups, wherein the plurality of pixel groups are arranged in an array to form a plurality of rows and a plurality of columns, and two adjacent rows of the plurality of pixel groups are arranged in a staggered manner,
each of the plurality of pixel groups comprises a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel, in a same pixel group, the second sub-pixel and the third sub-pixel are arranged in a first direction, and the first sub-pixel and the fourth sub-pixel are located on both sides of a pair of sub-pixels formed by the second sub-pixel and the third sub-pixel,
a distance between the second sub-pixel and the third sub-pixel that are adjacent to each other and in two adjacent pixel groups in the first direction is greater than a distance between the second sub-pixel and the third sub-pixel that are in the same pixel group, and a distance between the first sub-pixel and the fourth sub-pixel that are adjacent to each other and in two adjacent pixel groups in the second direction is less than a distance between the first sub-pixel and the fourth sub-pixel that are in the same pixel group;
or,
a distance between the second sub-pixel and the third sub-pixel that are adjacent to each other and in two adjacent pixel groups in the first direction is less than a distance between the second sub-pixel and the third sub-pixel that are in the same pixel group, and a distance between the first sub-pixel and the fourth sub-pixel that are adjacent to each other and in two adjacent pixel groups in the second direction is greater than a distance between the first sub-pixel and the fourth sub-pixel that are in the same pixel group.
19. The display substrate according to claim 18, wherein in the same pixel group, a center connection line of the second sub-pixel and the third sub-pixel and a center connection line of the first sub-pixel and the fourth sub-pixel are substantially perpendicular to each other.
20. The display substrate according to claim 18, wherein, in the same pixel group, one of a center connection line of the second sub-pixel and the third sub-pixel and a center connection line of the first sub-pixel and the fourth sub-pixel is substantially parallel with the first direction, and the other one of the center connection line of the second sub-pixel and the third sub-pixel and the center connection line of the first sub-pixel and the fourth sub-pixel is substantially parallel with the second direction.
US17/847,548 2018-02-09 2022-06-23 Display substrate and display device Pending US20220328572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/847,548 US20220328572A1 (en) 2018-02-09 2022-06-23 Display substrate and display device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201810135948.6A CN110133919A (en) 2018-02-09 2018-02-09 Display base plate and display device
CN201810135948.6 2018-02-09
PCT/CN2018/124881 WO2019153948A1 (en) 2018-02-09 2018-12-28 Display substrate and display device
US201916622045A 2019-12-12 2019-12-12
US17/847,548 US20220328572A1 (en) 2018-02-09 2022-06-23 Display substrate and display device

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16/622,045 Continuation US11462591B2 (en) 2018-02-09 2018-12-28 Display device comprising a specified arrangement of sub-pixels and spacers
PCT/CN2018/124881 Continuation WO2019153948A1 (en) 2018-02-09 2018-12-28 Display substrate and display device

Publications (1)

Publication Number Publication Date
US20220328572A1 true US20220328572A1 (en) 2022-10-13

Family

ID=67548793

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/622,045 Active 2039-02-06 US11462591B2 (en) 2018-02-09 2018-12-28 Display device comprising a specified arrangement of sub-pixels and spacers
US17/847,548 Pending US20220328572A1 (en) 2018-02-09 2022-06-23 Display substrate and display device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/622,045 Active 2039-02-06 US11462591B2 (en) 2018-02-09 2018-12-28 Display device comprising a specified arrangement of sub-pixels and spacers

Country Status (5)

