WO2022193135A1 - 一种配置、确定下行控制信道的方法、装置、设备及介质 - Google Patents

一种配置、确定下行控制信道的方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022193135A1
WO2022193135A1 PCT/CN2021/081101 CN2021081101W WO2022193135A1 WO 2022193135 A1 WO2022193135 A1 WO 2022193135A1 CN 2021081101 W CN2021081101 W CN 2021081101W WO 2022193135 A1 WO2022193135 A1 WO 2022193135A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
type
dci
control channel
downlink control
Prior art date
Application number
PCT/CN2021/081101
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180000774.2A priority Critical patent/CN115486182A/zh
Priority to JP2023556787A priority patent/JP2024509992A/ja
Priority to BR112023018688A priority patent/BR112023018688A2/pt
Priority to EP21930731.1A priority patent/EP4311349A4/en
Priority to KR1020237034760A priority patent/KR20230156761A/ko
Priority to PCT/CN2021/081101 priority patent/WO2022193135A1/zh
Publication of WO2022193135A1 publication Critical patent/WO2022193135A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a method, apparatus, device, and medium for configuring and determining a downlink control channel.
  • a Downlink Control Information can schedule a Physical Downlink Shared Channel (PDSCH) or a Physical Uplink Shared Channel (PUSCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the corresponding time slot duration is 1/64ms.
  • SCS Sub-Carrier Space
  • one DCI can schedule PDSCH or PUSCH of multiple time slots.
  • An example in a multi-TTI PDSCH scheduling scenario is used for illustration: one DCI can schedule 4 PDSCHs, and the 4 PDSCHs correspond to 4 consecutive time slots in turn.
  • the 4 PDSCHs can be used to transmit different data, that is, different transport blocks (Transport Block, TB).
  • TB Transport Block
  • the number of PDSCHs scheduled by a DCI may be semi-statically configured by the high layer, or may be dynamically indicated by the DCI after the value range is indicated by the protocol or the value range is configured by the high layer signaling. .
  • the embodiments of the present disclosure provide a method, apparatus, device, and medium for configuring and determining a downlink control channel.
  • a method for configuring a downlink control channel is provided, applied to a network side device, including:
  • the multi-TTI PDSCH configured for DCI scheduling includes at least one of the following: a first type of PDSCH and a second type of PDSCH; wherein, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset value Threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold.
  • the method includes: configuring the QCL of each PDSCH in the first type of PDSCH with the one with the smallest index in the control resource set CORESET in the search space in the nearest time slot to the PDSCH monitored by the user equipment.
  • the TCI of CORESET is the same.
  • the method includes: configuring the QCL of the first PDSCH in the first type of PDSCH to have the smallest index in the control resource set CORESET in the search space that is monitored by the user equipment in a time slot closest to the PDSCH
  • the TCI of CORESET is the same.
  • the method includes: configuring the QCL of each PDSCH except the first PDSCH in the first type of PDSCH to be the same as the TCL of the first PDSCH.
  • the method includes: in response to the TCI not being configured in the DCI, configuring the QCL of at least one PDSCH in the second type of PDSCH to be the same as the TCI of the PDCCH of the DCI.
  • the method includes: in response to the DCI being configured with one TCI, configuring the QCL of at least one PDSCH in the second type of PDSCH to be the same as the one TCI.
  • the method includes: in response to the DCI being configured with more than one TCI, configuring the QCL of at least one PDSCH in the second type of PDSCH is based on at least one TCI in the one or more TCIs definite.
  • the QCL for configuring at least one PDSCH in the second type of PDSCH is determined according to the one or more TCIs, including:
  • the QCL of the at least one PDSCH is configured to correspond one-to-one to N TCIs in the at least one or more TCIs , the N is the number of the second type of PDSCH.
  • the method includes: in response to two TCIs in the more than one TCI configured in the DCI corresponding to different QCL types D, configuring one of the two PDSCH time slots corresponding to the two TCIs.
  • the time domain interval is greater than or equal to the set interval.
  • the method includes: configuring the time domain interval between the two PDSCH time slots corresponding to the two TCIs to be related to the subcarrier interval.
  • a method for determining a downlink control channel is provided, applied to a user equipment, including:
  • the multi-TTI PDSCH scheduled by the DCI includes at least one of the following: a first type of PDSCH and a second type of PDSCH; wherein, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset value Threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold.
  • the method includes: determining the QCL of each PDSCH in the first type of PDSCH and the one with the smallest index in the control resource set CORESET in the search space in a time slot closest to the PDSCH monitored by the user equipment.
  • the TCI of CORESET is the same.
  • the method includes: determining the QCL of the first PDSCH in the first type of PDSCH and the control resource set CORESET with the smallest index in the search space monitored by the user equipment in the nearest time slot to the PDSCH.
  • the TCI of CORESET is the same.
  • the method includes determining that the QCL of each PDSCH except the first PDSCH in the first type of PDSCH is the same as the TCL of the first PDSCH.
  • the method includes determining that the QCL of at least one PDSCH in the second type of PDSCH is the same as the TCI of the PDCCH of the DCI in response to no TCI being configured in the DCI.
  • the method includes: in response to the DCI being configured with one TCI, determining that the QCL of at least one PDSCH in the second type of PDSCH is the same as the one TCI.
  • determining the QCL of at least one PDSCH in the second type of PDSCH is determined according to at least one TCI in the one or more TCIs.
  • the determining of the QCL of at least one PDSCH in the second type of PDSCH is determined according to the one or more TCIs, including:
  • the N is the number of the second type of PDSCH.
  • the method includes: in response to two TCIs in the one or more TCIs configured in the DCI corresponding to different QCL types D, determining between the two PDSCH time slots corresponding to the two TCIs.
  • the time domain interval is greater than or equal to the set interval.
  • the method includes determining that the time domain interval between the two PDSCH time slots corresponding to the two TCIs is related to the subcarrier interval.
  • an apparatus for configuring a downlink control channel which is applied to a network side device, including:
  • the first configuration module configured to configure the multi-TTI PDSCH scheduled by the DCI includes at least one of the following: a first type of PDSCH and a second type of PDSCH; wherein each PDSCH in the first type of PDSCH and the PDCCH of the DCI The scheduling offset between the two is less than a preset threshold, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold.
  • an apparatus for determining a downlink control channel, applied to a user equipment including:
  • the first determination module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes at least one of the following: a first type of PDSCH and a second type of PDSCH; wherein, the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI
  • the scheduling offset between the two is less than a preset threshold, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold.
  • a network-side device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute executable instructions in the memory to implement the steps of the method for configuring a downlink control channel.
  • a user equipment comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute executable instructions in the memory to implement the steps of the method for determining a downlink control channel.
  • a non-transitory computer-readable storage medium which stores executable instructions, and when the executable instructions are executed by a processor, implements the steps of the method for configuring a downlink control channel or Implement the steps of the method for determining a downlink control channel.
  • the multi-TTI PDSCH configured for DCI scheduling includes only the first type PDSCH, or only the second type PDSCH, or both the first type PDSCH and the second type PDSCH , the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the threshold is set to diversify the way that the multi-TTI PDSCH scheduled by DCI contains PDSCH.
  • TCIs of different types of PDSCH are determined through the technical solutions provided by the embodiments of the present disclosure.
  • FIG. 1 is a flowchart of a method for configuring a downlink control channel according to an exemplary embodiment
  • FIG. 2 is a flowchart of a method for determining a downlink control channel according to an exemplary embodiment
  • FIG. 3 is a structural diagram of an apparatus for configuring a downlink control channel according to an exemplary embodiment
