WO2022193091A1 - 成像装置及可移动平台 - Google Patents

成像装置及可移动平台 Download PDF

Info

Publication number
WO2022193091A1
WO2022193091A1 PCT/CN2021/080850 CN2021080850W WO2022193091A1 WO 2022193091 A1 WO2022193091 A1 WO 2022193091A1 CN 2021080850 W CN2021080850 W CN 2021080850W WO 2022193091 A1 WO2022193091 A1 WO 2022193091A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
heat radiation
light
bottom wall
transmitting component
Prior art date
Application number
PCT/CN2021/080850
Other languages
English (en)
French (fr)
Inventor
包福超
李红山
黄永结
彭泽林
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202180087142.4A priority Critical patent/CN116670581A/zh
Priority to PCT/CN2021/080850 priority patent/WO2022193091A1/zh
Publication of WO2022193091A1 publication Critical patent/WO2022193091A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present application relates to the technical field of movable platforms, and in particular, to an imaging device and a movable platform.
  • the present application provides an imaging device and a movable platform, which are intended to de-fog or de-icing the light-transmitting components of the movable platform, so as to ensure the normal operation of the imaging module.
  • an embodiment of the present application provides an imaging device for a movable platform, the movable platform is provided with a light-transmitting component, the imaging device is disposed inside the movable platform, and the imaging device includes :
  • the imaging module can face a preset area of the light-transmitting component, and is used for sensing ambient light passing through the light-transmitting component, so as to obtain environmental information of the environment where the movable platform is located;
  • an enclosing structure which is arranged between the imaging module and the light-transmitting component, the enclosing structure includes a bottom wall and other walls connected with the bottom wall, and the bottom wall and other walls enclose the light-transmitting components the preset area of the assembly, and the surrounding structure is used to reduce stray light inside the movable platform from entering the imaging module;
  • a heat radiation structure the heat radiation structure is arranged on the bottom wall and other walls, and is used for forming a heat radiation source on the surface of the surrounding structure to heat the predetermined area.
  • an embodiment of the present application provides an imaging device for a movable platform, the movable platform is provided with a light-transmitting component, the imaging device is disposed inside the movable platform, and the imaging device includes :
  • the imaging module can face a preset area of the light-transmitting component, and is used for sensing ambient light passing through the light-transmitting component, so as to obtain environmental information of the environment where the movable platform is located;
  • an enclosing structure arranged between the imaging module and the light-transmitting component, the enclosing structure encloses the predetermined area of the light-transmitting component, and the enclosing structure is used to reduce the interior of the movable platform The stray light is injected into the imaging module;
  • a heat radiation structure disposed on the surrounding structure, for forming a heat radiation source on the surface of the surrounding structure to heat the predetermined area
  • the unit heat radiation power of different unit sections of the heat radiation structure is substantially the same.
  • an embodiment of the present application provides an imaging device for a movable platform, the movable platform is provided with a light-transmitting component, the imaging device is disposed inside the movable platform, and the imaging device includes:
  • the imaging module can face a preset area of the light-transmitting component, and is used for sensing ambient light passing through the light-transmitting component, so as to obtain environmental information of the environment where the movable platform is located;
  • an enclosing structure arranged between the imaging module and the light-transmitting component, the enclosing structure encloses the predetermined area of the light-transmitting component, and the enclosing structure is used to reduce the interior of the movable platform The stray light is injected into the imaging module;
  • a heat radiation structure disposed on the surrounding structure, for forming a heat radiation source on the surface of the surrounding structure to heat the predetermined area
  • the heat radiation structure and the surrounding structure form an integral structure.
  • an embodiment of the present application provides a movable platform, including:
  • the imaging device is provided on the platform main body, and is used for environmental information of the environment where the movable platform is located.
  • the embodiments of the present application provide an imaging device and a movable platform, which can de-fog or de-icing the light-transmitting components of the movable platform, so as to ensure the normal operation of the imaging module.
  • FIG. 1 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 2 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 3 is a partial structural schematic diagram of an imaging device provided by an embodiment of the present application, wherein a surrounding structure and a heat radiation structure are shown;
  • FIG. 4 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 5 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 6 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 7 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 8 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • Fig. 9 is the partial enlarged schematic diagram of Fig. 4 at A;
  • FIG. 10 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a fixing member provided in an embodiment of the present application.
  • Imaging device 100. Imaging device
  • Imaging module 11. First imaging unit; 12. Second imaging unit; 13. Carrier; 14. Imaging assembly;
  • heat radiation structure 31, heat radiation film; 321, first heat radiation part; 322, second heat radiation part; 33, extension part; 331, first extension sub-part; 3311, first extension segment; 3312, 332, the second extension subsection; 333, the extension connection part; 34, the first electrical connection part; 35, the second electrical connection part;
  • Conductive connector 50. Fixing piece; 51. First surface; 511, First area; 512, Second area;
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • FIG. 1 is a schematic structural diagram of a movable platform 1000 provided by an embodiment of the present application.
  • the movable platform 1000 includes at least one of a movable vehicle, a movable ship, a movable robot, an aircraft, and the like.
  • the movable platform 1000 may be a movable vehicle, and the movable vehicle may be a vehicle with an automatic driving system or a vehicle without an automatic driving system.
  • the following description will be given by taking the movable platform 1000 as a movable vehicle as an example.
  • the movable platform 1000 includes an imaging device 100 and a platform body 200 .
  • the platform body 200 includes a light-transmitting component 2001 .
  • the imaging device 100 is disposed inside the movable platform 1000 .
  • the imaging device 100 is provided in the platform main body 200, and is used for acquiring environmental information of the environment where the movable platform 1000 is located.
  • the environmental information of the environment in which the movable platform 1000 is located may include information of parking spaces, information of obstacles, and position information of vehicles, and the like.
  • the environmental information includes environmental image information or environmental video information and the like.
  • the platform main body 200 can also present environmental information in real time, and the driver can drive according to the environmental information. In other embodiments, the platform main body 200 can also perform automatic driving according to environmental information.
  • the light-transmitting component 2001 includes glass or a light-transmitting structure made of non-glass materials, such as windshield glass or vehicle window glass.
  • the platform body 200 may further include at least one of an interior ceiling, an instrument panel, an A-pillar, a B-pillar, a C-pillar, a D-pillar, and the like.
  • the surface temperature of the light-transmitting component 2001 is not lower than the dew point temperature of the air in the movable platform 1000 , fogging or freezing can be avoided in the light-transmitting component 2001 . Therefore, in order to defog or deicing the light-transmitting component 2001, the light-transmitting component 2001 needs to be heated.
  • the imaging device 100 includes an imaging module 10, an enclosing structure 20 and a heat radiation structure 30.
  • the imaging module 10 can face the predetermined area 2002 of the light-transmitting component 2001 .
  • the imaging module 10 is used for sensing the ambient light passing through the light-transmitting component 2001 to obtain environmental information of the environment where the movable platform 1000 is located.
  • the surrounding structure 20 is disposed between the imaging module 10 and the light-transmitting component 2001 .
  • the enclosing structure 20 encloses the predetermined area 2002 of the light-transmitting component 2001 .
  • the surrounding structure 20 is used to reduce stray light inside the movable platform 1000 from entering the imaging module 10 .
  • the heat radiation structure 30 is disposed on the surrounding structure 20 for forming a heat radiation source on the surface of the surrounding structure 20 to heat the predetermined area 2002 .
  • the heat radiation structure 30 forms a heat radiation source on the surface of the surrounding structure 20, thereby heating the preset area 2002 of the light-transmitting component 2001, adjusting the temperature of the preset area 2002, and preventing the preset area 2002 fogging or freezing, thereby ensuring the normal use of the imaging module 10, energy saving and low cost.
  • the predetermined area 2002 of the light-transmitting component 2001 can receive substantially uniform heat radiation power per unit area, so that the adverse effects on the light-transmitting component 2001 or other components of the platform main body 200 are small. , and can make the effect of defogging or deicing better.
  • the surrounding structure 20 includes a bottom wall 21 and other walls 22 connected to the bottom wall 21 .
  • the bottom wall 21 and the other walls 22 enclose the predetermined area 2002 of the light-transmitting component 2001 .
  • the heat radiation structure 30 is provided on the bottom wall 21 and the other walls 22 .
  • the heat radiation structure 30 is arranged not only on the bottom wall 21 but also on other walls 22 connected to the bottom wall 21 .
  • the heat radiation structures 30 located on the bottom wall 21 and the heat radiation structures 30 located on the other walls 22 can form heat radiation sources on different surfaces of the surrounding structure 20 .
  • the predetermined area 2002 can receive substantially uniform heat radiation power per unit area as far as possible. Even if there are two points on the heat radiation structure 30 whose shortest distances from the light-transmitting component 2001 are different from each other, or even if the distances between the bottom wall 21 and the light-transmitting component 2001 are not equidistant, due to the heat on the bottom wall 21
  • the radiation structure 30 and the heat radiation structures 30 located on other walls 22 can generate heat at the same time, and the heat radiation power per unit area received by each area of the preset area 2002 can also be approximately or substantially equal, so that the preset area 2002 can be uniformly heated.
  • the imaging module 10 may include a camera device capable of sensing visible light and/or infrared light.
  • the specific geometric structure or geometric arrangement relationship of the heat radiation structure 30 relative to the light-transmitting component 2001 or the preset area 2002 can be designed according to actual requirements. Please refer to FIG. 2 and FIG. 3 .
  • there are at least two points on the bottom wall 21 with different distances from the light-transmitting component 2001 or the distance between the bottom wall 21 and the light-transmitting component 2001 is unequal. distance.
  • the distance between the light-transmitting component 2001 and the bottom wall 21 extends from the first end 201 of the enclosing structure 20 toward the second end 202 in a gradually increasing manner.
  • two points on the heat radiation structure 30 have different shortest distances from the preset area 2002 from each other.
  • the other walls 22 of the enclosing structure 20 cooperate with the bottom wall 21 to form an enclosing space 203 (refer to FIG. 6 ) for limiting the field of view of the imaging module 10 .
  • the other walls 22 include side walls 221 connected to the bottom wall 21 .
  • a part of the heat radiation structure 30 is disposed on the bottom wall 21 of the surrounding structure 20 .
  • Another part of the heat radiation structure 30 is disposed on the side wall 221 of the surrounding structure 20 .
  • the heat radiation structures 30 on the bottom wall 21 and the heat radiation structures 30 on the side walls 221 can form heat radiation sources from different positions or directions surrounding the structure 20 .
  • the shape of the bottom wall 21 can be designed according to actual requirements.
  • the shape of the bottom wall 21 is substantially trapezoidal, that is, the bottom wall 21 is trapezoidal or approximately trapezoidal.
  • a portion of the bottom wall 21 close to the first end 201 of the surrounding structure 20 extends in a predetermined direction larger than a portion of the bottom wall 21 that is far from the first end 201 of the surrounding structure 20 in a predetermined direction.
  • the extension along the predetermined direction refers to the extension of the component in the predetermined direction.
  • the preset direction is the X direction in FIG. 3 .
  • the predetermined direction is parallel to or coincident with the arrangement direction between the first side wall 2211 and the second side wall 2212 of the surrounding structure 20 .
  • the other walls 22 of the surrounding structure 20 include a first side wall 2211 and a second side wall 2212 .
  • the first side wall 2211 and the second side wall 2212 are both connected to the bottom wall 21 .
  • the bottom wall and the side wall may be integrally formed and connected.
  • the bottom wall and the side wall can also be arranged separately, and the two are fixedly connected by means of gluing or the like.
  • the included angle between the bottom wall 21 and the side wall 221 may be an acute angle, a right angle or an obtuse angle.
  • the included angle between the bottom wall 21 and the first side wall 2211 may be an acute angle, a right angle or an obtuse angle.
  • the included angle between the bottom wall 21 and the second side wall 2212 may be an acute angle, a right angle or an obtuse angle.
  • the first side wall 2211 and the second side wall 2212 are disposed opposite to each other.
  • the included angle between the first side wall 2211 and the second side wall 2212 may be 0 degree, an acute angle, a right angle or an obtuse angle.
  • the first side wall 2211 is parallel to the second side wall 2212 .
  • the included angle between the first side wall 2211 and the second side wall 2212 is an acute angle to limit the visible range of the imaging module 10 .
  • the minimum distance between the first side wall 2211 close to the first end 201 of the surrounding structure 20 and the second side wall 2212 adjacent to the first end 201 of the surrounding structure 20 is greater than the first side wall 2211 is the minimum distance between the first end 201 of the enclosing structure 20 and the first end 201 of the second sidewall 2212 that is far away from the enclosing structure 20 , thereby limiting the visible range of the imaging module 10 .
  • the first sidewall 2211 and the second sidewall 2212 extend from the first end 201 of the surrounding structure 20 in such a manner that the distance between the first sidewall 2211 and the second sidewall 2212 gradually decreases It extends toward the second end 202 of the surrounding structure 20 , thereby effectively limiting the visible range of the imaging module 10 .
  • the other walls 22 further include a top wall 222 connected to the side wall 221 and opposite to the bottom wall 21 .
  • the heat radiation structure 30 is also disposed on the top wall 222 .
  • the heat radiation structures 30 on the bottom wall 21 , the heat radiation structures 30 on the side walls 221 and the heat radiation structures 30 on the top wall 222 can generate heat radiation from different positions or directions.
  • the heat radiation source formed by the heat radiation structure 30 on the top wall 222 on the surface of the top wall 222 can be emitted toward different areas of the preset area 2002, thereby heating different areas of the preset area 2002 to achieve omnidirectional and multi-angle heating , so that the preset area 2002 is heated more evenly, and the application is more flexible.
  • the imaging device 100 of the above-mentioned embodiment even if there are two points on the heat radiation structure 30 with different shortest distances from the light-transmitting component 2001 , or even if the distance between the bottom wall 21 and the light-transmitting component 2001 is different from each other Not equidistant, because the heat radiation structure 30 located on the bottom wall 21, the heat radiation structure 30 located on the side wall 221, and the heat radiation structure 30 located on the top wall 222 can generate heat at the same time, it is possible to achieve full coverage of the preset area 2002.
  • the heat radiation power per unit area received by each area of the preset area 2002 can also be approximately equal or substantially equal, so that the preset area 2002 can be heated uniformly.
  • the heat radiation structure 30 may also be disposed on only one of the bottom wall 21 and the other walls 22 .
  • the heat radiation structure 30 includes a heat radiation film 31 (refer to FIG. 7 ), and the heat radiation film 31 may be provided only on the bottom wall 21 so that the heat radiation structure 30 is arranged on the surrounding structure 20 .
  • the heat radiation film 31 can also be arranged on both the bottom wall 21 and other walls 22, which is not limited here.
  • the plane where the top wall 221 is located may be parallel to or intersect with the plane where the bottom wall 21 is located, which is not limited herein.
  • the top wall 221 and/or the bottom wall 21 may be flat or curved.
  • first side wall 2211 , the bottom wall 21 , the second side wall 2212 and the top wall 222 of the enclosing structure 20 are connected end to end to form an enclosing space 203 (please refer to FIG. 6 ).
  • the imaging module 10 includes a first imaging unit 11 .
  • the enclosure structure 20 includes a first enclosure 23 .
  • the first enclosure 23 is disposed between the first imaging unit 11 and the light-transmitting component 2001 for reducing stray light inside the movable platform 1000 from entering the first imaging unit 11 .