Country Link
US (2) US11462591B2 (en)
EP (1) EP3751336A4 (en)
JP (3) JP7391853B2 (en)
CN (4) CN115542617A (en)
WO (1) WO2019153948A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137215A (en) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 Pixel arrangement structure, display base plate and display device
US11747531B2 (en) 2016-02-18 2023-09-05 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate, fine metal mask set and manufacturing method thereof
CN110137213A (en) 2018-02-09 2019-08-16 京东方科技集团股份有限公司 Pixel arrangement structure and its display methods, display base plate
CN111524932A (en) * 2019-02-01 2020-08-11 Oppo广东移动通信有限公司 Electronic equipment, pixel structure and display device
CN112018147B (en) * 2019-05-13 2022-06-10 京东方科技集团股份有限公司 Array substrate, display device and mask plate
EP4006983A4 (en) 2019-07-31 2022-11-16 BOE Technology Group Co., Ltd. Display substrate and preparation method therefor, display panel, and display apparatus
CN110554543A (en) * 2019-09-10 2019-12-10 深圳市华星光电技术有限公司 Pixel unit, pixel matrix and display panel
CN111025783B (en) * 2019-12-20 2022-09-27 南京京东方显示技术有限公司 Display panel and display device
US11500433B2 (en) * 2020-01-14 2022-11-15 Au Optronics Corporation Flexible electronic device
CN113811812B (en) * 2020-03-25 2023-01-13 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device
CN111490088B (en) * 2020-04-24 2022-11-04 京东方科技集团股份有限公司 Display panel and display device
US11785821B2 (en) * 2020-09-10 2023-10-10 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate and related device
CN112103328A (en) * 2020-09-30 2020-12-18 京东方科技集团股份有限公司 Display panel and display device
GB2615653A (en) * 2020-10-19 2023-08-16 Boe Technology Group Co Ltd Array substrate and display apparatus
WO2022193121A1 (en) * 2021-03-16 2022-09-22 京东方科技集团股份有限公司 Array substrate and display apparatus

