WO2022141641A1 - 默认波束的确定方法、装置、用户设备及网络设备 - Google Patents

默认波束的确定方法、装置、用户设备及网络设备 Download PDF

Info

Publication number
WO2022141641A1
WO2022141641A1 PCT/CN2021/070181 CN2021070181W WO2022141641A1 WO 2022141641 A1 WO2022141641 A1 WO 2022141641A1 CN 2021070181 W CN2021070181 W CN 2021070181W WO 2022141641 A1 WO2022141641 A1 WO 2022141641A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
default
determining
beams
default beam
Prior art date
Application number
PCT/CN2021/070181
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2023540970A priority Critical patent/JP2024503823A/ja
Priority to US18/260,129 priority patent/US20240063878A1/en
Priority to CN202180000135.6A priority patent/CN112771970B/zh
Priority to BR112023013326A priority patent/BR112023013326A2/pt
Priority to PCT/CN2021/070181 priority patent/WO2022141641A1/zh
Priority to CN202310357913.8A priority patent/CN116367330A/zh
Priority to EP21912424.5A priority patent/EP4274347A1/en
Priority to KR1020237026327A priority patent/KR20230125316A/ko
Publication of WO2022141641A1 publication Critical patent/WO2022141641A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method, apparatus, user equipment, network equipment and storage medium for determining a default beam.
  • NR New Radio
  • the network device can use multiple TRPs to provide services for user equipment, such as using multiple TRPs to send PDCCH (Physical Downlink Control Channel, physical downlink) to user equipment control channel).
  • PDCCH Physical Downlink Control Channel, physical downlink
  • the network device When the network device uses a TRP to send the PDCCH to the user equipment, it can configure a CORESET (ControlResourceSet, control resource set) for the user equipment, and configure a TCI (Transmission Configuration Indication, transmission configuration indication) state corresponding to the CORESET;
  • a TRP sends a PDCCH for a user equipment
  • multiple TCI states may be configured for the CORESET, which are respectively used to indicate beams corresponding to different TRPs.
  • the user equipment when the time interval between the PDCCH and the PDSCH (Physical Downlink Shared Channel, physical downlink shared channel) scheduled by the DCI (Downlink Control Information, downlink control information) signaling carried on the PDCCH is small, the user equipment does not have time to obtain the data in the DCI.
  • the beam indication information is not specified, or when the DCI does not carry the TCI state corresponding to the receiving beam used to indicate the PDSCH, the user equipment needs to use the default beam to receive the PDSCH scheduled by the DCI.
  • the methods for determining the default beam are all defined for the CORESET sending DCI corresponding to one TCI state. When the CORESET sending DCI corresponds to multiple TCI states, the default beam corresponding to the CORESET cannot be determined.
  • the method, device, user equipment, network equipment and storage medium for determining a default beam proposed in this application are used to solve the problem in the related art that when a CORESET for sending DCI corresponds to multiple TCI states, the default beam corresponding to the CORESET cannot be determined .
  • the method for determining a default beam proposed by an embodiment of the present application, which is applied to a user equipment includes: determining a default beam corresponding to a first CORESET based on a specified rule, wherein the maximum number of TCI states supported by the first CORESET is greater than or equal to 2.
  • the method for determining a default beam proposed by an embodiment of the present application, applied to a network device includes: determining a default beam corresponding to a first CORESET based on a specified rule, wherein the maximum number of TCI states supported by the first CORESET greater than or equal to 2.
  • the apparatus for determining a default beam proposed by another embodiment of the present application, which is applied to user equipment, includes: a first determining module, configured to determine a default beam corresponding to a first CORESET based on a specified rule, wherein the first The maximum number of TCI states supported by CORESET is greater than or equal to 2.
  • the apparatus for determining a default beam proposed by an embodiment of another aspect of the present application, applied to a network device includes: a second determining module configured to determine a default beam corresponding to a first CORESET based on a specified rule, wherein the first CORESET The maximum number of TCI states supported by CORESET is greater than or equal to 2.
  • a user equipment provided by an embodiment of another aspect of the present application includes: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to control the memory by executing computer-executable instructions on the memory.
  • the transceiver transmits and receives wireless signals, and can perform the following operations:
  • a default beam corresponding to the first CORESET is determined, wherein the transmission configuration supported by the first CORESET indicates that the maximum number of TCI states is greater than or equal to 2.
  • the network device proposed in another embodiment of the present application includes: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to control the memory by executing computer-executable instructions on the memory.
  • the transceiver transmits and receives wireless signals, and can perform the following operations:
  • the default beam corresponding to the first CORESET is determined, wherein the transmission configuration supported by the first CORESET indicates that the maximum number of TCI states is greater than or equal to 2.
  • a system for determining a default beam proposed by another embodiment of the present application includes user equipment and network equipment, wherein the user equipment includes: a transceiver; a memory; and a processor, which are respectively connected to the transceiver and the memory, It is configured to control wireless signal transmission and reception of the transceiver by executing computer-executable instructions on the memory, and can perform the following operations:
  • a default beam corresponding to the first CORESET is determined, wherein the transmission configuration supported by the first CORESET indicates that the maximum number of TCI states is greater than or equal to 2.
  • the network device includes: a transceiver; a memory; a processor, respectively connected to the transceiver and the memory, configured to control the wireless signal of the transceiver by executing computer-executable instructions on the memory Send and receive, and can perform the following operations:
  • a default beam corresponding to the first CORESET is determined, wherein the transmission configuration supported by the first CORESET indicates that the maximum number of TCI states is greater than or equal to 2.
  • the computer storage medium provided by an embodiment of the present application stores computer-executable instructions thereon; after the computer-executable instructions are executed by a processor, the aforementioned method for determining a default beam can be implemented.
  • the computer program product proposed by the embodiments of another aspect of the present application includes a computer program, which implements the aforementioned method for determining a default beam when executed by a processor.
  • Another aspect of the present application provides a computer program that, when executed by a processor, implements the aforementioned method for determining a default beam.
  • the method, apparatus, user equipment, network device, system, computer-readable storage medium, computer program product, and computer program for determining a default beam provided by the embodiments of the present application determine the default beam corresponding to the first CORESET based on a specified rule, Wherein, the maximum number of TCI states supported by the first CORESET is greater than or equal to 2. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • FIG. 1 is a schematic flowchart of a method for determining a default beam provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another method for determining a default beam provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of still another method for determining a default beam provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of another method for determining a default beam provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another method for determining a default beam provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another method for determining a default beam provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for determining a default beam provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another apparatus for determining a default beam provided by an embodiment of the present application.
  • FIG. 9 is a block diagram of a user equipment provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the application.
  • first, second, third, etc. may be used in the embodiments of the present application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the method for determining a default beam determines a default beam corresponding to the first CORESET based on a specified rule, where the maximum number of TCI states supported by the first CORESET is greater than or equal to 2. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • FIG. 1 is a schematic flowchart of a method for determining a default beam provided by an embodiment of the present application, which is applied to user equipment.
  • the method for determining the default beam includes the following steps:
  • Step 101 Determine a default beam corresponding to a first CORESET based on a specified rule, where the maximum number of TCI states supported by the first CORESET is greater than or equal to 2.
  • the method for determining the default beam in this embodiment of the present application may be applied to any user equipment.
  • User equipment may be a device that provides voice and/or data connectivity to a user.
  • User equipment can communicate with one or more core networks via RAN (Radio Access Network), and the terminals can be IoT terminals, such as sensor devices, mobile phones (or "cellular" phones) and devices with IoT devices.
  • RAN Radio Access Network
  • the computer of the networked terminal for example, may be a stationary, portable, pocket-sized, hand-held, computer-built-in or vehicle-mounted device.
  • the user equipment may also be equipment of an unmanned aerial vehicle.
  • the user equipment may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless terminal connected to an external trip computer.
  • the user equipment may also be a roadside device, for example, a streetlight, a signal light, or other roadside devices with a wireless communication function.
  • an application scenario of the method for determining a default beam in this embodiment of the present application may include: a scenario in which a default beam is determined for a CORESET in which multiple TCI states can be configured.
  • the TCI state is the beam, and one TCI state may correspond to one beam.
  • the first CORESET may refer to a CORESET that can support multiple TCI states. It should be noted that, although the first CORESET may support multiple TCI states, it may also be configured with one TCI state at certain moments according to actual service requirements, which is not limited in this embodiment of the present application.
  • the first CORESET may be a CORESET that may support two TCI states. It should be noted that, the following contents of this application are described in detail by taking the first CORESET as an example of a CORESET that can support two TCI states.
  • the MAC CE (Medium Access Control Element) signaling can be used as the beam indication signaling of the CORESET, so that the default corresponding to the first CORESET can be determined through the MAC CE signaling. beam. That is, in a possible implementation manner of the embodiment of the present application, the foregoing step 101 may include:
  • the first beam is determined as the default beam corresponding to the first CORESET.
  • the network device can determine the number of beams that can be activated for the first CORESET according to the number of TRPs it contains and current service requirements, and activate the corresponding number of first beams through the MAC CE, so that the user equipment can
  • the first beam corresponding to the activated first CORESET is determined according to the received MAC CE, and the first beam is determined as the default beam corresponding to the first CORESET.
  • the network device can determine that the number of first beams can be 1 or 2, so that the network device can activate one first beam for the first CORESET by sending the MAC CE to the user equipment, Or activate two first beams for the first CORESET.
  • each first beam corresponds to a different TRP, wherein the TRP can be identified by the TRP, CORESETPoolIndex (ControlResourceSetPoolIndex, control resource set pool index), reference signal At least one of resource identifiers, reference signal resource set identifiers, panel IDs, etc. to distinguish.
  • the user equipment may determine the corresponding first beam as the first CORESET according to the number of the first beams and the number of preset default beams The corresponding default beam.
  • the user equipment may determine the corresponding first beam as the first CORESET according to the number of the first beams and the number of preset default beams The corresponding default beam.
  • Optional can be divided into the following three cases:
  • the number of the first beam is one, and one first beam is determined as the default beam corresponding to the first CORESET.
  • the user equipment may directly determine the MAC CE as a first beam activated by the first CORESET as the default beam corresponding to the first CORESET.
  • the number of the first beams is two, and the two first beams are determined as default beams corresponding to the first CORESET.
  • the user equipment in response to the number of first beams being two and the number of default beams pre-agreed by the network device and the user equipment being two, or the number of default beams not pre-agreed in advance, the user equipment can directly
  • the two first beams activated by the MAC CE as the first CORESET are determined as default beams corresponding to the first CORESET.
  • the number of the first beams is two, and one of the two first beams corresponding to the specified TRP is determined as the default beam corresponding to the first CORESET.
  • the MAC CE may contain multiple bits, which are respectively used to activate the TCI states of different TRPs, and the user equipment may know which TRP TCI states each bit in the MAC CE is used to activate. .
  • the user equipment in response to the number of the first beam being two, and the network equipment and the user equipment pre-agreed to specify the TRP, then the user equipment can determine two first beams according to the correspondence between each bit in the MAC CE and the TRP The first beam corresponding to the TRP is specified in , and the first beam corresponding to the specified TRP is determined as the default beam corresponding to the first CORESET.
  • the designated TRP can be TRP#0 (or TRP corresponding to CORESETPoolIndex#0), and the designated TRP can also be TRP#1 (or TRP corresponding to CORESETPoolIndex#1).
  • the DCI may also be used as the beam indication signaling of the CORESET, so that the default beam corresponding to the first CORESET may be determined through the DCI. That is, in a possible implementation manner of the embodiment of the present application, the foregoing step 101 may include:
  • the second beam is determined as the default beam corresponding to the first CORESET.
  • the network device may also determine the number of beams that can be activated for the first CORESET according to the number of TRPs it contains and current service requirements, and configure a corresponding number of beams for the first CORESET by sending DCI to the user equipment.
  • the second beam so that the user equipment can determine the second beam according to the received DCI, and determine the second beam as the default beam corresponding to the CORESET.
  • the TCI status field used to indicate the beam in DCI is multiple bits (such as 3 bits), and multiple bits can be displayed as multiple different codepoints at different times, such as '000', '001' , '010', '011', '100', '101', '110', and '111'.
  • each codepoint may correspond to a group of second beams, wherein each group of second beams may include one second beam or two second beams.
  • the correspondence between codepoints and each group of second beams may be indicated by the MAC CE. That is, multiple second beams can be activated through the MAC CE, and each bit in the MAC CE is in one-to-one correspondence with the two second beams corresponding to each codepoint, but the two second beams corresponding to each codepoint can only have A second beam exists and is indicated by the bit information in the MAC CE; when two second beams corresponding to each codepoint exist, the two second beams correspond to different TRPs respectively.
  • the user equipment when the user equipment determines the default beam corresponding to the first CORESET according to the second beam, the user equipment can use the number of the second beam corresponding to each codepoint in the DCI and the number of preset default beams to convert the corresponding first CORESET.
  • the second beam is determined as the default beam corresponding to the first CORESET.
  • Optional can be divided into the following four cases:
  • At least one of the second beams is determined as the default beam corresponding to the first CORESET.
  • the user equipment may directly determine a second beam indicated by the DCI as the first CORESET The corresponding default beam.
  • the user equipment in response to the number of second beams being two, that is, the DCI indicates that the beam corresponding to the first CORESET is two beams, and indicates that the default beam corresponding to the first CORESET is one, the user equipment may Any one of the two second beams is determined as the default beam corresponding to the first CORESET.
  • the DCI in response to the number of the second beams being two, that is, the DCI indicates that the beams corresponding to the first CORESET are two beams, and indicates that the default beams corresponding to the first CORESET are two, the user equipment Both of the two second beams indicated by the DCI may be determined as default beams corresponding to the first CORESET.
  • the second beam corresponding to the codepoint with the smallest value used to indicate a second beam in the first DCI is determined as the default beam corresponding to the first CORESET.
  • each codepoint in the DCI may correspond to a set of second beams
  • the user equipment may determine the second beam corresponding to one of the codepoints as the default beam corresponding to the first CORESET.
  • the user equipment in response to the DCI indicating that the default beam corresponding to the first CORESET is one, the user equipment can first select a codepoint corresponding to a second beam in the DCI, and select a second beam corresponding to the codepoint with the smallest value, It is determined as the default beam corresponding to the first CORESET.
  • each codepoint in DCI can be represented by 3 bits.
  • the value of codepoint can include 000, 001, 010, 011, 100, 101, 110, 111, etc., and the above values are arranged in order from smallest to largest.
  • codepoint "011" in DCI corresponds to a second beam
  • codepoint "000” also indicates a second beam
  • a second beam indicated by codepoint "000” may be determined as the default beam corresponding to the first CORESET.
  • the second beam corresponding to the codepoint with the smallest value used to indicate two second beams in the first DCI is determined as the default beam corresponding to the first CORESET.
  • each codepoint in the DCI may correspond to a set of second beams
  • the user equipment may determine the second beam corresponding to one of the codepoints as the default beam corresponding to the first CORESET.
  • the user equipment in response to the DCI indicating that the default beams corresponding to the first CORESET are two, the user equipment can first select the codepoints corresponding to the two second beams in the DCI, and select the two codepoints corresponding to the selected codepoints with the smallest values.
  • the second beam is determined as the default beam corresponding to the first CORESET.
  • codepoint "011" in DCI corresponds to two second beams
  • codepoint "000” also indicates two second beams
  • the two second beams indicated by codepoint "000” can be determined as corresponding to the first CORESET Default beam.
  • One second beam corresponding to the specified TRP among the two second beams corresponding to the codepoint with the smallest value used to indicate the two second beams in the first DCI is determined as the default beam corresponding to the first CORESET.
  • each codepoint in the DCI may correspond to a set of second beams
  • the user equipment may determine the second beam corresponding to one of the codepoints as the default beam corresponding to the first CORESET.
  • the user equipment in response to the DCI indicating that the beams corresponding to the first CORESET are two beams, and indicating that the default beam corresponding to the first CORESET is one, and the network device and the user equipment have pre-agreed a designated TRP, the user equipment can first select the DCI
  • the codepoint corresponding to the two second beams can be determined according to the correspondence between each bit in the MAC CE and the TRP to determine the second beam corresponding to the specified TRP among the two second beams corresponding to the selected codepoint with the smallest value , and the second beam corresponding to the specified TRP is determined as the default beam corresponding to the first CORESET.
  • codepoint "011" in DCI corresponds to two second beams
  • codepoint "000” also indicates two second beams
  • the two second beams indicated by “000” are TCI#0 and TCI#1, respectively
  • TCI#0 corresponds to TRP#0 (or TRP corresponding to CORESETPoolIndex#0)
  • TCI#1 corresponds to TRP#1 (or TRP corresponding to CORESETPoolIndex#1).
  • TCI#0 is determined as the default beam corresponding to the first CORESET; if the specified TRP is TRP#1 (or the TRP corresponding to CORESETPoolIndex#1), then TCI#1 is determined as the default beam corresponding to the first CORESET.
  • the MAC CE may be a MAC CE indicating a dedicated beam of the first CORESET; or, the MAC CE may also be a MAC CE indicating a general beam of a group (set) including the first CORESET.
  • the group may also include other CORESETs, PDSCH, PUSCH (physical uplink shared channel, physical uplink shared channel), PUCCH (physical uplink control channel, physical uplink control channel), CSI-RS (channel state information reference signal), SRS (sounding reference signal, sounding reference signal), PRS (Positioning Reference Signal, positioning reference signal), DMRS (Demodulation Reference Signal, demodulation reference signal) etc. at least one.
  • a dedicated beam may refer to a beam that is only used for the first CORESET;
  • a general beam may refer to a beam that can be used for at least one group of channels and/or at least one reference signal, that is, except for the beam that can be used for the first CORESET
  • it can also be used for other CORESETs, PDSCH, PUSCH, reference signals, etc. that belong to the same group as the first CORESET.
  • the method for determining a default beam determines a default beam corresponding to the first CORESET based on a specified rule, where the maximum number of TCI states supported by the first CORESET is greater than or equal to 2. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • the following further describes another method for determining a default beam provided by an embodiment of the present application with reference to FIG. 2 .
  • FIG. 2 is a schematic flowchart of another method for determining a default beam provided by an embodiment of the present application, which is applied to user equipment.
  • the method for determining the default beam includes the following steps:
  • Step 201 Determine the third beam corresponding to the second CORESET with the smallest index value in the latest time unit that needs to detect the PDCCH.
  • the time unit can be any one of slot (time slot), mini-slot (sub-slot), TTI (Transport Time Interval, transmission time interval), subframe (subframe), and infinite frame, which is implemented in this application.
  • slot time slot
  • mini-slot sub-slot
  • TTI Transport Time Interval
  • transmission time interval transmission time interval
  • subframe subframe
  • infinite frame infinite frame
  • the user equipment in response to all CORESETs corresponding to the same CORESETPoolIndex, may determine the second CORESET with the smallest index in the latest slot that needs to detect the PDCCH, and determine the second CORESET with the smallest index value according to the third beam corresponding to the second CORESET. , and determine the default beam corresponding to the first CORESET.
  • the CORESETPoolIndex corresponding to the first CORESET may be 0, 1, 0, and 1, or a value other than 0 and 1, such as 2, 3, and 4.
  • Step 202 Determine a default beam according to the third beam.
  • one or more of the third beams may be selected according to the number of the third beams and the current service requirements.
  • the beam is determined as the default beam corresponding to the first CORESET.
  • the third beam may be determined as the default beam corresponding to the first CORESET.
  • the third beam may be determined as the first CORESET corresponds to the default beam.
  • the second CORESET in response to the network device and the user equipment not pre-agreed to specify the TRP, and the second CORESET can be configured with at most two beams, but only one beam is currently configured, that is, the number of third beams is one, then the second CORESET can be configured with only one beam.
  • the three beams are determined as the default beams corresponding to the first CORESET.
  • the second CORESET in response to the fact that the network device and the user equipment have not pre-agreed to specify the TRP, and the second CORESET can be configured with at most two beams, and two beams are currently configured, that is, the number of third beams is two, this can be set.
  • the two third beams are determined as default beams corresponding to the first CORESET.
  • the default beam corresponding to the first CORESET is a beam corresponding to the specified TRP among the third beams.
  • the second CORESET in response to the network device and the user equipment pre-agreed with a designated TRP, and the second CORESET can be configured with at most two beams, and two beams are currently configured, that is, the number of third beams is two, then the second CORESET can be configured with two beams.
  • the third beam corresponding to the designated TRP is determined as the default beam corresponding to the first CORESET.