  • FIG. 4 is a structural diagram of an apparatus for determining a downlink control channel according to an exemplary embodiment
  • FIG. 5 is a structural diagram of an apparatus for configuring a downlink control channel according to an exemplary embodiment
  • Fig. 6 is a structural diagram of an apparatus for determining a downlink control channel according to an exemplary embodiment.
  • the Transmission Configuration Indication (TCI) in the NR is used to indicate the Quasi Co-Location (QCL) of the two signals on the spatial channel.
  • QCL represents how similar two signals are in the spatial channel.
  • the large-scale parameters of the QCL corresponding to the channel experienced by a symbol on one antenna port can be inferred from the channel experienced by a symbol on another antenna port.
  • the large-scale parameters may include delay spread, average delay, Doppler spread, Doppler shift, average gain, and Spatial Rx Parameter.
  • the spatial receiving parameter (Spatial Rx Parameter) corresponds to the relevant information of the emitted beam.
  • the large-scale parameters corresponding to QCL type A include: delay spread, average delay, Doppler spread, and Doppler shift.
  • the large-scale parameters corresponding to QCL type B include: Doppler spread and Doppler shift.
  • the large-scale parameters corresponding to QCL type C include: Doppler shift and average delay.
  • the large-scale parameters corresponding to QCL type D include: Spatial Rx Parameter.
  • QCL type D is used to indicate information about the transmit beams of the two signals.
  • a multi-TTI PDSCH scheduled by a DCI includes two PDSCHs at the same time, the scheduling offset (offset) between one PDSCH and PDCCH is less than the preset threshold, and the scheduling offset (offset) between the other PDSCH and PDCCH Greater than or equal to a preset threshold, where the preset threshold may be TimeDurationForDCL.
  • the preset threshold may be TimeDurationForDCL.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • This method is applicable to a scenario where one DCI schedules multiple TTI PDSCHs, and each PDSCH in the multiple TTI PDSCHs corresponds to the same transport block (Transport Block, TB) repeated transmission.
  • Transport Block Transport Block
  • This method is also applicable to a scenario where one DCI schedules multiple TTI PDSCHs, and different PDSCHs in the multiple TTI PDSCHs correspond to different transport blocks.
  • FIG. 1 is a flowchart of a method for configuring a downlink control channel according to an exemplary embodiment. As shown in FIG. 1, the method includes:
  • Step S11 configuring the multi-TTI PDSCH scheduled by DCI includes at least one of the following: a first type PDSCH, a second type PDSCH; wherein, the scheduling offset between each PDSCH in the first type PDSCH and the PDCCH of the DCI Less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold.
  • the preset threshold is defined as TimeDurationForQCL.
  • the unit of the preset threshold is a time domain symbol.
  • the preset threshold is a value configured by the base station.
  • the preset threshold is an SCS-related value configured by the base station. For example, when the SCS is 60Khz, configure the value as 7 time domain symbols.
  • the multi-TTI PDSCH configured for DCI scheduling includes only the first type of PDSCH, or only the second type of PDSCH, or both the first type of PDSCH and the second type of PDSCH, and each PDSCH in the first type of PDSCH
  • the scheduling offset from the PDCCH of the DCI is less than the preset threshold, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, so that the multi-TTI scheduled by the DCI
  • the manner in which the PDSCH includes the PDSCH is diversified, which improves the compatibility of DCI scheduling.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and configure the QCL of each PDSCH in the first type of PDSCH and the distance from the PDSCH monitored by the user equipment to the PDSCH
  • the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the last time slot is the same.
  • the TCIs corresponding to different PDSCHs of the first type among all the PDSCHs of the first type in the multi-TTI PDSCH scheduled by the DCI may be different.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes the first type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the configuration of the first type of PDSCH in the
  • the QCL of each PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the time slot closest to the PDSCH monitored by the user equipment.
  • the TCIs corresponding to different PDSCHs of the first type among all the PDSCHs of the first type in the multi-TTI PDSCH scheduled by the DCI may be different.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and the distance between the QCL of the first PDSCH in the first PDSCH and the monitoring by the user equipment is configured as described above.
  • the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the last time slot of the PDSCH is the same.
  • the TCIs corresponding to different PDSCHs of the first type among all the PDSCHs of the first type in the multi-TTI PDSCH scheduled by the DCI may be different.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes the first type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the configuration of the first type of PDSCH in the
  • the QCL of the first PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the time slot closest to the PDSCH monitored by the user equipment.
  • the TCIs corresponding to different PDSCHs of the first type among all the PDSCHs of the first type in the multi-TTI PDSCH scheduled by the DCI may be different.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and the distance between the QCL of the first PDSCH in the first PDSCH and the monitoring by the user equipment is configured as described above.
  • the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the last time slot of the PDSCH is the same, and the QCL of each PDSCH except the first PDSCH in the first PDSCH is the same as the first PDSCH
  • the TCL is the same.
  • the TCI corresponding to each first-type PDSCH in all first-type PDSCHs in the multi-TTI PDSCH scheduled by the DCI is the same.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes the first type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the configuration of the first type of PDSCH in the
  • the QCL of the first PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the search space closest to the PDSCH monitored by the user equipment.
  • the QCL of each other PDSCH is the same as the TCL of the first PDSCH.
  • the TCI corresponding to each first-type PDSCH in all first-type PDSCHs in the multi-TTI PDSCH scheduled by the DCI is the same.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the TCI not being configured in the DCI, configure at least one PDSCH in the second type of PDSCH
  • the QCL is the same as the TCI of the PDCCH of the DCI.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the No TCI is configured in the DCI, and the QCL of at least one PDSCH in the second type of PDSCH is configured to be the same as the TCI of the PDCCH of the DCI.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to one TCI being configured in the DCI, configure at least one PDSCH in the second type of PDSCH
  • the QCL is the same as the one TCI.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the One TCI is configured in the DCI, and the QCL of at least one PDSCH in the second type of PDSCH is configured to be the same as the one TCI.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to more than one TCI being configured in the DCI, configure at least one of the PDSCHs of the second type
  • the QCL of a PDSCH is determined according to at least one of the one or more TCIs.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the More than one TCI is configured in the DCI, and the QCL for configuring at least one PDSCH in the second type of PDSCH is determined according to at least one TCI in the one or more TCIs.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to more than one TCI being configured in the DCI, at least one of the second type of PDSCH
  • the number of PDSCHs is less than or equal to the number of the one or more TCIs
  • the QCL configured for the at least one PDSCH corresponds to N TCIs of the at least one or more TCIs one-to-one, where N is the second type of PDSCH quantity.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the There is more than one TCI configured in the DCI, the number of at least one PDSCH in the second type of PDSCH is less than or equal to the number of the one or more TCIs, and the QCL configured with the at least one PDSCH corresponds to the at least one or more N TCIs among the TCIs, where N is the number of the second type of PDSCH.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to more than one TCI being configured in the DCI, at least one of the second type of PDSCH
  • the number of PDSCHs is less than or equal to the number of the one or more TCIs
  • the QCL configured for the at least one PDSCH corresponds to the last N TCIs of the at least one or more TCIs, where N is the second type Number of PDSCHs.
  • the DCI is configured with 4 TCIs
  • the second type of PDSCH includes a total of 3 PDSCHs
