WO2022191195A1 - Chain tensioner - Google Patents

Chain tensioner Download PDF

Info

Publication number
WO2022191195A1
WO2022191195A1 PCT/JP2022/010039 JP2022010039W WO2022191195A1 WO 2022191195 A1 WO2022191195 A1 WO 2022191195A1 JP 2022010039 W JP2022010039 W JP 2022010039W WO 2022191195 A1 WO2022191195 A1 WO 2022191195A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
plunger
cylinder
pressure chamber
relief
Prior art date
Application number
PCT/JP2022/010039
Other languages
French (fr)
Japanese (ja)
Inventor
好一 鬼丸
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022191195A1 publication Critical patent/WO2022191195A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains

Definitions

  • the present invention relates to a chain tensioner used to hold the tension of the chain.
  • chain transmission devices used in automobile engines for example, those that transmit the rotation of the crankshaft to the camshaft, those that transmit the rotation of the crankshaft to auxiliary equipment such as oil pumps, water pumps, superchargers, etc. , to transmit the rotation of the crankshaft to the balancer shaft, and to connect the intake and exhaust cams of a twin-cam engine.
  • a chain tensioner is used to keep the tension of the chain in these chain drives in the proper range.
  • the chain tensioner of Patent Document 1 has a cylinder, a tubular plunger inserted into the cylinder so as to be slidable in the axial direction, and a sleeve inserted into the plunger.
  • a cylinder is a tubular member having one end in the axial direction as a closed end and the other end in the axial direction as an open end.
  • the plunger is a tubular member having an open end for insertion into the cylinder and a closed end for protruding from the cylinder.
  • the sleeve is inserted into the plunger so that one end in the axial direction is inserted into the plunger and the other end in the axial direction projects from the plunger, and the end of the sleeve protruding from the plunger serves as the closed end of the cylinder.
  • the outer circumference of the sleeve and the inner circumference of the plunger are axially slidably fitted together.
  • a return spring is installed between the insertion end of the sleeve into the plunger and the plunger to bias the plunger in the direction of protruding from the cylinder.
  • the chain tensioner of Patent Document 1 has a check valve at the insertion end of the sleeve into the plunger.
  • the check valve divides the internal region of the sleeve and plunger into a reservoir chamber on the sleeve side and a pressure chamber on the plunger side.
  • the check valve is a valve that allows oil to flow only from the reservoir chamber side to the pressure chamber side.
  • the cylinder is formed with an oil supply passage for introducing oil supplied from the outside of the cylinder into the reservoir chamber.
  • a cylindrical leak gap is formed between the outer circumference of the sleeve and the inner circumference of the plunger to allow oil to leak from the pressure chamber.
  • the check valve has a valve seat in which a valve hole communicating between the pressure chamber and the reservoir chamber is formed, and a valve body that opens and closes the end of the valve hole on the side of the pressure chamber.
  • the valve seat is seamlessly formed integrally with the sleeve at the end of the sleeve that is inserted into the plunger.
  • the urging force of the return spring and the hydraulic pressure in the pressure chamber move the plunger in the direction in which it protrudes from the cylinder (hereinafter referred to as the "protrusion direction"), thereby removing slack in the chain. Absorb.
  • the check valve opens and oil flows into the pressure chamber from the reservoir chamber, so the plunger moves quickly.
  • the chain tensioner of Patent Document 1 has a problem that the damping force changes greatly according to the temperature change. That is, in the chain tensioner of Patent Document 1, when the plunger moves in the pushing direction, the oil in the pressure chamber flows through the leak gap into the reservoir chamber. do. Here, since the viscosity of the oil increases as the temperature of the oil decreases, the viscous resistance of the oil flowing through the leak gap increases when the temperature of the oil is low, and the damping force increases. On the other hand, when the temperature of the oil is high, the viscous resistance of the oil flowing through the leak gap becomes low, and the damping force becomes small.
  • the size of the leak gap is set large, it is possible to prevent the damping force from becoming excessive at low temperatures, but there is a risk that the damping force at high temperatures will be too small, causing the chain to rattle.
  • the size of the leak gap is set small, it is possible to prevent the damping force from becoming too small at high temperatures, but there is a risk that the damping force at low temperatures will be excessive and the chain tension will be excessive. be.
  • the inventors of the present application proposed that the chain tensioner disclosed in Patent Document 1 be designed so that oil is supplied from the pressure chamber when the pressure in the pressure chamber exceeds a preset pressure.
  • a relief valve to let the air escape. If a relief valve is provided, the pressure rise in the pressure chamber can be suppressed by opening the relief valve at low temperatures, preventing the damper force from becoming excessive. It is possible to secure the magnitude of the damping force due to the viscous resistance of the chain and prevent the chain from fluttering.