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3069810D1 (en) 1979-12-04 1985-01-24 Mitsubishi Electric Corp Colour display apparatus
JPS60120398A (en) 1983-12-02 1985-06-27 シチズン時計株式会社 Matrix type color display unit
US5341153A (en) 1988-06-13 1994-08-23 International Business Machines Corporation Method of and apparatus for displaying a multicolor image
JP2584490B2 (en) 1988-06-13 1997-02-26 三菱電機株式会社 Matrix type liquid crystal display
US6950115B2 (en) 2001-05-09 2005-09-27 Clairvoyante, Inc. Color flat panel display sub-pixel arrangements and layouts
JP3620490B2 (en) 2000-11-22 2005-02-16 ソニー株式会社 Active matrix display device
US7123277B2 (en) 2001-05-09 2006-10-17 Clairvoyante, Inc. Conversion of a sub-pixel format data to another sub-pixel data format
TWI227340B (en) 2002-02-25 2005-02-01 Himax Tech Inc Color filter and liquid crystal display
JP2005091875A (en) 2003-09-18 2005-04-07 Nippon Hoso Kyokai <Nhk> Display device and display method
US7525526B2 (en) 2003-10-28 2009-04-28 Samsung Electronics Co., Ltd. System and method for performing image reconstruction and subpixel rendering to effect scaling for multi-mode display
TWI258721B (en) 2004-08-10 2006-07-21 Ind Tech Res Inst Full-color organic electroluminescence device
US7733359B1 (en) 2004-09-15 2010-06-08 Rockwell Collins, Inc. Pixel structure for electrical flat panel displays
JP4781351B2 (en) 2005-04-22 2011-09-28 シャープ株式会社 Display device
US20070205423A1 (en) 2006-03-03 2007-09-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
GB2437110B (en) 2006-04-12 2009-01-28 Cambridge Display Tech Ltd Optoelectronic display and method of manufacturing the same
TWI346922B (en) 2006-06-14 2011-08-11 Au Optronics Corp Structure of pixel circuit for display and mothod of driving thereof
US20080001525A1 (en) 2006-06-30 2008-01-03 Au Optronics Corporation Arrangements of color pixels for full color OLED
CN101192382B (en) 2006-11-29 2010-11-10 群康科技(深圳)有限公司 LCD device
JP4899910B2 (en) 2007-02-14 2012-03-21 ブラザー工業株式会社 Control device for display panel
TWI359626B (en) 2007-03-22 2012-03-01 Au Optronics Corp Electro-luminescence display
KR101388582B1 (en) * 2007-10-26 2014-04-23 삼성디스플레이 주식회사 Electrophoretic display device
US8330352B2 (en) 2007-11-13 2012-12-11 Samsung Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
KR101479994B1 (en) 2007-11-13 2015-01-07 삼성디스플레이 주식회사 Organic light emitting diode display and method for manufacturing the same
RU2453879C2 (en) 2008-03-31 2012-06-20 Шарп Кабусики Кайся Liquid crystal display device
CN101582241B (en) 2009-06-11 2011-10-05 数能科技股份有限公司 Display method of large LED display
KR20110013691A (en) 2009-08-03 2011-02-10 삼성모바일디스플레이주식회사 Pixel structure and organic light emitting display using the same
CA2686174A1 (en) 2009-12-01 2011-06-01 Ignis Innovation Inc High reslution pixel architecture
US8330152B2 (en) 2009-12-02 2012-12-11 Universal Display Corporation OLED display architecture with improved aperture ratio
KR101663564B1 (en) 2010-03-26 2016-10-17 엘지디스플레이 주식회사 Organic electro-luminescence device and method of fabricating the same
US8754913B2 (en) 2010-04-21 2014-06-17 Lg Display Co., Ltd. Subpixel arrangement structure of display device
KR20110129531A (en) 2010-05-26 2011-12-02 삼성모바일디스플레이주식회사 Pixel array for organic light emitting display device
KR101189025B1 (en) 2010-05-31 2012-10-08 삼성디스플레이 주식회사 Pixel Array for Organic Light Emitting Display Device
WO2012021767A2 (en) 2010-08-13 2012-02-16 Pixel Qi Corporation Transflective lcd with arcuate pixel portions
US9583034B2 (en) 2010-10-15 2017-02-28 Lg Display Co., Ltd. Subpixel arrangement structure for display device
KR101881852B1 (en) * 2011-06-09 2018-08-27 삼성디스플레이 주식회사 Display device
KR101845332B1 (en) 2011-06-13 2018-05-21 삼성디스플레이 주식회사 Organic light emitting display device and method for manufacturing the same
JP2014225329A (en) 2011-09-12 2014-12-04 シャープ株式会社 Light-emitting device, display device, and illuminating device
KR101615332B1 (en) 2012-03-06 2016-04-26 삼성디스플레이 주식회사 Pixel arrangement structure for organic light emitting display device
KR101943995B1 (en) 2012-06-27 2019-01-31 삼성디스플레이 주식회사 Organic Light Emitting Display Device