  • the imaging module 10 is a binocular imaging module 10 , such as including a binocular camera.
  • the imaging module 10 is a monocular imaging module 10, such as including a monocular camera.
  • the imaging module 10 further includes a second imaging unit 12 .
  • the enclosure structure 20 includes a second enclosure 24 .
  • the second enclosure 24 is connected to the first enclosure 23 .
  • the second enclosure 24 is disposed between the second imaging unit 12 and the light-transmitting component 2001 , and is used to reduce stray light inside the movable platform 1000 from entering the second imaging unit 12 .
  • the first enclosure 23 and the second enclosure 24 are arranged side by side.
  • the first enclosing member 23 and the second enclosing member 24 are arranged along the arrangement direction of the first imaging unit 11 and the second imaging unit 12.
  • the first enclosing member 23 and the second enclosing member 24 are symmetrically arranged, and the structure is simple and the processing is convenient.
  • At least one heat radiation structure 30 is disposed on each enclosure. Specifically, at least one heat radiation structure 30 is respectively provided on the first enclosure 23 and the second enclosure 24 .
  • a part of the same heat radiation structure 30 is provided on the first enclosure 23 , and another part of the same heat radiation structure 30 is provided on the second enclosure 24 .
  • the number of enclosures can be designed according to actual requirements, such as one, two, three or more.
  • the number of enclosures is adapted to the number of imaging units.
  • the heat radiation structure 30 and/or the surrounding structure 20 are symmetrically arranged about a predetermined plane, and the predetermined plane is perpendicular to the bottom wall 21 and intersects with the first end 201 of the surrounding structure 20 and the second end 202.
  • the preset plane is the ⁇ plane in FIG. 3 .
  • the first enclosure 23 and the second enclosure 24 are symmetrically arranged with respect to the above-mentioned preset plane.
  • the heat radiation structures 30 on the first enclosure 23 and the heat radiation structures 30 on the second enclosure 24 are symmetrically arranged with respect to the above-mentioned predetermined plane.
  • the unit heat radiation power of different unit sections of the heat radiation structure 30 is basically the same. In this way, the design and manufacture of the heat radiation structure 30 are simple, the reliability and practicability of the heat radiation structure 30 are high, and the reduction of cost.
  • unit segment may be a unit area segment or a unit length segment, which is not limited herein.
  • the heat radiation power can be determined according to the heat radiation emission position and/or The emission direction is controlled and can be adapted to the thermal requirements of the preset area 2002 .
  • the conductor densities and conductor thicknesses of different unit sections of the heat radiation structure 30 are substantially the same, the requirements for the arrangement and conductor thickness of the heat radiation structure 30 are low, and the design and manufacture are simple.
  • the unit heat radiation power of different unit sections of the heat radiation structure 30 is substantially the same, which is realized based on the substantially same conductor density and conductor thickness of the different unit sections of the heat radiation structure 30 .
  • the unit heat radiation power of different unit sections of the heat radiation structure 30 is different. That is, the unit heat radiation power of the heat radiation structure 30 has regional differences.
  • the heat radiation power can be controlled according to the emission position and/or emission direction, and can be adapted to the heat demand of the preset area 2002 .
  • the heat radiation structure 30 may include a plurality of unit sections.
  • the unit heat radiation power of at least two of the plurality of unit sections is different.
  • conductor densities and/or conductor thicknesses are different for different unit sections of the heat radiation structure 30 .
  • the unit heat radiation power of the heat radiation structure 30 has regional differences, which is realized based on the difference in conductor density and/or conductor thickness of different unit sections of the heat radiation structure 30 .
  • the density of conductors of the heat radiation structure 30 is different in two different unit sections, so that the heat generated is proportional to the density of the conductors under the condition of the same power supply.
  • the thickness of the conductors at different locations may also be different.
  • the heat radiation structure 30 is at least partially embedded in the bottom wall 21 and/or other walls 22 of the surrounding structure 20 . In this way, the overall space occupied by the heat radiation structure 30 and the surrounding structure 20 can be reduced, which is beneficial to miniaturized design.
  • the heat radiation structure 30 is at least partially embedded in the bottom wall 21 and/or other walls 22 of the surrounding structure 20, including: a), the heat radiation structure 30 is at least partially embedded in the bottom wall 21 of the surrounding structure 20 b), the heat radiation structure 30 is at least partially embedded in the other walls 22 of the surrounding structure 20; c) a part of the heat radiation structure 30 is embedded in the bottom wall 21 of the surrounding structure 20, the heat radiation structure 30 The other part is embedded in the other walls 22 of the surrounding structure 20 .
  • the heating element includes a resistance wire.
  • the heat generating units are embedded in the bottom wall and/or other walls in at least one of a point shape, a line shape, a plane shape, and the like.
  • the heating unit is embedded on the bottom wall in at least one of a point shape, a line shape, a plane shape, and the like.
  • the heating unit is embedded on the side wall in at least one of a point shape, a line shape, a plane shape, and the like.
  • the heating unit is embedded on the bottom wall and the side wall in at least one of a point shape, a line shape, a plane shape, and the like.
  • the heat radiation structure 30 includes at least one heat generating unit. All or part of each heating unit is embedded in the bottom wall 21 and/or other walls 22 to minimize the overall space occupied by the heat radiation structure 30 and the surrounding structure 20, which is beneficial to miniaturized design.
  • each heat generating unit is embedded in the bottom wall 21 , and another part of each heat generating unit is embedded in other walls 22 .
  • each heat generating unit is embedded in the bottom wall 21, and another part of each heat generating unit is embedded in the first side wall 2211.
  • each heat generating unit is embedded in the bottom wall 21
  • another part of each heat generating unit is embedded in the second side wall 2212 .
  • each heat generating unit is embedded in the bottom wall 21
  • another part of each heat generating unit is embedded in the first side wall 2211
  • another part of each heat generating unit is embedded in the second side inside wall 2212.
  • the heat radiation structure 30 includes a plurality of heat generating units. At least one heating unit among the plurality of heating units is embedded in the bottom wall 21 , and at least another heating unit among the plurality of heating units is embedded in the other walls 22 .
  • the heat radiation structure 30 located on the bottom wall 21 is at least partially embedded on the bottom wall 21 of the surrounding structure 20 .
  • the heat radiation structure 30 located on the side wall 221 is at least partially embedded on the side wall 221 of the surrounding structure 20 .
  • the heat radiation structure 30 and the surrounding structure 20 form an integral structure, so as to reduce the processing difficulty of the heat radiation structure 30, reduce the number of parts, reduce the assembly process, and improve the processing efficiency.
  • the heat radiation structure 30 is formed by at least one of laser engraving, electroless plating, electroplating, sputtering, physical vapor deposition, in-mold decoration (IMD), insert molding, etc. It is fixed on the surrounding structure 20 .
  • IMD in-mold decoration
  • the heat radiation structure 30 and at least a part of the surrounding structure 20 can be manufactured into one part, the number of parts of the imaging device 100 is reduced, the assembly process is reduced, the failure risk of the heat radiation structure 30 is greatly reduced, and the heat radiation structure can be avoided. 30 The problem of falling off after being heated, and the manufacturing and processing costs are low.
  • the above-mentioned molding method has low requirements on the surface to be connected in the surrounding structure 20 for connecting with the heat radiation structure, and has wide applicability.
  • the connected surface of the surrounding structure 20 may be at least one of a plane, a curved surface, a circular arc surface, a cylindrical surface, an uneven surface, a steeply changing surface, other regular surfaces or irregular surfaces, and the like.
  • the forming methods of the heat radiation structure 30 and the surrounding structure 20 include Laser Direct Structuring (LDS), Laser Applications (LAP), and Laser Restructuring Print (LRP) , Electroless plating after laser engraving and electroplating and other technologies.
  • LDS Laser Direct Structuring
  • LAP Laser Applications
  • LRP Laser Restructuring Print
  • a computer is used to control the movement of the laser light on the surrounding structure 20 according to the trajectory of the conductive pattern, and the laser light is projected on the surrounding structure 20 to activate the circuit pattern, and the circuit pattern changes after electroplating or electroless plating. form an electrical conductor, and the electrical conductor constitutes the heat radiation structure 30 .
  • the heating effect is achieved by energizing the electrical conductor to generate heat.
  • a computer is used on the surrounding structure 20 to control the movement of the laser according to the trajectory of the conductive pattern, and the laser is projected on the surrounding structure 20 to activate the circuit pattern, which becomes electroplating or electroless plating.
  • the electrical conductor which constitutes the heat radiation structure 30 . By energizing the electrical conductor to generate heat, the effect of heating is achieved.
  • the conductive silver paste is applied to the surface of the surrounding structure 20 at high speed and accurately to form a circuit pattern, and then three-dimensionally controlled laser trimming is used to form a high-precision circuit structure, the circuit structure is The heat radiation structure 30 is formed. By energizing the circuit structure to generate heat, the effect of heating is achieved.
  • the enclosing structure 20 is first electroless plated, then engraved with a laser to engrave an electroplating area and a non-plating area, and then selectively electroplating the area that needs to be electrically conductive.
  • the conductive regions form the heat radiation structure 30 .
  • the heating effect is achieved by energizing the conductive area to generate heat.
  • the film is first printed, the conductive pattern is printed on the film, and then the film with the conductive pattern is formed on the surrounding structure 20 by injection molding in the mold.
  • the conductive pattern and the thin film form the heat radiation structure 30 .
  • the heating effect is achieved by energizing the conductive pattern to generate heat.
  • the heat radiation structure 30 and the surrounding structure 20 are formed into an integral structure by insert molding.
  • the conductive material part (the molding process of which may be but not limited to die casting, stamping, machining, extrusion molding, etc.) is used as an insert, and before the surrounding structure 20 is injection-molded, as an insert. Placed in the mold for injection molding, so that the two are connected together to form a one-piece structure.
  • the conductive material parts constitute the heat radiation structure 30 .
  • the conductive material parts are energized to generate heat to achieve the effect of heating.
  • the shape of the heat radiation structure 30 can be designed according to actual requirements, for example, including a strip shape, an array shape, a plane shape, and the like.
  • the heat radiation structure 30 is electrically connected to the imaging module 10 through the conductive connector 40 .
  • the heat radiation structure 30 may also be connected to other electrical components of the movable platform 1000 through the conductive connection body 40 , such as connecting to a controller or a power source.
  • the conductive connecting body 40 includes at least one of a flexible flat cable, a flexible circuit board, a flexible flat cable, and the like.
  • the conductive connecting body 40 is at least partially disposed within the surrounding structure 20 .
  • the electrical connection interface in the heat radiation structure 30 is provided in the surrounding structure 20, the electrical connection interface can be electrically connected with the conductive connection body 40, and is electrically connected to the imaging module 10 or the movable platform through the conductive connection body 40. 1000 of other electrical components.
  • the heat radiation structure 30 includes a heat radiation film 31 .
  • the heat radiation film 31 and the surrounding structure 20 are processed independently, and the two are assembled and fixed after the processing is completed.
  • the heat radiation structure 30 and the surrounding structure 20 are connected in at least one of the following manners: adhesive connection, lamination, sputtering, and the like.
  • the heat radiation film 31 is glued to the surrounding structure 20 .
  • the surrounding structure 20 and the heat radiation structure 30 may be in point contact, line contact or surface contact, which is not limited herein.
  • the heat radiation structure 30 includes a first heat radiation part 321 and a second heat radiation part 322 .
  • the first heat radiation member 321 is disposed on the bottom wall 21 .
  • the second heat radiating member 322 is disposed on the other walls 22 , and the second heat radiating member 322 and the first heat radiating member 321 are disposed independently at intervals.
  • the first heat radiation member 321 and the second heat radiation member 322 are spaced apart from each other and not connected to each other.
  • different currents or the same current may be applied to the first heat radiation member 321 and the second heat radiation member 322 according to the heating requirements of the scenario.
  • the second heat radiation member 322 may be disposed on at least one of the first side wall 2211 , the second side wall 2212 and the top wall 222 of the surrounding structure 20 .
  • At least one of the first heat radiation part 321 and the second heat radiation part 322 includes the heat radiation film 31 .
  • At least one of the first heat radiating member 321 and the second heat radiating member 322 is formed by laser engraving, electroless plating, electroplating, sputtering, physical vapor deposition, in-mold decoration molding, insert molding, and the like. At least one of them is fixed on the surrounding structure 20 .
  • At least one of the first heat radiation part 321 and the second heat radiation part 322 includes a resistance wire.
  • the first heat radiation part 321 may be connected with the second heat radiation part 322 .
  • the first heat radiation member 321 and the second heat radiation member 322 are integrally formed.
  • the heat radiation structure 30 includes one or more resistance wires.
  • the heat radiation structure 30 includes two resistance wires, and the two resistance wires are respectively disposed on the second side wall 2212 and the bottom wall 21 .
  • the heat radiation structure 30 includes a resistance wire, a part of which is disposed on the bottom wall 21 and the other part is disposed on the second side wall 2212 .
  • the heat radiation structure 30 includes a plurality of resistance wires.
  • a plurality of resistance wires are arranged along the first end 201 of the enclosing structure 20 to the second end 202 in sub-areas, and can be supplied with currents of different magnitudes, so that the predetermined area 2002 of the light-transmitting component 2001 can receive substantially uniform heat per unit area radiated power.
  • currents of different sizes can be passed through a plurality of resistance wires according to actual needs, so as to achieve uniform heating of the preset area 2002 , less adverse effects on the light-transmitting component 2001 or other components of the platform main body 200 , and can make defogging or removing Ice works better.
  • the distance between the part of the bottom wall 21 close to the first end 201 and the transparent component 2001 is smaller than the distance between the part of the bottom wall 21 far from the first end 201 and the transparent component 2001 .
  • the current flowing through the resistance wire close to the first end 201 of the surrounding structure 20 is smaller than the current flowing through the resistance wire farther from the first end 201 of the surrounding structure 20 .
  • the heat radiation structure 30 includes a resistance wire 30a and a resistance wire 30b, the resistance wire 30a is provided on the bottom wall 21 and/or the side wall 221, and the resistance wire 30b is provided on the bottom wall 21 and/or the side wall on wall 221.
  • the resistance wire 30a and the resistance wire 30b are arranged in sub-areas along the first end 201 of the surrounding structure 20 to the second end 202, that is, they are arranged at intervals along the Y direction in FIG. 10 . That is, the resistance wire 30 a is disposed close to the first end 201 of the surrounding structure 20 , and the resistance wire 30 b is disposed away from the first end 201 of the surrounding structure 20 .
  • the resistance wire 30a can be connected to the light-transmitting component 2001.
  • the first current is to pass a second current to the resistance wire 30b, and the first current is smaller than the second current, so that the unit heat radiation power generated by the resistance wire 30a is smaller than the unit heat radiation power generated by the resistance wire 30b, thereby making the light-transmitting component
  • the preset area 2002 of 2001 can receive substantially uniform heat radiation power per unit area.
  • the heat radiation structure 30 includes a plurality of resistance wires.
  • the imaging device 100 is configured to determine whether the resistance wire is energized to the resistance wire according to the distance between the resistance wire and the light-transmitting component 2001 .
  • the heat radiation structure 30 includes a resistance wire 30a and a resistance wire 30b.
  • the resistance wire 30b is energized, and the resistance wire 30a is not energized.
  • the imaging device 100 is configured to determine to energize the resistance wire if the distance between the resistance wire and the light-transmitting component 2001 is greater than or equal to a preset distance. If the distance between the resistance wire and the light-transmitting component 2001 is smaller than the preset distance, it is determined that the resistance wire is not energized.