  • the inventor of the present application considered providing the relief valve at the position of the check valve at the insertion end of the sleeve into the plunger. In this way, when the relief valve is opened, the oil that flows out from the pressure chamber through the relief valve can be collected in the reservoir chamber, so it is possible to reduce the amount of oil consumed by the chain tensioner. .
  • the inventors of the present application proposed a method for assembling a relief valve at the position of the check valve at the insertion end of the sleeve into the plunger. A method of press-fitting was investigated.
  • the problem to be solved by the present invention is to provide a chain tensioner capable of obtaining a damping force of stable magnitude.
  • the inventors of the present application have proposed that members corresponding to the sleeves of the chain tensioner disclosed in Patent Document 1 are divided into a first sleeve for forming a reservoir chamber and a second sleeve for forming a leak gap.
  • the inventors have come up with the idea of dividing the valve into two parts, incorporating the check valve into the second sleeve, and directly forming the seat surface of the relief valve on the second sleeve.
  • the present invention provides a chain tensioner having the following configuration. a cylinder having one end in the axial direction as a closed end and the other end in the axial direction as an open end; a cylindrical plunger that is axially slidably inserted into the cylinder, has an open end for insertion into the cylinder, and a closed end that protrudes from the cylinder; One end in the axial direction is inserted into the plunger, the other end in the axial direction is inserted into the plunger so as to protrude from the plunger, and the protruding end from the plunger is supported by the closed end of the cylinder.
  • first sleeve a first sleeve
  • second sleeve provided in connection with the insertion end of the first sleeve into the plunger and separate from the first sleeve
  • the inner region of the first sleeve and the plunger is incorporated into the second sleeve so as to partition the inner region into a reservoir chamber on the first sleeve side and a pressure chamber on the plunger side.
  • the check valve has a seat member in which a valve hole communicating between the pressure chamber and the reservoir chamber is formed, and a valve body that opens and closes an end portion of the valve hole on the side of the pressure chamber,
  • the sheet member is provided axially movably with respect to the second sleeve,
  • the first sleeve incorporates a relief spring that axially presses the sheet member from the reservoir chamber side toward the pressure chamber side,
  • the second sleeve is formed with an annular relief sheet
  • the relief seat surface of the relief valve is formed on the second sleeve which is separate from the first sleeve, the constituent members of the relief valve can be assembled while the first sleeve and the second sleeve are separated, It is possible to secure the assembling workability of the relief valve.
  • the fitting cylindrical surface that is axially slidably fitted to the inner periphery of the plunger is formed directly on the outer periphery of the second sleeve having the relief seat surface, the member having the relief seat surface is press-fitted. It is possible to prevent the dimension of the fitting cylindrical surface from changing due to such factors as the above, and it is possible to control the dimension of the fitting cylindrical surface with high accuracy and constant. Therefore, the size of the leakage gap between the fitting cylindrical surface and the inner circumference of the plunger can be controlled with high dimensional accuracy, and a stable damping force can be obtained.
  • the first sleeve is formed with an oil passage for returning oil leaked from the pressure chamber through the leak gap to the reservoir chamber.
  • the outer circumference of the portion of the first sleeve inserted into the plunger is preferably formed to have a smaller diameter than the fitting cylindrical surface.
  • the gap between the outer circumference of the first sleeve and the inner circumference of the plunger becomes relatively large, and the viscous resistance of the oil flowing through the gap can be kept small.
  • the magnitude of the damping force is less likely to change, and a stable damping force can be obtained.
  • the contact surface of the sheet member with the relief sheet surface or the relief sheet surface is provided with an air release groove for releasing air in the second sleeve to the reservoir chamber while the sheet member is in contact with the relief sheet surface. preferably formed.
  • an air valve for discharging air in the second sleeve to the valve hole in a state where the valve body closes the end of the valve hole on the side of the pressure chamber is provided on the contact surface of the seat member with the valve body. It is preferable to form a draft groove.
  • the air existing in the second sleeve is discharged to the reservoir chamber through the air release groove and the valve hole in order, so that a more stable damping force can be obtained.
  • the second sleeve can be slidably supported at an insertion end of the first sleeve into the plunger so as to allow radial movement of the second sleeve relative to the first sleeve.
  • An annular projection is formed at the end of the first sleeve inserted into the plunger,
  • a configuration may be adopted in which the second sleeve is formed with an annular recess that fits into the annular protrusion to radially position the second sleeve with respect to the first sleeve.
  • the protruding end of the first sleeve from the plunger has an annular partial spherical surface supported in axial contact with the closed end of the cylinder, It is preferable that the closed end of the cylinder has a concave tapered surface or a concave spherical surface that slidably supports the partial spherical surface so as to allow tilting of the first sleeve.