EP2709155B1 (en) 2012-09-13 2020-11-11 Samsung Display Co., Ltd. Pixel arrangement structure for organic light emitting diode display
WO2014080625A1 (en) 2012-11-22 2014-05-30 株式会社ニコン Image pickup element and image pickup unit
TWI559524B (en) 2013-01-15 2016-11-21 友達光電股份有限公司 Pixel structure of electroluminescent display panel
TWI520323B (en) 2013-02-08 2016-02-01 中華映管股份有限公司 Pixel structure of organic light emitting display device
KR102030799B1 (en) * 2013-03-11 2019-10-11 삼성디스플레이 주식회사 Organic luminescence emitting display device
JP5849981B2 (en) * 2013-03-25 2016-02-03 ソニー株式会社 Display device and electronic device
KR102096051B1 (en) 2013-03-27 2020-04-02 삼성디스플레이 주식회사 Substrate formed thin film transistor array and organic light emitting diode display
CN103280162B (en) * 2013-05-10 2015-02-18 京东方科技集团股份有限公司 Display substrate and driving method thereof and display device
TWI478128B (en) 2013-05-23 2015-03-21 Au Optronics Corp Light emitting diode display panel
KR20150005264A (en) * 2013-07-05 2015-01-14 삼성디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same
KR102190843B1 (en) 2013-07-09 2020-12-15 삼성디스플레이 주식회사 Unit pixel and organic light emitting display device having the same
KR102136275B1 (en) 2013-07-22 2020-07-22 삼성디스플레이 주식회사 Organic light emitting device and method for manufacturing the same
KR102103499B1 (en) 2013-10-16 2020-04-23 삼성디스플레이 주식회사 Organic light emitting diode display device
WO2015062110A1 (en) 2013-11-04 2015-05-07 Shenzhen Yunyinggu Technology Co., Ltd. Subpixel arrangements of displays and method for rendering the same
JP6207367B2 (en) 2013-12-05 2017-10-04 株式会社ジャパンディスプレイ Organic electroluminescence display device
KR20150067624A (en) * 2013-12-10 2015-06-18 삼성디스플레이 주식회사 Organic light emitting display
KR102205401B1 (en) * 2014-01-14 2021-01-21 삼성디스플레이 주식회사 Organic luminescence emitting display device
JP6248269B2 (en) 2014-02-06 2017-12-20 株式会社Joled Display device
US9337241B2 (en) 2014-03-19 2016-05-10 Apple Inc. Pixel patterns for organic light-emitting diode display
TWI556045B (en) * 2014-04-22 2016-11-01 友達光電股份有限公司 Display panel
CN103928498A (en) 2014-04-23 2014-07-16 何东阳 High-resolution AMOLED display device
CN103985735A (en) * 2014-04-25 2014-08-13 友达光电股份有限公司 Display panel
CN103985738B (en) 2014-05-08 2015-06-17 京东方科技集团股份有限公司 Pixel structure and display device
CN104037202B (en) * 2014-06-12 2017-08-04 上海和辉光电有限公司 A kind of preparation method of displayer part and its sub-pixel structure
CN104091893A (en) * 2014-06-26 2014-10-08 京东方科技集团股份有限公司 Color film substrate, method for manufacturing color film substrate and display panel
CN104166260B (en) 2014-08-04 2016-09-07 京东方科技集团股份有限公司 Display base plate and driving method thereof and display device
US11004905B2 (en) 2014-09-11 2021-05-11 Boe Technology Group Co., Ltd. Display panel and display device
CN104269411B (en) 2014-09-11 2018-07-27 京东方科技集团股份有限公司 Display panel, organic light emitting diode display and display device
CN104282727B (en) 2014-09-30 2017-08-29 京东方科技集团股份有限公司 A kind of dot structure and its display methods, display device
CN104332486A (en) 2014-10-29 2015-02-04 上海和辉光电有限公司 OLED (Organic Light Emitting Diode) pixel arrangement structure
CN105552099A (en) 2014-10-29 2016-05-04 上海和辉光电有限公司 OLED pixel arrangement structure
JP6474232B2 (en) 2014-11-05 2019-02-27 株式会社ジャパンディスプレイ Display device
JP6566289B2 (en) * 2014-11-26 2019-08-28 Tianma Japan株式会社 Display device, electro-optical device, electric apparatus, metal mask, and pixel array
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
CN104362170B (en) 2014-11-28 2017-04-12 京东方科技集团股份有限公司 Organic electroluminescence display appliance and driving method and related device thereof
KR20160072370A (en) 2014-12-12 2016-06-23 삼성디스플레이 주식회사 Display device
CN104576695B (en) 2014-12-22 2017-08-25 信利(惠州)智能显示有限公司 OLED pixel arrangement architecture and display device
CN104465714B (en) 2014-12-30 2017-04-26 京东方科技集团股份有限公司 Pixel structure, display method of pixel structure and display device
KR102458687B1 (en) 2014-12-31 2022-10-26 삼성디스플레이 주식회사 The Method of manufacturing Organic luminescence emitting display device