  • the specified TRP can be TRP#0 (or TRP corresponding to CORESETPoolIndex#0), and the specified TRP can also be TRP#1 (or TRP corresponding to CORESETPoolIndex#1) .
  • TCI#0 is determined as the default beam corresponding to the first CORESET; if the specified TRP is TRP#1 (or the TRP corresponding to CORESETPoolIndex#1), then TCI#1 is determined as the default beam corresponding to the first CORESET.
  • steps 201 to 202 may be implemented in any one of the embodiments of the present application, which are not limited in the embodiments of the present application, and will not be described again.
  • the method for determining the default beam determines the third beam corresponding to the second CORESET with the smallest index in the latest time unit that needs to detect the PDCCH, and then determines the default beam according to the third beam. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • FIG. 3 is a schematic flowchart of still another method for determining a default beam provided by an embodiment of the present application, which is applied to a user equipment.
  • the method for determining the default beam includes the following steps:
  • Step 301 Determine the first CORESETPoolIndex corresponding to the first CORESET.
  • the user equipment in response to different CORESETs corresponding to different CORESETPoolIndex, may determine the default beam corresponding to the first CORESET according to the same CORESET as the first CORESETPoolIndex corresponding to the first CORESET. Therefore, the user equipment may first determine the first CORESETPoolIndex corresponding to the first CORESET, so as to determine the same CORESET as the CORESETPoolIndex of the first CORESET according to the first CORESETPoolIndex.
  • the first CORESETPoolIndex corresponding to the first CORESET can be determined according to the TRP corresponding to the first CORESET.
  • the first CORESET may actually correspond to two TRPs, and in response to the first CORESET corresponding to the first TRP, it may be determined that the first CORESETPoolIndex corresponding to the first CORESET is the first specified value; Corresponding to the second TRP, it can be determined that the first CORESETPoolIndex corresponding to the first CORESET is the second specified value; in response to the first CORESET corresponding to both the first TRP and the second TRP, it can be determined that the first CORESETPoolIndex corresponding to the first CORESET is The first specified value and the second specified value, or it may also be determined that the first CORESETPoolIndex corresponding to the first CORESET is a value other than the first specified value and the second specified value.
  • the first specified value may be 0, the second specified value may be 1, and the other values may be 2, which is not limited in this embodiment of the present application.
  • Step 302 according to the first CORESETPoolIndex, determine the fourth beam corresponding to the third CORESET with the smallest index value in the latest time unit that needs to detect the PDCCH, wherein the CORESETPoolIndex corresponding to the third CORESET is the same as the CORESETPoolIndex corresponding to the first CORESET.
  • the user equipment may determine the third CORESET with the smallest index in the latest time unit that needs to detect the PDCCH, and determine the third CORESET with the smallest index value according to the first CORESET corresponding to the third CORESET.
  • Four beams determine the default beam corresponding to the first CORESET,
  • Step 303 Determine a default beam according to the fourth beam.
  • one or more of the fourth beams may be selected according to the number of the fourth beams and current service requirements.
  • the beam is determined as the default beam corresponding to the first CORESET.
  • the fourth beam may be determined as the default beam corresponding to the first CORESET.
  • the fourth beam may be determined as the first CORESET corresponds to the default beam.
  • the third CORESET in response to the network device and the user equipment not pre-agreed to specify the TRP, and the third CORESET can be configured with at most two beams, but only one beam is currently configured, that is, the number of the fourth beam is one, then the third CORESET can be configured with only one beam.
  • the four beams are determined as the default beams corresponding to the first CORESET.
  • the third CORESET can be configured with at most two beams, and two beams are currently configured, that is, the number of fourth beams is two, then this can be set. Both of the two fourth beams are determined as default beams corresponding to the first CORESET.
  • the default beam corresponding to the first CORESET is a beam corresponding to the specified TRP among the fourth beams.
  • the third CORESET in response to the network device and the user equipment pre-agreed with a designated TRP, and the third CORESET can be configured with at most two beams, and two beams are currently configured, that is, the number of fourth beams is two, the The fourth beam corresponding to the designated TRP is determined as the default beam corresponding to the first CORESET.
  • the specified TRP can be TRP#0 (or TRP corresponding to CORESETPoolIndex#0), and the specified TRP can also be TRP#1 (or TRP corresponding to CORESETPoolIndex#1) .
  • TCI#0 is determined as the default beam corresponding to the first CORESET; if the specified TRP is TRP#1 (or the TRP corresponding to CORESETPoolIndex#1), then TCI#1 is determined as the default beam corresponding to the first CORESET.
  • the first CORESETPoolIndex or TPR identifier corresponding to the first CORESET can be used to identify the TRP corresponding to the first CORESET, it can also be selected from the fourth beam according to the value of the first CORESETPoolIndex or TRP identifier.
  • the beam corresponding to the TRP corresponding to the CORESET is determined as the default beam corresponding to the first CORESET. That is, in a possible implementation manner of the embodiment of the present application, the above step 303 may include:
  • At least one fourth beam respectively corresponding to the first specified value and the second specified value is determined as a default beam.
  • the first specified value and the second specified value in the embodiment of the present application may refer to the value of CORESETPoolIndex or the value of the TRP identifier, which is not limited in the embodiment of the present application.
  • the following takes the values of the first specified value and the second specified value as CORESETPoolIndex as an example for specific description.
  • the user equipment may use the first specified value corresponding to the fourth beam corresponding to the third CORESET.
  • the fourth beam is determined as the default beam corresponding to the first CORESET.
  • the user equipment may use the third CORESET corresponding to the fourth beam corresponding to the second specified value.
  • the fourth beam is determined as the default beam corresponding to the first CORESET.
  • the user equipment may determine at least one fourth beam corresponding to the first specified value and the second specified value as the default beam corresponding to the first CORESET according to the number of preconfigured default beams and the number of fourth beams corresponding to each specified value .
  • the network device and the user equipment may pre-agreed that the number of default beams corresponding to the first CORESET is one or two, and in response to the latest time unit that needs to detect the PDCCH, only CORESETPoolIndex is the first in all CORESETs.
  • the third CORESET of the specified value the user equipment may determine the fourth beam corresponding to the first specified value as the default beam corresponding to the first CORESET;
  • CORESETPoolIndex is the third CORESET with the second specified value, and the user equipment may determine the fourth beam corresponding to the second specified value as the default beam corresponding to the first CORESET.
  • the user equipment may In response to the number of default beams being two, the fourth beam corresponding to the first specified value and the second specified value is determined as the default beam corresponding to the first CORESET; in response to the number of default beams being one, and the network device and the user If the device has pre-agreed a designated TRP, the user equipment may determine the fourth beam corresponding to the designated TRP as the default beam corresponding to the first CORESET.
  • the CORESETPoolIndex corresponding to the first CORESET may be 0, 1, 0, and 1, or a value other than 0 and 1, such as 2, 3, and 4.
  • steps 301 to 303 may be implemented in any one of the embodiments of the present application, which are not limited in the embodiments of the present application, and will not be described again.
  • the method for determining the default beam is to determine the first CORESETPoolIndex corresponding to the first CORESET, and according to the first CORESETPoolIndex, determine the first CORESET corresponding to the third CORESET with the smallest index value in the latest time unit that needs to detect the PDCCH.
  • FIG. 4 is a schematic flowchart of another method for determining a default beam provided by an embodiment of the present application, which is applied to a user equipment.
  • the method for determining the default beam includes the following steps:
  • Step 401 Determine the fifth beam corresponding to the fourth CORESET whose CORESETPoolIndex is the third specified value and the minimum index value in the latest time unit that needs to detect the PDCCH.
  • the user equipment may further determine two default beams corresponding to the first CORESET respectively.
  • the user equipment can select the fourth CORESET with the CORESETPoolIndex as the third specified value and the smallest index value from all CORESETs in the latest time unit that needs to detect the PDCCH according to the third specified value, and determine that the fourth CORESET corresponds to the fifth beam.
  • the third specified value may be 0, that is, corresponding to the first TRP, namely TRP#0.
  • Step 402 Determine the sixth beam corresponding to the fifth CORESET whose CORESETPoolIndex is the fourth specified value and the minimum index value in the latest time unit that needs to detect the PDCCH.
  • the user equipment may, according to the fourth specified value, select CORESETPoolIndex as the fourth specified value from all CORESETs in the latest time unit that needs to detect the PDCCH , and the fifth CORESET with the smallest index value is determined, and the sixth beam corresponding to the fifth CORESET is determined.
  • the fourth specified value may be 1, which corresponds to the second TRP, namely TRP#1.
  • time unit corresponding to the fourth CORESET and the time unit corresponding to the fifth CORESET may be different time units, so as to ensure that the user equipment can determine two default beams.
  • Step 403 Determine the fifth beam and the sixth beam as default beams.
  • the fifth beam and the sixth beam may be determined as two default beams corresponding to the first CORESET.
  • the CORESETPoolIndex corresponding to the first CORESET may be 0 and 1, or a value other than 0 and 1, such as 2, 3, and 4. That is, it indicates that the first CORESET corresponds to two TCI states, and each TCI state corresponds to one of the two TRPs.
  • steps 401 to 403 may be implemented in any of the embodiments of the present application, which are not limited in the embodiments of the present application, and will not be repeated.
  • the method for determining the default beam is to determine the fifth beam corresponding to the fourth CORESET whose CORESETPoolIndex is the third specified value and the index value is the smallest in the latest time unit that needs to detect the PDCCH, and determine the most recent one.
  • the sixth beam corresponding to the fifth CORESET corresponding to the fourth specified value of CORESETPoolIndex and the smallest index value in the time unit that needs to detect the PDCCH is determined, and then the fifth beam and the sixth beam are determined as default beams. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • FIG. 5 is a schematic flowchart of another method for determining a default beam provided by an embodiment of the present application, which is applied to user equipment.
  • the method for determining the default beam includes the following steps:
  • Step 501 Receive configuration signaling sent by the network device, wherein the configuration signaling is used to configure at least one CORESET in the second CORESET, the third CORESET, the fourth CORESET, and the fifth CORESET, and the corresponding CORESET in the at least one CORESET. one or more beams.
  • the configuration signaling may include MAC CE and/or DCI.
  • the network device may configure each CORESET and one or more beams corresponding to each CORESET through at least one of MAC CE and DCI.
  • the network device when the network device configures at least one CORESET and its corresponding beam through the MAC CE, the network device can determine the number of beams that can be activated for at least one CORESET according to the number of TRPs it contains and current service requirements , and activate the corresponding number of beams through the MAC CE, so that the user equipment can determine one or more beams corresponding to at least one CORESET according to the received MAC CE.
  • the network device when the network device configures at least one CORESET and its corresponding beam through the DCI, the network device may also determine the number of beams that can be activated for at least one CORESET according to the number of TRPs it contains and current service requirements , and configure a corresponding number of beams for at least one CORESET by sending DCI to the user equipment, so that the user equipment can determine one or more beams corresponding to at least one CORESET according to the received DCI.
  • the TCI status indication field used to indicate beams in DCI may be displayed as multiple different codepoints (codepoints) at different times, and each codepoint may correspond to a group of beams, wherein each group of beams may include one or two beams.
  • codepoints codepoints
  • the correspondence between the codepoint and each group of beams can be indicated by the MAC CE, so that when the network device configures at least one CORESET and one or more beams corresponding to it through DCI, the configuration signaling can include both the MAC CE and the DCI.
  • Step 502 Determine a default beam corresponding to a first CORESET based on a specified rule, where the maximum number of TCI states supported by the first CORESET is greater than or equal to 2.
  • step 502 may be implemented in any of the embodiments of the present application, which is not limited in the embodiment of the present application, and will not be described again.
  • Step 503 transmit data and/or reference signals corresponding to the first CORESET based on the default beam corresponding to the first CORESET.
  • the data corresponding to the first CORESET may include downlink data and uplink data corresponding to the first CORESET or scheduled;
  • the reference signal corresponding to the first CORESET may include downlink reference signals corresponding to or scheduled by the first CORESET, uplink data reference signal.
  • the default beam corresponding to the first CORESET may be used to receive or transmit downlink data, downlink reference signals, uplink data, uplink reference signals, etc. corresponding to or scheduled by the first CORESET.
  • the user equipment may transmit downlink data, downlink reference signal, uplink data, uplink reference signal, etc. corresponding to the first CORESET or scheduled based on the default beam corresponding to the first CORESET.
  • the default beam corresponding to the first CORESET may also be used for sending uplink data free of scheduling grants (UL configured grant free).
  • the default beam corresponding to the first CORESET may be used for PDSCH reception. That is, in a possible implementation manner of the embodiment of the present application, the data corresponding to the first CORESET may include data carried on the PDSCH scheduled by the second DCI and sent on the PDCCH in the first CORESET.
  • the default beam corresponding to the first CORESET may also be used for PUSCH transmission. That is, in a possible implementation manner of the embodiment of the present application, the data corresponding to the first CORESET may include data carried on the PUSCH scheduled by the third DCI and sent on the PDCCH in the first CORESET.
  • the default beam corresponding to the first CORESET can also be used for the transmission or reception of PRACH (Physical Random Access Channel, physical random access channel), PUCCH, CSI-RS, and SRS.
  • PRACH Physical Random Access Channel
  • PUCCH Physical Random Access Channel
  • CSI-RS Physical Random Access Channel
  • SRS SRS
  • the data corresponding to the first CORESET may include PRACH, PUCCH, CSI-RS, and SRS.
  • the method for determining a default beam is to receive configuration signaling sent by a network device, wherein the configuration signaling is used to configure at least one CORESET among the second CORESET, the third CORESET, the fourth CORESET, and the fifth CORESET, And one or more beams corresponding to each CORESET in at least one CORESET, and based on a specified rule, determine the default beam corresponding to the first CORESET, wherein the maximum number of TCI states supported by the first CORESET is greater than or equal to 2, Further, based on the default beam corresponding to the first CORESET, data and/or reference signals corresponding to the first CORESET are transmitted. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • FIG. 6 is a schematic flowchart of another method for determining a default beam provided by an embodiment of the present application, which is applied to a network device.
  • the method for determining the default beam includes the following steps:
  • Step 601 based on a specified rule, determine a default beam corresponding to the first CORESET, where the maximum number of TCI states supported by the first CORESET is greater than or equal to 2.
  • an application scenario of the method for determining a default beam in this embodiment of the present application may include: a scenario in which a default beam is determined for a CORESET in which multiple TCI states can be configured.
  • the TCI state is the beam, and one TCI state may correspond to one beam.
  • the first CORESET may refer to a CORESET that can support multiple TCI states. It should be noted that, although the first CORESET may support multiple TCI states, it may also be configured with one TCI state at certain moments according to actual service requirements, which is not limited in this embodiment of the present application.
  • the first CORESET may be a CORESET that may support two TCI states. It should be noted that, the following contents of this application are described in detail by taking the first CORESET as an example of a CORESET that can support two TCI states.
  • the MAC CE signaling can be used as the beam indication signaling of the CORESET, so that the default beam corresponding to the first CORESET can be determined through the MAC CE signaling. That is, in a possible implementation manner of the embodiment of the present application, the foregoing step 601 may include:
  • the first beam is determined as the default beam corresponding to the first CORESET.
  • the network device can determine the number of beams that can be activated for the first CORESET according to the number of TRPs it contains and current service requirements, activate a corresponding number of first beams through the MAC CE, and use the first CORESET to activate the first beams.
  • the beam is determined as the default beam corresponding to the first CORESET.
  • the network device can determine that the number of first beams can be 1 or 2, so that the network device can activate one first beam for the first CORESET by sending the MAC CE to the user equipment, Or activate two first beams for the first CORESET. It should be noted that when two first beams are activated for the first CORESET, each first beam corresponds to a different TRP, wherein the TRP can be identified by the TRP identifier, CORESETPoolIndex, reference signal resource identifier, reference signal resource set identifier, At least one of panel ID, etc. to distinguish.
  • the network device may determine the corresponding first beam as the first CORESET according to the number of the first beams and the number of preset default beams The corresponding default beam.
  • the network device may determine the corresponding first beam as the first CORESET according to the number of the first beams and the number of preset default beams The corresponding default beam.
  • Optional can be divided into the following three cases:
  • the number of the first beams is one, and one first beam is determined as the default beam corresponding to the first CORESET.
  • the network device may directly determine the MAC CE as a first beam activated by the first CORESET as the default beam corresponding to the first CORESET.
  • the number of the first beams is two, and the two first beams are determined as default beams corresponding to the first CORESET.
  • the network device in response to the number of the first beams being two and the number of default beams pre-agreed by the network device and the user equipment being two, or the number of default beams not pre-agreed in advance, the network device can directly The two first beams activated by the MAC CE as the first CORESET are determined as default beams corresponding to the first CORESET.
  • the number of the first beams is two, and one of the two first beams corresponding to the specified TRP is determined as the default beam corresponding to the first CORESET.
  • the MAC CE may contain multiple bits, which are respectively used to activate the TCI states of different TRPs, and the network device may know which TRP TCI states each bit in the MAC CE is used to activate. .
  • the network device in response to the number of the first beam being two, and the network device and the user equipment have pre-agreed a designated TRP, the network device can determine two first beams according to the correspondence between each bit in the MAC CE and the TRP The first beam corresponding to the TRP is specified in , and the first beam corresponding to the specified TRP is determined as the default beam corresponding to the first CORESET.
  • the designated TRP can be TRP#0 (or TRP corresponding to CORESETPoolIndex#0), and the designated TRP can also be TRP#1 (or TRP corresponding to CORESETPoolIndex#1).
  • the DCI may also be used as the beam indication signaling of the CORESET, so that the network device may determine the default beam corresponding to the first CORESET through the DCI. That is, in a possible implementation manner of the embodiment of the present application, the foregoing step 601 may include:
  • the second beam is determined as the default beam corresponding to the first CORESET.
  • the network device may also determine the number of beams that can be activated for the first CORESET according to the number of TRPs it contains and current service requirements, and configure a corresponding number of beams for the first CORESET by sending DCI to the user equipment.
  • the second beam is determined as the default beam corresponding to CORESET.
  • the TCI status field used to indicate the beam in DCI is multiple bits (such as 3 bits), and multiple bits can be displayed as multiple different codepoints at different times, such as '000', '001' , '010', '011', '100', '101', '110', and '111'.
  • each codepoint may correspond to a group of second beams, wherein each group of second beams may include one second beam or two second beams.
  • the correspondence between codepoints and each group of second beams may be indicated by the MAC CE. That is, multiple second beams can be activated through the MAC CE, and each bit in the MAC CE is in one-to-one correspondence with the two second beams corresponding to each codepoint, but the two second beams corresponding to each codepoint can only have A second beam exists and is indicated by the bit information in the MAC CE; when two second beams corresponding to each codepoint exist, the two second beams correspond to different TRPs respectively.
  • the network device determines the default beam corresponding to the first CORESET according to the second beam, it can use the number of second beams corresponding to each codepoint in the DCI and the number of preset default beams.
  • the second beam is determined as the default beam corresponding to the first CORESET.
  • Optional can be divided into the following four cases:
  • At least one of the second beams is determined as the default beam corresponding to the first CORESET.
  • the network device may directly determine a second beam indicated by the DCI as the first CORESET The corresponding default beam.
  • the network device may Any one of the two second beams is determined as the default beam corresponding to the first CORESET.
  • the network device in response to the number of the second beams being two, that is, the DCI indicates that the beams corresponding to the first CORESET are two beams, and indicates that the default beams corresponding to the first CORESET are two, the network device Both of the two second beams indicated by the DCI may be determined as default beams corresponding to the first CORESET.
  • the second beam corresponding to the codepoint with the smallest value used to indicate a second beam in the first DCI is determined as the default beam corresponding to the first CORESET.
  • each codepoint in the DCI may correspond to a set of second beams
  • the network device may determine the second beam corresponding to one of the codepoints as the default beam corresponding to the first CORESET.
  • the network device in response to the DCI indicating that the default beam corresponding to the first CORESET is one, the network device can first select a codepoint corresponding to a second beam in the DCI, and select a second beam corresponding to the codepoint with the smallest value, It is determined as the default beam corresponding to the first CORESET.
  • each codepoint in DCI can be represented by 3 bits.
  • the value of codepoint can include 000, 001, 010, 011, 100, 101, 110, 111, etc., and the above values are arranged in order from smallest to largest.
  • codepoint "011" in DCI corresponds to a second beam
  • codepoint "000” also indicates a second beam
  • a second beam indicated by codepoint "000” may be determined as the default beam corresponding to the first CORESET.
  • the second beam corresponding to the codepoint with the smallest value used to indicate two second beams in the first DCI is determined as the default beam corresponding to the first CORESET.
  • each codepoint in the DCI may correspond to a set of second beams
  • the network device may determine the second beam corresponding to one of the codepoints as the default beam corresponding to the first CORESET.
  • the network device may first select the codepoints corresponding to the two second beams in the DCI, and select the two codepoints corresponding to the selected codepoints with the smallest values.
  • the second beam is determined as the default beam corresponding to the first CORESET.