  • the number of PDSCHs in the second type of PDSCH is less than the number of TCIs configured in the DCI
  • the TCIs of the three PDSCHs are the same as the The last three TCIs in the four TCIs are in one-to-one correspondence
  • the TCI of each PDSCH is determined according to the one-to-one corresponding TCI.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the There is more than one TCI configured in the DCI, the number of at least one PDSCH in the second type of PDSCH is less than or equal to the number of the one or more TCIs, and the QCL configured with the at least one PDSCH corresponds to the at least one or more The last N TCIs in the TCIs, where N is the number of the second type of PDSCH.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH The scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and,
  • the QCL configured for the at least one PDSCH corresponds to the one-to-one QCL.
  • the time domain interval between the two PDSCH time slots corresponding to the two TCIs is configured to be greater than or equal to the set interval .
  • the setting interval is 0 time-domain symbols.
  • the setting interval is greater than 0 time-domain symbols.
  • the setting interval is configured by the base station.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and,
  • the QCL configured for the at least one PDSCH corresponds to the one-to-one QCL.
  • the time domain interval between the two PDSCH time slots corresponding to the two TCIs is configured to be greater than or equal to the set interval .
  • the setting interval is 0 time-domain symbols.
  • the setting interval is greater than 0 time-domain symbols.
  • the setting interval is configured by the base station.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH The scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and,
  • the QCL configured for the at least one PDSCH corresponds to the one-to-one QCL.
  • the time domain interval between the two PDSCH time slots corresponding to the two TCIs is configured to be greater than or equal to the set interval , configuring the time domain interval between the two PDSCH time slots corresponding to the two TCIs is related to the subcarrier interval.
  • the time domain intervals between the two PDSCH time slots corresponding to the two TCIs are different.
  • An embodiment of the present disclosure provides a method for configuring a downlink control channel, and the method is executed by a network side device.
  • the network side device may be a base station device. This method includes:
  • the multi-TTI PDSCH configured for DCI scheduling includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and,
  • the QCL configured for the at least one PDSCH corresponds to the one-to-one QCL.
  • the time domain interval between the two PDSCH time slots corresponding to the two TCIs is configured to be greater than or equal to the set interval , configuring the time domain interval between the two PDSCH time slots corresponding to the two TCIs is related to the subcarrier interval.
  • the time domain intervals between the two PDSCH time slots corresponding to the two TCIs are different.
  • FIG. 2 is a flowchart of a method for determining a downlink control channel according to an exemplary embodiment. As shown in FIG. 2, the method includes:
  • Step S21 it is determined that the multi-TTI PDSCH scheduled by the DCI includes at least one of the following: a first type PDSCH, a second type PDSCH; wherein, the scheduling offset between each PDSCH in the first type PDSCH and the PDCCH of the DCI Less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold.
  • the preset threshold is defined as TimeDurationForQCL.
  • the unit of the preset threshold is a time domain symbol.
  • the preset threshold is a value configured by the base station.
  • the preset threshold is an SCS-related value configured by the base station. For example, when the SCS is 60Khz, configure the value as 7 time domain symbols.
  • the multi-TTI PDSCH scheduled by the DCI in response to the configuration of the network side device, it is determined that the multi-TTI PDSCH scheduled by the DCI only includes the first type of PDSCH, or only includes the second type of PDSCH, or includes both the first type of PDSCH and the second type of PDSCH,
  • the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset Threshold, to diversify the way that the multi-TTI PDSCH scheduled by DCI contains PDSCH, and improve the compatibility of DCI scheduling.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and determining the distance between the QCL of each PDSCH in the first type of PDSCH and the PDSCH monitored by the user equipment
  • the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the last time slot is the same.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes the first type of PDSCH, and the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and it is determined that the first type of PDSCH
  • the QCL of each PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the time slot closest to the PDSCH monitored by the user equipment.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and determining the distance between the QCL of the first PDSCH in the first type of PDSCH and the user equipment monitoring
  • the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the last time slot of the PDSCH is the same.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes the first type of PDSCH, and the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and it is determined that the first type of PDSCH
  • the QCL of the first PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the time slot closest to the PDSCH monitored by the user equipment.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and determining the distance between the QCL of the first PDSCH in the first type of PDSCH and the user equipment monitoring
  • the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the last time slot of the PDSCH is the same, and the QCL of each PDSCH except the first PDSCH in the first PDSCH is the same as the first PDSCH
  • the TCL is the same.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes the first type of PDSCH, and the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and it is determined that the first type of PDSCH
  • the QCL of the first PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the search space closest to the PDSCH monitored by the user equipment.
  • the QCL of each other PDSCH is the same as the TCL of the first PDSCH.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the fact that no TCI is configured in the DCI, determine that at least one PDSCH in the second type of PDSCH
  • the QCL is the same as the TCI of the PDCCH of the DCI.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the No TCI is configured in the DCI, and it is determined that the QCL of at least one PDSCH in the second type of PDSCH is the same as the TCI of the PDCCH of the DCI.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to one TCI being configured in the DCI, determine at least one PDSCH in the second type of PDSCH
  • the QCL is the same as the one TCI.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the One TCI is configured in the DCI, and it is determined that the QCL of at least one PDSCH in the second type of PDSCH is the same as the one TCI.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to more than one TCI being configured in the DCI, it is determined that at least one of the second type of PDSCH
  • the QCL of a PDSCH is determined according to at least one of the one or more TCIs.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the More than one TCI is configured in the DCI, and determining the QCL of at least one PDSCH in the second type of PDSCH is determined according to at least one TCI in the one or more TCIs.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH
  • the scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to more than one TCI being configured in the DCI, at least one of the second type of PDSCH
  • the number of PDSCHs is less than or equal to the number of the one or more TCIs, and it is determined that the QCL of the at least one PDSCH corresponds to N TCIs of the at least one or more TCIs one-to-one, where N is the second type of PDSCH quantity.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the More than one TCI is configured in the DCI, the number of at least one PDSCH in the second type of PDSCH is less than or equal to the number of the one or more TCIs, and the QCL of the at least one PDSCH is determined to correspond to the at least one or more N TCIs among the TCIs, where N is the number of the second type of PDSCH.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH The scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and,
  • N TCIs in the at least one or more TCIs where N is the number of PDSCHs of the second type, and,
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and,
  • N TCIs in the at least one or more TCIs where N is the number of PDSCHs of the second type, and,
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by DCI includes a first type of PDSCH and a second type of PDSCH, the scheduling offset between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is less than a preset threshold, and the second type of PDSCH The scheduling offset between each PDSCH in the PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and,
