WO2022191277A1 - 成膜装置、成膜方法、酸化ガリウム膜および積層体 - Google Patents

成膜装置、成膜方法、酸化ガリウム膜および積層体 Download PDF

Info

Publication number
WO2022191277A1
WO2022191277A1 PCT/JP2022/010549 JP2022010549W WO2022191277A1 WO 2022191277 A1 WO2022191277 A1 WO 2022191277A1 JP 2022010549 W JP2022010549 W JP 2022010549W WO 2022191277 A1 WO2022191277 A1 WO 2022191277A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
film forming
mist
top plate
Prior art date
Application number
PCT/JP2022/010549
Other languages
English (en)
French (fr)
Inventor
崇寛 坂爪
洋 橋上
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP22767231.8A priority Critical patent/EP4306686A1/en
Priority to CN202280019526.7A priority patent/CN116940708A/zh
Priority to JP2023505629A priority patent/JPWO2022191277A1/ja
Priority to US18/279,082 priority patent/US20240229236A9/en
Priority to KR1020237028407A priority patent/KR20230154178A/ko
Publication of WO2022191277A1 publication Critical patent/WO2022191277A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
    • C23C16/4588Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers

Definitions

  • the present invention relates to a film forming apparatus, a film forming method, a gallium oxide film, and a laminate for forming a film on a substrate using a mist-like raw material solution.
  • PLD pulsed laser deposition
  • MBE molecular beam epitaxy
  • high vacuum film deposition equipment capable of realizing a non-equilibrium state such as sputtering. It has become possible to manufacture oxide semiconductors that could not be manufactured by the melt method or the like.
  • a mist chemical vapor deposition (Mist CVD) method for growing crystals on a substrate using atomized mist-like raw materials has been developed. It has become possible to fabricate gallium oxide ( ⁇ -Ga 2 O 3 ) with a corundum structure. As a semiconductor with a large bandgap, ⁇ -Ga 2 O 3 is expected to be applied to next-generation switching elements capable of achieving high withstand voltage, low loss and high heat resistance.
  • Patent Document 1 describes a tubular furnace type mist CVD apparatus.
  • Patent Document 2 describes a fine channel type mist CVD apparatus.
  • Patent Document 3 describes a linear source type mist CVD apparatus.
  • Patent Document 4 describes a tubular furnace mist CVD apparatus, which differs from the mist CVD apparatus described in Patent Document 1 in that a carrier gas is introduced into the mist generator.
  • Patent Document 5 describes a mist CVD apparatus which is a rotating stage in which a substrate is placed above a mist generator and a susceptor is mounted on a hot plate.
  • JP-A-1-257337 Japanese Patent Application Laid-Open No. 2005-307238 JP 2012-46772 A Patent No. 5397794 JP 2014-63973 A
  • the mist CVD method can form a film at a relatively low temperature, and can also produce a metastable phase crystal structure such as the corundum structure of ⁇ -Ga 2 O 3 .
  • the present inventors found that when mist is supplied from above the substrate, the flow of the mist is disturbed by thermal convection and the mixture of the mist-containing gas and the ambient gas, and the film thickness of the deposited film is reduced. A problem was found that it becomes difficult to maintain in-plane uniformity.
  • the present invention has been made in order to solve the above problems, and a film forming apparatus capable of forming a film having excellent in-plane uniformity of film thickness, to which a mist CVD method can be applied, and a film forming apparatus.
  • the purpose is to provide a method.
  • the present invention has been made to achieve the above objects, and provides a film forming apparatus for heat-treating a misted raw material solution to form a film on a substrate, a misting unit that mists the raw material solution to generate a mist; a carrier gas supply unit for supplying a carrier gas for transporting the mist generated by the mist generating unit; a film forming unit including a mounting unit on which the substrate is mounted, in which the mist conveyed by the carrier gas is supplied onto the substrate; an exhaust unit for exhausting exhaust gas from the film forming unit; with Above the mounting section in the film forming section, a nozzle that supplies the mist onto the substrate; a top plate for rectifying the mist supplied from the nozzle; To provide a film forming apparatus characterized by further comprising:
  • a film having good in-plane uniformity of film thickness can be formed.
  • the rectification effect of the top plate and the synergistic effect of the convection generated by the supply of mist from the nozzle and the exhaust gas from the exhaust part create a uniform gas flow above the substrate along the substrate (parallel to the substrate surface). A flow is generated which is capable of producing a uniform film on the substrate.
  • the nozzle and the top plate may be installed vertically above the mounting portion. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the said top plate shall be installed in contact with the side surface of the said nozzle. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the top plate may be installed in the same plane as the opening surface of the nozzle. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the top plate may be installed such that the bottom surface of the top plate and the surface of the mounting portion on which the substrate is placed are parallel to each other. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the top plate is installed such that a height position difference between the bottom surface of the top plate and the surface of the mounting portion on which the substrate is placed is 0.15 cm or more and 6.05 cm or less. can be This makes it possible to form a film having even better in-plane uniformity of film thickness.
  • the nozzle is installed such that the height position difference between the opening surface of the nozzle and the substrate placed on the placement portion is 0.1 cm or more and 6.0 cm or less. be able to. This makes it possible to form a film having even better in-plane uniformity of film thickness.
  • a moving mechanism for moving the substrate under the nozzle may be further provided. As a result, a film having good in-plane uniformity of film thickness can be formed over a large area.
  • the raw material solution may contain gallium.
  • gallium oxide film having good in-plane uniformity of film thickness can be formed.
  • the raw material solution may contain halogen. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the present invention also provides a film forming method for forming a film on a substrate by heat-treating a raw material solution that has been turned into a mist, comprising: a mist generation step of misting the raw material solution to generate mist; a mist conveying step of conveying the mist to a film forming section by a carrier gas; a film forming step of supplying the mist onto the substrate placed on the mounting portion in the film forming unit, heat-treating the substrate to form a film, and exhausting an exhaust gas; including In the film forming step, By supplying the mist onto the substrate from a nozzle provided above the mounting portion between the top plate provided above the mounting portion and the substrate, the mist is rectified on the substrate. and supplying the mist.
  • a uniform gas flow is generated above the substrate along the substrate (parallel to the substrate surface) due to the synergistic effect of the rectifying effect of the top plate and the convection generated by the supply of mist from the nozzle and the exhaust of the exhaust gas. , which is capable of producing a uniform film on the substrate.
  • the nozzle and the top plate can be installed vertically above the mounting portion. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the top plate can be installed in contact with the side surface of the nozzle. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the top plate can be installed in the same plane as the opening surface of the nozzle. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the top plate can be installed such that the bottom surface of the top plate and the surface of the mounting portion on which the substrate is placed are parallel to each other. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • the top plate may be installed such that the height position difference between the bottom surface of the top plate and the surface of the mounting portion on which the substrate is placed is 0.15 cm or more and 6.05 cm or less. can. This makes it possible to deposit a film having even better in-plane uniformity of film thickness.
  • the nozzle can be installed such that the height position difference between the opening surface of the nozzle and the substrate placed on the placement portion is 0.1 cm or more and 6.0 cm or less. This makes it possible to deposit a film having even better in-plane uniformity of film thickness.
  • the substrate can be moved under the nozzle. As a result, a film having excellent in-plane uniformity in film thickness can be formed over a large area.
  • the raw material solution may contain gallium. Thereby, a gallium oxide film having good in-plane uniformity of film thickness can be formed.
  • the raw material solution may contain halogen. This makes it possible to form a film having good in-plane uniformity of film thickness.
  • E/Q can be 5 or less. This makes it possible to form a film having even better in-plane uniformity of film thickness.
  • the substrate may have a surface area on which a film is formed of 50 cm 2 or more, or a diameter of 4 inches (100 mm) or more. As a result, a film having excellent in-plane uniformity in film thickness can be formed over a large area.
  • the present invention also provides a gallium oxide film having a corundum structure,
  • the gallium oxide film has an area of 50 cm 2 or more or a diameter of 4 inches (100 mm) or more,
  • a gallium oxide film characterized in that the in-plane distribution of the film thickness of the gallium oxide film is ⁇ 3.1% or more and 11.7% or less.
  • Such a gallium oxide film is a large-area film with good in-plane uniformity of film thickness.
  • the present invention provides a laminate of a gallium oxide film having a corundum structure and a substrate,
  • the gallium oxide film of the laminate has an area of 50 cm 2 or more or a diameter of 4 inches (100 mm) or more,
  • a laminated body is provided, wherein the in-plane distribution of the film thickness of the gallium oxide film is ⁇ 3.1% or more and 11.7% or less.
  • Such a laminate is a laminate having a large-area gallium oxide film with good in-plane uniformity of film thickness on a substrate.
  • the film forming apparatus and the film forming method of the present invention it is possible to form a film having good in-plane uniformity of film thickness on a substrate using a mist-like raw material solution. becomes. Further, with the gallium oxide film and laminate of the present invention, it is possible to obtain a large-area gallium oxide film with excellent in-plane uniformity of film thickness.
  • FIG. 1 is a schematic configuration diagram showing an example of a film forming apparatus of the present invention
  • FIG. It is a figure explaining an example of the misting part in this invention. It is a figure explaining an example of the film-forming part in this invention. It is a figure explaining an example of the nozzle in this invention. It is a figure explaining an example when a plurality of nozzles are provided. It is a figure explaining an example of the nozzle provided with several nozzle opening surfaces. It is a figure explaining an example of the film-forming part in this invention. It is a figure explaining an example of the film-forming part in this invention. It is a figure explaining an example of the film-forming part in this invention. It is a figure explaining an example of the film-forming part in this invention. It is a figure explaining an example of the film-forming part in this invention. It is a figure explaining an example of the film-forming part in this invention. It is a figure explaining an example of the film-forming part in this invention. It is a figure explaining an example of the
  • FIG. 10 is a diagram showing a top plate used in Example 10; It is a figure explaining an example of the exhaust part in this invention. It is a figure which shows the top plate (rectangular shape) used in the Example.
  • FIG. 13 is a diagram illustrating an example of a film forming apparatus used in Example 13; 1 is a schematic cross-sectional view showing an example of a gallium oxide film and a laminate of the present invention; FIG.
  • the present invention will be described in detail below, but the present invention is not limited to these.
  • a film forming apparatus and a film forming method capable of forming a film with excellent in-plane uniformity of film thickness have been desired.
  • the inventors of the present invention have found a film forming apparatus for heat-treating a misted raw material solution to form a film on a substrate, wherein the mist is generated by turning the raw material solution into a mist. and a carrier gas supply unit for supplying a carrier gas for conveying the mist generated by the mist generating unit, and a mounting unit for mounting the substrate.
  • a film forming method for forming a film on a substrate by heat-treating a raw material solution that has been turned into a mist comprising: a mist generation step of turning the raw material solution into a mist to generate a mist; and a film forming step of supplying the mist onto the substrate placed on the mounting unit in the film forming unit, heat-treating the film, and exhausting the exhaust gas while forming a film,
  • the mist is supplied onto the substrate from a nozzle provided above the mounting portion between a top plate provided above the mounting portion and the substrate.
  • a gallium oxide film having a corundum structure, the gallium oxide film having an area of 50 cm 2 or more or a diameter of 4 inches (100 mm) or more, and the in-plane thickness of the gallium oxide film A gallium oxide film having a distribution of ⁇ 3.1% or more and 11.7% or less, or a laminate of a gallium oxide film having a corundum structure and a substrate, wherein the oxidation of the laminate
  • the gallium film has an area of 50 cm 2 or more, or a diameter of 4 inches (100 mm) or more, and the in-plane distribution of the film thickness of the gallium oxide film is ⁇ 3.1% or more and 11.7% or less. It was found that a large-area gallium oxide film having good in-plane film thickness uniformity and a laminate having the gallium oxide film on a substrate can be formed by the laminate characterized by let me
  • FIG. 19 shows a schematic cross-sectional view of an example of the gallium oxide film of the invention (and the laminate of the invention).
  • the gallium oxide film 180 having a corundum structure according to the present invention has an area of 50 cm 2 or more, or a diameter of 4 inches (100 mm) or more, and the in-plane distribution of the film thickness is ⁇ 3.1% or more and 11.7%. It has the following features.
  • the upper limit is not particularly limited because the larger the area or diameter of the membrane, the larger the membrane can be obtained. Examples of the upper limit include an area of 750 cm 2 or a diameter of 12 inches (300 mm).
  • an oxide semiconductor film is composed of metal and oxygen.
  • the metal is mainly composed of gallium.
  • the main component here means that 50 to 100% of the metal component is gallium.
  • Metal components other than gallium may include, for example, one or more metals selected from iron, indium, aluminum, vanadium, titanium, chromium, rhodium, iridium, nickel and cobalt.
  • the in-plane distribution of the film thickness is between ⁇ 3.1% and 11.7%, preferably less than ⁇ 8.2%.
  • the gallium oxide film 180 according to the present invention can contain a dopant depending on the application.
  • the dopant is not particularly limited. Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium and niobium, or p-type dopants such as copper, silver, tin, iridium and rhodium.
  • the dopant concentration may be, for example, about 1.0 ⁇ 10 16 to 1.0 ⁇ 10 22 /cm 3 , and even at a low concentration of about 1.0 ⁇ 10 17 /cm 3 or less, about 1.0 ⁇ 10 17 /cm 3 or less.
  • the concentration may be as high as 0 ⁇ 10 20 /cm 3 or more.
  • the thickness of the oxide semiconductor film 180 according to the present invention is not particularly limited. For example, it may be 0.05 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m.