CN104537974B (en) 2015-01-04 2017-04-05 京东方科技集团股份有限公司 Data acquisition submodule and method, data processing unit, system and display device
CN104536632B (en) 2015-01-26 2017-07-21 京东方科技集团股份有限公司 A kind of In-cell touch panel and display device
CN104637987A (en) 2015-02-06 2015-05-20 友达光电股份有限公司 Active matrix organic light emitting display and pixel structure thereof
CN104597655B (en) 2015-02-13 2017-06-27 京东方科技集团股份有限公司 A kind of pixel arrangement structure, display panel and display device
KR20160104804A (en) * 2015-02-26 2016-09-06 삼성디스플레이 주식회사 Organic light emitting diode display
JP2016161920A (en) 2015-03-05 2016-09-05 株式会社ジャパンディスプレイ Display device
TWI555195B (en) 2015-03-27 2016-10-21 友達光電股份有限公司 Pixel arrangement structure of display device
CN104835444B (en) 2015-06-05 2017-07-14 京东方科技集团股份有限公司 A kind of display methods and display device
CN204903921U (en) * 2015-08-28 2015-12-23 厦门天马微电子有限公司 Array substrate and display device
CN106486514B (en) 2015-08-31 2023-12-01 昆山国显光电有限公司 Pixel structure and OLED display panel
CN105242436B (en) 2015-11-06 2018-08-17 上海天马有机发光显示技术有限公司 A kind of array substrate, display panel and display device
CN105280139B (en) 2015-11-11 2018-05-01 深圳市华星光电技术有限公司 AMOLED luminance compensation methods and AMOLED drive systems
CN205103519U (en) * 2015-11-18 2016-03-23 京东方科技集团股份有限公司 Display substrates , display panel and display device
KR102430444B1 (en) * 2015-12-18 2022-08-09 삼성디스플레이 주식회사 A mask assembly, apparatus and method for manufacturing a display apparatus using the same
CN205231065U (en) 2015-12-23 2016-05-11 昆山国显光电有限公司 Dot structure and display
US9984624B2 (en) 2015-12-28 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver IC, and electronic device
KR102515628B1 (en) 2015-12-31 2023-03-29 엘지디스플레이 주식회사 Organic Light Emitting Diode Display Panel
CN205608350U (en) * 2015-12-31 2016-09-28 上海中航光电子有限公司 Display screen and display
CN106935618B (en) 2015-12-31 2019-08-27 昆山国显光电有限公司 OLED pixel aligning method
KR102447506B1 (en) 2016-01-05 2022-09-27 삼성디스플레이 주식회사 Method and apparatus for controlling display apparatus
US10854684B2 (en) 2016-02-18 2020-12-01 Boe Technology Group Co., Ltd. Pixel arrangement structure and driving method thereof, display substrate and display device
CN107644888A (en) 2016-07-22 2018-01-30 京东方科技集团股份有限公司 Pixel arrangement structure, display base plate, display device, preparation method and mask plate
CN205355055U (en) 2016-02-18 2016-06-29 京东方科技集团股份有限公司 Pixel arrangement structure, display panel and display device
CN110137215A (en) 2018-02-09 2019-08-16 京东方科技集团股份有限公司 Pixel arrangement structure, display base plate and display device
US11264430B2 (en) 2016-02-18 2022-03-01 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel arrangement structure with misaligned repeating units, display substrate, display apparatus and method of fabrication thereof
US11233096B2 (en) 2016-02-18 2022-01-25 Boe Technology Group Co., Ltd. Pixel arrangement structure and driving method thereof, display substrate and display device
CN110134353B (en) 2018-02-09 2021-04-27 京东方科技集团股份有限公司 Color compensation method, compensation device and display device
CN111326121B (en) 2018-12-13 2021-11-16 京东方科技集团股份有限公司 Driving method, driving chip, display device and storage medium
CN110133899A (en) 2018-02-09 2019-08-16 京东方科技集团股份有限公司 Pixel arrangement structure, display base plate, display device
CN107275359B (en) * 2016-04-08 2021-08-13 乐金显示有限公司 Organic light emitting display device
KR101826432B1 (en) 2016-04-08 2018-02-07 엘지디스플레이 주식회사 Organic light emitting display device
KR101698718B1 (en) 2016-04-29 2017-01-20 엘지디스플레이 주식회사 Organic light emitting display device
CN105911785B (en) 2016-06-30 2019-08-23 上海中航光电子有限公司 A kind of display panel and display device
CN205845956U (en) 2016-07-22 2016-12-28 京东方科技集团股份有限公司 Pixel arrangement structure, display base plate, display device and mask plate
CN105976757B (en) 2016-07-26 2019-01-18 京东方科技集团股份有限公司 Pixel arrangement structure, pixel circuit, display panel and driving method
CN106094359B (en) * 2016-08-19 2019-07-23 京东方科技集团股份有限公司 Display panel and display device