  • the first sleeve tilts with respect to the cylinder in accordance with the misalignment. 2
  • the size of the leakage gap between the fitting cylindrical surface of the outer circumference of the sleeve and the inner circumference of the plunger is made uniform in the axial direction. Therefore, it is possible to obtain a stable damper force.
  • the second sleeve is pressed against the first sleeve by the reaction force of the force of the return spring that urges the plunger, thereby preventing the separation of the first and second sleeves due to vibrations of the engine or the like. can be done.
  • the relief seat surface of the relief valve is formed on the second sleeve, which is separate from the first sleeve. can be assembled, and it is possible to secure the assembling workability of the relief valve.
  • the fitting cylindrical surface that is axially slidably fitted to the inner periphery of the plunger is formed directly on the outer periphery of the second sleeve having the relief seat surface, the member having the relief seat surface is press-fitted. It is possible to prevent the dimension of the fitting cylindrical surface from changing due to such factors as the above, and it is possible to control the dimension of the fitting cylindrical surface with high accuracy and constant. Therefore, the size of the leakage gap between the fitting cylindrical surface and the inner circumference of the plunger can be controlled with high dimensional accuracy, and a stable damping force can be obtained.
  • FIG. 1 is a diagram showing a chain transmission incorporating a chain tensioner according to a first embodiment of the present invention
  • FIG. 3 is an enlarged cross-sectional view of the vicinity of the sheet member in FIG. 2
  • FIG. 4 is an enlarged cross-sectional view of the vicinity of the seat member showing the state in which the relief valve of FIG. 3 is opened
  • FIG. 6 4 is a perspective view of a seat member showing a modification in which air vent grooves are formed in the contact surface of the seat member in FIG. 3 with the relief sheet surface;
  • FIG. FIG. 9 is an enlarged cross-sectional view of the vicinity of the seat member of the chain tensioner incorporating the seat member shown in FIG. 8 ;
  • FIG. 4 is an enlarged cross-sectional view of the vicinity of the seat member in FIG. 3, showing a modification in which an air vent groove is formed on the contact surface of the seat member with the valve body;
  • Enlargement of the vicinity of the seat member showing a modified example in which an air release groove is formed on the contact surface of the seat member with the relief seat surface of FIG. 3 and an air release groove is also formed on the contact surface of the seat member with the valve body cross section FIG.
  • FIG. 2 is a cross-sectional view of a main part showing a chain tensioner according to a second embodiment of the invention
  • FIG. 12 is an enlarged cross-sectional view of the vicinity of the second sleeve in FIG. 12
  • FIG. 13 is an enlarged cross-sectional view of the vicinity of the projecting end from the plunger of the first sleeve in FIG. 12;
  • Fig. 1 shows a chain transmission incorporating a chain tensioner 1 of the first embodiment of the invention.
  • a sprocket 3 fixed to a crankshaft 2 of an engine and a sprocket 5 fixed to a camshaft 4 are connected via a chain 6, and the chain 6 drives the rotation of the crankshaft 2. It is transmitted to the camshaft 4, and the rotation of the camshaft 4 opens and closes a valve (not shown) of the combustion chamber.
  • the chain tensioner 1 includes a tubular cylinder 9 having one end in the axial direction closed and the other end in the axial direction open, and is axially slidably inserted into the cylinder 9. and a plunger 10. A projecting end of the plunger 10 from the cylinder 9 presses the chain guide 8 .
  • the cylinder 9 is integrally formed of an aluminum alloy.
  • the cylinder 9 is fixed to an engine block (not shown) by fastening bolts 12 to a plurality of mounting pieces 11 integrally formed on the outer circumference of the cylinder 9 .
  • the cylinder 9 is attached so that the direction in which the plunger 10 protrudes from the cylinder 9 is inclined downward from the horizontal.
  • the plunger 10 is formed in a tubular shape with an open end inserted into the cylinder 9 of the plunger 10 and a closed end protruding from the cylinder 9 of the plunger 10 .
  • the material of the plunger 10 is a ferrous material (for example, a steel material such as SCM (chromium molybdenum steel) or SCr (chromium steel)).
  • a first sleeve 13 is inserted into the plunger 10 so that one end in the axial direction is inserted into the plunger 10 and the other end in the axial direction protrudes from the plunger 10 .
  • the first sleeve 13 is a cylindrical member with both ends in the axial direction open.
  • the first sleeve 13, like the plunger 10, is made of a ferrous material. A protruding end of the first sleeve 13 from the plunger 10 is supported by the closed end of the cylinder 9 .
  • a second sleeve 14 that is separate from the first sleeve 13 is connected to the insertion end of the first sleeve 13 into the plunger 10 .
  • the second sleeve 14 is a cylindrical member that is arranged in line with the first sleeve 13 in the axial direction.
  • the axial length of the second sleeve 14 is shorter than the axial length of the first sleeve 13 , and can be set to, for example, 1 ⁇ 3 or less of the axial length of the first sleeve 13 .
  • the second sleeve 14, like the plunger 10, is made of a ferrous material.
  • a check valve 15 is incorporated in the second sleeve 14 .
  • the check valve 15 divides the internal region of the first sleeve 13 and the plunger 10 into a reservoir chamber 16 on the first sleeve 13 side and a pressure chamber 17 on the plunger 10 side.
  • the volume of the reservoir chamber 16 is constant and does not change even when the plunger 10 moves in the axial direction.
  • the volume of the pressure chamber 17 expands when the plunger 10 axially moves in the direction of protruding from the cylinder 9 and contracts when the plunger 10 axially moves in the direction of being pushed into the cylinder 9 .
  • a return spring 18 is incorporated in the pressure chamber 17 .
  • the return spring 18 is a compression coil spring formed by spirally winding a metal wire.
  • One end of the return spring 18 is supported by the second sleeve 14 , and the other end presses the plunger 10 in the axial direction.
  • the check valve 15 has a seat member 21 in which a valve hole 20 is formed, and a spherical valve body 22 that opens and closes the end of the valve hole 20 on the pressure chamber 17 side.
  • the valve hole 20 is an axial through hole formed in the seat member 21 so as to communicate between the pressure chamber 17 and the reservoir chamber 16 .
  • the valve body 22 is a steel ball.
  • the axial movement range of the valve body 22 is limited by an end plate 23 formed on the second sleeve 14 .
  • a plurality of through holes 24 are formed in the end plate 23 so that oil can pass through the end plate 23 .
  • the check valve 15 restricts the flow of oil from the pressure chamber 17 side to the reservoir chamber 16 side and allows oil to flow only from the reservoir chamber 16 side to the pressure chamber 17 side.
  • the outer periphery of the second sleeve 14 is formed with a fitting cylindrical surface 25 that is axially slidably fitted to the inner periphery of the plunger 10 .
  • the fitting cylindrical surface 25 is a cylindrical surface whose outer diameter does not change along the axial direction.
  • the inner circumference of the plunger 10 is also a constant cylindrical surface whose inner diameter does not change along the axial direction.
  • a leak gap 26 is formed between the fitting cylindrical surface 25 and the inner circumference of the plunger 10 to allow oil to leak from the pressure chamber 17 when the volume of the pressure chamber 17 is reduced.
  • the leak gap 26 is a cylindrical minute gap with a radial width set in the range of 0.010 to 0.050 mm.
  • the outer circumference of the portion of the first sleeve 13 inserted into the plunger 10 is a cylindrical surface with a constant outer diameter that does not change along the axial direction. It is formed to have a smaller diameter than the fitting cylindrical surface 25 on the outer periphery of the. Further, the outer circumference of the portion where the plunger 10 is inserted into the cylinder 9 is also a constant cylindrical surface whose outer diameter does not change along the axial direction. A portion of the inner circumference of the cylinder 9 that axially slidably supports the outer circumference of the plunger 10 is also a cylindrical surface whose inner diameter does not change along the axial direction.
  • a cylindrical guide gap 27 is formed between the inner circumference of the cylinder 9 and the outer circumference of the plunger 10 .
  • the radial width of the guide gap 27 is set larger than the radial width of the leak gap 26, and can be set in the range of 0.015 to 0.065 mm, for example.
  • the cylinder 9 and the first sleeve 13 are provided with an oil supply passage 30 for introducing oil supplied from an oil pump (not shown) outside the cylinder 9 into the reservoir chamber 16 .
  • the oil supply passage 30 is formed between a cylinder-side oil passage 31 formed in the cylinder 9 so as to introduce oil from the outer circumference to the inner circumference of the cylinder 9 and between the inner circumference of the cylinder 9 and the outer circumference of the first sleeve 13 . and an oil passage 33 provided in a projecting portion of the first sleeve 13 from the plunger 10 .
  • the cylindrical space 32 is radially sandwiched between the inner periphery of the cylinder 9 and the outer periphery of the first sleeve 13 on the side closer to the closed end of the cylinder 9 than the insertion end of the plunger 10 into the cylinder 9 . area.
  • An end portion of the cylinder-side oil passage 31 on the inner peripheral side of the cylinder 9 opens at a position connected to the cylindrical space 32 .
  • the oil passage 33 is a through hole formed through the first sleeve 13 in the radial direction.
  • the oil passage 33 is also a part of the oil supply passage 30, and is an oil recovery hole for returning the oil that has leaked from the pressure chamber 17 to the tubular space 32 through the leak gap 26 from the tubular space 32 to the reservoir chamber 16. But also.
  • the seat member 21 of the check valve 15 is a member formed separately from the second sleeve 14 and is provided axially movably with respect to the second sleeve 14 .
  • the first sleeve 13 incorporates a relief spring 34 that axially presses the sheet member 21 from the reservoir chamber 16 side toward the pressure chamber 17 side.
  • the relief spring 34 is a compression coil spring formed by spirally winding a metal wire.
  • One end of the relief spring 34 is supported by a stepped portion 35 (see FIG. 2) formed on the inner circumference of the first sleeve 13, and the other end of the relief spring 34 presses the seat member 21 in the axial direction.
  • the seat member 21 is pressed against the relief seat surface 36 formed on the second sleeve 14 by the pressing force of the relief spring 34 .
  • the relief seat surface 36 is an annular surface having a convex arcuate cross section that contacts and supports the seat member 21 from the pressure chamber 17 side (right side in the figure).
  • a contact surface 37 of the sheet member 21 with the relief sheet surface 36 is a tapered surface that makes line contact with the relief sheet surface 36 at an annular portion.
  • the seat member 21, the relief spring 34, and the relief seat surface 36 constitute a relief valve 38 that releases oil from the pressure chamber 17 to the reservoir chamber 16 when the pressure in the pressure chamber 17 exceeds a preset pressure. is doing. That is, when the pressure in the pressure chamber 17 becomes higher than the preset pressure, the pressure in the pressure chamber 17 causes the seat member 21 to move against the biasing force of the relief spring 34 as shown in FIG. side (right side in the figure) toward the reservoir chamber 16 side (left side in the figure) and separates from the relief sheet surface 36 . Then, the oil in the pressure chamber 17 escapes to the reservoir chamber 16 through the gap between the sheet member 21 and the relief sheet surface 36, and the pressure rise in the pressure chamber 17 is suppressed.
  • the second sleeve 14 is slidably supported at the insertion end of the first sleeve 13 into the plunger 10 to allow radial movement of the second sleeve 14 relative to the first sleeve 13 .
  • a flat surface 39 perpendicular to the axial direction is formed at the insertion end of the first sleeve 13 into the plunger 10, and the axial end surface 40 of the second sleeve 14 abuts on the flat surface 39 in the axial direction. 39 and the axial end surface 40 are in contact with each other so as to be slidable in the radial direction.
  • the viscosity of the oil increases as the temperature of the oil decreases.
  • the leak gap 26 since each member contracts at low temperatures, the leak gap 26 also becomes smaller. Therefore, when the temperature is low, the viscosity resistance of the oil flowing through the leak gap 26 increases, and the pressure in the pressure chamber 17 tends to increase.
  • the pressure in the pressure chamber 17 becomes greater than the preset pressure, the pressure in the pressure chamber 17 causes the sheet member 21 to move away from the relief sheet surface 36 (see FIG. 4).
  • the oil in the pressure chamber 17 is released to the reservoir chamber 16 through the gap between . Therefore, an increase in pressure in the pressure chamber 17 is suppressed, and an excessive damping force can be prevented.
  • the oil level in the oil passage (not shown) outside the cylinder 9 is once lowered. It takes time before the oil supply to the tensioner 1 starts. In this case, from the time the engine is restarted until the oil supply is started, as shown in FIG. Thus, the pressure chamber 17 is kept filled with oil. Therefore, it is possible to generate a damping force immediately after the engine is restarted, and it is possible to suppress the chain 6 from fluttering.
  • the chain tensioner 1 is formed with the fitting cylindrical surface 25 that fits directly on the outer periphery of the second sleeve 14 having the relief seat surface 36 and on the inner periphery of the plunger 10 so as to be slidable in the axial direction. Also, it is possible to prevent the dimension of the fitting cylindrical surface 25 from being changed due to press-fitting of the member forming the relief seat surface 36, etc., and the dimension of the fitting cylindrical surface 25 can be managed accurately and constantly. Therefore, the size of the leakage gap 26 between the fitting cylindrical surface 25 and the inner circumference of the plunger 10 can be controlled with high dimensional accuracy, and a stable damping force can be obtained.
  • the outer circumference of the portion of the first sleeve 13 inserted into the plunger 10 is formed to have a smaller diameter than the fitting cylindrical surface 25 of the outer circumference of the second sleeve 14. Therefore, the gap between the outer circumference of the first sleeve 13 and the inner circumference of the plunger 10 is relatively large, and the viscous resistance of oil flowing through the gap is small. Therefore, when the insertion length of the first sleeve 13 into the plunger 10 changes due to the movement of the plunger 10, the magnitude of the damping force is less likely to change, and a stable damping force can be obtained.