  • a laminated body 181 according to the present invention is characterized in that a gallium oxide film 180 having a corundum structure and having an area of 50 cm 2 or more or a diameter of 4 inches (100 mm) or more is provided on a substrate 110 . .
  • the separate layer is a layer having a composition different from that of the substrate 110 and the outermost gallium oxide film 180, and may be, for example, a crystalline oxide film, an insulating film, a metal film, or the like.
  • the gallium oxide film 180 and laminated body 181 according to the present invention can be used for semiconductor devices by appropriately designing the structure.
  • semiconductor devices for example, Schottky barrier diode (SBD), metal semiconductor field effect transistor (MESFET), high electron mobility transistor (HEMT), metal oxide semiconductor field effect transistor (MOSFET), static induction transistor (SIT), junction field effect
  • SBD Schottky barrier diode
  • MESFET metal semiconductor field effect transistor
  • HEMT high electron mobility transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • SIT static induction transistor
  • Each semiconductor layer can be composed of a transistor (JFET), an insulated gate bipolar transistor (IGBT), a light emitting diode (LED), or the like.
  • IGBT insulated gate bipolar transistor
  • LED light emitting diode
  • the gallium oxide film 180 and laminate 181 according to the present invention can be obtained by forming films using a film forming apparatus according to the present invention, which will be described later.
  • a film forming apparatus and a film forming method according to the present invention will be described.
  • the term "mist” as used in the present invention refers to a general term for fine particles of liquid dispersed in gas, and includes what is called mist, liquid droplets, and the like.
  • FIG. 1 shows an example of a film forming apparatus 101 of the present invention.
  • the film forming apparatus 101 includes a mist forming unit 120 that forms mist from a raw material solution to generate mist, a carrier gas supply unit 130 that supplies a carrier gas for transporting the mist, and a heat treatment of the mist to form a film on a substrate. It has a film forming section 140 , a transporting section 109 that connects the misting section 120 and the film forming section 140 , transports the mist by a carrier gas, and an exhaust section 170 that exhausts the exhaust gas from the film forming section 140 . Further, the operation of the film forming apparatus 101 may be controlled by including a control unit (not shown) that controls the whole or part of the film forming apparatus 101 .
  • the mist generating unit 120 mists the raw material solution to generate mist.
  • the misting means is not particularly limited as long as it can mist the raw material solution, and may be a known misting means, but it is preferable to use a misting means using ultrasonic vibration. This is because mist can be made more stably.
  • An example of such a misting unit 120 is shown in FIG.
  • it may include a mist generation source 104 containing a raw material solution 104a, a container 105 containing a medium capable of transmitting ultrasonic vibrations, such as water 105a, and an ultrasonic transducer 106 attached to the bottom surface of the container 105. good.
  • a mist generation source 104 which is a container containing a raw material solution 104a, is contained in a container 105 containing water 105a using a support (not shown).
  • An ultrasonic transducer 106 is provided at the bottom of the container 105, and the ultrasonic transducer 106 and the oscillator 116 are connected.
  • the oscillator 116 When the oscillator 116 is operated, the ultrasonic vibrator 106 vibrates, ultrasonic waves propagate through the water 105a into the mist generation source 104, and the raw material solution 104a turns into mist.
  • the carrier gas supply unit 130 has a carrier gas source 102a for supplying a carrier gas (main carrier gas), and has a flow control valve 103a for adjusting the flow rate of the main carrier gas sent out from the carrier gas source 102a. good too.
  • a carrier gas source 102b for dilution that supplies a carrier gas for dilution (carrier gas for dilution) as needed, and a flow rate for adjusting the flow rate of the carrier gas for dilution sent out from the carrier gas source 102b for dilution
  • a control valve 103b may also be provided.
  • the type of carrier gas is not particularly limited, and can be appropriately selected according to the film to be deposited.
  • the number of carrier gases may be one, or two or more.
  • a diluent gas obtained by diluting the same gas as the first carrier gas with another gas (for example, diluted 10 times) may be further used as the second carrier gas, and air may also be used.
  • the carrier gas may be supplied at two or more locations instead of at one location.
  • the flow rate of carrier gas is not particularly limited. For example, when forming a film on a substrate with a diameter of 4 inches (10 cm), the flow rate is preferably 1 to 80 L/min, more preferably 4 to 40 L/min.
  • the flow rate Q of the carrier gas is the value measured at 20°C. can be converted to a volumetric flow rate at
  • the film forming section 140 In the film forming section 140 , the mist is heated to cause a thermal reaction to form a film on part or all of the surface of the substrate 110 .
  • the film forming section 140 may be partially or wholly enclosed.
  • the film formation chamber 107 may surround the entire film formation unit 140 .
  • the film forming chamber 107 is not limited to the shape of a complete enclosure, and may have a shape that has a gap and only partially surrounds the film forming portion.
  • the film forming section 140 is equipped with a mounting section 112 on which the substrate is mounted.
  • a substrate 110 is installed in the film forming unit 140, and a hot plate 108 for heating the substrate 110 can be provided.
  • the hot plate 108 may be provided inside the film forming chamber 107 as shown in FIG. 1 or may be provided outside the film forming chamber 107 .
  • the film forming section 140 is provided with a nozzle 150 for supplying mist to the substrate 110 above the mounting section 112, as shown in FIG.
  • the nozzle 150 includes a connecting portion 151 that connects the conveying portion 109 and the nozzle 150, and a nozzle opening surface (simply referred to as an opening surface) 152 for ejecting mist.
  • the number of nozzles and the number of opening surfaces are not particularly limited as long as they are one or more.
  • a plurality of nozzles may be provided as shown in FIG. 5 (nozzle 150a), and a plurality of opening surfaces may be provided as shown in FIG. 6 (nozzle 150b).
  • the angle formed by the plane including the nozzle opening surface 152 and the plane including the substrate 110 is not particularly limited.
  • a nozzle having a nozzle opening surface inclined so that mist can easily flow in a specific direction may be provided.
  • the faces are parallel. This is because a film having better in-plane uniformity of film thickness can be formed with a simpler structure.
  • the area of the nozzle opening surface 152 is S [cm 2 ]
  • the flow rate of the carrier gas is Q [L/min]
  • the difference in height position between the nozzle opening surface 152 and the substrate 110 for example, a point within the nozzle opening surface 152 and
  • H [cm] is the longest distance from the surface of the substrate 110
  • SH/Q is preferably 0.015 or more, preferably 0.1 or more and 20 or less.
  • SH/Q ⁇ 0.015 the film has better in-plane uniformity of film thickness.
  • the velocity of the gas in the direction orthogonal to the substrate on the nozzle opening surface 152 is preferably 0.01 to 8.0 m/s, preferably 0.1 to 2.0 m/s.
  • the area S of the nozzle opening surface 152 is preferably 0.1 or more and 400 or less.
  • the height position difference H between the nozzle opening surface 152 and the substrate 110 is preferably 0.1 or more and 6.0 or less, more preferably 0.2 or more and 3.0 or less. This is because the film to be formed has even better in-plane uniformity of film thickness.
  • the area of the nozzle opening surface 152 is S [cm 2 ] and the area of the substrate is A [cm 2 ], S/A ⁇ 0.3 is preferable, and 0.004 ⁇ S/A ⁇ 0.15 is more preferable. is.
  • S/A ⁇ 0.3 the film has better in-plane uniformity of film thickness.
  • the area A of the substrate is preferably 10 cm 2 or more, more preferably 50 cm 2 or more, and the upper limit is not particularly limited.
  • the larger the area of the substrate the larger the area of the film that can be obtained in one film formation, which is suitable for mass production.
  • the shape of the nozzle opening surface 152 is not particularly limited. A polygonal shape, a circular shape, an elliptical shape, etc.
  • L [cm] is the long axis length of the nozzle opening surface 152
  • R [cm] is the maximum length of the substrate in the nozzle long axis direction
  • L/R ⁇ 1. is good. This is because, if L/R ⁇ 1, a film with good in-plane uniformity of film thickness can be formed on a large-sized substrate.
  • the upper limit of L/R is not particularly limited, it is preferably 3 or less because the larger the L/R, the more mist is not supplied to the substrate.
  • the top plate 153 may be installed above the mounting portion 112 as shown in FIG. 3, and its shape, size, installation position, installation height, installation method, material, and number are not particularly limited.
  • a top plate 153 may be provided between the ceiling of the film forming chamber 107 and the substrate 110 on the mounting portion 112 .
  • the positions of the nozzle 150 and the top plate 153 are not particularly limited as long as they are above the mounting portion 112.
  • the top plate 153 may be provided with a temperature adjustment mechanism (not shown) capable of adjusting the temperature of the surface (bottom surface) of the substrate 110 facing the mounting portion 112 . If the temperature of this surface (bottom surface) is too high, evaporation of the mist will be accelerated, resulting in an increase in the film thickness on the substrate 110 at positions away from the nozzle opening surface 152. If the temperature is too low, mist will be generated. Evaporation slows down, and the film thickness at locations near the nozzle opening surface 152 decreases. It is preferable to control the temperature at about 40 to 120°C.
  • the shape of the top plate may be polygonal, semicircular, circular, or elliptical, but preferably rectangular. This is because the symmetry is good and the in-plane uniformity of the film thickness of the film to be formed is good.
  • the top plate may be in contact with the side surface of the nozzle, or may be provided with a gap.
  • a hole may be formed in the top plate (that is, donut-shaped), and the nozzle may be inserted into the hole.
  • the distance between the top plate and the side surface of the nozzle is preferably 2 cm or less, preferably 1 cm or less, and more preferably 0 cm. This is because the film has excellent in-plane uniformity of film thickness.
  • the distance between the top plate and the nozzle opening surface is 0 cm when the nozzle and the top plate are integrated, and when they are separate, the distance between the top plate and the nozzle opening surface is the shortest distance between the top plate and the nozzle opening surface.
  • the value is the value after subtracting the thickness. For example, if the distance between the top plate and the nozzle opening surface is 2.5 cm, and the wall surface of the nozzle is included in the shortest distance, and the wall thickness of the nozzle is 0.5 cm, the shortest distance between the top plate and the nozzle opening surface is 2.0 cm.
  • the top plate may be suspended from the film forming chamber by fixtures 154a or the like like the top plate 153a in FIG. is preferred. This is because the formed film has good in-plane uniformity of film thickness.
  • part or the whole of the top plate may be curved or bent so that the mist can easily flow out in a specific direction, like the top plate 153b in FIG. 8 (film formation unit 140b).
  • the top plate 153 is installed such that the surface of the mounting portion 112 on which the substrate 110 is placed and the bottom surface of the top plate 153 are parallel to each other. This is because the formed film has good in-plane uniformity of film thickness.
  • the top plate may be installed in the same plane as the opening surface of the nozzle, or the opening surface of the nozzle 150 may be placed on the same plane as the top plate 153c suspended from the fixture 154b in FIG. 9 (film formation unit 140c). It may be closer to the substrate 110 than the opening surface of the nozzle 150, like the top plate 153d in FIG. 10 (film formation unit 140d). However, it is more preferable to be installed in the same plane as the opening surface of the nozzle 150 . This is because the formed film has better in-plane uniformity of film thickness.
  • a position adjustment mechanism (not shown) that can appropriately adjust the positional difference I [cm] may be provided.
  • the thickness of the top plate is not particularly limited, it is preferably 2 mm or more. This is because deformation due to heating during film formation is suppressed.
  • the number of top plates is not particularly limited. As shown in FIG. 3, one top plate may be provided for one nozzle, or a plurality of top plates (here, two top plates) may be provided for one nozzle as shown in FIG. A plate 153e) may be provided. Also, the material of the top plate is not particularly limited. Polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, metals such as iron, aluminum, stainless steel, and gold, quartz, and glass can be considered.
  • the height difference (for example, the shortest height difference) I [cm] between the bottom surface of the top plate 153 and the substrate mounting surface of the mounting portion 112 is not particularly limited. 0.15 cm or more and 6.05 cm or less, preferably 0.5 cm or more and 3.0 cm or less, and more preferably 1.0 cm or more and 2.0 cm or less. This is because the film to be formed has even better in-plane uniformity of film thickness.
  • the area of the bottom surface of the top plate (the total area when multiple top plates are provided) is B [cm 2 ] and the area of the substrate is A [cm 2 ], B/A ⁇ 0.5. preferably, and more preferably 1 or more.
  • B/A When B/A ⁇ 0.5, the film has good in-plane uniformity of film thickness. Also, B should be 40 or more. Within these numerical ranges, a film having even better in-plane film thickness uniformity is formed. Also, the upper limits of B/A and B are not particularly limited. This is because, if the value is larger than the above value, the rectifying effect of the top plate is exhibited. However, B/A is preferably 100 or less. As an example of the upper limit of B, 3000 can be used. This is to prevent the device from becoming unnecessarily large.
  • the film forming section 140 can be provided with a moving mechanism for moving the substrate 110 below the nozzle 150 .
  • FIG. 12 shows an example of the film forming section 140f provided with the moving mechanism 160. As shown in FIG.
  • the direction in which the substrate is moved is not particularly limited.
  • FIGS. 13 and 14 show views of the film forming section 140 having the moving mechanism 160 as viewed from above the mounting section.
  • a moving stage 161a on which substrate 110 and hot plate 108 are placed is provided, and substrate 110 and hot plate 108 are placed under nozzle 150 and two rectangular top plates 153f.
  • substrate 110 and hot plate 108 are moved by moving stage 161b on which substrate 110 and hot plate 108 are mounted, as if nozzle 150 and the ring were split in half.
  • a mechanism for rotating the substrate may be provided to rotate the substrate.
  • a plurality of substrates 110 and nozzles 150 may be placed on the film forming section 140 as shown in FIG. 14, or a plurality of substrates may be placed on the film forming section 140 of FIG. With such a structure, films can be formed on many substrates at once while maintaining the in-plane uniformity of the film thickness, so that it is more suitable for mass production.
  • the speed at which the substrate is moved and the moving range are not particularly limited.
  • 0.5 times or more is preferable, and 1 time or more is more preferable.
  • the number of times is not particularly limited, but if the number of times increases, the fixation of the substrate becomes unstable due to inertial force. More specifically, in the case of the moving mechanism as shown in FIG.
  • v/D [/min] is 0, where v [mm/min] is the moving speed of the substrate with respect to the width D [mm] of moving the substrate. It is preferably 0.1 or more, preferably 0.5 or more and 120 or less, more preferably 1 to 60. D is not particularly limited. For example, D is preferably the diameter [mm] or more of the substrate (100 or more if the diameter of the substrate is 4 inches), and the upper limit is not particularly limited. If the size is increased, films can be formed on a large number of substrates per nozzle. However, since the film formation speed per substrate decreases, it is preferable to limit the number of substrates on which films are formed per nozzle to 1000 mm or less, which is more excellent in productivity. v is not particularly limited.
  • the speed is preferably 0.1 rpm or more, preferably 0.5 to 120 rpm, more preferably 1 to 60 rpm.
  • the mist supplied on the substrate 110 together with the carrier gas is used for film formation, and the subsequent gas (called exhaust gas, mist not used for film formation) is used for film formation.
  • gas generated during film formation, carrier gas, etc. is provided so as to flow to the outside of the substrate 110 . be done. Due to the rectifying effect of the top plate 153 and the synergistic effect of the convection generated by the supply of mist from the nozzle 150 and the exhaust of the exhaust gas from the exhaust part 170, the gas is uniformly distributed above the substrate 110 in parallel with the surface of the substrate 110. A flow is generated and a uniform film can be produced on the substrate 110 .
  • the shape and configuration of the exhaust unit 170 are not particularly limited as long as the exhaust unit 170 can exhaust the exhaust gas from the film forming unit 140 .
  • an exhaust port 111 may be provided on the side of the substrate 110 in the deposition chamber 107 to perform forced exhaust.
  • a configuration in which the carrier gas or the like supplied between the top plate 153 and the substrate 110 from the nozzle 150 flows to the outside of the substrate 110 is particularly preferable.
  • the outside of the substrate 110 here means a region that does not include the substrate 110 in the xy plane for all z, with the normal direction of the plane including the substrate surface being the z-axis.
  • the exhaust port 111 provided in the film forming chamber 107 can be used as described above, or the exhaust port 111 can be additionally provided with means for forced exhaust. can.
  • An example of such an exhaust portion 170 is shown in FIG.
  • an exhaust unit 172 provided outside the film formation chamber 107 forces the gas in the film formation chamber 107 to exhaust from an exhaust port 111 provided on the side surface of the film formation chamber 107 through an exhaust duct 171.
  • the exhaust unit 172 is provided with an exhaust flow control valve 173 for adjusting the exhaust flow rate, so that the exhaust flow rate can be adjusted.
  • the flow rate of the exhaust gas is not particularly limited, preferably, when the flow rate of the carrier gas supplied from the nozzle 150 is Q [L/min] and the amount of exhaust gas discharged from the exhaust section 170 is E [L/min], E/Q is 5 or less, more preferably 0.1 or more and 1 or less. This is because the film has excellent in-plane uniformity of film thickness. Also, at this time, E exhausted from the exhaust port 170 is measured at 20° C. using a flow meter at the exhaust port 111, or measured using an anemometer and the linear velocity and the area of the opening surface of the exhaust port 111.
  • the shape of the exhaust port 111 is not particularly limited and may be circular, rectangular, or the like.
  • the exhaust part 170 may be provided at one location as shown in FIG. 3, or at two or more locations as shown in FIG. It is preferable to provide them so as to be symmetrical to each other. This is because a film having good in-plane uniformity of film thickness can be formed.
  • the exhaust section 170 may be provided with a temperature control mechanism (not shown) for controlling the temperature of a part or the whole of the exhaust section in order to suppress deposition of solids in the exhaust section.
  • Such a temperature control mechanism suppresses deposition of solids in the exhaust section 170, making it easier to control the exhaust flow rate.
  • the material of the member constituting the exhaust part 170 is not particularly limited, and polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, iron, aluminum, stainless steel, gold, etc. metals, quartz, boron nitride, and the like. It is preferably made of boron nitride. This is because it is possible to suppress non-uniform exhaust gas flow due to rusting and deposition of solids due to unintended reaction with unreacted raw materials.
  • the exhaust port 111 (exhaust section 170) may be moved by providing the exhaust port 111 on the moving mechanism 160 or the like.
  • the film formation chamber 107 may be of a shape that completely surrounds the entirety and has an exhaust port 111 on the wall surface thereof, or it may be one that partially surrounds (that is, has a gap), An exhaust portion (exhaust port 111) may be provided separately from the gap. Especially in the latter case, a film having even better in-plane uniformity of film thickness can be obtained.
  • the thermal reaction of the mist in the film forming section 140 is not particularly limited as long as the mist reacts by heating.
  • the heating temperature can be in the range of 120-600°C, preferably in the range of 200-600°C, more preferably in the range of 300-550°C.
  • the heating temperature is T [°C]
  • the area of the nozzle opening surface 152 is S [cm 2 ]
  • the flow rate of the carrier gas is Q [L/min]
  • ST/Q is preferably 40 or more, more preferably 100 or more. 2000 or less.
  • ST/Q ⁇ 40 the film has better in-plane uniformity of film thickness.
  • the thermal reaction may be performed under vacuum, under a non-oxygen atmosphere, under a reducing gas atmosphere, under an air atmosphere, or under an oxygen atmosphere, and may be appropriately set according to the film to be deposited.
  • the reaction pressure may be under atmospheric pressure, under increased pressure or under reduced pressure, but film formation under atmospheric pressure is preferable because the apparatus configuration can be simplified.
  • the conveying section 109 connects the mist forming section 120 and the film forming section 140 . Mist is transported by the carrier gas from the mist generation source 104 of the mist generating unit 120 to the nozzle 150 of the film forming unit 140 via the transport unit 109 .
  • the transport section 109 can be, for example, a supply pipe 109a.
  • As the supply pipe 109a for example, a quartz pipe or a resin tube can be used.
  • the raw material solution (aqueous solution) 104a is not particularly limited as long as it contains a material that can be misted, and may be an inorganic material or an organic material.
  • a metal or metal compound solution is preferably used as the raw material solution, and contains one or more metals selected from gallium, iron, indium, aluminum, vanadium, titanium, chromium, rhodium, nickel and cobalt. can be used.
  • the raw material solution is not particularly limited as long as the metal solution can be misted, but as the raw material solution, a metal in the form of a complex or a salt dissolved or dispersed in an organic solvent or water can be preferably used. can.
  • Examples of forms of the complex include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like.
  • Salt forms include, for example, metal chloride salts, metal bromide salts, and metal iodide salts.
  • a solution obtained by dissolving the above metal in hydrobromic acid, hydrochloric acid, hydroiodic acid, or the like can also be used as an aqueous salt solution.
  • the solute concentration is preferably 0.01 to 1 mol/L.
  • the raw material solution may be mixed with additives such as those containing halogen (for example, hydrohalic acid) and oxidizing agents.
  • the hydrohalic acid includes, for example, hydrobromic acid, hydrochloric acid, hydroiodic acid, etc. Among them, hydrobromic acid and hydroiodic acid are preferable.
  • the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), benzoyl peroxide (C 6 H 5 CO) 2 O 2 and the like.
  • the raw material solution may contain a dopant.
  • a dopant is not specifically limited.
  • Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium or niobium, or p-type dopants such as copper, silver, tin, iridium and rhodium.
  • the dopant concentration may be, for example, about 1.0 ⁇ 10 ⁇ 9 to 1.0 mol/L, and even at a low concentration of about 1.0 ⁇ 10 ⁇ 7 mol/L or less, about 0.01 mol/L. /L or higher concentration.
  • the substrate 110 is not particularly limited as long as it can form a film and can support a film.
  • the material of the substrate 110 is also not particularly limited, and a known substrate can be used, and it may be an organic compound or an inorganic compound.
  • Lithium oxide, lithium tantalate and the like are included, but not limited to these.
  • the thickness of the substrate is not particularly limited, but preferably 10 to 2000 ⁇ m, more preferably 50 to 800 ⁇ m.
  • Film formation may be performed directly on the substrate, or may be laminated on an intermediate layer formed on the substrate.
  • the intermediate layer is not particularly limited, and can be composed mainly of, for example, an oxide containing any one of aluminum, titanium, vanadium, chromium, iron, gallium, rhodium, indium, and iridium.
  • the substrate can have a surface area of 50 cm 2 or more, or a substrate with a diameter of 4 inches (100 mm) or more, and a film with good in-plane uniformity of film thickness can be used. can be deposited over a large area.
  • the upper limits of the area and diameter of the substrate are not particularly limited, for example, the area can be 750 cm 2 or the diameter can be 12 inches (300 mm).
  • the raw material solution 104a is accommodated in the mist generation source 104 of the mist generating section 120, the substrate (crystalline substrate) 110 is placed on the hot plate 108, and the hot plate 108 is operated.
  • the flow control valves 103a and 103b are opened to supply the carrier gas from the carrier gas source 102a (main carrier gas) and the carrier gas source 102b for dilution (carrier gas for dilution) into the film formation chamber 107, and The atmosphere of 107 is sufficiently replaced with the carrier gas, and the flow rate of the main carrier gas and the flow rate of the diluting carrier gas are adjusted and controlled.
  • the ultrasonic oscillator 106 is vibrated, and the vibration is propagated to the raw material solution 104a through the water 105a, thereby misting the raw material solution 104a and generating mist.
  • the mist transporting step of transporting the mist by the carrier gas the mist is transported by the carrier gas from the misting section 120 through the transporting section 109 to the film forming section 140 and introduced into the film forming chamber 107 .
  • mist is emitted between the substrate 110 and the top plate 153 provided above the mounting portion 112 from the nozzle 150 provided above the mounting portion 112 (the hot plate 108 on which the substrate 110 is placed). supply.
  • the exhaust gas is rectified by the installed top plate 153 and the exhaust from the exhaust unit 170 (exhaust port 111 etc.) and supplied onto the substrate 110, and is thermally treated in the film forming chamber 107 by the heat of the hot plate 108 and thermally reacts. , is deposited on the substrate 110 .
  • annealing may be performed after film formation.
  • the temperature of the annealing treatment is not particularly limited, but is preferably 600° C. or lower, more preferably 550° C. or lower. This is because the crystallinity of the film is not impaired.
  • the annealing treatment time is not particularly limited, but is preferably 10 seconds to 10 hours, more preferably 10 seconds to 1 hour.
  • Example 1 a film forming apparatus as shown in FIG. 1 was used.
  • One top plate 153 is fixed in the same plane as the nozzle opening surface 152 so as to be in contact with the side surface of the nozzle 150 .
  • B the area of the top plate
  • I 0.95.
  • the thickness of the top plate is 4 mm.
  • the top plate 153 has a rectangular shape (also referred to as a top plate 153i) as shown in FIG. 17, and the nozzle 150 is inserted into a hole formed in the center.
  • Gallium iodide was dissolved in water to prepare a 0.05 mol/L aqueous solution, which was used as the raw material solution 104a.
  • the raw material solution 104 a obtained as described above was accommodated in the mist generation source 104 .
  • the temperature of the solution at this time was 25°C.
  • a 4-inch (100 mm diameter) c-plane sapphire substrate as substrate 110 was placed on hot plate 108 in deposition chamber 107, and hot plate 108 was operated to raise the temperature to 500.degree.
  • the flow control valves 103a and 103b are opened to supply nitrogen gas as a carrier gas into the film forming chamber 107 from the carrier gas source 102a (main carrier gas) and the dilution carrier gas supply source 102b (dilution carrier gas).
  • the atmosphere in the film forming chamber 107 was sufficiently replaced with these carrier gases, and the flow rate of the main carrier gas and the diluent carrier gas were adjusted to 12 L/min and 12 L/min, respectively.
  • the ultrasonic vibrator 106 was oscillated at 2.4 MHz, and the vibration was propagated to the raw material solution 104a through the water 105a, thereby misting the raw material solution 104a to generate mist.
  • This mist was supplied to the substrate 110 through the supply pipe 109a and the nozzle 150 by carrier gas.
  • As the nozzle 150 a nozzle having a rectangular nozzle opening surface 152 is used.
  • H [cm] is the difference in the height position of (the longest distance among the distances between a point in the nozzle opening surface 152 and the surface of the substrate 110)
  • gallium oxide ⁇ -Ga 2 O having a corundum structure on the substrate 110. 3
  • the film formation time was 30 minutes.
  • Example 2 The area S of the nozzle opening surface 152 is 6.0 cm 2 , the height difference H between the nozzle opening surface 152 and the substrate 110 is 2.0 cm, and the height between the bottom surface of the top plate 153 and the mounting surface of the mounting portion 112 is 2.0 cm.
  • Example 3 The procedure was the same as in Example 1, except that the fixing position of the top plate was changed and the shortest distance I between the placing portion 112 and the bottom surface of the top plate 153 was set to 2.05 cm.
  • Example 4 As shown in FIG. 8, the same procedure as in Example 1 was performed except that a curved top plate 153b was used. At this time, the height position difference I between the mounting surface of the mounting portion 112 and the center of the bottom surface of the top plate 153b is 0.95, and the height difference between the end portion of the bottom surface of the top plate 153b and the mounting surface of the mounting portion is 0.95. The height position difference was 1.25 cm.
  • Example 7 The area S of the nozzle opening surface 152 is 6.0 cm 2 , the height difference H between the nozzle opening surface 152 and the substrate 110 is 6.0 cm, and the height between the bottom surface of the top plate 153 and the mounting surface of the mounting portion 112 is 6.0 cm.
  • Example 8 The aluminum acetylacetonate complex was dissolved in a hydrochloric acid solution to prepare a 0.05 mol/L solution, which was carried out in the same manner as in Example 1 except that it was used as the raw material solution.
  • Example 9 Example 1 except that gallium nitrate was dissolved in water to prepare a 0.05 mol / L solution and used as a raw material solution, E was 188.4 L / min, and E / Q was 7.9. did the same.
  • Example 13 Example 12 was repeated except that an exhaust port 111 was provided above the nozzle, E was set to 120 L/min, and E/Q was set to 5, as shown in FIG. Mist and carrier gas are supplied from the nozzle to form a film on the substrate, and the exhaust gas is exhausted from the exhaust port 111 through the gap between the top plate and the side surface of the nozzle.
  • the placement section for placing the substrate which is provided in the film formation section and includes the mist generating section, the carrier gas supply section, the film formation section, and the exhaust section.
  • the in-plane uniformity of the film thickness can be improved. Do you get it.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Magnetic Heads (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemically Coating (AREA)

Abstract

本発明は、ミスト化された原料溶液を熱処理して基板上に成膜を行う成膜装置であって、前記原料溶液をミスト化してミストを発生させるミスト化部と、該ミスト化部で発生させた前記ミストを搬送するキャリアガスを供給するキャリアガス供給部と、前記基板を載置する載置部を内部に備え、前記キャリアガスにより搬送された前記ミストが前記基板上に供給される成膜部と、該成膜部から排気ガスを排気する排気部と、を備え、前記成膜部内の前記載置部の上方に、前記基板上へ前記ミストを供給するノズルと、該ノズルから供給された前記ミストを整流する天板と、を更に備えるものである成膜装置である。これにより、ミストCVD法が適用可能であり、膜厚の面内均一性に優れた膜を成膜可能な成膜装置、及び、成膜方法が提供される。

Description

成膜装置、成膜方法、酸化ガリウム膜および積層体
 本発明は、ミスト状の原料溶液を用いて基板上に成膜を行う成膜装置、成膜方法、酸化ガリウム膜および積層体に関する。
 従来、パルスレーザー堆積法(Pulsed laser deposition:PLD)、分子線エピタキシー法(Molecular beam epitaxy:MBE)、スパッタリング法等の非平衡状態を実現できる高真空成膜装置が開発されており、これまでの融液法等では作製不可能であった酸化物半導体の作製が可能となってきた。また、霧化されたミスト状の原料を用いて、基板上に結晶成長させるミスト化学気相成長法(Mist Chemical Vapor Deposition:Mist CVD。以下、「ミストCVD法」ともいう。)が開発され、コランダム構造を有する酸化ガリウム(α-Ga)の作製が可能となってきた。α-Gaは、バンドギャップの大きな半導体として、高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子への応用が期待されている。
 ミストCVD法に関して、特許文献1には、管状炉型のミストCVD装置が記載されている。特許文献2には、ファインチャネル型のミストCVD装置が記載されている。特許文献3には、リニアソース型のミストCVD装置が記載されている。特許文献4には、管状炉のミストCVD装置が記載されており、特許文献1に記載のミストCVD装置とは、ミスト発生器内にキャリアガスを導入する点で異なっている。特許文献5には、ミスト発生器の上方に基板を設置し、さらにサセプタがホットプレート上に備え付けられた回転ステージであるミストCVD装置が記載されている。
特開平1-257337号公報 特開2005-307238号公報 特開2012-46772号公報 特許第5397794号 特開2014-63973号公報
 ミストCVD法は、他のCVD法とは異なり比較的低温で成膜を行うことができ、α-Gaのコランダム構造のような準安定相の結晶構造も作製可能である。
 しかしながら、本発明者らは、基板の上方からミストを供給した際に、熱対流やミストを含有するガスと周囲気体の混合によって、ミストの流れが乱され、成膜される膜の膜厚の面内均一性を維持するのが困難になるという問題を見出した。
 本発明は、上記問題を解決するためになされたものであり、ミストCVD法が適用可能であり、膜厚の面内均一性に優れた膜を成膜可能な成膜装置、及び、成膜方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、ミスト化された原料溶液を熱処理して基板上に成膜を行う成膜装置であって、
 前記原料溶液をミスト化してミストを発生させるミスト化部と、
 該ミスト化部で発生させた前記ミストを搬送するキャリアガスを供給するキャリアガス供給部と、
 前記基板を載置する載置部を内部に備え、前記キャリアガスにより搬送された前記ミストが前記基板上に供給される成膜部と、
 該成膜部から排気ガスを排気する排気部と、
を備え、
 前記成膜部内の前記載置部の上方に、
 前記基板上へ前記ミストを供給するノズルと、
 該ノズルから供給された前記ミストを整流する天板と、
を更に備えるものであることを特徴とする成膜装置を提供する。
 このような成膜装置によれば、膜厚の面内均一性が良好な膜を成膜できるものとなる。天板による整流効果と、ノズルからのミストの供給と排気部からの排気ガスの排気とにより発生する対流の相乗効果により、基板上方に基板に沿った(基板表面に平行な)均一なガスの流れが発生し、基板上に均一な膜を生成することができるものとなる。
 そして、前記ノズルと前記天板が、前記載置部の鉛直上方に設置されているものとすることができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できるものとなる。
 また、前記天板が、前記ノズルの側面に接して設置されているものとすることができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できるものとなる。
 また、前記天板が、前記ノズルの開口面と同一平面内に設置されているものとすることができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できるものとなる。
 また、前記天板の底面と、前記載置部の前記基板が載置される面とが平行になるように前記天板が設置されているものとすることができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できるものとなる。
 また、前記天板の底面と、前記載置部の前記基板が載置される面との高さ位置の差が0.15cm以上6.05cm以下となるように前記天板が設置されているものとすることができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できるものとなる。
 また、前記ノズルの開口面と、前記載置部に載置された前記基板との高さ位置の差が0.1cm以上6.0cm以下となるように前記ノズルが設置されているものとすることができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できるものとなる。
 また、前記天板の底面の面積をB[cm]としたとき、B≧40のものとすることができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できるものとなる。
 また、前記基板の面積をA[cm]、前記天板の底面の面積をB[cm]としたとき、B/A≧0.5のものとすることができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できるものとなる。
 また、前記ノズルの下方で前記基板を移動させる移動機構を更に備えるものとすることができる。
 これにより、膜厚の面内均一性の良好な膜を大面積に成膜できるものとなる。
 また、前記原料溶液がガリウムを含むものとすることができる。
 これにより、膜厚の面内均一性が良好な酸化ガリウム膜が成膜できるものとなる。
 前記原料溶液がハロゲンを含むものとすることができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できるものとなる。
 また本発明は、ミスト化した原料溶液を熱処理して基板上に成膜を行う成膜方法であって、
 前記原料溶液をミスト化してミストを発生させるミスト発生工程と、
 前記ミストをキャリアガスにより成膜部に搬送するミスト搬送工程と、
 前記成膜部内の載置部に載置した前記基板上に前記ミストを供給して熱処理し成膜を行いつつ排気ガスを排気する成膜工程と、
を含み、
 前記成膜工程において、
 前記基板上への前記ミストの供給を、前記載置部の上方に備えたノズルから、前記載置部の上方に備えた天板と前記基板の間に行うことで、前記基板上に整流された前記ミストを供給することを特徴とする成膜方法を提供する。
 これにより、膜厚の面内均一性が良好な膜を成膜することができる。天板による整流効果と、ノズルからのミストの供給と排気ガスの排気とにより発生する対流の相乗効果により、基板上方に基板に沿った(基板表面に平行な)均一なガスの流れが発生し、基板上に均一な膜を生成することができるものとなる。
 また、前記ノズルと前記天板を、前記載置部の鉛直上方に設置することができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できる。
 また、前記天板を、前記ノズルの側面に接して設置することができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できる。
 また、前記天板を、前記ノズルの開口面と同一平面内に設置することができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できる。
 また、前記天板の底面と、前記載置部の前記基板が載置される面とが平行になるように前記天板を設置することができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できる。
 また、前記天板の底面と、前記載置部の前記基板が載置される面との高さ位置の差が0.15cm以上6.05cm以下となるように前記天板を設置することができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できる。
 また、前記ノズルの開口面と、前記載置部に載置された前記基板との高さ位置の差が0.1cm以上6.0cm以下となるように前記ノズルを設置することができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できる。
 また、前記天板の底面の面積をB[cm]としたとき、B≧40とすることができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できる。
 また、前記基板の面積をA[cm]、前記天板の底面の面積をB[cm]としたとき、B/A≧0.5とすることができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できる。
 また、前記成膜工程において、前記ノズルの下方で前記基板を移動させることができる。
 これにより、膜厚の面内均一性の良好な膜を大面積に成膜できる。
 また、前記原料溶液をガリウムを含むものとすることができる。
 これにより、膜厚の面内均一性が良好な酸化ガリウム膜を成膜できる。
 また、前記原料溶液をハロゲンを含むものとすることができる。
 これにより、膜厚の面内均一性が良好な膜を成膜できる。
 また、前記ノズルから供給する前記キャリアガスの流量をQ[L/分]、前記排気ガスの流量をE[L/分]としたとき、E/Qを5以下とすることができる。
 これにより、膜厚の面内均一性が更に良好な膜を成膜できる。
 また、前記基板を、成膜される面の面積が50cm以上のもの、または、直径が4インチ(100mm)以上のものとすることができる。
 これにより、膜厚の面内均一性の良好な膜を大面積に成膜できる。
 また、本発明は、コランダム構造を有する酸化ガリウム膜であって、
 該酸化ガリウム膜は、面積が50cm以上、又は、直径が4インチ(100mm)以上のものであり、
 前記酸化ガリウム膜の膜厚の面内分布は±3.1%以上11.7%以下であることを特徴とする酸化ガリウム膜を提供する。
 このような酸化ガリウム膜は、膜厚の面内均一性が良好な大面積の膜である。
 また、本発明は、コランダム構造を有する酸化ガリウム膜と基板の積層体であって、
 該積層体の前記酸化ガリウム膜は、面積が50cm以上、又は、直径が4インチ(100mm)以上のものであり、
 前記酸化ガリウム膜の膜厚の面内分布が±3.1%以上11.7%以下であることを特徴とする積層体を提供する。
 このような積層体は、基板上に、膜厚の面内均一性が良好な大面積の酸化ガリウム膜を有する積層体である。
 以上のように、本発明の成膜装置および成膜方法であれば、ミスト状の原料溶液を用いて、基板上に、膜厚の面内均一性が良好な膜を成膜することが可能となる。
 また、本発明の酸化ガリウム膜や積層体であれば、膜厚の面内均一性が良好な大面積の酸化ガリウム膜を得ることができる。
本発明の成膜装置の一例を示す概略構成図である。 本発明におけるミスト化部の一例を説明する図である。 本発明における成膜部の一例を説明する図である。 本発明におけるノズルの一例を説明する図である。 複数のノズルを備えている場合の一例を説明する図である。 複数のノズル開口面を備えたノズルの一例を説明する図である。 本発明における成膜部の一例を説明する図である。 本発明における成膜部の一例を説明する図である。 本発明における成膜部の一例を説明する図である。 本発明における成膜部の一例を説明する図である。 本発明における成膜部の一例を説明する図である。 本発明における基板の移動機構の一例を説明する図である。 ノズルの下を往復運動する移動機構の一例を説明する図である。 ノズルの下を一方向に回転移動する移動機構の一例を説明する図である。 実施例10で用いた天板を示す図である。 本発明における排気部の一例を説明する図である。 実施例で用いた天板(長方形形状)を示す図である。 実施例13で用いた成膜装置の一例を説明する図である。 本発明の酸化ガリウム膜および積層体の一例を示す概略断面図である。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、ミストCVD法において、膜厚の面内均一性が良好な膜を成膜できる成膜装置、及び、成膜方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、ミスト化された原料溶液を熱処理して基板上に成膜を行う成膜装置であって、前記原料溶液をミスト化してミストを発生させるミスト化部と、該ミスト化部で発生させた前記ミストを搬送するキャリアガスを供給するキャリアガス供給部と、前記基板を載置する載置部を内部に備え、前記キャリアガスにより搬送された前記ミストが前記基板上に供給される成膜部と、該成膜部から排気ガスを排気する排気部と、を備え、前記成膜部内の前記載置部の上方に、前記基板上へ前記ミストを供給するノズルと、該ノズルから供給された前記ミストを整流する天板と、を更に備えるものであることを特徴とする成膜装置によって、膜厚の面内均一性が優れた膜を成膜できるものとなることを見出し、本発明を完成した。
 また、ミスト化した原料溶液を熱処理して基板上に成膜を行う成膜方法であって、前記原料溶液をミスト化してミストを発生させるミスト発生工程と、前記ミストをキャリアガスにより成膜部に搬送するミスト搬送工程と、前記成膜部内の載置部に載置した前記基板上に前記ミストを供給して熱処理し成膜を行いつつ排気ガスを排気する成膜工程と、を含み、前記成膜工程において、前記基板上への前記ミストの供給を、前記載置部の上方に備えたノズルから、前記載置部の上方に備えた天板と前記基板の間に行うことで、前記基板上に整流された前記ミストを供給することを特徴とする成膜方法によって、膜厚の面内均一性が優れた膜を成膜できることを見出し、本発明を完成した。
 また、コランダム構造を有する酸化ガリウム膜であって、該酸化ガリウム膜は、面積が50cm以上、又は、直径が4インチ(100mm)以上のものであり、前記酸化ガリウム膜の膜厚の面内分布は±3.1%以上11.7%以下であることを特徴とする酸化ガリウム膜や、さらには、コランダム構造を有する酸化ガリウム膜と基板の積層体であって、該積層体の前記酸化ガリウム膜は、面積が50cm以上、又は、直径が4インチ(100mm)以上のものであり、前記酸化ガリウム膜の膜厚の面内分布が±3.1%以上11.7%以下であることを特徴とする積層体によって、膜厚の面内均一性が良好な大面積の酸化ガリウム膜や、該酸化ガリウム膜を基板上に有する積層体とすることができることを見出し、本発明を完成させた。
 以下、図面を参照して説明する。
(酸化ガリウム膜)
 図19に本発明の酸化ガリウム膜(および本発明の積層体)の一例の概略断面図を示す。
 本発明に係るコランダム構造を有する酸化ガリウム膜180は、面積が50cm以上、又は、直径が4インチ(100mm)以上であり、膜厚の面内分布が±3.1%以上11.7%以下である点に特徴を有している。なお、膜の面積や直径が大きいほど大面積のものを得られるので上限は特に限定されないが、上限例としては、面積が750cm、又は、直径が12インチ(300mm)とすることができる。一般に酸化物半導体膜は金属と酸素から構成されるが、本発明に係る酸化ガリウム膜180において、金属はガリウムを主成分とするものである。ここでいう主成分とは、金属成分のうち、50~100%がガリウムであることを意味する。ガリウム以外の金属成分としては、例えば、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、イリジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含んでもよい。
 膜厚の面内分布は±3.1%以上11.7%以下であるが、±8.2%未満のものがさらに好ましい。ここで、本発明でいう膜厚の面内分布とは、例えば、面内の9点以上の点を測定して、
 膜厚分布[±%]=(最大膜厚-最小膜厚)/(平均膜厚)/2×100
として算出したものとすることができる。膜厚は段差式膜厚計(段差計)、光干渉式膜厚計などで測定することができるが、各箇所の膜厚を測定できれば、測定法は特に限定されない。
 従来の成膜装置や成膜方法で膜厚の面内分布が悪化する(大きくなる)理由としては、ミストの供給法や、供給量、基板周囲の構造などによりミストの供給量が不均一となること、基板に温度分布が生じることなどが考えられた。そこで、本発明者が鋭意調査を行い、試行錯誤を重ねた結果、後述する成膜装置のように基板の周囲構造を適切なものとすることで、供給量が均一になり、膜厚分布の面内均一性を良好にできるものと考え、上記のような膜厚の面内分布の均一性の良い大面積の膜を得ることに初めて成功した。
