WO2022191198A1 - Chain tensioner - Google Patents

Chain tensioner Download PDF

Info

Publication number
WO2022191198A1
WO2022191198A1 PCT/JP2022/010042 JP2022010042W WO2022191198A1 WO 2022191198 A1 WO2022191198 A1 WO 2022191198A1 JP 2022010042 W JP2022010042 W JP 2022010042W WO 2022191198 A1 WO2022191198 A1 WO 2022191198A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
flow path
cylinder
hole
main body
Prior art date
Application number
PCT/JP2022/010042
Other languages
French (fr)
Japanese (ja)
Inventor
武博 高野
誠二 佐藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022191198A1 publication Critical patent/WO2022191198A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains

Definitions

  • the present invention relates to a chain tensioner used to hold the tension of the chain.
  • chain transmission devices used in automobile engines for example, those that transmit the rotation of the crankshaft to the camshaft, those that transmit the rotation of the crankshaft to auxiliary equipment such as oil pumps, water pumps, superchargers, etc. , to transmit the rotation of the crankshaft to the balancer shaft, and to connect the intake and exhaust cams of a twin-cam engine.
  • a chain tensioner is used to keep the tension of the chain in these chain drives in the proper range.
  • the chain tensioner disclosed in Patent Document 1 includes a cylinder, a plunger axially slidably inserted into the cylinder, a return spring that biases the plunger in the direction of protruding from the cylinder, and a plunger that moves in the direction of being pushed into the cylinder. and a hydraulic damper mechanism that generates a damping force due to the viscous resistance of the oil when the damping force is applied.
  • the cylinder has a cylinder body portion that is inserted into the tensioner mounting hole of the engine cover, and a cylinder flange portion that is integrally formed with the cylinder body portion and fixed in surface contact with the outer surface of the engine cover.
  • the cylinder main body is a cylindrical portion having one axial end closed and the other axial end open, and is inserted into the tensioner mounting hole with the open end directed toward the inside of the engine cover.
  • An oil hole is formed in the engine cover to supply the chain tensioner with oil sent from the engine's oil pump.
  • a cylinder of the chain tensioner is provided with an oil supply passage for introducing oil into the cylinder from an oil hole in the engine cover.
  • the oil supply passage is an oil introduction hole formed to communicate from the surface of the cylinder to the inside of the cylinder.
  • the plunger moves in the direction in which the plunger protrudes from the cylinder (hereinafter referred to as the "projection direction") due to the biasing force of the return spring and the pressure of the oil in the cylinder. Absorb relaxation.
  • the oil pump of the engine also stops, so the oil level in the oil hole of the engine cover drops, and air accumulates in the oil hole. Therefore, when the engine is restarted, the air accumulated in the oil hole of the engine cover moves into the cylinder through the oil introduction hole and mixes with the oil in the cylinder. If air is mixed in with the oil in the cylinder, the plunger will move due to compression of the air in the cylinder when a load is applied to the plunger in the pushing direction, resulting in an unstable damper force. .
  • the chain tensioner disclosed in Patent Document 1 has an air bleeding passage branching from the middle of the oil introduction hole. are provided.
  • the oil introduction hole has an oil inlet that opens to the mating surface of the cylinder flange portion with the engine cover so as to receive oil directly from the oil hole of the engine cover.
  • An air release hole is provided so as to branch upward from the middle of the oil introduction hole that communicates the oil inlet with the inside of the cylinder. It is possible to discharge to
  • the inventors of the present application investigated and investigated the cause of air mixing into the oil in the cylinder.
  • the air can be smoothly discharged through the air vent hole that branches upward from the middle of the oil introduction hole.
  • the oil flowing from the oil hole in the engine cover to the oil introduction hole contains dispersed air in the form of bubbles, the air in the form of bubbles will not flow from the oil introduction hole into the air release hole. It was found that the oil flows through the oil introduction hole together with the oil and reaches the inside of the cylinder.
  • the problem to be solved by the present invention is to provide a chain tensioner that can effectively prevent air from entering the cylinder when starting the engine.
  • the present invention provides a chain tensioner having the following configuration.
  • a cylinder main body having one end in the axial direction as a closed end and the other end in the axial direction as an open end, which is inserted into a tensioner mounting hole formed in the engine cover with the open end directed toward the inside of the engine cover;
  • a cylinder having a cylinder flange integrally formed with the cylinder main body and fixed in surface contact with an outer surface of the engine cover; a plunger axially slidably inserted into the cylinder main body; a return spring that biases the plunger in a direction of protruding from the cylinder main body; an oil supply passage provided in the cylinder so as to introduce oil into the cylinder main body from an oil hole opening in the engine cover;
  • a chain tensioner comprising a hydraulic damper mechanism that generates a damping force by the viscous resistance of oil when the plunger moves in the direction of being pushed into the cylinder main body,
  • the oil supply passage includes an oil groove formed on the
  • the chain tensioner according to claim 1, wherein the oil groove has a branch portion for branching the oil received from the oil hole into an upward flow path for bleeding air and a downward flow path connected to the oil inlet.
  • an oil groove for receiving oil from the oil hole of the engine cover is formed on the surface of the cylinder, and the oil groove has a branched portion that branches into an upward flow path and a downward flow path for bleeding air. Since the oil inlet of the oil introduction hole located below the oil hole is connected to the downward flow path branched downward from the branch, the oil received from the oil hole into the oil groove is in a state of air bubbles. Even if air is contained, the buoyancy acting on the air bubbles makes it difficult for the air to reach the oil inlet of the oil introduction hole connected to the downward flow path. can be discharged to Therefore, it is possible to effectively prevent air from entering the cylinder when the engine is started.
  • the downward flow path is preferably formed to have a flow area larger than the cross-sectional area of the oil hole.
  • the oil groove has a pre-branch flow path for receiving oil from the oil hole and flowing it to the branch, It is preferable to employ a configuration in which the pre-branch flow path has a flow area larger than the cross-sectional area of the oil hole.
  • the pre-branch flow path having a relatively large flow area is provided upstream of the branch, the air bubbles contained in the oil and the oil move up and down before reaching the branch. easier to separate. Therefore, the air bubbles contained in the oil can be efficiently introduced into the upward flow path for air bleeding at the branch portion.
  • the pre-branching flow path is formed only by a horizontal direction or an upward flow path with respect to the horizontal direction.
  • the pre-branch flow path is formed in a tapered shape in which the flow path area gradually increases from the position of the oil hole toward the branch portion.
  • the branch portion is arranged to face the oil hole so as to receive oil directly from the oil hole; It is preferable to employ a configuration in which a buffer chamber having a horizontal cross-sectional area larger than that of the downward flow path is formed in the branch portion.
  • the buoyancy of the air bubbles has a greater effect on the viscosity of the oil in the buffer chamber formed in the branch. Therefore, the air bubbles contained in the oil and the oil are easily separated vertically at the branch, and the air bubbles contained in the oil can be efficiently introduced into the upward flow path for air release at the branch.
  • the surface of the cylinder can be a fitting surface of the outer circumference of the cylinder main body and the inner circumference of the tensioner mounting hole. That is, the oil groove can be formed on the fitting surface of the outer circumference of the cylinder main body and the inner circumference of the tensioner mounting hole.
  • the surface of the cylinder can be a mating surface of the cylinder flange portion with the outer surface of the engine cover. That is, the oil groove can be formed in a surface of the cylinder flange portion that is mated with the outer surface of the engine cover.
  • an oil groove for receiving oil from the oil hole of the engine cover is formed on the surface of the cylinder. Since it has a branch portion that branches into a downward flow path that connects to the oil inlet of the oil introduction hole located below the oil introduction hole and flows, when the oil received from the oil hole to the oil groove contains air in the form of air bubbles. Also, the air tends to be separated from the oil at the branched portion of the oil groove, and does not easily reach the oil inlet of the oil introduction hole connected to the downward flow path. Therefore, it is possible to effectively prevent air from entering the cylinder when the engine is started.
  • FIG. 1 is a diagram showing a chain transmission incorporating a chain tensioner according to a first embodiment of the present invention
  • FIG. Enlarged view of the vicinity of the chain tensioner in Fig. 1
  • Cross-sectional view of the chain tensioner of Figure 2 Cross-sectional view along the IV-IV line in Fig. 2
  • Cross-sectional view along the V-V line in Fig. 2 The figure which shows the modification of the branch pre-flow path shown in FIG.
  • FIG. 3 is a diagram showing another modification of the pre-branch flow path shown in FIG. 2
  • FIG. 3 is a diagram showing still another modification of the pre-branch flow path shown in FIG. 2
  • FIG. 2 is a cross-sectional view showing a chain tensioner according to a second embodiment of the invention
  • FIG. 3 is a diagram showing a chain transmission incorporating a chain tensioner according to a third embodiment of the invention; Enlarged cross-sectional view of the vicinity of the chain tensioner in FIG. Cross-sectional view along line XII-XII in FIG. Cross-sectional view along line XIII-XIII in FIG.
  • FIG. 4 is a sectional view showing a chain tensioner according to a fourth embodiment of the invention.
  • Fig. 1 shows a chain transmission incorporating a chain tensioner 1 of the first embodiment of the invention.
  • a sprocket 3 fixed to a crankshaft 2 of an engine and a sprocket 5 fixed to a camshaft 4 are connected via a chain 6, and the chain 6 drives the rotation of the crankshaft 2. It is transmitted to the camshaft 4, and the rotation of the camshaft 4 opens and closes a valve (not shown) of the combustion chamber.
  • the chain tensioner 1 has a cylinder 10 fixed to the engine cover 9.
  • the cylinder 10 has a cylinder body portion 10A to be inserted into the tensioner mounting hole 11 of the engine cover 9, and a cylinder flange portion 10B fixed to the outer surface 12 of the engine cover 9 in surface contact.
  • the cylinder body portion 10A and the cylinder flange portion 10B are seamlessly integrally formed of an aluminum alloy.
  • the engine cover 9 is a wall that forms a chain storage chamber 13 in which the chain 6 (see FIG. 1) is stored.
  • the tensioner mounting hole 11 is formed through the engine cover 9 from an outer surface 12 (a surface opposite to the chain housing chamber 13 side) to an inner surface (a surface on the chain housing chamber 13 side).
  • the cylinder flange portion 10B is fixed to the engine cover 9 with bolts 14.
  • a mating surface 15 that comes into surface contact with the outer surface 12 of the engine cover 9 is formed on the cylinder flange portion 10B.
  • a gap between the mating surface 15 and the outer surface 12 of the engine cover 9 is sealed by tightening the bolt 14 .
  • a cylindrical fitting surface 16 that fits into the inner periphery of the tensioner mounting hole 11 is formed on the outer periphery of the cylinder main body 10A.
  • the chain tensioner 1 includes a plunger 17 that is axially slidably inserted into the cylinder body 10A, and a return spring 18 that biases the plunger 17 in the direction of protruding from the cylinder body 10A. and a hydraulic damper mechanism 19 that generates a damping force due to the viscous resistance of the oil when the plunger 17 moves in the direction of being pushed into the cylinder body 10A.
  • the cylinder main body 10A is formed in a tubular shape with one end in the axial direction as a closed end and the other end in the axial direction as an open end.
  • the cylinder main body 10A is inserted into the tensioner mounting hole 11 with the open end facing the inside of the engine cover 9 .
  • the cylinder flange portion 10B is formed on the outer periphery of the closed end side of the cylinder body portion 10A.
  • the cylinder 10 is mounted in a posture in which the direction in which the plunger 17 protrudes from the cylinder main body 10A is inclined downward from the horizontal.
  • the projection direction of the plunger 17 from the cylinder body portion 10A may be installed in a horizontal direction.
  • the plunger 17 is formed in a cylindrical shape with an open end inserted into the cylinder main body 10A and a closed protruding end of the plunger 17 from the cylinder main body 10A.
  • the material of the plunger 17 is a ferrous material (for example, a steel material such as SCM (chromium molybdenum steel) or SCr (chromium steel)).
  • An inner sleeve 20 is inserted into the plunger 17 so that one end in the axial direction is inserted into the plunger 17 and the other end in the axial direction protrudes from the plunger 17 .
  • the protruding end of the inner sleeve 20 from the plunger 17 is supported by the closed end of the cylinder main body 10A.
  • a check valve 21 is provided at the insertion end of the inner sleeve 20 into the plunger 17 .
  • the check valve 21 divides the inner region of the inner sleeve 20 and the plunger 17 into a reservoir chamber 22 on the inner sleeve 20 side and a pressure chamber 23 on the plunger 17 side.
  • the volume of the reservoir chamber 22 does not change even if the plunger 17 moves in the axial direction, and is constant.
  • the volume of the pressure chamber 23 increases when the plunger 17 axially moves in the direction of protruding from the cylinder body 10A, and decreases when the plunger 17 axially moves in the direction of being pushed into the cylinder body 10A.
  • the check valve 21 restricts the flow of oil from the pressure chamber 23 side to the reservoir chamber 22 side and allows only the oil flow from the reservoir chamber 22 side to the pressure chamber 23 side.
  • a return spring 18 is incorporated in the pressure chamber 23 .
  • the return spring 18 is a compression coil spring formed by spirally winding a metal wire. One end of the return spring 18 is supported by the check valve 21, and the other end presses the plunger 17 in the axial direction.
  • a leak gap 24 is formed between the outer circumference of the inner sleeve 20 and the inner circumference of the plunger 17 to allow oil to leak from the pressure chamber 23 when the volume of the pressure chamber 23 is reduced.
  • the leak gap 24 is a cylindrical minute gap with a radial width set in the range of 0.010 to 0.050 mm.
  • a cylindrical guide gap 25 is formed between the inner circumference of the cylinder main body 10A and the outer circumference of the plunger 17.
  • the radial width of the guide gap 25 is set larger than the radial width of the leak gap 24, and can be set in the range of 0.015 to 0.065 mm, for example.
  • the reservoir chamber 22, the pressure chamber 23, the check valve 21, and the leak gap 24 constitute the hydraulic damper mechanism 19. That is, when the plunger 17 moves in the direction of protruding from the cylinder main body 10A, the check valve 21 is opened, so that hydraulic oil is introduced from the reservoir chamber 22 into the pressure chamber 23, and the plunger 17 is pushed into the cylinder main body 10A. The check valve 21 is closed, and oil flows out from the pressure chamber 23 through the leak gap 24, and the viscous resistance of the oil generates a damping force.
  • a portion of the inner sleeve 20 protruding from the plunger 17 is provided with an oil passage 27 that communicates between the cylindrical space 26 and the reservoir chamber 22 .
  • the cylindrical space 26 is radially sandwiched between the inner periphery of the cylinder body 10A and the outer periphery of the inner sleeve 20 on the side closer to the closed end of the cylinder body 10A than the insertion end of the plunger 17 into the cylinder body 10A. It is a cylindrical area where the The oil passage 27 is a through hole formed through the inner sleeve 20 in the radial direction.
  • the engine cover 9 is formed with an oil hole 30 for supplying the chain tensioner 1 with oil delivered from an oil pump (not shown) of the engine.
  • the oil hole 30 is a round hole with a circular cross-sectional shape.
  • the oil hole 30 opens on the inner circumference of the tensioner mounting hole 11 of the engine cover 9 .
  • the cylinder 10 is provided with an oil supply passage 31 that introduces the oil supplied from the oil hole 30 into the cylinder main body 10A.
  • the oil supply passage 31 includes an oil groove 32 formed in the surface of the cylinder 10 (here, a cylindrical fitting surface 16 on the outer periphery of the cylinder main body 10A), and an oil in the oil groove 32 being supplied to the inside of the cylinder main body 10A. and an oil introduction hole 33 (see FIG. 4) formed so as to communicate from the oil groove 32 to the inside of the cylinder main body 10A so as to introduce the oil into the cylinder main body 10A.
  • the oil groove 32 has a pre-branch flow path 34 , a branch portion 35 , an upward flow path 36 and a downward flow path 37 .
  • the pre-branch flow path 34 is a flow path that receives oil from the oil hole 30 and flows the oil to the branch portion 35 .
  • the upstream end of the pre-branching flow path 34 is disposed radially facing the opening of the oil hole 30 on the inner circumference of the tensioner mounting hole 11 so as to directly receive the oil from the oil hole 30 .
  • the pre-branch flow path 34 is formed only by the upward flow path with respect to the horizontal. In the drawing, as the pre-branch flow path 34, a flow path that extends upward to the upper right with respect to the horizontal and then extends upward to the upper left from the horizontal is shown.
  • the pre-branch flow path 34 may further include a horizontal flow path.
  • the pre-branch flow path 34 is a rectangular groove having a rectangular cross-sectional shape.
  • the pre-branch flow passage 34 has a flow passage area (a cross-sectional area of the flow passage along a cross section perpendicular to the oil flowing direction) larger than the cross-sectional area of the oil hole 30 .
  • the branching portion 35 divides the oil received from the oil hole 30 into the pre-branching flow path 34 into the upward flow path 36 and the downward flow path 37 so as to flow the oil therethrough. This is the portion where the channel 37 is connected.
  • the upward flow path 36 is an air bleeding flow path for discharging air upward from the branch portion 35, and communicates with the chain housing chamber 13 inside the engine cover 9 via an orifice passage 38 and an air bleeding passage 39. ing.
  • the upward flow path 36 is formed by extending upward from the branch portion 35 along the outer circumference of the cylinder body portion 10A.
  • the upward channel 36 is a square groove with a square cross-sectional shape.
  • the upward flow path 36 is formed to have a flow area larger than the cross-sectional area of the oil hole 30 .
  • the orifice passage 38 is a minute annular groove formed on the outer circumference of the cylinder body portion 10A.
  • the air release passage 39 is a gap formed between the inner periphery of the tensioner mounting hole 11 and the outer periphery of the cylinder body portion 10A.
  • the downward flow path 37 is formed extending downward from the branch portion 35 along the outer periphery of the cylinder main body portion 10A.
  • the downward channel 37 is a square groove with a square cross-sectional shape.
  • the downward flow path 37 is formed to have a flow area larger than the cross-sectional area of the oil hole 30 .
  • the downward flow path 37 is connected to the oil inlet 33 a of the oil introduction hole 33 .
  • the oil introduction hole 33 is a hole that radially penetrates through the lower peripheral wall portion of the cylinder body portion 10A.
  • the oil inlet 33a is an opening portion of the oil introduction hole 33 on the outer peripheral side of the cylinder body portion 10A.
  • the oil inlet 33a is located below the opening position of the oil hole 30 (see FIG. 5).
  • the oil pump of the engine also stops, so the oil level in the oil hole 30 of the engine cover 9 drops and the oil hole 30 becomes filled with air.
  • the oil pump of the engine also stops, so the oil level in the oil hole 30 of the engine cover 9 drops and the oil hole 30 becomes filled with air.
  • only air first flows into the oil groove 32 from the oil hole 30 of the engine cover 9 .
  • the air passes through the pre-branch flow path 34 of the oil groove 32 , the branch portion 35 , the upward flow path 36 , the orifice passage 38 , and the air release passage 39 in order and is discharged to the chain housing chamber 13 .
  • oil begins to flow into the oil groove 32 from the oil hole 30 of the engine cover 9 .
  • air may be dispersedly contained in the oil in the form of air bubbles, but the air bubbles contained in the oil and the oil are separated up and down in the pre-branch flow path 34 by the buoyancy acting on the air bubbles.
  • the air bubbles flow into the upward channel 36 and the oil flows into the downward channel 37 .
  • the air bubbles that have flowed into the upward flow path 36 are discharged to the chain accommodation chamber 13 through the orifice passage 38 and the air release passage 39 in order.
  • the oil that has flowed into the downward flow path 37 flows through the oil introduction hole 33 into the cylinder main body 10A.
  • an oil groove 32 is formed on the surface of the cylinder 10 to receive oil from an oil hole 30 of the engine cover 9, and the oil groove 32 serves as an upward flow path for bleeding air. 36 and a downward flow path 37, and an oil inlet 33a of the oil introduction hole 33 located below the oil hole 30 in the downward flow path 37 branching downward from the branch portion 35. (see FIG. 4) is connected, even if the oil received from the oil hole 30 into the oil groove 32 contains air in the form of air bubbles, the oil is connected to the downward flow path 37 by the buoyancy acting on the air bubbles. Air is less likely to reach the oil inlet 33a of the oil introduction hole 33, and the air can be effectively discharged through the upward flow path 36 for air bleeding. Therefore, it is possible to effectively prevent air from entering the cylinder 10 when the engine is started.
  • the downward flow path 37 shown in FIG. 2 has a flow area larger than the cross-sectional area of the oil hole 30.
  • the influence of the buoyancy of the air bubbles on the viscosity of the oil increases. Therefore, it is possible to effectively prevent air bubbles contained in the oil from reaching the oil inlet 33 a of the oil introduction hole 33 through the downward flow path 37 .
  • the pre-branch flow path 34 having a flow area larger than the cross-sectional area of the oil hole 30 is provided upstream of the branch portion 35, so that the air bubbles contained in the oil and the oil However, before reaching the branching portion 35, it is likely to separate vertically. Therefore, the air bubbles contained in the oil can be efficiently introduced into the upward flow path 36 for air bleeding at the branch portion 35 .
  • the pre-branch flow path 34 is formed only in the horizontal direction or the upward flow path with respect to the horizontal direction.
  • the direction of oil flow in the front flow path 34 is never reversed. Therefore, when the oil flows through the pre-branching flow path 34 , air bubbles contained in the oil and the oil are smoothly separated vertically in the pre-branching flow path 34 . As a result, the air bubbles contained in the oil can be efficiently introduced into the upward flow path 36 for air bleeding at the branch portion 35 .
  • the pre-branch flow path 34 can be formed to have a portion that extends obliquely upward toward the branch portion 35 with respect to the axial direction of the cylinder main body portion 10A.
  • the branching is ensured.
  • the front channel 34 can be slanted upward with respect to the horizontal.
  • the position of the branch portion 35 is relatively higher due to the inclination of the pre-branching channel 34, the length of the downward channel 37 is increased. Therefore, a relatively large amount of oil can be stored in the downward flow path 37 when the engine is stopped, and the oil can be used to quickly exert a damping force when the engine is started.
  • the pre-branch flow path 34 can be formed in a tapered shape in which the flow path area gradually expands from the position of the oil hole 30 toward the branch portion 35 .
  • the flow area of the oil gradually expands, and the flow velocity of the oil gradually slows down. , are easily combined in the pre-branch flow path 34 . Therefore, the air bubbles contained in the oil can be efficiently introduced into the upward flow path 36 for air bleeding at the branch portion 35 .
  • the pre-branching flow path 34 may be formed such that its entire length extends obliquely upward toward the branching portion 35 with respect to the axial direction of the cylinder main body portion 10A.
  • the pre-branch flow path 34 is formed on the side of the opening end of the cylinder main body 10A (on the right side in the drawing) with respect to the upward flow path 36 and the downward flow path 37.
  • the pre-branch flow path 34 is formed on the side of the closed end of the cylinder main body 10A (on the left side in the drawing) with respect to the upward flow path 36 and the downward flow path 37, and the pre-branch flow path 34 may be formed so as to extend obliquely upward toward the branch portion 35 with respect to the axial direction of the cylinder main body portion 10A. In this way, even when the cylinder 10 is mounted in a posture in which the projection direction of the plunger 17 (see FIG. 2) from the cylinder body portion 10A is tilted upward from the horizontal, the pre-branch flow path can be reliably 34 can be slanted upwards with respect to the horizontal.
  • FIG. 9 shows the chain tensioner 1 of the second embodiment.
  • the second embodiment differs from the first embodiment only in the internal structure of the cylinder main body 10A, and the rest of the configuration (including the configuration of the oil supply passage 31) is the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • a pressure chamber 23 surrounded by the cylinder body 10A and the plunger 17 is formed in the cylinder body 10A.
  • a reservoir chamber 22 is formed at the closed end of the cylinder.
  • a check valve 21 is provided between the pressure chamber 23 and the reservoir chamber 22 .
  • a leak gap 24 is formed between the outer circumference of the plunger 17 and the inner circumference of the cylinder main body 10A to allow oil to leak from the pressure chamber 23 when the volume of the pressure chamber 23 is reduced.
  • a relief passage 40 communicating between the pressure chamber 23 and the chain housing chamber 13 is formed at the projecting end of the plunger 17 from the cylinder main body 10A.
  • the relief passage 40 is provided with a relief valve 41 that opens when the pressure in the pressure chamber 23 exceeds a preset pressure.
  • the oil introduction hole 33 is a hole radially penetrating through the lower peripheral wall portion of the cylinder main body 10A, and communicates between the oil groove 32 and the reservoir chamber 22 .
  • the reservoir chamber 22, the pressure chamber 23, the check valve 21, and the leak gap 24 constitute a hydraulic damper mechanism 19. That is, when the plunger 17 moves in the direction of protruding from the cylinder main body 10A, the check valve 21 is opened, so that hydraulic oil is introduced from the reservoir chamber 22 into the pressure chamber 23, and the plunger 17 is pushed into the cylinder main body 10A. The check valve 21 is closed, and oil flows out from the pressure chamber 23 through the leak gap 24, and the viscous resistance of the oil generates a damping force.
  • An assist spring 42 is incorporated between the insertion end of the plunger 17 into the cylinder body portion 10A and the closed end of the cylinder body portion 10A.
  • the assist spring 42 has a function of enhancing the ability of the chain guide 8 to follow the chain 6 by assisting the biasing force of the return spring 18 pressing the plunger 17 .
  • the chain tensioner 1 of this second embodiment also has the same effects as those of the first embodiment.
  • Fig. 10 shows a chain transmission incorporating the chain tensioner 1 of the third embodiment of the invention.
  • the third embodiment differs from the first embodiment in that the opening position of the oil hole 30 of the engine cover 9, the mounting posture of the cylinder 10 with respect to the engine cover 9, the oil groove 32 formed in the cylinder 10, and the oil introduction hole 33 are different. Only the configuration is different, and other configurations are the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the cylinder 10 is attached to the engine cover 9 so that the direction in which the plunger 17 protrudes from the cylinder body 10A is horizontal.
  • the direction in which the plunger 17 projects from the cylinder main body 10A may be attached in a direction inclined downward from the horizontal.
  • the engine cover 9 is formed with an oil hole 30 for supplying the chain tensioner 1 with oil delivered from an oil pump (not shown) of the engine.
  • the oil hole 30 is a round hole with a circular cross-sectional shape.
  • the oil hole 30 opens to the outer surface 12 of the engine cover 9 .
  • the cylinder 10 is provided with an oil supply passage 31 that introduces the oil supplied from the oil hole 30 into the cylinder main body 10A.
  • the oil supply passage 31 includes an oil groove 32 formed in the surface of the cylinder 10 (here, the mating surface 15 of the cylinder flange portion 10B with the outer surface 12 of the engine cover 9), and the oil in the oil groove 32 through the cylinder body portion 10A. and an oil introduction hole 33 (see FIG. 11) formed so as to communicate from the oil groove 32 to the inside of the cylinder main body 10A so as to introduce the oil into the inside of the cylinder main body 10A.
  • the oil groove 32 has a branch portion 35, an upward flow path 36 and a downward flow path 37.
  • the branch portion 35 is arranged axially facing the opening of the oil hole 30 in the outer surface 12 of the engine cover 9 (see FIG. 13) so as to directly receive the oil from the oil hole 30 .
  • a buffer chamber 43 is formed in the branch portion 35 .
  • the buffer chamber 43 is a concave portion that is recessed in a columnar shape from the mating surface 15 of the cylinder flange portion 10B with the outer surface 12 of the engine cover 9 (see FIG. 13).
  • both the vertical height dimension and the horizontal width dimension of the buffer chamber 43 are larger than the inner diameter of the oil hole 30 .
  • the cross-sectional area along the horizontal direction of the buffer chamber 43 is larger than the flow path area of the downward flow path 37 .
  • the upward flow path 36 is formed to extend upward in an arc shape from the branch portion 35 along the outer circumference of the cylinder main body portion 10A.
  • the upward channel 36 is a square groove with a square cross-sectional shape.
  • the upward flow path 36 is formed to have a flow area larger than the cross-sectional area of the oil hole 30 .
  • the upward flow path 36 is connected to an air bleeding passage 39 above the cylinder body 10A and communicates with the chain housing chamber 13 inside the engine cover 9 via the air bleeding passage 39.
  • the air vent passage 39 is a minute gap formed between the inner periphery of the tensioner mounting hole 11 and the outer periphery of the cylinder body portion 10A.
  • the air vent passage 39 is formed by a D-cut portion 44 extending in the axial direction along the outer periphery of the upper portion of the cylinder body portion 10A. It can be formed by providing a portion of a shape obtained by removing the outer periphery of the
  • the downward flow path 37 is formed to extend downward in an arc shape from the branch portion 35 along the outer circumference of the cylinder main body portion 10A.
  • the downward channel 37 is a square groove with a square cross-sectional shape.
  • the downward flow path 37 is formed to have a flow area larger than the cross-sectional area of the oil hole 30 .
  • the downward flow path 37 is connected to the oil inlet 33 a of the oil introduction hole 33 .
  • the oil introduction hole 33 includes a vertical hole portion 45 radially penetrating through the lower portion of the cylinder flange portion 10B and a vertical hole portion 45 extending from the mating surface 15 of the cylinder flange portion 10B. and a horizontal hole portion 46 formed extending in the axial direction so as to reach .
  • a plug member 47 closes the end portion of the vertical hole portion 45 on the outer peripheral side of the cylinder flange portion 10B.
  • the plug member 47 is a male screw member in the figure.
  • An oil inlet 33a of the oil introduction hole 33 is an opening portion of the horizontal hole portion 46 of the oil introduction hole 33 on the mating surface 15 side. As shown in FIG. 12, the oil inlet 33a is located below the opening position of the oil hole 30. As shown in FIG.
  • this chain tensioner 1 will be described.
  • the oil pump of the engine also stops. After that, when the engine is restarted, only air first flows into the oil groove 32 from the oil hole 30 of the engine cover 9 . At this time, the air passes through the branch portion 35 of the oil groove 32 , the upward flow path 36 and the air release passage 39 in order and is discharged to the chain housing chamber 13 . Subsequently, oil begins to flow into the oil groove 32 from the oil hole 30 of the engine cover 9 .
  • air may be dispersedly contained in the oil in the form of air bubbles, but the air bubbles contained in the oil and the oil are separated vertically by the buoyant force acting on the air bubbles at the branch portion 35, and the air bubbles flow upward.
  • 36 and the oil enters the downward flow path 37 .
  • Air bubbles that have flowed into the upward flow path 36 are discharged to the chain housing chamber 13 via the air vent passage 39 .
  • the oil that has flowed into the downward flow path 37 flows through the oil introduction hole 33 into the cylinder main body 10A.
  • an oil groove 32 for receiving oil from an oil hole 30 is formed on the surface of the cylinder 10.
  • the oil groove 32 is formed with an upward flow path 36 for bleeding air and a downward flow path 36.
  • the oil inlet 33a of the oil introduction hole 33 positioned below the oil hole 30 is connected to the downward flow path 37 branching downward from the branch part 35. Therefore, even if the oil received in the oil groove 32 from the oil hole 30 contains air in the form of air bubbles, the buoyancy acting on the air bubbles causes the oil inlet of the oil introduction hole 33 connected to the downward flow path 37 to move. It is difficult for the air to reach 33a, and the air can be effectively discharged through the upward flow path 36 for removing air. Therefore, it is possible to effectively prevent air from entering the cylinder 10 when the engine is started.
  • the buffer chamber 43 formed in the branch portion 35 has a larger cross-sectional area than the flow passage area of the downward flow passage 37. Therefore, in the buffer chamber 43, The effect of the buoyancy of air bubbles on the viscosity of oil increases. Therefore, the air bubbles contained in the oil and the oil are easily separated vertically at the branch portion 35, and the air bubbles contained in the oil can be efficiently introduced into the upward flow path 36 for air bleeding at the branch portion 35. can.
  • FIG. 15 shows the chain tensioner 1 of the fourth embodiment.
  • the fourth embodiment differs from the third embodiment only in the internal structure of the cylinder main body portion 10A, and the rest of the structure is the same. Also, the internal structure of the cylinder body portion 10A is the same as that of the second embodiment. Therefore, the same reference numerals are given to the parts corresponding to the second embodiment and the third embodiment, and the description thereof is omitted.
  • the chain tensioner 1 is incorporated in a chain transmission device that transmits the rotation of the crankshaft 2 to the camshaft 4.
  • a chain transmission that transmits power to accessories such as a water pump and a supercharger
  • a chain transmission that transmits the rotation of a crankshaft to a balancer shaft, or a chain transmission that connects intake and exhaust cams of a twin-cam engine. is also possible.

Abstract

In the present invention, an oiling passage (31) has an oil groove (32) formed facing an oil hole (30) in the surface of a cylinder (10), and an oil introduction hole (33) formed communicating with the interior of a cylinder body section (10A) from the oil groove (32). The oil introduction hole (33) is provided in a position lower than the oil hole (30) so as to have an oil inlet (33a). The oil groove (32) has a branching part (35) that branches into an upward flow path (36) and a downward flow path (37).

Description

チェーンテンショナchain tensioner
 この発明は、チェーンの張力保持に用いられるチェーンテンショナに関する。 The present invention relates to a chain tensioner used to hold the tension of the chain.
 自動車等のエンジンに使用されるチェーン伝動装置として、例えば、クランクシャフトの回転をカムシャフトに伝達するものや、クランクシャフトの回転をオイルポンプやウォーターポンプやスーパーチャージャー等の補機に伝達するものや、クランクシャフトの回転をバランサシャフトに伝達するものや、ツインカムエンジンの吸気カムと排気カムを互いに連結するものなどがある。これらのチェーン伝動装置のチェーンの張力を適正範囲に保つために、チェーンテンショナが使用される。 As chain transmission devices used in automobile engines, for example, those that transmit the rotation of the crankshaft to the camshaft, those that transmit the rotation of the crankshaft to auxiliary equipment such as oil pumps, water pumps, superchargers, etc. , to transmit the rotation of the crankshaft to the balancer shaft, and to connect the intake and exhaust cams of a twin-cam engine. A chain tensioner is used to keep the tension of the chain in these chain drives in the proper range.
 このような用途に使用されるチェーンテンショナとして、例えば、特許文献1に記載のものが知られている。特許文献1のチェーンテンショナは、シリンダと、シリンダに軸方向に摺動可能に挿入されたプランジャと、プランジャをシリンダから突出する方向に付勢するリターンスプリングと、プランジャがシリンダに押し込まれる方向に移動するときにオイルの粘性抵抗によりダンパ力を発生する油圧ダンパ機構とを有する。 As a chain tensioner used for such applications, for example, the one described in Patent Document 1 is known. The chain tensioner disclosed in Patent Document 1 includes a cylinder, a plunger axially slidably inserted into the cylinder, a return spring that biases the plunger in the direction of protruding from the cylinder, and a plunger that moves in the direction of being pushed into the cylinder. and a hydraulic damper mechanism that generates a damping force due to the viscous resistance of the oil when the damping force is applied.
 シリンダは、エンジンカバーのテンショナ取り付け孔に挿入されるシリンダ本体部と、シリンダ本体部に一体に形成され、エンジンカバーの外面に面接触して固定されるシリンダフランジ部とを有する。シリンダ本体部は、軸方向の一端を閉塞端とし、軸方向の他端を開口端とする筒状の部分であり、開口端をエンジンカバー内に向けた姿勢でテンショナ取り付け孔に挿入される。 The cylinder has a cylinder body portion that is inserted into the tensioner mounting hole of the engine cover, and a cylinder flange portion that is integrally formed with the cylinder body portion and fixed in surface contact with the outer surface of the engine cover. The cylinder main body is a cylindrical portion having one axial end closed and the other axial end open, and is inserted into the tensioner mounting hole with the open end directed toward the inside of the engine cover.
 エンジンカバーには、エンジンのオイルポンプから送り出されるオイルを、チェーンテンショナに供給するための油孔が形成されている。チェーンテンショナのシリンダには、エンジンカバーの油孔からシリンダの内部にオイルを導入する給油通路が設けられている。給油通路は、シリンダの表面からシリンダの内部に連通するように形成されたオイル導入孔である。 An oil hole is formed in the engine cover to supply the chain tensioner with oil sent from the engine's oil pump. A cylinder of the chain tensioner is provided with an oil supply passage for introducing oil into the cylinder from an oil hole in the engine cover. The oil supply passage is an oil introduction hole formed to communicate from the surface of the cylinder to the inside of the cylinder.
 この特許文献1のチェーンテンショナは、エンジン作動中にチェーンの張力が大きくなると、そのチェーンの張力によって、プランジャがシリンダ内に押し込まれる方向(以下、「押し込み方向」という)に移動し、チェーンの緊張を吸収する。このとき、シリンダの内部のオイルの粘性抵抗によりダンパ力が発生するので、プランジャはゆっくりと移動する。 In the chain tensioner disclosed in Patent Document 1, when the tension of the chain increases during operation of the engine, the tension of the chain moves the plunger in the direction in which the plunger is pushed into the cylinder (hereinafter referred to as the "pushing direction"), thereby reducing the tension in the chain. absorb. At this time, a damping force is generated by the viscous resistance of the oil inside the cylinder, so the plunger moves slowly.
 一方、エンジン作動中にチェーンの張力が小さくなると、リターンスプリングの付勢力とシリンダ内のオイルの圧力とによって、プランジャがシリンダから突出する方向(以下、「突出方向」という)に移動し、チェーンの弛みを吸収する。 On the other hand, when the tension of the chain becomes small while the engine is running, the plunger moves in the direction in which the plunger protrudes from the cylinder (hereinafter referred to as the "projection direction") due to the biasing force of the return spring and the pressure of the oil in the cylinder. Absorb relaxation.
特許第5102238号(図2)Patent No. 5102238 (Fig. 2)
 ところで、一般に、エンジンが停止すると、エンジンのオイルポンプも停止するので、エンジンカバーの油孔内のオイルの油面が下がり、油孔にエアが溜まった状態となる。そのため、エンジンを再始動したときに、エンジンカバーの油孔に溜まったエアが、オイル導入孔を通ってシリンダの内部に移動し、シリンダ内のオイルに混入する。そして、シリンダ内のオイルにエアが混入すると、プランジャに押し込み方向の荷重が負荷されたときに、シリンダ内のエアが圧縮することでプランジャが移動するので、ダンパ力が不安定となる問題が生じる。 By the way, generally, when the engine stops, the oil pump of the engine also stops, so the oil level in the oil hole of the engine cover drops, and air accumulates in the oil hole. Therefore, when the engine is restarted, the air accumulated in the oil hole of the engine cover moves into the cylinder through the oil introduction hole and mixes with the oil in the cylinder. If air is mixed in with the oil in the cylinder, the plunger will move due to compression of the air in the cylinder when a load is applied to the plunger in the pushing direction, resulting in an unstable damper force. .
 そこで、エンジンを再始動したときに、エンジンカバーの油孔に溜まったエアがシリンダの内部に流入しにくくするため、特許文献1のチェーンテンショナでは、オイル導入孔の途中から分岐するエア抜き通路を設けている。 Therefore, in order to make it difficult for the air accumulated in the oil hole of the engine cover to flow into the cylinder when the engine is restarted, the chain tensioner disclosed in Patent Document 1 has an air bleeding passage branching from the middle of the oil introduction hole. are provided.
 特許文献1のチェーンテンショナにおいて、オイル導入孔は、エンジンカバーの油孔から直接オイルを受け入れるように、シリンダフランジ部のエンジンカバーとの合わせ面に開口するオイル入口を有する。そして、そのオイル入口とシリンダの内部とを連通するオイル導入孔の途中から上方に分岐するようにエア抜き孔が設けられ、そのエア抜き孔を通って、オイル導入孔内に溜まったエアを上方に排出することが可能となっている。 In the chain tensioner of Patent Literature 1, the oil introduction hole has an oil inlet that opens to the mating surface of the cylinder flange portion with the engine cover so as to receive oil directly from the oil hole of the engine cover. An air release hole is provided so as to branch upward from the middle of the oil introduction hole that communicates the oil inlet with the inside of the cylinder. It is possible to discharge to
 しかしながら、本願の発明者らが、社内において、特許文献1のチェーンテンショナを試作評価したところ、エンジン始動時に、エンジンカバーの油孔に溜まったエアが、シリンダのオイル導入孔を通ってシリンダの内部に移動するときに、そのエアを、オイル導入孔の途中から上方に分岐するエア抜き孔を通って排出することはできるものの、依然として、シリンダ内のオイルに相当量のエアが混入してしまうことが分かった。 However, when the inventors of the present application conducted an in-house prototype evaluation of the chain tensioner of Patent Document 1, when the engine was started, the air accumulated in the oil hole of the engine cover passed through the oil introduction hole of the cylinder and entered the inside of the cylinder. Although the air can be discharged through the air vent hole that branches upward from the middle of the oil introduction hole, a considerable amount of air still mixes with the oil in the cylinder. I found out.
 そこで、本願の発明者らが、シリンダ内のオイルにエアが混入する原因を調査検討した。その結果、エンジン始動時に、エンジンカバーの油孔からオイル導入孔にエアのみが流入するときは、オイル導入孔の途中から上方に分岐するエア抜き孔を通って、円滑にエアを排出することができるが、エンジンカバーの油孔からオイル導入孔に流入するオイルに、気泡の状態でエアが分散して含まれるときは、その気泡の状態のエアが、オイル導入孔からエア抜き孔に流れ込まずに、オイルと一緒にオイル導入孔を流れてシリンダの内部まで到達することが分かった。 Therefore, the inventors of the present application investigated and investigated the cause of air mixing into the oil in the cylinder. As a result, when only air flows into the oil introduction hole from the oil hole of the engine cover when the engine is started, the air can be smoothly discharged through the air vent hole that branches upward from the middle of the oil introduction hole. However, if the oil flowing from the oil hole in the engine cover to the oil introduction hole contains dispersed air in the form of bubbles, the air in the form of bubbles will not flow from the oil introduction hole into the air release hole. It was found that the oil flows through the oil introduction hole together with the oil and reaches the inside of the cylinder.
 この発明が解決しようとする課題は、エンジン始動時にシリンダの内部にエアが混入するのを効果的に抑制することが可能なチェーンテンショナを提供することである。 The problem to be solved by the present invention is to provide a chain tensioner that can effectively prevent air from entering the cylinder when starting the engine.
 上記課題を解決するため、この発明では、以下の構成のチェーンテンショナを提供する。
 軸方向の一端を閉塞端とし、軸方向の他端を開口端とし、前記開口端をエンジンカバー内に向けた姿勢で前記エンジンカバーに形成されたテンショナ取り付け孔に挿入されるシリンダ本体部と、前記シリンダ本体部に一体に形成され、前記エンジンカバーの外面に面接触して固定されるシリンダフランジ部とを有するシリンダと、
 前記シリンダ本体部に軸方向に摺動可能に挿入されたプランジャと、
 前記プランジャを前記シリンダ本体部から突出する方向に付勢するリターンスプリングと、
 前記エンジンカバーに開口する油孔から前記シリンダ本体部の内部にオイルを導入するように前記シリンダに設けられた給油通路と、
 前記プランジャが前記シリンダ本体部に押し込まれる方向に移動するときにオイルの粘性抵抗によりダンパ力を発生する油圧ダンパ機構と、を有するチェーンテンショナにおいて、
 前記給油通路は、前記油孔からオイルを受け入れるように前記シリンダの表面に前記油孔と対向して形成されたオイル溝と、前記オイル溝内のオイルを前記シリンダ本体部の内部に導入するように前記オイル溝から前記シリンダ本体部の内部に連通して形成されたオイル導入孔とを有し、
 前記オイル導入孔は、前記油孔よりも下側の位置にオイル入口をもつように設けられ、
 前記オイル溝は、前記油孔から受け入れたオイルを、エア抜き用の上向き流路と、前記オイル入口に接続する下向き流路とに分岐して流す分岐部を有することを特徴とするチェーンテンショナ。
In order to solve the above problems, the present invention provides a chain tensioner having the following configuration.
a cylinder main body having one end in the axial direction as a closed end and the other end in the axial direction as an open end, which is inserted into a tensioner mounting hole formed in the engine cover with the open end directed toward the inside of the engine cover; a cylinder having a cylinder flange integrally formed with the cylinder main body and fixed in surface contact with an outer surface of the engine cover;
a plunger axially slidably inserted into the cylinder main body;
a return spring that biases the plunger in a direction of protruding from the cylinder main body;
an oil supply passage provided in the cylinder so as to introduce oil into the cylinder main body from an oil hole opening in the engine cover;
A chain tensioner comprising a hydraulic damper mechanism that generates a damping force by the viscous resistance of oil when the plunger moves in the direction of being pushed into the cylinder main body,
The oil supply passage includes an oil groove formed on the surface of the cylinder facing the oil hole so as to receive oil from the oil hole, and an oil groove for introducing oil in the oil groove into the cylinder main body. and an oil introduction hole formed in communication from the oil groove to the inside of the cylinder main body,
The oil introduction hole is provided so as to have an oil inlet at a position below the oil hole,
The chain tensioner according to claim 1, wherein the oil groove has a branch portion for branching the oil received from the oil hole into an upward flow path for bleeding air and a downward flow path connected to the oil inlet.
 このようにすると、シリンダの表面に、エンジンカバーの油孔からオイルを受け入れるオイル溝が形成され、そのオイル溝が、エア抜き用の上向き流路と下向き流路とに分岐する分岐部を有し、その分岐部から下向きに分岐する下向き流路に、油孔よりも下側に位置するオイル導入孔のオイル入口が接続されているので、油孔からオイル溝に受け入れたオイルに気泡の状態でエアが含まれる場合にも、その気泡に作用する浮力によって、下向き流路に接続されたオイル導入孔のオイル入口までエアが到達しにくく、エア抜き用の上向き流路を通ってエアを効果的に排出することができる。そのため、エンジン始動時にシリンダの内部にエアが混入するのを効果的に抑制することが可能である。 With this configuration, an oil groove for receiving oil from the oil hole of the engine cover is formed on the surface of the cylinder, and the oil groove has a branched portion that branches into an upward flow path and a downward flow path for bleeding air. Since the oil inlet of the oil introduction hole located below the oil hole is connected to the downward flow path branched downward from the branch, the oil received from the oil hole into the oil groove is in a state of air bubbles. Even if air is contained, the buoyancy acting on the air bubbles makes it difficult for the air to reach the oil inlet of the oil introduction hole connected to the downward flow path. can be discharged to Therefore, it is possible to effectively prevent air from entering the cylinder when the engine is started.
 前記下向き流路は、前記油孔の断面積よりも大きい流路面積を有するように形成すると好ましい。 The downward flow path is preferably formed to have a flow area larger than the cross-sectional area of the oil hole.
 このようにすると、下向き流路の流路面積が比較的大きいものとなるので、オイルの粘性に対して気泡の浮力の影響が大きくなる。そのため、オイルに含まれる気泡が、下向き流路を通ってオイル導入孔のオイル入口まで到達するのを効果的に防止することが可能となる。 By doing so, the flow area of the downward flow path becomes relatively large, so the influence of the buoyancy of the bubbles on the viscosity of the oil increases. Therefore, it is possible to effectively prevent air bubbles contained in the oil from reaching the oil inlet of the oil introducing hole through the downward flow path.
 前記オイル溝は、前記油孔からオイルを受け入れて前記分岐部に流す分岐前流路を有し、
 前記分岐前流路は、前記油孔の断面積よりも大きい流路面積を有する構成を採用すると好ましい。
The oil groove has a pre-branch flow path for receiving oil from the oil hole and flowing it to the branch,
It is preferable to employ a configuration in which the pre-branch flow path has a flow area larger than the cross-sectional area of the oil hole.
 このようにすると、比較的大きい流路面積をもつ分岐前流路が、分岐部の上流側に設けられているので、オイルに含まれる気泡とオイルとが、分岐部に到達する前に上下に分離しやすくなる。そのため、オイルに含まれる気泡を、分岐部において、エア抜き用の上向き流路に効率的に導入することができる。 With this configuration, since the pre-branch flow path having a relatively large flow area is provided upstream of the branch, the air bubbles contained in the oil and the oil move up and down before reaching the branch. easier to separate. Therefore, the air bubbles contained in the oil can be efficiently introduced into the upward flow path for air bleeding at the branch portion.
 前記分岐前流路は、水平方向または水平に対して上向きの流路のみで形成すると好ましい。 It is preferable that the pre-branching flow path is formed only by a horizontal direction or an upward flow path with respect to the horizontal direction.
 このようにすると、浮力による気泡の移動方向と、分岐前流路のオイルの流れの方向とが逆向きになることがないので、オイルが分岐前流路を流れるときに、そのオイルに含まれる気泡とオイルとが、分岐前流路内において円滑に上下に分離する。そのため、オイルに含まれる気泡を、分岐部において、エア抜き用の上向き流路に効率的に導入することができる。 In this way, the direction of movement of air bubbles due to buoyancy and the direction of oil flow in the pre-branch flow path do not become opposite to each other. Air bubbles and oil are smoothly separated vertically in the pre-branch flow path. Therefore, the air bubbles contained in the oil can be efficiently introduced into the upward flow path for air bleeding at the branch portion.
 前記分岐前流路は、前記油孔の位置から前記分岐部に向けて次第に流路面積が拡大するテーパ状に形成すると好ましい。 It is preferable that the pre-branch flow path is formed in a tapered shape in which the flow path area gradually increases from the position of the oil hole toward the branch portion.
 このようにすると、オイルが油孔の位置から分岐部に向けて流れるときに、オイルの流路面積が次第に拡大することで、オイルの流速が次第に遅くなるので、オイルに含まれる気泡が、分岐前流路内において合体しやすい。そのため、オイルに含まれる気泡を、分岐部において、エア抜き用の上向き流路に効率的に導入することができる。 In this way, when the oil flows from the position of the oil hole toward the branching portion, the oil passage area gradually expands, and the flow velocity of the oil gradually decreases. It is easy to combine in the front channel. Therefore, the air bubbles contained in the oil can be efficiently introduced into the upward flow path for air bleeding at the branch portion.
 前記分岐部は、前記油孔から直接オイルを受け入れるように前記油孔と対向して配置され、
 前記分岐部には、水平方向に沿った断面積が、前記下向き流路の流路面積よりも大きいバッファ室が形成されている構成を採用すると好ましい。
the branch portion is arranged to face the oil hole so as to receive oil directly from the oil hole;
It is preferable to employ a configuration in which a buffer chamber having a horizontal cross-sectional area larger than that of the downward flow path is formed in the branch portion.
 このようにすると、分岐部に形成されたバッファ室において、オイルの粘性に対して気泡の浮力の影響が大きくなる。そのため、オイルに含まれる気泡とオイルとが、分岐部において上下に分離しやすく、オイルに含まれる気泡を、分岐部において、エア抜き用の上向き流路に効率的に導入することができる。 With this arrangement, the buoyancy of the air bubbles has a greater effect on the viscosity of the oil in the buffer chamber formed in the branch. Therefore, the air bubbles contained in the oil and the oil are easily separated vertically at the branch, and the air bubbles contained in the oil can be efficiently introduced into the upward flow path for air release at the branch.
 前記シリンダの前記表面は、前記シリンダ本体部の外周の前記テンショナ取り付け孔の内周との嵌合面とすることができる。すなわち、前記オイル溝は、前記シリンダ本体部の外周の前記テンショナ取り付け孔の内周との嵌合面に形成することができる。 The surface of the cylinder can be a fitting surface of the outer circumference of the cylinder main body and the inner circumference of the tensioner mounting hole. That is, the oil groove can be formed on the fitting surface of the outer circumference of the cylinder main body and the inner circumference of the tensioner mounting hole.
 前記シリンダの前記表面は、前記シリンダフランジ部の前記エンジンカバーの外面との合わせ面とすることができる。すなわち、前記オイル溝は、前記シリンダフランジ部の前記エンジンカバーの外面との合わせ面に形成することができる。 The surface of the cylinder can be a mating surface of the cylinder flange portion with the outer surface of the engine cover. That is, the oil groove can be formed in a surface of the cylinder flange portion that is mated with the outer surface of the engine cover.
 この発明のチェーンテンショナは、エンジンカバーの油孔からオイルを受け入れるオイル溝がシリンダの表面に形成され、そのオイル溝が、油孔から受け入れたオイルを、エア抜き用の上向き流路と、油孔よりも下側に位置するオイル導入孔のオイル入口に接続する下向き流路とに分岐して流す分岐部を有するので、油孔からオイル溝に受け入れたオイルに気泡の状態でエアが含まれる場合にも、そのエアが、オイル溝の分岐部でオイルから分離しやすく、下向き流路に接続されたオイル導入孔のオイル入口まで到達しにくい。そのため、エンジン始動時にシリンダの内部にエアが混入するのを効果的に抑制することが可能である。 In the chain tensioner of the present invention, an oil groove for receiving oil from the oil hole of the engine cover is formed on the surface of the cylinder. Since it has a branch portion that branches into a downward flow path that connects to the oil inlet of the oil introduction hole located below the oil introduction hole and flows, when the oil received from the oil hole to the oil groove contains air in the form of air bubbles. Also, the air tends to be separated from the oil at the branched portion of the oil groove, and does not easily reach the oil inlet of the oil introduction hole connected to the downward flow path. Therefore, it is possible to effectively prevent air from entering the cylinder when the engine is started.
この発明の第1実施形態のチェーンテンショナを組み込んだチェーン伝動装置を示す図1 is a diagram showing a chain transmission incorporating a chain tensioner according to a first embodiment of the present invention; FIG. 図1のチェーンテンショナ近傍の拡大図Enlarged view of the vicinity of the chain tensioner in Fig. 1 図2のチェーンテンショナの断面図Cross-sectional view of the chain tensioner of Figure 2 図2のIV-IV線に沿った断面図Cross-sectional view along the IV-IV line in Fig. 2 図2のV-V線に沿った断面図Cross-sectional view along the V-V line in Fig. 2 図2に示す分岐前流路の変形例を示す図The figure which shows the modification of the branch pre-flow path shown in FIG. 図2に示す分岐前流路の他の変形例を示す図FIG. 3 is a diagram showing another modification of the pre-branch flow path shown in FIG. 2; 図2に示す分岐前流路のさらに他の変形例を示す図FIG. 3 is a diagram showing still another modification of the pre-branch flow path shown in FIG. 2; この発明の第2実施形態のチェーンテンショナを示す断面図FIG. 2 is a cross-sectional view showing a chain tensioner according to a second embodiment of the invention; この発明の第3実施形態のチェーンテンショナを組み込んだチェーン伝動装置を示す図FIG. 3 is a diagram showing a chain transmission incorporating a chain tensioner according to a third embodiment of the invention; 図10のチェーンテンショナ近傍の拡大断面図Enlarged cross-sectional view of the vicinity of the chain tensioner in FIG. 図11のXII-XII線に沿った断面図Cross-sectional view along line XII-XII in FIG. 図12のXIII-XIII線に沿った断面図Cross-sectional view along line XIII-XIII in FIG. 図12に示すシリンダフランジ部の斜視図The perspective view of the cylinder flange part shown in FIG. この発明の第4実施形態のチェーンテンショナを示す断面図FIG. 4 is a sectional view showing a chain tensioner according to a fourth embodiment of the invention;
 図1に、この発明の第1実施形態のチェーンテンショナ1を組み込んだチェーン伝動装置を示す。このチェーン伝動装置は、エンジンのクランクシャフト2に固定されたスプロケット3と、カムシャフト4に固定されたスプロケット5とがチェーン6を介して連結されており、そのチェーン6がクランクシャフト2の回転をカムシャフト4に伝達し、そのカムシャフト4の回転により燃焼室のバルブ(図示せず)の開閉を行なう。 Fig. 1 shows a chain transmission incorporating a chain tensioner 1 of the first embodiment of the invention. In this chain transmission device, a sprocket 3 fixed to a crankshaft 2 of an engine and a sprocket 5 fixed to a camshaft 4 are connected via a chain 6, and the chain 6 drives the rotation of the crankshaft 2. It is transmitted to the camshaft 4, and the rotation of the camshaft 4 opens and closes a valve (not shown) of the combustion chamber.
 エンジンが作動しているときのクランクシャフト2の回転方向は一定(図では右回転)であり、このときチェーン6は、クランクシャフト2の回転に伴ってスプロケット3に引き込まれる側(図の右側)の部分が張り側となり、スプロケット3から送り出される側(図の左側)の部分が弛み側となる。そして、チェーン6の弛み側の部分には、支点軸7を中心として揺動可能に支持されたチェーンガイド8が接触している。チェーンテンショナ1は、チェーンガイド8を介してチェーン6を押圧している。 When the engine is running, the direction of rotation of the crankshaft 2 is constant (right rotation in the figure), and at this time, the chain 6 is drawn into the sprocket 3 as the crankshaft 2 rotates (right side in the figure). is the tight side, and the side (left side in the figure) sent out from the sprocket 3 is the slack side. A chain guide 8 supported so as to be swingable about a fulcrum shaft 7 is in contact with the slack side of the chain 6 . Chain tensioner 1 presses chain 6 via chain guide 8 .
 図2に示すように、チェーンテンショナ1は、エンジンカバー9に固定されるシリンダ10を有する。シリンダ10は、エンジンカバー9のテンショナ取り付け孔11に挿入されるシリンダ本体部10Aと、エンジンカバー9の外面12に面接触して固定されるシリンダフランジ部10Bとを有する。シリンダ本体部10Aとシリンダフランジ部10Bは、アルミ合金で継ぎ目のない一体に形成されている。 As shown in FIG. 2, the chain tensioner 1 has a cylinder 10 fixed to the engine cover 9. The cylinder 10 has a cylinder body portion 10A to be inserted into the tensioner mounting hole 11 of the engine cover 9, and a cylinder flange portion 10B fixed to the outer surface 12 of the engine cover 9 in surface contact. The cylinder body portion 10A and the cylinder flange portion 10B are seamlessly integrally formed of an aluminum alloy.
 エンジンカバー9は、チェーン6(図1参照)が収容されるチェーン収容室13を形成する壁体である。テンショナ取り付け孔11は、エンジンカバー9の外面12(チェーン収容室13の側とは反対側の面)から内面(チェーン収容室13の側の面)に貫通して形成されている。 The engine cover 9 is a wall that forms a chain storage chamber 13 in which the chain 6 (see FIG. 1) is stored. The tensioner mounting hole 11 is formed through the engine cover 9 from an outer surface 12 (a surface opposite to the chain housing chamber 13 side) to an inner surface (a surface on the chain housing chamber 13 side).
 シリンダフランジ部10Bは、ボルト14でエンジンカバー9に固定されている。シリンダフランジ部10Bには、エンジンカバー9の外面12に面接触する合わせ面15が形成されている。合わせ面15とエンジンカバー9の外面12との間は、ボルト14の締め付けによってシールされている。シリンダ本体部10Aの外周には、テンショナ取り付け孔11の内周に嵌合する円筒状の嵌合面16が形成されている。 The cylinder flange portion 10B is fixed to the engine cover 9 with bolts 14. A mating surface 15 that comes into surface contact with the outer surface 12 of the engine cover 9 is formed on the cylinder flange portion 10B. A gap between the mating surface 15 and the outer surface 12 of the engine cover 9 is sealed by tightening the bolt 14 . A cylindrical fitting surface 16 that fits into the inner periphery of the tensioner mounting hole 11 is formed on the outer periphery of the cylinder main body 10A.
 図3に示すように、チェーンテンショナ1は、シリンダ本体部10Aに軸方向に摺動可能に挿入されたプランジャ17と、プランジャ17をシリンダ本体部10Aから突出する方向に付勢するリターンスプリング18と、プランジャ17がシリンダ本体部10Aに押し込まれる方向に移動するときにオイルの粘性抵抗によりダンパ力を発生する油圧ダンパ機構19とを有する。 As shown in FIG. 3, the chain tensioner 1 includes a plunger 17 that is axially slidably inserted into the cylinder body 10A, and a return spring 18 that biases the plunger 17 in the direction of protruding from the cylinder body 10A. and a hydraulic damper mechanism 19 that generates a damping force due to the viscous resistance of the oil when the plunger 17 moves in the direction of being pushed into the cylinder body 10A.
 シリンダ本体部10Aは、軸方向の一端を閉塞端とし、軸方向の他端を開口端とする筒状に形成されている。シリンダ本体部10Aは、開口端をエンジンカバー9内に向けた姿勢でテンショナ取り付け孔11に挿入されている。シリンダフランジ部10Bは、シリンダ本体部10Aの閉塞端の側の端部外周に形成されている。 The cylinder main body 10A is formed in a tubular shape with one end in the axial direction as a closed end and the other end in the axial direction as an open end. The cylinder main body 10A is inserted into the tensioner mounting hole 11 with the open end facing the inside of the engine cover 9 . The cylinder flange portion 10B is formed on the outer periphery of the closed end side of the cylinder body portion 10A.
 プランジャ17のシリンダ本体部10Aからの突出端はチェーンガイド8を押圧している。シリンダ10は、プランジャ17のシリンダ本体部10Aからの突出方向が、水平よりも下側に傾斜した方向となる姿勢で取り付けられている。プランジャ17のシリンダ本体部10Aからの突出方向が、水平方向となる姿勢で取り付けてもよい。 The protruding end of the plunger 17 from the cylinder main body 10A presses the chain guide 8. The cylinder 10 is mounted in a posture in which the direction in which the plunger 17 protrudes from the cylinder main body 10A is inclined downward from the horizontal. The projection direction of the plunger 17 from the cylinder body portion 10A may be installed in a horizontal direction.
 プランジャ17は、プランジャ17のシリンダ本体部10A内への挿入端が開口し、プランジャ17のシリンダ本体部10Aからの突出端が閉塞した筒状に形成されている。プランジャ17の材質は、鉄系材料(例えばSCM(クロムモリブデン鋼)やSCr(クロム鋼)等の鋼材)である。 The plunger 17 is formed in a cylindrical shape with an open end inserted into the cylinder main body 10A and a closed protruding end of the plunger 17 from the cylinder main body 10A. The material of the plunger 17 is a ferrous material (for example, a steel material such as SCM (chromium molybdenum steel) or SCr (chromium steel)).
 プランジャ17には、軸方向の一端がプランジャ17内に挿入され、軸方向の他端がプランジャ17から突出した状態となるようにインナースリーブ20が挿入されている。インナースリーブ20のプランジャ17からの突出端は、シリンダ本体部10Aの閉塞端で支持されている。インナースリーブ20のプランジャ17内への挿入端には、チェックバルブ21が設けられている。 An inner sleeve 20 is inserted into the plunger 17 so that one end in the axial direction is inserted into the plunger 17 and the other end in the axial direction protrudes from the plunger 17 . The protruding end of the inner sleeve 20 from the plunger 17 is supported by the closed end of the cylinder main body 10A. A check valve 21 is provided at the insertion end of the inner sleeve 20 into the plunger 17 .
 チェックバルブ21は、インナースリーブ20とプランジャ17の内部領域を、インナースリーブ20の側のリザーバ室22とプランジャ17の側の圧力室23とに区画している。ここで、リザーバ室22の容積は、プランジャ17が軸方向移動しても変化せず、一定である。一方、圧力室23の容積は、プランジャ17がシリンダ本体部10Aから突出する方向に軸方向移動するときは拡大し、プランジャ17がシリンダ本体部10Aに押し込まれる方向に軸方向移動するときは縮小する。チェックバルブ21は、圧力室23の側からリザーバ室22の側へのオイルの流れを制限し、リザーバ室22の側から圧力室23の側へのオイルの流れのみを許容する。 The check valve 21 divides the inner region of the inner sleeve 20 and the plunger 17 into a reservoir chamber 22 on the inner sleeve 20 side and a pressure chamber 23 on the plunger 17 side. Here, the volume of the reservoir chamber 22 does not change even if the plunger 17 moves in the axial direction, and is constant. On the other hand, the volume of the pressure chamber 23 increases when the plunger 17 axially moves in the direction of protruding from the cylinder body 10A, and decreases when the plunger 17 axially moves in the direction of being pushed into the cylinder body 10A. . The check valve 21 restricts the flow of oil from the pressure chamber 23 side to the reservoir chamber 22 side and allows only the oil flow from the reservoir chamber 22 side to the pressure chamber 23 side.
 圧力室23には、リターンスプリング18が組み込まれている。リターンスプリング18は、金属製の線材を螺旋状に巻回した圧縮コイルばねである。リターンスプリング18は、一端がチェックバルブ21で支持され、他端がプランジャ17を軸方向に押圧し、その押圧によって、プランジャ17をシリンダ本体部10Aから突出する方向に付勢している。 A return spring 18 is incorporated in the pressure chamber 23 . The return spring 18 is a compression coil spring formed by spirally winding a metal wire. One end of the return spring 18 is supported by the check valve 21, and the other end presses the plunger 17 in the axial direction.
 インナースリーブ20の外周と、プランジャ17の内周との間には、圧力室23の容積が縮小するときに圧力室23からオイルをリークさせるリーク隙間24が形成されている。リーク隙間24は、半径方向の幅が0.010~0.050mmの範囲に設定された円筒状の微小隙間である。 A leak gap 24 is formed between the outer circumference of the inner sleeve 20 and the inner circumference of the plunger 17 to allow oil to leak from the pressure chamber 23 when the volume of the pressure chamber 23 is reduced. The leak gap 24 is a cylindrical minute gap with a radial width set in the range of 0.010 to 0.050 mm.
 シリンダ本体部10Aの内周とプランジャ17の外周との間には、円筒状のガイド隙間25が形成されている。ガイド隙間25の半径方向の幅は、リーク隙間24の半径方向の幅よりも大きく設定され、例えば、0.015~0.065mmの範囲に設定することができる。 A cylindrical guide gap 25 is formed between the inner circumference of the cylinder main body 10A and the outer circumference of the plunger 17. The radial width of the guide gap 25 is set larger than the radial width of the leak gap 24, and can be set in the range of 0.015 to 0.065 mm, for example.
 ここで、リザーバ室22と圧力室23とチェックバルブ21とリーク隙間24は、油圧ダンパ機構19を構成している。すなわち、プランジャ17がシリンダ本体部10Aから突出する方向に移動するときは、チェックバルブ21が開くことによって、リザーバ室22から圧力室23に作動油が導入され、プランジャ17がシリンダ本体部10Aに押し込まれる方向に移動するときは、チェックバルブ21が閉じ、圧力室23からリーク隙間24を通ってオイルが流出し、そのオイルの粘性抵抗によってダンパ力を発生するようになっている。 Here, the reservoir chamber 22, the pressure chamber 23, the check valve 21, and the leak gap 24 constitute the hydraulic damper mechanism 19. That is, when the plunger 17 moves in the direction of protruding from the cylinder main body 10A, the check valve 21 is opened, so that hydraulic oil is introduced from the reservoir chamber 22 into the pressure chamber 23, and the plunger 17 is pushed into the cylinder main body 10A. The check valve 21 is closed, and oil flows out from the pressure chamber 23 through the leak gap 24, and the viscous resistance of the oil generates a damping force.
 インナースリーブ20のプランジャ17からの突出部分には、筒状空間26とリザーバ室22の間を連通する通油路27が設けられている。筒状空間26は、プランジャ17のシリンダ本体部10Aへの挿入端よりもシリンダ本体部10Aの閉塞端に近い側において、シリンダ本体部10Aの内周とインナースリーブ20の外周とで半径方向に挟まれる円筒状の領域である。通油路27は、インナースリーブ20を径方向に貫通して形成された貫通孔である。 A portion of the inner sleeve 20 protruding from the plunger 17 is provided with an oil passage 27 that communicates between the cylindrical space 26 and the reservoir chamber 22 . The cylindrical space 26 is radially sandwiched between the inner periphery of the cylinder body 10A and the outer periphery of the inner sleeve 20 on the side closer to the closed end of the cylinder body 10A than the insertion end of the plunger 17 into the cylinder body 10A. It is a cylindrical area where the The oil passage 27 is a through hole formed through the inner sleeve 20 in the radial direction.
 図2、図5に示すように、エンジンカバー9には、エンジンのオイルポンプ(図示せず)から送り出されるオイルを、チェーンテンショナ1に供給するための油孔30が形成されている。油孔30は、円形の断面形状をもつ丸穴である。油孔30は、エンジンカバー9のテンショナ取り付け孔11の内周に開口している。 As shown in FIGS. 2 and 5, the engine cover 9 is formed with an oil hole 30 for supplying the chain tensioner 1 with oil delivered from an oil pump (not shown) of the engine. The oil hole 30 is a round hole with a circular cross-sectional shape. The oil hole 30 opens on the inner circumference of the tensioner mounting hole 11 of the engine cover 9 .
 シリンダ10には、油孔30から供給されるオイルをシリンダ本体部10Aの内部に導入する給油通路31が設けられている。給油通路31は、シリンダ10の表面(ここでは、シリンダ本体部10Aの外周の円筒状の嵌合面16)に形成されたオイル溝32と、オイル溝32内のオイルをシリンダ本体部10Aの内部に導入するようにオイル溝32からシリンダ本体部10Aの内部に連通して形成されたオイル導入孔33(図4参照)とを有する。 The cylinder 10 is provided with an oil supply passage 31 that introduces the oil supplied from the oil hole 30 into the cylinder main body 10A. The oil supply passage 31 includes an oil groove 32 formed in the surface of the cylinder 10 (here, a cylindrical fitting surface 16 on the outer periphery of the cylinder main body 10A), and an oil in the oil groove 32 being supplied to the inside of the cylinder main body 10A. and an oil introduction hole 33 (see FIG. 4) formed so as to communicate from the oil groove 32 to the inside of the cylinder main body 10A so as to introduce the oil into the cylinder main body 10A.
 図2に示すように、オイル溝32は、分岐前流路34と分岐部35と上向き流路36と下向き流路37とを有する。分岐前流路34は、油孔30からオイルを受け入れてそのオイルを分岐部35まで流す流路である。分岐前流路34の上流側端部は、油孔30から直接オイルを受け入れるようにテンショナ取り付け孔11の内周の油孔30の開口と径方向に対向して配置され、分岐前流路34の下流側端部は、油孔30から流れてきたオイルを分岐部35に流入させるように分岐部35に接続している。 As shown in FIG. 2 , the oil groove 32 has a pre-branch flow path 34 , a branch portion 35 , an upward flow path 36 and a downward flow path 37 . The pre-branch flow path 34 is a flow path that receives oil from the oil hole 30 and flows the oil to the branch portion 35 . The upstream end of the pre-branching flow path 34 is disposed radially facing the opening of the oil hole 30 on the inner circumference of the tensioner mounting hole 11 so as to directly receive the oil from the oil hole 30 . is connected to the branch portion 35 so that the oil flowing from the oil hole 30 flows into the branch portion 35 .
 分岐前流路34は、水平に対して上向きの流路のみで形成されている。図では、分岐前流路34として、水平に対して右上向きに延びた後、水平に対して左上向きに延びる流路を示している。分岐前流路34が、さらに水平方向の流路を含むようにしてもよい。分岐前流路34は、方形の断面形状をもつ方形溝である。分岐前流路34は、油孔30の断面積よりも大きい流路面積(オイルの流れる方向に直交する断面に沿った流路の断面積)を有する。 The pre-branch flow path 34 is formed only by the upward flow path with respect to the horizontal. In the drawing, as the pre-branch flow path 34, a flow path that extends upward to the upper right with respect to the horizontal and then extends upward to the upper left from the horizontal is shown. The pre-branch flow path 34 may further include a horizontal flow path. The pre-branch flow path 34 is a rectangular groove having a rectangular cross-sectional shape. The pre-branch flow passage 34 has a flow passage area (a cross-sectional area of the flow passage along a cross section perpendicular to the oil flowing direction) larger than the cross-sectional area of the oil hole 30 .
 分岐部35は、油孔30から分岐前流路34に受け入れたオイルを、上向き流路36と下向き流路37とに分岐して流すように、分岐前流路34と上向き流路36と下向き流路37とが接続する部分である。上向き流路36は、分岐部35から上向きにエアを排出するエア抜き用の流路であり、オリフィス通路38とエア抜き通路39とを介してエンジンカバー9の内側のチェーン収容室13に連通している。 The branching portion 35 divides the oil received from the oil hole 30 into the pre-branching flow path 34 into the upward flow path 36 and the downward flow path 37 so as to flow the oil therethrough. This is the portion where the channel 37 is connected. The upward flow path 36 is an air bleeding flow path for discharging air upward from the branch portion 35, and communicates with the chain housing chamber 13 inside the engine cover 9 via an orifice passage 38 and an air bleeding passage 39. ing.
 上向き流路36は、分岐部35からシリンダ本体部10Aの外周を上向きに延びて形成されている。上向き流路36は、方形の断面形状をもつ方形溝である。上向き流路36は、油孔30の断面積よりも大きい流路面積を有するように形成されている。オリフィス通路38は、シリンダ本体部10Aの外周に形成された微小な円環溝である。エア抜き通路39は、テンショナ取り付け孔11の内周とシリンダ本体部10Aの外周との間に形成された隙間である。 The upward flow path 36 is formed by extending upward from the branch portion 35 along the outer circumference of the cylinder body portion 10A. The upward channel 36 is a square groove with a square cross-sectional shape. The upward flow path 36 is formed to have a flow area larger than the cross-sectional area of the oil hole 30 . The orifice passage 38 is a minute annular groove formed on the outer circumference of the cylinder body portion 10A. The air release passage 39 is a gap formed between the inner periphery of the tensioner mounting hole 11 and the outer periphery of the cylinder body portion 10A.
 図4に示すように、下向き流路37は、分岐部35からシリンダ本体部10Aの外周を下向きに延びて形成されている。下向き流路37は、方形の断面形状をもつ方形溝である。下向き流路37は、油孔30の断面積よりも大きい流路面積を有するように形成されている。下向き流路37は、オイル導入孔33のオイル入口33aに接続している。オイル導入孔33は、シリンダ本体部10Aの下側の周壁部分を半径方向に貫通して形成された孔である。オイル入口33aは、オイル導入孔33のシリンダ本体部10Aの外周側の開口部分である。オイル入口33aは、油孔30(図5参照)の開口位置よりも下側に位置している。 As shown in FIG. 4, the downward flow path 37 is formed extending downward from the branch portion 35 along the outer periphery of the cylinder main body portion 10A. The downward channel 37 is a square groove with a square cross-sectional shape. The downward flow path 37 is formed to have a flow area larger than the cross-sectional area of the oil hole 30 . The downward flow path 37 is connected to the oil inlet 33 a of the oil introduction hole 33 . The oil introduction hole 33 is a hole that radially penetrates through the lower peripheral wall portion of the cylinder body portion 10A. The oil inlet 33a is an opening portion of the oil introduction hole 33 on the outer peripheral side of the cylinder body portion 10A. The oil inlet 33a is located below the opening position of the oil hole 30 (see FIG. 5).
 次に、このチェーンテンショナ1の動作例を説明する。 Next, an operation example of this chain tensioner 1 will be described.
 エンジン作動中に、図1に示すチェーン6の張力が大きくなると、そのチェーン6の張力によって、プランジャ17がシリンダ本体部10A内に押し込まれる方向に移動し、チェーン6の緊張を吸収する。このとき、図3に示す圧力室23の圧力がリザーバ室22の圧力よりも高くなるので、チェックバルブ21は閉じた状態となる。また、プランジャ17の移動に応じて圧力室23の容積が縮小するので、その縮小した容積の分、圧力室23からリーク隙間24を通ってオイルがリークし、このときリーク隙間24を流れるオイルの粘性抵抗でダンパ力が発生し、そのダンパ力によってチェーン6のばたつきが防止される。そして、圧力室23からリーク隙間24を通って筒状空間26にリークしたオイルの大部分は、通油路27を通ってリザーバ室22に戻る。また、圧力室23からリーク隙間24を通って筒状空間26にリークしたオイルの一部は、ガイド隙間25を潤滑する。 When the tension of the chain 6 shown in FIG. 1 increases during engine operation, the tension of the chain 6 causes the plunger 17 to move in the direction of being pushed into the cylinder main body 10A, absorbing the tension of the chain 6. At this time, since the pressure in the pressure chamber 23 shown in FIG. 3 becomes higher than the pressure in the reservoir chamber 22, the check valve 21 is closed. Further, since the volume of the pressure chamber 23 is reduced in accordance with the movement of the plunger 17, oil leaks from the pressure chamber 23 through the leak gap 24 by the amount of the reduced volume. A damping force is generated by the viscous resistance, and the damping force prevents the chain 6 from fluttering. Most of the oil that has leaked from the pressure chamber 23 through the leak gap 24 into the tubular space 26 returns to the reservoir chamber 22 through the oil passage 27 . Also, part of the oil leaked from the pressure chamber 23 through the leak gap 24 into the cylindrical space 26 lubricates the guide gap 25 .
 一方、エンジン作動中に、図1に示すチェーン6の張力が小さくなると、図3に示すリターンスプリング18の付勢力と圧力室23の油圧とによって、プランジャ17が突出方向に移動し、チェーン6の弛みを吸収する。このとき、プランジャ17の移動に応じて圧力室23の容積が拡大するので、圧力室23の圧力がリザーバ室22の圧力よりも低くなり、チェックバルブ21が開く。そして、リザーバ室22からチェックバルブ21を通って圧力室23にオイルが流入し、プランジャ17が速やかに移動する。このとき、図2、図4の鎖線の矢印に示すように、油孔30から供給されるオイルが、オイル溝32の分岐前流路34、分岐部35、下向き流路37、オイル導入孔33を順に通ってシリンダ本体部10Aの内部に導入される。 On the other hand, when the tension of the chain 6 shown in FIG. 1 decreases during engine operation, the plunger 17 moves in the projecting direction due to the biasing force of the return spring 18 and the hydraulic pressure in the pressure chamber 23 shown in FIG. Absorb relaxation. At this time, since the volume of the pressure chamber 23 expands according to the movement of the plunger 17, the pressure in the pressure chamber 23 becomes lower than the pressure in the reservoir chamber 22, and the check valve 21 opens. Then, oil flows from the reservoir chamber 22 through the check valve 21 into the pressure chamber 23, and the plunger 17 moves rapidly. At this time, as shown by chain-line arrows in FIGS. are introduced into the cylinder body portion 10A in order.
 エンジンが停止すると、エンジンのオイルポンプも停止するので、エンジンカバー9の油孔30内のオイルの油面が下がり、油孔30にエアが溜まった状態となる。その後、エンジンを再始動すると、まず、エンジンカバー9の油孔30からオイル溝32にエアのみが流入する。このとき、そのエアは、オイル溝32の分岐前流路34、分岐部35、上向き流路36、オリフィス通路38、エア抜き通路39を順に通ってチェーン収容室13に排出される。続いて、エンジンカバー9の油孔30からオイル溝32にオイルが流入し始める。このとき、オイルに気泡の状態でエアが分散して含まれることがあるが、オイルに含まれる気泡とオイルは、気泡に作用する浮力によって分岐前流路34内で上下に分離して流れ、分岐部35において、気泡は上向き流路36に流入し、オイルは下向き流路37に流入する。上向き流路36に流入した気泡は、オリフィス通路38とエア抜き通路39とを順に介してチェーン収容室13に排出される。下向き流路37に流入したオイルは、オイル導入孔33を通ってシリンダ本体部10Aの内部に流入する。 When the engine stops, the oil pump of the engine also stops, so the oil level in the oil hole 30 of the engine cover 9 drops and the oil hole 30 becomes filled with air. After that, when the engine is restarted, only air first flows into the oil groove 32 from the oil hole 30 of the engine cover 9 . At this time, the air passes through the pre-branch flow path 34 of the oil groove 32 , the branch portion 35 , the upward flow path 36 , the orifice passage 38 , and the air release passage 39 in order and is discharged to the chain housing chamber 13 . Subsequently, oil begins to flow into the oil groove 32 from the oil hole 30 of the engine cover 9 . At this time, air may be dispersedly contained in the oil in the form of air bubbles, but the air bubbles contained in the oil and the oil are separated up and down in the pre-branch flow path 34 by the buoyancy acting on the air bubbles. At the branch 35 , the air bubbles flow into the upward channel 36 and the oil flows into the downward channel 37 . The air bubbles that have flowed into the upward flow path 36 are discharged to the chain accommodation chamber 13 through the orifice passage 38 and the air release passage 39 in order. The oil that has flowed into the downward flow path 37 flows through the oil introduction hole 33 into the cylinder main body 10A.
 このチェーンテンショナ1は、図2に示すように、シリンダ10の表面に、エンジンカバー9の油孔30からオイルを受け入れるオイル溝32が形成され、そのオイル溝32が、エア抜き用の上向き流路36と下向き流路37とに分岐する分岐部35を有し、その分岐部35から下向きに分岐する下向き流路37に、油孔30よりも下側に位置するオイル導入孔33のオイル入口33a(図4参照)が接続されているので、油孔30からオイル溝32に受け入れたオイルに気泡の状態でエアが含まれる場合にも、その気泡に作用する浮力によって、下向き流路37に接続されたオイル導入孔33のオイル入口33aまでエアが到達しにくく、エア抜き用の上向き流路36を通ってエアを効果的に排出することができる。そのため、エンジン始動時にシリンダ10の内部にエアが混入するのを効果的に抑制することが可能である。 In this chain tensioner 1, as shown in FIG. 2, an oil groove 32 is formed on the surface of the cylinder 10 to receive oil from an oil hole 30 of the engine cover 9, and the oil groove 32 serves as an upward flow path for bleeding air. 36 and a downward flow path 37, and an oil inlet 33a of the oil introduction hole 33 located below the oil hole 30 in the downward flow path 37 branching downward from the branch portion 35. (see FIG. 4) is connected, even if the oil received from the oil hole 30 into the oil groove 32 contains air in the form of air bubbles, the oil is connected to the downward flow path 37 by the buoyancy acting on the air bubbles. Air is less likely to reach the oil inlet 33a of the oil introduction hole 33, and the air can be effectively discharged through the upward flow path 36 for air bleeding. Therefore, it is possible to effectively prevent air from entering the cylinder 10 when the engine is started.
 また、このチェーンテンショナ1は、図2に示す下向き流路37が、油孔30の断面積よりも大きい流路面積を有し、下向き流路37の流路面積が比較的大きいので、下向き流路37内において、オイルの粘性に対して気泡の浮力の影響が大きくなる。そのため、オイルに含まれる気泡が、下向き流路37を通ってオイル導入孔33のオイル入口33aまで到達するのを効果的に防止することが可能である。 Further, in this chain tensioner 1, the downward flow path 37 shown in FIG. 2 has a flow area larger than the cross-sectional area of the oil hole 30. In the passage 37, the influence of the buoyancy of the air bubbles on the viscosity of the oil increases. Therefore, it is possible to effectively prevent air bubbles contained in the oil from reaching the oil inlet 33 a of the oil introduction hole 33 through the downward flow path 37 .
 また、このチェーンテンショナ1は、油孔30の断面積よりも大きい流路面積をもつ分岐前流路34が、分岐部35の上流側に設けられているので、オイルに含まれる気泡とオイルとが、分岐部35に到達する前に上下に分離しやすい。そのため、オイルに含まれる気泡を、分岐部35において、エア抜き用の上向き流路36に効率的に導入することが可能となっている。 Further, in the chain tensioner 1, the pre-branch flow path 34 having a flow area larger than the cross-sectional area of the oil hole 30 is provided upstream of the branch portion 35, so that the air bubbles contained in the oil and the oil However, before reaching the branching portion 35, it is likely to separate vertically. Therefore, the air bubbles contained in the oil can be efficiently introduced into the upward flow path 36 for air bleeding at the branch portion 35 .
 また、このチェーンテンショナ1は、図2に示すように、分岐前流路34が、水平方向または水平に対して上向きの流路のみで形成されているので、浮力による気泡の移動方向と、分岐前流路34のオイルの流れの方向とが逆向きになることがない。そのため、オイルが分岐前流路34を流れるときに、そのオイルに含まれる気泡とオイルとが、分岐前流路34内において円滑に上下に分離する。その結果、オイルに含まれる気泡を、分岐部35において、エア抜き用の上向き流路36に効率的に導入することが可能となっている。 Further, in this chain tensioner 1, as shown in FIG. 2, the pre-branch flow path 34 is formed only in the horizontal direction or the upward flow path with respect to the horizontal direction. The direction of oil flow in the front flow path 34 is never reversed. Therefore, when the oil flows through the pre-branching flow path 34 , air bubbles contained in the oil and the oil are smoothly separated vertically in the pre-branching flow path 34 . As a result, the air bubbles contained in the oil can be efficiently introduced into the upward flow path 36 for air bleeding at the branch portion 35 .
 図6に示すように、分岐前流路34は、シリンダ本体部10Aの軸線方向に対し、分岐部35に向かって上向きに傾斜して延びる部分を有するように形成することができる。このようにすると、プランジャ17(図2参照)のシリンダ本体部10Aからの突出方向が、水平方向または水平よりも下側に傾斜した方向となる姿勢でシリンダ10を取り付けたときに、確実に分岐前流路34を水平に対して上向きに傾斜させることができる。また、分岐前流路34の傾斜により分岐部35の位置が比較的上側にくるので、下向き流路37の長さが長くなる。そのため、エンジン停止時に下向き流路37に比較的多いオイルを溜めることができ、そのオイルを利用してエンジン始動時に迅速にダンパ力を発揮することが可能となる。 As shown in FIG. 6, the pre-branch flow path 34 can be formed to have a portion that extends obliquely upward toward the branch portion 35 with respect to the axial direction of the cylinder main body portion 10A. In this way, when the cylinder 10 is mounted in a posture in which the plunger 17 (see FIG. 2) protrudes from the cylinder main body 10A in the horizontal direction or in a direction inclined below the horizontal direction, the branching is ensured. The front channel 34 can be slanted upward with respect to the horizontal. In addition, since the position of the branch portion 35 is relatively higher due to the inclination of the pre-branching channel 34, the length of the downward channel 37 is increased. Therefore, a relatively large amount of oil can be stored in the downward flow path 37 when the engine is stopped, and the oil can be used to quickly exert a damping force when the engine is started.
 また、図6に示すように、分岐前流路34は、油孔30の位置から分岐部35に向けて次第に流路面積が拡大するテーパ状に形成することができる。このようにすると、オイルが油孔30の位置から分岐部35に向けて流れるときに、オイルの流路面積が次第に拡大することで、オイルの流速が次第に遅くなるので、オイルに含まれる気泡が、分岐前流路34内において合体しやすい。そのため、オイルに含まれる気泡を、分岐部35において、エア抜き用の上向き流路36に効率的に導入することができる。 Further, as shown in FIG. 6, the pre-branch flow path 34 can be formed in a tapered shape in which the flow path area gradually expands from the position of the oil hole 30 toward the branch portion 35 . In this way, when the oil flows from the position of the oil hole 30 toward the branching portion 35, the flow area of the oil gradually expands, and the flow velocity of the oil gradually slows down. , are easily combined in the pre-branch flow path 34 . Therefore, the air bubbles contained in the oil can be efficiently introduced into the upward flow path 36 for air bleeding at the branch portion 35 .
 図7に示すように、分岐前流路34は、その全長が、シリンダ本体部10Aの軸線方向に対し、分岐部35に向かって上向きに傾斜して延びるように形成してもよい。 As shown in FIG. 7, the pre-branching flow path 34 may be formed such that its entire length extends obliquely upward toward the branching portion 35 with respect to the axial direction of the cylinder main body portion 10A.
 上記実施形態では、分岐前流路34を、上向き流路36および下向き流路37に対してシリンダ本体部10Aの開口端の側(図では右側)に形成したものを例に挙げて説明したが、図8に示すように、分岐前流路34を、上向き流路36および下向き流路37に対してシリンダ本体部10Aの閉塞端の側(図では左側)に形成し、その分岐前流路34を、シリンダ本体部10Aの軸線方向に対し、分岐部35に向かって上向きに傾斜して延びるように形成してもよい。このようにすると、プランジャ17(図2参照)のシリンダ本体部10Aからの突出方向が、水平よりも上側に傾斜した方向となる姿勢でシリンダ10を取り付けたときにも、確実に分岐前流路34を水平に対して上向きに傾斜させることができる。 In the above embodiment, the pre-branch flow path 34 is formed on the side of the opening end of the cylinder main body 10A (on the right side in the drawing) with respect to the upward flow path 36 and the downward flow path 37. 8, the pre-branch flow path 34 is formed on the side of the closed end of the cylinder main body 10A (on the left side in the drawing) with respect to the upward flow path 36 and the downward flow path 37, and the pre-branch flow path 34 may be formed so as to extend obliquely upward toward the branch portion 35 with respect to the axial direction of the cylinder main body portion 10A. In this way, even when the cylinder 10 is mounted in a posture in which the projection direction of the plunger 17 (see FIG. 2) from the cylinder body portion 10A is tilted upward from the horizontal, the pre-branch flow path can be reliably 34 can be slanted upwards with respect to the horizontal.
 図9に第2実施形態のチェーンテンショナ1を示す。第2実施形態は、第1実施形態とシリンダ本体部10Aの内部の構造のみが異なり、その他の構成(給油通路31の構成を含む)は同一である。そのため、第1実施形態に対応する部分は同一の符号を付して説明を省略する。 FIG. 9 shows the chain tensioner 1 of the second embodiment. The second embodiment differs from the first embodiment only in the internal structure of the cylinder main body 10A, and the rest of the configuration (including the configuration of the oil supply passage 31) is the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 シリンダ本体部10A内には、シリンダ本体部10Aとプランジャ17とで囲まれた圧力室23が形成されている。シリンダの閉塞端には、リザーバ室22が形成されている。圧力室23とリザーバ室22の間には、チェックバルブ21が設けられている。 A pressure chamber 23 surrounded by the cylinder body 10A and the plunger 17 is formed in the cylinder body 10A. A reservoir chamber 22 is formed at the closed end of the cylinder. A check valve 21 is provided between the pressure chamber 23 and the reservoir chamber 22 .
 プランジャ17の外周とシリンダ本体部10Aの内周との間には、圧力室23の容積が縮小するときに圧力室23からオイルをリークさせるリーク隙間24が形成されている。 A leak gap 24 is formed between the outer circumference of the plunger 17 and the inner circumference of the cylinder main body 10A to allow oil to leak from the pressure chamber 23 when the volume of the pressure chamber 23 is reduced.
 プランジャ17のシリンダ本体部10Aからの突出端には、圧力室23とチェーン収容室13の間を連通する逃がし通路40が形成されている。逃がし通路40には、圧力室23内の圧力が予め設定した圧力よりも大きくなったときに開くリリーフバルブ41が設けられている。 A relief passage 40 communicating between the pressure chamber 23 and the chain housing chamber 13 is formed at the projecting end of the plunger 17 from the cylinder main body 10A. The relief passage 40 is provided with a relief valve 41 that opens when the pressure in the pressure chamber 23 exceeds a preset pressure.
 オイル導入孔33は、シリンダ本体部10Aの下側の周壁部分を半径方向に貫通して形成された孔であり、オイル溝32とリザーバ室22の間を連通している。 The oil introduction hole 33 is a hole radially penetrating through the lower peripheral wall portion of the cylinder main body 10A, and communicates between the oil groove 32 and the reservoir chamber 22 .
 リザーバ室22と圧力室23とチェックバルブ21とリーク隙間24は、油圧ダンパ機構19を構成している。すなわち、プランジャ17がシリンダ本体部10Aから突出する方向に移動するときは、チェックバルブ21が開くことによって、リザーバ室22から圧力室23に作動油が導入され、プランジャ17がシリンダ本体部10Aに押し込まれる方向に移動するときは、チェックバルブ21が閉じ、圧力室23からリーク隙間24を通ってオイルが流出し、そのオイルの粘性抵抗によってダンパ力を発生するようになっている。 The reservoir chamber 22, the pressure chamber 23, the check valve 21, and the leak gap 24 constitute a hydraulic damper mechanism 19. That is, when the plunger 17 moves in the direction of protruding from the cylinder main body 10A, the check valve 21 is opened, so that hydraulic oil is introduced from the reservoir chamber 22 into the pressure chamber 23, and the plunger 17 is pushed into the cylinder main body 10A. The check valve 21 is closed, and oil flows out from the pressure chamber 23 through the leak gap 24, and the viscous resistance of the oil generates a damping force.
 プランジャ17のシリンダ本体部10A内への挿入端とシリンダ本体部10Aの閉塞端との間に、アシストスプリング42が組み込まれている。アシストスプリング42は、リターンスプリング18がプランジャ17を押圧する付勢力を補助することで、チェーンガイド8のチェーン6に対する追従性を高める機能を有する。 An assist spring 42 is incorporated between the insertion end of the plunger 17 into the cylinder body portion 10A and the closed end of the cylinder body portion 10A. The assist spring 42 has a function of enhancing the ability of the chain guide 8 to follow the chain 6 by assisting the biasing force of the return spring 18 pressing the plunger 17 .
 この第2実施形態のチェーンテンショナ1も、第1実施形態と同様の作用効果を有する。 The chain tensioner 1 of this second embodiment also has the same effects as those of the first embodiment.
 図10に、この発明の第3実施形態のチェーンテンショナ1を組み込んだチェーン伝動装置を示す。第3実施形態は、第1実施形態と比べて、エンジンカバー9の油孔30の開口位置、エンジンカバー9に対するシリンダ10の取り付け姿勢、シリンダ10に形成されるオイル溝32およびオイル導入孔33の構成のみが異なり、その他の構成は同一である。そのため、第1実施形態に対応する部分は同一の符号を付して説明を省略する。 Fig. 10 shows a chain transmission incorporating the chain tensioner 1 of the third embodiment of the invention. Compared to the first embodiment, the third embodiment differs from the first embodiment in that the opening position of the oil hole 30 of the engine cover 9, the mounting posture of the cylinder 10 with respect to the engine cover 9, the oil groove 32 formed in the cylinder 10, and the oil introduction hole 33 are different. Only the configuration is different, and other configurations are the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 シリンダ10は、プランジャ17のシリンダ本体部10Aからの突出方向が、水平方向となる姿勢でエンジンカバー9に取り付けられている。プランジャ17のシリンダ本体部10Aからの突出方向が、水平よりも下側に傾斜した方向となる姿勢で取り付けてもよい。 The cylinder 10 is attached to the engine cover 9 so that the direction in which the plunger 17 protrudes from the cylinder body 10A is horizontal. The direction in which the plunger 17 projects from the cylinder main body 10A may be attached in a direction inclined downward from the horizontal.
 図13に示すように、エンジンカバー9には、エンジンのオイルポンプ(図示せず)から送り出されるオイルを、チェーンテンショナ1に供給するための油孔30が形成されている。油孔30は、円形の断面形状をもつ丸穴である。油孔30は、エンジンカバー9の外面12に開口している。 As shown in FIG. 13, the engine cover 9 is formed with an oil hole 30 for supplying the chain tensioner 1 with oil delivered from an oil pump (not shown) of the engine. The oil hole 30 is a round hole with a circular cross-sectional shape. The oil hole 30 opens to the outer surface 12 of the engine cover 9 .
 シリンダ10には、油孔30から供給されるオイルをシリンダ本体部10Aの内部に導入する給油通路31が設けられている。給油通路31は、シリンダ10の表面(ここでは、シリンダフランジ部10Bのエンジンカバー9の外面12との合わせ面15)に形成されたオイル溝32と、オイル溝32内のオイルをシリンダ本体部10Aの内部に導入するようにオイル溝32からシリンダ本体部10Aの内部に連通して形成されたオイル導入孔33(図11参照)とを有する。 The cylinder 10 is provided with an oil supply passage 31 that introduces the oil supplied from the oil hole 30 into the cylinder main body 10A. The oil supply passage 31 includes an oil groove 32 formed in the surface of the cylinder 10 (here, the mating surface 15 of the cylinder flange portion 10B with the outer surface 12 of the engine cover 9), and the oil in the oil groove 32 through the cylinder body portion 10A. and an oil introduction hole 33 (see FIG. 11) formed so as to communicate from the oil groove 32 to the inside of the cylinder main body 10A so as to introduce the oil into the inside of the cylinder main body 10A.
 図12に示すように、オイル溝32は、分岐部35と上向き流路36と下向き流路37とを有する。分岐部35は、油孔30から直接オイルを受け入れるようにエンジンカバー9(図13参照)の外面12の油孔30の開口と軸方向に対向して配置されている。分岐部35には、バッファ室43が形成されている。バッファ室43は、シリンダフランジ部10Bのエンジンカバー9(図13参照)の外面12との合わせ面15から柱状に窪んで形成された凹部である。図12に示すように、バッファ室43の上下方向の高さ寸法と水平方向の幅寸法は、いずれも油孔30の内径よりも大きい。また、図13に示すように、バッファ室43の水平方向に沿った断面積は、下向き流路37の流路面積よりも大きい。 As shown in FIG. 12, the oil groove 32 has a branch portion 35, an upward flow path 36 and a downward flow path 37. The branch portion 35 is arranged axially facing the opening of the oil hole 30 in the outer surface 12 of the engine cover 9 (see FIG. 13) so as to directly receive the oil from the oil hole 30 . A buffer chamber 43 is formed in the branch portion 35 . The buffer chamber 43 is a concave portion that is recessed in a columnar shape from the mating surface 15 of the cylinder flange portion 10B with the outer surface 12 of the engine cover 9 (see FIG. 13). As shown in FIG. 12 , both the vertical height dimension and the horizontal width dimension of the buffer chamber 43 are larger than the inner diameter of the oil hole 30 . Further, as shown in FIG. 13 , the cross-sectional area along the horizontal direction of the buffer chamber 43 is larger than the flow path area of the downward flow path 37 .
 図12に示すように、上向き流路36は、分岐部35からシリンダ本体部10Aの外周に沿って上向きに円弧状に延びて形成されている。上向き流路36は、方形の断面形状をもつ方形溝である。上向き流路36は、油孔30の断面積よりも大きい流路面積を有するように形成されている。 As shown in FIG. 12, the upward flow path 36 is formed to extend upward in an arc shape from the branch portion 35 along the outer circumference of the cylinder main body portion 10A. The upward channel 36 is a square groove with a square cross-sectional shape. The upward flow path 36 is formed to have a flow area larger than the cross-sectional area of the oil hole 30 .
 図11に示すように、上向き流路36は、シリンダ本体部10Aの上方でエア抜き通路39に接続し、そのエア抜き通路39を介してエンジンカバー9の内側のチェーン収容室13に連通している。エア抜き通路39は、テンショナ取り付け孔11の内周とシリンダ本体部10Aの外周との間に形成された微小隙間である。このエア抜き通路39は、図14に示すように、シリンダ本体部10Aの上部外周に沿って軸方向に延びるDカット部44(シリンダ本体部10Aの軸線と平行な平面に沿ってシリンダ本体部10Aの外周を除去した形状の部分)を設けることで形成することができる。 As shown in FIG. 11, the upward flow path 36 is connected to an air bleeding passage 39 above the cylinder body 10A and communicates with the chain housing chamber 13 inside the engine cover 9 via the air bleeding passage 39. there is The air vent passage 39 is a minute gap formed between the inner periphery of the tensioner mounting hole 11 and the outer periphery of the cylinder body portion 10A. As shown in FIG. 14, the air vent passage 39 is formed by a D-cut portion 44 extending in the axial direction along the outer periphery of the upper portion of the cylinder body portion 10A. It can be formed by providing a portion of a shape obtained by removing the outer periphery of the
 図12に示すように、下向き流路37は、分岐部35からシリンダ本体部10Aの外周に沿って下向きに円弧状に延びて形成されている。下向き流路37は、方形の断面形状をもつ方形溝である。下向き流路37は、油孔30の断面積よりも大きい流路面積を有するように形成されている。下向き流路37は、オイル導入孔33のオイル入口33aに接続している。 As shown in FIG. 12, the downward flow path 37 is formed to extend downward in an arc shape from the branch portion 35 along the outer circumference of the cylinder main body portion 10A. The downward channel 37 is a square groove with a square cross-sectional shape. The downward flow path 37 is formed to have a flow area larger than the cross-sectional area of the oil hole 30 . The downward flow path 37 is connected to the oil inlet 33 a of the oil introduction hole 33 .
 図11に示すように、オイル導入孔33は、シリンダフランジ部10Bの下側部分を半径方向に貫通して形成された縦孔部45と、シリンダフランジ部10Bの合わせ面15から縦孔部45に至るように軸方向に延びて形成された横孔部46とで構成されている。縦孔部45のシリンダフランジ部10Bの外周の側の端部は、栓部材47で閉塞されている。栓部材47は、図では雄ねじ部材である。オイル導入孔33のオイル入口33aは、オイル導入孔33の横孔部46の合わせ面15の側の開口部分である。図12に示すように、オイル入口33aは、油孔30の開口位置よりも下側に位置している。 As shown in FIG. 11, the oil introduction hole 33 includes a vertical hole portion 45 radially penetrating through the lower portion of the cylinder flange portion 10B and a vertical hole portion 45 extending from the mating surface 15 of the cylinder flange portion 10B. and a horizontal hole portion 46 formed extending in the axial direction so as to reach . A plug member 47 closes the end portion of the vertical hole portion 45 on the outer peripheral side of the cylinder flange portion 10B. The plug member 47 is a male screw member in the figure. An oil inlet 33a of the oil introduction hole 33 is an opening portion of the horizontal hole portion 46 of the oil introduction hole 33 on the mating surface 15 side. As shown in FIG. 12, the oil inlet 33a is located below the opening position of the oil hole 30. As shown in FIG.
 このチェーンテンショナ1の動作例を説明する。第1実施形態と同様、エンジンが停止すると、エンジンのオイルポンプも停止するので、エンジンカバー9の油孔30内のオイルの油面が下がり、油孔30にエアが溜まった状態となる。その後、エンジンを再始動すると、まず、エンジンカバー9の油孔30からオイル溝32にエアのみが流入する。このとき、そのエアは、オイル溝32の分岐部35、上向き流路36、エア抜き通路39を順に通ってチェーン収容室13に排出される。続いて、エンジンカバー9の油孔30からオイル溝32にオイルが流入し始める。このとき、オイルに気泡の状態でエアが分散して含まれることがあるが、オイルに含まれる気泡とオイルは、分岐部35において気泡に作用する浮力によって上下に分離し、気泡は上向き流路36に流入し、オイルは下向き流路37に流入する。上向き流路36に流入した気泡は、エア抜き通路39を介してチェーン収容室13に排出される。下向き流路37に流入したオイルは、オイル導入孔33を通ってシリンダ本体部10Aの内部に流入する。 An operation example of this chain tensioner 1 will be described. As in the first embodiment, when the engine stops, the oil pump of the engine also stops. After that, when the engine is restarted, only air first flows into the oil groove 32 from the oil hole 30 of the engine cover 9 . At this time, the air passes through the branch portion 35 of the oil groove 32 , the upward flow path 36 and the air release passage 39 in order and is discharged to the chain housing chamber 13 . Subsequently, oil begins to flow into the oil groove 32 from the oil hole 30 of the engine cover 9 . At this time, air may be dispersedly contained in the oil in the form of air bubbles, but the air bubbles contained in the oil and the oil are separated vertically by the buoyant force acting on the air bubbles at the branch portion 35, and the air bubbles flow upward. 36 and the oil enters the downward flow path 37 . Air bubbles that have flowed into the upward flow path 36 are discharged to the chain housing chamber 13 via the air vent passage 39 . The oil that has flowed into the downward flow path 37 flows through the oil introduction hole 33 into the cylinder main body 10A.
 このチェーンテンショナ1は、図12に示すように、シリンダ10の表面に、油孔30からオイルを受け入れるオイル溝32が形成され、そのオイル溝32が、エア抜き用の上向き流路36と下向き流路37とに分岐する分岐部35を有し、その分岐部35から下向きに分岐する下向き流路37に、油孔30よりも下側に位置するオイル導入孔33のオイル入口33aが接続されているので、油孔30からオイル溝32に受け入れたオイルに気泡の状態でエアが含まれる場合にも、その気泡に作用する浮力によって、下向き流路37に接続されたオイル導入孔33のオイル入口33aまでエアが到達しにくく、エア抜き用の上向き流路36を通ってエアを効果的に排出することができる。そのため、エンジン始動時にシリンダ10の内部にエアが混入するのを効果的に抑制することが可能である。 In this chain tensioner 1, as shown in FIG. 12, an oil groove 32 for receiving oil from an oil hole 30 is formed on the surface of the cylinder 10. The oil groove 32 is formed with an upward flow path 36 for bleeding air and a downward flow path 36. The oil inlet 33a of the oil introduction hole 33 positioned below the oil hole 30 is connected to the downward flow path 37 branching downward from the branch part 35. Therefore, even if the oil received in the oil groove 32 from the oil hole 30 contains air in the form of air bubbles, the buoyancy acting on the air bubbles causes the oil inlet of the oil introduction hole 33 connected to the downward flow path 37 to move. It is difficult for the air to reach 33a, and the air can be effectively discharged through the upward flow path 36 for removing air. Therefore, it is possible to effectively prevent air from entering the cylinder 10 when the engine is started.
 また、このチェーンテンショナ1は、図12に示す下向き流路37が、油孔30の断面積よりも大きい流路面積を有し、下向き流路37の流路面積が比較的大きいので、下向き流路37内において、オイルの粘性に対して気泡の浮力の影響が大きくなる。そのため、オイルに含まれる気泡が、下向き流路37を通ってオイル導入孔33のオイル入口33aまで到達するのを効果的に防止することが可能である。 Also, in this chain tensioner 1, the downward flow path 37 shown in FIG. In the passage 37, the influence of the buoyancy of the air bubbles on the viscosity of the oil increases. Therefore, it is possible to effectively prevent air bubbles contained in the oil from reaching the oil inlet 33 a of the oil introduction hole 33 through the downward flow path 37 .
 また、このチェーンテンショナ1は、図13に示すように、分岐部35に形成されたバッファ室43が、下向き流路37の流路面積よりも大きい断面積をもつので、バッファ室43内において、オイルの粘性に対して気泡の浮力の影響が大きくなる。そのため、オイルに含まれる気泡とオイルとが、分岐部35において上下に分離しやすく、オイルに含まれる気泡を、分岐部35において、エア抜き用の上向き流路36に効率的に導入することができる。 Further, in this chain tensioner 1, as shown in FIG. 13, the buffer chamber 43 formed in the branch portion 35 has a larger cross-sectional area than the flow passage area of the downward flow passage 37. Therefore, in the buffer chamber 43, The effect of the buoyancy of air bubbles on the viscosity of oil increases. Therefore, the air bubbles contained in the oil and the oil are easily separated vertically at the branch portion 35, and the air bubbles contained in the oil can be efficiently introduced into the upward flow path 36 for air bleeding at the branch portion 35. can.
 図15に、第4実施形態のチェーンテンショナ1を示す。第4実施形態は、第3実施形態とシリンダ本体部10Aの内部の構造のみが異なり、その他の構成は同一である。また、シリンダ本体部10Aの内部の構造は、第2実施形態と同一である。そのため、第2実施形態および第3実施形態に対応する部分に同一の符号を付して説明を省略する。 FIG. 15 shows the chain tensioner 1 of the fourth embodiment. The fourth embodiment differs from the third embodiment only in the internal structure of the cylinder main body portion 10A, and the rest of the structure is the same. Also, the internal structure of the cylinder body portion 10A is the same as that of the second embodiment. Therefore, the same reference numerals are given to the parts corresponding to the second embodiment and the third embodiment, and the description thereof is omitted.
 上記各実施形態では、チェーンテンショナ1を、クランクシャフト2の回転をカムシャフト4に伝達するチェーン伝動装置に組み込んだ例を挙げて説明したが、チェーンテンショナ1は、クランクシャフトの回転をオイルポンプやウォーターポンプやスーパーチャージャー等の補機に伝達するチェーン伝動装置や、クランクシャフトの回転をバランサシャフトに伝達するチェーン伝動装置や、ツインカムエンジンの吸気カムと排気カムを互いに連結するチェーン伝動装置に組み込むことも可能である。 In the above embodiments, the chain tensioner 1 is incorporated in a chain transmission device that transmits the rotation of the crankshaft 2 to the camshaft 4. To be incorporated into a chain transmission that transmits power to accessories such as a water pump and a supercharger, a chain transmission that transmits the rotation of a crankshaft to a balancer shaft, or a chain transmission that connects intake and exhaust cams of a twin-cam engine. is also possible.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and range of equivalents of the scope of the claims.
1    チェーンテンショナ
9    エンジンカバー
10   シリンダ
10A  シリンダ本体部
10B  シリンダフランジ部
11   テンショナ取り付け孔
12   外面
15   合わせ面
16   嵌合面
17   プランジャ
18   リターンスプリング
19   油圧ダンパ機構
30   油孔
31   給油通路
32   オイル溝
33   オイル導入孔
33a  オイル入口
34   分岐前流路
35   分岐部
36   上向き流路
37   下向き流路
43   バッファ室
1 Chain tensioner 9 Engine cover 10 Cylinder 10A Cylinder body 10B Cylinder flange 11 Tensioner mounting hole 12 Outer surface 15 Mating surface 16 Fitting surface 17 Plunger 18 Return spring 19 Hydraulic damper mechanism 30 Oil hole 31 Oil supply passage 32 Oil groove 33 Oil introduction Hole 33a Oil inlet 34 Pre-branch flow path 35 Branch portion 36 Upward flow path 37 Downward flow path 43 Buffer chamber

Claims (8)

  1.  軸方向の一端を閉塞端とし、軸方向の他端を開口端とし、前記開口端をエンジンカバー(9)内に向けた姿勢で前記エンジンカバー(9)に形成されたテンショナ取り付け孔(11)に挿入されるシリンダ本体部(10A)と、前記シリンダ本体部(10A)に一体に形成され、前記エンジンカバー(9)の外面(12)に面接触して固定されるシリンダフランジ部(10B)とを有するシリンダ(10)と、
     前記シリンダ本体部(10A)に軸方向に摺動可能に挿入されたプランジャ(17)と、
     前記プランジャ(17)を前記シリンダ本体部(10A)から突出する方向に付勢するリターンスプリング(18)と、
     前記エンジンカバー(9)に開口する油孔(30)から前記シリンダ本体部(10A)の内部にオイルを導入するように前記シリンダ(10)に設けられた給油通路(31)と、
     前記プランジャ(17)が前記シリンダ本体部(10A)に押し込まれる方向に移動するときにオイルの粘性抵抗によりダンパ力を発生する油圧ダンパ機構(19)と、を有するチェーンテンショナにおいて、
     前記給油通路(31)は、前記油孔(30)からオイルを受け入れるように前記シリンダ(10)の表面に前記油孔(30)と対向して形成されたオイル溝(32)と、前記オイル溝(32)内のオイルを前記シリンダ本体部(10A)の内部に導入するように前記オイル溝(32)から前記シリンダ本体部(10A)の内部に連通して形成されたオイル導入孔(33)とを有し、
     前記オイル導入孔(33)は、前記油孔(30)よりも下側の位置にオイル入口(33a)をもつように設けられ、
     前記オイル溝(32)は、前記油孔(30)から受け入れたオイルを、エア抜き用の上向き流路(36)と、前記オイル入口(33a)に接続する下向き流路(37)とに分岐して流す分岐部(35)を有することを特徴とするチェーンテンショナ。
    A tensioner mounting hole (11) formed in the engine cover (9) with one end in the axial direction as a closed end and the other end in the axial direction as an open end, with the open end facing the inside of the engine cover (9). and a cylinder flange (10B) formed integrally with the cylinder body (10A) and fixed in surface contact with the outer surface (12) of the engine cover (9). a cylinder (10) having
    a plunger (17) axially slidably inserted into the cylinder body (10A);
    a return spring (18) that biases the plunger (17) in a direction of protruding from the cylinder main body (10A);
    an oil supply passage (31) provided in the cylinder (10) so as to introduce oil into the cylinder main body (10A) from an oil hole (30) opened in the engine cover (9);
    A chain tensioner comprising a hydraulic damper mechanism (19) that generates a damping force by viscous resistance of oil when the plunger (17) moves in the direction of being pushed into the cylinder main body (10A),
    The oil supply passage (31) includes an oil groove (32) formed in the surface of the cylinder (10) facing the oil hole (30) so as to receive oil from the oil hole (30); An oil introduction hole (33) formed in communication with the inside of the cylinder main body (10A) from the oil groove (32) so as to introduce the oil in the groove (32) into the inside of the cylinder main body (10A). ) and
    The oil introduction hole (33) is provided so as to have an oil inlet (33a) at a position below the oil hole (30),
    The oil groove (32) branches the oil received from the oil hole (30) into an upward flow path (36) for air bleeding and a downward flow path (37) connected to the oil inlet (33a). Chain tensioner, characterized in that it has a fork (35) that flows in a straight line.
  2.  前記下向き流路(37)は、前記油孔(30)の断面積よりも大きい流路面積を有するように形成されている請求項1に記載のチェーンテンショナ。 The chain tensioner according to claim 1, wherein the downward flow path (37) is formed to have a flow area larger than the cross-sectional area of the oil hole (30).
  3.  前記オイル溝(32)は、前記油孔(30)からオイルを受け入れて前記分岐部(35)に流す分岐前流路(34)を有し、
     前記分岐前流路(34)は、前記油孔(30)の断面積よりも大きい流路面積を有する請求項1または2に記載のチェーンテンショナ。
    The oil groove (32) has a pre-branch flow path (34) that receives oil from the oil hole (30) and flows it to the branch portion (35),
    The chain tensioner according to claim 1 or 2, wherein the pre-branch flow path (34) has a flow area larger than the cross-sectional area of the oil hole (30).
  4.  前記分岐前流路(34)は、水平方向または水平に対して上向きの流路のみで形成されている請求項3に記載のチェーンテンショナ。 The chain tensioner according to claim 3, wherein the pre-branch flow path (34) is formed only by a horizontal direction or an upward flow path with respect to the horizontal direction.
  5.  前記分岐前流路(34)は、前記油孔(30)の位置から前記分岐部(35)に向けて次第に流路面積が拡大するテーパ状に形成されている請求項3または4に記載のチェーンテンショナ。 5. The pre-branching flow path (34) according to claim 3 or 4, wherein the pre-branching flow path (34) is formed in a tapered shape such that the flow path area gradually increases from the position of the oil hole (30) toward the branching portion (35). chain tensioner.
  6.  前記分岐部(35)は、前記油孔(30)から直接オイルを受け入れるように前記油孔(30)と対向して配置され、
     前記分岐部(35)には、水平方向に沿った断面積が、前記下向き流路(37)の流路面積よりも大きいバッファ室(43)が形成されている請求項1または2に記載のチェーンテンショナ。
    The branch portion (35) is arranged to face the oil hole (30) so as to receive oil directly from the oil hole (30),
    3. The buffer chamber (43) according to claim 1 or 2, wherein the branch portion (35) is formed with a buffer chamber (43) having a horizontal cross-sectional area larger than the flow area of the downward flow path (37). chain tensioner.
  7.  前記シリンダ(10)の前記表面は、前記シリンダ本体部(10A)の外周の前記テンショナ取り付け孔(11)の内周との嵌合面(16)である請求項1から6のいずれかに記載のチェーンテンショナ。 7. The surface of the cylinder (10) according to any one of claims 1 to 6, wherein the surface (16) of the outer circumference of the cylinder main body (10A) is a fitting surface (16) with the inner circumference of the tensioner mounting hole (11). chain tensioner.
  8.  前記シリンダ(10)の前記表面は、前記シリンダフランジ部(10B)の前記エンジンカバー(9)の外面(12)との合わせ面(15)である請求項1から6のいずれかに記載のチェーンテンショナ。 The chain according to any one of claims 1 to 6, wherein the surface of the cylinder (10) is a mating surface (15) of the cylinder flange (10B) with an outer surface (12) of the engine cover (9). tensioner.
PCT/JP2022/010042 2021-03-11 2022-03-08 Chain tensioner WO2022191198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-039161 2021-03-11
JP2021039161A JP2022138972A (en) 2021-03-11 2021-03-11 chain tensioner