  • N TCIs in the at least one or more TCIs where N is the number of PDSCHs of the second type, and,
  • time domain interval between the two PDSCH time slots corresponding to the two TCIs is related to the subcarrier interval.
  • An embodiment of the present disclosure provides a method for determining a downlink control channel, and the method is executed by a user equipment. This method includes:
  • the multi-TTI PDSCH scheduled by the DCI includes a second type of PDSCH, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and,
  • N TCIs in the at least one or more TCIs where N is the number of PDSCHs of the second type, and,
  • time domain interval between the two PDSCH time slots corresponding to the two TCIs is related to the subcarrier interval.
  • FIG. 3 is a structural diagram of an apparatus for configuring a downlink control channel according to an exemplary embodiment. As shown in FIG. 3, the apparatus includes:
  • the first configuration module 301 is configured to configure the multi-TTI PDSCH scheduled by DCI including at least one of the following: a first type of PDSCH and a second type of PDSCH; wherein, each PDSCH in the first type of PDSCH and the PDCCH of the DCI The scheduling offset between them is less than a preset threshold, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the second configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the first type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the first type of PDSCH is configured
  • the QCL of each PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the time slot closest to the PDSCH monitored by the user equipment.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the third configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the first type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the first type of PDSCH is configured
  • the QCL of the first PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the time slot closest to the PDSCH monitored by the user equipment.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the fourth configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the first type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the first type of PDSCH is configured
  • the QCL of the first PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the search space closest to the PDSCH monitored by the user equipment.
  • the QCL of each PDSCH other than the PDSCH is the same as the TCL of the first PDSCH.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the fifth configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the second type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the QCL of at least one PDSCH in the second type of PDSCH is configured to be the same as the TCI of the PDCCH of the DCI.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the sixth configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the second type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI.
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the QCL of at least one PDSCH in the second type of PDSCH is configured to be the same as the one TCI.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the seventh configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the second type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the QCL for configuring at least one PDSCH in the second type of PDSCH is determined according to at least one TCI in the one or more TCIs.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the eighth configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the second type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the QCL configured for the at least one PDSCH corresponds to one of the at least one more than one TCI.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the ninth configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the second type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the QCL configured for the at least one PDSCH corresponds to one of the at least one more than one TCI.
  • N TCIs where N is the number of PDSCHs of the second type, and in response to two TCIs in more than one TCI configured in the DCI corresponding to different QCL types D, the configuration is the same as the two TCIs configured in the DCI.
  • the time domain interval between the two PDSCH time slots corresponding to the TCI is greater than or equal to the set interval.
  • An embodiment of the present disclosure provides an apparatus for configuring a downlink control channel, and the apparatus is applied to a network side device.
  • the network side device may be a base station. This device includes:
  • the tenth configuration module is configured to configure the multi-TTI PDSCH scheduled by the DCI to include the second type of PDSCH, or to include the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is
  • the scheduling offset between the two is less than a preset threshold
  • the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold
  • the QCL configured for the at least one PDSCH corresponds to one of the at least one more than one TCI.
  • N TCIs where N is the number of PDSCHs of the second type, and in response to two TCIs in more than one TCI configured in the DCI corresponding to different QCL types D, the configuration is the same as the two TCIs configured in the DCI.
  • the time domain interval between the two PDSCH time slots corresponding to the TCI is greater than or equal to the set interval, and the time domain interval between the two PDSCH time slots corresponding to the two TCIs is configured to be related to the subcarrier interval.
  • FIG. 4 is an apparatus diagram of an apparatus for determining a downlink control channel according to an exemplary embodiment. As shown in FIG. 4, the apparatus includes:
  • the first determination module 401 is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes at least one of the following: a first type of PDSCH and a second type of PDSCH; wherein each PDSCH in the first type of PDSCH and the PDCCH of the DCI The scheduling offset between them is less than a preset threshold, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • the second determination module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the first type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and the first type of PDSCH is determined.
  • the QCL of each PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the time slot closest to the PDSCH monitored by the user equipment.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • the third determining module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the first type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and the first type of PDSCH is determined.
  • the QCL of the first PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the time slot closest to the PDSCH monitored by the user equipment.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • the fourth determination module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the first type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and the first type of PDSCH is determined.
  • the QCL of the first PDSCH is the same as the TCI of the CORESET with the smallest index in the control resource set CORESET in the search space in the search space closest to the PDSCH monitored by the user equipment.
  • the QCL of each PDSCH other than the PDSCH is the same as the TCL of the first PDSCH.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • the fifth determination module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the second type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the failure of the DCI TCI is configured, and it is determined that the QCL of at least one PDSCH in the second type of PDSCH is the same as the TCI of the PDCCH of the DCI.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • the sixth determination module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the second type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the configuration in the DCI There is one TCI, and it is determined that the QCL of at least one PDSCH in the second type of PDSCH is the same as the one TCI.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • a seventh determination module configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the second type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the configuration in the DCI There is more than one TCI, and determining the QCL of at least one PDSCH in the second type of PDSCH is determined according to at least one TCI in the one or more TCIs.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • a seventh determination module configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the second type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the configuration in the DCI There is one or more TCIs, the number of at least one PDSCH in the second type of PDSCH is less than or equal to the number of the one or more TCIs, and it is determined that the QCL of the at least one PDSCH corresponds to one of the at least one more than one TCI. N TCIs, where N is the number of the second type of PDSCH.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • the eighth determination module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the second type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the configuration in the DCI There is one or more TCIs, the number of at least one PDSCH in the second type of PDSCH is less than or equal to the number of the one or more TCIs, and it is determined that the QCL of the at least one PDSCH corresponds to one of the at least one more than one TCI.
  • N TCIs where N is the number of PDSCHs of the second type, and in response to two TCIs in the one or more TCIs configured in the DCI corresponding to different QCL types D, it is determined that the The time domain interval between the two PDSCH time slots corresponding to the TCI is greater than or equal to the set interval.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • the ninth determination module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the second type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the configuration in the DCI There is one or more TCIs, the number of at least one PDSCH in the second type of PDSCH is less than or equal to the number of the one or more TCIs, and it is determined that the QCL of the at least one PDSCH corresponds to one of the at least one more than one TCI.
  • N TCIs where N is the number of PDSCHs of the second type, and in response to two TCIs in the one or more TCIs configured in the DCI corresponding to different QCL types D, it is determined that the The time domain interval between the two PDSCH time slots corresponding to the TCI is greater than or equal to the set interval.
  • An embodiment of the present disclosure provides an apparatus for determining a downlink control channel, and the apparatus is applied to user equipment.
  • This device includes:
  • the tenth determination module is configured to determine that the multi-TTI PDSCH scheduled by the DCI includes the second type of PDSCH, or includes the first type of PDSCH and the second type of PDSCH, and the difference between each PDSCH in the first type of PDSCH and the PDCCH of the DCI is The scheduling offset between the two is less than a preset threshold, the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, and in response to the configuration in the DCI There is one or more TCIs, the number of at least one PDSCH in the second type of PDSCH is less than or equal to the number of the one or more TCIs, and it is determined that the QCL of the at least one PDSCH corresponds to one of the at least one more than one TCI.
  • N TCIs where N is the number of PDSCHs of the second type, and in response to two TCIs in the one or more TCIs configured in the DCI corresponding to different QCL types D, it is determined that the The time domain interval between the two PDSCH time slots corresponding to the TCI is greater than or equal to the set interval, and it is determined that the time domain interval between the two PDSCH time slots corresponding to the two TCIs is related to the subcarrier interval .
  • An embodiment of the present disclosure provides a network side device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute executable instructions in the memory to implement the steps of the method for configuring a downlink control channel.
  • An embodiment of the present disclosure provides a user equipment, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute executable instructions in the memory to implement the steps of the method for determining a downlink control channel.
  • An embodiment of the present disclosure provides a non-transitory computer-readable storage medium, which stores executable instructions, and when the executable instructions are executed by a processor, implements the steps of the method for configuring a downlink control channel.
  • Embodiments of the present disclosure provide a non-transitory computer-readable storage medium, which stores executable instructions, and when the executable instructions are executed by a processor, implements the steps of the method for determining a downlink control channel.
  • Fig. 5 is a block diagram of an apparatus 500 for configuring a downlink control channel according to an exemplary embodiment.
  • apparatus 500 may be provided as a base station.
  • apparatus 500 includes a processing component 522, which further includes one or more processors, and a memory resource, represented by memory 532, for storing instructions executable by processing component 522, such as applications.
  • An application program stored in memory 532 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 522 is configured to execute instructions to perform the above-described method of configuring a downlink control channel.
  • Device 500 may also include a power supply assembly 526 configured to perform power management of device 500 , a wired or wireless network interface 550 configured to connect device 500 to a network, and an input output (I/O) interface 558 .
  • Device 500 may operate based on an operating system stored in memory 532, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • FIG. 6 is a block diagram of an apparatus 600 for determining a downlink control channel according to an exemplary embodiment.
  • apparatus 600 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the apparatus 600 may include one or more of the following components: a processing component 602, a memory 604, a power supply component 606, a multimedia component 608, an audio component 610, an input/output (I/O) interface 612, a sensor component 614, and communication component 616 .
  • the processing component 602 generally controls the overall operation of the device 600, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 602 may include one or more processors 620 to execute instructions to perform all or some of the steps of the methods described above. Additionally, processing component 602 may include one or more modules that facilitate interaction between processing component 602 and other components. For example, processing component 602 may include a multimedia module to facilitate interaction between multimedia component 608 and processing component 602.
  • Memory 604 is configured to store various types of data to support operation at device 600 . Examples of such data include instructions for any application or method operating on device 600, contact data, phonebook data, messages, pictures, videos, and the like. Memory 604 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 606 provides power to the various components of device 600 .
  • Power components 606 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 600 .
  • Multimedia component 608 includes screens that provide an output interface between the device 600 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 608 includes a front-facing camera and/or a rear-facing camera. When the device 600 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 610 is configured to output and/or input audio signals.
  • audio component 610 includes a microphone (MIC) that is configured to receive external audio signals when device 600 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 604 or transmitted via communication component 616 .
  • audio component 610 also includes a speaker for outputting audio signals.
  • the I/O interface 612 provides an interface between the processing component 602 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 614 includes one or more sensors for providing status assessment of various aspects of device 600 .
  • the sensor assembly 614 can detect the open/closed state of the device 600, the relative positioning of components, such as the display and keypad of the device 600, and the sensor assembly 614 can also detect a change in the position of the device 600 or a component of the device 600 , the presence or absence of user contact with the device 600 , the orientation or acceleration/deceleration of the device 600 and the temperature change of the device 600 .
  • Sensor assembly 614 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 614 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 614 may also include an accelerometer sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 616 is configured to facilitate wired or wireless communication between apparatus 600 and other devices.
  • Device 600 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 616 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 616 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 600 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 604 including instructions, executable by the processor 620 of the apparatus 600 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the multi-TTI PDSCH configured for DCI scheduling includes only the first type of PDSCH, or only the second type of PDSCH, or both the first type of PDSCH and the second type of PDSCH, each PDSCH in the first type of PDSCH and the PDCCH of the DCI
  • the scheduling offset between the two is less than the preset threshold, and the scheduling offset between each PDSCH in the second type of PDSCH and the PDCCH of the DCI is greater than or equal to the preset threshold, so that the multi-TTI PDSCH scheduled by the DCI contains PDSCH in various ways to improve the compatibility of DCI scheduling.
  • TCIs of different types of PDSCHs can be determined.

Abstract

本公开实施例提供了一种配置、确定下行控制信道的方法、装置、设备及介质,应用于无线通信技术领域,其中配置下行控制信道的方法包括:配置DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。本公开实施例中,配置DCI调度的多TTI PDSCH中只包括第一类PDSCH、或者只包括第二类PDSCH、或者同时包括第一类PDSCH和第二类PDSCH,第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于预设阈值,使DCI调度的多TTI PDSCH包含PDSCH的方式多样化,提高DCI调度的兼容性。

Description

一种配置、确定下行控制信道的方法、装置、设备及介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种配置、确定下行控制信道的方法、装置、设备及介质。
背景技术
为了保证调度的灵活性,一个下行控制信息(Downlink Control Information,DCI)可以调度一个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或者物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
采用960khz的子载波间隔(Sub-Carrier Space,SCS)时,相应的时隙时长为1/64ms,在这种子载波间隔较大且时隙时长较小的情况下,如果每个PDSCH都单独用一个DCI调度,将导致DCI监听(monitoring)开销过高。
多TTI(Multi-Transmission Time Interval,Multi-TTI)调度场景中,一个DCI可以调度多个时隙的PDSCH或PUSCH。以多TTI PDSCH调度场景中的一个示例进行说明:一个DCI可以调度4个PDSCH,此4个PDSCH是依次对应于4个连续的时隙。此4个PDSCH可用于传输不同的数据即不同的传输块(Transport Block,TB)。采用多TTI(multi-TTI)调度方式,可以降低DCI的数量,降低UE监听DCI的复杂度。
多TTI PDSCH调度场景中,一个DCI调度的PDSCH的数量可能是高层半静态配置的,也可能是由协议指示出取值范围或者高层信令配置出取值范围后,再由该DCI动态指示的。
发明内容
有鉴于此,本公开实施例提供了一种配置、确定下行控制信道的方法、装置、设备及介质。
根据本公开的第一方面,提供了一种配置下行控制信道的方法,应用于网络侧设备,包括:
配置DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
在一实施方式中,所述方法包括:配置所述第一类PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
在一实施方式中,所述方法包括:配置所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
在一实施方式中,所述方法包括:配置所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
在一实施方式中,所述方法包括:响应于所述DCI中未配置TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
在一实施方式中,所述方法包括:响应于所述DCI中配置有一个TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
在一实施方式中,所述方法包括:响应于所述DCI中配置有一个以上的TCI,配置所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
在一实施方式中,所述配置第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI确定的,包括:
响应于所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
在一实施方式中,所述方法包括:响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,配置与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
在一实施方式中,所述方法包括:配置所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
根据本公开的第二方面,提供了一种确定下行控制信道的方法,应用于用户设备,包括:
确定DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
在一实施方式中,所述方法包括:确定所述第一类PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
在一实施方式中,所述方法包括:确定所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
在一实施方式中,所述方法包括:确定所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
在一实施方式中,所述方法包括:响应于所述DCI中未配置TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
在一实施方式中,所述方法包括:响应于所述DCI中配置有一个TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
在一实施方式中,响应于所述DCI中配置有一个以上的TCI,确定所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
在一实施方式中,所述确定第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI确定的,包括:
响应于所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
在一实施方式中,所述方法包括:响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
在一实施方式中,所述方法包括:确定所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
根据本公开的第三方面,提供了一种配置下行控制信道的装置,应用于网络侧设备,包括:
第一配置模块,被配置为配置DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
根据本公开的第四方面,提供了一种确定下行控制信道的装置,应用于用户设备,包括:
第一确定模块,被配置为确定DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
根据本公开的第五方面,提供了一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现所述配置下行控制信道的方法的步骤。
根据本公开的第六方面,提供了一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现所述确定下行控制信道的方法的步骤。
根据本公开的第七方面,提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现所述配置下行控制信道的方法的步骤或者实现所述确定下行控制信道的方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:配置DCI调度的多TTI PDSCH中只包括第一类PDSCH、或者只包括第二类PDSCH、或者同时包括第一类PDSCH和第二类PDSCH,第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于预设阈值,使DCI调度的多TTI PDSCH包含PDSCH的方式多样化。并通过本公开的实施例提供的技术方案确定不同类PDSCH的TCI。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的一种配置下行控制信道的方法的流程图;
图2是根据一示例性实施例示出的一种确定下行控制信道的方法的流程图;
图3是根据一示例性实施例示出的一种配置下行控制信道的装置的结构图;
图4是根据一示例性实施例示出的一种确定下行控制信道的装置的结构图;
图5是根据一示例性实施例示出的一种配置下行控制信道的装置的结构图;
图6是根据一示例性实施例示出的一种确定下行控制信道的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如 所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
NR中的传输配置指示(Transmission Configuration Indication,TCI)用于指示两个信号在空间信道上的准共站址(Quasi Co-Location,QCL)。QCL表示两个信号在空间信道上的相似程度。QCL对应于某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。其中的大尺度参数可以包括时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及空间接收参数(Spatial Rx Parameter)。其中的空间接收参数(Spatial Rx Parameter)对应于发射光束的相关信息。
NR中将几种大尺度参数分为以下4个类型,便于系统根据UE所在的不同场景进行配置:
QCL类型A(QCL-Type A)、
QCL类型B(QCL-Type B)、
QCL类型C(QCL-Type C)、
QCL类型D(QCL-Type D)。
其中,
QCL类型A对应的大尺度参数包括:时延扩展、平均时延、多普勒扩展、多普勒偏移。
QCL类型B对应的大尺度参数包括:多普勒扩展、多普勒偏移。
QCL类型C对应的大尺度参数包括:多普勒偏移、平均时延。
QCL类型D对应的大尺度参数包括:空间接收参数(Spatial Rx Parameter)。
QCL类型D用于指示关于两个信号的发送波束的信息。
如果一个DCI调度的多TTI PDSCH中同时包括两种PDSCH,其中一种PDSCH与PDCCH之间的调度偏移(offset)小于预设阈值,另一种PDSCH与PDCCH之间的调度偏移(offset)大于或等于预设阈值,其中的预设阈值可以是TimeDurationForDCL。在这种情况下,如何确定PDSCH的QCL信息是需要解决的问题。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH,所述多TTI PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本方法适用于一个DCI调度多TTI PDSCH,并且多TTI PDSCH中每个PDSCH对应的是同一传输块(Transport Block,TB)重复传输的场景。
本方法也适用于一个DCI调度多TTI PDSCH,并且多TTI PDSCH中不同的PDSCH对应 于不同传输块的场景。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。参照图1,图1是根据一示例性实施例示出的一种配置下行控制信道的方法的流程图,如图1所示,此方法包括:
步骤S11,配置DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
在一实施方式中,所述预设阈值定义为TimeDurationForQCL。
在一实施方式中,所述预设阈值的单位是时域符号。
在一实施方式中,所述预设阈值是基站配置的一个数值。
在一实施方式中,所述预设阈值是基站配置的一个与SCS相关的数值。例如:SCS是60Khz时,配置所述数值为7个时域符号。
本公开实施例中,配置DCI调度的多TTI PDSCH中只包括第一类PDSCH、或者只包括第二类PDSCH、或者同时包括第一类PDSCH和第二类PDSCH,第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于预设阈值,使DCI调度的多TTI PDSCH包含PDSCH的方式多样化,提高DCI调度的兼容性。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,配置所述第一类PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
其中,DCI调度的多TTI PDSCH中所有第一类PDSCH中不同的第一类PDSCH对应的TCI可能不同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,并且,配置所述第一类PDSCH中每个PDSCH 的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
其中,DCI调度的多TTI PDSCH中所有第一类PDSCH中不同的第一类PDSCH对应的TCI可能不同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,配置所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
其中,DCI调度的多TTI PDSCH中所有第一类PDSCH中不同的第一类PDSCH对应的TCI可能不同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,并且,配置所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
其中,DCI调度的多TTI PDSCH中所有第一类PDSCH中不同的第一类PDSCH对应的TCI可能不同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,配置所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同,所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
其中,DCI调度的多TTI PDSCH中所有第一类PDSCH中每个第一类PDSCH对应的TCI均相同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,并且,配置所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同,所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
其中,DCI调度的多TTI PDSCH中所有第一类PDSCH中每个第一类PDSCH对应的TCI均相同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中未配置TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中未配置TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与 所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,配置所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,配置所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中最后N个的TCI,所述N是所述第二类PDSCH的数量。
例如:所述DCI中配置有4个TCI,第二类PDSCH中共包括3个PDSCH,第二类PDSCH中PDSCH的数量小于所述DCI中配置的TCI的数量,此3个PDSCH的TCI与所述4个TCI中的后3个TCI一一对应,每个PDSCH的TCI是根据一一对应的TCI确定的。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中最后N个的TCI,所述N是所述第二类PDSCH的数量。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,
响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,
响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,配置与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
在一实施方式中,设定间隔为0个时域符号。
在一实施方式中,设定间隔大于0个时域符号。
在一实施方式中,设定间隔由基站配置。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络 侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,
响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,
响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,配置与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
在一实施方式中,设定间隔为0个时域符号。
在一实施方式中,设定间隔大于0个时域符号。
在一实施方式中,设定间隔由基站配置。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,
响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,
响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,配置与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔,配置所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