  • the second sleeve 14 is supported so as to allow radial movement of the second sleeve 14 with respect to the first sleeve 13. and the axis of the plunger 10 inserted into the cylinder 9, the second sleeve 14 moves radially with respect to the first sleeve 13 according to the deviation,
  • the size of the leakage gap 26 between the fitting cylindrical surface 25 on the outer circumference of the second sleeve 14 and the inner circumference of the plunger 10 is made uniform in the radial direction. Therefore, it is possible to obtain a stable damper force.
  • the chain tensioner 1 supports the return spring 18 with the second sleeve 14, so that the reaction force of the return spring 18 urging the plunger 10 (see FIG. 2) A second sleeve 14 is pressed against the first sleeve 13 . Therefore, it is possible to prevent the first sleeve 13 and the second sleeve 14 from separating due to engine vibration or the like.
  • the relief sheet surface 36 formed on the second sleeve 14 is an annular surface having a convex arcuate cross section
  • the contact surface 37 of the sheet member 21 with the relief sheet surface 36 is a tapered surface.
  • the relief seat surface 36 formed on the second sleeve 14 may be a tapered surface
  • the contact surface 37 of the sheet member 21 with the relief seat surface 36 may be an annular surface having a convex arcuate cross section. good.
  • the sheet member 21 is axially movable on the inner periphery of the first sleeve 13 or the second sleeve 14 to the reservoir chamber 16 side (left side in the figure) from the contact position with the relief sheet surface 36.
  • An outer cylindrical surface 41 to be guided and an oil passage groove 42 axially penetrating the outer cylindrical surface 41 are formed so as to divide the outer cylindrical surface 41 in the circumferential direction.
  • a plurality of oil passage grooves 42 are provided at intervals in the circumferential direction.
  • the posture of the seat member 21 when the seat member 21 is separated from the relief seat surface 36 is stabilized by the outer cylindrical surface 41, and the oil flows when the seat member 21 is separated from the relief seat surface 36.
  • the passage can be secured by the oil passage groove 42 .
  • an air vent groove 43 may be formed in the contact surface 37 of the sheet member 21 with the relief sheet surface 36 .
  • the air vent groove 43 is a groove extending across an annular portion where the seat member 21 and the relief seat surface 36 are in contact with each other.
  • an air vent groove 44 may be formed in the contact surface of the seat member 21 with the valve body 22 (that is, the seat surface of the check valve 15).
  • the air vent groove 44 is a groove that extends across an annular portion where the valve body 22 and the seat member 21 contact each other.
  • an air release groove 43 is formed in the contact surface 37 of the seat member 21 with the relief seat surface 36, and an air release groove 44 is formed in the contact surface of the seat member 21 with the valve body 22. is also possible.
  • annular projection 50 is formed at the insertion end of the first sleeve 13 into the plunger 10 .
  • the annular projection 50 is an annular axial projection around the axis of the first sleeve 13 .
  • the second sleeve 14 is formed with an annular recess 51 that fits into the annular protrusion 50 .
  • the annular recess 51 is an annular axial recess around the axis of the second sleeve 14 .
  • the second sleeve 14 is radially positioned with respect to the first sleeve 13 by fitting the annular projection 50 and the annular recess 51 .
  • the protruding end of the first sleeve 13 from the plunger 10 has an annular partial spherical surface 52 axially abutted against and supported by the closed end of the cylinder 9 .
  • the partial spherical surface 52 is a portion of a spherical surface centered on the axis of the first sleeve 13 .
  • the closed end of the cylinder 9 has a concave tapered surface 53 that slidably supports a partial spherical surface 52 to allow tilting of the first sleeve 13 .
  • the chain tensioner 1 of this embodiment can align the axial center of the first sleeve 13 and the axial center of the second sleeve 14 by fitting the annular projection 50 and the annular recess 51 together. Therefore, it is possible to stabilize the oil flow in the leak gap 26 .
  • the end of the first sleeve 13 protruding from the plunger 10 is supported by the closed end of the cylinder 9 so as to be tiltable.
  • the first sleeve 13 tilts with respect to the cylinder 9 according to the deviation, and the fitting cylindrical surface 25 of the outer circumference of the second sleeve 14 and the inner circumference of the plunger 10, the size of the leak gap 26 is made uniform in the axial direction. Therefore, it is possible to obtain a stable damper force.
  • the second sleeve 14 is fixed to the first sleeve 13 by the interference, so that the first sleeve 13, the second sleeve 14, the relief spring 34, the seat member 21, and the valve body 22 are integrated. It can be handled as an assembly (assie), and the assembling workability of the chain tensioner 1 can be improved.
  • the annular protrusion 50 and the annular recess 51 are separated from each other as shown in FIG.
  • the axial length of the portion to be fitted is set short (for example, less than the radial thickness of the second sleeve 14 shown in FIG. 13), and the portion to which the annular convex portion 50 and the annular concave portion 51 are fitted is shortened. , preferably arranged so as not to radially overlap the fitting cylindrical surface 25 .
  • FIG. 14 shows an example in which the closed end of the cylinder 9 is formed with a concave tapered surface 53
  • the closed end of the cylinder 9 may be formed with a concave spherical surface 54 as shown in FIG.
  • the partial spherical surface 52 of the protruding end of the first sleeve 13 from the plunger 10 is slidably supported by the concave spherical surface 54 formed at the closed end of the cylinder 9, and the sliding causes the first sleeve 13 to move. It is designed to allow tilting.
  • the chain tensioner 1 is incorporated in a chain transmission device that transmits the rotation of the crankshaft 2 to the camshaft 4.
  • a chain transmission that transmits power to accessories such as a water pump and a supercharger
  • a chain transmission that transmits the rotation of a crankshaft to a balancer shaft, or a chain transmission that connects intake and exhaust cams of a twin-cam engine. is also possible.

Abstract

This chain tensioner comprises: a first sleeve (13) inserted into a plunger (10); a second sleeve (14) provided connected to the first sleeve (13); a check valve (15) embedded into the second sleeve (14); and a mating cylindrical surface (25) formed on the outer periphery of the second sleeve (14). The first sleeve (13) has a relief spring (34) that presses a sheet member (21) embedded therein, and the second sleeve (14) has a relief sheet surface (36) formed thereon. The sheet member (21), relief spring (34), and the relief sheet surface (36) constitutes a relief valve (38).

Description

チェーンテンショナchain tensioner
 この発明は、チェーンの張力保持に用いられるチェーンテンショナに関する。 The present invention relates to a chain tensioner used to hold the tension of the chain.
 自動車等のエンジンに使用されるチェーン伝動装置として、例えば、クランクシャフトの回転をカムシャフトに伝達するものや、クランクシャフトの回転をオイルポンプやウォーターポンプやスーパーチャージャー等の補機に伝達するものや、クランクシャフトの回転をバランサシャフトに伝達するものや、ツインカムエンジンの吸気カムと排気カムを互いに連結するものなどがある。これらのチェーン伝動装置のチェーンの張力を適正範囲に保つために、チェーンテンショナが使用される。 As chain transmission devices used in automobile engines, for example, those that transmit the rotation of the crankshaft to the camshaft, those that transmit the rotation of the crankshaft to auxiliary equipment such as oil pumps, water pumps, superchargers, etc. , to transmit the rotation of the crankshaft to the balancer shaft, and to connect the intake and exhaust cams of a twin-cam engine. A chain tensioner is used to keep the tension of the chain in these chain drives in the proper range.
 このような用途に使用されるチェーンテンショナとして、本願の発明者は、既に特許文献1に記載のものを提案している。特許文献1のチェーンテンショナは、シリンダと、そのシリンダに軸方向に摺動可能に挿入された筒状のプランジャと、そのプランジャに挿入されたスリーブとを有する。 As a chain tensioner used for such applications, the inventor of the present application has already proposed the one described in Patent Document 1. The chain tensioner of Patent Document 1 has a cylinder, a tubular plunger inserted into the cylinder so as to be slidable in the axial direction, and a sleeve inserted into the plunger.
 シリンダは、軸方向の一端を閉塞端とし、軸方向の他端を開口端とする筒状の部材である。プランジャは、シリンダ内への挿入端が開口し、シリンダからの突出端が閉塞した筒状の部材である。スリーブは、軸方向の一端がプランジャ内に挿入され、軸方向の他端がプランジャから突出した状態となるように前記プランジャ内に挿入され、そのスリーブのプランジャからの突出端が、シリンダの閉塞端で支持されている。スリーブの外周とプランジャの内周とは、軸方向に摺動可能に嵌合している。スリーブのプランジャ内への挿入端と、プランジャとの間には、プランジャをシリンダから突出する方向に付勢するリターンスプリングが組み込まれている。 A cylinder is a tubular member having one end in the axial direction as a closed end and the other end in the axial direction as an open end. The plunger is a tubular member having an open end for insertion into the cylinder and a closed end for protruding from the cylinder. The sleeve is inserted into the plunger so that one end in the axial direction is inserted into the plunger and the other end in the axial direction projects from the plunger, and the end of the sleeve protruding from the plunger serves as the closed end of the cylinder. supported by The outer circumference of the sleeve and the inner circumference of the plunger are axially slidably fitted together. A return spring is installed between the insertion end of the sleeve into the plunger and the plunger to bias the plunger in the direction of protruding from the cylinder.