 また、本発明に係る酸化ガリウム膜180中には、用途に応じてドーパントを含ませることができる。前記ドーパントは特に限定されない。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム及びニオブ等のn型ドーパント、又は、銅、銀、スズ、イリジウム及びロジウム等のp型ドーパントなどが挙げられる。ドーパントの濃度は、例えば、約1.0×1016~1.0×1022/cmであってもよく、約1.0×1017/cm以下の低濃度にしても、約1.0×1020/cm以上の高濃度としてもよい。
 本発明に係る酸化物半導体膜180において膜厚は特に限定されない。例えば、0.05~100μmであってもよく、好ましくは0.1~50μmであり、より好ましくは0.5~20μmである。
(積層体)
 本発明に係る積層体181は、基板110上に、面積が50cm以上、又は、直径が4インチ(100mm)以上の、コランダム構造を有する酸化ガリウム膜180を備える点に特徴を有している。
 基板110と酸化ガリウム膜180の間に別の層が介在しても構わない。別の層とは、基板110及び最表層の酸化ガリウム膜180と組成が異なる層であり、例えば、結晶性酸化物膜、絶縁膜、金属膜等、いずれでも構わない。
 本発明に係る酸化ガリウム膜180や積層体181は、適宜構造設計を行うことで、半導体装置に利用できる。例えば、ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)、発光ダイオード(LED)などそれぞれの半導体層を構成することができる。
 本発明に係る酸化ガリウム膜180や積層体181は、後述する本発明に係る成膜装置を用いて成膜を行うことで得ることが可能である。このような本発明に係る成膜装置及び成膜方法について説明する。
 ここで、本発明でいうミストとは、気体中に分散した液体の微粒子の総称を指し、霧、液滴等と呼ばれるものも含む。
(成膜装置)
 図1に、本発明の成膜装置101の一例を示す。成膜装置101は、原料溶液をミスト化してミストを発生させるミスト化部120と、ミストを搬送するキャリアガスを供給するキャリアガス供給部130と、ミストを熱処理して基板上に成膜を行う成膜部140と、ミスト化部120と成膜部140とを接続し、キャリアガスによってミストが搬送される搬送部109と、成膜部140から排気ガスを排気する排気部170とを有する。また、成膜装置101は、成膜装置101の全体又は一部を制御する制御部(図示なし)を備えることによって、その動作が制御されてもよい。
(ミスト化部)
 ミスト化部120では、原料溶液をミスト化してミストを発生させる。ミスト化手段は、原料溶液をミスト化できさえすれば特に限定されず、公知のミスト化手段であってもよいが、超音波振動によるミスト化手段を用いることが好ましい。より安定してミスト化することができるためである。
 このようなミスト化部120の一例を図2に示す。例えば、原料溶液104aが収容されるミスト発生源104と、超音波振動を伝達可能な媒体、例えば水105aが入れられる容器105と、容器105の底面に取り付けられた超音波振動子106を含んでもよい。詳細には、原料溶液104aが収容されている容器からなるミスト発生源104が、水105aが収容されている容器105に、支持体(図示せず)を用いて収納されている。容器105の底部には、超音波振動子106が備え付けられており、超音波振動子106と発振器116とが接続されている。そして、発振器116を作動させると、超音波振動子106が振動し、水105aを介して、ミスト発生源104内に超音波が伝播し、原料溶液104aがミスト化するように構成されている。
(キャリアガス供給部)
 キャリアガス供給部130は、キャリアガス(主キャリアガス)を供給するキャリアガス源102aを有し、キャリアガス源102aから送り出される主キャリアガスの流量を調節するための流量調節弁103aを備えていてもよい。また、必要に応じて希釈のためのキャリアガス(希釈用キャリアガス)を供給する希釈用キャリアガス源102bや、希釈用キャリアガス源102bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁103bを備えることもできる。
 キャリアガスの種類は、特に限定されず、成膜物に応じて適宜選択可能である。例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスなどが挙げられる。また、キャリアガスの種類は1種類でも、2種類以上であってもよい。例えば、第1のキャリアガスと同じガスをそれ以外のガスで希釈した(例えば10倍に希釈した)希釈ガスなどを、第2のキャリアガスとしてさらに用いてもよく、空気を用いることもできる。
 また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。
 キャリアガスの流量は特に限定されない。例えば、直径4インチ(10cm)の基板上に成膜する場合には、1~80L/分とすることが好ましく、4~40L/分とすることがより好ましい。
 なお、このキャリアガスの流量Qは、20℃における測定値とし、その他の温度で測定した場合や異なる種類の流量(質量流量等)を測定した場合には、気体の状態方程式を用いて20℃における体積流量に換算することができる。
(成膜部、排気部)
 成膜部140では、ミストを加熱し熱反応を生じさせて、基板110の表面の一部又は全部に成膜を行う。成膜部140は、成膜部140の一部または全体が囲われていてもよい。例えば、図1に示すように、成膜部140の全体を囲い、成膜室107としてもよい。また、成膜室107は完全な囲いの形状に限定されず、隙間を有していて成膜部の一部を囲うだけの形状であっても良い。成膜部140には、基板が載置される載置部112が備え付けられている。成膜部140には、基板110が設置されており、該基板110を加熱するためのホットプレート108を備えることができる。ホットプレート108は、図1に示されるように成膜室107の内部に設けられていてもよいし、成膜室107の外部に設けられていてもよい。
 更に、成膜部140には、図3に示すように、載置部112の上方に、該基板110へミストを供給するためのノズル150が備え付けられている。
 ノズル150の一例を図4に示す。ノズル150は、搬送部109とノズル150とを接続する接続部151と、ミストを噴出するためのノズル開口面(単に、開口面とも言う)152とを備える。
 ノズルの個数および開口面の個数は、1つ以上であれば特に限定されない。図5のように複数のノズルを備えていてもよく(ノズル150a)、図6の様に、開口面が複数あってもよい(ノズル150b)。
 また、ノズル開口面152を含む平面と、基板110を含む平面の成す角度は、特に限定されない。特定の方向にミストが流れやすくなるように傾斜させたノズル開口面を備えたノズルを設けてもよいが、図3の様に、載置部112の基板110が載置される面とノズル開口面が平行になるように設けられるのが好ましい。より簡便な構造で、膜厚の面内均一性がより良い膜を成膜できるためである。
 ノズル開口面152の面積をS[cm]、キャリアガスの流量をQ[L/分]、ノズル開口面152と基板110間の高さ位置の差(例えば、ノズル開口面152内の点と基板110の表面との距離の中で最長となる距離)をH[cm]としたとき、SH/Qは0.015以上がよく、好ましくは、0.1以上20以下である。SH/Q≧0.015では、膜厚の面内均一性がより良い膜となる。
 また、このときノズル開口面152における基板と直交する方向のガスの速度は、0.01以上8.0m/s以下がよく、好ましくは0.1以上2.0m/s以下である。
 また、このとき、ノズル開口面152の面積Sは0.1以上400以下がよい。ノズル開口面152と基板110間の高さ位置の差Hは0.1以上6.0以下がよく、より好ましくは、0.2以上3.0以下である。成膜される膜が、膜厚の面内均一性が更に良好な膜となるためである。
 ノズル開口面152の面積をS[cm]、基板の面積をA[cm]としたとき、S/A≦0.3が好ましく、より好ましくは0.004≦S/A≦0.15である。S/A≦0.3であることで、膜厚の面内均一性がより良い膜となる。また、このとき、基板の面積Aは10cm以上であることが好ましく、50cm以上がより好ましく、上限は特に限定されない。基板の面積が大きいほど、一度の製膜で大面積な膜が得られるため大量の製造に向いている。
 ノズル開口面152の形状は、特に限定されない。多角形、円形、楕円等が考えられるが、好ましくは四角形であり、より好ましくは長方形である。ノズル開口面152の形状が長方形のとき、ノズル開口面152の長軸長さをL[cm]、基板のノズル長軸方向の最大長さをR[cm]としたとき、L/R≧1がよい。L/R≧1であれば膜厚の面内均一性の良い膜を、大面積基板へ成膜できるためである。L/Rの上限は特に限定されないが、L/Rが大きいほど、基板に供給されないミストが増えるため、3以下とするのが好ましい。
 天板153は、図3のように、載置部112の上方に設置されていれば良く、形状、サイズ、設置位置、設置高さ、設置方法、材質、個数は特に限定されない。例えば成膜室107を有する場合は、成膜室107の天井と、載置部112における基板110との間に天板153が設けられていれば良い。天板153を配置することにより、熱処理による成膜処理時に、熱対流による周囲気体の流れでミストの流れが乱されにくくなり、ノズル150から供給されたミストが整流されて基板110上へ供給され、膜厚の面内均一性の優れた膜を成膜することができる。
 なお、前述したようにノズル150と天板153の位置は載置部112の上方であれば良く特に限定されないが、例えば図3のように、各々、基板110が載置されるホットプレート108の上面の鉛直上方に配置することができる。このような配置は簡便であるし、十分に膜厚均一性の優れた膜を基板上に成膜可能である。
 また、天板153には、基板110の載置部112に向かう表面(底面)の温度を調整できる温度調整機構(図示せず)が備え付けられていてもよい。この表面(底面)の温度が高すぎると、ミストの蒸発が促進されるために、基板110上のノズル開口面152から離れた位置での膜厚が増加し、温度が低すぎると、ミストの蒸発が遅くなり、ノズル開口面152に近い箇所での膜厚が低下する。40~120℃程度で制御することが好ましい。
 天板形状は、多角形、半円形、円形、楕円が考えられるが、四角形にするのが好ましい。対称性がよく、成膜される膜が膜厚の面内均一性が良好なものとなるためである。
 また、天板は、ノズルの側面と接していてもよく、隙間が設けられていてもよい。例えば天板に穴が形成されており(すなわちドーナツ型)、該穴にノズルが挿入されていてもよい。このとき、天板とノズルの側面との間は、2cm以下がよく、好ましくは1cm以下であり、より好ましくは0cmである。膜厚の面内均一性が良好な膜となるためである。
 なお、天板とノズル開口面の距離は、ノズルと天板が一体となっている場合は、0cmとし、別々の場合には、天板とノズル開口面の間の最短距離から、ノズルの壁面厚みを差し引いた値とする。例えば、天板とノズル開口面の距離が2.5cmで、最短距離中にノズルの壁面が含まれる場合で、ノズルの壁面厚みが0.5cmのとき、天板とノズル開口面の最短距離は2.0cmである。
 また、天板は、図7(成膜部140a)の天板153aのように、成膜室から固定具154aなどにより吊り下げてもよいが、図3のようにノズルの側面に固定するのが好ましい。成膜される膜が膜厚の面内均一性が良好なものとなるためである。
 また、天板の一部または全体が、図8(成膜部140b)の天板153bのようにミストが特定の方向に流出しやすくなるように湾曲していてもよく、折れ曲がっていてもよいが、図3のように、載置部112と平行に設置されるのが好ましい。より具体的には、載置部112の基板110が載置される面と、天板153の底面とが平行になるように天板153が設置されているのが好ましい。成膜される膜が膜厚の面内均一性が良好なものとなるためである。
 また、天板は、ノズルの開口面と同一平面内に設置されてもよいし、図9(成膜部140c)の固定具154bに吊り下げられた天板153cのようにノズル150の開口面よりも基板110に対して近くにあってもよいし、図10(成膜部140d)の天板153dのように、ノズル150の開口面よりも基板110に対して遠くにあってもよい。ただし、ノズル150の開口面と同一平面内に設置されるのがより好ましい。成膜される膜が膜厚の面内均一性がより良好なものとなるためである。
 また、成膜部140には、ノズル開口面152と基板110間の高さ位置の差H[cm]や、天板153と載置部112の基板110が載置される面間の高さ位置の差I[cm]を適宜調整できるような位置調整機構(図示せず)が備え付けられていてもよい。
 また、天板の厚みは特に限定されないが、2mm以上が良い。成膜中の加熱による変形が抑制されるためである。
 また、天板の個数は特に限定されない。図3のように、ノズル1つに対し1枚の天板であってもよいし、図11(成膜部140e)のようにノズル1つに対し複数の天板(ここでは2枚の天板153e)が備えられていても良い。
 また、天板の材質は特に限定されない。ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、石英、ガラスが考えられる。
 また、天板153の底面と載置部112の基板の載置される面との高さ位置の差(例えば、最短となる高さ位置の差)I[cm]は特に限定されないが、0.15cm以上6.05cm以下がよく、好ましくは0.5cm以上3.0cm以下であり、より好ましくは1.0cm以上2.0cm以下である。成膜される膜が、膜厚の面内均一性が更に良好な膜となるためである。
 また、天板の底面の面積(複数の天板を設ける場合にはその総面積)をB[cm]、基板の面積をA[cm]としたとき、B/A≧0.5とすることが好ましく、1以上とすることがより好ましい。B/A≧0.5では、膜厚の面内均一性が良い膜となる。また、Bは40以上が良い。これらのような数値範囲であれば、膜厚の面内均一性が更に優れた膜が成膜される。また、B/AやBの上限は特に限定されない。上記数値よりも大きければ、天板による整流効果が発揮されるためである。しかし、B/Aを100以下とするのが好ましい。またBの上限例としては、3000とすることができる。装置が必要以上に大型になるのを抑制するためである。
 また、成膜部140には、ノズル150の下方で、基板110を移動させる移動機構を備えることができる。移動機構160を備えた成膜部140fの一例を図12に示す。基板を移動させる方向は、特に限定されない。
 移動機構160を備えた成膜部140を載置部の上方から見た図を図13及び図14に示す。図13(移動機構160a)に示すような、基板110およびホットプレート108が載置された移動ステージ161aを備え、基板110およびホットプレート108が、ノズル150および長方形の2枚の天板153fの下を往復して移動する方法がある。また、図14(移動機構160b)に示すような、基板110およびホットプレート108が載置された移動ステージ161bにより、基板110およびホットプレート108が、ノズル150および円環を半分に割ったような形状の2枚の天板153gの下を回転移動する方法がある。また、このとき基板を自転させる機構を備え、基板を自転させても良い。
 また、図14の様に成膜部140に複数の基板110・ノズル150を載置してもよいし、図13の成膜部140に複数の基板を設置するなどしてもよい。このような構造であれば、膜厚の面内均一性を保ちながら一度に多くの基板に成膜できるため、より一層、大量の製造に向いている。
 また、基板の移動機構160を設ける際には、基板を移動させる速度や、移動範囲は特に限定されないが、1つの基板がノズルの下を通過する回数が、1分あたり0.1回以上がよく、0.5回以上が好ましく、1回以上がより好ましい。回数が0.1回以上とすることで、局所的なミストの蒸発に伴う上昇気流による、供給ガスへの影響が大きく、天板による整流効果が発揮されにくくなるのを防止できることで、膜厚の均一性の低下をより確実に防ぐことができる。また、回数の上限は特に限定されないが、回数が増加すると慣性力により基板の固定が不安定になるため、120回以下が良く、60回以下が好ましい。
 より具体的には、図13のような移動機構の場合、基板を移動する幅D[mm]に対し、基板の移動速度をv[mm/分]として、v/D[/分]は0.1以上がよく、0.5以上120以下が好ましく、1~60がより好ましい。Dは特に限定されず、例えば基板の直径[mm]以上(基板の直径が4インチであれば100以上)が良く、上限は特に限定されない。大きくすれば1つのノズルあたりに大量の基板上に成膜することができる。しかし、1つの基板あたりの成膜速度が低下するため、1000mm以下として1つのノズルあたりの成膜する基板の枚数を限定するのが生産性に一層優れ、好ましい。vは特に限定されない。10mm/分以上30000mm/分以下がよく、30mm/分以上12000mm/分以下が好ましく、60mm/分以上6000mm/分以下がより好ましい。図14のような、回転型の移動機構の場合、0.1rpm以上がよく、0.5~120rpmが好ましく、1~60rpmがより好ましい。
 また、成膜部140(成膜室107)には、基板110上にキャリアガスと共に供給されたミストが成膜に用いられ、その後のガス(排気ガスといい、成膜に用いられなかったミスト、成膜時に生じたガス、キャリアガス等を含む)が基板110の外部へ流れるように整流するための排気部170が備え付けられており、該排気部170を通して成膜部140から排気ガスが排気される。
 天板153による整流効果と、ノズル150からのミストの供給と排気部170からの排気ガスの排気とにより発生する対流の相乗効果により、基板110上方に基板110の表面に平行で均一なガスの流れが発生し、基板110上に均一な膜を生成することが可能となる。
 排気部170は、成膜部140から排気ガスを排気できる構成であれば、その形状、構成は特に限定されない。例えば、図1のように、成膜室107において基板110の側方に排気口111を設け、強制排気を行ってもよい。ノズル150から天板153と基板110の間に供給されたキャリアガス等が基板110の外部へ流れるような構成が特に好ましい。