在一实施方式中,在不同的子载波间隔下,与所述两个TCI对应的两个PDSCH时隙之间的时域间隔不同。
本公开实施例提供了一种配置下行控制信道的方法,此方法被网络侧设备执行。网络侧设备可以是基站设备。此方法包括:
配置DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,
响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,
响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,配置与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔,配置所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
在一实施方式中,在不同的子载波间隔下,与所述两个TCI对应的两个PDSCH时隙之间的时域间隔不同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。参照图2,图2是根据一示例性实施例示出的一种确定下行控制信道的方法的流程图,如图2所示,此方法包括:
步骤S21,确定DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
在一实施方式中,所述预设阈值定义为TimeDurationForQCL。
在一实施方式中,所述预设阈值的单位是时域符号。
在一实施方式中,所述预设阈值是基站配置的一个数值。
在一实施方式中,所述预设阈值是基站配置的一个与SCS相关的数值。例如:SCS是60Khz时,配置所述数值为7个时域符号。
本公开实施例中,响应于网络侧设备的配置,确定DCI调度的多TTI PDSCH中只包括第一类PDSCH、或者只包括第二类PDSCH、或者同时包括第一类PDSCH和第二类PDSCH,第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于预设阈值,使DCI调度的多TTI PDSCH包含PDSCH的方式多样化,提高DCI调度的兼容性。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,确定所述第一类PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,并且,确定所述第一类PDSCH中每个PDSCH 的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,确定所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,并且,确定所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,确定所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同,所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,并且,确定所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同,所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH 中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中未配置TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中未配置TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,确定所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,确定所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上 的TCI中的至少一个TCI确定的。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,
响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,
响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,
响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,
响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,
响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,
响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔,并且,
确定所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
本公开实施例提供了一种确定下行控制信道的方法,此方法被用户设备执行。此方法包括:
确定DCI调度的多TTI PDSCH包括第二类PDSCH,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,
响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,
响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔,并且,
确定所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。参照图3,图3是根据一示例性实施例示出的一种配置下行控制信道的装置的结构图,如图3所示,此装置包括:
第一配置模块301,被配置为配置DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第二配置模块,被配置为配置DCI调度的多TTI PDSCH包括第一类PDSCH,或者包括 第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,配置所述第一类PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第三配置模块,被配置为配置DCI调度的多TTI PDSCH包括第一类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,配置所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第四配置模块,被配置为配置DCI调度的多TTI PDSCH包括第一类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,配置所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同,配置所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第五配置模块,被配置为配置DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中未配置TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第六配置模块,被配置为配置DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调 度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第七配置模块,被配置为配置DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,配置所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第八配置模块,被配置为配置DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第九配置模块,被配置为配置DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,配置与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
本公开实施例提供了一种配置下行控制信道的装置,此装置应用于网络侧设备。网络侧设备可以是基站。此装置包括:
第十配置模块,被配置为配置DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间 的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,配置与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔,配置所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。参照图4,图4是根据一示例性实施例示出的一种确定下行控制信道的装置的装置图,如图4所示,此装置包括:
第一确定模块401,被配置为确定DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第二确定模块,被配置为确定DCI调度的多TTI PDSCH包括第一类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,确定所述第一类PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第三确定模块,被配置为确定DCI调度的多TTI PDSCH包括第一类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,确定所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第四确定模块,被配置为确定DCI调度的多TTI PDSCH包括第一类PDSCH,或者包括 第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,确定所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同,确定所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第五确定模块,被配置为确定DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中未配置TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第六确定模块,被配置为确定DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第七确定模块,被配置为确定DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,确定所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第七确定模块,被配置为确定DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述 第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第八确定模块,被配置为确定DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第九确定模块,被配置为确定DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
本公开实施例提供了一种确定下行控制信道的装置,此装置应用于用户设备。此装置包括:
第十确定模块,被配置为确定DCI调度的多TTI PDSCH包括第二类PDSCH,或者包括第一类PDSCH和第二类PDSCH,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值,并且,响应于所述DCI中配置有一个以上的TCI,所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量,并且,响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设 定间隔,并且,确定所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
本公开实施例提供了一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现所述配置下行控制信道的方法的步骤。
本公开实施例提供了一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现所述确定下行控制信道的方法的步骤。
本公开实施例提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现所述配置下行控制信道的方法的步骤。
本公开实施例提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现所述确定下行控制信道的方法的步骤。
图5是根据一示例性实施例示出的一种用于配置下行控制信道的装置500的框图。例如,装置500可以被提供为一基站。参照图5,装置500包括处理组件522,其进一步包括一个或多个处理器,以及由存储器532所代表的存储器资源,用于存储可由处理组件522的执行的指令,例如应用程序。存储器532中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件522被配置为执行指令,以执行上述配置下行控制信道的方法。
装置500还可以包括一个电源组件526被配置为执行装置500的电源管理,一个有线或无线网络接口550被配置为将装置500连接到网络,和一个输入输出(I/O)接口558。装置500可以操作基于存储在存储器532的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
图6是根据一示例性实施例示出的一种用于确定下行控制信道的装置600的框图。例如,装置600可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,装置600可以包括以下一个或多个组件:处理组件602,存储器604,电源组件606,多媒体组件608,音频组件610,输入/输出(I/O)的接口612,传感器组件614,以及通信组件616。
处理组件602通常控制装置600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件602可以包括一个或多个处理器620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件602可以包括一个或多个模块,便于处理组件602和其他组件之间的交互。例如,处理组件602可以包括多媒体模块,以方便多媒体组件608和处理组件602之间的交互。
存储器604被配置为存储各种类型的数据以支持在设备600的操作。这些数据的示例包括用于在装置600上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件606为装置600的各种组件提供电力。电源组件606可以包括电源管理系统,一个或多个电源,及其他与为装置600生成、管理和分配电力相关联的组件。
多媒体组件608包括在所述装置600和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件608包括一个前置摄像头和/或后置摄像头。当设备600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件610被配置为输出和/或输入音频信号。例如,音频组件610包括一个麦克风(MIC),当装置600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器604或经由通信组件616发送。在一些实施例中,音频组件610还包括一个扬声器,用于输出音频信号。
I/O接口612为处理组件602和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件614包括一个或多个传感器,用于为装置600提供各个方面的状态评估。例如,传感器组件614可以检测到设备600的打开/关闭状态,组件的相对定位,例如所述组件为装置600的显示器和小键盘,传感器组件614还可以检测装置600或装置600一个组件的位置改变,用户与装置600接触的存在或不存在,装置600方位或加速/减速和装置600的温度变化。传感器组件614可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件614还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件614还可以包括加速 度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件616被配置为便于装置600和其他设备之间有线或无线方式的通信。装置600可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件616经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置600可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器604,上述指令可由装置600的处理器620执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
配置DCI调度的多TTI PDSCH中只包括第一类PDSCH、或者只包括第二类PDSCH、或者同时包括第一类PDSCH和第二类PDSCH,第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于预设阈值,使DCI调度的多TTI PDSCH包含PDSCH的方式多样化,提高DCI调度的兼容性。并且通过本公开的实施例提供的技术方案可以确定不同类PDSCH的TCI。