  • codepoint "011" in DCI corresponds to two second beams
  • codepoint "000” also indicates two second beams
  • the two second beams indicated by codepoint "000” can be determined as corresponding to the first CORESET Default beam.
  • One second beam corresponding to the specified TRP among the two second beams corresponding to the codepoint with the smallest value used to indicate the two second beams in the first DCI is determined as the default beam corresponding to the first CORESET.
  • each codepoint in the DCI may correspond to a set of second beams
  • the network device may determine the second beam corresponding to one of the codepoints as the default beam corresponding to the first CORESET.
  • the network device in response to the DCI indicating that the beams corresponding to the first CORESET are two beams, and indicating that the default beam corresponding to the first CORESET is one, and the network device and the user equipment have pre-agreed a designated TRP, the network device can first select the DCI
  • the codepoint corresponding to the two second beams can be determined according to the correspondence between each bit in the MAC CE and the TRP to determine the second beam corresponding to the specified TRP among the two second beams corresponding to the selected codepoint with the smallest value , and the second beam corresponding to the specified TRP is determined as the default beam corresponding to the first CORESET.
  • codepoint "011" in DCI corresponds to two second beams
  • codepoint "000” also indicates two second beams
  • the two second beams indicated by “000” are TCI#0 and TCI#1, respectively
  • TCI#0 corresponds to TRP#0 (or TRP corresponding to CORESETPoolIndex#0)
  • TCI#1 corresponds to TRP#1 (or TRP corresponding to CORESETPoolIndex#1).
  • TCI#0 is determined as the default beam corresponding to the first CORESET; if the specified TRP is TRP#1 (or the TRP corresponding to CORESETPoolIndex#1), then TCI#1 is determined as the default beam corresponding to the first CORESET.
  • the MAC CE may be a MAC CE indicating a dedicated beam of the first CORESET; or, the MAC CE may also be a MAC CE indicating a general beam of a group (set) including the first CORESET.
  • the group may also include other CORESETs, PDSCH, PUSCH (physical uplink shared channel, physical uplink shared channel), PUCCH (physical uplink control channel, physical uplink control channel), CSI-RS (channel state information reference signal), SRS (sounding reference signal, sounding reference signal), PRS (Positioning Reference Signal, positioning reference signal), DMRS (Demodulation Reference Signal, demodulation reference signal) etc. at least one.
  • a dedicated beam may refer to a beam that is only used for the first CORESET;
  • a general beam may refer to a beam that can be used for at least one group of channels and/or at least one reference signal, that is, except for the beam that can be used for the first CORESET
  • it can also be used for other CORESETs, PDSCH, PUSCH, reference signals, etc. that belong to the same group as the first CORESET.
  • the network device may also determine the default beam corresponding to the first CORESET in the following manner:
  • a default beam is determined.
  • the above-mentioned determination of the default beam according to the third beam includes:
  • the default beam is a beam corresponding to the specified TRP among the third beams.
  • the first CORESETPoolIndex determines the fourth beam corresponding to the third CORESET with the smallest index value in the latest time unit that needs to detect the PDCCH, wherein the CORESETPoolIndex corresponding to the third CORESET is the same as the CORESETPoolIndex corresponding to the first CORESET;
  • a default beam is determined.
  • the above-mentioned determining the default beam according to the fourth beam includes:
  • the default beam is a beam corresponding to the specified TRP among the fourth beams.
  • the above-mentioned determining the default beam according to the fourth beam includes:
  • At least one fourth beam respectively corresponding to the first specified value and the second specified value is determined as a default beam.
  • the fifth beam and the sixth beam are determined as default beams.
  • the specific manner in which the network device determines the default beam corresponding to the first CORESET may be the same as the specific manner in which the user equipment determines the default beam corresponding to the first CORESET in the foregoing embodiment, that is, step 601 may use the present Any one of the embodiments of the application is implemented, which is not limited in the embodiments of the present application, and will not be described again.
  • the network device may also configure at least one CORESET and one or more beams corresponding thereto. That is, in a possible implementation manner of the embodiment of the present application, the above-mentioned method for determining the default beam may further include:
  • Sending configuration signaling where the configuration signaling is used to configure at least one CORESET and one or more beams corresponding to each CORESET in the at least one CORESET.
  • the configuration signaling may include MAC CE and/or DCI.
  • the network device may configure each CORESET and one or more beams corresponding to each CORESET through at least one of MAC CE and DCI.
  • the network device when the network device configures at least one CORESET and its corresponding beam through the MAC CE, the network device can determine the number of beams that can be activated for at least one CORESET according to the number of TRPs it contains and current service requirements , and activate the corresponding number of beams through MAC CE.
  • the network device when the network device configures at least one CORESET and its corresponding beam through DCI, the network device can also determine the number of beams that can be activated for at least one CORESET according to the number of TRPs it contains and current service requirements , and configure a corresponding number of beams for at least one CORESET by sending DCI to the user equipment.
  • the TCI status indication field used to indicate beams in DCI may be displayed as multiple different codepoints (codepoints) at different times, and each codepoint may correspond to a group of beams, wherein each group of beams may include one or two beams.
  • codepoints codepoints
  • the correspondence between the codepoint and each group of beams can be indicated by the MAC CE, so that when the network device configures at least one CORESET and one or more beams corresponding to it through DCI, the configuration signaling can include both the MAC CE and the DCI.
  • the method for determining a default beam determines a default beam corresponding to the first CORESET based on a specified rule, where the maximum number of TCI states supported by the first CORESET is greater than or equal to 2. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • the present application also proposes an apparatus for determining a default beam.
  • FIG. 7 is a schematic structural diagram of an apparatus for determining a default beam provided by an embodiment of the present application, which is applied to user equipment.
  • the device 70 for determining the default beam includes:
  • the first determining module 71 is configured to determine a default beam corresponding to the first CORESET based on a specified rule, wherein the maximum number of TCI states supported by the first CORESET is greater than or equal to two.
  • the apparatus for determining a default beam provided in the embodiment of the present application may be configured in any user equipment to execute the foregoing method for determining a default beam.
  • the apparatus for determining a default beam determines a default beam corresponding to the first CORESET based on a specified rule, where the maximum number of TCI states supported by the first CORESET is greater than or equal to 2. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • the above-mentioned first determination module 71 includes:
  • the first receiving unit is configured to receive the MAC CE, and the MAC CE is used to activate the first beam corresponding to the first CORESET;
  • the first determining unit is configured to determine the first beam as the default beam corresponding to the first CORESET.
  • the above-mentioned first determining unit is specifically configured:
  • the number of first beams is one, and one first beam is determined as the default beam corresponding to the first CORESET;
  • the number of the first beams is two, and the two first beams are determined as default beams corresponding to the first CORESET;
  • the number of the first beams is two, and one of the two first beams corresponding to the specified TRP is determined as the default beam corresponding to the first CORESET.
  • the above-mentioned first determination module 71 includes:
  • the second receiving unit is configured to receive the first DCI, where the first DCI is used to indicate the second beam corresponding to the first CORESET;
  • the second determining unit is configured to determine the second beam as the default beam corresponding to the first CORESET.
  • the above-mentioned second determining unit is specifically configured as:
  • One second beam corresponding to the specified TRP among the two second beams corresponding to the codepoint with the smallest value used to indicate the two second beams in the first DCI is determined as the default beam corresponding to the first CORESET.
  • the above-mentioned MAC CE is a MAC CE indicating a dedicated beam of the first CORESET; or, the MAC CE is a general beam indicating a set group including the first CORESET. MAC CE.
  • the above-mentioned first determination module 71 includes:
  • a third determining unit configured to determine the third beam corresponding to the second CORESET with the smallest index value in the latest time unit that needs to detect the PDCCH
  • the fourth determination unit is configured to determine a default beam according to the third beam.
  • the above-mentioned fourth determining unit is specifically configured as:
  • the default beam is a beam corresponding to the specified TRP among the third beams.
  • the above-mentioned first determination module 71 includes:
  • a fifth determination unit configured to determine the first CORESETPoolIndex corresponding to the first CORESET
  • the sixth determination unit is configured to determine, according to the first CORESETPoolIndex, the fourth beam corresponding to the third CORESET with the smallest index value in the latest time unit that needs to detect the PDCCH, wherein the CORESETPoolIndex corresponding to the third CORESET corresponds to the first CORESET
  • the CORESETPoolIndex is the same;
  • the seventh determination unit is configured to determine the default beam according to the fourth beam.
  • the above-mentioned seventh determination unit is specifically configured as:
  • the default beam is a beam corresponding to the specified TRP among the fourth beams.
  • the above seventh determination unit is specifically configured as:
  • At least one fourth beam respectively corresponding to the first specified value and the second specified value is determined as a default beam.
  • the above-mentioned first determination module 71 includes:
  • the eighth determination unit is configured to determine the fifth beam corresponding to the fourth CORESET whose CORESETPoolIndex is the third specified value and the minimum index value in the latest time unit that needs to detect the PDCCH;
  • a ninth determination unit configured to determine the sixth beam corresponding to the fifth CORESET with the fourth specified value and the smallest index value corresponding to the CORESETPoolIndex in the latest time unit that needs to detect the PDCCH;
  • the tenth determining unit is configured to determine the fifth beam and the sixth beam as default beams.
  • the device 70 for determining the default beam further includes:
  • a receiving module configured to receive configuration signaling sent by the network device, wherein the configuration signaling is used to configure at least one CORESET among the second CORESET, the third CORESET, the fourth CORESET, and the fifth CORESET, and each of the at least one CORESET One or more beams corresponding to CORESET.
  • the above configuration signaling includes MAC CE and/or DCI.
  • the device 70 for determining the default beam further includes:
  • the transmission module is configured to transmit data and/or reference signals corresponding to the first CORESET based on the default beam corresponding to the first CORESET.
  • the data corresponding to the above-mentioned first CORESET includes at least one of the following:
  • the apparatus for determining a default beam determines the default beam according to the third beam by determining the third beam corresponding to the second CORESET with the smallest index in the latest time unit that needs to detect the PDCCH. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • the present application also proposes an apparatus for determining a default beam.
  • FIG. 8 is a schematic structural diagram of another apparatus for determining a default beam provided by an embodiment of the present application, which is applied to a network device.
  • the device 80 for determining the default beam includes:
  • the second determination module 81 is configured to determine a default beam corresponding to the first CORESET based on a specified rule, wherein the maximum number of TCI states supported by the first CORESET is greater than or equal to two.
  • the apparatus for determining a default beam provided in the embodiment of the present application may be configured in any network device to execute the foregoing method for determining a default beam.
  • the above-mentioned second determination module 81 includes:
  • the first sending unit is configured to send the MAC CE, and the MAC CE is used to activate the first beam corresponding to the first CORESET;
  • the eleventh determination unit is configured to determine the first beam as the default beam corresponding to the first CORESET.
  • the above-mentioned second determination module 81 includes:
  • a second sending unit configured to send a first DCI, where the first DCI is used to indicate a second beam corresponding to the first CORESET;
  • the twelfth determination unit is configured to determine the second beam as the default beam corresponding to the first CORESET.
  • the device 80 for determining the above-mentioned default beam further includes:
  • the sending module is configured to send configuration signaling, wherein the configuration signaling is used to configure at least one CORESET and one or more beams corresponding to each CORESET in the at least one CORESET.
  • the apparatus for determining a default beam determines a default beam corresponding to the first CORESET based on a specified rule, where the maximum number of TCI states supported by the first CORESET is greater than or equal to 2. Therefore, the default beam corresponding to the CORESET supporting multiple TCI states is determined by pre-defining the specified rules, thereby improving the accuracy of determining the default beam of the CORESET corresponding to multiple TCI states and improving the reliability of multi-TRP data transmission .
  • the present application also proposes a user equipment.
  • the user equipment includes a processor, a transceiver, a memory, and an executable program stored in the memory and capable of being run by the processor, wherein the processor can perform the following operations when running the executable program:
  • a default beam corresponding to the first CORESET is determined, wherein the maximum number of TCI states supported by the first CORESET is greater than or equal to 2.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information on the user equipment after the user equipment is powered off.
  • the processor may be connected to the memory through a bus or the like, for reading executable programs stored in the memory, for example, at least one of FIGS. 1 to 5 .
  • the determination of the default beam corresponding to the first CORESET based on a specified rule includes:
  • the first beam is determined as the default beam corresponding to the first CORESET.
  • the first beam is determined as the default beam corresponding to the first CORESET, including:
  • the number of first beams is one, and one first beam is determined as the default beam corresponding to the first CORESET;
  • the number of the first beams is two, and the two first beams are determined as default beams corresponding to the first CORESET;
  • the number of the first beams is two, and one of the two first beams corresponding to the specified TRP is determined as the default beam corresponding to the first CORESET.
  • the determination of the default beam corresponding to the first CORESET based on the specified rule includes:
  • the second beam is determined as the default beam corresponding to the first CORESET.
  • determining the second beam as the default beam corresponding to the first CORESET includes:
  • One second beam corresponding to the specified TRP among the two second beams corresponding to the codepoint with the smallest value used to indicate the two second beams in the first DCI is determined as the default beam corresponding to the first CORESET.
  • the MAC CE is the MAC-CE indicating the dedicated beam of the first CORESET; or, the MAC CE is the MAC indicating the general beam of a group including the first CORESET CE.
  • the default beam corresponding to the first CORESET is determined based on a specified rule, including:
  • a default beam is determined.
  • determining the default beam according to the third beam includes:
  • the default beam is a beam corresponding to the specified TRP among the third beams.
  • the default beam corresponding to the first CORESET is determined based on a specified rule, including:
  • the first CORESETPoolIndex determines the fourth beam corresponding to the third CORESET with the smallest index value in the latest time unit that needs to detect the PDCCH, wherein the CORESETPoolIndex corresponding to the third CORESET is the same as the CORESETPoolIndex corresponding to the first CORESET;
  • a default beam is determined.
  • determining the default beam according to the fourth beam includes:
  • the default beam is a beam corresponding to the specified TRP among the fourth beams.
  • determining the default beam according to the fourth beam includes:
  • At least one fourth beam respectively corresponding to the first specified value and the second specified value is determined as a default beam.
  • the determination of the default beam corresponding to the first CORESET based on a specified rule includes:
  • the fifth beam and the sixth beam are determined as default beams.
  • the processor is further configured to perform the following operations:
  • Receive configuration signaling sent by the network device where the configuration signaling is used to configure at least one CORESET among the second CORESET, the third CORESET, the fourth CORESET, and the fifth CORESET, and one or more CORESETs corresponding to each CORESET in the at least one CORESET. beams.
  • the configuration signaling includes MAC CE and/or DCI.
  • the processor is further configured to perform the following operations:
  • the data corresponding to the first CORESET includes at least one of the following:
  • the present application also proposes a user equipment.
  • the network device includes a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor can perform the following operations when running the executable program:
  • a default beam corresponding to the first CORESET is determined, wherein the maximum number of TCI states supported by the first CORESET is greater than or equal to 2.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information on the network device after the network device is powered off.
  • the processor may be connected to the memory through a bus or the like, for reading the executable program stored on the memory, for example, at least one of those shown in FIG. 6 .
  • the determination of the default beam corresponding to the first CORESET based on a specified rule includes:
  • the first beam is determined as the default beam corresponding to the first CORESET.
  • the determination of the default beam corresponding to the first CORESET based on a specified rule includes:
  • the second beam is determined as the default beam corresponding to the first CORESET.
  • the processor is further configured to perform the following operations:
  • Sending configuration signaling where the configuration signaling is used to configure at least one CORESET and one or more beams corresponding to each CORESET in the at least one CORESET.
  • the present application also proposes a system for determining a default beam, including user equipment and network equipment.
  • the user equipment includes: a transceiver; a memory; a processor, respectively connected to the transceiver and the memory, configured to control wireless signals of the transceiver by executing computer-executable instructions on the memory Send and receive, and can perform the following operations:
  • a default beam corresponding to the first CORESET is determined, wherein the transmission configuration supported by the first CORESET indicates that the maximum number of TCI states is greater than or equal to 2.
  • the network device includes: a transceiver; a memory; a processor, respectively connected to the transceiver and the memory, configured to control the wireless signal of the transceiver by executing computer-executable instructions on the memory Send and receive, and can perform the following operations:
  • a default beam corresponding to the first CORESET is determined, wherein the transmission configuration supported by the first CORESET indicates that the maximum number of TCI states is greater than or equal to 2.
  • the present application also proposes a computer storage medium.
  • the computer storage medium provided by the embodiments of the present application stores an executable program; after the executable program is executed by the processor, the method for determining the default beam provided by any of the foregoing technical solutions can be implemented, for example, as shown in FIG. 1 to FIG. 6 . at least one of them.
  • the present application also proposes a computer program product, including a computer program, which implements the aforementioned method for determining a default beam when executed by a processor.
  • the present application further provides a computer program, which, when executed by a processor, implements the device identification method described in the embodiments of the present application.
  • FIG. 9 is a block diagram of a user equipment UE900 provided by an embodiment of the present application.
  • UE 900 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the UE 900 may include at least one of the following components: a processing component 902, a memory 904, a power supply component 906, a multimedia component 908, an audio component 910, an input/output (I/O) interface 912, a sensor component 914, and a communication component 916.
  • the processing component 902 generally controls the overall operations of the UE 900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include at least one processor 920 to execute instructions to perform all or part of the steps of the above-described methods. Additionally, processing component 902 may include at least one module that facilitates interaction between processing component 902 and other components. For example, processing component 902 may include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • Memory 904 is configured to store various types of data to support operation at UE 900 . Examples of such data include instructions for any application or method operating on the UE 900, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 904 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 906 provides power to various components of UE 900 .
  • Power components 906 may include a power management system, at least one power source, and other components associated with generating, managing, and distributing power to UE 900 .
  • Multimedia component 908 includes screens that provide an output interface between the UE 900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect wake-up time and pressure associated with the touch or swipe action.
  • the multimedia component 908 includes a front-facing camera and/or a rear-facing camera. When the UE 900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 910 is configured to output and/or input audio signals.
  • the audio component 910 includes a microphone (MIC) that is configured to receive external audio signals when the UE 900 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 904 or transmitted via communication component 916 .
  • audio component 910 also includes a speaker for outputting audio signals.
  • the I/O interface 912 provides an interface between the processing component 902 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 914 includes at least one sensor for providing UE 900 with various aspects of status assessment.
  • the sensor component 914 can detect the open/closed state of the device 900, the relative positioning of components, such as the display and keypad of the UE 900, the sensor component 914 can also detect the position change of the UE 900 or a component of the UE 900, the user and the UE 900. Presence or absence of UE900 contact, UE900 orientation or acceleration/deceleration and UE900 temperature changes.
  • Sensor assembly 914 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 914 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communications between UE 900 and other devices.
  • the UE 900 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 916 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the UE 900 may be implemented by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components implemented for performing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components implemented for performing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 904 including instructions, which are executable by the processor 920 of the UE 900 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • FIG. 10 it is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 1000 may be provided as a network device.
  • network device 1000 includes processing component 1022, which further includes at least one processor, and a memory resource represented by memory 1032 for storing instructions executable by processing component 1022, such as an application program.
  • An application program stored in memory 1032 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 1022 is configured to execute instructions to execute any of the aforementioned methods applied to the network device, eg, the method shown in FIG. 6 .
  • the network device 1000 may also include a power component 1026 configured to perform power management of the network device 1000, a wired or wireless network interface 1050 configured to connect the network device 1000 to the network, and an input output (I/O) interface 1058 .
  • Network device 1000 may operate based on an operating system stored in memory 1032, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Abstract