CN106293244B (en) 2016-08-30 2017-11-17 京东方科技集团股份有限公司 Touch-control display panel and its driving method and touch control display apparatus
CN107817632A (en) 2016-09-13 2018-03-20 京东方科技集团股份有限公司 A kind of liquid crystal display panel and display device
KR20180038112A (en) 2016-10-05 2018-04-16 삼성디스플레이 주식회사 Head mounted display device
CN106782371B (en) 2016-12-20 2018-01-19 惠科股份有限公司 The driving method of liquid crystal display device and its liquid crystal display panel
CN106601167B (en) 2016-12-20 2019-10-01 上海天马有机发光显示技术有限公司 A kind of gray level compensation method of display panel, device and system
EP3343544B1 (en) 2016-12-28 2022-06-15 Vestel Elektronik Sanayi ve Ticaret A.S. Method for a display device
CN106591776B (en) 2016-12-28 2019-12-03 武汉华星光电技术有限公司 Fine mask plate and preparation method thereof
CN106782307B (en) 2017-01-25 2019-07-05 上海天马有机发光显示技术有限公司 A kind of gray level compensation method and gray scale compensation system of OLED display panel
CN106647052A (en) * 2017-02-28 2017-05-10 京东方科技集团股份有限公司 Colorful film base plate, preparation method and display panel
CN106940978B (en) 2017-05-15 2019-10-25 上海天马有机发光显示技术有限公司 Organic light emitting display panel and its driving method, organic light-emitting display device
CN107065319B (en) * 2017-05-26 2020-06-12 厦门天马微电子有限公司 Liquid crystal display panel and display device
CN107203079B (en) * 2017-05-27 2020-10-23 厦门天马微电子有限公司 Display panel and display device
CN107293571B (en) 2017-06-09 2019-09-20 深圳市华星光电技术有限公司 The pixel arrangement structure and OLED display panel of OLED display panel
CN110264898B (en) 2017-06-12 2022-02-15 Oppo广东移动通信有限公司 Pixel array and display
KR102448031B1 (en) 2017-07-28 2022-09-28 삼성디스플레이 주식회사 Display apparatus including sensor
CN107256695B (en) 2017-07-31 2019-11-19 上海天马有机发光显示技术有限公司 Pixel circuit, its driving method, display panel and display device
CN107393468B (en) 2017-08-24 2019-10-22 京东方科技集团股份有限公司 A kind of color misregistration correction method and color cast correction device of display panel
CN109559679A (en) 2017-09-26 2019-04-02 京东方科技集团股份有限公司 Touch-control display panel and its driving method, pixel circuit, electronic device
CN107731870B (en) 2017-09-28 2020-12-22 上海天马有机发光显示技术有限公司 Organic light emitting diode pixel structure, display panel comprising same and display device
CN107481671B (en) 2017-09-29 2019-11-01 京东方科技集团股份有限公司 Pixel circuit and its driving method, array substrate, display device
CN107665684B (en) 2017-10-13 2020-01-14 深圳吉迪思电子科技有限公司 Color Mura compensation method
CN107910348B (en) 2017-10-26 2021-03-16 上海天马有机发光显示技术有限公司 Display panel and display device
CN110720146A (en) 2017-11-03 2020-01-21 深圳市柔宇科技有限公司 Pixel array, display panel and electronic device
US10283086B1 (en) 2017-11-06 2019-05-07 Novatek Microelectronics Corp. Display device with novel sub-pixel configuration
KR20190072108A (en) 2017-12-15 2019-06-25 조율호 Dpisplay device having pyramid sub-pixel array structure
CN107895568A (en) 2017-12-28 2018-04-10 深圳市华星光电技术有限公司 Liquid crystal display device
WO2019134522A1 (en) 2018-01-02 2019-07-11 京东方科技集团股份有限公司 Pixel distribution structure, manufacturing method therefor, display panel, display apparatus, and mask plate
CN109994505A (en) 2018-01-02 2019-07-09 京东方科技集团股份有限公司 A kind of pixel arrangement structure and relevant apparatus
US10909901B2 (en) 2018-01-02 2021-02-02 Boe Technology Group Co., Ltd. Pixel arrangement, manufacturing method thereof, display panel, display device and mask
CN207781607U (en) 2018-02-09 2018-08-28 京东方科技集团股份有限公司 Pixel arrangement structure, display base plate and display device
CN207781608U (en) 2018-02-09 2018-08-28 京东方科技集团股份有限公司 Display base plate and display device
CN207883217U (en) * 2018-02-09 2018-09-18 京东方科技集团股份有限公司 Display base plate and display device
CN109037287A (en) * 2018-07-27 2018-12-18 京东方科技集团股份有限公司 Arrangement of subpixels structure, mask device, display panel and display device
CN109638035B (en) 2018-11-13 2021-02-26 武汉华星光电半导体显示技术有限公司 Pixel arrangement structure and organic light emitting diode display device
CN109491158B (en) 2018-11-16 2021-08-17 昆山龙腾光电股份有限公司 Display panel and display device
CN109671759A (en) 2018-12-18 2019-04-23 武汉华星光电半导体显示技术有限公司 OLED pixel structure