  • the preset distance can be designed according to actual needs, which is not limited here.
  • the distance between the resistance wire and the light-transmitting component 2001 refers to the minimum distance between the middle of the resistance wire and the light-transmitting component 2001 .
  • the imaging device 100 is configured to acquire the temperature at the preset position, and determine whether to energize the heat radiation structure 30 according to the temperature at the preset position.
  • the temperature at the preset position may be acquired through the temperature sensor by arranging a temperature sensor at or near the preset position.
  • the preset position is located on the inner side of the light-transmitting component 2001 or in front of the inner side.
  • the preset position may be located on the inner side of the preset area 2002 or in front of the inner side.
  • the preset positions are located within the enclosure structure 20 .
  • the preset position is located in the enclosed space 203 formed by the cooperation of the other walls 22 and the bottom wall 21 .
  • the preset position is located on the inner wall surface forming the enclosed space 203 .
  • the imaging device 100 is configured to determine to energize the heat radiation structure 30 if the temperature at the preset position is lower than the preset threshold temperature. If the temperature at the preset position is greater than or equal to the preset threshold temperature, it is determined that the heat radiation structure 30 is not energized.
  • the preset threshold temperature can be set according to actual needs, which is not limited here.
  • the imaging device 100 is configured to determine whether to energize the heat radiation structure 30 according to the environmental information obtained by the imaging module 10 . For example, if the environmental information acquired by the imaging module 10 is clear, it means that the ambient light can normally pass through the light-transmitting component 2001 or the preset area 2002, and the imaging module 10 can acquire the environmental information normally, and there is no need to energize the heat radiation structure 30 to perform De-fog or de-icing. If the environmental information obtained by the imaging module 10 is not clear, it means that the light-transmitting component 2001 or the preset area 2002 is fogged or frozen, and the ambient light cannot pass through the light-transmitting component 2001 or the preset area 2002 normally, so the image is formed. The module 10 cannot obtain the environmental information normally. At this time, it is necessary to energize the heat radiation structure 30 for defogging or deicing.
  • the imaging device 100 is configured to determine that the heat radiation structure 30 is powered on if the clarity of the environmental information is smaller than a preset clarity threshold. If the clarity of the environmental information is greater than or equal to the preset clarity threshold, it is determined that the heat radiation structure 30 is not powered on.
  • the preset clear threshold can be designed according to actual needs, which is not limited here.
  • the heat radiation structure 30 is a one-piece structure.
  • the heat radiation structure 30 is a heat radiation film 31 or a resistance wire.
  • a heat radiation film 31 or a resistance wire can be bent and extended from the bottom wall 21 to the side wall 221 .
  • the heat radiation structure 30 includes an extension portion 33 , a first electrical connection portion 34 and a second electrical connection portion 35 .
  • the extension 33 extends on the bottom wall 21 and the other walls 22 .
  • the first electrical connection portion 34 and the second electrical connection portion 35 are respectively connected to both ends of the extension portion 33 .
  • the first electrical connection portion 34 and the second electrical connection portion 35 are used for electrical connection with the imaging module 10 or other electrical components.
  • the first electrical connection part 34 and the second electrical connection part 35 can be designed in any suitable position according to actual requirements.
  • the first electrical connection portion 34 and the second electrical connection portion 35 are both disposed on the bottom wall 21 to facilitate wiring.
  • the extension portion 33 is made of conductive material.
  • the extension 33 includes a resistance wire.
  • both the first electrical connection part 34 and the second electrical connection part 35 are located at the first end 201 of the surrounding structure 20 , so that the first electrical connection part 34 and the second electrical connection part 35 are easily connected to the same
  • the conductive connecting body 40 is electrically connected, and the wiring is convenient.
  • the other walls 22 include opposite first side walls 2211 and second side walls 2212 .
  • the extending portion 33 includes a first extending sub-portion 331 and a second extending sub-portion 332 .
  • the first extension sub-portion 331 is disposed on the bottom wall 21 and the first side wall 2211 .
  • the first extension sub-portion 331 is connected to the first electrical connection portion 34 .
  • the second extension sub-portion 332 is disposed on the bottom wall 21 and the second side wall 2212 , and the second extension sub-portion 332 is connected to the second electrical connection portion 35 .
  • the extension connecting portion 333 is disposed on the bottom wall 21 . Two ends of the extension connecting portion 333 are respectively connected to the first extension sub-portion 331 and the second extension sub-portion 332 .
  • the first extension sub-section 331 includes a plurality of first extension sections 3311 and a plurality of second extension sections 3312 .
  • a plurality of first extension sections 3311 are disposed on the bottom wall 21 at intervals.
  • a plurality of second extending sections 3312 are disposed on the first side wall 2211 at intervals. Except for the first extension section 3311 located at the first end 201 of the surrounding structure 20 , two ends of the other first extension sections 3311 are respectively connected to two adjacent second extension sections 3312 . In this way, on the premise that the size of the surrounding structure 20 is constant, the extension length of the first extension sub-portion 331 can be increased as much as possible, thereby improving the heating efficiency and demisting efficiency of the heat radiation structure 30 .
  • the first extension section 3311 located at the first end 201 of the surrounding structure 20 is connected to the first electrical connection portion 34 and a second extension section 3312 .
  • a plurality of first extension segments 3311 are arranged on the bottom wall 21 at intervals along the first end 201 to the second end 202 of the surrounding structure 20 .
  • a plurality of second extension segments 3312 are arranged on the first sidewall 2211 at intervals along the first end 201 of the surrounding structure 20 toward the second end 202 .
  • the extension length of the first extension section 3311 near the first end 201 of the surrounding structure 20 is greater than the extension length of the first extension section 3311 away from the first end 201 of the surrounding structure 20 .
  • the plurality of first extension sections 3311 are spaced from the first end 201 to the second end 202 of the surrounding structure 20 in a manner of gradually decreasing extension lengths.
  • the extension length of the second extension section 3312 close to the first end 201 of the surrounding structure 20 is smaller than that of the second extension section 3312 away from the first end 201 of the surrounding structure 20 Extended length.
  • the plurality of second extension segments 3312 are spaced from the first end 201 to the second end 202 of the surrounding structure 20 in a manner of gradually increasing extension lengths.
  • first extension sub-portion 331 and the second extension sub-portion 332 may be the same or different. Referring to FIG. 9 , for example, the first extension sub-portion 331 and the second extension sub-portion 332 are symmetrically arranged.
  • the imaging device 100 can be installed in any suitable position of the platform main body 200 according to actual requirements, such as installed inside the light-transmitting component 2001 , or installed on other components in the movable platform 1000 that are close to the light-transmitting component 2001 .
  • the other components may include at least one of an interior headliner, an instrument panel, an A-pillar, a B-pillar, a C-pillar, a D-pillar, and the like.
  • the surrounding structure 20 and/or the imaging module 10 may be fixed on the light-transmitting component 2001 and/or other components of the platform main body 200 by means of assembly such as gluing.
  • the imaging device 100 further includes a fixing member 50 .
  • the fixing member 50 is connected to the light-transmitting component 2001 and the surrounding structure 20 .
  • the fixing member 50 can provide fixing, supporting or positioning functions for the surrounding structure 20 and/or the imaging module 10 .
  • the predetermined area 2002 can be heated through the direct heat radiation of the heat radiation structure 30 and the heat conduction between the heat radiation structure 30 and the air and the fixing member 50 .
  • the heat radiation structure 30 is also used to heat the fixing member 50 .
  • the heat radiation structure 30 or another heater may heat the fixture 50 . After the portion of the fixing member 50 for connecting with the light-transmitting component 2001 is heated, the predetermined area 2002 is heated by heat conduction inside the light-transmitting component 2001 .
  • the structure and shape of the fixing member 50 can be designed according to actual requirements, which are not limited herein.
  • the fixing member 50 includes a first surface 51 and a second surface opposite to each other.
  • the first surface 51 is fixedly connected with the light-transmitting component 2001
  • the second surface is fixedly connected with the surrounding structure 20 , thereby realizing the fixed connection between the imaging module 10 and the light-transmitting component 2001 , with high fixing reliability and low cost.
  • the fixing member 50 is also formed with a visible window (not shown) corresponding to the preset area 2002.
  • the ambient light can reach the imaging module 10 through the preset area 2002 of the light-transmitting component 2001 and the visible window of the fixing member 50 , so that the imaging module 10 can obtain the environmental information of the environment where the movable platform 1000 is located.
  • the visible window can be an opening structure, or a structure made of transparent or translucent material, so as to ensure that the imaging module 10 can normally obtain environmental information.
  • the first surface 51 includes a first area 511 and a second area 512 .
  • the first area 511 is fixedly connected to the light-transmitting component 2001
  • the second area 512 is used to be fixedly connected to other components of the platform main body 200 , so as to ensure the connection reliability of the imaging device 100 .
  • the second area 512 is used for fixed connection with at least one of the interior ceiling, instrument panel, A-pillar, B-pillar, C-pillar, D-pillar and the like of the platform main body 200 .
  • the first region 511 may be partially or entirely bonded to the light-transmitting component 2001 .
  • the second area 512 may also be omitted, and the first area 511 is fixedly connected to the light-transmitting component 2001 , thereby realizing the fixed connection between the imaging device 100 and the light-transmitting component 2001 .
  • the first area 511 may also be omitted, and the second area 512 is fixedly connected to at least one of the interior ceiling, instrument panel, A-pillar, B-pillar, C-pillar, D-pillar, etc. of the platform main body 200 . on the person.
  • the imaging module 10 includes a carrier frame 13 and an imaging assembly 14 .
  • the carrier 13 is connected to the surrounding structure 20 and/or the fixing member 50 .
  • the imaging assembly 14 is carried on the carrier frame 13 .
  • the enclosure structure 20 is used to reduce stray light inside the movable platform 1000 from entering the imaging assembly 14 .
  • the surrounding structure 20 is provided between the imaging component 14 and the light-transmitting component 2001 ; and/or, is provided between the carrier frame 13 and the light-transmitting component 2001 .
  • the carrier 13 and the surrounding structure 20 may be an integral structure, or they may be two independent parts.
  • the imaging assembly 14 may include one, two, three, four, five or more imaging units, such as the first imaging unit 11 and the second imaging unit 12 described above.
  • the imaging assembly 14 when the imaging assembly 14 includes a plurality of imaging units, the plurality of imaging units may be carried on the same carrier 13 .
  • a plurality of imaging units may also be respectively carried on a plurality of carriers 13 that are different from each other.
  • At least two of the plurality of imaging units are carried on the same carrier 13 , and at least another one of the plurality of imaging units is carried on another independent carrier 13 .
  • the imaging unit includes a camera and the like.
  • the orientation of the imaging assembly 14 may be toward the predetermined area 2002 .
  • the orientation of the imaging assembly 14 may also be oriented in any other suitable direction according to actual functional requirements.
  • the imaging assembly 14 is further integrated with a night vision function, and the predetermined area 2002 is heated by the thermal radiation structure 30, thereby defogging or deicing the predetermined area 2002, which can reduce the emitted enhanced night vision light
  • the loss of (laser, infrared light, etc.) can also reduce the loss of incident night vision light (laser, infrared light, etc.), so that the imaging component 14 can obtain clearer, stable, and brighter images or environmental information.
  • an embodiment of the present application further provides an imaging device 100 for a movable platform 1000 .
  • the movable platform 1000 is provided with a light-transmitting component 2001 .
  • the imaging device 100 is disposed inside the movable platform 1000 .
  • the imaging device 100 includes an imaging module 10 , an enclosing structure 20 and a heat radiation structure 30 .
  • the imaging module 10 can face the predetermined area 2002 of the light-transmitting component 2001 .
  • the imaging module 10 is used for sensing the ambient light passing through the light-transmitting component 2001 to obtain environmental information of the environment where the movable platform 1000 is located.
  • the surrounding structure 20 is disposed between the imaging module 10 and the light-transmitting component 2001 .
  • the enclosing structure 20 encloses the predetermined area 2002 of the light-transmitting component 2001 .
  • the surrounding structure 20 is used to reduce stray light inside the movable platform 1000 from entering the imaging module 10 .
  • the heat radiation structure 30 is disposed on the surrounding structure 20 for forming a heat radiation source on the surface of the surrounding structure 20 to heat the predetermined area 2002 .
  • the unit heat radiation power of different unit sections of the heat radiation structure 30 is basically the same.
  • the heat radiation structure 30 can heat the preset area 2002 of the light-transmitting component 2001, so as to adjust the temperature of the preset area 2002 of the light-transmitting component 2001, and prevent the preset area 2002 from fogging or freezing
  • the use of the imaging module 10 is affected, energy saving and low cost.
  • the unit heat radiation power of different unit sections of the heat radiation structure 30 is basically the same, the design and manufacture of the heat radiation structure 30 are simple, the heat radiation structure 30 has high reliability and practicability, and the cost is further reduced.
  • unit segment may be a unit area segment or a unit length segment, which is not limited herein.
  • the imaging apparatus 100 includes the imaging apparatus 100 of any of the above-described embodiments.
  • the conductor density and conductor thickness of different unit sections of the heat radiation structure 30 are substantially the same.
  • the predetermined area 2002 of the light-transmitting component 2001 can receive substantially uniform heat radiation power per unit area.
  • an embodiment of the present application further provides an imaging device 100 for a movable platform 1000 .
  • the movable platform 1000 is provided with a light-transmitting component 2001 .
  • the imaging device 100 is disposed inside the movable platform 1000 .
  • the imaging device 100 includes an imaging module 10 , an enclosing structure 20 and a heat radiation structure 30 .
  • the imaging module 10 can face the predetermined area 2002 of the light-transmitting component 2001 .
  • the imaging module 10 is used for sensing the ambient light passing through the light-transmitting component 2001 to obtain environmental information of the environment where the movable platform 1000 is located.
  • the surrounding structure 20 is disposed between the imaging module 10 and the light-transmitting component 2001 .
  • the enclosing structure 20 encloses the predetermined area 2002 of the light-transmitting component 2001 .
  • the surrounding structure 20 is used to reduce stray light inside the movable platform 1000 from entering the imaging module 10 .
  • the heat radiation structure 30 is disposed on the surrounding structure 20 for forming a heat radiation source on the surface of the surrounding structure 20 to heat the predetermined area 2002 .
  • the heat radiation structure 30 and the surrounding structure 20 form an integral structure.
  • the heat radiation structure 30 can heat the preset area 2002 of the light-transmitting component 2001 , thereby adjusting the temperature of the preset area 2002 of the light-transmitting component 2001 , and preventing the preset area 2002 from fogging or freezing. Ice will affect the use of the imaging module 10, energy saving and low cost.
  • the heat radiation structure 30 and the surrounding structure 20 form an integral structure, the processing difficulty of the heat radiation structure 30 is reduced, the number of components and the assembly process are reduced, and the processing efficiency is improved.
  • the imaging apparatus 100 includes the imaging apparatus 100 of any of the above-described embodiments.
  • the heat radiation structure 30 is fixed on the surrounding structure 20 by at least one of laser engraving, electroless plating, electroplating, sputtering, physical vapor deposition, in-mold decoration molding, and insert molding.
  • the heat radiation structure 30 is at least partially embedded within the bottom wall 21 and/or other walls 22 of the surrounding structure 20 .
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种成像装置(100),设于可移动平台(1000)内,包括成像模组(10)、包围结构(20)和热辐射结构(30);成像模组(10)能够朝向可移动平台(1000)的透光组件(2001)的预设区域(2002),用于感测穿过透光组件(2001)的环境光线,以获取可移动平台(1000)所处环境的环境信息;包围结构(20)设于成像模组(10)与透光组件(2001)之间,包括底壁(21)以及与底壁(21)连接的其他壁(22),底壁(21)与其他壁(22)围合预设区域(2002),用于减少可移动平台(1000)内部的杂散光射入成像模组(10);热辐射结构(30)设于底壁(21)和其他壁(22)上,用于在包围结构(20)的表面形成热辐射源,以对预设区域(2002)进行加热。还涉及可移动平台(1000)。