Claims (25)

  1. 一种配置下行控制信道的方法,应用于网络侧设备,包括:
    配置DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
  2. 如权利要求1所述的配置下行控制信道的方法,其中,
    所述方法包括:
    配置所述第一类PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
  3. 如权利要求1所述的配置下行控制信道的方法,其中,
    所述方法包括:
    配置所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
  4. 如权利要求3所述的配置下行控制信道的方法,其中,
    所述方法包括:
    配置所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
  5. 如权利要求1所述的配置下行控制信道的方法,其中,
    所述方法包括:
    响应于所述DCI中未配置TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
  6. 如权利要求1所述的配置下行控制信道的方法,其中,
    所述方法包括:
    响应于所述DCI中配置有一个TCI,配置所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
  7. 如权利要求1所述的配置下行控制信道的方法,其中,
    所述方法包括:
    响应于所述DCI中配置有一个以上的TCI,配置所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
  8. 如权利要求7所述的配置下行控制信道的方法,其中,
    所述配置第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI确定的,包括:
    响应于所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,配置所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
  9. 如权利要求8所述的配置下行控制信道的方法,其中,
    所述方法包括:
    响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,配置与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
  10. 如权利要求9所述的配置下行控制信道的方法,其中,
    所述方法包括:
    配置所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
  11. 一种确定下行控制信道的方法,应用于用户设备,包括:
    确定DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
  12. 如权利要求11所述的确定下行控制信道的方法,其中,
    所述方法包括:
    确定所述第一类PDSCH中每个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
  13. 如权利要求11所述的确定下行控制信道的方法,其中,
    所述方法包括:
    确定所述第一类PDSCH中第一个PDSCH的QCL与用户设备监听的距所述PDSCH最近一个时隙中的搜索空间中控制资源集CORESET中索引最小的CORESET的TCI相同。
  14. 如权利要求13所述的确定下行控制信道的方法,其中,
    所述方法包括:
    确定所述第一类PDSCH中除第一个PDSCH之外的每个PDSCH的QCL与所述第一个PDSCH的TCL相同。
  15. 如权利要求11所述的确定下行控制信道的方法,其中,
    所述方法包括:
    响应于所述DCI中未配置TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述DCI的PDCCH的TCI相同。
  16. 如权利要求11所述的确定下行控制信道的方法,其中,
    所述方法包括:
    响应于所述DCI中配置有一个TCI,确定所述第二类PDSCH中至少一PDSCH的QCL与所述一个TCI相同。
  17. 如权利要求11所述的确定下行控制信道的方法,其中,
    所述方法包括:
    响应于所述DCI中配置有一个以上的TCI,确定所述第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI中的至少一个TCI确定的。
  18. 如权利要求17所述的确定下行控制信道的方法,其中,
    所述确定第二类PDSCH中至少一PDSCH的QCL是根据所述一个以上的TCI确定的,包括:
    响应于所述第二类PDSCH中至少一PDSCH的数量小于或等于所述一个以上的TCI的数量,确定所述至少一PDSCH的QCL一一对应于所述至少一个以上的TCI中N个的TCI,所述N是所述第二类PDSCH的数量。
  19. 如权利要求18所述的确定下行控制信道的方法,其中,
    所述方法包括:
    响应于所述DCI中配置的一个以上的TCI中两个TCI对应于不同的QCL类型D,确定与所述两个TCI对应的两个PDSCH时隙之间的时域间隔大于或等于设定间隔。
  20. 如权利要求19所述的确定下行控制信道的方法,其中,
    所述方法包括:
    确定所述与所述两个TCI对应的两个PDSCH时隙之间的时域间隔与子载波间隔相关。
  21. 一种配置下行控制信道的装置,应用于网络侧设备,包括:
    第一配置模块,被配置为配置DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
  22. 一种确定下行控制信道的装置,应用于用户设备,包括:
    第一确定模块,被配置为确定DCI调度的多TTI PDSCH包括以下至少一种:第一类PDSCH、第二类PDSCH;其中,所述第一类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移小于预设阈值,所述第二类PDSCH中每个PDSCH与所述DCI的PDCCH之间的调度偏移大于或等于所述预设阈值。
  23. 一种网络侧设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求1至10 中任一项所述配置下行控制信道的方法的步骤。
  24. 一种用户设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求11至20中任一项所述确定下行控制信道的方法的步骤。
  25. 一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现权利要求1至10中任一项所述配置下行控制信道的方法的步骤或者实现权利要求11至20中任一项所述确定下行控制信道的方法的步骤。
PCT/CN2021/081101 2021-03-16 2021-03-16 一种配置、确定下行控制信道的方法、装置、设备及介质 WO2022193135A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180000774.2A CN115486182A (zh) 2021-03-16 2021-03-16 一种配置、确定下行控制信道的方法、装置、设备及介质
JP2023556787A JP2024509992A (ja) 2021-03-16 2021-03-16 ダウンリンク制御チャネルを設定、決定する方法、装置、デバイス及び媒体
BR112023018688A BR112023018688A2 (pt) 2021-03-16 2021-03-16 Método e aparelho para configurar um canal de controle de enlace descendente, método e aparelho para determinar um canal de controle de enlace descendente, dispositivo lateral de rede, equipamento de usuário, e, meio de armazenamento legível por computador não transitório
EP21930731.1A EP4311349A4 (en) 2021-03-16 2021-03-16 METHOD AND APPARATUS FOR CONFIGURING DOWNLINK CONTROL CHANNEL, METHOD AND APPARATUS FOR DETERMINING DOWNLINK CONTROL CHANNEL, DEVICE AND MEDIUM
KR1020237034760A KR20230156761A (ko) 2021-03-16 2021-03-16 다운링크 제어 채널을 설정하는 방법 및 결정하는 방법, 장치, 기기 및 매체
PCT/CN2021/081101 WO2022193135A1 (zh) 2021-03-16 2021-03-16 一种配置、确定下行控制信道的方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081101 WO2022193135A1 (zh) 2021-03-16 2021-03-16 一种配置、确定下行控制信道的方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022193135A1 true WO2022193135A1 (zh) 2022-09-22

Family

ID=83321794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081101 WO2022193135A1 (zh) 2021-03-16 2021-03-16 一种配置、确定下行控制信道的方法、装置、设备及介质

Country Status (6)

Country Link
EP (1) EP4311349A4 (zh)
JP (1) JP2024509992A (zh)
KR (1) KR20230156761A (zh)
CN (1) CN115486182A (zh)
BR (1) BR112023018688A2 (zh)
WO (1) WO2022193135A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200314881A1 (en) * 2019-03-27 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and Apparatus for Downlink Resource Allocation for Multi-Transmission and Reception Point Transmission
US20200351129A1 (en) * 2019-05-02 2020-11-05 Youngwoo Kwak Uplink Operations of Multi-Transmission Reception Points and Panel
US20210022167A1 (en) * 2019-07-18 2021-01-21 Qualcomm Incorporated Quasi co-location related priority rules for multi-downlink control information based multi-transmission/reception point
WO2021024494A1 (ja) * 2019-08-08 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200314881A1 (en) * 2019-03-27 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and Apparatus for Downlink Resource Allocation for Multi-Transmission and Reception Point Transmission
US20200351129A1 (en) * 2019-05-02 2020-11-05 Youngwoo Kwak Uplink Operations of Multi-Transmission Reception Points and Panel
US20210022167A1 (en) * 2019-07-18 2021-01-21 Qualcomm Incorporated Quasi co-location related priority rules for multi-downlink control information based multi-transmission/reception point
WO2021024494A1 (ja) * 2019-08-08 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1912893, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820229 *
See also references of EP4311349A4 *

Also Published As

Publication number Publication date
JP2024509992A (ja) 2024-03-05
BR112023018688A2 (pt) 2023-10-24
EP4311349A1 (en) 2024-01-24
KR20230156761A (ko) 2023-11-14
CN115486182A (zh) 2022-12-16
EP4311349A4 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
US11877280B2 (en) Buffer status report transmission and device
WO2022141641A1 (zh) 默认波束的确定方法、装置、用户设备及网络设备
WO2019237360A1 (zh) 确定上下行切换点的方法及装置
WO2018201439A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
WO2022198459A1 (zh) 一种搜索空间监测方法、搜索空间监测装置及存储介质
WO2022205004A1 (zh) 默认波束的确定方法、装置及通信设备
EP3751892B1 (en) Trigger hold method and trigger hold apparatus
WO2022205348A1 (zh) 一种发送和接收下行信息的方法、装置、设备及存储介质
WO2022205146A1 (zh) 波束恢复方法、装置、用户设备、网络侧设备及存储介质
WO2022151342A1 (zh) 一种上报方法、发送方法、装置、设备及存储介质
WO2022193135A1 (zh) 一种配置、确定下行控制信道的方法、装置、设备及介质
WO2022027323A1 (zh) 用于寻呼信息处理的方法、装置及存储介质
WO2021063195A1 (zh) 直连链路的参考信号接收功率rsrp测量方法及装置
WO2019023880A1 (zh) 传输方向的指示方法及装置
CN109644334B (zh) 自干扰处理方法及装置
WO2022188074A1 (zh) 一种配置、确定下行调度信息的方法、装置、设备及介质
CN109792619B (zh) 信令检测的实现方法、装置、用户设备及基站
WO2022183457A1 (zh) 一种发送、接收harq-ack的方法、装置、设备及存储介质
WO2022178864A1 (zh) 确定传输参数的方法、发送harq-ack的方法、装置、设备及介质
WO2023039889A1 (zh) 一种传输和获取调度信息的方法、装置、设备及存储介质
WO2022170499A1 (zh) 一种接收下行控制信息的方法、装置、设备及存储介质
WO2018227615A1 (zh) 一种数据调度方法及装置
WO2022006813A1 (zh) 盲检能力优化方法和装置
WO2022061553A1 (zh) 一种信道状态信息csi上报方法、装置及存储介质
WO2023065331A1 (zh) 一种信息传输和接收方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549493

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023556787

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023018688

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237034760

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034760

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023124665

Country of ref document: RU

Ref document number: 2021930731

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021930731

Country of ref document: EP

Effective date: 20231016

ENP Entry into the national phase

Ref document number: 112023018688

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230914

WWE Wipo information: entry into national phase

Ref document number: 11202306868T

Country of ref document: SG