 なお、ここでいう基板110の外部とは、基板表面を含む平面の法線方向をz軸として、全てのzにおけるxy平面において、基板110を含まない領域を表す。
 排気部170としては、上記のように成膜室107に設けられた排気口111そのものとすることができるし、あるいは、排気口111にさらに強制排気のための手段を加えたものとすることもできる。そのような排気部170の一例を図16に示す。例えば、成膜室107の外部に設けられた排気ユニット172によって、成膜室107内の気体が、成膜室107の側面に設けられた排気口111から排気ダクト171を通じ、強制排気されている。排気ユニット172には、排気流量を調節するための排気流量調節弁173が備え付けられており、排気流量を調整できるようになっている。排気の流量は特に限定されないが、好ましくは、ノズル150から供給されるキャリアガスの流量をQ[L/分]、排気部170から排気される排気量をE[L/分]としたとき、E/Qが5以下であり、0.1以上1以下がより好ましい。膜厚の面内均一性が良好な膜となるためである。また、このとき、排気部170から排気されるEは20℃において排気口111で流量計を用いて測定する、または、風速計を用いて測定した線速と、排気口111の開口面の面積の積によって算出することができる。その他の温度で風速を測定した、または、その他の方法、温度で流量を測定した場合には、気体の状態方程式を用いて20℃における体積流量に換算することができる。
 排気口111の形状は、円形、矩形など、特に限定されない。
 また、排気部170は、図3のように1箇所に設けられてもよく、図1のように2箇所以上に設けられてもよいが、2箇所以上設ける場合には、ノズル開口面の中心に対し、対称位置となるように設けるのが好ましい。膜厚の面内均一性が良好な膜が成膜できるためである。
 また、排気部170には、排気部内での固体の析出を抑制するために、その一部または全体の温度を制御する温度制御機構(図示せず)を備えていてもよい。このような温度制御機構により、排気部170中での固体の析出が抑制され、より排気流量の制御がしやすくなる。
 また、排気部170を構成する部材の材質は特に限定されず、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、石英、窒化ホウ素などが挙げられる。窒化ホウ素製とすることが好ましい。未反応原料との意図しない反応による錆び付きや固体の析出により、排気ガスの流れが不均一化するのを抑制できるためである。
 また、前述したように、成膜室107が移動機構160を備える場合には、移動機構160上に排気口111を設けるなどして、排気口111(排気部170)を移動させてもよい。
 ところで成膜室107は、全体を完全に囲った形状で、その壁面に排気口111を有するものであっても良いし、あるいは、一部を囲うだけで(すなわち隙間を有している)、その隙間とは別にさらに排気部(排気口111)を有するものとすることができる。特に後者の場合、より一層、膜厚の面内均一性が良好な膜とすることができる。
 また、成膜部140内でのミストの熱反応は、加熱によりミストが反応すればよく、反応条件等も特に限定されない。原料や成膜物に応じて適宜設定することができる。例えば、加熱温度は120~600℃の範囲であり、好ましくは200℃~600℃の範囲であり、より好ましくは300℃~550℃の範囲とすることができる。加熱温度をT[℃]、ノズル開口面152の面積をS[cm]、キャリアガスの流量をQ[L/分]としたとき、ST/Qは40以上が好ましく、より好ましくは100以上2000以下である。ST/Q≧40では、膜厚の面内均一性がより良い膜となる。
 熱反応は、真空下、非酸素雰囲気下、還元ガス雰囲気下、空気雰囲気下及び酸素雰囲気下のいずれの雰囲気下で行われてもよく、成膜物に応じて適宜設定すればよい。また、反応圧力は、大気圧下、加圧下又は減圧下のいずれの条件下で行われてもよいが、大気圧下の成膜であれば、装置構成が簡略化できるので好ましい。
(搬送部)
 搬送部109は、ミスト化部120と成膜部140とを接続する。搬送部109を介して、ミスト化部120のミスト発生源104から成膜部140のノズル150へと、キャリアガスによってミストが搬送される。搬送部109は、例えば、供給管109aとすることができる。供給管109aとしては、例えば石英管や樹脂製のチューブなどを使用することができる。
(原料溶液)
 原料溶液(水溶液)104aは、ミスト化が可能な材料を含んでいれば特に限定されず、無機材料であっても、有機材料であってもよい。原料溶液には、金属又は金属化合物の溶液が好適に用いられ、ガリウム、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含むものを使用できる。
 原料溶液は、上記金属溶液をミスト化できるものであれば特に限定されないが、原料溶液として、金属を錯体又は塩の形態で、有機溶媒又は水に溶解又は分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸等に溶解したものも塩の水溶液として用いることができる。溶質濃度は0.01~1mol/Lが好ましい。
 また、原料溶液には、ハロゲンを含むもの(例えばハロゲン化水素酸)や酸化剤等の添加剤を混合してもよい。ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられるが、なかでも、臭化水素酸またはヨウ化水素酸が好ましい。酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。
 さらに、原料溶液には、ドーパントが含まれていてもよい。ドーパントは特に限定されない。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、スズ、イリジウム、ロジウム等のp型ドーパントなどが挙げられる。ドーパントの濃度は、例えば、約1.0×10-9~1.0mol/Lであってもよく、約1.0×10-7mol/L以下の低濃度にしても、約0.01mol/L以上の高濃度としてもよい。
(基板)
 基板110は、成膜可能であり膜を支持できるものであれば特に限定されない。基板110の材料も、特に限定されず、公知の基板を用いることができ、有機化合物であってもよいし、無機化合物であってもよい。例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、シリコン、サファイア、石英、ガラス、酸化ガリウム、ニオブ酸リチウム、タンタル酸リチウム等が挙げられるが、これに限られるものではない。基板の厚さは、特に限定されないが、好ましくは、10~2000μmであり、より好ましくは50~800μmである。
 成膜は基板上に直接行ってもよいし、基板上に形成された中間層の上に積層させてもよい。中間層は特に限定されず、例えば、アルミニウム、チタン、バナジウム、クロム、鉄、ガリウム、ロジウム、インジウム、イリジウムのいずれかを含む酸化物を主成分とすることができる。より具体的には、Al、Ti、V、Cr、Fe、Ga、Rh、In、Irであり、また上記の金属元素から選ばれる2元素をA、Bとした場合に(A1-x(0<x<1)で表される2元系の金属酸化物や、あるいは、上記の金属元素から選ばれる3元素をA、B、Cとした場合に(A1-x-y(0<x<1、0<y<1)で表される3元系の金属酸化物とすることができる。
 また、基板を、例えば、成膜される面の面積が50cm以上のもの、または、直径が4インチ(100mm)以上のものとすることができ、膜厚の面内均一性の良好な膜を大面積に成膜できるため好ましい。基板の面積や直径の上限は特に限定されないが、例えば面積が750cm、又は、直径が12インチ(300mm)とすることができる。
 (成膜方法)
 次に、以下、図1を参照しながら、本発明に係る成膜方法の一例を説明する。まず、原料溶液104aをミスト化部120のミスト発生源104内に収容し、基板(結晶性基板)110をホットプレート108上に載置し、ホットプレート108を作動させる。
 次に、流量調節弁103a、103bを開いてキャリアガス源102a(主キャリアガス)、希釈用キャリアガス源102b(希釈用キャリアガス)からキャリアガスを成膜室107内に供給し、成膜室107の雰囲気をキャリアガスで十分に置換するとともに、主キャリアガスの流量と希釈用キャリアガスの流量をそれぞれ調節して制御する。
 ミスト発生工程では、超音波振動子106を振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化させてミストを生成する。
 次に、ミストをキャリアガスにより搬送するミスト搬送工程では、ミストがキャリアガスによってミスト化部120から搬送部109を経て成膜部140へ搬送され、成膜室107内に導入される。
 そして成膜工程では、載置部112(基板110が載置されたホットプレート108)の上方に備えたノズル150から、載置部112の上方に備えた天板153と基板110の間にミストの供給を行う。そして、設置された天板153および排気部170(排気口111等)からの排気により整流されて基板110上に供給され、成膜室107内でホットプレート108の熱により熱処理され熱反応して、基板110上に成膜される。
 このような成膜方法により、天板153のない従来法に比べ、膜厚の基板面内均一性が良好な膜を成膜することが可能である。
 なお、移動機構160で基板110をノズル150の下方で移動させつつ成膜すると、大面積の膜を形成する際に有効であるし、また、膜厚がより一層面内均一で優れた膜を成膜するのに有効である。
 本発明においては、成膜後、アニール処理を行ってもよい。アニール処理の温度は、特に限定されないが、600℃以下が好ましく、550℃以下がより好ましい。膜の結晶性を損なわないためである。アニール処理の処理時間は、特に限定されないが、10秒~10時間であるのが好ましく、10秒~1時間であるのがより好ましい。
 以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。
(実施例1)
 本実施例では、図1に示すような成膜装置を用いた。
 ノズル開口面152と同一平面内に、1枚の天板153がノズル150の側面に接するように固定されている。天板の面積をB[cm]としたとき、B=450であり、載置部112の載置面(ホットプレート108の上面)と天板153の底面との高さ位置の差をI[cm]としたとき、I=0.95とした。また、天板の厚みは4mmである。
 なお、天板153は図17に示すような長方形形状のもの(天板153iとも言う)であり、真中に形成された穴にノズル150が挿入されている。
 ヨウ化ガリウムを水に溶解させ、0.05mol/Lの水溶液を調製し、これを原料溶液104aとした。上述のようにして得た原料溶液104aをミスト発生源104内に収容した。このときの溶液の温度は25℃であった。
 次に、基板110として4インチ(直径100mm)のc面サファイア基板を、成膜室107内でホットプレート108に載置し、ホットプレート108を作動させて温度を500℃に昇温した。
 続いて、流量調節弁103a、103bを開いてキャリアガス源102a(主キャリアガス)、希釈用キャリアガス供給源102b(希釈用キャリアガス)からキャリアガスとして窒素ガスを成膜室107内に供給し、成膜室107の雰囲気をこれらのキャリアガスで十分に置換するとともに、主キャリアガスの流量を12L/分に、希釈用キャリアガスの流量を12L/分にそれぞれ調節した。
 続いて、図16の様な排気部170を用い、排気口111における排気量E[L/分]が24となるように排気流量調整弁173を調整した。このとき、E/Q=1であった。
 次に、超音波振動子106を2.4MHzで振動させ、その振動を、水105aを通じて原料溶液104aに伝播させることによって、原料溶液104aをミスト化してミストを生成した。
 このミストを、キャリアガスによって供給管109a、ノズル150を経て、基板110に供給した。ノズル150としては、ノズル開口面152が長方形形状のノズルを用い、ノズル開口面152の面積をS[cm]、キャリアガスの流量をQ[L/分]、ノズル開口面152と基板110との高さ位置の差(ノズル開口面152内の点と基板110の表面との距離の中で最長となる距離)をH[cm]としたとき、SH/Q=0.07になるように調整した。このとき、S=1.92、H=0.9、Q=24である。
 そして、大気圧下、500℃の条件で、排気口111からガス排気しつつ、成膜室107内でミストを熱反応させて、基板110上にコランダム構造を有する酸化ガリウム(α-Ga)の薄膜を形成した。成膜時間は30分とした。
 熱処理温度をT[℃]としたとき、ST/Q=40、基板の面積をA[cm]としたとき、S/A=0.024、ノズル開口面152の長軸長さをL[cm]、基板のノズル長軸方向の最大長さR[cm]としたとき、L/R=1.2であった。このとき、T=500、A=78.5、L=12、R=10である。また、B/A=5.7である。
 図13のような移動機構160aにより、基板およびホットプレートを15cm/分の速度で、1分間に一度ノズルの下を通過するように往復移動させた。
(比較例1)
 天板153を用いなかったこと以外は、実施例1と同様に行った。
(実施例2)
 ノズル開口面152の面積Sを6.0cm、ノズル開口面152と基板110との高さ位置の差Hを2.0cm、天板153の底面と載置部112の載置面との高さ位置の差Iを2.05cmに変更し、SH/Q=0.5、ST/Q=125、S/A=0.076、としたこと以外は、実施例1と同様に行った。
(実施例3)
 天板の固定位置を変え、載置部112と天板153の底面との最短距離Iを2.05cmとしたこと以外は、実施例1と同様に行った。
(実施例4)
 図8のように、湾曲した天板153bを用いたこと以外は、実施例1と同様に行った。このとき、載置部112の載置面と天板153bの底面中心部との高さ位置の差I=0.95、天板153bの底面の端部と載置部の載置面との高さ位置の差は1.25cmであった。
(実施例5)
 天板153の底面の面積B=40としたこと以外は、実施例1と同様に成膜を行った。このとき、B/A=0.5であった。
(実施例6)
 ノズル開口面152の面積Sを6.0cm、ノズル開口面152と基板110との高さ位置の差Hを0.1cm、天板153の底面と載置部112の載置面との高さ位置の差Iを0.15cmに変更し、キャリアガスの総流量を12L/分とし、SH/Q=0.05、ST/Q=250、S/A=0.076、としたこと以外は、実施例1と同様に行った。
(実施例7)
 ノズル開口面152の面積Sを6.0cm、ノズル開口面152と基板110との高さ位置の差Hを6.0cm、天板153の底面と載置部112の載置面との高さ位置の差Iを6.05cmに変更し、キャリアガスの総流量を72L/分とし、SH/Q=0.5、ST/Q=41.7、S/A=0.076、としたこと以外は、実施例1と同様に行った。
(実施例8)
 アルミニウムアセチルアセトナート錯体を塩酸溶液に溶解させ、0.05mol/Lの溶液を調製し、原料溶液として用いたこと以外は実施例1と同様に行った。
(実施例9)
 硝酸ガリウムを水に溶解させ、0.05mol/Lの溶液を調製し、原料溶液として用いたこと、Eを188.4L/分、E/Qを7.9としたこと以外は実施例1と同様に行った。
(実施例10)
 ノズル開口面152の形状を直径2インチ(5cm)の円形としたこと、基板を移動させなかったこと(ノズルと天板は、常に基板の鉛直上方に位置することになる)、キャリアガスの流量を計80L/分に変更したこと、図15に示すような直径6cmの円状の穴と直径10cmの円からなる、円環型の天板153hを用いたこと、ノズルが天板の円状の穴に挿入されていてノズル側面と天板との間に隙間(0.5cm)があること以外は、実施例1と同様に行った。SH/Q=0.22、ST/Q=123、S/A=0.25、L/R=0.5であった。
(実施例11)
 ノズル開口面152と基板110との高さ位置の差Hを6.5cm、天板153の底面と載置部112の載置面との高さ位置の差Iを6.55cmに変更したこと、キャリアガスの総流量を72L/分としたこと以外は、実施例1と同様に行った。このとき、SH/Q=0.17、ST/Q=13.3であった。
(実施例12)
 天板153(153i)の中心部の穴のサイズを変更し、天板とノズル側面の間に2cmの隙間を設けたこと以外は、実施例1と同様に行った。このとき、B=420、B/A=5.4であった。
(実施例13)
 図18のように、ノズルの上方に排気口111を設けたこと、Eを120L/分、E/Qを5としたこと、以外は、実施例12と同様に行った。なお、ノズルからミストやキャリアガスが供給されて基板上に成膜が行われるとともに、天板とノズル側面の隙間を通して排気口111から排気ガスが排気されていた。
(膜厚分布測定)
 基板110上に形成した薄膜について、測定箇所を基板110上の面内の50点として、段差計を用いて膜厚を測定した。また、それぞれの値から平均膜厚を算出した。(膜厚分布[±%])=(最大膜厚-最小膜厚)/(平均膜厚)/2×100として算出した膜厚分布を表1に示した。
 なお、基板110上に形成した薄膜について、測定箇所を基板110上の面内の25点として行った光干渉式膜厚計F50を用いた膜厚の測定でも同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~13と比較例1との比較より、ミスト化部、キャリアガス供給部、成膜部、排気部とを備え、成膜部内に設置された、基板を載置する載置部の上方に、該基板上へミストを供給するノズルと、該ミストを整流する天板と、を備えた成膜装置を用いることで、膜厚の面内均一性が優れたものとなるとなることが分かった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (28)