Also Published As

Publication number Publication date
CN114994973B (en) 2023-04-28
EP3751336A1 (en) 2020-12-16
WO2019153948A1 (en) 2019-08-15
CN114994973A (en) 2022-09-02
JP2023165821A (en) 2023-11-17
CN115542617A (en) 2022-12-30
CN114355678B (en) 2023-11-03
JP2024019665A (en) 2024-02-09
JP2021513094A (en) 2021-05-20
CN114355678A (en) 2022-04-15
US20200212125A1 (en) 2020-07-02
US11462591B2 (en) 2022-10-04
JP7391853B2 (en) 2023-12-05
CN110133919A (en) 2019-08-16
EP3751336A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
US20220328572A1 (en) Display substrate and display device
US10854684B2 (en) Pixel arrangement structure and driving method thereof, display substrate and display device
US20200119107A1 (en) Pixel arrangement structure, display substrate, and display device
US10943955B2 (en) Pixel arrangement structure, display substrate, display device and mask plate group
US11233096B2 (en) Pixel arrangement structure and driving method thereof, display substrate and display device
US20240040881A1 (en) Display panel and display device
US11342385B2 (en) Pixel arrangement structure, display substrate, display device, and mask plate group
US11515362B2 (en) Display panel and display device
US11106098B2 (en) Pixel arrangement structure, display substrate, display apparatus, and mask plate
CN110364557B (en) Pixel arrangement structure and display panel
US20180284517A1 (en) Display panel and display device
TWI608281B (en) Display Panel
US11957019B2 (en) Pixel arrangement structure, display method and preparing method of pixel arrangement structure, and display substrate
US11574960B2 (en) Pixel arrangement structure, display substrate, display device and mask plate group
US20220336543A1 (en) Display substrate and display device
US20220373847A1 (en) Display panel, manufacturing method thereof, and display device
WO2022246859A1 (en) Display panel and display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOE TECHNOLOGY GROUP CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, LIBIN;YANG, QIAN;WANG, HONGLI;AND OTHERS;REEL/FRAME:060439/0123

Effective date: 20191112

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION