WO2022191236A1 - Electrical current testing device and electrical current testing method - Google Patents

Electrical current testing device and electrical current testing method Download PDF

Info

Publication number
WO2022191236A1
WO2022191236A1 PCT/JP2022/010278 JP2022010278W WO2022191236A1 WO 2022191236 A1 WO2022191236 A1 WO 2022191236A1 JP 2022010278 W JP2022010278 W JP 2022010278W WO 2022191236 A1 WO2022191236 A1 WO 2022191236A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
elastic
movable
energization
section
Prior art date
Application number
PCT/JP2022/010278
Other languages
French (fr)
Japanese (ja)
Inventor
慶治 別府
済人 尾方
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023505605A priority Critical patent/JPWO2022191236A1/ja
Publication of WO2022191236A1 publication Critical patent/WO2022191236A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the present disclosure relates to an energization inspection device and an energization inspection method.
  • the electrode has a first contact surface that is the second contact surface of the semiconductor chip. It is configured to be inclined by the spherical portion of the load cell so as to follow the tangent surface.
  • the energization inspection of the semiconductor element is performed in a state in which a load is applied to the semiconductor chip (semiconductor element) by the energization inspection apparatus. If an electrical test is performed with a load applied to the semiconductor element, the semiconductor element softens and deforms. As a result, the semiconductor element deteriorates.
  • the present disclosure has been made in view of the above problems, and its object is to provide an electrical inspection apparatus and an electrical inspection method capable of reducing deterioration of semiconductor elements due to electrical inspection.
  • the energization inspection device of the present disclosure includes an electrode section and a moving mechanism.
  • the electrode section includes a support section, an elastic section, and a movable section.
  • the elastic portion is supported by the support portion.
  • the movable portion is connected to the support portion by an elastic portion.
  • the moving mechanism is configured to move the electrode portion along a moving direction in which the elastic portion is sandwiched between the support portion and the movable portion.
  • the moving mechanism is configured to move the movable part along the moving direction by moving the supporting part.
  • the movable portion protrudes from the support portion along the movement direction.
  • the movable portion is configured to move as the elastic portion elastically deforms along the moving direction.
  • the movable portion is configured to move as the elastic portion elastically deforms along the moving direction. Therefore, the load applied from the moving part to the semiconductor element is reduced by the movement of the moving part. Therefore, deterioration of the semiconductor element can be reduced.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state in which the electrode portion and the semiconductor element of the electrical inspection apparatus according to Embodiment 1 are arranged with a gap therebetween;
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state where the electrode portion of the electrical inspection apparatus and the semiconductor element are in contact with each other according to the first embodiment;
  • FIG. 2 is a cross-sectional view schematically showing a configuration of an electrode section and a semiconductor element of the energization inspection apparatus according to Embodiment 1;
  • 3 is a flowchart schematically showing an electrical inspection method according to Embodiment 1;
  • FIG. 10 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state in which the electrode portion and the semiconductor element of the electrical inspection apparatus according to Embodiment 2 are arranged with a gap therebetween;
  • FIG. 11 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state where the electrode portion of the electrical inspection apparatus and the semiconductor element are in contact with each other according to the second embodiment;
  • FIG. 12 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state where the electrode portion and the semiconductor element of the electrical inspection apparatus according to Embodiment 3 are arranged with a gap therebetween;
  • FIG. 11 is a bottom view schematically showing the configuration of an electrode section of an electrical testing apparatus according to Embodiment 3;
  • FIG. 11 is a cross-sectional view schematically showing the configuration of an electrical inspection apparatus in a state in which an electrode portion and a semiconductor element of the electrical inspection apparatus according to Embodiment 4 are arranged with a gap therebetween;
  • FIG. 13 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state where the electrode portion and the semiconductor element of the electrical inspection apparatus according to Embodiment 5 are arranged with a gap therebetween;
  • FIG. 11 is a cross-sectional view schematically showing the configuration of an electrical inspection apparatus in a state in which an electrode portion and a semiconductor element of the electrical inspection apparatus according to Embodiment 6 are arranged with a gap therebetween;
  • FIG. 14 is a cross-sectional view schematically showing the configuration of an electrical inspection apparatus in a state where an electrode portion and a semiconductor element of the electrical inspection apparatus according to Embodiment 7 are arranged with a gap therebetween;
  • Embodiment 1. 1 to 3 the configuration of the energization inspection apparatus 100 according to the first embodiment will be described.
  • the energization inspection apparatus 100 is an energization inspection apparatus for inspecting the semiconductor element SC.
  • the energization inspection device 100 includes an electrode section 10 and a moving mechanism MM.
  • the electrical inspection apparatus 100 further includes a stage 11, a positioning mechanism 12, a cooling mechanism CM, and an inspection mechanism IM.
  • the electrode section 10 includes a support section 2 , an elastic section 5 and a movable section 6 .
  • electrode section 10 further includes fixing section 4 .
  • the semiconductor element SC inspected by the energization inspection apparatus 100 is, for example, a metal oxide semiconductor field effect transistor (MOSFET).
  • the semiconductor element SC includes a source electrode SC1, a protective film SC2, a semiconductor substrate SC3, and a drain electrode (not shown).
  • the source electrode SC1 is configured as an anode.
  • the source electrode SC1 is formed, for example, by sputtering aluminum (Al).
  • the protective film SC2 surrounds the entire periphery of the source electrode SC1.
  • the thickness of the protective film SC2 is thicker than the thickness of the source electrode SC1.
  • the protective film SC2 is an insulator.
  • the withstand voltage of the semiconductor element SC is improved by the protective film SC2.
  • a source electrode SC1 and a protective film SC2 are arranged on the semiconductor substrate SC3.
  • a semiconductor substrate SC3 is placed on the stage 11 .
  • a drain electrode (not shown) faces the source electrode SC1.
  • the drain electrode has conductivity. Thereby, the semiconductor element SC and the stage 11 are electrically connected.
  • the stage 11 has conductivity.
  • the material of the stage 11 is a conductive solid.
  • the material of the stage 11 is copper (Cu), for example.
  • the stage 11 is connected to a cooling mechanism CM for cooling the semiconductor element SC.
  • the cooling mechanism CM includes, for example, a chiller and piping (not shown).
  • the stage 11 is connected to the chiller by piping. Thereby, the stage 11 is configured to exchange heat with the chiller.
  • the positioning mechanism 12 is arranged on the stage 11 so as to surround the semiconductor element SC with a gap from the periphery of the semiconductor element SC. By arranging the semiconductor element SC inside the positioning mechanism 12 , tilting of the semiconductor element SC due to contact with the positioning mechanism 12 is suppressed.
  • the inspection mechanism IM electrically connects the electrode section 10 and the stage 11 .
  • the inspection mechanism IM is configured as an inspection circuit.
  • the inspection mechanism IM is configured to inspect the characteristics of the semiconductor element SC based on the current flowing through the semiconductor element SC or the voltage applied to the semiconductor element SC.
  • the moving mechanism MM is configured to move the electrode section 10 along the moving direction DR1 in which the elastic section 5 is sandwiched between the supporting section 2 and the movable section 6 .
  • the moving mechanism MM is configured to move the movable portion 6 along the moving direction DR1 by moving the supporting portion 2 .
  • the direction of movement DR1 is along the direction of gravity.
  • the electrode section 10 is arranged so as to face the semiconductor element SC and the stage 11 .
  • the electrode portion 10 is configured to be arranged with a space from the semiconductor element SC.
  • the electrode section 10 is configured to be able to contact with the semiconductor element SC.
  • the electrode section 10 is configured to apply a load to each of the source electrode SC1 and the protective film SC2 of the semiconductor element SC.
  • the load applied to the protective film SC2 by the electrode portion 10 is determined based on the desired temperature to be maintained by the semiconductor element SC and the heat dissipation of the cooling mechanism CM.
  • the load applied by the electrode section 10 to the source electrode SC1 is experimentally determined based on the load applied by the support section 2 to the protective film SC2 of the semiconductor element SC and the spring constant of the elastic section 5.
  • the supporting portion 2 is arranged so as to face the semiconductor element SC.
  • the support portion 2 supports the elastic portion 5 .
  • the support portion 2 may have the body portion 21 and the insulating portion 3 .
  • the body portion 21 has conductivity.
  • the body portion 21 has a first surface 21a and a second surface 21b.
  • the first surface 21a is provided so as to face the semiconductor element SC.
  • the second surface 21b faces the first surface 21a.
  • the insulating portion 3 covers the first surface 21a of the main body portion 21 .
  • the material of the insulating portion 3 is, for example, resin or ceramics.
  • the supporting portion 2 is configured so that the insulating portion 3 applies a load to the protective film SC2 of the semiconductor element SC.
  • the support portion 2 has an end surface 2a.
  • the end face 2a is configured as a contact face with the semiconductor element SC.
  • the end face 2a is provided on the insulating portion 3. As shown in FIG.
  • a concave portion 25 is provided in the support portion 2 .
  • Recess 25 is recessed along moving direction DR1 from end face 2a.
  • the inner wall of the recessed portion 25 surrounds the outer peripheries of the fixed portion 4 , the elastic portion 5 and the movable portion 6 .
  • the fixed portion 4 , the elastic portion 5 and the movable portion 6 are arranged inside the recess 25 .
  • the fixed part 4 fixes the elastic part 5 to the support part 2 . Specifically, the fixing portion 4 fixes the elastic portion 5 to the bottom surface of the recess 25 .
  • the fixed part 4 has conductivity.
  • the elastic portion 5 is supported by the support portion 2 .
  • the elastic portion 5 is, for example, a compression coil spring. As shown in FIG. 1, when the movable portion 6 and the semiconductor element SC are separated from each other, the elastic portion 5 extends beyond its free length. Further, as shown in FIG. 2, the length of the elastic portion 5 when the movable portion 6 and the semiconductor element SC are in contact with each other is equal to the length of the elastic portion 5 when the movable portion 6 and the semiconductor element SC are separated from each other. (see Figure 1). In the state where the movable portion 6 and the semiconductor element SC are in contact with each other, the elastic portion 5 is shrunk more than its free length.
  • a fixed portion 4 is fixed to the first end 5 a of the elastic portion 5 .
  • a movable portion 6 is fixed to the second end 5 b of the elastic portion 5 .
  • the elastic portion 5 has conductivity.
  • the elastic part 5 may have insulation so that it may mention later.
  • the movable part 6 is connected to the support part 2 by the elastic part 5 .
  • the movable portion 6 protrudes from the support portion 2 along the movement direction DR1.
  • the movable portion 6 is configured to move by elastically deforming the elastic portion 5 along the movement direction DR1.
  • the movable part 6 is arranged so as to face the semiconductor element SC.
  • the movable portion 6 is configured to be able to contact the semiconductor element SC.
  • the movable portion 6 is configured to be able to contact the source electrode SC1 of the semiconductor element SC.
  • the movable part 6 is configured to apply a load to the source electrode SC1.
  • the load applied by the movable portion 6 to the source electrode SC1 is different from the load applied by the support portion 2 to the protective film SC2.
  • the load applied by the movable portion 6 to the source electrode SC1 is smaller than the load applied by the support portion 2 to the protective film SC2.
  • the movable portion 6 has a front end 6a and a rear end 6b.
  • the tip 6a is configured to be able to contact the semiconductor element SC.
  • the tip 6a has a curved shape.
  • the tip 6a has an R shape.
  • the curvature of the tip 6a may be determined according to the material of the source electrode SC1 of the semiconductor element SC and the current value of the applied current. The curvature of tip 6a may be determined experimentally.
  • the rear end 6b faces the front end 6a.
  • the rear end 6b is fixed to the elastic portion 5. As shown in FIG.
  • the dimension along the moving direction DR1 of the supporting portion 2 is M1
  • the distance from the tip 6a of the movable portion 6 to the second surface 21b of the supporting portion 2 is M2
  • the difference in thickness between the source electrode SC1 and the protective film SC2 is M3, M1, M2 and M3 satisfy the relationships of equations (2) and (3).
  • the difference between the distance M2 from the tip 6a of the movable portion 6 to the second surface 21b and the dimension M1 along the movement direction DR1 (the amount of protrusion of the movable portion 6 from the support portion 2) is the difference between the source electrode SC1 and the protective film SC2. is greater than the thickness difference M3.
  • the energization inspection method is an energization inspection method for inspecting the semiconductor element SC by energization inspection. As shown in FIG. 4, the energization inspection method includes a preparation step S101 and an inspection step S102.
  • the energization inspection device 100 is prepared. Also, in the preparation step S101, the semiconductor element SC is prepared. A semiconductor element SC is placed on the stage 11 . The semiconductor element SC is placed on the stage 11 so as to face the movable portion 6 . The semiconductor element SC is spaced apart from the positioning mechanism 12 .
  • the movable part 6 protruding from the support part 2 along the movement direction DR1 is moved by the movement of the support part 2 by the movement mechanism MM until it comes into contact with the semiconductor element SC.
  • the semiconductor element SC is inspected by the energization inspection in a state in which the movable portion 6 is moved by elastic deformation along the moving direction DR1 of the elastic portion 5 .
  • the movable portion 6 contacts the source electrode SC1 of the semiconductor element SC.
  • the movable portion 6 contacts the source electrode SC1 of the semiconductor element SC while the insulating portion 3 or the support portion 2 does not contact the protective film SC2 of the semiconductor element SC. Thereby, a closed circuit is formed by the supporting portion 2, the fixed portion 4, the elastic portion 5, the movable portion 6, the semiconductor element SC, the stage 11, and the inspection mechanism IM.
  • the movable part 6 is moved by elastic deformation of the elastic part 5 along the movement direction DR1. Specifically, the movable portion 6 moves from the semiconductor element SC toward the elastic portion 5 along the moving direction DR1.
  • the insulating portion 3 of the support portion 2 contacts the protective film SC2 of the semiconductor element SC. Thereby, a load is applied to the protective film SC2.
  • the movable portion 6 After the movable portion 6 comes into contact with the semiconductor element SC, the movable portion 6 is moved in accordance with the rotation of the distal end portion of the elastic portion 5 in the circumferential direction until the insulating portion 3 of the support portion 2 contacts the protective film SC2. rotates in the circumferential direction.
  • step S102 to be inspected current or voltage is applied to the semiconductor element SC while the load is applied by the electrode part 10 to the semiconductor element SC.
  • a current flows through the semiconductor element SC.
  • the temperature of the semiconductor element SC is maintained between 50° C. and 210° C. in step S102 to be inspected.
  • the current flowing through the semiconductor element SC is maintained at 50 A/cm 2 or more and 300 A/cm 2 or less in the inspected step S102.
  • the energization time to the semiconductor element SC is 1 second or more and 300 seconds or less.
  • the temperature of the semiconductor element SC is maintained at 100° C. and the current flowing through the semiconductor element SC is maintained at 100 A/cm 2 in the inspected step S102. Specifically, by controlling the load on the semiconductor element SC and the heat dissipation of the stage 11, the temperature of the semiconductor element SC and the current flowing through the semiconductor element SC are maintained. In the inspected step S102, the energization time to the semiconductor element SC is 60 seconds.
  • the supporting portion 2 is moved to the side opposite to the semiconductor element SC along the moving direction DR1 by the moving mechanism MM.
  • the movable portion 6 is separated from the semiconductor element SC.
  • the movable portion 6 is configured to move by elastically deforming the elastic portion 5 along the movement direction DR1. It is Therefore, the movable portion 6 moves when the movable portion 6 contacts the semiconductor element SC. Therefore, the load applied from the electrode portion 10 to the semiconductor element SC is reduced due to the movement of the movable portion 6 . Therefore, it is possible to reduce the softening and deformation of the semiconductor element SC caused by the current flowing through the semiconductor element SC with the load applied. As described above, it is possible to reduce the deterioration of the semiconductor element SC due to the energization inspection.
  • the load applied from the electrode section 10 to the semiconductor element SC is reduced by the movement of the movable section 6, it is possible to reduce contact thermal resistance and contact resistance between the semiconductor element SC and the stage 11 in a state where the load is applied. can. Therefore, it is possible to reduce the softening and deformation of the semiconductor element SC caused by the current flowing through the semiconductor element SC with the load applied. Therefore, it is possible to reduce the deterioration of the semiconductor element SC due to the energization inspection.
  • the movable portion 6 protrudes from the support portion 2 along the movement direction DR1. Further, the amount of protrusion of the movable portion 6 from the support portion 2 is larger than the difference in thickness between the protective film SC2 and the source electrode SC1. Therefore, even when the protective film SC2 of the semiconductor element SC is thicker than the source electrode SC1, the movable portion 6 can come into contact with the source electrode SC1. Therefore, even when the protective film SC2 of the semiconductor element SC is thicker than the source electrode SC1, the semiconductor element SC can be inspected by the electrical inspection.
  • the moving mechanism MM moves the supporting portion 2 from the state in which the movable portion 6 protrudes from the supporting portion 2 along the moving direction DR1. is moved, the movable portion 6 is moved until it comes into contact with the semiconductor element SC. Subsequently, the movable portion 6 is moved by elastic deformation of the elastic portion 5 along the movement direction DR1. Therefore, the load applied from the electrode portion 10 to the semiconductor element SC is reduced by the movement of the movable portion 6 . Therefore, it is possible to reduce the softening and deformation of the semiconductor element SC caused by the current flowing through the semiconductor element SC with the load applied. Therefore, it is possible to reduce the deterioration of the semiconductor element SC due to the energization inspection.
  • the contact resistance between the semiconductor element SC and the movable part 6 can be further reduced in the step S101 to be prepared.
  • the temperature of the semiconductor element SC is maintained at 50° C. or more and 210° C. or less. Also, the current flowing through the semiconductor element SC is maintained at 50 A/cm 2 or more and 300 A/cm 2 or less. Also, the energization time to the semiconductor element SC is 1 second or more and 300 seconds or less. Therefore, defects contained in the semiconductor element SC can be grown. Therefore, inspection of the semiconductor element SC and growth of defects can be performed simultaneously.
  • Embodiment 2 Next, the configuration of the energization inspection apparatus 100 according to the second embodiment will be described with reference to FIGS. 5 and 6.
  • FIG. The second embodiment has the same configuration and effects as those of the first embodiment unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the above-described first embodiment, and description thereof will not be repeated.
  • the tip 6a of the movable portion 6 of the electrical inspection apparatus 100 is flat. Desirably, the tip 6a of the movable portion 6 is parallel to the surface of the source electrode SC1 of the semiconductor element SC.
  • the tip 6a of the movable portion 6 is flat. Therefore, the contact area between the movable portion 6 and the source electrode SC1 is larger than when the tip 6a of the movable portion 6 has a curved surface. Therefore, the current density when the current flows between the movable portion 6 and the semiconductor element SC is smaller than when the tip 6a of the movable portion 6 has a curved surface. Thereby, the temperature rise of the source electrode SC1 caused by the contact resistance between the movable portion 6 and the semiconductor element SC can be suppressed. Therefore, it is possible to further reduce the deterioration of the semiconductor element SC due to the energization inspection.
  • Embodiment 3 Next, the configuration of the energization inspection apparatus 100 according to the third embodiment will be described with reference to FIGS. 7 and 8.
  • FIG. Embodiment 3 has the same configuration and effects as those of Embodiment 1 described above unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the above-described first embodiment, and description thereof will not be repeated.
  • the electrode section 10 of the energization inspection apparatus 100 further includes an energization section 7 .
  • the conducting portion 7 has conductivity.
  • the movable portion 6 and the elastic portion 5 are connected by a conducting portion 7 .
  • the conducting portion 7 is, for example, a leaf spring.
  • a first end portion 7 a of the conducting portion 7 is sandwiched between the elastic portion 5 and the movable portion 6 .
  • a second end portion 7 b of the conducting portion 7 is fixed to the bottom surface of the recess 25 .
  • the movable portion 6 is fixed to the current-carrying portion 7 .
  • FIG. 8 is a bottom view of the electrode section 10 of the energization inspection device 100 viewed from the stage 11.
  • FIG. A dashed line indicates the outline of the source electrode SC1 of the semiconductor element SC.
  • a two-dot chain line indicates the outer shape of the protective film SC2 of the semiconductor element SC.
  • the concave portion 25 of the support portion 2 may open toward the side of the support portion 2.
  • the relation of the formula (4) is established with the dimension L2 of the outer shape of the source electrode SC1.
  • the widthwise dimension L4 of the recess 25 is smaller than the outer dimension L2 of the source electrode SC1.
  • the movable portion 6 and the elastic portion 5 are connected by the energization portion 7 as shown in FIG. 7 .
  • the current flowing through the current testing apparatus 100 during the current testing flows not only to the elastic portion 5 but also to the conductive portion 7 between the movable portion 6 and the support portion 2 .
  • the current flowing through the electrode portion 10 is divided between the elastic portion 5 and the conducting portion 7 . Therefore, the current flowing through the elastic portion 5 is reduced. Therefore, the life of the elastic portion 5 can be lengthened. In particular, the life of the elastic portion 5 can be lengthened when the semiconductor element SC is repeatedly inspected by the energization inspection apparatus 100 .
  • Embodiment 4 Next, the configuration of the energization inspection apparatus 100 according to Embodiment 4 will be described with reference to FIG. 9 .
  • the fourth embodiment has the same configuration and effects as those of the first embodiment unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the above-described first embodiment, and description thereof will not be repeated.
  • the electrode section 10 of the electrical testing apparatus 100 further includes a thin film section 8.
  • the supporting portion 2 and the thin film portion 8 are conductive.
  • the thin film portion 8 covers the movable portion 6 on the end surface 2 a of the support portion 2 .
  • the thin film portion 8 is electrically connected to the support portion 2 and the movable portion 6 .
  • the thin film portion 8 is fixed to the support portion 2 .
  • the support portion 2 according to the present embodiment does not include the insulating portion 3 (see FIG. 1).
  • the thin film portion 8 has a shape that protrudes toward the semiconductor element SC.
  • the thin film portion 8 has a convex shape toward the semiconductor element SC by being pushed by the movable portion 6 projecting from the support portion 2 toward the semiconductor element SC.
  • the electrode portion 10 includes one thin film portion 8 in FIG. 9 , it may include a plurality of thin film portions 8 . Also, the thickness of the thin film portion 8 may be appropriately determined within a range in which the source electrode SC1 of the semiconductor element SC is not deteriorated or destroyed.
  • the thin film portion 8 covers the movable portion 6 on the end face 2a of the support portion 2, as shown in FIG.
  • the thin film portion 8 has conductivity.
  • the support portion 2 does not include the insulating portion 3 . Therefore, it is possible to carry out an electrical test of the semiconductor element SC in a state in which the current flows through the supporting portion 2 and the thin film portion 8 of the electrode portion 10 . Therefore, the current flowing through the electrode portion 10 is divided between the elastic portion 5 and the thin film portion 8 .
  • the current conducting path includes the supporting portion 2, the fixed portion 4, the elastic portion 5, the movable portion 6, the thin film portion 8, the semiconductor element SC, the stage 11, the supporting portion 2, the fixed portion 4, the thin film portion 8, and the semiconductor element. SC and stage 11. Therefore, the current flowing through the elastic portion 5 is reduced by the thin film portion 8 . Therefore, the life of the elastic portion 5 is improved.
  • the thin film portion 8 covers the movable portion 6 on the end surface 2 a of the support portion 2 . Therefore, the movable portion 6 can be protected by the thin film portion 8 . Moreover, since the thin film portion 8 can be easily maintained, the electrode portion 10 can be easily maintained.
  • Embodiment 5 Next, the configuration of the energization inspection apparatus 100 according to Embodiment 5 will be described with reference to FIG. 10 .
  • the fifth embodiment has the same configuration and effects as those of the fourth embodiment unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the fourth embodiment, and the description thereof will not be repeated.
  • the elastic portion 5 of the energization inspection device 100 has insulating properties.
  • the material of the elastic portion 5 is, for example, an insulating material such as resin or rubber.
  • the energization path in the energization inspection of the semiconductor element SC is the supporting portion 2, the thin film portion 8, the semiconductor element SC and the stage 11. FIG.
  • the movable portion 6 has rigidity.
  • the movable part 6 may be configured so as not to be elastically deformed.
  • the elastic portion 5 has insulating properties. For this reason, it is possible to suppress current from flowing through the elastic portion 5 in the energization inspection of the semiconductor element SC. Therefore, deterioration of the elastic portion 5 due to energization can be suppressed.
  • Embodiment 6 Next, the configuration of the energization inspection apparatus 100 according to Embodiment 6 will be described with reference to FIG. 11 .
  • Embodiment 6 has the same configuration and effects as those of Embodiment 1 unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the first embodiment, and the description thereof will not be repeated.
  • the supporting portion 2 of the energization inspection device 100 is provided with a concave portion 25 having a constant angle ⁇ with respect to the moving direction DR1.
  • the angle ⁇ is experimentally determined in the range of ⁇ 90° ⁇ 90° based on the thickness of the source electrode, the material of the movable portion, and the spring constant of the elastic portion.
  • the movable portion 6 is tilted with respect to the movement direction DR1.
  • the support portion 2 is provided with the recessed portion 25 having a constant angle ⁇ with respect to the moving direction DR1.
  • the movable portion 6 is tilted with respect to the movement direction DR1. Therefore, after the tip 6a of the movable portion 6 contacts the source electrode SC1 of the semiconductor element SC, until the end face 2a contacts the protective film SC2 of the semiconductor element SC, the movable portion 6 moves in the direction perpendicular to the moving direction DR1. slides against the source electrode SC1. Therefore, it becomes easy to break the oxide film formed on the source electrode SC1 of the semiconductor element SC, and the contact resistance between the source electrode SC1 and the tip 6a of the movable portion 6 can be further reduced in the prepared step S101. can.
  • Embodiment 7 Next, using FIG. 12, the configuration of the energization inspection apparatus 100 according to Embodiment 7 will be described.
  • the seventh embodiment has the same configuration and effects as those of the first embodiment unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the first embodiment, and the description thereof will not be repeated.
  • the support portion 2 is provided with an air tank portion 27 and a vent hole 28 .
  • the load applied to the source electrode SC ⁇ b>1 of the semiconductor element SC by the movable portion 6 is experimentally determined according to the material of the movable portion 6 and the diameter of the vent 28 .
  • the movable portion 6 has a flange portion 26 . Next, the effects of this embodiment will be described.
  • the support portion 2 is moved by the moving mechanism MM, and the tip 6a of the movable portion 6 is brought into contact with the source electrode SC1 of the semiconductor element SC. Thereafter, the air contained in the air tank portion 27 is compressed until the protective film SC2 of the semiconductor element SC contacts the support portion 2, and the compressed air pushes the movable portion 6 in the same direction as the moving direction DR1. Therefore, a load is applied to the source electrode SC1 of the semiconductor element SC.
  • the pressure of the air compressed through the vent 28 gradually decreases and balances with the atmospheric pressure outside the supporting portion 2, so that the source electrode SC1 the load applied to the As described above, by applying a load to the source electrode SC1 of the semiconductor element SC, it is possible to avoid deterioration of elastic portions such as springs and rubbers.
  • the load applied to the source electrode SC1 in this way does not need to be continued during the step S102 of inspection, and may be applied only temporarily during the step S101 of preparation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

An electrical current testing device (100) comprises an electrode unit (10) and a movement mechanism (MM). The electrode unit (10) includes a support unit (2), an elastic unit (5), and a movable unit (6). The elastic unit (5) is supported by the support unit (2). The movable unit (6) is connected to the support unit (2) by the elastic unit (5). The movement mechanism (MM) is configured so as to move the electrode unit (10) in a movement direction (DR1), along which the support unit (2) and the movable unit (6) are arranged with the elastic unit (5) interposed therebetween. The movement mechanism (MM) is configured so as to move the movable unit (6) in the movement direction (DR1) by moving the support unit (2). The movable unit (6) protrudes further than the support unit (2) in the movement direction (DR1). The movable unit (6) is configured so as to move as a result of the elastic deformation of the elastic unit (5) in the movement direction (DR1).

Description

通電検査装置および通電検査方法Energization inspection device and energization inspection method
 本開示は、通電検査装置および通電検査方法に関するものである。 The present disclosure relates to an energization inspection device and an energization inspection method.
 半導体素子に電流を流す通電検査によって半導体素子の欠陥の有無を検査する通電検査装置がある。例えば、特許第6082528号公報(特許文献1)に記載の半導体チップ(半導体素子)の通電検査装置では、電極(電極部)は、電極の第1の当接面が半導体チップの第2の当接面に沿うように、ロードセルの球面部によって傾斜するように構成されている。 There is an electrical inspection device that inspects semiconductor elements for defects by electrical inspection in which an electric current is passed through the semiconductor elements. For example, in the electrical inspection apparatus for a semiconductor chip (semiconductor element) disclosed in Japanese Patent No. 6082528 (Patent Document 1), the electrode (electrode portion) has a first contact surface that is the second contact surface of the semiconductor chip. It is configured to be inclined by the spherical portion of the load cell so as to follow the tangent surface.
特許第6082528号公報Japanese Patent No. 6082528
 上記公報に記載の通電検査装置では、半導体チップ(半導体素子)に通電検査装置による荷重が印加された状態で半導体素子の通電検査が実施される。半導体素子に荷重が印加された状態で通電検査が実施されると、半導体素子が軟化および変形する。このため、半導体素子は、劣化する。 In the energization inspection apparatus described in the above publication, the energization inspection of the semiconductor element is performed in a state in which a load is applied to the semiconductor chip (semiconductor element) by the energization inspection apparatus. If an electrical test is performed with a load applied to the semiconductor element, the semiconductor element softens and deforms. As a result, the semiconductor element deteriorates.
 本開示は上記課題に鑑みてなされたものであり、その目的は、通電検査による半導体素子の劣化を低減することができる通電検査装置および通電検査方法を提供することである。 The present disclosure has been made in view of the above problems, and its object is to provide an electrical inspection apparatus and an electrical inspection method capable of reducing deterioration of semiconductor elements due to electrical inspection.
 本開示の通電検査装置は、電極部と、移動機構とを備えている。電極部は、支持部と、弾性部と、可動部とを含んでいる。弾性部は、支持部に支持されている。可動部は、弾性部によって支持部に接続されている。移動機構は、支持部と可動部とが弾性部を挟み込む移動方向に沿って、電極部を移動させるように構成されている。移動機構は、支持部を移動させることで移動方向に沿って可動部を移動させるように構成されている。可動部は、移動方向に沿って支持部よりも突出している。可動部は、弾性部が移動方向に沿って弾性変形することによって移動するように構成されている。 The energization inspection device of the present disclosure includes an electrode section and a moving mechanism. The electrode section includes a support section, an elastic section, and a movable section. The elastic portion is supported by the support portion. The movable portion is connected to the support portion by an elastic portion. The moving mechanism is configured to move the electrode portion along a moving direction in which the elastic portion is sandwiched between the support portion and the movable portion. The moving mechanism is configured to move the movable part along the moving direction by moving the supporting part. The movable portion protrudes from the support portion along the movement direction. The movable portion is configured to move as the elastic portion elastically deforms along the moving direction.
 本開示の通電検査装置によれば、可動部は、弾性部が移動方向に沿って弾性変形することによって移動するように構成されている。このため、移動部から半導体素子に印加される荷重は、可動部の移動によって低減される。したがって、半導体素子の劣化を低減することができる。 According to the energization inspection device of the present disclosure, the movable portion is configured to move as the elastic portion elastically deforms along the moving direction. Therefore, the load applied from the moving part to the semiconductor element is reduced by the movement of the moving part. Therefore, deterioration of the semiconductor element can be reduced.
実施の形態1に係る通電検査装置の電極部と半導体素子とが間隔を空けて配置された状態における通電検査装置の構成を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state in which the electrode portion and the semiconductor element of the electrical inspection apparatus according to Embodiment 1 are arranged with a gap therebetween; 実施の形態1に係る通電検査装置の電極部と半導体素子とが接触した状態における通電検査装置の構成を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state where the electrode portion of the electrical inspection apparatus and the semiconductor element are in contact with each other according to the first embodiment; 実施の形態1に係る通電検査装置の電極部および半導体素子の構成を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a configuration of an electrode section and a semiconductor element of the energization inspection apparatus according to Embodiment 1; 実施の形態1に係る通電検査方法を概略的に示すフローチャートである。3 is a flowchart schematically showing an electrical inspection method according to Embodiment 1; 実施の形態2に係る通電検査装置の電極部と半導体素子とが間隔を空けて配置された状態における通電検査装置の構成を概略的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state in which the electrode portion and the semiconductor element of the electrical inspection apparatus according to Embodiment 2 are arranged with a gap therebetween; 実施の形態2に係る通電検査装置の電極部と半導体素子とが接触した状態における通電検査装置の構成を概略的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state where the electrode portion of the electrical inspection apparatus and the semiconductor element are in contact with each other according to the second embodiment; 実施の形態3に係る通電検査装置の電極部と半導体素子とが間隔を空けて配置された状態における通電検査装置の構成を概略的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state where the electrode portion and the semiconductor element of the electrical inspection apparatus according to Embodiment 3 are arranged with a gap therebetween; 実施の形態3に係る通電検査装置の電極部の構成を概略的に示す下面図である。FIG. 11 is a bottom view schematically showing the configuration of an electrode section of an electrical testing apparatus according to Embodiment 3; 実施の形態4に係る通電検査装置の電極部と半導体素子とが間隔を空けて配置された状態における通電検査装置の構成を概略的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing the configuration of an electrical inspection apparatus in a state in which an electrode portion and a semiconductor element of the electrical inspection apparatus according to Embodiment 4 are arranged with a gap therebetween; 実施の形態5に係る通電検査装置の電極部と半導体素子とが間隔を空けて配置された状態における通電検査装置の構成を概略的に示す断面図である。FIG. 13 is a cross-sectional view schematically showing the configuration of the electrical inspection apparatus in a state where the electrode portion and the semiconductor element of the electrical inspection apparatus according to Embodiment 5 are arranged with a gap therebetween; 実施の形態6に係る通電検査装置の電極部と半導体素子とが間隔を空けて配置された状態における通電検査装置の構成を概略的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing the configuration of an electrical inspection apparatus in a state in which an electrode portion and a semiconductor element of the electrical inspection apparatus according to Embodiment 6 are arranged with a gap therebetween; 実施の形態7に係る通電検査装置の電極部と半導体素子とが間隔を空けて配置された状態における通電検査装置の構成を概略的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing the configuration of an electrical inspection apparatus in a state where an electrode portion and a semiconductor element of the electrical inspection apparatus according to Embodiment 7 are arranged with a gap therebetween;
 以下、実施の形態について図に基づいて説明する。なお、以下では、同一または相当する部分に同一の符号を付すものとし、重複する説明は繰り返さない。 Embodiments will be described below based on the drawings. In addition, below, the same code|symbol shall be attached|subjected to the same or corresponding part, and the overlapping description is not repeated.
 実施の形態1.
 図1~図3を用いて、実施の形態1に係る通電検査装置100の構成を説明する。
Embodiment 1.
1 to 3, the configuration of the energization inspection apparatus 100 according to the first embodiment will be described.
 図1に示されるように、通電検査装置100は、半導体素子SCを検査するための通電検査装置である。通電検査装置100は、電極部10と、移動機構MMとを含んでいる。本実施の形態において、通電検査装置100は、ステージ11と、位置決め機構12と、冷却機構CMと、検査機構IMとをさらに含んでいる。電極部10は、支持部2と、弾性部5と、可動部6とを含んでいる。本実施の形態において、電極部10は、固定部4をさらに含んでいる。 As shown in FIG. 1, the energization inspection apparatus 100 is an energization inspection apparatus for inspecting the semiconductor element SC. The energization inspection device 100 includes an electrode section 10 and a moving mechanism MM. In this embodiment, the electrical inspection apparatus 100 further includes a stage 11, a positioning mechanism 12, a cooling mechanism CM, and an inspection mechanism IM. The electrode section 10 includes a support section 2 , an elastic section 5 and a movable section 6 . In the present embodiment, electrode section 10 further includes fixing section 4 .
 通電検査装置100によって検査される半導体素子SCは、例えば、金属酸化物半導体電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)である。半導体素子SCは、ソース電極SC1と、保護膜SC2と、半導体基板SC3と、図示されないドレイン電極とを含んでいる。 The semiconductor element SC inspected by the energization inspection apparatus 100 is, for example, a metal oxide semiconductor field effect transistor (MOSFET). The semiconductor element SC includes a source electrode SC1, a protective film SC2, a semiconductor substrate SC3, and a drain electrode (not shown).
 ソース電極SC1は、アノードとして構成されている。ソース電極SC1は、例えば、アルミニウム(Al)のスパッタリングによって形成されている。保護膜SC2は、ソース電極SC1の外周を全周にわたって囲んでいる。保護膜SC2の厚みは、ソース電極SC1の厚みよりも厚い。保護膜SC2は、絶縁体である。半導体素子SCの耐電圧は、保護膜SC2によって向上する。半導体基板SC3上には、ソース電極SC1および保護膜SC2が配置されている。半導体基板SC3は、ステージ11上に配置されている。図示されないドレイン電極は、ソース電極SC1に対向している。ドレイン電極は、導電性を有している。これにより、半導体素子SCとステージ11とは、電気的に導通している。 The source electrode SC1 is configured as an anode. The source electrode SC1 is formed, for example, by sputtering aluminum (Al). The protective film SC2 surrounds the entire periphery of the source electrode SC1. The thickness of the protective film SC2 is thicker than the thickness of the source electrode SC1. The protective film SC2 is an insulator. The withstand voltage of the semiconductor element SC is improved by the protective film SC2. A source electrode SC1 and a protective film SC2 are arranged on the semiconductor substrate SC3. A semiconductor substrate SC3 is placed on the stage 11 . A drain electrode (not shown) faces the source electrode SC1. The drain electrode has conductivity. Thereby, the semiconductor element SC and the stage 11 are electrically connected.
 ステージ11は、導電性を有している。ステージ11の材料は、導電性を有する固体である。ステージ11の材料は、例えば、銅(Cu)である。ステージ11は、半導体素子SCを冷却するための冷却機構CMに接続されている。 The stage 11 has conductivity. The material of the stage 11 is a conductive solid. The material of the stage 11 is copper (Cu), for example. The stage 11 is connected to a cooling mechanism CM for cooling the semiconductor element SC.
 冷却機構CMは、例えば、図示されないチラーおよび配管を含んでいる。ステージ11は、配管によってチラーに接続されている。これにより、ステージ11は、チラーとの間で熱交換するように構成されている。 The cooling mechanism CM includes, for example, a chiller and piping (not shown). The stage 11 is connected to the chiller by piping. Thereby, the stage 11 is configured to exchange heat with the chiller.
 位置決め機構12は、半導体素子SCの外周から間隔を空けて半導体素子SCを囲むようにステージ11上に配置されている。半導体素子SCが位置決め機構12の内側に配置されることで、半導体素子SCが位置決め機構12との接触によって傾くことが抑制される。 The positioning mechanism 12 is arranged on the stage 11 so as to surround the semiconductor element SC with a gap from the periphery of the semiconductor element SC. By arranging the semiconductor element SC inside the positioning mechanism 12 , tilting of the semiconductor element SC due to contact with the positioning mechanism 12 is suppressed.
 検査機構IMは、電極部10およびステージ11を電気的に接続している。検査機構IMは、検査回路として構成されている。検査機構IMは、半導体素子SCに流れた電流または半導体素子SCに印加された電圧に基づいて、半導体素子SCの特性を検査するように構成されている。 The inspection mechanism IM electrically connects the electrode section 10 and the stage 11 . The inspection mechanism IM is configured as an inspection circuit. The inspection mechanism IM is configured to inspect the characteristics of the semiconductor element SC based on the current flowing through the semiconductor element SC or the voltage applied to the semiconductor element SC.
 移動機構MMは、支持部2と可動部6とが弾性部5を挟み込む移動方向DR1に沿って、電極部10を移動させるように構成されている。移動機構MMは、支持部2を移動させることで移動方向DR1に沿って可動部6を移動させるように構成されている。本実施の形態において、移動方向DR1は、重力方向に沿っている。 The moving mechanism MM is configured to move the electrode section 10 along the moving direction DR1 in which the elastic section 5 is sandwiched between the supporting section 2 and the movable section 6 . The moving mechanism MM is configured to move the movable portion 6 along the moving direction DR1 by moving the supporting portion 2 . In this embodiment, the direction of movement DR1 is along the direction of gravity.
 電極部10は、半導体素子SCおよびステージ11と向かい合うように配置されている。電極部10は、半導体素子SCから間隔を空けて配置可能に構成されている。 The electrode section 10 is arranged so as to face the semiconductor element SC and the stage 11 . The electrode portion 10 is configured to be arranged with a space from the semiconductor element SC.
 図2に示されるように、電極部10は、半導体素子SCと接触可能に構成されている。電極部10は、半導体素子SCのソース電極SC1および保護膜SC2の各々に荷重を印加するように構成されている。電極部10が保護膜SC2に印加する荷重は、半導体素子SCが維持するべき望ましい温度および冷却機構CMの放熱性に基づいて定められる。電極部10がソース電極SC1に印加する荷重は、支持部2が半導体素子SCの保護膜SC2に印加する荷重および弾性部5のばね定数に基づいて実験的に定められる。 As shown in FIG. 2, the electrode section 10 is configured to be able to contact with the semiconductor element SC. The electrode section 10 is configured to apply a load to each of the source electrode SC1 and the protective film SC2 of the semiconductor element SC. The load applied to the protective film SC2 by the electrode portion 10 is determined based on the desired temperature to be maintained by the semiconductor element SC and the heat dissipation of the cooling mechanism CM. The load applied by the electrode section 10 to the source electrode SC1 is experimentally determined based on the load applied by the support section 2 to the protective film SC2 of the semiconductor element SC and the spring constant of the elastic section 5. FIG.
 支持部2は、半導体素子SCに向かい合うように配置されている。支持部2は、弾性部5を支持している。支持部2は、本体部21および絶縁部3を有していてもよい。本体部21は、導電性を有している。本体部21は、第1面21aおよび第2面21bを有している。第1面21aは、半導体素子SCに向かい合うように設けられている。第2面21bは、第1面21aに対向している。 The supporting portion 2 is arranged so as to face the semiconductor element SC. The support portion 2 supports the elastic portion 5 . The support portion 2 may have the body portion 21 and the insulating portion 3 . The body portion 21 has conductivity. The body portion 21 has a first surface 21a and a second surface 21b. The first surface 21a is provided so as to face the semiconductor element SC. The second surface 21b faces the first surface 21a.
 絶縁部3は、本体部21の第1面21aを覆っている。絶縁部3の材料は、例えば、樹脂またはセラミックス等である。支持部2が絶縁部3を含んでいる場合、支持部2は、絶縁部3によって半導体素子SCの保護膜SC2に荷重を印加するように構成されている。 The insulating portion 3 covers the first surface 21a of the main body portion 21 . The material of the insulating portion 3 is, for example, resin or ceramics. When the supporting portion 2 includes the insulating portion 3, the supporting portion 2 is configured so that the insulating portion 3 applies a load to the protective film SC2 of the semiconductor element SC.
 支持部2は、端面2aを有している。端面2aは、半導体素子SCとの当接面として構成されている。本実施の形態において、端面2aは、絶縁部3に設けられている。 The support portion 2 has an end surface 2a. The end face 2a is configured as a contact face with the semiconductor element SC. In the present embodiment, the end face 2a is provided on the insulating portion 3. As shown in FIG.
 支持部2には、凹部25が設けられている。凹部25は、端面2aから移動方向DR1に沿って凹んでいる。凹部25の内壁は、固定部4、弾性部5および可動部6の外周を囲んでいる。言い換えると、固定部4、弾性部5および可動部6は、凹部25の内部に配置されている。 A concave portion 25 is provided in the support portion 2 . Recess 25 is recessed along moving direction DR1 from end face 2a. The inner wall of the recessed portion 25 surrounds the outer peripheries of the fixed portion 4 , the elastic portion 5 and the movable portion 6 . In other words, the fixed portion 4 , the elastic portion 5 and the movable portion 6 are arranged inside the recess 25 .
 固定部4は、弾性部5を支持部2に固定している。具体的には、固定部4は、弾性部5を凹部25の底面に固定している。固定部4は、導電性を有している。 The fixed part 4 fixes the elastic part 5 to the support part 2 . Specifically, the fixing portion 4 fixes the elastic portion 5 to the bottom surface of the recess 25 . The fixed part 4 has conductivity.
 弾性部5は、支持部2に支持されている。弾性部5は、例えば、圧縮コイルばねである。図1に示されるように、可動部6と半導体素子SCとが離れた状態において、弾性部5は、自由長以上に伸びている。また、図2に示されるように、可動部6と半導体素子SCとが接触した状態における弾性部5の長さは、可動部6と半導体素子SCとが離れた状態における弾性部5の長さ(図1参照)よりも短い。可動部6と半導体素子SCとが接触した状態において、弾性部5は、自由長よりも縮んでいる。弾性部5の第1端5aには、固定部4が固定されている。弾性部5の第2端5bには、可動部6が固定されている。本実施の形態において、弾性部5は、導電性を有している。なお、後述されるように、弾性部5は、絶縁性を有していてもよい。 The elastic portion 5 is supported by the support portion 2 . The elastic portion 5 is, for example, a compression coil spring. As shown in FIG. 1, when the movable portion 6 and the semiconductor element SC are separated from each other, the elastic portion 5 extends beyond its free length. Further, as shown in FIG. 2, the length of the elastic portion 5 when the movable portion 6 and the semiconductor element SC are in contact with each other is equal to the length of the elastic portion 5 when the movable portion 6 and the semiconductor element SC are separated from each other. (see Figure 1). In the state where the movable portion 6 and the semiconductor element SC are in contact with each other, the elastic portion 5 is shrunk more than its free length. A fixed portion 4 is fixed to the first end 5 a of the elastic portion 5 . A movable portion 6 is fixed to the second end 5 b of the elastic portion 5 . In this embodiment, the elastic portion 5 has conductivity. In addition, the elastic part 5 may have insulation so that it may mention later.
 可動部6は、弾性部5によって支持部2に接続されている。可動部6は、移動方向DR1に沿って支持部2よりも突出している。可動部6は、弾性部5が移動方向DR1に沿って弾性変形することによって移動するように構成されている。 The movable part 6 is connected to the support part 2 by the elastic part 5 . The movable portion 6 protrudes from the support portion 2 along the movement direction DR1. The movable portion 6 is configured to move by elastically deforming the elastic portion 5 along the movement direction DR1.
 可動部6は、半導体素子SCと向かい合うように配置されている。可動部6は、半導体素子SCに接触可能に構成されている。具体的には、可動部6は、半導体素子SCのソース電極SC1に接触可能に構成されている。これにより、可動部6は、ソース電極SC1に荷重を印加するように構成されている。可動部6がソース電極SC1に印加する荷重は、支持部2が保護膜SC2に印加する荷重とは異なっている。具体的には、可動部6がソース電極SC1に印加する荷重は、支持部2が保護膜SC2に印加する荷重よりも小さい。 The movable part 6 is arranged so as to face the semiconductor element SC. The movable portion 6 is configured to be able to contact the semiconductor element SC. Specifically, the movable portion 6 is configured to be able to contact the source electrode SC1 of the semiconductor element SC. Thereby, the movable part 6 is configured to apply a load to the source electrode SC1. The load applied by the movable portion 6 to the source electrode SC1 is different from the load applied by the support portion 2 to the protective film SC2. Specifically, the load applied by the movable portion 6 to the source electrode SC1 is smaller than the load applied by the support portion 2 to the protective film SC2.
 可動部6は、先端6aおよび後端6bを有している。先端6aは、半導体素子SCに接触可能に構成されている。本実施の形態において、先端6aは、曲面形状を有している。言い換えると、先端6aは、R形状を有している。なお、先端6aの曲率は、半導体素子SCのソース電極SC1の材質および通電電流の電流値に応じて定められてもよい。先端6aの曲率は、実験的に定められてもよい。後端6bは、先端6aに対向している。後端6bは、弾性部5に固定されている。 The movable portion 6 has a front end 6a and a rear end 6b. The tip 6a is configured to be able to contact the semiconductor element SC. In this embodiment, the tip 6a has a curved shape. In other words, the tip 6a has an R shape. Note that the curvature of the tip 6a may be determined according to the material of the source electrode SC1 of the semiconductor element SC and the current value of the applied current. The curvature of tip 6a may be determined experimentally. The rear end 6b faces the front end 6a. The rear end 6b is fixed to the elastic portion 5. As shown in FIG.
 図3に示されるように、支持部2の凹部25の内形がL1、ソース電極SC1の外形の寸法がL2、支持部2の外形の寸法L3である場合、L1、L2およびL3は、式(1)の関係を満たす。 As shown in FIG. 3, when the inner shape of the recessed portion 25 of the support portion 2 is L1, the outer shape dimension of the source electrode SC1 is L2, and the outer shape dimension of the support portion 2 is L3, L1, L2 and L3 are expressed by the formula The relationship of (1) is satisfied.
  L3>L2>L1・・・(1)
 すなわち、支持部2の外形の寸法L3、ソース電極SC1の外形の寸法L2および支持部2の凹部25の内形L1は、支持部2の外形の寸法L3、ソース電極SC1の外形の寸法L2、支持部2の凹部25の内形L1の寸法の順に大きい。
L3>L2>L1 (1)
That is, the outer dimension L3 of the support portion 2, the outer dimension L2 of the source electrode SC1, and the inner shape L1 of the concave portion 25 of the support portion 2 are equal to the outer dimension L3 of the support portion 2, the outer dimension L2 of the source electrode SC1, The dimension of the inner shape L1 of the concave portion 25 of the support portion 2 is larger in order.
 また、支持部2の移動方向DR1に沿った寸法がM1、可動部6の先端6aから支持部2の第2面21bまでの距離がM2、ソース電極SC1と保護膜SC2との厚みの差がM3である場合、M1、M2およびM3は、式(2)および式(3)の関係を満たす。 Further, the dimension along the moving direction DR1 of the supporting portion 2 is M1, the distance from the tip 6a of the movable portion 6 to the second surface 21b of the supporting portion 2 is M2, and the difference in thickness between the source electrode SC1 and the protective film SC2 is M3, M1, M2 and M3 satisfy the relationships of equations (2) and (3).
  M2>M1・・・(2)
  M2-M1>M3・・・(3)
 すなわち、可動部6の先端6aから支持部2の第2面21bまでの距離M2は、支持部2の移動方向DR1に沿った寸法M1よりも大きい。可動部6の先端6aから第2面21bまでの距離M2と移動方向DR1に沿った寸法M1との差(可動部6の支持部2からの突出量)は、ソース電極SC1と保護膜SC2との厚みの差M3よりも大きい。
M2>M1 (2)
M2-M1>M3 (3)
That is, the distance M2 from the tip 6a of the movable portion 6 to the second surface 21b of the support portion 2 is greater than the dimension M1 of the support portion 2 along the moving direction DR1. The difference between the distance M2 from the tip 6a of the movable portion 6 to the second surface 21b and the dimension M1 along the movement direction DR1 (the amount of protrusion of the movable portion 6 from the support portion 2) is the difference between the source electrode SC1 and the protective film SC2. is greater than the thickness difference M3.
 次に、図1、図2および図4を用いて、実施の形態1に係る通電検査方法を説明する。
 通電検査方法は、通電検査によって半導体素子SCを検査する通電検査方法である。図4に示されるように、通電検査方法は、準備される工程S101と、検査される工程S102とを含んでいる。
Next, the energization inspection method according to the first embodiment will be described with reference to FIGS. 1, 2 and 4. FIG.
The energization inspection method is an energization inspection method for inspecting the semiconductor element SC by energization inspection. As shown in FIG. 4, the energization inspection method includes a preparation step S101 and an inspection step S102.
 図1に示されるように、準備される工程S101において、通電検査装置100が準備される。また、準備される工程S101において、半導体素子SCが準備される。半導体素子SCがステージ11上に載置される。半導体素子SCは、可動部6と向かい合うようにステージ11上に載置される。半導体素子SCは、位置決め機構12から間隔を空けて配置される。 As shown in FIG. 1, in the preparation step S101, the energization inspection device 100 is prepared. Also, in the preparation step S101, the semiconductor element SC is prepared. A semiconductor element SC is placed on the stage 11 . The semiconductor element SC is placed on the stage 11 so as to face the movable portion 6 . The semiconductor element SC is spaced apart from the positioning mechanism 12 .
 続いて、図2に示されるように、移動方向DR1に沿って支持部2よりも突出した可動部6が移動機構MMによる支持部2の移動によって半導体素子SCに接触するまで移動される。これにより、可動部6が弾性部5の移動方向DR1に沿った弾性変形によって移動された状態で、半導体素子SCが通電検査によって検査される。これにより、可動部6が半導体素子SCに接触する。具体的には、可動部6が半導体素子SCのソース電極SC1に接触する。なお、可動部6は、絶縁部3または支持部2が半導体素子SCの保護膜SC2に接触していない状態で、半導体素子SCのソース電極SC1に接触する。これにより、支持部2、固定部4、弾性部5、可動部6、半導体素子SC、ステージ11および検査機構IMによる閉回路が形成される。 Subsequently, as shown in FIG. 2, the movable part 6 protruding from the support part 2 along the movement direction DR1 is moved by the movement of the support part 2 by the movement mechanism MM until it comes into contact with the semiconductor element SC. As a result, the semiconductor element SC is inspected by the energization inspection in a state in which the movable portion 6 is moved by elastic deformation along the moving direction DR1 of the elastic portion 5 . This causes the movable portion 6 to come into contact with the semiconductor element SC. Specifically, the movable portion 6 contacts the source electrode SC1 of the semiconductor element SC. The movable portion 6 contacts the source electrode SC1 of the semiconductor element SC while the insulating portion 3 or the support portion 2 does not contact the protective film SC2 of the semiconductor element SC. Thereby, a closed circuit is formed by the supporting portion 2, the fixed portion 4, the elastic portion 5, the movable portion 6, the semiconductor element SC, the stage 11, and the inspection mechanism IM.
 可動部6は、弾性部5の移動方向DR1に沿った弾性変形によって移動される。具体的には、可動部6は、移動方向DR1に沿って半導体素子SCから弾性部5に向かって移動する。 The movable part 6 is moved by elastic deformation of the elastic part 5 along the movement direction DR1. Specifically, the movable portion 6 moves from the semiconductor element SC toward the elastic portion 5 along the moving direction DR1.
 続いて、支持部2の絶縁部3が半導体素子SCの保護膜SC2に接触する。これにより、保護膜SC2に荷重が印加される。 Subsequently, the insulating portion 3 of the support portion 2 contacts the protective film SC2 of the semiconductor element SC. Thereby, a load is applied to the protective film SC2.
 可動部6が半導体素子SCに接触したのち、支持部2の絶縁部3が保護膜SC2に接触するまでの間、弾性部5の先端部分が円周方向に回転することに合わせて可動部6が円周方向に回転する。 After the movable portion 6 comes into contact with the semiconductor element SC, the movable portion 6 is moved in accordance with the rotation of the distal end portion of the elastic portion 5 in the circumferential direction until the insulating portion 3 of the support portion 2 contacts the protective film SC2. rotates in the circumferential direction.
 検査される工程S102では、半導体素子SCに電極部10による荷重が印加された状態で、半導体素子SCに電流または電圧が印加される。本実施の形態において、半導体素子SCには、電流が流される。これにより、検査される工程S102において、可動部6に接触した半導体素子SCが通電検査によって検査される。 In step S102 to be inspected, current or voltage is applied to the semiconductor element SC while the load is applied by the electrode part 10 to the semiconductor element SC. In this embodiment, a current flows through the semiconductor element SC. As a result, in the inspected step S102, the semiconductor element SC in contact with the movable portion 6 is inspected by the electrical inspection.
 望ましくは、検査される工程S102において、半導体素子SCの温度が50℃以上210℃以下に維持される。また、望ましくは、検査される工程S102において、半導体素子SCに流れる電流が50A/cm以上300A/cm以下に維持される。また、望ましくは半導体素子SCへの通電時間は、1秒以上300秒以下である。 Preferably, the temperature of the semiconductor element SC is maintained between 50° C. and 210° C. in step S102 to be inspected. Also, desirably, the current flowing through the semiconductor element SC is maintained at 50 A/cm 2 or more and 300 A/cm 2 or less in the inspected step S102. In addition, it is desirable that the energization time to the semiconductor element SC is 1 second or more and 300 seconds or less.
 本実施の形態では、検査される工程S102において、半導体素子SCの温度が100℃に維持され、かつ半導体素子SCに流れる電流が100A/cmに維持される。具体的には、半導体素子SCへの荷重およびステージ11の放熱性が制御されることで、半導体素子SCの温度および半導体素子SCに流れる電流が維持される。検査される工程S102において、半導体素子SCへの通電時間は、60秒である。 In this embodiment, the temperature of the semiconductor element SC is maintained at 100° C. and the current flowing through the semiconductor element SC is maintained at 100 A/cm 2 in the inspected step S102. Specifically, by controlling the load on the semiconductor element SC and the heat dissipation of the stage 11, the temperature of the semiconductor element SC and the current flowing through the semiconductor element SC are maintained. In the inspected step S102, the energization time to the semiconductor element SC is 60 seconds.
 続いて、支持部2は、移動機構MMによって移動方向DR1に沿って半導体素子SCとは反対側に移動される。これにより、可動部6は、半導体素子SCから離れる。 Subsequently, the supporting portion 2 is moved to the side opposite to the semiconductor element SC along the moving direction DR1 by the moving mechanism MM. As a result, the movable portion 6 is separated from the semiconductor element SC.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態1に係る通電検査装置100によれば、図1および図2に示されるように、可動部6は、弾性部5が移動方向DR1に沿って弾性変形することによって移動するように構成されている。このため、可動部6は、可動部6が半導体素子SCに接触した際に、移動する。よって、電極部10から半導体素子SCに印加される荷重は、可動部6の移動によって低減される。したがって、荷重が印加された状態の半導体素子SCに電流が流されることによって生じる半導体素子SCの軟化および変形を低減することができる。以上より、通電検査による半導体素子SCの劣化を低減することができる。
Next, the effects of this embodiment will be described.
According to the energization inspection apparatus 100 according to the first embodiment, as shown in FIGS. 1 and 2, the movable portion 6 is configured to move by elastically deforming the elastic portion 5 along the movement direction DR1. It is Therefore, the movable portion 6 moves when the movable portion 6 contacts the semiconductor element SC. Therefore, the load applied from the electrode portion 10 to the semiconductor element SC is reduced due to the movement of the movable portion 6 . Therefore, it is possible to reduce the softening and deformation of the semiconductor element SC caused by the current flowing through the semiconductor element SC with the load applied. As described above, it is possible to reduce the deterioration of the semiconductor element SC due to the energization inspection.
 電極部10から半導体素子SCに印加される荷重が可動部6の移動によって低減されるため、荷重が印加された状態における半導体素子SCとステージ11との接触熱抵抗および接触抵抗を低減することができる。このため、荷重が印加された状態の半導体素子SCに電流が流されることによって生じる半導体素子SCの軟化および変形を低減することができる。よって、通電検査による半導体素子SCの劣化を低減することができる。 Since the load applied from the electrode section 10 to the semiconductor element SC is reduced by the movement of the movable section 6, it is possible to reduce contact thermal resistance and contact resistance between the semiconductor element SC and the stage 11 in a state where the load is applied. can. Therefore, it is possible to reduce the softening and deformation of the semiconductor element SC caused by the current flowing through the semiconductor element SC with the load applied. Therefore, it is possible to reduce the deterioration of the semiconductor element SC due to the energization inspection.
 図1および図2に示されるように、可動部6は、移動方向DR1に沿って支持部2よりも突出している。また、可動部6の支持部2からの突出量は、保護膜SC2とソース電極SC1との厚みの差よりも大きい。このため、半導体素子SCの保護膜SC2がソース電極SC1よりも厚い場合でも、可動部6がソース電極SC1に接触することができる。よって、半導体素子SCの保護膜SC2がソース電極SC1よりも厚い場合でも、半導体素子SCを通電検査によって検査することができる。 As shown in FIGS. 1 and 2, the movable portion 6 protrudes from the support portion 2 along the movement direction DR1. Further, the amount of protrusion of the movable portion 6 from the support portion 2 is larger than the difference in thickness between the protective film SC2 and the source electrode SC1. Therefore, even when the protective film SC2 of the semiconductor element SC is thicker than the source electrode SC1, the movable portion 6 can come into contact with the source electrode SC1. Therefore, even when the protective film SC2 of the semiconductor element SC is thicker than the source electrode SC1, the semiconductor element SC can be inspected by the electrical inspection.
 実施の形態1に係る通電検査方法によれば、図1および図2に示されるように、可動部6が移動方向DR1に沿って支持部2よりも突出した状態から移動機構MMによって支持部2が移動されることで可動部6が半導体素子SCに接触するまで移動される。続いて、可動部6は、弾性部5の移動方向DR1に沿った弾性変形によって移動される。このため、電極部10から半導体素子SCに印加される荷重は、可動部6の移動によって低減される。よって、荷重が印加された状態の半導体素子SCに電流が流されることによって生じる半導体素子SCの軟化および変形を低減することができる。したがって、通電検査による半導体素子SCの劣化を低減することができる。 According to the energization inspection method according to the first embodiment, as shown in FIGS. 1 and 2, the moving mechanism MM moves the supporting portion 2 from the state in which the movable portion 6 protrudes from the supporting portion 2 along the moving direction DR1. is moved, the movable portion 6 is moved until it comes into contact with the semiconductor element SC. Subsequently, the movable portion 6 is moved by elastic deformation of the elastic portion 5 along the movement direction DR1. Therefore, the load applied from the electrode portion 10 to the semiconductor element SC is reduced by the movement of the movable portion 6 . Therefore, it is possible to reduce the softening and deformation of the semiconductor element SC caused by the current flowing through the semiconductor element SC with the load applied. Therefore, it is possible to reduce the deterioration of the semiconductor element SC due to the energization inspection.
 可動部6が円周方向に回転することで、準備される工程S101において半導体素子SCと可動部6との接触抵抗をさらに低減することができる。 By rotating the movable part 6 in the circumferential direction, the contact resistance between the semiconductor element SC and the movable part 6 can be further reduced in the step S101 to be prepared.
 検査される工程S102において、半導体素子SCの温度が50℃以上210℃以下に維持される。また、半導体素子SCに流れる電流が50A/cm以上300A/cm以下に維持される。また、半導体素子SCへの通電時間は、1秒以上300秒以下である。このため、半導体素子SCに含まれる欠陥を成長させることができる。したがって、半導体素子SCの検査と欠陥の成長とが同時に行われ得る。 In the inspected step S102, the temperature of the semiconductor element SC is maintained at 50° C. or more and 210° C. or less. Also, the current flowing through the semiconductor element SC is maintained at 50 A/cm 2 or more and 300 A/cm 2 or less. Also, the energization time to the semiconductor element SC is 1 second or more and 300 seconds or less. Therefore, defects contained in the semiconductor element SC can be grown. Therefore, inspection of the semiconductor element SC and growth of defects can be performed simultaneously.
 実施の形態2.
 次に、図5および図6を用いて、実施の形態2に係る通電検査装置100の構成を説明する。実施の形態2は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 2.
Next, the configuration of the energization inspection apparatus 100 according to the second embodiment will be described with reference to FIGS. 5 and 6. FIG. The second embodiment has the same configuration and effects as those of the first embodiment unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the above-described first embodiment, and description thereof will not be repeated.
 図5および図6に示されるように、本実施の形態に係る通電検査装置100の可動部6の先端6aは、平坦である。望ましくは、可動部6の先端6aは、半導体素子SCのソース電極SC1の表面に対して平行である。 As shown in FIGS. 5 and 6, the tip 6a of the movable portion 6 of the electrical inspection apparatus 100 according to this embodiment is flat. Desirably, the tip 6a of the movable portion 6 is parallel to the surface of the source electrode SC1 of the semiconductor element SC.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態2に係る通電検査装置100によれば、図5および図6に示されるように、可動部6の先端6aは、平坦である。このため、可動部6の先端6aが曲面である場合よりも、可動部6とソース電極SC1との接触面積が大きい。よって、可動部6の先端6aが曲面である場合よりも、可動部6と半導体素子SCとに電流が流れた際における電流密度が小さい。これにより、可動部6と半導体素子SCとの接触抵抗に起因したソース電極SC1の温度上昇を抑制することができる。したがって、通電検査による半導体素子SCの劣化をさらに低減することができる。
Next, the effects of this embodiment will be described.
According to the electrical inspection apparatus 100 according to the second embodiment, as shown in FIGS. 5 and 6, the tip 6a of the movable portion 6 is flat. Therefore, the contact area between the movable portion 6 and the source electrode SC1 is larger than when the tip 6a of the movable portion 6 has a curved surface. Therefore, the current density when the current flows between the movable portion 6 and the semiconductor element SC is smaller than when the tip 6a of the movable portion 6 has a curved surface. Thereby, the temperature rise of the source electrode SC1 caused by the contact resistance between the movable portion 6 and the semiconductor element SC can be suppressed. Therefore, it is possible to further reduce the deterioration of the semiconductor element SC due to the energization inspection.
 実施の形態3.
 次に、図7および図8を用いて、実施の形態3に係る通電検査装置100の構成を説明する。実施の形態3は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 3.
Next, the configuration of the energization inspection apparatus 100 according to the third embodiment will be described with reference to FIGS. 7 and 8. FIG. Embodiment 3 has the same configuration and effects as those of Embodiment 1 described above unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the above-described first embodiment, and description thereof will not be repeated.
 図7に示されるように、本実施の形態に係る通電検査装置100の電極部10は、通電部7をさらに含んでいる。通電部7は、導電性を有している。可動部6と弾性部5とは、通電部7によって接続されている。通電部7は、例えば、板バネである。通電部7の第1端部7aは、弾性部5と可動部6とに挟み込まれている。通電部7の第2端部7bは、凹部25の底面に固定されている。可動部6は、通電部7に固定されている。 As shown in FIG. 7, the electrode section 10 of the energization inspection apparatus 100 according to the present embodiment further includes an energization section 7 . The conducting portion 7 has conductivity. The movable portion 6 and the elastic portion 5 are connected by a conducting portion 7 . The conducting portion 7 is, for example, a leaf spring. A first end portion 7 a of the conducting portion 7 is sandwiched between the elastic portion 5 and the movable portion 6 . A second end portion 7 b of the conducting portion 7 is fixed to the bottom surface of the recess 25 . The movable portion 6 is fixed to the current-carrying portion 7 .
 図8は、通電検査装置100の電極部10をステージ11から見た下面図である。なお、一点鎖線は、半導体素子SCのソース電極SC1の外形を示している。また、二点鎖線は、半導体素子SCの保護膜SC2の外形を示している。 FIG. 8 is a bottom view of the electrode section 10 of the energization inspection device 100 viewed from the stage 11. FIG. A dashed line indicates the outline of the source electrode SC1 of the semiconductor element SC. A two-dot chain line indicates the outer shape of the protective film SC2 of the semiconductor element SC.
 図8に示されるように、支持部2の凹部25は、支持部2の側方に向かって開口していてもよい。凹部25の短手方向の寸法がL4である場合、ソース電極SC1の外形の寸法L2との間には、式(4)の関係が成立する。 As shown in FIG. 8, the concave portion 25 of the support portion 2 may open toward the side of the support portion 2. When the dimension of the recess 25 in the width direction is L4, the relation of the formula (4) is established with the dimension L2 of the outer shape of the source electrode SC1.
  L2>L4・・・(4)
 このため、凹部25の短手方向の寸法L4は、ソース電極SC1の外形の寸法L2よりも小さい。
L2>L4 (4)
Therefore, the widthwise dimension L4 of the recess 25 is smaller than the outer dimension L2 of the source electrode SC1.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態3に係る通電検査装置100によれば、図7に示されるように、可動部6と弾性部5とは、通電部7によって接続されている。このため、通電検査時において通電検査装置100に流れる電流は、可動部6と支持部2との間において、弾性部5に加えて通電部7にも流れる。言い換えると、電極部10に流れる電流は、弾性部5および通電部7に分担される。このため、弾性部5に流れる電流が低減される。よって、弾性部5の寿命を長くすることができる。特に、通電検査装置100によって繰り返し半導体素子SCを検査する場合に、弾性部5の寿命を長くすることができる。
Next, the effects of this embodiment will be described.