  1.  ミスト化された原料溶液を熱処理して基板上に成膜を行う成膜装置であって、
     前記原料溶液をミスト化してミストを発生させるミスト化部と、
     該ミスト化部で発生させた前記ミストを搬送するキャリアガスを供給するキャリアガス供給部と、
     前記基板を載置する載置部を内部に備え、前記キャリアガスにより搬送された前記ミストが前記基板上に供給される成膜部と、
     該成膜部から排気ガスを排気する排気部と、
    を備え、
     前記成膜部内の前記載置部の上方に、
     前記基板上へ前記ミストを供給するノズルと、
     該ノズルから供給された前記ミストを整流する天板と、
    を更に備えるものであることを特徴とする成膜装置。
  2.  前記ノズルと前記天板が、前記載置部の鉛直上方に設置されているものであることを特徴とする請求項1に記載の成膜装置。
  3.  前記天板が、前記ノズルの側面に接して設置されているものであることを特徴とする請求項1または請求項2に記載の成膜装置。
  4.  前記天板が、前記ノズルの開口面と同一平面内に設置されているものであることを特徴とする請求項1から請求項3のいずれか一項に記載の成膜装置。
  5.  前記天板の底面と、前記載置部の前記基板が載置される面とが平行になるように前記天板が設置されているものであることを特徴とする請求項1から請求項4のいずれか一項に記載の成膜装置。
  6.  前記天板の底面と、前記載置部の前記基板が載置される面との高さ位置の差が0.15cm以上6.05cm以下となるように前記天板が設置されているものであることを特徴とする請求項1から請求項5のいずれか一項に記載の成膜装置。
  7.  前記ノズルの開口面と、前記載置部に載置された前記基板との高さ位置の差が0.1cm以上6.0cm以下となるように前記ノズルが設置されているものであることを特徴とする請求項1から請求項6のいずれか一項に記載の成膜装置。
  8.  前記天板の底面の面積をB[cm]としたとき、B≧40のものであることを特徴とする請求項1から請求項7のいずれか一項に記載の成膜装置。
  9.  前記基板の面積をA[cm]、前記天板の底面の面積をB[cm]としたとき、B/A≧0.5のものであることを特徴とする請求項1から請求項8のいずれか一項に記載の成膜装置。
  10.  前記ノズルの下方で前記基板を移動させる移動機構を更に備えるものであることを特徴とする請求項1から請求項9のいずれか一項に記載の成膜装置。
  11.  前記原料溶液がガリウムを含むものであることを特徴とする請求項1から請求項10のいずれか一項に記載の成膜装置。
  12.  前記原料溶液がハロゲンを含むものであることを特徴とする請求項1から請求項11のいずれか一項に記載の成膜装置。
  13.  ミスト化した原料溶液を熱処理して基板上に成膜を行う成膜方法であって、
     前記原料溶液をミスト化してミストを発生させるミスト発生工程と、
     前記ミストをキャリアガスにより成膜部に搬送するミスト搬送工程と、
     前記成膜部内の載置部に載置した前記基板上に前記ミストを供給して熱処理し成膜を行いつつ排気ガスを排気する成膜工程と、
    を含み、
     前記成膜工程において、
     前記基板上への前記ミストの供給を、前記載置部の上方に備えたノズルから、前記載置部の上方に備えた天板と前記基板の間に行うことで、前記基板上に整流された前記ミストを供給することを特徴とする成膜方法。
  14.  前記ノズルと前記天板を、前記載置部の鉛直上方に設置することを特徴とする請求項13に記載の成膜方法。
  15.  前記天板を、前記ノズルの側面に接して設置することを特徴とする請求項13または請求項14に記載の成膜方法。
  16.  前記天板を、前記ノズルの開口面と同一平面内に設置することを特徴とする請求項13から請求項15のいずれか一項に記載の成膜方法。
  17.  前記天板の底面と、前記載置部の前記基板が載置される面とが平行になるように前記天板を設置することを特徴とする請求項13から請求項16のいずれか一項に記載の成膜方法。
  18.  前記天板の底面と、前記載置部の前記基板が載置される面との高さ位置の差が0.15cm以上6.05cm以下となるように前記天板を設置することを特徴とする請求項13から請求項17のいずれか一項に記載の成膜方法。
  19.  前記ノズルの開口面と、前記載置部に載置された前記基板との高さ位置の差が0.1cm以上6.0cm以下となるように前記ノズルを設置することを特徴とする請求項13から請求項18のいずれか一項に記載の成膜方法。
  20.  前記天板の底面の面積をB[cm]としたとき、B≧40とすることを特徴とする請求項13から請求項19のいずれか一項に記載の成膜方法。
  21.  前記基板の面積をA[cm]、前記天板の底面の面積をB[cm]としたとき、B/A≧0.5とすることを特徴とする請求項13から請求項20のいずれか一項に記載の成膜方法。
  22.  前記成膜工程において、前記ノズルの下方で前記基板を移動させることを特徴とする請求項13から請求項21のいずれか一項に記載の成膜方法。
  23.  前記原料溶液をガリウムを含むものとすることを特徴とする請求項13から請求項22のいずれか一項に記載の成膜方法。
  24.  前記原料溶液をハロゲンを含むものとすることを特徴とする請求項13から請求項23のいずれか一項に記載の成膜方法。
  25.  前記ノズルから供給する前記キャリアガスの流量をQ[L/分]、前記排気ガスの流量をE[L/分]としたとき、E/Qを5以下とすることを特徴とする請求項13から請求項24のいずれか一項に記載の成膜方法。
  26.  前記基板を、成膜される面の面積が50cm以上のもの、または、直径が4インチ(100mm)以上のものとすることを特徴とする請求項13から請求項25のいずれか一項に記載の成膜方法。
  27.  コランダム構造を有する酸化ガリウム膜であって、
     該酸化ガリウム膜は、面積が50cm以上、又は、直径が4インチ(100mm)以上のものであり、
     前記酸化ガリウム膜の膜厚の面内分布は±3.1%以上11.7%以下であることを特徴とする酸化ガリウム膜。
  28.  コランダム構造を有する酸化ガリウム膜と基板の積層体であって、
     該積層体の前記酸化ガリウム膜は、面積が50cm以上、又は、直径が4インチ(100mm)以上のものであり、
     前記酸化ガリウム膜の膜厚の面内分布が±3.1%以上11.7%以下であることを特徴とする積層体。
PCT/JP2022/010549 2021-03-12 2022-03-10 成膜装置、成膜方法、酸化ガリウム膜および積層体 WO2022191277A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22767231.8A EP4306686A1 (en) 2021-03-12 2022-03-10 Film formation device, film formation method, gallium oxide film, and laminate
CN202280019526.7A CN116940708A (zh) 2021-03-12 2022-03-10 成膜装置、成膜方法、氧化镓膜及层叠体
JP2023505629A JPWO2022191277A1 (ja) 2021-03-12 2022-03-10
US18/279,082 US20240229236A9 (en) 2021-03-12 2022-03-10 Film-forming apparatus, film-forming method, gallium oxide film and laminate
KR1020237028407A KR20230154178A (ko) 2021-03-12 2022-03-10 성막 장치, 성막 방법, 산화갈륨막 및 적층체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-040704 2021-03-12
JP2021040704 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022191277A1 true WO2022191277A1 (ja) 2022-09-15