本申请提出一种默认波束的确定方法、装置、通信设备及存储介质,属于无线通信技术领域。其中,该方法包括:基于指定的规则,确定第一CORESET(ControlResourceSet,控制资源集)对应的默认波束,其中,第一CORESET支持的TCI(Transmission Configuration Indication,传输配置指示)状态的最大数目大于或等于2。由此,通过这种默认波束的确定方法,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。

Description

默认波束的确定方法、装置、用户设备及网络设备 技术领域
本申请涉及无线通信技术领域,尤其涉及一种默认波束的确定方法、装置、用户设备、网络设备及存储介质。
背景技术
在新空口(New Radio,NR)系统中,由于高频信道衰减较快,为了保证覆盖范围,可以使用基于波束的发送和接收。当网络设备有多个TRP(Transmission and Reception Point,发送接收点)时,网络设备可以使用多个TRP为用户设备提供服务,比如使用多个TRP为用户设备发送PDCCH(Physical Downlink Control Channel,物理下行控制信道)。网络设备使用一个TRP为用户设备发送PDCCH时,可以为用户设备配置一个CORESET(ControlResourceSet,控制资源集),并配置该CORESET对应的一个TCI(Transmission Configuration Indication,传输配置指示)状态;网络设备使用多个TRP为用户设备发送PDCCH时,可以为该CORESET配置多个TCI状态,分别用于指示对应不同的TRP的波束。
相关技术中,对于当PDCCH与PDCCH上携带的DCI(Downlink Control Information,下行控制信息)信令调度的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的时间间隔较小时,用户设备来不及获得DCI中的波束指示信息时,或DCI中没有携带用于指示PDSCH的接收波束对应的TCI状态时,用户设备就需要使用默认波束去接收DCI调度的PDSCH。但是,现有技术中,确定默认波束的方式都是针对发送DCI的CORESET对应一个TCI状态而定义的,当发送DCI的CORESET对应多个TCI状态时,无法确定该CORESET对应的默认波束。
发明内容
本申请提出的默认波束的确定方法、装置、用户设备、网络设备及存储介质,用于解决相关技术中,当发送DCI的CORESET对应多个TCI状态时,无法确定该CORESET对应的默认波束的问题。
本申请一方面实施例提出的默认波束的确定方法,应用于用户设备,包括:基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
本申请另一方面实施例提出的默认波束的确定方法,应用于网络设备,包括:基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
本申请再一方面实施例提出的默认波束的确定装置,应用于用户设备,包括:第一确定模块,被配置为基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
本申请又一方面实施例提出的默认波束的确定装置,应用于网络设备,包括:第二确定模块,被配置为基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
本申请又一方面实施例提出的用户设备,其包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够执行如下操作:
基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的传输配置指示TCI状态的最大数目大于或等于2。
本申请另一方面实施例提出的网络设备,其包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够执行如下操作:
基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的传输配 置指示TCI状态的最大数目大于或等于2。
本申请再一方面实施例提出的默认波束的确定系统,包括用户设备与网络设备,其中,所述用户设备包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够执行如下操作:
基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的传输配置指示TCI状态的最大数目大于或等于2。
其中,所述网络设备包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够执行如下操作:
基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的传输配置指示TCI状态的最大数目大于或等于2。
本申请又一方面实施例提出的计算机存储介质,其上存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现如前所述的默认波束的确定方法。
本申请又一方面实施例提出的计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如前所述的默认波束的确定方法。
本申请另一方面实施例提出的计算机程序,所述计算机程序在被处理器执行时实现如前所述的默认波束的确定方法。
本申请实施例提供的默认波束的确定方法、装置、用户设备、网络设备、系统、计算机可读存储介质、计算机程序产品及计算机程序,通过基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例所提供的一种默认波束的确定方法的流程示意图;
图2为本申请实施例所提供的另一种默认波束的确定方法的流程示意图;
图3为本申请实施例所提供的再一种默认波束的确定方法的流程示意图;
图4为本申请实施例所提供的又一种默认波束的确定方法的流程示意图;
图5为本申请实施例所提供的又一种默认波束的确定方法的流程示意图;
图6为本申请实施例所提供的另一种默认波束的确定方法的流程示意图;
图7为本申请实施例所提供的一种默认波束的确定装置的结构示意图;
图8为本申请实施例所提供的另一种默认波束的确定装置的结构示意图;
图9为本申请实施例所提供的一种用户设备的框图;
图10为本申请实施例所提供的一种网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清 楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
本申请实施例针对相关技术中,当发送DCI的CORESET对应多个TCI状态时,无法确定该CORESET对应的默认波束的问题,提出一种默认波束的确定方法。
本申请实施例提供的默认波束的确定方法,通过基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
下面参考附图对本申请提供的默认波束的确定方法、装置、用户设备、网络设备及存储介质进行详细描述。
图1为本申请实施例所提供的一种默认波束的确定方法的流程示意图,应用于用户设备。
如图1所示,该默认波束的确定方法,包括以下步骤:
步骤101,基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
需要说明的是,本申请实施例的默认波束的确定方法可以应用在任意的用户设备中。用户设备可以是指向用户提供语音和/或数据连通性的设备。用户设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,终端可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,STA(Station,站)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,用户设备也可以是无人飞行器的设备。或者,用户设备也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,用户设备也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
需要说明的是,本申请实施例的默认波束的确定方法的应用场景可以包括:为可以配置多个TCI状态的CORESET确定默认波束的场景。其中,TCI状态即为波束,一个TCI状态可以与一个波束对应。
其中,第一CORESET,可以是指可以支持多个TCI状态的CORESET。需要说明的是,第一CORESET虽然可以支持多个TCI状态,但是根据实际业务需求在某些时刻也可以为其配置一个TCI状态,本申请实施例对此不做限定。
作为一种示例,第一CORESET可以是可以支持两个TCI状态的CORESET。需要说明的是,本申请的以下内容以第一CORESET为可以支持两个TCI状态的CORESET为例,进行具体说明。
作为一种可能的实现方式,可以将MAC CE(Medium Access Control Control Element,媒体接入控制控制单元)信令作为CORESET的波束指示信令,从而可以通过MAC CE信令确定第一CORESET对应的默认波束。即在本申请实施例一种可能的实现方式中,上述步骤101,可以包括:
接收MAC CE,MAC CE用于激活第一CORESET对应的第一波束;
将第一波束,确定为第一CORESET对应的默认波束。
在本申请实施例中,网络设备可以根据自身包含的TRP的数量以及当前的业务需求,确定可以为第一CORESET激活的波束数量,并通过MAC CE激活相应数量的第一波束,从而用户设备可以根据 接收到的MAC CE确定激活的第一CORESET对应的第一波束,并将第一波束确定为第一CORESET对应的默认波束。
比如,网络设备中包含2个TRP,则网络设备可以确定第一波束的数量可以为1或2,从而网络设备可以通过向用户设备发送MAC CE,并为第一CORESET激活1个第一波束,或者为第一CORESET激活两个第一波束。需要说明的是,为第一CORESET激活两个第一波束时,每个第一波束分别与不同的TRP对应,其中,TRP可以通过TRP标识、CORESETPoolIndex(ControlResourceSetPoolIndex,控制资源集池索引)、参考信号资源标识、参考信号资源集标识、panel ID等中的至少一项进行区分。
需要说明的是,用户设备在根据第一波束确定第一CORESET对应的默认波束时,可以根据第一波束的数量以及预先设定的默认波束的数量,将相应的第一波束确定为第一CORESET对应的默认波束。可选的,可以分为以下三种情况:
情况一
第一波束的数量为一个,将一个第一波束确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,响应于第一波束的数量为一个,则用户设备可以直接将MAC CE为第一CORESET激活的一个第一波束,确定为第一CORESET对应的默认波束。
情况二
第一波束的数量为两个,将两个第一波束确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,响应于第一波束的数量为两个,且网络设备与用户设备预先约定的默认波束的数量为两个,或者未预先约定默认波束的数量,则用户设备可以直接将MAC CE为第一CORESET激活的两个第一波束,确定为第一CORESET对应的默认波束。
情况三
第一波束的数量为两个,将两个第一波束中与指定TRP对应的一个第一波束,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,MAC CE中可以包含多个比特位,分别用于激活不同TRP的TCI状态,且用户设备可以获知MAC CE中的每个比特位分别用于激活哪个TRP的TCI状态。从而,响应于第一波束的数量为两个,且网络设备与用户设备预先约定了指定TRP,则用户设备可以根据MAC CE中的每个比特位与TRP的对应关系,确定两个第一波束中指定TRP对应的第一波束,并将指定TRP对应的第一波束确定为第一CORESET对应的默认波束。
比如,若两个第一波束中,其中一个第一波束对应两个TRP中的TRP#0(或CORESETPoolIndex#0对应的TRP),另一个第一波束对应两个TRP中的TRP#1(或CORESETPoolIndex#1),则指定TRP可以为TRP#0(或CORESETPoolIndex#0对应的TRP),指定TRP也可以为TRP#1(或CORESETPoolIndex#1对应的TRP)。
作为另一种可能的实现方式,还可以将DCI作为CORESET的波束指示信令,从而可以通过DCI确定第一CORESET对应的默认波束。即在本申请实施例一种可能的实现方式中,上述步骤101,可以包括:
接收第一DCI,第一DCI用于指示第一CORESET对应的第二波束;
将第二波束,确定为第一CORESET对应的默认波束。
在本申请实施例中,网络设备还可以根据自身包含的TRP的数量以及当前的业务需求,确定可以为第一CORESET激活的波束数量,并通过向用户设备发送DCI为第一CORESET配置相应数量的第二波束,从而用户设备可以根据接收到的DCI确定第二波束,并将第二波束确定为CORESET对应的默认波束。
需要说明的是,DCI中用于指示波束的TCI状态域为多个比特(比如3bit),多个比特不同时刻可以显示为多个不同的codepoint(码点),比如‘000’、‘001’、‘010’、‘011’、‘100’、‘101’、‘110’和‘111’。并且每个codepoint可以与一组第二波束对应,其中,每组第二波束可以包括一个第二波束或者两个第二波束。
作为一种示例,codepoint与每组第二波束之间的对应关系可以由MAC CE来指示。即可以通过 MAC CE激活多个第二波束,并且MAC CE中的每个比特位分别与每个codepoint对应的两个第二波束一一对应,但每个codepoint对应的两个第二波束可以只有一个第二波束是存在的,并由MAC CE中的比特位信息进行指示;当每个codepoint对应的两个第二波束都存在时,两个第二波束分别对应不同的TRP。
需要说明的是,用户设备在根据第二波束确定第一CORESET对应的默认波束时,可以根据DCI中每个codepoint对应的第二波束的数量以及预先设定的默认波束的数量,将相应的第二波束确定为第一CORESET对应的默认波束。可选的,可以分为以下四种情况:
情况一
将第二波束中的至少一个,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,响应于第二波束的数量为一个,即DCI指示第一CORESET对应的波束为一个波束,则用户设备可以直接将DCI指示的一个第二波束,确定为第一CORESET对应的默认波束。
作为另一种可能的实现方式,响应于第二波束的数量为两个,即DCI指示第一CORESET对应的波束为两个波束,且指示第一CORESET对应的默认波束为一个,则用户设备可以将两个第二波束中的任意一个确定为第一CORESET对应的默认波束。
作为再一种可能的实现方式,响应于第二波束的数量为两个,即DCI指示第一CORESET对应的波束为两个波束,且指示第一CORESET对应的默认波束为两个,则用户设备可以将DCI指示的两个第二波束均确定为第一CORESET对应的默认波束。
情况二
将第一DCI中用于指示一个第二波束、且取值最小的codepoint对应的第二波束,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,由于DCI中的每个codepoint都可以对应一组第二波束,因此用户设备可以将其中一个codepoint对应的第二波束,确定为第一CORESET对应的默认波束。从而,响应于DCI指示第一CORESET对应的默认波束为一个,则用户设备可以首先选取出DCI中对应一个第二波束的codepoint,并将选取出的取值最小的codepoint对应的一个第二波束,确定为第一CORESET对应的默认波束。
举例来说,DCI中的每个codepoint可以通过3个比特位进行表示,如codepoint的取值可以包括000、001、010、011、100、101、110、111,等等,并且上述各个取值是按照从小到大的顺序排列的。比如,DCI中codepoint“011”对应一个第二波束,codepoint“000”也指示一个第二波束,则可以将codepoint“000”指示的一个第二波束确定为第一CORESET对应的默认波束。
情况三
将第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的第二波束,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,由于DCI中的每个codepoint都可以对应一组第二波束,因此用户设备可以将其中一个codepoint对应的第二波束,确定为第一CORESET对应的默认波束。从而,响应于DCI指示第一CORESET对应的默认波束为两个,则用户设备可以首先选取出DCI中对应两个第二波束的codepoint,并将选取出的取值最小的codepoint对应的两个第二波束,确定为第一CORESET对应的默认波束。
举例来说,DCI中codepoint“011”对应两个第二波束,codepoint“000”也指示两个第二波束,则可以将codepoint“000”指示的两个第二波束确定为第一CORESET对应的默认波束。
情况四
将第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的两个第二波束中与指定TRP对应的一个第二波束,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,由于DCI中的每个codepoint都可以对应一组第二波束,因此用户设备可以将其中一个codepoint对应的第二波束,确定为第一CORESET对应的默认波束。从而,响应于DCI 指示第一CORESET对应的波束为两个波束,且指示第一CORESET对应的默认波束为一个,并且网络设备与用户设备预先约定了指定TRP,则用户设备可以首先选取出DCI中对应两个第二波束的codepoint,可以根据MAC CE中的每个比特位与TRP的对应关系,确定选取出的取值最小的codepoint对应的两个第二波束中与指定TRP对应的第二波束,并将指定TRP对应的第二波束确定为第一CORESET对应的默认波束。
举例来说,DCI中codepoint“011”对应两个第二波束,codepoint“000”也指示两个第二波束,而且“000”指示的两个第二波束分别为TCI#0和TCI#1,其中TCI#0对应TRP#0(或CORESETPoolIndex#0对应的TRP),其中TCI#1对应TRP#1(或CORESETPoolIndex#1对应的TRP)。若指定TRP为TRP#0(或CORESETPoolIndex#0对应的TRP),则将TCI#0确定为第一CORESET对应的默认波束;若指定TRP为TRP#1(或CORESETPoolIndex#1对应的TRP),则将TCI#1确定为第一CORESET对应的默认波束。
在本申请实施例中,MAC CE可以为指示第一CORESET的专用波束的MAC CE;或者,MAC CE也可以为指示包含第一CORESET在内的一个group(集合)的通用波束的MAC CE。
其中,group中除了可以包含第一CORESET之外,还可以包含其它CORESET、PDSCH、PUSCH(physical uplink shared channel,物理上行共享信道)、PUCCH(physical uplink control channel,物理上行控制信道)、CSI-RS(channel state information reference signal,信道状态信息参考信号)、SRS(sounding reference signal,探测参考信号)、PRS(Positioning Reference Signal,定位参考信号)、DMRS(Demodulation Reference Signal,解调参考信号)等中的至少一项。
需要说明的是,专用波束可以是指只用于第一CORESET的波束;通用波束可以是指可以用于至少一组信道和/或至少一种参考信号的波束,即除了可以用于第一CORESET之外,还可以用于与第一CORESET属于一个group的其它CORESET、PDSCH、PUSCH、参考信号等。
本申请实施例提供的默认波束的确定方法,通过基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
下面结合图2,对本申请实施例提供的另一种默认波束的确定方法进行进一步说明。
图2为本申请实施例所提供的另一种默认波束的确定方法的流程示意图,应用于用户设备。
如图2所示,该默认波束的确定方法,包括以下步骤:
步骤201,确定最近一个需要检测PDCCH的时间单元中,索引取值最小的第二CORESET对应的第三波束。
其中,时间单元,可以是slot(时隙)、mini-slot(子时隙)、TTI(Transport Time Interval,传输时间间隔)、subframe(子帧)、无限帧中的任意一种,本申请实施例对此不做限定。本申请实施例中以时间单元为slot为例,进行具体说明。
在本申请实施例中,响应于所有CORESET均对应同一个CORESETPoolIndex,则用户设备可以确定最近一个需要检测PDCCH的slot中,索引取值最小的第二CORESET,并根据第二CORESET对应的第三波束,确定第一CORESET对应的默认波束。这种情况下,第一CORESET对应的CORESETPoolIndex可以为0、1、0和1,或除0和1以外的值,比如2、3、4。
步骤202,根据第三波束,确定默认波束。
在本申请实施例中,根据第二CORESET对应的第三波束,确定第一CORESET对应的默认波束时,可以根据第三波束的数量以及当前的业务需求,将第三波束中的一个或多个波束确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,可以确定第三波束为第一CORESET对应的默认波束。
可选的,响应于网络设备与用户设备未预先约定指定TRP,且第二CORESET最多只能配置一个波束,即第三波束的数量为一个,则可以将该第三波束确定为第一CORESET对应的默认波束。
可选的,响应于网络设备与用户设备未预先约定指定TRP,且第二CORESET最多可以配置两个波束,但当前只配置了一个波束,即第三波束的数量为一个,则可以将该第三波束确定为第一CORESET 对应的默认波束。
可选的,响应于网络设备与用户设备未预先约定指定TRP,且第二CORESET最多可以配置两个波束,并当前配置了两个波束,即第三波束的数量为两个,则可以将这两个第三波束确定为第一CORESET对应的默认波束。
作为另一种可能的实现方式,还可以确定第一CORESET对应的默认波束为第三波束中与指定TRP对应的一个波束。
可选的,响应于网络设备与用户设备预先约定了指定TRP,且第二CORESET最多可以配置两个波束,并当前配置了两个波束,即第三波束的数量为两个,则可以将与指定TRP对应的第三波束确定为第一CORESET对应的默认波束。
举例来说,若两个第三波束中,其中一个第三波束比如TCI#0对应两个TRP中的TRP#0(或CORESETPoolIndex#0对应的TRP),另一个第三波束比如TCI#1对应两个TRP中的TRP#1(或CORESETPoolIndex#1),则指定TRP可以为TRP#0(或CORESETPoolIndex#0对应的TRP),指定TRP也可以为TRP#1(或CORESETPoolIndex#1对应的TRP)。若指定TRP为TRP#0(或CORESETPoolIndex#0对应的TRP),则将TCI#0确定为第一CORESET对应的默认波束;若指定TRP为TRP#1(或CORESETPoolIndex#1对应的TRP),则将TCI#1确定为第一CORESET对应的默认波束。
在本申请的实施例中,步骤201-202可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
本申请实施例提供的默认波束的确定方法,通过确定最近一个需要检测PDCCH的时间单元中,索引取值最小的第二CORESET对应的第三波束,进而根据第三波束,确定默认波束。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
下面结合图3,对本申请实施例提供的再一种默认波束的确定方法进行进一步说明。
图3为本申请实施例所提供的再一种默认波束的确定方法的流程示意图,应用于用户设备。
如图3所示,该默认波束的确定方法,包括以下步骤:
步骤301,确定第一CORESET对应的第一CORESETPoolIndex。
在本申请实施例中,响应于不同CORESET可以对应不同的CORESETPoolIndex,则用户设备可以根据与第一CORESET对应的第一CORESETPoolIndex相同的CORESET,确定第一CORESET对应的默认波束。因此,用户设备可以首先确定第一CORESET对应的第一CORESETPoolIndex,以根据第一CORESETPoolIndex确定与第一CORESET的CORESETPoolIndex相同的CORESET。
作为一种可能的实现方式,由于CORESETPoolIndex可以用于标识CORESET对应的TRP,因此可以根据第一CORESET对应的TRP,确定第一CORESET对应的第一CORESETPoolIndex。
举例来说,第一CORESET实际上可以与两个TRP对应,响应于第一CORESET与第一TRP对应,则可以确定第一CORESET对应的第一CORESETPoolIndex为第一指定值;响应于第一CORESET与第二TRP对应,则可以确定第一CORESET对应的第一CORESETPoolIndex为第二指定值;响应于第一CORESET同时与第一TRP和第二TRP对应,则可以确定第一CORESET对应的第一CORESETPoolIndex为第一指定值和第二指定值,或者还可以确定第一CORESET对应的第一CORESETPoolIndex为第一指定值与第二指定值之外的其他值。比如,第一指定值可以为0,第二指定值可以为1,其他值可以为2,本申请实施例对此不做限定。
步骤302,根据第一CORESETPoolIndex,确定最近一个需要检测PDCCH的时间单元中索引取值最小的第三CORESET对应的第四波束,其中,第三CORESET对应的CORESETPoolIndex与第一CORESET对应的CORESETPoolIndex相同。
在本申请实施例中,确定出第一CORESET对应的第一CORESETPoolIndex之后,用户设备可以确定最近一个需要检测PDCCH的时间单元中,索引取值最小的第三CORESET,并根据第三CORESET对应的第四波束,确定第一CORESET对应的默认波束,
步骤303,根据第四波束,确定默认波束。
在本申请实施例中,根据第三CORESET对应的第四波束,确定第一CORESET对应的默认波束时,可以根据第四波束的数量以及当前的业务需求,将第四波束中的一个或多个波束确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,可以确定第四波束为第一CORESET对应的默认波束。
可选的,响应于网络设备与用户设备未预先约定指定TRP,且第三CORESET最多只能配置一个波束,即第四波束的数量为一个,则可以将该第四波束确定为第一CORESET对应的默认波束。
可选的,响应于网络设备与用户设备未预先约定指定TRP,且第三CORESET最多可以配置两个波束,但当前只配置了一个波束,即第四波束的数量为一个,则可以将该第四波束确定为第一CORESET对应的默认波束。
可选的,响应于网络设备与用户设备未预先约定指定TRP,且第三CORESET最多可以配置两个波束,并当前配置了两个波束,即第四波束的数量为两个,则可以将这两个第四波束均确定为第一CORESET对应的默认波束。
作为另一种可能的实现方式,还可以确定第一CORESET对应的默认波束为第四波束中与指定TRP对应的一个波束。
可选的,响应于网络设备与用户设备预先约定了指定TRP,且第三CORESET最多可以配置两个波束,并当前配置了两个波束,即第四波束的数量为两个,则可以将与指定TRP对应的第四波束确定为第一CORESET对应的默认波束。
举例来说,若两个第四波束中,其中一个第四波束比如TCI#0对应两个TRP中的TRP#0(或CORESETPoolIndex#0对应的TRP),另一个第四波束比如TCI#1对应两个TRP中的TRP#1(或CORESETPoolIndex#1),则指定TRP可以为TRP#0(或CORESETPoolIndex#0对应的TRP),指定TRP也可以为TRP#1(或CORESETPoolIndex#1对应的TRP)。若指定TRP为TRP#0(或CORESETPoolIndex#0对应的TRP),则将TCI#0确定为第一CORESET对应的默认波束;若指定TRP为TRP#1(或CORESETPoolIndex#1对应的TRP),则将TCI#1确定为第一CORESET对应的默认波束。
进一步的,由于第一CORESET对应的第一CORESETPoolIndex或TPR标识,可以用于标识第一CORESET对应的TRP,因此,还可以根据第一CORESETPoolIndex或TRP标识的取值从第四波束中选取与第一CORESET对应的TRP对应的波束,确定为第一CORESET对应的默认波束。即在本申请实施例一种可能的实现方式中,上步骤303,可以包括:
将第一指定值对应的第四波束,确定为默认波束;
或者,
将第二指定值对应的第四波束,确定为默认波束;
或者,
将第一指定值及第二指定值分别对应的至少一个第四波束,确定为默认波束。
需要说明的是,本申请实施例中的第一指定值与第二指定值,可以是指CORESETPoolIndex的取值或者TRP标识的取值,本申请实施例对此不做限定。为便于理解,以下以第一指定值与第二指定值为CORESETPoolIndex的取值为例,进行具体说明。
可选的,响应于第一CORESETPoolIndex为第一指定值,比如第一指定值为0(或对应TRP#0),则用户设备可以将第三CORESET对应的第四波束中第一指定值对应的第四波束,确定为第一CORESET对应的默认波束。
可选的,响应于第一CORESETPoolIndex为第二指定值,比如第二指定值为1(或对应TRP#1),则用户设备可以将第三CORESET对应的第四波束中第二指定值对应的第四波束,确定为第一CORESET对应的默认波束。
可选的,响应于第一CORESETPoolIndex为第一指定值与第二指定值,比如第一指定值为0(或对应TRP#0)和第二指定值为1(或对应TRP#1),则用户设备可以根据预先配置的默认波束的数量以及各指定值对应的第四波束的数量,将第一指定值及第二指定值对应的至少一个第四波束,确定为第一CORESET对应的默认波束。
作为一种示例,网络设备与用户设备可以预先约定第一CORESET对应的默认波束的数量为一个或两个,则响应于最近一个需要检测PDCCH的时间单元中的所有CORESET中仅存在CORESETPoolIndex为第一指定值的第三CORESET,则用户设备可以将第一指定值对应的第四波束确定为第一CORESET对应的默认波束;或者,响应于最近一个需要检测PDCCH的时间单元中的所有CORESET中仅存在CORESETPoolIndex为第二指定值的第三CORESET,则用户设备可以将第二指定值对应的第四波束确定为第一CORESET对应的默认波束。
作为一种示例,响应于最近一个需要检测PDCCH的时间单元中的所有CORESET中既存在CORESETPoolIndex为第一指定值的第三CORESET,又存在CORESETPoolIndex为第二指定值的第三CORESET,则用户设备可以响应于默认波束的数量为两个,将第一指定值及第二指定值对应的第四波束均确定为第一CORESET对应的默认波束;响应于默认波束的数量为一个,且网络设备与用户设备预先约定了指定TRP,则用户设备可以将指定TRP对应的第四波束确定为第一CORESET对应的默认波束。这种情况下,第一CORESET对应的CORESETPoolIndex可以为0、1、0和1,或除0和1以外的值,比如2、3、4。
在本申请的实施例中,步骤301-303可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
本申请实施例提供的默认波束的确定方法,通过确定第一CORESET对应的第一CORESETPoolIndex,并根据第一CORESETPoolIndex,确定最近一个需要检测PDCCH的时间单元中索引取值最小的第三CORESET对应的第四波束,其中,第三CORESET对应的CORESETPoolIndex与第一CORESET对应的CORESETPoolIndex相同,进而根据第四波束,确定默认波束。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
下面结合图4,对本申请实施例提供的又一种默认波束的确定方法进行进一步说明。
图4为本申请实施例所提供的又一种默认波束的确定方法的流程示意图,应用于用户设备。
如图4所示,该默认波束的确定方法,包括以下步骤:
步骤401,确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第三指定值、且索引取值最小的第四CORESET对应的第五波束。
作为一种可能的实现方式,响应于网络设备与用户设备预先约定第一CORESET对应的默认波束的数量为两个,用户设备还可以分别确定第一CORESET对应的两个默认波束。从而,用户设备可以根据第三指定值,从最近一个需要检测PDCCH的时间单元中的所有CORESET中,选取CORESETPoolIndex为第三指定值、且索引取值最小的第四CORESET,并确定第四CORESET对应的第五波束。比如,第三指定值可以为0,即对应第一TRP即TRP#0。
步骤402,确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第四指定值、且索引取值最小的第五CORESET对应的第六波束。
在本申请实施例中,确定出第四CORESET对应的第五波束之后,用户设备可以根据第四指定值,从最近一个需要检测PDCCH的时间单元中的所有CORESET中,选取CORESETPoolIndex为第四指定值、且索引取值最小的第五CORESET,并确定第五CORESET对应的第六波束。比如,第四指定值可以为1,即对应第二TRP即TRP#1。
需要说明的是,第四CORESET对应的时间单元与第五CORESET对应的时间单元,可以是不同的时间单元,以保证用户设备可以确定出两个默认波束。
步骤403,将第五波束及第六波束,确定为默认波束。
在本申请实施例中,确定出第四CORESET对应的第五波束与第五CORESET对应的第六波束之后,可以将第五波束与第六波束确定为第一CORESET对应的两个默认波束。这种情况下,第一CORESET对应的CORESETPoolIndex可以为0和1,或除0和1以外的值,比如2、3、4。即表明第一CORESET对应两个TCI状态,每个TCI状态对应两个TRP中的其中一个。
在本申请的实施例中,步骤401-403可以分别采用本申请的各实施例中的任一种方式实现,本申请 实施例并不对此作出限定,也不再赘述。
本申请实施例提供的默认波束的确定方法,通过确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第三指定值、且索引取值最小的第四CORESET对应的第五波束,并确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第四指定值、且索引取值最小的第五CORESET对应的第六波束,进而将第五波束及第六波束,确定为默认波束。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
下面结合图5,对本申请实施例提供的又一种默认波束的确定方法进行进一步说明。
图5为本申请实施例所提供的又一种默认波束的确定方法的流程示意图,应用于用户设备。
如图5所示,该默认波束的确定方法,包括以下步骤:
步骤501,接收网络设备发送的配置信令,其中,配置信令用于配置第二CORESET、第三CORESET、第四CORESET、第五CORESET中至少一个CORESET,以及至少一个CORESET中每个CORESET对应的一个或多个波束。
其中,配置信令,可以包括MAC CE和/或DCI。
在本申请实施例中,网络设备可以通过MAC CE与DCI中的至少一种,配置各个CORESET以及各个CORESET对应的一个或多个波束。
作为一种可能的实现方式,网络设备通MAC CE配置至少一个CORESET及其对应的波束时,网络设备可以根据自身包含的TRP的数量以及当前的业务需求,确定可以为至少一个CORESET激活的波束数量,并通过MAC CE激活相应数量的波束,从而用户设备可以根据接收到的MAC CE确定至少一个CORESET对应的一个或多个波束。
作为一种可能的实现方式,网络设备通DCI配置至少一个CORESET及其对应的波束时,网络设备还可以根据自身包含的TRP的数量以及当前的业务需求,确定可以为至少一个CORESET激活的波束数量,并通过向用户设备发送DCI为至少一个CORESET配置相应数量的波束,从而用户设备可以根据接收到的DCI确定至少一个CORESET对应的一个或多个波束。
需要说明的是,DCI中用于指示波束的TCI状态指示域在不同时刻可以显示为多个不同的codepoint(码点),并且每个codepoint可以与一组波束对应,其中,每组波束可以包括一个或者两个波束。并且,codepoint与每组波束之间的对应关系可以由MAC CE来指示,从而网络设备通过DCI配置至少一个CORESET及其对应的一个或多个波束时,配置信令中可以同时包含MAC CE与DCI。
步骤502,基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
在本申请的实施例中,步骤502可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
步骤503,基于第一CORESET对应的默认波束,传输第一CORESET对应的数据和/或参考信号。
其中,第一CORESET对应的数据,可以包括第一CORESET对应的或是调度的下行数据、上行数据;第一CORESET对应的参考信号,可以包括第一CORESET对应的或是调度的下行参考信号、上行参考信号。
在本申请实施例中,第一CORESET对应的默认波束可以用于接收或发送第一CORESET对应的或是调度的下行数据、下行参考信号、上行数据、上行参考信号等,因此,确定出第一CORESET对应的默认波束之后,用户设备可以基于所述第一CORESET对应的默认波束,传输第一CORESET对应的或是调度的下行数据、下行参考信号、上行数据、上行参考信号等。第一CORESET对应的默认波束还可以用于免调度许可(UL configured grant free)的上行数据的发送。
作为一种示例,第一CORESET对应的默认波束可以用于PDSCH的接收。即在本申请实施例一种可能的实现方式中,上述第一CORESET对应的数据可以包括第一CORESET内的PDCCH上发送的第二DCI调度的PDSCH上承载的数据。
作为一种示例,第一CORESET对应的默认波束还可以用于PUSCH的发送。即在本申请实施例一 种可能的实现方式中,上述第一CORESET对应的数据可以包括第一CORESET内的PDCCH上发送的第三DCI调度的PUSCH上承载的数据。
作为一种示例,第一CORESET对应的默认波束还可以用于PRACH(Physical Random Access Channel,物理随机接入信道)、PUCCH、CSI-RS、SRS的发送或接收,即在本申请实施例一种可能的实现方式中,上述第一CORESET对应的数据可以包括PRACH、PUCCH、CSI-RS、SRS。
本申请实施例提供的默认波束的确定方法,通过接收网络设备发送的配置信令,其中,配置信令用于配置第二CORESET、第三CORESET、第四CORESET、第五CORESET中至少一个CORESET,以及至少一个CORESET中每个CORESET对应的一个或多个波束,并基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2,进而基于第一CORESET对应的默认波束,传输第一CORESET对应的数据和/或参考信号。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
图6为本申请实施例所提供的另一种默认波束的确定方法的流程示意图,应用于网络设备。
如图6所示,该默认波束的确定方法,包括以下步骤:
步骤601,基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。
需要说明的是,本申请实施例的默认波束的确定方法的应用场景可以包括:为可以配置多个TCI状态的CORESET确定默认波束的场景。其中,TCI状态即为波束,一个TCI状态可以与一个波束对应。
其中,第一CORESET,可以是指可以支持多个TCI状态的CORESET。需要说明的是,第一CORESET虽然可以支持多个TCI状态,但是根据实际业务需求在某些时刻也可以为其配置一个TCI状态,本申请实施例对此不做限定。
作为一种示例,第一CORESET可以是可以支持两个TCI状态的CORESET。需要说明的是,本申请的以下内容以第一CORESET为可以支持两个TCI状态的CORESET为例,进行具体说明。
作为一种可能的实现方式,可以将MAC CE信令作为CORESET的波束指示信令,从而可以通过MAC CE信令确定第一CORESET对应的默认波束。即在本申请实施例一种可能的实现方式中,上述步骤601,可以包括:
发送MAC CE,MAC CE用于激活第一CORESET对应的第一波束;
将第一波束,确定为第一CORESET对应的默认波束。
在本申请实施例中,网络设备可以根据自身包含的TRP的数量以及当前的业务需求,确定可以为第一CORESET激活的波束数量,并通过MAC CE激活相应数量的第一波束,并将第一波束确定为第一CORESET对应的默认波束。
比如,网络设备中包含2个TRP,则网络设备可以确定第一波束的数量可以为1或2,从而网络设备可以通过向用户设备发送MAC CE,并为第一CORESET激活1个第一波束,或者为第一CORESET激活两个第一波束。需要说明的是,为第一CORESET激活两个第一波束时,每个第一波束分别与不同的TRP对应,其中,TRP可以通过TRP标识、CORESETPoolIndex、参考信号资源标识、参考信号资源集标识、panel ID等中的至少一项进行区分。
需要说明的是,网络设备在根据第一波束确定第一CORESET对应的默认波束时,可以根据第一波束的数量以及预先设定的默认波束的数量,将相应的第一波束确定为第一CORESET对应的默认波束。可选的,可以分为以下三种情况:
情况一
第一波束的数量为一个,将一个第一波束确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,响应于第一波束的数量为一个,则网络设备可以直接将MAC CE为第一CORESET激活的一个第一波束,确定为第一CORESET对应的默认波束。
情况二
第一波束的数量为两个,将两个第一波束确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,响应于第一波束的数量为两个,且网络设备与用户设备预先约定的默认波束的数量为两个,或者未预先约定默认波束的数量,则网络设备可以直接将MAC CE为第一CORESET激活的两个第一波束,确定为第一CORESET对应的默认波束。
情况三
第一波束的数量为两个,将两个第一波束中与指定TRP对应的一个第一波束,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,MAC CE中可以包含多个比特位,分别用于激活不同TRP的TCI状态,且网络设备可以获知MAC CE中的每个比特位分别用于激活哪个TRP的TCI状态。从而,响应于第一波束的数量为两个,且网络设备与用户设备预先约定了指定TRP,则网络设备可以根据MAC CE中的每个比特位与TRP的对应关系,确定两个第一波束中指定TRP对应的第一波束,并将指定TRP对应的第一波束确定为第一CORESET对应的默认波束。
比如,若两个第一波束中,其中一个第一波束对应两个TRP中的TRP#0(或CORESETPoolIndex#0对应的TRP),另一个第一波束对应两个TRP中的TRP#1(或CORESETPoolIndex#1),则指定TRP可以为TRP#0(或CORESETPoolIndex#0对应的TRP),指定TRP也可以为TRP#1(或CORESETPoolIndex#1对应的TRP)。
作为另一种可能的实现方式,还可以将DCI作为CORESET的波束指示信令,从而网络设备可以通过DCI确定第一CORESET对应的默认波束。即在本申请实施例一种可能的实现方式中,上述步骤601,可以包括:
发送第一DCI,第一DCI用于指示第一CORESET对应的第二波束;
将第二波束,确定为第一CORESET对应的默认波束。
在本申请实施例中,网络设备还可以根据自身包含的TRP的数量以及当前的业务需求,确定可以为第一CORESET激活的波束数量,并通过向用户设备发送DCI为第一CORESET配置相应数量的第二波束,并将第二波束确定为CORESET对应的默认波束。
需要说明的是,DCI中用于指示波束的TCI状态域为多个比特(比如3bit),多个比特不同时刻可以显示为多个不同的codepoint(码点),比如‘000’、‘001’、‘010’、‘011’、‘100’、‘101’、‘110’和‘111’。并且每个codepoint可以与一组第二波束对应,其中,每组第二波束可以包括一个第二波束或者两个第二波束。
作为一种示例,codepoint与每组第二波束之间的对应关系可以由MAC CE来指示。即可以通过MAC CE激活多个第二波束,并且MAC CE中的每个比特位分别与每个codepoint对应的两个第二波束一一对应,但每个codepoint对应的两个第二波束可以只有一个第二波束是存在的,并由MAC CE中的比特位信息进行指示;当每个codepoint对应的两个第二波束都存在时,两个第二波束分别对应不同的TRP。
需要说明的是,网络设备在根据第二波束确定第一CORESET对应的默认波束时,可以根据DCI中每个codepoint对应的第二波束的数量以及预先设定的默认波束的数量,将相应的第二波束确定为第一CORESET对应的默认波束。可选的,可以分为以下四种情况:
情况一
将第二波束中的至少一个,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,响应于第二波束的数量为一个,即DCI指示第一CORESET对应的波束为一个波束,则网络设备可以直接将DCI指示的一个第二波束,确定为第一CORESET对应的默认波束。
作为另一种可能的实现方式,响应于第二波束的数量为两个,即DCI指示第一CORESET对应的波束为两个波束,且指示第一CORESET对应的默认波束为一个,则网络设备可以将两个第二波束中的任意一个确定为第一CORESET对应的默认波束。
作为再一种可能的实现方式,响应于第二波束的数量为两个,即DCI指示第一CORESET对应的波束为两个波束,且指示第一CORESET对应的默认波束为两个,则网络设备可以将DCI指示的两个 第二波束均确定为第一CORESET对应的默认波束。
情况二
将第一DCI中用于指示一个第二波束、且取值最小的codepoint对应的第二波束,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,由于DCI中的每个codepoint都可以对应一组第二波束,因此网络设备可以将其中一个codepoint对应的第二波束,确定为第一CORESET对应的默认波束。从而,响应于DCI指示第一CORESET对应的默认波束为一个,则网络设备可以首先选取出DCI中对应一个第二波束的codepoint,并将选取出的取值最小的codepoint对应的一个第二波束,确定为第一CORESET对应的默认波束。
举例来说,DCI中的每个codepoint可以通过3个比特位进行表示,如codepoint的取值可以包括000、001、010、011、100、101、110、111,等等,并且上述各个取值是按照从小到大的顺序排列的。比如,DCI中codepoint“011”对应一个第二波束,codepoint“000”也指示一个第二波束,则可以将codepoint“000”指示的一个第二波束确定为第一CORESET对应的默认波束。
情况三
将第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的第二波束,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,由于DCI中的每个codepoint都可以对应一组第二波束,因此网络设备可以将其中一个codepoint对应的第二波束,确定为第一CORESET对应的默认波束。从而,响应于DCI指示第一CORESET对应的默认波束为两个,则网络设备可以首先选取出DCI中对应两个第二波束的codepoint,并将选取出的取值最小的codepoint对应的两个第二波束,确定为第一CORESET对应的默认波束。
举例来说,DCI中codepoint“011”对应两个第二波束,codepoint“000”也指示两个第二波束,则可以将codepoint“000”指示的两个第二波束确定为第一CORESET对应的默认波束。
情况四
将第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的两个第二波束中与指定TRP对应的一个第二波束,确定为第一CORESET对应的默认波束。
作为一种可能的实现方式,由于DCI中的每个codepoint都可以对应一组第二波束,因此网络设备可以将其中一个codepoint对应的第二波束,确定为第一CORESET对应的默认波束。从而,响应于DCI指示第一CORESET对应的波束为两个波束,且指示第一CORESET对应的默认波束为一个,并且网络设备与用户设备预先约定了指定TRP,则网络设备可以首先选取出DCI中对应两个第二波束的codepoint,可以根据MAC CE中的每个比特位与TRP的对应关系,确定选取出的取值最小的codepoint对应的两个第二波束中与指定TRP对应的第二波束,并将指定TRP对应的第二波束确定为第一CORESET对应的默认波束。
举例来说,DCI中codepoint“011”对应两个第二波束,codepoint“000”也指示两个第二波束,而且“000”指示的两个第二波束分别为TCI#0和TCI#1,其中TCI#0对应TRP#0(或CORESETPoolIndex#0对应的TRP),其中TCI#1对应TRP#1(或CORESETPoolIndex#1对应的TRP)。若指定TRP为TRP#0(或CORESETPoolIndex#0对应的TRP),则将TCI#0确定为第一CORESET对应的默认波束;若指定TRP为TRP#1(或CORESETPoolIndex#1对应的TRP),则将TCI#1确定为第一CORESET对应的默认波束。
在本申请实施例中,MAC CE可以为指示第一CORESET的专用波束的MAC CE;或者,MAC CE也可以为指示包含第一CORESET在内的一个group(集合)的通用波束的MAC CE。
其中,group中除了可以包含第一CORESET之外,还可以包含其它CORESET、PDSCH、PUSCH(physical uplink shared channel,物理上行共享信道)、PUCCH(physical uplink control channel,物理上行控制信道)、CSI-RS(channel state information reference signal,信道状态信息参考信号)、SRS(sounding reference signal,探测参考信号)、PRS(Positioning Reference Signal,定位参考信号)、DMRS(Demodulation Reference Signal,解调参考信号)等中的至少一项。
需要说明的是,专用波束可以是指只用于第一CORESET的波束;通用波束可以是指可以用于至少一组信道和/或至少一种参考信号的波束,即除了可以用于第一CORESET之外,还可以用于与第一CORESET属于一个group的其它CORESET、PDSCH、PUSCH、参考信号等。
进一步的,在本申请实施例一种可能的实现方式中,网络设备还可以通过以下方式确定第一CORESET对应的默认波束:
方式一
确定最近一个需要检测PDCCH的时间单元中,索引取值最小的第二CORESET对应的第三波束;
根据第三波束,确定默认波束。
进一步的,在本申请实施例一种可能的实现方式中,上述根据第三波束,确定默认波束,包括:
确定第三波束为默认波束;
或者,
确定默认波束为第三波束中与指定TRP对应的一个波束。
方式二
确定第一CORESET对应的第一CORESETPoolIndex;
根据第一CORESETPoolIndex,确定最近一个需要检测PDCCH的时间单元中索引取值最小的第三CORESET对应的第四波束,其中,第三CORESET对应的CORESETPoolIndex与第一CORESET对应的CORESETPoolIndex相同;
根据第四波束,确定默认波束。
进一步的,在本申请实施例一种可能的实现方式中,上述根据第四波束,确定默认波束,包括:
确定第四波束为默认波束;
或者,
确定默认波束为第四波束中与指定TRP对应的一个波束。
进一步的,在本申请实施例一种可能的实现方式中,上述根据第四波束,确定默认波束,包括:
将第一指定值对应的第四波束,确定为默认波束;
或者,
将第二指定值对应的第四波束,确定为默认波束;
或者,
将第一指定值及第二指定值分别对应的至少一个第四波束,确定为默认波束。
方式三
确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第三指定值、且索引取值最小的第四CORESET对应的第五波束;
确定最近一个需要检测PDCCH的时间单元中对应控制资源集池索引为第四指定值、且索引取值最小的第五CORESET对应的第六波束;
将第五波束及第六波束,确定为默认波束。
在本申请的实施例中,网络设备确定第一CORESET对应的默认波束的具体方式,可以与前述实施例中用户设备确定第一CORESET对应的默认波束的具体方式相同,即步骤601可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
需要说明的是,网络设备通过方式一至方式三确定第一CORESET对应的默认波束的具体实现过程,可以参照前述实施例的详细描述,此处也不再赘述。
进一步的,网络设备还可以配置至少一个CORESET及其对应的一个或多个波束。即在本申请实施例一种可能的实现方式中,上述默认波束的确定方法,还可以包括:
发送配置信令,其中,配置信令用于配置至少一个CORESET,以及至少一个CORESET中每个CORESET对应的一个或多个波束。
其中,配置信令,可以包括MAC CE和/或DCI。
在本申请实施例中,网络设备可以通过MAC CE与DCI中的至少一种,配置各个CORESET以及 各个CORESET对应的一个或多个波束。
作为一种可能的实现方式,网络设备通MAC CE配置至少一个CORESET及其对应的波束时,网络设备可以根据自身包含的TRP的数量以及当前的业务需求,确定可以为至少一个CORESET激活的波束数量,并通过MAC CE激活相应数量的波束。
作为一种可能的实现方式,网络设备通DCI配置至少一个CORESET及其对应的波束时,网络设备还可以根据自身包含的TRP的数量以及当前的业务需求,确定可以为至少一个CORESET激活的波束数量,并通过向用户设备发送DCI为至少一个CORESET配置相应数量的波束。
需要说明的是,DCI中用于指示波束的TCI状态指示域在不同时刻可以显示为多个不同的codepoint(码点),并且每个codepoint可以与一组波束对应,其中,每组波束可以包括一个或者两个波束。并且,codepoint与每组波束之间的对应关系可以由MAC CE来指示,从而网络设备通过DCI配置至少一个CORESET及其对应的一个或多个波束时,配置信令中可以同时包含MAC CE与DCI。
本申请实施例提供的默认波束的确定方法,通过基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
为了实现上述实施例,本申请还提出一种默认波束的确定装置。
图7为本申请实施例提供的一种默认波束的确定装置的结构示意图,应用于用户设备。
如图7所示,该默认波束的确定装置70,包括:
第一确定模块71,被配置为基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。
在实际使用时,本申请实施例提供的默认波束的确定装置,可以被配置在任意用户设备中,以执行前述默认波束的确定方法。
本申请实施例提供的默认波束的确定装置,通过基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
在本申请一种可能的实现形式中,上述第一确定模块71,包括:
第一接收单元,被配置为接收MAC CE,MAC CE用于激活第一CORESET对应的第一波束;
第一确定单元,被配置为将第一波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请另一种可能的实现形式中,上述第一确定单元,具体被配置:
第一波束的数量为一个,将一个第一波束确定为第一CORESET对应的默认波束;
或者,
第一波束的数量为两个,将两个第一波束确定为第一CORESET对应的默认波束;
或者,
第一波束的数量为两个,将两个第一波束中与指定TRP对应的一个第一波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请再一种可能的实现形式中,上述第一确定模块71,包括:
第二接收单元,被配置为接收第一DCI,第一DCI用于指示第一CORESET对应的第二波束;
第二确定单元,被配置为将第二波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请又一种可能的实现形式中,上述第二确定单元,具体被配置为:
将第二波束中的至少一个,确定为第一CORESET对应的默认波束;
或者,
将第一DCI中用于指示一个第二波束、且取值最小的码点codepoint对应的第二波束,确定为第一CORESET对应的默认波束;
或者,
将第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的第二波束,确定为第一CORESET对应的默认波束;
或者,
将第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的两个第二波束中与指定TRP对应的一个第二波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请又一种可能的实现形式中,上述MAC CE为指示第一CORESET的专用波束的MAC CE;或,MAC CE为指示包含第一CORESET在内的一个集合group的通用波束的MAC CE。
进一步的,在本申请另一种可能的实现形式中,上述第一确定模块71,包括:
第三确定单元,被配置为确定最近一个需要检测PDCCH的时间单元中,索引取值最小的第二CORESET对应的第三波束;
第四确定单元,被配置为根据第三波束,确定默认波束。
进一步的,在本申请再一种可能的实现形式中,上述第四确定单元,具体被配置为:
确定第三波束为默认波束;
或者,
确定默认波束为第三波束中与指定TRP对应的一个波束。
进一步的,在本申请又一种可能的实现形式中,上述第一确定模块71,包括:
第五确定单元,被配置为确定第一CORESET对应的第一CORESETPoolIndex;
第六确定单元,被配置为根据第一CORESETPoolIndex,确定最近一个需要检测PDCCH的时间单元中索引取值最小的第三CORESET对应的第四波束,其中,第三CORESET对应的CORESETPoolIndex与第一CORESET对应的CORESETPoolIndex相同;
第七确定单元,被配置为根据第四波束,确定默认波束。
进一步的,在本申请又一种可能的实现形式中,上述第七确定单元,具体被配置为:
确定第四波束为默认波束;
或者,
确定默认波束为第四波束中与指定TRP对应的一个波束。
进一步的,在本申请另一种可能的实现形式中,上述第七确定单元,具体被配置为:
将第一指定值对应的第四波束,确定为默认波束;
或者,
将第二指定值对应的第四波束,确定为默认波束;
或者,
将第一指定值及第二指定值分别对应的至少一个第四波束,确定为默认波束。
进一步的,在本申请再一种可能的实现形式中,上述第一确定模块71,包括:
第八确定单元,被配置为确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第三指定值、且索引取值最小的第四CORESET对应的第五波束;
第九确定单元,被配置为确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第四指定值、且索引取值最小的第五CORESET对应的第六波束;
第十确定单元,被配置为将第五波束及第六波束,确定为默认波束。
进一步的,在本申请又一种可能的实现形式中,上述默认波束的确定装置70,还包括:
接收模块,被配置为接收网络设备发送的配置信令,其中,配置信令用于配置第二CORESET、第三CORESET、第四CORESET、第五CORESET中至少一个CORESET,以及至少一个CORESET中每个CORESET对应的一个或多个波束。
进一步的,在本申请又一种可能的实现形式中,上述配置信令包含MAC CE和/或DCI。
进一步的,在本申请另一种可能的实现形式中,上述默认波束的确定装置70,还包括:
传输模块,被配置为基于第一CORESET对应的默认波束,传输第一CORESET对应的数据和/或参考信号。
进一步的,在本申请再一种可能的实现形式中,上述第一CORESET对应的数据包括以下至少一种:
第一CORESET内的PDCCH上发送的第二DCI调度的PDSCH上承载的数据;以及
第一CORESET内的PDCCH上发送的第三DCI调度的PUSCH上承载的数据。
需要说明的是,前述对图1-图5所示的默认波束的确定方法实施例的解释说明也适用于该实施例的默认波束的确定装置70,此处不再赘述。
本申请实施例提供的默认波束的确定装置,通过确定最近一个需要检测PDCCH的时间单元中,索引取值最小的第二CORESET对应的第三波束,进而根据第三波束,确定默认波束。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
为了实现上述实施例,本申请还提出一种默认波束的确定装置。
图8为本申请实施例提供的另一种默认波束的确定装置的结构示意图,应用于网络设备。
如图8所示,该默认波束的确定装置80,包括:
第二确定模块81,被配置为基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。
在实际使用时,本申请实施例提供的默认波束的确定装置,可以被配置在任意网络设备中,以执行前述默认波束的确定方法。
在本申请一种可能的实现形式中,上述第二确定模块81,包括:
第一发送单元,被配置为发送MAC CE,MAC CE用于激活第一CORESET对应的第一波束;
第十一确定单元,被配置为将第一波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请另一种可能的实现形式中,上述第二确定模块81,包括:
第二发送单元,被配置为发送第一DCI,第一DCI用于指示第一CORESET对应的第二波束;
第十二确定单元,被配置为将第二波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请再一种可能的实现形式中,上述默认波束的确定装置80,还包括:
发送模块,被配置为发送配置信令,其中,配置信令用于配置至少一个CORESET,以及至少一个CORESET中每个CORESET对应的一个或多个波束。
需要说明的是,前述对图6所示的默认波束的确定方法实施例的解释说明也适用于该实施例的默认波束的确定装置80,此处不再赘述。
本申请实施例提供的默认波束的确定装置,通过基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。由此,通过预先定义指定的规则,确定支持多个TCI状态的CORESET对应的默认波束,从而提升了对应多个TCI状态的CORESET的默认波束确定的准确性,提升了多TRP数据传输的可靠性。
为了实现上述实施例,本申请还提出一种用户设备。
本申请实施例提供的用户设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时能够执行如下操作:
基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在用户设备掉电之后能够继续记忆存储其上的信息。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图1至图5的至少其中之一。
在本申请一种可能的实现形式中,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
接收MAC CE,MAC CE用于激活第一CORESET对应的第一波束;
将第一波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请另一种可能的实现形式中,所述将第一波束,确定为第一CORESET对应的默 认波束,包括:
第一波束的数量为一个,将一个第一波束确定为第一CORESET对应的默认波束;
或者,
第一波束的数量为两个,将两个第一波束确定为第一CORESET对应的默认波束;
或者,
第一波束的数量为两个,将两个第一波束中与指定TRP对应的一个第一波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请再一种可能的实现形式中,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
接收第一DCI,第一DCI用于指示第一CORESET对应的第二波束;
将第二波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请又一种可能的实现形式中,所述将所述第二波束,确定为所述第一CORESET对应的默认波束,包括:
将第二波束中的至少一个,确定为第一CORESET对应的默认波束;
或者,
将所述第一DCI中用于指示一个第二波束、且取值最小的codepoint对应的第二波束,确定为第一CORESET对应的默认波束;
或者,
将所述第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的第二波束,确定为第一CORESET对应的默认波束;
或者,
将所述第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的两个第二波束中与指定TRP对应的一个第二波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请又一种可能的实现形式中,MAC CE为指示第一CORESET的专用波束的MAC-CE;或,MAC CE为指示包含第一CORESET在内的一个group的通用波束的MAC CE。
进一步的,在本申请另一种可能的实现形式中,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
确定最近一个需要检测PDCCH的时间单元中,索引取值最小的第二CORESET对应的第三波束;
根据第三波束,确定默认波束。
进一步的,在本申请再一种可能的实现形式中,所述根据第三波束,确定默认波束,包括:
确定第三波束为默认波束;
或者,
确定默认波束为第三波束中与指定TRP对应的一个波束。
进一步的,在本申请又一种可能的实现形式中,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
确定第一CORESET对应的第一CORESETPoolIndex;
根据第一CORESETPoolIndex,确定最近一个需要检测PDCCH的时间单元中索引取值最小的第三CORESET对应的第四波束,其中,第三CORESET对应的CORESETPoolIndex与第一CORESET对应的CORESETPoolIndex相同;
根据第四波束,确定默认波束。
进一步的,在本申请又一种可能的实现形式中,所述根据第四波束,确定默认波束,包括:
确定第四波束为默认波束;
或者,
确定默认波束为第四波束中与指定TRP对应的一个波束。
进一步的,在本申请另一种可能的实现形式中,所述根据第四波束,确定默认波束,包括:
将第一指定值对应的第四波束,确定为默认波束;
或者,
将第二指定值对应的第四波束,确定为默认波束;
或者,
将第一指定值及第二指定值分别对应的至少一个第四波束,确定为默认波束。
进一步的,在本申请再一种可能的实现形式中,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第三指定值、且索引取值最小的第四CORESET对应的第五波束;
确定最近一个需要检测PDCCH的时间单元中对应CORESETPoolIndex为第四指定值、且索引取值最小的第五CORESET对应的第六波束;
将第五波束及第六波束,确定为默认波束。
进一步的,在本申请又一种可能的实现形式中,所述处理器,还用于执行以下操作:
接收网络设备发送的配置信令,其中,配置信令用于配置第二CORESET、第三CORESET、第四CORESET、第五CORESET中至少一个CORESET,以及至少一个CORESET中每个CORESET对应的一个或多个波束。
进一步的,在本申请又一种可能的实现形式中,所述配置信令包含MAC CE和/或DCI。
进一步的,在本申请另一种可能的实现形式中,所述处理器,还用于执行以下操作:
基于第一CORESET对应的默认波束,传输第一CORESET对应的数据和/或参考信号。
进一步的,在本申请再一种可能的实现形式中,所述第一CORESET对应的数据包括以下至少一种:
第一CORESET内的PDCCH上发送的第二DCI调度的PDSCH上承载的数据;以及
第一CORESET内的PDCCH上发送的第三DCI调度的PUSCH上承载的数据。
为了实现上述实施例,本申请还提出一种用户设备。
本申请实施例提供的网络设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时能够执行如下操作:
基于指定的规则,确定第一CORESET对应的默认波束,其中,第一CORESET支持的TCI状态的最大数目大于或等于2。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在网络设备掉电之后能够继续记忆存储其上的信息。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图6的至少其中之一。
在本申请一种可能的实现形式中,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
发送MAC CE,MAC CE用于激活第一CORESET对应的第一波束;
将第一波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请另一种可能的实现形式中,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
发送第一DCI,第一DCI用于指示第一CORESET对应的第二波束;
将第二波束,确定为第一CORESET对应的默认波束。
进一步的,在本申请再一种可能的实现形式中,所述处理器,还用于执行以下操作:
发送配置信令,其中,配置信令用于配置至少一个CORESET,以及至少一个CORESET中每个CORESET对应的一个或多个波束。
为了实现上述实施例,本申请还提出一种默认波束的确定系统,包括用户设备与网络设备。
其中,所述用户设备包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够执行如下操作:
基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的传输配置指示TCI状态的最大数目大于或等于2。
其中,所述网络设备包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够执行如下操作:
基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的传输配置指示TCI状态的最大数目大于或等于2。
为了实现上述实施例,本申请还提出一种计算机存储介质。
本申请实施例提供的计算机存储介质,存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述任意技术方案提供的默认波束的确定方法,例如,如图1至图6的至少其中之一。
为了实现上述实施例,本申请还提出一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如前所述的默认波束的确定方法。
为了实现上述实施例,本申请还提出一种计算机程序,该程序被处理器执行时,以实现本申请实施例所述的设备识别方法。
图9是本申请实施例所提供的一种用户设备UE900的框图。例如,UE900可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,UE900可以包括以下至少一个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制UE900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括至少一个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括至少一个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在UE900的操作。这些数据的示例包括用于在UE900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为UE900的各种组件提供电力。电源组件906可以包括电源管理系统,至少一个电源,及其他与为UE900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述UE900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当UE900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当UE900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括至少一个传感器,用于为UE900提供各个方面的状态评估。例如,传感器组件914可以检测到设备900的打开/关闭状态,组件的相对定位,例如所述组件为UE900的显示器和小键盘,传感器组件914还可以检测UE900或UE900一个组件的位置改变,用户与UE900接触的存在或 不存在,UE900方位或加速/减速和UE900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于UE900和其他设备之间有线或无线方式的通信。UE900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE900可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由UE900的处理器920执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图10所示,为本申请实施例所提供的一种网络设备的结构示意图。例如,网络设备1000可以被提供为一网络设备。参照图10,网络设备1000包括处理组件1022,其进一步包括至少一个处理器,以及由存储器1032所代表的存储器资源,用于存储可由处理组件1022的执行的指令,例如应用程序。存储器1032中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1022被配置为执行指令,以执行上述方法前述应用在所述网络设备的任意方法,例如,如图6所示方法。
网络设备1000还可以包括一个电源组件1026被配置为执行网络设备1000的电源管理,一个有线或无线网络接口1050被配置为将网络设备1000连接到网络,和一个输入输出(I/O)接口1058。网络设备1000可以操作基于存储在存储器1032的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (43)

  1. 一种默认波束的确定方法,所述方法应用于用户设备,其特征在于,所述方法包括:
    基于指定的规则,确定第一控制资源集CORESET对应的默认波束,其中,所述第一CORESET支持的传输配置指示TCI状态的最大数目大于或等于2。
  2. 如权利要求1所述的方法,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    接收媒体接入控制控制单元MAC CE,所述MAC CE用于激活所述第一CORESET对应的第一波束;
    将所述第一波束,确定为所述第一CORESET对应的默认波束。
  3. 如权利要求2所述的方法,其特征在于,所述将所述第一波束,确定为所述第一CORESET对应的默认波束,包括:
    所述第一波束的数量为一个,将所述一个第一波束确定为所述第一CORESET对应的默认波束;
    或者,
    所述第一波束的数量为两个,将所述两个第一波束确定为所述第一CORESET对应的默认波束;
    或者,
    所述第一波束的数量为两个,将所述两个第一波束中与指定发送接收点TRP对应的一个第一波束,确定为所述第一CORESET对应的默认波束。
  4. 如权利要求1所述的方法,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    接收第一下行控制信息DCI,所述第一DCI用于指示所述第一CORESET对应的第二波束;
    将所述第二波束,确定为所述第一CORESET对应的默认波束。
  5. 如权利要求4所述的方法,其特征在于,所述将所述第二波束,确定为所述第一CORESET对应的默认波束,包括:
    将所述第二波束中的至少一个,确定为所述第一CORESET对应的默认波束;
    或者,
    将所述第一DCI中用于指示一个第二波束、且取值最小的码点codepoint对应的第二波束,确定为所述第一CORESET对应的默认波束;
    或者,
    将所述第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的第二波束,确定为所述第一CORESET对应的默认波束;
    或者,
    将所述第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的两个第二波束中与指定TRP对应的一个第二波束,确定为所述第一CORESET对应的默认波束。
  6. 如权利要求2-5任一所述的方法,其特征在于,还包括:
    所述MAC CE为指示所述第一CORESET的专用波束的MAC CE;或,所述MAC CE为指示包含所述第一CORESET在内的一个集合group的通用波束的MAC CE。
  7. 如权利要求1所述的方法,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    确定最近一个需要检测物理下行控制信道PDCCH的时间单元中,索引取值最小的第二CORESET对应的第三波束;
    根据所述第三波束,确定所述默认波束。
  8. 如权利要求7所述的方法,其特征在于,所述根据所述第三波束,确定所述默认波束,包括:
    确定所述第三波束为所述默认波束;
    或者,
    确定所述默认波束为所述第三波束中与指定TRP对应的一个波束。
  9. 如权利要求1所述的方法,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    确定所述第一CORESET对应的第一控制资源集池索引;
    根据所述第一控制资源集池索引,确定最近一个需要检测PDCCH的时间单元中索引取值最小的第三CORESET对应的第四波束,其中,所述第三CORESET对应的控制资源集池索引与所述第一CORESET对应的控制资源集池索引相同;
    根据所述第四波束,确定所述默认波束。
  10. 如权利要求9所述的方法,其特征在于,所述根据所述第四波束,确定所述默认波束,包括:
    确定所述第四波束为所述默认波束;
    或者,
    确定所述默认波束为所述第四波束中与指定TRP对应的一个波束。
  11. 如权利要求9所述的方法,其特征在于,所述根据所述第四波束,确定所述默认波束,包括:
    将所述第一指定值对应的第四波束,确定为所述默认波束;
    或者,
    将所述第二指定值对应的第四波束,确定为所述默认波束;
    或者,
    将所述第一指定值及所述第二指定值分别对应的至少一个第四波束,确定为所述默认波束。
  12. 如权利要求1所述的方法,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    确定所述最近一个需要检测PDCCH的时间单元中对应控制资源集池索引为第三指定值、且索引取值最小的第四CORESET对应的第五波束;
    确定所述最近一个需要检测PDCCH的时间单元中对应控制资源集池索引为第四指定值、且索引取值最小的第五CORESET对应的第六波束;
    将所述第五波束及所述第六波束,确定为所述默认波束。
  13. 如权利要求1-12任一所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的配置信令,其中,所述配置信令用于配置第二CORESET、第三CORESET、第四CORESET、第五CORESET中至少一个CORESET,以及所述至少一个CORESET中每个CORESET对应的一个或多个波束。
  14. 如权利要求13所述的方法,其特征在于,所述配置信令包含MAC CE和/或DCI。
  15. 如权利要求1所述的方法,其特征在于,还包括:
    基于所述第一CORESET对应的默认波束,传输所述第一CORESET对应的数据和/或参考信号。
  16. 如权利要求15所述的方法,其特征在于,所述第一CORESET对应的数据包括以下至少一种:
    第一CORESET内的PDCCH上发送的第二DCI调度的物理下行共享信道PDSCH上承载的数据;以及
    第一CORESET内的PDCCH上发送的第三DCI调度的物理上行共享信道PUSCH上承载的数据。
  17. 一种默认波束的确定方法,应用于网络设备,其特征在于,所述方法包括:
    基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
  18. 如权利要求17所述的方法,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    发送MAC CE,所述MAC CE用于激活所述第一CORESET对应的第一波束;
    将所述第一波束,确定为所述第一CORESET对应的默认波束。
  19. 如权利要求17所述方法,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    发送第一DCI,所述第一DCI用于指示所述第一CORESET对应的第二波束;
    将所述第二波束,确定为所述第一CORESET对应的默认波束。
  20. 如权利要求17-19任一所述的方法,其特征在于,所述方法还包括:
    向用户设备发送配置信令,其中,所述配置信令用于配置至少一个CORESET,以及所述至少一个CORESET中每个CORESET对应的一个或多个波束。
  21. 一种默认波束的确定装置,应用于用户设备,其特征在于,所述装置包括:
    第一确定模块,被配置为基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
  22. 一种默认波束的确定装置,应用于网络设备,其特征在于,所述装置包括:
    第二确定模块,被配置为基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
  23. 一种用户设备,其特征在于,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够执行如下操作:
    基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
  24. 如权利要求23所述的用户设备,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    接收MAC CE,所述MAC CE用于激活所述第一CORESET对应的第一波束;
    将所述第一波束,确定为所述第一CORESET对应的默认波束。
  25. 如权利要求24所述的用户设备,其特征在于,所述将所述第一波束,确定为所述第一CORESET 对应的默认波束,包括:
    所述第一波束的数量为一个,将所述一个第一波束确定为所述第一CORESET对应的默认波束;
    或者,
    所述第一波束的数量为两个,将所述两个第一波束确定为所述第一CORESET对应的默认波束;
    或者,
    所述第一波束的数量为两个,将所述两个第一波束中与指定发送接收点TRP对应的一个第一波束,确定为所述第一CORESET对应的默认波束。
  26. 如权利要求23所述的用户设备,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    接收第一DCI,所述第一DCI用于指示所述第一CORESET对应的第二波束;
    将所述第二波束,确定为所述第一CORESET对应的默认波束。
  27. 如权利要求26所述的用户设备,其特征在于,所述将所述第二波束,确定为所述第一CORESET对应的默认波束,包括:
    将所述第二波束中的至少一个,确定为所述第一CORESET对应的默认波束;
    或者,
    将所述第一DCI中用于指示一个第二波束、且取值最小的codepoint对应的第二波束,确定为所述第一CORESET对应的默认波束;
    或者,
    将所述第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的第二波束,确定为所述第一CORESET对应的默认波束;
    或者,
    将所述第一DCI中用于指示两个第二波束、且取值最小的codepoint对应的两个第二波束中与指定TRP对应的一个第二波束,确定为所述第一CORESET对应的默认波束。
  28. 如权利要求24-27任一所述的用户设备,其特征在于,
    所述MAC-CE为指示所述第一CORESET的专用波束的MAC CE;或,所述MAC CE为指示包含所述第一CORESET在内的一个group的通用波束的MAC CE。
  29. 如权利要求23所述的用户设备,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    确定最近一个需要检测物理下行控制信道PDCCH的时间单元中,索引取值最小的第二CORESET对应的第三波束;
    根据所述第三波束,确定所述默认波束。
  30. 如权利要求29所述的用户设备,其特征在于,所述根据所述第三波束,确定所述默认波束,包括:
    确定所述第三波束为所述默认波束;
    或者,
    确定所述默认波束为所述第三波束中与指定TRP对应的一个波束。
  31. 如权利要求23所述的用户设备,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    确定所述第一CORESET对应的第一控制资源集池索引;
    根据所述第一控制资源集池索引,确定最近一个需要检测PDCCH的时间单元中索引取值最小的第三CORESET对应的第四波束,其中,所述第三CORESET对应的控制资源集池索引与所述第一CORESET对应的控制资源集池索引相同;
    根据所述第四波束,确定所述默认波束。
  32. 如权利要求31所述的用户设备,其特征在于,所述根据所述第四波束,确定所述默认波束,包括:
    确定所述第四波束为所述默认波束;
    或者,
    确定所述默认波束为所述第四波束中与指定TRP对应的一个波束。
  33. 如权利要求31所述的用户设备,其特征在于,所述根据所述第四波束,确定所述默认波束,包括:
    将所述第一指定值对应的第四波束,确定为所述默认波束;
    或者,
    将所述第二指定值对应的第四波束,确定为所述默认波束;
    或者,
    将所述第一指定值及所述第二指定值分别对应的至少一个第四波束,确定为所述默认波束。
  34. 如权利要求23所述的用户设备,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    确定所述最近一个需要检测PDCCH的时间单元中对应控制资源集池索引为第三指定值、且索引取值最小的第四CORESET对应的第五波束;
    确定所述最近一个需要检测PDCCH的时间单元中对应控制资源集池索引为第四指定值、且索引取值最小的第五CORESET对应的第六波束;
    将所述第五波束及所述第六波束,确定为所述默认波束。
  35. 如权利要求23-34任一所述的用户设备,其特征在于,所述处理器,还用于执行以下操作:
    接收网络设备发送的配置信令,其中,所述配置信令用于配置第二CORESET、第三CORESET、第四CORESET、第五CORESET中至少一个CORESET,以及所述至少一个CORESET中每个CORESET对应的一个或多个波束。
  36. 如权利要求35所述的用户设备,其特征在于,所述配置信令包含MAC CE和/或DCI。
  37. 如权利要求23所述的用户设备,其特征在于,所述处理器,还用于执行以下操作:
    基于所述第一CORESET对应的默认波束,传输所述第一CORESET对应的数据和/或参考信号。
  38. 如权利要求37所述的用户设备,其特征在于,所述第一CORESET对应的数据包括以下至少一种:
    第一CORESET内的PDCCH上发送的第二DCI调度的物理下行共享信道PDSCH上承载的数据;以及
    第一CORESET内的PDCCH上发送的第三DCI调度的物理上行共享信道PUSCH上承载的数据。
  39. 一种网络设备,其特征在于,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够 执行如下操作:
    基于指定的规则,确定第一CORESET对应的默认波束,其中,所述第一CORESET支持的TCI状态的最大数目大于或等于2。
  40. 如权利要求39所述的网络设备,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    发送MAC CE,所述MAC CE用于激活所述第一CORESET对应的第一波束;
    将所述第一波束,确定为所述第一CORESET对应的默认波束。
  41. 如权利要求39所述网络设备,其特征在于,所述基于指定的规则,确定第一CORESET对应的默认波束,包括:
    发送第一DCI,所述第一DCI用于指示所述第一CORESET对应的第二波束;
    将所述第二波束,确定为所述第一CORESET对应的默认波束。
  42. 如权利要求39-41任一所述的网络设备,其特征在于,所述处理器,还用于执行以下操作:
    发送配置信令,其中,所述配置信令用于配置至少一个CORESET,以及所述至少一个CORESET中每个CORESET对应的一个或多个波束。
  43. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至16、或17至20任一项所述的方法。
PCT/CN2021/070181 2021-01-04 2021-01-04 默认波束的确定方法、装置、用户设备及网络设备 WO2022141641A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2023540970A JP2024503823A (ja) 2021-01-04 2021-01-04 デフォルトビームの決定方法、装置、ユーザ機器及びネットワーク機器
US18/260,129 US20240063878A1 (en) 2021-01-04 2021-01-04 Method and apparatus for determining default beam, user equipment, and network device
CN202180000135.6A CN112771970B (zh) 2021-01-04 2021-01-04 默认波束的确定方法、装置、用户设备及网络设备
BR112023013326A BR112023013326A2 (pt) 2021-01-04 2021-01-04 Método para determinar um feixe padrão, equipamento de usuário, dispositivo de rede, e, meio de armazenamento de computador
PCT/CN2021/070181 WO2022141641A1 (zh) 2021-01-04 2021-01-04 默认波束的确定方法、装置、用户设备及网络设备
CN202310357913.8A CN116367330A (zh) 2021-01-04 2021-01-04 确定默认波束的方法、装置及存储介质
EP21912424.5A EP4274347A1 (en) 2021-01-04 2021-01-04 Method and apparatus for determining default beam, user equipment, and network device
KR1020237026327A KR20230125316A (ko) 2021-01-04 2021-01-04 디폴트 빔의 결정 방법, 장치, 사용자 기기 및 네트워크기기(method and apparatus for determining default beam, user equipment, and network device)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070181 WO2022141641A1 (zh) 2021-01-04 2021-01-04 默认波束的确定方法、装置、用户设备及网络设备