Publications (1)

Publication Number Publication Date
WO2022191198A1 true WO2022191198A1 (en) 2022-09-15

Family

ID=83226772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010042 WO2022191198A1 (en) 2021-03-11 2022-03-08 Chain tensioner

Country Status (2)

Country Link
JP (1) JP2022138972A (en)
WO (1) WO2022191198A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210088A (en) * 2008-03-06 2009-09-17 Ntn Corp Chain tensioner
JP2009264583A (en) * 2008-04-02 2009-11-12 Ntn Corp Chain tensioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210088A (en) * 2008-03-06 2009-09-17 Ntn Corp Chain tensioner
JP2009264583A (en) * 2008-04-02 2009-11-12 Ntn Corp Chain tensioner

Also Published As

Publication number Publication date
JP2022138972A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
US7070528B2 (en) Hydraulic tensioner lifter
WO2020032094A1 (en) Chain tensioner
WO2022191198A1 (en) Chain tensioner
EP2107271B1 (en) Chain tensioner
JP6257950B2 (en) Hydraulic auto tensioner
WO2020189487A1 (en) Chain tensioner
JP2007032678A (en) Hydraulic auto-tensioner
WO2020184322A1 (en) Chain tensioner
JP7100467B2 (en) Chain tensioner
JP2015155718A (en) hydraulic auto tensioner
WO2021187317A1 (en) Chain tensioner
JP2003287092A (en) Hydraulic tensioner lifter
WO2015115555A1 (en) Hydraulic automatic tensioner
WO2023204168A1 (en) Chain tensioner
WO2022191195A1 (en) Chain tensioner
JP6250343B2 (en) Hydraulic auto tensioner
WO2023276808A1 (en) Chain tensioner
JP7250586B2 (en) chain tensioner
JP2008202776A (en) Hydraulic auto tensioner
JP6234252B2 (en) Hydraulic auto tensioner
JP2022138974A (en) chain tensioner
JP2019167991A (en) Chain tensioner
JP2022045528A (en) Chain tensioner
JP2017223371A (en) Hydraulic automatic tensioner
JP2003287093A (en) Hydraulic tensioner lifter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767152

Country of ref document: EP

Kind code of ref document: A1