According to the energization inspection apparatus 100 according to Embodiment 3, the movable portion 6 and the elastic portion 5 are connected by the energization portion 7 as shown in FIG. 7 . For this reason, the current flowing through the current testing apparatus 100 during the current testing flows not only to the elastic portion 5 but also to the conductive portion 7 between the movable portion 6 and the support portion 2 . In other words, the current flowing through the electrode portion 10 is divided between the elastic portion 5 and the conducting portion 7 . Therefore, the current flowing through the elastic portion 5 is reduced. Therefore, the life of the elastic portion 5 can be lengthened. In particular, the life of the elastic portion 5 can be lengthened when the semiconductor element SC is repeatedly inspected by the energization inspection apparatus 100 .
 実施の形態4.
 次に、図9を用いて、実施の形態4に係る通電検査装置100の構成を説明する。実施の形態4は、特に説明しない限り、上記の実施の形態1と同一の構成および作用効果を有している。したがって、上記の実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 4.
Next, the configuration of the energization inspection apparatus 100 according to Embodiment 4 will be described with reference to FIG. 9 . The fourth embodiment has the same configuration and effects as those of the first embodiment unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the above-described first embodiment, and description thereof will not be repeated.
 図9に示されるように、本実施の形態に係る通電検査装置100の電極部10は、薄膜部8をさらに含んでいる。支持部2および薄膜部8は、導電性を有している。薄膜部8は、支持部2の端面2aにおいて、可動部6を覆っている。薄膜部8は、支持部2および可動部6に電気的に接続されている。薄膜部8は、支持部2に固着している。なお、本実施の形態に係る支持部2は、絶縁部3(図1参照)を含んでいない。 As shown in FIG. 9, the electrode section 10 of the electrical testing apparatus 100 according to the present embodiment further includes a thin film section 8. As shown in FIG. The supporting portion 2 and the thin film portion 8 are conductive. The thin film portion 8 covers the movable portion 6 on the end surface 2 a of the support portion 2 . The thin film portion 8 is electrically connected to the support portion 2 and the movable portion 6 . The thin film portion 8 is fixed to the support portion 2 . Note that the support portion 2 according to the present embodiment does not include the insulating portion 3 (see FIG. 1).
 薄膜部8は、半導体素子SCに向かって凸である形状を有している。薄膜部8は、半導体素子SCに向かって支持部2から突出した可動部6によって押されることで、半導体素子SCに向かうように凸な形状を有する。図9では、電極部10は、1つの薄膜部8を含んでいるが、複数の薄膜部8を含んでいてもよい。また、薄膜部8の厚みは、半導体素子SCのソース電極SC1が劣化および破壊されない範囲で適宜に決められてもよい。 The thin film portion 8 has a shape that protrudes toward the semiconductor element SC. The thin film portion 8 has a convex shape toward the semiconductor element SC by being pushed by the movable portion 6 projecting from the support portion 2 toward the semiconductor element SC. Although the electrode portion 10 includes one thin film portion 8 in FIG. 9 , it may include a plurality of thin film portions 8 . Also, the thickness of the thin film portion 8 may be appropriately determined within a range in which the source electrode SC1 of the semiconductor element SC is not deteriorated or destroyed.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態4に係る通電検査装置100によれば、図9に示されるように、薄膜部8は、支持部2の端面2aにおいて、可動部6を覆っている。薄膜部8は、導電性を有している。また、支持部2は、絶縁部3を含んでいない。このため、電流が電極部10のうち支持部2および薄膜部8に流れた状態で半導体素子SCの通電検査をすることができる。このため、電極部10に流れる電流は、弾性部5および薄膜部8に分担される。言い換えると、電流の通電経路は、支持部2、固定部4、弾性部5、可動部6、薄膜部8、半導体素子SCおよびステージ11ならびに支持部2、固定部4、薄膜部8、半導体素子SCおよびステージ11である。よって、弾性部5に流れる電流が薄膜部8によって低減される。したがって、弾性部5の寿命が向上する。
Next, the effects of this embodiment will be described.
According to the energization inspection apparatus 100 according to the fourth embodiment, the thin film portion 8 covers the movable portion 6 on the end face 2a of the support portion 2, as shown in FIG. The thin film portion 8 has conductivity. Moreover, the support portion 2 does not include the insulating portion 3 . Therefore, it is possible to carry out an electrical test of the semiconductor element SC in a state in which the current flows through the supporting portion 2 and the thin film portion 8 of the electrode portion 10 . Therefore, the current flowing through the electrode portion 10 is divided between the elastic portion 5 and the thin film portion 8 . In other words, the current conducting path includes the supporting portion 2, the fixed portion 4, the elastic portion 5, the movable portion 6, the thin film portion 8, the semiconductor element SC, the stage 11, the supporting portion 2, the fixed portion 4, the thin film portion 8, and the semiconductor element. SC and stage 11. Therefore, the current flowing through the elastic portion 5 is reduced by the thin film portion 8 . Therefore, the life of the elastic portion 5 is improved.
 薄膜部8は、支持部2の端面2aにおいて、可動部6を覆っている。このため、可動部6を薄膜部8によって保護することができる。また、薄膜部8を容易にメンテナンスすることができるため、電極部10を容易にメンテナンスすることができる。 The thin film portion 8 covers the movable portion 6 on the end surface 2 a of the support portion 2 . Therefore, the movable portion 6 can be protected by the thin film portion 8 . Moreover, since the thin film portion 8 can be easily maintained, the electrode portion 10 can be easily maintained.
 実施の形態5.
 次に、図10を用いて、実施の形態5に係る通電検査装置100の構成を説明する。実施の形態5は、特に説明しない限り、上記の実施の形態4と同一の構成および作用効果を有している。したがって、上記の実施の形態4と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 5.
Next, the configuration of the energization inspection apparatus 100 according to Embodiment 5 will be described with reference to FIG. 10 . The fifth embodiment has the same configuration and effects as those of the fourth embodiment unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the fourth embodiment, and the description thereof will not be repeated.
 図10に示されるように、本実施の形態に係る通電検査装置100の弾性部5は、絶縁性を有している。弾性部5の材料は、例えば、樹脂またはゴム等の絶縁性を有する材料である。なお、本実施の形態において、半導体素子SCの通電検査における通電経路は、支持部2、薄膜部8、半導体素子SCおよびステージ11である。 As shown in FIG. 10, the elastic portion 5 of the energization inspection device 100 according to the present embodiment has insulating properties. The material of the elastic portion 5 is, for example, an insulating material such as resin or rubber. In the present embodiment, the energization path in the energization inspection of the semiconductor element SC is the supporting portion 2, the thin film portion 8, the semiconductor element SC and the stage 11. FIG.
 本実施の形態において、可動部6は、剛性を有している。可動部6は、弾性変形しないように構成されていてもよい。 In this embodiment, the movable portion 6 has rigidity. The movable part 6 may be configured so as not to be elastically deformed.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態5に係る通電検査装置100によれば、図10に示されるように、弾性部5は、絶縁性を有している。このため、半導体素子SCの通電検査において、弾性部5には電流が流れることを抑制することができる。このため、通電による弾性部5の劣化を抑制することができる。
Next, the effects of this embodiment will be described.
According to the energization inspection apparatus 100 according to Embodiment 5, as shown in FIG. 10, the elastic portion 5 has insulating properties. For this reason, it is possible to suppress current from flowing through the elastic portion 5 in the energization inspection of the semiconductor element SC. Therefore, deterioration of the elastic portion 5 due to energization can be suppressed.
 実施の形態6.
 次に、図11を用いて、実施の形態6に係る通電検査装置100の構成を説明する。実施の形態6は、特に説明しない限り、前記実施の形態1と同一の構成および作用効果を有している。したがって、前記実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 6.
Next, the configuration of the energization inspection apparatus 100 according to Embodiment 6 will be described with reference to FIG. 11 . Embodiment 6 has the same configuration and effects as those of Embodiment 1 unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the first embodiment, and the description thereof will not be repeated.
 図11に示されるように、本実施の形態に係る通電検査装置100の支持部2には、移動方向DR1に対して一定の角度θを有して凹部25が設けられている。前記角度θは、ソース電極の厚み、可動部の材質、弾性部のばね定数に基づいて、-90°<θ<90°の範囲で実験的に定められる。可動部6が移動方向DR1に対し傾いている。 As shown in FIG. 11, the supporting portion 2 of the energization inspection device 100 according to the present embodiment is provided with a concave portion 25 having a constant angle θ with respect to the moving direction DR1. The angle θ is experimentally determined in the range of −90°<θ<90° based on the thickness of the source electrode, the material of the movable portion, and the spring constant of the elastic portion. The movable portion 6 is tilted with respect to the movement direction DR1.
 続いて、本実施の形態の作用効果を説明する。
 実施の形態6に係る通電検査装置100によれば、図11に示されるように、支持部2には移動方向DR1に対して一定の角度θを有して凹部25が設けられている。これにより、可動部6が移動方向DR1に対し傾いている。このため、可動部6の先端6aが半導体素子SCのソース電極SC1に接触したのち、端面2aが半導体素子SCの保護膜SC2に接触するまでの間、可動部6が移動方向DR1に垂直な方向にソース電極SC1に対して摺動する。そのため、半導体素子SCのソース電極SC1上に形成された酸化被膜を破ることが容易となり、準備される工程S101において、ソース電極SC1と可動部6の先端6aとの接触抵抗をより低減させることができる。
Next, the effects of this embodiment will be described.
According to the energization inspection apparatus 100 according to Embodiment 6, as shown in FIG. 11, the support portion 2 is provided with the recessed portion 25 having a constant angle θ with respect to the moving direction DR1. As a result, the movable portion 6 is tilted with respect to the movement direction DR1. Therefore, after the tip 6a of the movable portion 6 contacts the source electrode SC1 of the semiconductor element SC, until the end face 2a contacts the protective film SC2 of the semiconductor element SC, the movable portion 6 moves in the direction perpendicular to the moving direction DR1. slides against the source electrode SC1. Therefore, it becomes easy to break the oxide film formed on the source electrode SC1 of the semiconductor element SC, and the contact resistance between the source electrode SC1 and the tip 6a of the movable portion 6 can be further reduced in the prepared step S101. can.
 実施の形態7.
 次に、図12を用いて、実施の形態7に係る通電検査装置100の構成を説明する。実施の形態7は、特に説明しない限り、前記実施の形態1と同一の構成および作用効果を有している。したがって、前記実施の形態1と同一の構成には同一の符号を付し、説明を繰り返さない。
Embodiment 7.
Next, using FIG. 12, the configuration of the energization inspection apparatus 100 according to Embodiment 7 will be described. The seventh embodiment has the same configuration and effects as those of the first embodiment unless otherwise specified. Therefore, the same reference numerals are given to the same configurations as in the first embodiment, and the description thereof will not be repeated.
 図12に示されるように、本実施の形態に係る通電検査装置100において、支持部2に空気タンク部27および通気口28が設けられている。可動部6が半導体素子SCのソース電極SC1に与える荷重は、可動部6の材質、通気口28の径によって実験的に定められる。 As shown in FIG. 12, in the energization inspection device 100 according to the present embodiment, the support portion 2 is provided with an air tank portion 27 and a vent hole 28 . The load applied to the source electrode SC<b>1 of the semiconductor element SC by the movable portion 6 is experimentally determined according to the material of the movable portion 6 and the diameter of the vent 28 .
 可動部6がフランジ部26を有している。
 続いて、本実施の形態の作用効果を説明する。
The movable portion 6 has a flange portion 26 .
Next, the effects of this embodiment will be described.
 実施の形態7に係る通電検査装置100によれば、図12に示されるように、移動機構MMによって支持部2が移動し、可動部6の先端6aが半導体素子SCのソース電極SC1に接触したのち、半導体素子SCの保護膜SC2が支持部2に接触するまでの間、空気タンク部27に含まれる空気が圧縮され、圧縮された空気が移動方向DR1と同一の方向に可動部6を押すため、半導体素子SCのソース電極SC1に荷重が与えられる。半導体素子SCの保護膜SC2が支持部2に接触したあとは、通気口28を介して圧縮された空気の圧力が次第に減少し、支持部2の外部の大気圧と平衡するため、ソース電極SC1に与えられた荷重が減少する。以上のようにして、半導体素子SCのソース電極SC1に荷重を与える構成とすることで、ばね、ゴムといった弾性部の劣化を回避することができる。 According to the energization inspection apparatus 100 according to the seventh embodiment, as shown in FIG. 12, the support portion 2 is moved by the moving mechanism MM, and the tip 6a of the movable portion 6 is brought into contact with the source electrode SC1 of the semiconductor element SC. Thereafter, the air contained in the air tank portion 27 is compressed until the protective film SC2 of the semiconductor element SC contacts the support portion 2, and the compressed air pushes the movable portion 6 in the same direction as the moving direction DR1. Therefore, a load is applied to the source electrode SC1 of the semiconductor element SC. After the protective film SC2 of the semiconductor element SC comes into contact with the supporting portion 2, the pressure of the air compressed through the vent 28 gradually decreases and balances with the atmospheric pressure outside the supporting portion 2, so that the source electrode SC1 the load applied to the As described above, by applying a load to the source electrode SC1 of the semiconductor element SC, it is possible to avoid deterioration of elastic portions such as springs and rubbers.
 このようにソース電極SC1に付与される荷重は検査される工程S102中も継続している必要はなく、準備される工程S101内で一時的に付与されるだけでもよい。 The load applied to the source electrode SC1 in this way does not need to be continued during the step S102 of inspection, and may be applied only temporarily during the step S101 of preparation.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.
 2 支持部、2a 端面、5 弾性部、6 可動部、7 通電部、8 薄膜部、10 電極部、100 通電検査装置、SC 半導体素子。 2 support part, 2a end face, 5 elastic part, 6 movable part, 7 conducting part, 8 thin film part, 10 electrode part, 100 electrification inspection device, SC semiconductor element.