Publications (1)

Publication Number Publication Date
WO2022141641A1 true WO2022141641A1 (zh) 2022-07-07

Family

ID=75691434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070181 WO2022141641A1 (zh) 2021-01-04 2021-01-04 默认波束的确定方法、装置、用户设备及网络设备

Country Status (7)

Country Link
US (1) US20240063878A1 (zh)
EP (1) EP4274347A1 (zh)
JP (1) JP2024503823A (zh)
KR (1) KR20230125316A (zh)
CN (2) CN112771970B (zh)
BR (1) BR112023013326A2 (zh)
WO (1) WO2022141641A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175821A (zh) * 2021-10-29 2022-03-11 北京小米移动软件有限公司 传输配置指示状态确定方法、装置及存储介质
WO2023115335A1 (zh) * 2021-12-21 2023-06-29 Oppo广东移动通信有限公司 一种侧行传输方法及装置、终端设备
WO2023155174A1 (zh) * 2022-02-18 2023-08-24 北京小米移动软件有限公司 通信方法、装置、设备及可读存储介质
WO2024000203A1 (zh) * 2022-06-28 2024-01-04 北京小米移动软件有限公司 一种传输配置指示tci状态使用时间的确定方法及其装置
CN117793895A (zh) * 2022-09-28 2024-03-29 华为技术有限公司 波束确定方法以及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110971361A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种控制信道波束指示方法及设备
WO2020146816A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Default beam identification and beam failure detection in cross carrier scheduling
CN111727654A (zh) * 2020-05-09 2020-09-29 北京小米移动软件有限公司 数据传输方法、数据传输装置及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10966183B2 (en) * 2018-01-12 2021-03-30 Apple Inc. Beam indication considering beam failure recovery in new radio
WO2020207374A1 (en) * 2019-04-08 2020-10-15 FG Innovation Company Limited Method of deriving qcl assumption in multi-panel transmission and related device
WO2022036709A1 (zh) * 2020-08-21 2022-02-24 北京小米移动软件有限公司 波束失败确定方法、装置、设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110971361A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种控制信道波束指示方法及设备
WO2020146816A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Default beam identification and beam failure detection in cross carrier scheduling
CN111727654A (zh) * 2020-05-09 2020-09-29 北京小米移动软件有限公司 数据传输方法、数据传输装置及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Enhancements on multiple TRP or panel transmission", 3GPP DRAFT; R1-1913023, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820268 *
INTEL CORPORATION: "Remaining Issues on Beam Management", 3GPP DRAFT; R1-1800311 REMAINING ISSUES ON BEAM MANAGEMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051384770 *
ZTE: "Details of latency and overhead reduction for beam management", 3GPP DRAFT; R1-1904022 DETAILS OF LATENCY AND OVERHEAD REDUCTION FOR BEAM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699427 *

Also Published As

Publication number Publication date
KR20230125316A (ko) 2023-08-29
JP2024503823A (ja) 2024-01-29
CN112771970B (zh) 2023-04-18
EP4274347A1 (en) 2023-11-08
CN112771970A (zh) 2021-05-07
CN116367330A (zh) 2023-06-30
BR112023013326A2 (pt) 2023-11-28
US20240063878A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
US11856422B2 (en) Beam failure recovery request sending and response methods and devices, and storage medium
WO2022141641A1 (zh) 默认波束的确定方法、装置、用户设备及网络设备
CN113597779B (zh) 信息指示方法、装置、用户设备、基站及存储介质
WO2022141074A1 (zh) 波束指示方法、波束指示装置及存储介质
CN115243249A (zh) 通信方法、装置及存储介质
WO2023070562A1 (zh) 传输配置指示状态确定方法、装置及存储介质
WO2022141646A1 (zh) 波束失败检测bfd资源的确定方法、装置及通信设备
CN113079709B (zh) Harq-ack处理方法及装置、通信设备及存储介质
CN113455076B (zh) 资源配置方法、装置、通信设备和存储介质
WO2022205004A1 (zh) 默认波束的确定方法、装置及通信设备
WO2022205146A1 (zh) 波束恢复方法、装置、用户设备、网络侧设备及存储介质
WO2022104605A1 (zh) 调制与编码策略mcs的配置方法、装置及通信设备
US20240147451A1 (en) Method and device for determining beam
WO2022193191A1 (zh) 资源配置方法、装置、终端设备、接入网设备及存储介质
WO2022120649A1 (zh) 接入控制方法、装置、通信设备和介质
WO2022205308A1 (zh) 信息传输方法、装置、终端设备、基站及存储介质
RU2816691C1 (ru) Способ и устройство для определения луча по умолчанию, пользовательское оборудование и сетевое устройство
EP4311349A1 (en) Method and apparatus for configuring downlink control channel, method and apparatus for determining downlink control channel, and device and medium
CN113424485B (zh) 指示信息配置及接收方法、装置、用户设备、基站及介质
WO2024026670A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2022222086A1 (zh) 信息传输方法、装置、用户设备、接入网设备、核心网及存储介质
WO2022178864A1 (zh) 确定传输参数的方法、发送harq-ack的方法、装置、设备及介质
US20220256528A1 (en) Method and apparatus for determining processing capacity applicable for target data
CN115943684A (zh) 一种功率余量报告的上报方法、装置、用户设备、基站及存储介质
CN115701785A (zh) 寻呼指示方法、装置、用户设备、接入网设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18260129

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023540970

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023013326

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237026327

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237026327

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2021912424

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021912424

Country of ref document: EP

Effective date: 20230804

WWE Wipo information: entry into national phase

Ref document number: 11202305130W

Country of ref document: SG

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023013326

Country of ref document: BR

Free format text: APRESENTE NOVA FOLHA DO RESUMO OU DA PAGINA 1 DO RELATORIO DESCRITIVO ADAPTADA AO ART. 22 INCISO I DA INSTRUCAO NORMATIVA/INPI/NO 31/2013, UMA VEZ QUE O TITULO DO RESUMO APRESENTADO NA PETICAO NO 870230332846 DE 29/08/2023 E DIVERGENTE DO TITULO DO RELATORIO DESCRITIVO ENVIADO NA MESMA PETICAO. A EXIGENCIA DEVE SER RESPONDIDA EM ATE 60 (SESSENTA) DIAS DE SUA PUBLICACAO E DEVE SER REALIZADA POR MEIO DA PETICAO GRU CODIGO DE SERVICO 207.

ENP Entry into the national phase

Ref document number: 112023013326

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230703