Description

成像装置及可移动平台 技术领域
本申请涉及可移动平台技术领域,尤其涉及一种成像装置及可移动平台。
背景技术
随着社会发展,交通越来越便利,交通方式也越发多样和普及,交通工具的发展取得了实质性的进步。与此同时,对交通工具的性能和体验要求也明显提高,图像获取设备在交通工具上也随之逐渐普及,并且功能和运用场景也越来越多。然而,现有的交通工具的玻璃起雾、结冰等问题时常出现,如此会影响图像获取设备的正常工作。
发明内容
本申请提供了一种成像装置及可移动平台,旨在对可移动平台的透光组件进行除雾或者除冰,保证成像模组正常工作。
第一方面,本申请实施例提供了一种用于可移动平台的成像装置,所述可移动平台设有透光组件,所述成像装置设置于所述可移动平台内部,所述成像装置包括:
成像模组,所述成像模组能够朝向所述透光组件的预设区域,用于感测穿过所述透光组件的环境光线,以获取所述可移动平台所处环境的环境信息;
包围结构,设于所述成像模组与所述透光组件之间,所述包围结构包括底壁以及与所述底壁连接的其他壁,所述底壁与其他壁围合所述透光组件的所述预设区域,所述包围结构用于减少所述可移动平台内部的杂散光射入所述成像模组;
热辐射结构,所述热辐射结构设于所述底壁和其他壁上,用于在所述包围结构的表面形成热辐射源,以对所述预设区域进行加热。
第二方面,本申请实施例提供了一种用于可移动平台的成像装置,所述可移动平台设有透光组件,所述成像装置设置于所述可移动平台内部,所述成像装置包括:
成像模组,所述成像模组能够朝向所述透光组件的预设区域,用于感测穿过所述透光组件的环境光线,以获取所述可移动平台所处环境的环境信息;
包围结构,设于所述成像模组与所述透光组件之间,所述包围结构围合所述透光组件的所述预设区域,所述包围结构用于减少所述可移动平台内部的杂散光射入所述成像模组;
热辐射结构,设于所述包围结构上,用于在所述包围结构的表面形成热辐射源,以对所述预设区域进行加热;
其中,所述热辐射结构的不同单位区段的单位热辐射功率基本相同。
第三方面,本申请实施例提供了用于可移动平台的成像装置,所述可移动平台设有透光组件,所述成像装置设置于所述可移动平台内部,所述成像装置包括:
成像模组,所述成像模组能够朝向所述透光组件的预设区域,用于感测穿过所述透光组件的环境光线,以获取所述可移动平台所处环境的环境信息;
包围结构,设于所述成像模组与所述透光组件之间,所述包围结构围合所述透光组件的所述预设区域,所述包围结构用于减少所述可移动平台内部的杂散光射入所述成像模组;
热辐射结构,设于所述包围结构上,用于在所述包围结构的表面形成热辐射源,以对所述预设区域进行加热;
其中,所述热辐射结构与所述包围结构形成一体结构。
第四方面,本申请实施例提供了一种可移动平台,包括:
平台主体;
上述任一项所述的成像装置,设于所述平台主体,用于所述可移动平台所处环境的环境信息。
本申请实施例提供了一种成像装置及可移动平台,能够对可移动平台的透光组件进行除雾或者除冰,保证成像模组正常工作。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种可移动平台的结构示意图;
图2是本申请实施例提供的一种可移动平台的部分结构示意图;
图3是是本申请实施例提供的一种成像装置的部分结构示意图,其中示出了包围结构和热辐射结构;
图4是本申请实施例提供的一种可移动平台的部分结构示意图;
图5是本申请实施例提供的一种可移动平台的部分结构示意图;
图6是本申请实施例提供的一种可移动平台的部分结构示意图;
图7是本申请实施例提供的一种可移动平台的部分结构示意图;
图8是本申请实施例提供的一种可移动平台的部分结构示意图;
图9是图4在A处的局部放大示意图;
图10是本申请实施例提供的一种可移动平台的部分结构示意图;
图11是本申请实施例提供的一种固定件的结构示意图。
附图标记说明:
1000、可移动平台;
100、成像装置;
10、成像模组;11、第一成像单元;12、第二成像单元;13、承载架;14、成像组件;
20、包围结构;201、第一端;202、第二端;203、围合空间;21、底壁;22、其他壁;221、侧壁;2211、第一侧壁;2212、第二侧壁;222、顶壁;23、第一包围件;24、第二包围件;
30、热辐射结构;31、热辐射膜;321、第一热辐射件;322、第二热辐射件;33、延伸部;331、第一延伸子部;3311、第一延伸段;3312、第二延伸段;332、第二延伸子部;333、延伸连接部;34、第一电连接部;35、第二电连接 部;
40、导电连接体;50、固定件;51、第一面;511、第一区域;512、第二区域;
200、平台主体;2001、透光组件;2002、预设区域。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
还应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本申请实施例提供的一种可移动平台1000的结构示意图。如图1所示,该可移动平台1000包括:可移动车辆、可移动船舶、可移动机器人、飞行器等中的至少一种。
示例性地,可移动平台1000可以是可移动车辆,该可移动车辆可以是具有自动驾驶系统的车辆,也可以是不具有自动驾驶系统的车辆。
下面以可移动平台1000为可移动车辆为例进行解释说明。
请参阅图1和图2,可移动平台1000包括成像装置100和平台主体200。平台主体200包括透光组件2001。成像装置100设置于可移动平台1000内部。具体地,成像装置100设于平台主体200内,用于获取可移动平台1000所处环境的环境信息。
示例性地,可移动平台1000所处环境的环境信息可以包括停车位的信息、障碍物的信息和车辆的位置信息等。
示例性地,环境信息包括环境图像信息或者环境视频信息等。
在一些实施例中,平台主体200还可以实时呈现环境信息,驾驶员可以根据环境信息进行驾驶。在另一些实施例中,平台主体200也可以根据环境信息进行自动驾驶。
请参阅图2,透光组件2001包括玻璃或者采用非玻璃材料制成透光结构,比如挡风玻璃或者车窗玻璃等。
在一些实施例中,平台主体200还可以包括车内顶棚、仪表台、A柱、B柱、C柱、D柱等中的至少一种。
可以理解地,在一定环境温度和空气湿度情况下,当透光组件2001的内表面的温度低于可移动平台1000内的空气的露点温度时,就会在透光组件2001的内表面发生起雾或者结冰的现象,而当透光组件2001发生起雾或者结冰现象时,很容易对成像装置100造成不利影响,从而难以准确获取可移动平台1000所处环境的环境信息。因此,需要防止透光组件2001上产生雾气或者结冰,当有雾气或结冰时应该尽快消除掉,以保证成像装置100能够正常工作。当透光组件2001表面温度不低于可移动平台1000内的空气的露点温度时,就可以避免在透光组件2001出现起雾或者结冰现象。因此,为了对透光组件2001进行除雾或者除冰,需要对透光组件2001进行加热。
请参阅图2和图3,在一些实施例中,成像装置100包括成像模组10、包 围结构20和热辐射结构30。成像模组10能够朝向透光组件2001的预设区域2002。成像模组10用于感测穿过透光组件2001的环境光线,以获取可移动平台1000所处环境的环境信息。包围结构20设于成像模组10与透光组件2001之间。包围结构20围合透光组件2001的预设区域2002。包围结构20用于减少可移动平台1000内部的杂散光射入成像模组10。热辐射结构30设于包围结构20上,用于在包围结构20的表面形成热辐射源,以对预设区域2002进行加热。
上述实施例的成像装置100,热辐射结构30在包围结构20的表面形成热辐射源,从而对透光组件2001的预设区域2002进行加热,调整预设区域2002的温度,防止预设区域2002起雾或结冰,从而保证成像模组10的正常使用,节能且成本低。
示例性地,在热辐射结构30的作用下,透光组件2001的预设区域2002能够接收基本均匀的单位面积热辐射功率,如此对透光组件2001或者平台主体200的其他部件的不良影响小,并能够使得除雾或除冰的效果更佳。
请参阅图2和图3,包围结构20包括底壁21以及与底壁21连接的其他壁22。底壁21与其他壁22围合透光组件2001的预设区域2002。热辐射结构30设于底壁21和其他壁22上。
热辐射结构30不仅布置在底壁21上,还布置在与底壁21连接的其他壁22上。位于底壁21上的热辐射结构30和位于其他壁22上的热辐射结构30能够在包围结构20的不同表面形成热辐射源。位于底壁21上的热辐射结构30在底壁21的表面所形成的热辐射源,以及,位于其他壁22上的热辐射结构30在其他壁22的表面所形成的热辐射源,从而能够朝向预设区域2002的不同区域发射,进而对预设区域2002的不同区域加热,实现全方位多角度地加热,使得预设区域2002受热更均匀,运用更加灵活,防止预设区域2002的边角无法被加热到而起雾或结冰,或者防止预设区域2002的不同区域无法被均匀地加热而起雾或结冰,对透光组件2001或者平台主体200的其他部件的不良影响小,并能够使得除雾或除冰的效果更佳,进而为成像模组10的正常使用提供了可靠保障。
可以理解地,通过将热辐射结构30布置在底壁21和其他壁22上,以尽可能地使得预设区域2002各处能够接收基本均匀的单位面积热辐射功率。即使在 热辐射结构30上有两个点离透光组件2001的最短距离互不相同,或者,即使底壁21与透光组件2001之间的距离不等距,由于位于底壁21上的热辐射结构30和位于其他壁22上的热辐射结构30能够同时发热,预设区域2002各区域所接收的单位面积热辐射功率也可以近似或基本相等,从而能够使得预设区域2002被均匀加热。
示例性地,成像模组10可以包括能够感测可见光和/或红外光的摄像装置。
热辐射结构30相对透光组件2001或者预设区域2002具体的几何结构或者几何布置关系可以根据实际需求进行设计。请参阅图2和图3,示例性地,底壁21上存在至少两个点与透光组件2001之间的距离互不相同,或者,底壁21与透光组件2001之间的距离不等距。在一些实施例中,透光组件2001与底壁21之间的距离以逐渐增大的方式从包围结构20的第一端201朝向第二端202延伸。
示例性地,热辐射结构30上有两个点距离预设区域2002的最短距离互不相同。此时,可以通过将热辐射结构30设计在底壁21和其他壁22上;和/或,通过设计热辐射结构30的具体排布和/或厚度,实现对预设区域2002进行均匀加热。
请参阅图3,可以理解地,包围结构20的其他壁22与底壁21配合形成围合空间203(请参阅图6),用于限制成像模组10的视野范围。
请参阅图3和图5,在一些实施例中,其他壁22包括与底壁21连接的侧壁221。热辐射结构30中的一部分设于包围结构20的底壁21上。热辐射结构30中的另一部分设于包围结构20的侧壁221上。位于底壁21上的热辐射结构30和位于侧壁221上的热辐射结构30能够从包围结构20的不同位置或方向形成热辐射源。位于底壁21上的热辐射结构30在底壁21的表面所形成的热辐射源,以及,位于侧壁221上的热辐射结构30在侧壁221的表面所形成的热辐射源,从而能够朝向预设区域2002的不同区域发射,进而对预设区域2002的不同区域加热,实现全方位多角度地加热,使得预设区域2002受热更均匀,运用更加灵活。
请参阅图3,示例性地,底壁21的形状可以根据实际需求进行设计。比如底壁21的形状基本呈梯形,即底壁21呈梯形或者近似梯形。
示例性地,底壁21中靠近包围结构20的第一端201的部位沿预设方向延 伸尺寸大于底壁21中远离包围结构20的第一端201的部位沿预设方向延伸尺寸。
示例性地,沿预设方向的延伸尺寸是指部件在预设方向上延伸的延伸尺寸。
示例性地,预设方向如图3中的X方向。
示例性地,预设方向与包围结构20的第一侧壁2211和第二侧壁2212之间的排列方向平行或者重合。
请参阅图3,示例性地,包围结构20的其他壁22包括第一侧壁2211和第二侧壁2212。第一侧壁2211与第二侧壁2212均与底壁21连接。
底壁与侧壁可以是一体成型连接。底壁与侧壁也可以是分体设置,二者通过胶粘等方式固定连接。
请参阅图3,示例性地,底壁21与侧壁221之间的夹角可以为锐角、直角或者钝角。示例性地,底壁21与第一侧壁2211之间的夹角可以为锐角、直角或者钝角。底壁21与第二侧壁2212之间的夹角可以为锐角、直角或者钝角。
请参阅图3,示例性地,第一侧壁2211和第二侧壁2212相对设置。
示例性地,第一侧壁2211和第二侧壁2212之间的夹角可以为0度、锐角、直角或者钝角。比如,第一侧壁2211与第二侧壁2212平行。又如,第一侧壁2211与第二侧壁2212之间的夹角为锐角,以限缩成像模组10的可视范围。
请参阅图3,示例性地,第一侧壁2211靠近包围结构20的第一端201与第二侧壁2212靠近包围结构20的第一端201之间的最小间隔距离,大于第一侧壁2211远离包围结构20的第一端201与第二侧壁2212远离包围结构20的第一端201之间的最小间隔距离,从而限缩成像模组10的可视范围。
请参阅图3,示例性地,第一侧壁2211与第二侧壁2212以第一侧壁2211与第二侧壁2212之间的距离逐渐减小的方式从包围结构20的第一端201向包围结构20的第二端202延伸,从而有效限缩成像模组10的可视范围。
请参阅图3和图5,在一些实施例中,其他壁22还包括与侧壁221连接并与底壁21相对的顶壁222。热辐射结构30还设于顶壁222上。位于底壁21上的热辐射结构30、位于侧壁221上的热辐射结构30和位于顶壁222上的热辐射结构30能够从不同位置或方向产生热辐射。
位于底壁21上的热辐射结构30在底壁21的表面所形成的热辐射源,位于侧壁221上的热辐射结构30在侧壁221的表面所形成的热辐射源,以及位于顶 壁222上的热辐射结构30在顶壁222的表面所形成的热辐射源,从而能够朝向预设区域2002的不同区域发射,进而对预设区域2002的不同区域加热,实现全方位多角度地加热,使得预设区域2002受热更均匀,运用更加灵活。