Claims (10)

  1.  支持部と、前記支持部に支持された弾性部と、前記弾性部によって前記支持部に接続された可動部とを含む電極部と、
     前記支持部と前記可動部とが前記弾性部を挟み込む移動方向に沿って前記電極部を移動させるように構成された移動機構とを備え、
     前記移動機構は、前記支持部を移動させることで前記移動方向に沿って前記可動部を移動させるように構成されており、
     前記可動部は、前記移動方向に沿って前記支持部よりも突出しており、
     前記可動部は、前記弾性部が前記移動方向に沿って弾性変形することによって移動するように構成されている、通電検査装置。
    an electrode section including a support section, an elastic section supported by the support section, and a movable section connected to the support section by the elastic section;
    a moving mechanism configured to move the electrode portion along a moving direction in which the elastic portion is sandwiched between the support portion and the movable portion;
    The moving mechanism is configured to move the movable part along the moving direction by moving the supporting part,
    The movable portion protrudes from the support portion along the movement direction,
    The energization inspection device, wherein the movable portion is configured to move when the elastic portion is elastically deformed along the moving direction.
  2.  前記支持部が半導体素子に荷重を与える端面を有し、前記端面が前記半導体素子に印加する荷重と、前記可動部の先端が前記半導体素子に印加する荷重が異なる、請求項1に記載の通電検査装置。 2. The energization according to claim 1, wherein the support portion has an end surface that applies a load to the semiconductor element, and the load applied to the semiconductor element by the end surface is different from the load applied to the semiconductor element by the tip of the movable portion. inspection equipment.
  3.  前記電極部は、導電性を有する通電部をさら含み、
     前記可動部と前記弾性部とは、前記通電部によって接続されている、請求項1または2に記載の通電検査装置。
    The electrode portion further includes a conducting portion having conductivity,
    3. The energization inspection device according to claim 1, wherein said movable portion and said elastic portion are connected by said energization portion.
  4.  前記電極部は、薄膜部をさらに含み、
     前記支持部および前記薄膜部は、導電性を有しており、
     前記薄膜部は、前記支持部の端面において、前記可動部を覆っている、請求項1~3のいずれか1項に記載の通電検査装置。
    The electrode portion further includes a thin film portion,
    The support portion and the thin film portion have conductivity,
    The electrical inspection apparatus according to any one of claims 1 to 3, wherein the thin film portion covers the movable portion on the end surface of the support portion.
  5.  前記弾性部は、絶縁性を有している、請求項4に記載の通電検査装置。 The energization inspection device according to claim 4, wherein the elastic portion has insulating properties.
  6.  前記可動部の先端は、平坦である、請求項1~5のいずれか1項に記載の通電検査装置。 The electrical inspection apparatus according to any one of claims 1 to 5, wherein the tip of the movable portion is flat.
  7.  前記可動部が前記移動方向に対し傾いている、請求項1~6のいずれか1項に記載の通電検査装置。 The electrical inspection device according to any one of claims 1 to 6, wherein the movable portion is inclined with respect to the moving direction.
  8.  前記弾性部が空気タンク部である、請求項1~7のいずれか1項に記載の通電検査装置。 The electrical inspection device according to any one of claims 1 to 7, wherein the elastic portion is an air tank portion.
  9.  半導体素子を通電検査によって検査する通電検査方法であって、
     支持部、前記支持部に支持された弾性部および前記弾性部によって前記支持部に接続された可動部を含む電極部と、前記支持部と前記可動部とが前記弾性部を挟み込む移動方向に沿って前記電極部を移動させるように構成された移動機構とを備えた通電検査装置が準備される工程と、
     前記移動方向に沿って前記支持部よりも突出した前記可動部が前記移動機構による前記支持部の移動によって前記半導体素子に接触するまで移動されることで、前記弾性部の前記移動方向に沿った弾性変形によって移動された状態で、前記半導体素子が通電検査によって検査される工程とを備えた、通電検査方法。
    A energization inspection method for inspecting a semiconductor element by energization inspection,
    an electrode section including a support section, an elastic section supported by the support section, and a movable section connected to the support section by the elastic section; a step of preparing an energization inspection device comprising a moving mechanism configured to move the electrode portion by
    The movable portion protruding from the supporting portion along the moving direction is moved until it contacts the semiconductor element by the movement of the supporting portion by the moving mechanism, so that the elastic portion moves along the moving direction. and a step of inspecting the semiconductor element by an electrical inspection while being moved by elastic deformation.
  10.  前記検査される工程において、前記半導体素子の温度が50℃以上210℃以下に維持され、かつ前記半導体素子に流れる電流が50A/cm以上300A/cm以下に維持され、かつ前記半導体素子への通電時間は1秒以上300秒以下である、請求項9に記載の通電検査方法。 In the inspecting step, the temperature of the semiconductor element is maintained at 50° C. or higher and 210° C. or lower, the current flowing through the semiconductor element is maintained at 50 A/cm 2 or higher and 300 A/cm 2 or lower, and The energization inspection method according to claim 9, wherein the energization time is 1 second or more and 300 seconds or less.
PCT/JP2022/010278 2021-03-12 2022-03-09 Electrical current testing device and electrical current testing method WO2022191236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505605A JPWO2022191236A1 (en) 2021-03-12 2022-03-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021040246 2021-03-12
JP2021-040246 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022191236A1 true WO2022191236A1 (en) 2022-09-15