Family

ID=83228069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010549 WO2022191277A1 (ja) 2021-03-12 2022-03-10 成膜装置、成膜方法、酸化ガリウム膜および積層体

Country Status (7)

Country Link
US (1) US20240229236A9 (ja)
EP (1) EP4306686A1 (ja)
JP (1) JPWO2022191277A1 (ja)
KR (1) KR20230154178A (ja)
CN (2) CN116940708A (ja)
TW (2) TW202236438A (ja)
WO (1) WO2022191277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185380A1 (ja) * 2023-03-07 2024-09-12 信越化学工業株式会社 成膜用ノズルおよび成膜装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115513103A (zh) * 2022-11-23 2022-12-23 西安奕斯伟材料科技有限公司 用于对硅片进行背封的设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257337A (ja) 1988-04-06 1989-10-13 Fujitsu Ltd 気相エピタキシャル成長装置
JP2005307238A (ja) 2004-04-19 2005-11-04 Shizuo Fujita 成膜方法及び成膜装置
JP2012046772A (ja) 2010-08-24 2012-03-08 Sharp Corp ミストcvd装置及びミスト発生方法
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP2014063973A (ja) 2012-08-26 2014-04-10 Kumamoto Univ 酸化亜鉛結晶層の製造方法及び酸化亜鉛結晶層並びにミスト化学気相成長装置
JP2015096629A (ja) * 2013-11-15 2015-05-21 四国計測工業株式会社 成膜装置および方法
JP2017020076A (ja) * 2015-07-10 2017-01-26 東芝三菱電機産業システム株式会社 成膜装置及び成膜方法
JP2019007048A (ja) * 2017-06-23 2019-01-17 トヨタ自動車株式会社 成膜装置
JP2020002396A (ja) * 2018-06-26 2020-01-09 信越化学工業株式会社 成膜装置及び成膜方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257337A (ja) 1988-04-06 1989-10-13 Fujitsu Ltd 気相エピタキシャル成長装置
JP2005307238A (ja) 2004-04-19 2005-11-04 Shizuo Fujita 成膜方法及び成膜装置
JP2012046772A (ja) 2010-08-24 2012-03-08 Sharp Corp ミストcvd装置及びミスト発生方法
JP2014063973A (ja) 2012-08-26 2014-04-10 Kumamoto Univ 酸化亜鉛結晶層の製造方法及び酸化亜鉛結晶層並びにミスト化学気相成長装置
JP5397794B1 (ja) 2013-06-04 2014-01-22 Roca株式会社 酸化物結晶薄膜の製造方法
JP2015096629A (ja) * 2013-11-15 2015-05-21 四国計測工業株式会社 成膜装置および方法
JP2017020076A (ja) * 2015-07-10 2017-01-26 東芝三菱電機産業システム株式会社 成膜装置及び成膜方法
JP2019007048A (ja) * 2017-06-23 2019-01-17 トヨタ自動車株式会社 成膜装置
JP2020002396A (ja) * 2018-06-26 2020-01-09 信越化学工業株式会社 成膜装置及び成膜方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185380A1 (ja) * 2023-03-07 2024-09-12 信越化学工業株式会社 成膜用ノズルおよび成膜装置

Also Published As

Publication number Publication date
US20240229236A9 (en) 2024-07-11
CN116940708A (zh) 2023-10-24
EP4306686A1 (en) 2024-01-17
US20240133029A1 (en) 2024-04-25
KR20230154178A (ko) 2023-11-07
CN217948254U (zh) 2022-12-02
JPWO2022191277A1 (ja) 2022-09-15
TWM636275U (zh) 2023-01-11
TW202236438A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2022191277A1 (ja) 成膜装置、成膜方法、酸化ガリウム膜および積層体
JP7223515B2 (ja) 成膜装置及び成膜方法
JP7285889B2 (ja) 酸化ガリウム半導体膜の製造方法及び成膜装置
JP7473591B2 (ja) 成膜装置及び成膜方法
WO2023079787A1 (ja) 成膜装置及び成膜方法並びに酸化物半導体膜及び積層体
WO2023062889A1 (ja) 成膜装置及び製造方法
WO2022191230A1 (ja) 酸化物半導体膜およびその成膜方法、半導体装置
JP7436333B2 (ja) 成膜方法及び成膜装置
WO2023047895A1 (ja) 成膜方法、成膜装置及び結晶性酸化物膜
US20230151485A1 (en) Film forming apparatus and film forming method
JP2022109309A (ja) 成膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767231

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023505629

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18279082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202347058394

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280019526.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022767231

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022767231

Country of ref document: EP

Effective date: 20231012