可以理解地,上述实施例的成像装置100,即使在热辐射结构30上有两个点离透光组件2001的最短距离互不相同,或者,即使底壁21与透光组件2001之间的距离不等距,由于位于底壁21上的热辐射结构30、位于侧壁221上的热辐射结构30和位于顶壁222上的热辐射结构30能够同时发热,能够实现对预设区域2002进行全方位多角度地加热,预设区域2002各区域所接收的单位面积热辐射功率也可以近似相等或者基本相等,从而使得预设区域2002能够被均匀加热。
在其他实施例中,热辐射结构30也可以仅设置在底壁21和其他壁22的其中一者上。比如,热辐射结构30包括热辐射膜31(请参阅图7),热辐射膜31可以仅设置在底壁21上,以便于热辐射结构30布置在包围结构20上。当然,热辐射膜31也可以既布置在底壁21上,又布置在其他壁22上,在此不作限制。
示例性地,顶壁221所在平面可以与底壁21所在平面平行或者相交,在此不作限制。顶壁221和/或底壁21可以为平面或者曲面等。
示例性地,包围结构20的第一侧壁2211、底壁21、第二侧壁2212和顶壁222首尾连接,并形成围合空间203(请参阅图6)。
请参阅图2至图4,在一些实施例中,成像模组10包括第一成像单元11。包围结构20包括第一包围件23。第一包围件23设于第一成像单元11与透光组件2001之间,用于减少可移动平台1000内部的杂散光射入第一成像单元11。
在一些实施方式中,成像模组10为双目成像模组10,比如包括双目相机。
在其他实施方式中,成像模组10为单目成像模组10,比如包括单目相机。
请参阅图2至图4,在一些实施例中,成像模组10还包括第二成像单元12。包围结构20包括第二包围件24。第二包围件24与第一包围件23连接。第二包围件24设于第二成像单元12与透光组件2001之间,用于减少可移动平台1000内部的杂散光射入第二成像单元12。
请参阅图3,示例性地,第一包围件23与第二包围件24并列设置。
请参阅图3和图4,示例性地,第一包围件23与第二包围件24沿第一成 像单元11和第二成像单元12的排列方向排列设置。
请参阅图3和图4,示例性地,第一包围件23与第二包围件24对称设置,结构简单,加工方便。
请参阅图4,在一些实施例中,每个包围件上设有至少一个热辐射结构30。具体地,第一包围件23和第二包围件24上分别设有至少一个热辐射结构30。
在其他实施例中,同一个热辐射结构30的其中一部分设于第一包围件23上,同一个热辐射结构30的另一部分设于第二包围件24上。
示例性地,包围件的数量可以根据实际需求进行设计,比如为一个、两个、三个或者更多。比如,包围件的数量与成像单元的数量适配。
请参阅图3和图4,在一些实施例中,热辐射结构30和/或包围结构20关于预设平面对称设置,预设平面垂直于底壁21且相交于包围结构20的第一端201和第二端202。
示例性地,预设平面如图3中的ω平面。
请参阅图3和图4,示例性地,第一包围件23和第二包围件24关于上述预设平面对称设置。
请参阅图3和图4,示例性地,第一包围件23上的热辐射结构30与第二包围件24上的热辐射结构30关于上述预设平面对称设置。
在一些实施例中,热辐射结构30的不同单位区段的单位热辐射功率基本相同,如此,热辐射结构30的设计和制造简单,热辐射结构30的可靠性高,实用性强,进一步降低成本。
可以理解地,单位区段可以是单位面积区段,也可以是单位长度区段,在此不作限制。
请参阅图3和图5,示例性地,由于热辐射结构30设于包围结构20的底壁21和其他壁22上,因而热辐射功率可以根据热辐射结构30的热辐射发射位置和/或发射方向进行控制,并可以与预设区域2002的热量需求相适应。
在一些实施例中,热辐射结构30的不同单位区段的导体密度及导体厚度基本相同,对热辐射结构30的排布和导体厚度要求低,设计和制造简单。示例性地,热辐射结构30的不同单位区段的单位热辐射功率基本相同,是基于热辐射结构30的不同单位区段的导体密度及导体厚度基本相同而实现的。
在一些实施例中,热辐射结构30的不同单位区段的单位热辐射功率不同。 即热辐射结构30的单位热辐射功率具有区域性差别。热辐射功率可以根据发射位置和/或发射方向进行控制,并可以与预设区域2002的热量需求相适应。
示例性地,热辐射结构30可以包括多个单位区段。多个单位区段的其中至少两个单位区段的单位热辐射功率不同。
在一些实施例中,热辐射结构30的不同单位区段的导体密度和/或导体厚度不同。热辐射结构30的单位热辐射功率具有区域性差别,是基于热辐射结构30的不同单位区段的导体密度和/或导体厚度不同实现的。
比如,热辐射结构30在两个不同单位区段内导体的密度不同,从而在电源一致的情况下产生的热量与导体密度呈比例。又如,在不同位置的导体厚度也可以不同。当然,也可以通过对热辐射结构30进行区域性供电,使得热辐射结构30不同的区域达到不同的温度,从而产生不同程度的热量。
请参阅图3和图4,在一些实施例中,热辐射结构30至少部分嵌设于包围结构20的底壁21和/或其他壁22内。如此,能够减小热辐射结构30与包围结构20二者的整体占用空间,有利于小型化设计。
可以理解地,热辐射结构30至少部分嵌设于包围结构20的底壁21和/或其他壁22内,包括:a)、热辐射结构30至少部分嵌设于包围结构20的底壁21内;b)、热辐射结构30至少部分嵌设于包围结构20的其他壁22内;c)热辐射结构30中的其中一部分嵌设于包围结构20的底壁21内,热辐射结构30中的另一部分嵌设于包围结构20的其他壁22内。
示例性地,发热单元包括电阻丝。
示例性地,发热单元呈点状、线状、面状等中的至少一者方式嵌入底壁和/或其他壁内。比如,发热单元呈点状、线状、面状等中的至少一者方式嵌入底壁上。又如,发热单元呈点状、线状、面状等中的至少一者方式嵌入侧壁上。再如,发热单元呈点状、线状、面状等中的至少一者方式嵌入底壁和侧壁上。
在一些实施例中,热辐射结构30包括至少一个发热单元。每个发热单元全部或者部分嵌设于底壁21和/或其他壁22内,以尽可能地减小热辐射结构30与包围结构20二者的整体占用空间,有利于小型化设计。
在一些实施例中,每个发热单元中的一部分嵌设于底壁21内,每个发热单元中的另一部分嵌设于其他壁22内。
比如,每个发热单元中的一部分嵌设于底壁21内,每个发热单元中的另一 部分嵌设于第一侧壁2211内。
又如,每个发热单元中的一部分嵌设于底壁21内,每个发热单元中的另一部分嵌设于第二侧壁2212内。
再如,每个发热单元中的一部分嵌设于底壁21内,每个发热单元中的另一部分嵌设于第一侧壁2211内,每个发热单元中的又一部分嵌设于第二侧壁2212内。
在一些实施例中,热辐射结构30包括多个发热单元。多个发热单元中的至少一个发热单元嵌设于底壁21内,多个发热单元中的至少另一个发热单元嵌设于其他壁22内。
请参阅图3和图4,比如,位于底壁21上的热辐射结构30至少部分嵌设于包围结构20的底壁21上。位于侧壁221上的热辐射结构30至少部分嵌设于包围结构20的侧壁221上。
在一些实施例中,热辐射结构30与包围结构20形成一体结构,以减轻热辐射结构30的加工难度,并减少零部件数量,减少装配工序,提高加工效率。
在一些实施例中,热辐射结构30通过激光雕刻、化学镀、电镀、喷镀、物理气相沉积、模内装饰成型方式(In-Mold Decoration,IMD)、嵌件成型方式等中的至少一种固定于包围结构20上。通过该成型方式可以将热辐射结构30与至少部分包围结构20制造成一个零件,减少成像装置100的零件数量,减少装配工序,大大降低了热辐射结构30的失效风险,并且能够避免热辐射结构30受热后脱落的问题,制造和加工成本低。
此外,上述成型方式对包围结构20中用于与热辐射结构连接的的被连接面的要求低,适用性广。包围结构20的被连接面可以是平面、曲面、圆弧面、圆柱面、凹凸不平面、陡变面、其他规则面或者不规则面等中的至少一种。
示例性地,热辐射结构30与包围结构20的成型方式包括激光直接成型技术(Laser Direct Structuring,LDS),激光成型技术(Laser Applications,LAP),激光重构印刷技术(Laser Restructuring Print,LRP),化学镀后激光雕刻再电镀等技术。
示例性地,通过激光直接成型技术,在包围结构20上利用计算机按照导电图形的轨迹控制激光的运动,将激光投照到包围结构20上,活化出电路图案,电路图案电镀或化学镀后变成电导体,该电导体即构成热辐射结构30。通过对 此电导体通电使其产生热量,达到加热的作用。
示例性地,通过激光成型技术,在包围结构20上利用计算机按照导电图形的轨迹控制激光的运动,将激光投照到包围结构20上,活化出电路图案,电路图案电镀或化学镀后变成电导体,该电导体即构成热辐射结构30。通过对此电导体通电使其产生热量,达到加热的作用。
示例性地,通过激光重构印刷技术,将导电银浆高速精准地涂敷到包围结构20的表面,形成电路图案,然后通过三维控制激光修整,以形成高精度的电路结构,该电路结构即构成热辐射结构30。通过对此电路结构通电使其产生热量,达到加热的作用。
示例性地,通过化学镀后激光雕刻再电镀技术,将包围结构20先化学镀后,用激光雕刻出电镀区域和非电镀区域,然后选择性电镀出需要导电的区域,经电镀后所形成的导电区域形成热辐射结构30。通过对导电区域通电使其产生热量,达到加热的作用。
在一些实施方式中,通过模内装饰技术,先对薄膜进行印刷加工,将导电图案印刷到薄膜上,然后在模具内进行注塑成型,将带导电图案的薄膜成型到包围结构20上。该导电图案和薄膜形成热辐射结构30。通过对导电图案通电使其产生热量,达到加热的作用。
在一些实施方式中,热辐射结构30与包围结构20通过嵌件成型形成一体结构。
示例性地,通过嵌件成型工艺技术,将导电材料零件(其成型工艺可以但不限于压铸、冲压、机加、挤压成型等)作为嵌件,在包围结构20注塑成型前,作为嵌件放置在模具内注塑成型,使两者连接到一起形成一体结构。其中,导电材料零件构成热辐射结构30。对导电材料零件通电使其产生热量,达到加热的作用。
可以理解地,热辐射结构30的形状可以根据实际需求进行设计,比如包括条状、阵列状或者面状等。
请参阅图6,在一些实施例中,热辐射结构30通过导电连接体40与成像模组10电连接。在其他实施例中,热辐射结构30也可以通过导电连接体40连接可移动平台1000的其他电气元件,比如连接控制器或者电源等。
示例性地,导电连接体40包括柔性扁平电缆、柔性线路板、软排线等中的 至少一种。
请参阅图6,在一些实施例中,导电连接体40至少部分设于包围结构20内。示例性地,热辐射结构30中的电连接接口设于包围结构20内,该电连接接口可以与导电连接体40电连接,并通过导电连接体40电连接至成像模组10或者可移动平台1000的其他电气元件。
请参阅图7,在一些实施例中,热辐射结构30包括热辐射膜31。示例性地,热辐射膜31与包围结构20分别独立加工,二者加工完成后再进行组装固定。
在一些实施例中,热辐射结构30与包围结构20的连接方式以下至少一种;胶粘连接、层压、喷镀等。示例性地,该热辐射膜31与包围结构20胶粘连接。
包围结构20与热辐射结构30可以点接触、线接触或者面接触,在此不作限制。
请参阅图8,热辐射结构30包括第一热辐射件321和第二热辐射件322。第一热辐射件321设于底壁21上。第二热辐射件322设于其他壁22上,第二热辐射件322与第一热辐射件321间隔独立设置。在该实施例中,第一热辐射件321与第二热辐射件322相互间隔、彼此互不连接。在实际应用场景中,可以根据场景加热需求对第一热辐射件321和第二热辐射件322通不同的电流,或者通相同的电流。
示例性地,第二热辐射件322可以设于包围结构20的第一侧壁2211、第二侧壁2212和顶壁222中的至少一者上。
示例性地,第一热辐射件321和第二热辐射件322中的至少一者包括热辐射膜31。
示例性地,第一热辐射件321和第二热辐射件322中的至少一者通过激光雕刻、化学镀、电镀、喷镀、物理气相沉积、模内装饰成型方式、嵌件成型方式等中的至少一种固定于包围结构20上。
示例性地,第一热辐射件321和第二热辐射件322中的至少一者包括电阻丝。
在其他实施例中,第一热辐射件321可以与第二热辐射件322连接。比如第一热辐射件321与第二热辐射件322为一体结构。
请参阅图8和图9,热辐射结构30包括一根或者多根电阻丝。比如,请参阅图8,热辐射结构30包括两根电阻丝,两根电阻丝分别设于第二侧壁2212 和底壁21上。又如,请参阅图9,热辐射结构30包括一根电阻丝,其一部分设于底壁21上,另一部分设于第二侧壁2212上。
请参阅图10,在一些实施例中,热辐射结构30包括多根电阻丝。多根电阻丝沿包围结构20的第一端201向第二端202分区域设置,且能够被提供不同大小的电流,以使得透光组件2001的预设区域2002能够接收基本均匀的单位面积热辐射功率。如此,能够根据实际需求对多根电阻丝通不同大小的电流,实现预设区域2002的均匀加热,对透光组件2001或者平台主体200的其他部件的不良影响小,并能够使得除雾或除冰的效果更佳。
请参阅图10,结合图3,底壁21靠近第一端201的部位与透光组件2001之间的距离小于底壁21远离第一端201的部位与透光组件2001之间的距离。靠近包围结构20的第一端201的电阻丝所通的电流小于远离包围结构20的第一端201的电阻丝所通的电流。
请参阅图10,示例性地,热辐射结构30包括电阻丝30a和电阻丝30b,电阻丝30a设于底壁21和/或侧壁221上,电阻丝30b设于底壁21和/或侧壁221上。电阻丝30a和电阻丝30b沿包围结构20的第一端201向第二端202分区域设置,即沿图10中的Y方向间隔设置。即电阻丝30a靠近包围结构20的第一端201设置,电阻丝30b远离包围结构20的第一端201设置。
当底壁21中靠近第一端201的部位与透光组件2001之间的距离小于底壁21中远离第一端201的部位与透光组件2001之间的距离时,可以对电阻丝30a通第一电流,对电阻丝30b通第二电流,第一电流小于第二电流,以使得电阻丝30a所产生的单位热辐射功率小于电阻丝30b所产生的单位热辐射功率,进而使得透光组件2001的预设区域2002能够接收基本均匀的单位面积热辐射功率。
请参阅图10,在一些实施例中,热辐射结构30包括多根电阻丝。成像装置100用于根据电阻丝与透光组件2001之间的距离确定电阻丝是否向电阻丝通电。
请参阅图10,结合图3,比如,热辐射结构30包括电阻丝30a和电阻丝30b,电阻丝30a与透光组件2001之间的距离小于电阻丝30b与透光组件2001之间的距离。向电阻丝30b通电,而对电阻丝30a不通电。
示例性地,成像装置100用于若电阻丝与透光组件2001之间的距离大于或 者等于预设距离,确定向电阻丝通电。若电阻丝与透光组件2001之间的距离小于预设距离,确定不向电阻丝通电。预设距离可以根据实际需求进行设计,在此不作限制。
示例性地,电阻丝与透光组件2001之间的距离是指电阻丝的中部与透光组件2001之间的最小距离。
在一些实施例中,成像装置100用于获取预设位置处的温度,并根据预设位置处的温度确定向热辐射结构30是否通电。
可以通过在预设位置处或者附近设置温度传感器,通过温度传感器获取预设位置处的温度。
示例性地,预设位置位于透光组件2001的内侧上或者内侧前。具体地,该预设位置可以位于预设区域2002内侧上或者内侧前。
示例性地,预设位置位于包围结构20内。比如,预设位置位于其他壁22与底壁21配合形成的围合空间203内。又如,预设位置位于形成该围合空间203的内壁面上。
在一些实施例中,成像装置100用于若预设位置处的温度小于预设阈值温度,确定向热辐射结构30通电。若预设位置处的温度大于或者等于预设阈值温度,确定不向热辐射结构30通电。预设阈值温度可以根据实际需求进行设置,在此不作限制。
在一些实施例中,成像装置100用于根据成像模组10所获取的环境信息确定是否向热辐射结构30通电。比如,若成像模组10所获取的环境信息清晰,则表明环境光线能够正常透过透光组件2001或者预设区域2002,成像模组10能够正常获取环境信息,无需向热辐射结构30通电进行除雾或者除冰。若成像模组10所获取的环境信息不清晰,则表明透光组件2001或者预设区域2002存在起雾或者结冰现象,环境光线无法正常透过透光组件2001或者预设区域2002,因而成像模组10无法正常获取环境信息,此时需要向热辐射结构30通电进行除雾或者除冰。
示例性地,成像装置100用于若环境信息的清晰度小于预设清晰阈值,确定向热辐射结构30通电。若环境信息的清晰度大于或者等于预设清晰阈值,确定不向热辐射结构30通电。预设清晰阈值可以根据实际需求进行设计,在此不作限制。
在一些实施例中,热辐射结构30为一体结构。比如,热辐射结构30为一张热辐射膜31或者一根电阻丝。示例性地,一张热辐射膜31或者一根电阻丝可以从底壁21上弯折延伸至侧壁221。
请参阅图9,热辐射结构30包括延伸部33、第一电连接部34和第二电连接部35。延伸部33在底壁21和其他壁22上延伸。第一电连接部34和第二电连接部35分别连接于延伸部33的两端。第一电连接部34和第二电连接部35用于与成像模组10或者其他电气元件电连接。
第一电连接部34和第二电连接部35可以根据实际需求设计在任意合适位置。比如,第一电连接部34和第二电连接部35均设于底壁21上,便于走线。
延伸部33采用导电材料制成。示例性地,延伸部33包括电阻丝。
请参阅图9,示例性地,第一电连接部34和第二电连接部35均位于包围结构20的第一端201,如此便于将第一电连接部34和第二电连接部35同导电连接体40进行电连接,走线方便。
请参阅图9,其他壁22包括相对的第一侧壁2211和第二侧壁2212。延伸部33包括第一延伸子部331和第二延伸子部332。第一延伸子部331设于底壁21和第一侧壁2211上。第一延伸子部331与第一电连接部34连接。第二延伸子部332设于底壁21和第二侧壁2212上,且第二延伸子部332与第二电连接部35连接。延伸连接部333设于底壁21上。延伸连接部333的两端分别连接于第一延伸子部331和第二延伸子部332。
请参阅图9,第一延伸子部331包括多个第一延伸段3311和多个第二延伸段3312。多个第一延伸段3311间隔设于底壁21上。多个第二延伸段3312间隔设于第一侧壁2211上。除位于包围结构20的第一端201的第一延伸段3311外,其他第一延伸段3311的两端分别连接相邻两个第二延伸段3312。如此,在包围结构20尺寸一定的前提下,能够尽可能地增大第一延伸子部331的延伸长度,从而提高热辐射结构30的加热效率和除雾效率。
请参阅图9,示例性地,位于包围结构20的第一端201的第一延伸段3311连接第一电连接部34和一个第二延伸段3312。
请参阅图9,示例性地,多个第一延伸段3311沿包围结构20的第一端201向第二端202间隔排布在底壁21上。多个第二延伸段3312沿包围结构20的第一端201向第二端202间隔排布在第一侧壁2211上。
请参阅图9,在一些实施例中,靠近包围结构20的第一端201的第一延伸段3311的延伸长度大于远离包围结构20的第一端201的第一延伸段3311的延伸长度。示例性地,多个第一延伸段3311以延伸长度逐渐减小的方式从包围结构20的第一端201向第二端202间隔排列。
请参阅图9,结合图3,在一些实施例中,靠近包围结构20的第一端201的第二延伸段3312的延伸长度小于远离包围结构20的第一端201的第二延伸段3312的延伸长度。示例性地,多个第二延伸段3312以延伸长度逐渐增大的方式从包围结构20的第一端201向第二端202间隔排列。
第一延伸子部331与第二延伸子部332的结构可以相同,也可以不同。请参阅图9,示例性地,第一延伸子部331与第二延伸子部332对称设置。
可以理解地,成像装置100可以根据实际需求安装在平台主体200的任意合适位置,比如安装在透光组件2001内侧,或者,安装在可移动平台1000内与透光组件2001靠近的其他部件上。该其他部件可以包括车内顶棚、仪表台、A柱、B柱、C柱、D柱等中的至少一种。
包围结构20和/或成像模组10可以通过胶粘等装配方式固定于透光组件2001和/或平台主体200的其他部件上。
请参阅图2,成像装置100还包括固定件50。固定件50连接于透光组件2001和包围结构20。该固定件50能够为包围结构20和/或成像模组10提供固定、支撑或者定位作用。
可以理解地,可以通过热辐射结构30的直接热辐射,以及,热辐射结构30与空气、固定件50之间的热传导,对预设区域2002进行加热。
在一些实施例中,热辐射结构30还用于对固定件50进行加热。示例性地,热辐射结构30或者另一加热器可以对固定件50进行加热。固定件50中用于与透光组件2001连接的部位被加热后,通过透光组件2001内部的热传导,将预设区域2002进行加热。
固定件50的结构和形状可以根据实际需求进行设计,在此不作限制。
请参阅图2和图11,固定件50包括相对的第一面51和第二面。第一面51与透光组件2001固定连接,第二面与包围结构20固定连接,从而实现成像模组10与透光组件2001的固定连接,固定可靠性高且成本低。
示例性地,固定件50还形成有与预设区域2002对应设置的可视开窗(未 标示)。环境光线能够透过透光组件2001的预设区域2002和固定件50的可视开窗到达成像模组10,以使得成像模组10获取可移动平台1000所处环境的环境信息。
示例性地,该可视开窗可以为开口结构,也可以为透明或半透明材料制成的结构,以保证成像模组10能够正常获取环境信息。
请参阅图2和图11,第一面51包括第一区域511和第二区域512。第一区域511与透光组件2001固定连接,第二区域512用于与平台主体200的其他部件固定连接,从而保证成像装置100的连接可靠性。
示例性地,第二区域512用于与平台主体200的车内顶棚、仪表台、A柱、B柱、C柱、D柱等中的至少一种固定连接。
示例性地,第一区域511可以部分或者全部粘结于透光组件2001。
在其他实施例中,第二区域512也可以省略,通过第一区域511与透光组件2001固定连接,从而实现成像装置100与透光组件2001的固定连接。
在某些实施例中,第一区域511也可以省略,通过第二区域512固定连接于平台主体200的车内顶棚、仪表台、A柱、B柱、C柱、D柱等中的至少一者上。
请参阅图2和图4,在一些实施例中,成像模组10包括承载架13和成像组件14。承载架13连接于包围结构20和/或固定件50连接。成像组件14承载于承载架13上。包围结构20用于减少可移动平台1000内部的杂散光射入成像组件14。
示例性地,包围结构20设于成像组件14与透光组件2001之间;和/或,设于承载架13与透光组件2001之间。
承载架13可以与包围结构20为一体结构,二者也可以为相互独立的两个部件。
成像组件14可以包括一个、两个、三个、四个、五个或者更多个成像单元,比如包括上述第一成像单元11和第二成像单元12。
示例性地,当成像组件14包括多个成像单元时,多个成像单元可以承载在同一个承载架13上。
示例性地,多个成像单元也可以分别承载在互不相同的多个承载架13上。
示例性地,多个成像单元中的其中至少两个承载在同一个承载架13上,多 个成像单元的至少另一个承载在另一个独立的承载架13上。
示例性地,成像单元包括摄像头等。
示例性地,成像组件14的朝向可以朝向预设区域2002。当然,成像组件14的朝向也可以根据实际功能需要朝向其他任意合适方向。
在一些实施例中,成像组件14还集成有夜视功能,通过热辐射结构30对预设区域2002进行加热,从而对预设区域2002进行除雾或者除冰,可以减少出射的增强夜视光线(激光、红外光等)的损失,也可以减少入射的夜视光线(激光、红外光等)的损失,使成像组件14获得更清晰、稳定、亮度更高的图像或者环境信息。
请参阅图2和图3,本申请实施例还提供一种用于可移动平台1000的成像装置100。可移动平台1000设有透光组件2001。成像装置100设置于可移动平台1000内部。成像装置100包括成像模组10、包围结构20和热辐射结构30。成像模组10能够朝向透光组件2001的预设区域2002。成像模组10用于感测穿过透光组件2001的环境光线,以获取可移动平台1000所处环境的环境信息。包围结构20设于成像模组10与透光组件2001之间。包围结构20围合透光组件2001的预设区域2002。包围结构20用于减少可移动平台1000内部的杂散光射入成像模组10。热辐射结构30设于包围结构20上,用于在包围结构20的表面形成热辐射源,以对预设区域2002进行加热。其中,热辐射结构30的不同单位区段的单位热辐射功率基本相同。
上述实施例的成像装置100,热辐射结构30能够对透光组件2001的预设区域2002进行加热,从而调整透光组件2001的预设区域2002的温度,防止预设区域2002起雾或结冰而影响成像模组10的使用,节能且成本低。此外,由于热辐射结构30的不同单位区段的单位热辐射功率基本相同,因而热辐射结构30的设计和制造简单,热辐射结构30的可靠性高,实用性强,进一步降低成本。
可以理解地,单位区段可以是单位面积区段,也可以是单位长度区段,在此不作限制。
示例性地,成像装置100包括上述任一实施例的成像装置100。
在一些实施例中,热辐射结构30的不同单位区段的导体密度及导体厚度基本相同。
在一些实施例中,在热辐射结构30的作用下,透光组件2001的预设区域2002能够接收基本均匀的单位面积热辐射功率。
请参阅图2和图3,本申请实施例还提供一种用于可移动平台1000的成像装置100。可移动平台1000设有透光组件2001。成像装置100设置于可移动平台1000内部。成像装置100包括成像模组10、包围结构20和热辐射结构30。成像模组10能够朝向透光组件2001的预设区域2002。成像模组10用于感测穿过透光组件2001的环境光线,以获取可移动平台1000所处环境的环境信息。包围结构20设于成像模组10与透光组件2001之间。包围结构20围合透光组件2001的预设区域2002。包围结构20用于减少可移动平台1000内部的杂散光射入成像模组10。热辐射结构30设于包围结构20上,用于在包围结构20的表面形成热辐射源,以对预设区域2002进行加热。其中,热辐射结构30与包围结构20形成一体结构。
上述实施例的成像装置100,热辐射结构30能够对透光组件2001的预设区域2002进行加热,从而调整透光组件2001的的预设区域2002的温度,防止预设区域2002起雾或结冰而影响成像模组10的使用,节能且成本低。此外,由于热辐射结构30与包围结构20形成一体结构,因而减轻了热辐射结构30的加工难度,并减少了零部件数量,减少了装配工序,提高了加工效率。
示例性地,成像装置100包括上述任一实施例的成像装置100。
在一些实施例中,热辐射结构30通过激光雕刻、化学镀、电镀、喷镀、物理气相沉积、模内装饰成型方式、嵌件成型方式中的至少一种固定于包围结构20上。
在一些实施例中,热辐射结构30至少部分嵌设于包围结构20的底壁21和/或其他壁22内。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上” 或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体方法步骤、特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体方法步骤、特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (63)

  1. 一种用于可移动平台的成像装置,所述可移动平台设有透光组件,其特征在于,所述成像装置设置于所述可移动平台内部,所述成像装置包括:
    成像模组,所述成像模组能够朝向所述透光组件的预设区域,用于感测穿过所述透光组件的环境光线,以获取所述可移动平台所处环境的环境信息;
    包围结构,设于所述成像模组与所述透光组件之间,所述包围结构包括底壁以及与所述底壁连接的其他壁,所述底壁与其他壁围合所述透光组件的所述预设区域,所述包围结构用于减少所述可移动平台内部的杂散光射入所述成像模组;
    热辐射结构,所述热辐射结构设于所述底壁和其他壁上,用于在所述包围结构的表面形成热辐射源,以对所述预设区域进行加热。
  2. 根据权利要求1所述的成像装置,其特征在于,所述其他壁包括与所述底壁连接的侧壁,所述热辐射结构中的一部分设于所述底壁上,另一部分设于所述侧壁上。
  3. 根据权利要求2所述的成像装置,其特征在于,所述其他壁还包括与所述侧壁连接并与所述底壁相对的顶壁,所述热辐射结构还设于所述顶壁上。
  4. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构的不同单位区段的单位热辐射功率基本相同。
  5. 根据权利要求4所述的成像装置,其特征在于,所述热辐射结构的不同单位区段的导体密度及导体厚度基本相同。
  6. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构的不同单位区段的单位热辐射功率不同。
  7. 根据权利要求6所述的成像装置,其特征在于,所述热辐射结构的不同单位区段的导体密度和/或导体厚度不同。
  8. 根据权利要求1所述的成像装置,其特征在于,在所述热辐射结构的作用下,所述透光组件的预设区域能够接收基本均匀的单位面积热辐射功率。
  9. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构至少部分嵌设于所述底壁和/或其他壁内。
  10. 根据权利要求9所述的成像装置,其特征在于,所述热辐射结构包括:
    至少一个发热单元,每个所述发热单元全部或者部分嵌设于所述底壁和/或其他壁内。
  11. 根据权利要求10所述的成像装置,其特征在于,所述发热单元包括电阻丝。
  12. 根据权利要求10所述的成像装置,其特征在于,所述发热单元呈点状、线状或面状嵌入所述底壁和/或其他壁内。
  13. 根据权利要求10所述的成像装置,其特征在于,每个所述发热单元中的一部分嵌设于所述底壁内,每个所述发热单元中的另一部分嵌设于所述其他壁内。
  14. 根据权利要求9所述的成像装置,其特征在于,所述热辐射结构包括:
    多个发热单元,多个所述发热单元中的至少一个发热单元嵌设于所述底壁内,多个所述发热单元中的至少另一个发热单元嵌设于所述其他壁内。
  15. 根据权利要求1所述的成像装置,其特征在于,所述底壁与所述其他壁之间的夹角为锐角或者直角;和/或,
    所述底壁的形状基本呈梯形。
  16. 根据权利要求1所述的成像装置,其特征在于,所述底壁中靠近所述包围结构的第一端的部位沿预设方向的延伸尺寸大于所述底壁中远离所述包围结构的第一端的部位沿所述预设方向的延伸尺寸。
  17. 根据权利要求1所述的成像装置,其特征在于,所述其他壁包括连接于所述底壁的第一侧壁和第二侧壁,所述第一侧壁和第二侧壁之间的夹角为0度、锐角或者直角。
  18. 根据权利要求1所述的成像装置,其特征在于,所述其他壁包括连接于所述底壁的第一侧壁和第二侧壁,所述第一侧壁与所述第二侧壁以所述第一侧壁与所述第二侧壁之间的距离逐渐减小的方式从所述包围结构的第一端向所述包围结构的第二端延伸。
  19. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构通过激光雕刻、化学镀、电镀、喷镀、物理气相沉积、模内装饰成型方式、嵌件成型方式中的至少一种固定于所述包围结构上。
  20. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构通过 导电连接体与所述成像模组电连接。
  21. 根据权利要求20所述的成像装置,其特征在于,所述导电连接体至少部分设于所述包围结构内;和/或,
    所述导电连接体包括柔性扁平电缆、柔性线路板、软排线中的至少一种。
  22. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构包括热辐射膜。
  23. 根据权利要求22所述的成像装置,其特征在于,所述热辐射结构与所述包围结构的连接方式以下至少一种;胶粘连接、层压、喷镀。
  24. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构的形状包括条状、阵列状或者面状。
  25. 根据权利要求1所述的成像装置,其特征在于,所述透光组件与所述底壁之间的距离以逐渐增大的方式从所述包围结构的第一端朝向第二端延伸。
  26. 根据权利要求1-25任一项所述的成像装置,其特征在于,所述成像模组包括第一成像单元,所述包围结构包括:
    第一包围件,用于减少所述可移动平台内部的杂散光射入所述第一成像单元。
  27. 根据权利要求26所述的成像装置,其特征在于,所述成像模组还包括第二成像单元,所述包围结构包括:
    第二包围件,与所述第一包围件连接,用于减少所述可移动平台内部的杂散光射入所述第二成像单元。
  28. 根据权利要求27所述的成像装置,其特征在于,所述第一包围件与所述第二包围件对称设置。
  29. 根据权利要求27所述的成像装置,其特征在于,每个包围件上设有至少一个所述热辐射结构。
  30. 根据权利要求27所述的成像装置,其特征在于,所述热辐射结构和/或所述包围结构关于预设平面对称设置,所述预设平面垂直于所述底壁且相交于所述包围结构的第一端和第二端。
  31. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构为一体结构。
  32. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构包括:
    延伸部,在所述底壁和其他壁上延伸;
    第一电连接部和第二电连接部,分别连接于所述延伸部的两端。
  33. 根据权利要求32所述的成像装置,其特征在于,所述第一电连接部和所述第二电连接部均设于所述底壁上。
  34. 根据权利要求33所述的成像装置,其特征在于,所述第一电连接部和所述第二电连接部均位于所述包围结构的第一端。
  35. 根据权利要求32所述的成像装置,其特征在于,所述其他壁包括相对的第一侧壁和第二侧壁;所述延伸部包括:
    第一延伸子部,设于所述底壁和所述第一侧壁上,与所述第一电连接部连接;
    第二延伸子部,设于所述底壁和所述第二侧壁上,与所述第二电连接部连接;
    延伸连接部,设于所述底壁上,两端分别连接于所述第一延伸子部和所述第二延伸子部。
  36. 根据权利要求35所述的成像装置,其特征在于,所述第一延伸子部包括:
    多个第一延伸段,间隔设于所述底壁上;
    多个第二延伸段,间隔设于所述第一侧壁上;除位于所述包围结构的第一端的第一延伸段外,其他所述第一延伸段的两端分别连接相邻两个所述第二延伸段。
  37. 根据权利要求36所述的成像装置,其特征在于,多个所述第一延伸段以延伸长度逐渐减小的方式从所述包围结构的第一端向所述第二端间隔排列。
  38. 根据权利要求36所述的成像装置,其特征在于,多个所述第二延伸段以延伸长度逐渐增大的方式从所述包围结构的第一端向所述第二端间隔排列。
  39. 根据权利要求35-38任一项所述的成像装置,其特征在于,所述第一延伸子部与所述第二延伸子部对称设置。
  40. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构包括:
    第一热辐射件,设于所述底壁上;
    第二热辐射件,设于所述其他壁上,与所述第一热辐射件间隔独立设置。
  41. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构包括 一根或者多根电阻丝。
  42. 根据权利要求41所述的成像装置,其特征在于,所述热辐射结构包括:
    多根电阻丝,沿所述包围结构的第一端向第二端分区域设置,且能够被提供不同大小的电流,以使得所述透光组件的预设区域能够接收基本均匀的单位面积热辐射功率。
  43. 根据权利要求42所述的成像装置,其特征在于,所述底壁靠近所述第一端的部位与所述透光组件之间的距离小于所述底壁远离所述第一端的部位与所述透光组件之间的距离;靠近所述包围结构的第一端的电阻丝所通的电流小于远离所述包围结构的第一端的电阻丝所通的电流。
  44. 根据权利要求1所述的成像装置,其特征在于,所述成像装置用于获取预设位置处的温度,并根据所述预设位置处的温度确定向所述热辐射结构是否通电。
  45. 根据权利要求44所述的成像装置,其特征在于,所述预设位置位于所述包围结构内;或者,所述预设位置位于所述透光组件的内侧上或者内侧前。
  46. 根据权利要求44所述的成像装置,其特征在于,所述成像装置用于若所述预设位置处的温度小于预设阈值温度,确定向所述热辐射结构通电;若所述预设位置处的温度大于或者等于预设阈值温度,确定不向所述热辐射结构通电。
  47. 根据权利要求1所述的成像装置,其特征在于,所述成像装置用于根据所述成像模组所获取的环境信息确定是否向所述热辐射结构通电。
  48. 根据权利要求1所述的成像装置,其特征在于,所述成像装置用于若所述环境信息的清晰度小于预设清晰阈值,确定向所述热辐射结构通电;若所述环境信息的清晰度大于或者等于预设清晰阈值,确定不向所述热辐射结构通电。
  49. 根据权利要求1所述的成像装置,其特征在于,所述热辐射结构包括多根电阻丝;所述成像装置用于根据所述电阻丝与所述透光组件之间的距离确定所述电阻丝是否向所述电阻丝通电。
  50. 根据权利要求49所述的成像装置,其特征在于,所述成像装置用于若所述电阻丝与所述透光组件之间的距离大于或者等于预设距离,确定向所述电阻丝通电;若所述电阻丝与所述透光组件之间的距离小于预设距离,确定不向 所述电阻丝通电。
  51. 根据权利要求1所述的成像装置,其特征在于,所述成像装置还包括:
    固定件,连接于所述透光组件和所述包围结构。
  52. 根据权利要求51所述的成像装置,其特征在于,所述热辐射结构还用于对所述固定件进行加热。
  53. 根据权利要求51所述的成像装置,其特征在于,所述固定件包括相对的第一面和第二面,所述第一面与所述透光组件固定连接,所述第二面与所述包围结构固定连接。
  54. 根据权利要求53所述的成像装置,其特征在于,所述第一面包括第一区域和第二区域,所述第一区域与所述透光组件固定连接,所述第二区域用于与所述平台主体的其他部件固定连接。
  55. 根据权利要求51所述的成像装置,其特征在于,所述成像模组包括:
    承载架,与所述包围结构和/或所述固定件连接;
    成像组件,承载于所述承载架上,所述包围结构用于减少所述可移动平台内部的杂散光射入所述成像组件。
  56. 一种用于可移动平台的成像装置,所述可移动平台设有透光组件,其特征在于,所述成像装置设置于所述可移动平台内部,所述成像装置包括:
    成像模组,所述成像模组能够朝向所述透光组件的预设区域,用于感测穿过所述透光组件的环境光线,以获取所述可移动平台所处环境的环境信息;
    包围结构,设于所述成像模组与所述透光组件之间,所述包围结构围合所述透光组件的所述预设区域,所述包围结构用于减少所述可移动平台内部的杂散光射入所述成像模组;
    热辐射结构,设于所述包围结构上,用于在所述包围结构的表面形成热辐射源,以对所述预设区域进行加热;
    其中,所述热辐射结构的不同单位区段的单位热辐射功率基本相同。
  57. 根据权利要求56所述的成像装置,其特征在于,所述热辐射结构的不同单位区段的导体密度及导体厚度基本相同。
  58. 根据权利要求56所述的成像装置,其特征在于,在所述热辐射结构的作用下,所述透光组件的预设区域能够接收基本均匀的单位面积热辐射功率。
  59. 一种用于可移动平台的成像装置,所述可移动平台设有透光组件,其 特征在于,所述成像装置设置于所述可移动平台内部,所述成像装置包括:
    成像模组,所述成像模组能够朝向所述透光组件的预设区域,用于感测穿过所述透光组件的环境光线,以获取所述可移动平台所处环境的环境信息;
    包围结构,设于所述成像模组与所述透光组件之间,所述包围结构围合所述透光组件的所述预设区域,所述包围结构用于减少所述可移动平台内部的杂散光射入所述成像模组;
    热辐射结构,设于所述包围结构上,用于在所述包围结构的表面形成热辐射源,以对所述预设区域进行加热;
    其中,所述热辐射结构与所述包围结构形成一体结构。
  60. 根据权利要求59所述的成像装置,其特征在于,所述热辐射结构通过激光雕刻、化学镀、电镀、喷镀、物理气相沉积、模内装饰成型方式、嵌件成型方式中的至少一种固定于所述包围结构上。
  61. 根据权利要求59所述的成像装置,其特征在于,所述热辐射结构至少部分嵌设于所述包围结构的底壁和/或其他壁内。
  62. 一种可移动平台,其特征在于,包括:
    平台主体;
    权利要求1-61任一项所述的成像装置,设于所述平台主体内部,用于获取所述可移动平台所处环境的环境信息。
  63. 根据权利要求62所述的可移动平台,其特征在于,所述可移动平台包括:可移动车辆、可移动船舶、可移动机器人或者飞行器。
PCT/CN2021/080850 2021-03-15 2021-03-15 成像装置及可移动平台 WO2022193091A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180087142.4A CN116670581A (zh) 2021-03-15 2021-03-15 成像装置及可移动平台
PCT/CN2021/080850 WO2022193091A1 (zh) 2021-03-15 2021-03-15 成像装置及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080850 WO2022193091A1 (zh) 2021-03-15 2021-03-15 成像装置及可移动平台