Family

ID=83226825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010278 WO2022191236A1 (en) 2021-03-12 2022-03-09 Electrical current testing device and electrical current testing method

Country Status (2)

Country Link
JP (1) JPWO2022191236A1 (en)
WO (1) WO2022191236A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105151A (en) * 1974-01-28 1975-08-19
JPS51104755U (en) * 1975-02-19 1976-08-21
JPH10163278A (en) * 1996-12-02 1998-06-19 Hitachi Ltd Probe equipment
JP2003337158A (en) * 2002-05-20 2003-11-28 Murata Mfg Co Ltd Electric characteristic measuring holder and electric characteristic measuring method
JP2010133787A (en) * 2008-12-03 2010-06-17 Tokyo Electron Ltd Probe card
JP2014219273A (en) * 2013-05-08 2014-11-20 本田技研工業株式会社 Current application method and current application device
JP2019021740A (en) * 2017-07-14 2019-02-07 富士電機株式会社 Semiconductor device, semiconductor module, and method of testing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105151A (en) * 1974-01-28 1975-08-19
JPS51104755U (en) * 1975-02-19 1976-08-21
JPH10163278A (en) * 1996-12-02 1998-06-19 Hitachi Ltd Probe equipment
JP2003337158A (en) * 2002-05-20 2003-11-28 Murata Mfg Co Ltd Electric characteristic measuring holder and electric characteristic measuring method
JP2010133787A (en) * 2008-12-03 2010-06-17 Tokyo Electron Ltd Probe card
JP2014219273A (en) * 2013-05-08 2014-11-20 本田技研工業株式会社 Current application method and current application device
JP2019021740A (en) * 2017-07-14 2019-02-07 富士電機株式会社 Semiconductor device, semiconductor module, and method of testing semiconductor device

Also Published As

Publication number Publication date
JPWO2022191236A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP2019114591A (en) Plasma processing device and plasma processing method
JP7435701B2 (en) electrostatic chuck device
JP6440587B2 (en) Suction plate, semiconductor device test apparatus, and semiconductor device test method
KR101718865B1 (en) Test Socket
JP2013096837A (en) Semiconductor test jig and breakdown voltage measurement method using the same
US7067787B2 (en) Solid state detector and method of manufacturing same
KR101630612B1 (en) Method of testing semiconductor device
KR20190037621A (en) Conductive contact and anisotropic conductive sheet with the same
WO2022191236A1 (en) Electrical current testing device and electrical current testing method
JP2010080673A (en) Mounting table
KR102153221B1 (en) Anisotropic conductive sheet
US6751862B2 (en) Method of making an electronic device
JP5146056B2 (en) Semiconductor device manufacturing method and semiconductor device support device
JP2009016652A (en) Power electric equipment
US9140726B2 (en) Support body for contact terminals and probe card
TWI437658B (en) Loading platform
TW201335047A (en) Electronic component transporting device
US8519733B2 (en) Method of measuring characteristics of a semiconductor element and method of manufacturing a semiconductor device
US8795019B2 (en) Electrode mount, high pressure discharge lamp using the same, and manufacturing methods of electrode mount and high pressure discharge lamp
US6837937B2 (en) Plasma processing apparatus
US10587971B2 (en) Semiconductor device and manufacture thereof
KR20070081038A (en) Electrostatic chuck of plasma appartus
JP6779668B2 (en) Insulation inspection equipment
US10192797B2 (en) Semiconductor device and electrical contact structure thereof
JP5392693B2 (en) Test contact

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767190

Country of ref document: EP

Kind code of ref document: A1