Publications (1)

Publication Number Publication Date
WO2022193091A1 true WO2022193091A1 (zh) 2022-09-22

Family

ID=83321579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080850 WO2022193091A1 (zh) 2021-03-15 2021-03-15 成像装置及可移动平台

Country Status (2)

Country Link
CN (1) CN116670581A (zh)
WO (1) WO2022193091A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201965385U (zh) * 2011-02-14 2011-09-07 杭州海康威视数字技术股份有限公司 一种防雾摄像机
US20180284398A1 (en) * 2017-04-03 2018-10-04 Denso Corporation Camera module
CN111295761A (zh) * 2017-11-08 2020-06-16 索尼半导体解决方案公司 成像元件、成像元件的制造方法和电子设备
CN111679536A (zh) * 2019-03-11 2020-09-18 宁波舜宇车载光学技术有限公司 镜头及其制造方法
CN111907726A (zh) * 2020-07-30 2020-11-10 中国航天空气动力技术研究院 一种高速飞行器外视相机热防护装置
CN111983766A (zh) * 2019-12-31 2020-11-24 江西联创电子有限公司 光学镜头及成像模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201965385U (zh) * 2011-02-14 2011-09-07 杭州海康威视数字技术股份有限公司 一种防雾摄像机
US20180284398A1 (en) * 2017-04-03 2018-10-04 Denso Corporation Camera module
CN111295761A (zh) * 2017-11-08 2020-06-16 索尼半导体解决方案公司 成像元件、成像元件的制造方法和电子设备
CN111679536A (zh) * 2019-03-11 2020-09-18 宁波舜宇车载光学技术有限公司 镜头及其制造方法
CN111983766A (zh) * 2019-12-31 2020-11-24 江西联创电子有限公司 光学镜头及成像模组
CN111907726A (zh) * 2020-07-30 2020-11-10 中国航天空气动力技术研究院 一种高速飞行器外视相机热防护装置

Also Published As

Publication number Publication date
CN116670581A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US10027860B2 (en) Arrangement for an image recording device in a vehicle
US9669772B2 (en) Imaging device and circuit board therefor
EP3229069B1 (en) Vehicle camera
US8599566B2 (en) Printed circuit board
US11370366B2 (en) Decorative component for vehicle
JP6652031B2 (ja) 車両用装飾部品及びその製造方法
CN109969138B (zh) 车辆用车窗装置的绝热结构
US20200116994A1 (en) Camera module for vehicle
JP6184506B2 (ja) 埋め込み型の不透明エッジ帯を有するポリマー車両ガラス
JP2017183084A (ja) 加熱電極付きガラス板、及び乗り物
JP4348461B2 (ja) 方向指示器を具備した自動車用バックミラー組立体
WO2022193091A1 (zh) 成像装置及可移动平台
JP6607123B2 (ja) 加熱電極付きガラス板、及び乗り物
CN214647952U (zh) 成像装置及可移动车辆
US20230240015A1 (en) Object sensor including deposited heater
CN105318199A (zh) 用于信号指示模块的一个或多个发光二极管的承载器
JP7431755B2 (ja) 温度調節エレメントとセンサ配列
WO2021200590A1 (ja) 防曇発熱体
EP4024076A1 (en) Radome structure having heating and lighting function and method therefor
WO2017125526A1 (en) Electronic device for a display device of a motor vehicle with two circuit boards, display device, motor vehicle as well as production method
CN210225799U (zh) 加热垫,加热和照明单元,玻璃组件和后视镜装置
US11997373B2 (en) Camera module for a vehicle
CN213753020U (zh) 透明天线及汽车玻璃
CN213717047U (zh) 透明天线及汽车玻璃
US11198400B2 (en) Lane departure warning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087142.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930687

Country of ref document: EP

Kind code of ref document: A1