 また、特許文献1のチェーンテンショナは、スリーブのプランジャ内への挿入端に、チェックバルブを有する。このチェックバルブは、スリーブとプランジャの内部領域を、スリーブの側のリザーバ室とプランジャの側の圧力室とに区画している。チェックバルブは、リザーバ室の側から圧力室の側へのオイルの流れのみを許容するバルブである。シリンダには、シリンダの外部から供給されるオイルをリザーバ室に導入する給油通路が形成されている。スリーブの外周とプランジャの内周との間に、圧力室からオイルをリークさせる円筒状のリーク隙間が形成されている。 In addition, the chain tensioner of Patent Document 1 has a check valve at the insertion end of the sleeve into the plunger. The check valve divides the internal region of the sleeve and plunger into a reservoir chamber on the sleeve side and a pressure chamber on the plunger side. The check valve is a valve that allows oil to flow only from the reservoir chamber side to the pressure chamber side. The cylinder is formed with an oil supply passage for introducing oil supplied from the outside of the cylinder into the reservoir chamber. A cylindrical leak gap is formed between the outer circumference of the sleeve and the inner circumference of the plunger to allow oil to leak from the pressure chamber.
 ここで、チェックバルブは、圧力室とリザーバ室の間を連通する弁孔が形成されたバルブシートと、弁孔の圧力室の側の端部を開閉する弁体とを有する。バルブシートは、スリーブのプランジャへの挿入端に、スリーブと継ぎ目の無い一体に形成されている。 Here, the check valve has a valve seat in which a valve hole communicating between the pressure chamber and the reservoir chamber is formed, and a valve body that opens and closes the end of the valve hole on the side of the pressure chamber. The valve seat is seamlessly formed integrally with the sleeve at the end of the sleeve that is inserted into the plunger.
 この特許文献1のチェーンテンショナは、エンジン作動中にチェーンの張力が大きくなると、そのチェーンの張力によって、プランジャがシリンダ内に押し込まれる方向(以下、「押し込み方向」という)に移動し、チェーンの緊張を吸収する。このとき、圧力室からリーク隙間を通って流出するオイルの粘性抵抗によってダンパ力が発生するので、プランジャはゆっくりと移動する。 In the chain tensioner disclosed in Patent Document 1, when the tension of the chain increases during operation of the engine, the tension of the chain moves the plunger in the direction in which the plunger is pushed into the cylinder (hereinafter referred to as the "pushing direction"), thereby reducing the tension in the chain. absorb. At this time, a damping force is generated by the viscous resistance of the oil flowing out from the pressure chamber through the leak gap, so the plunger moves slowly.
 一方、エンジン作動中にチェーンの張力が小さくなると、リターンスプリングの付勢力と圧力室の油圧とによって、プランジャがシリンダから突出する方向(以下、「突出方向」という)に移動し、チェーンの弛みを吸収する。このとき、チェックバルブが開き、リザーバ室から圧力室内にオイルが流入するので、プランジャは速やかに移動する。 On the other hand, when the tension of the chain becomes small while the engine is running, the urging force of the return spring and the hydraulic pressure in the pressure chamber move the plunger in the direction in which it protrudes from the cylinder (hereinafter referred to as the "protrusion direction"), thereby removing slack in the chain. Absorb. At this time, the check valve opens and oil flows into the pressure chamber from the reservoir chamber, so the plunger moves quickly.
特開2019-152285号公報JP 2019-152285 A
 ところで、特許文献1のチェーンテンショナは、温度変化に応じて、ダンパ力が大きく変化するという問題がある。すなわち、特許文献1のチェーンテンショナにおいて、プランジャが押し込み方向に移動するとき、圧力室のオイルがリーク隙間を通ってリザーバ室に流出し、このときリーク隙間を流れるオイルの粘性抵抗によってダンパ力が発生する。ここで、オイルの粘度は、オイルの温度が低くなるほど高くなるため、オイルが低温のときは、リーク隙間を流れるオイルの粘性抵抗が高くなり、ダンパ力が大きくなる。一方、オイルが高温のときは、リーク隙間を流れるオイルの粘性抵抗が低くなり、ダンパ力が小さくなる。 By the way, the chain tensioner of Patent Document 1 has a problem that the damping force changes greatly according to the temperature change. That is, in the chain tensioner of Patent Document 1, when the plunger moves in the pushing direction, the oil in the pressure chamber flows through the leak gap into the reservoir chamber. do. Here, since the viscosity of the oil increases as the temperature of the oil decreases, the viscous resistance of the oil flowing through the leak gap increases when the temperature of the oil is low, and the damping force increases. On the other hand, when the temperature of the oil is high, the viscous resistance of the oil flowing through the leak gap becomes low, and the damping force becomes small.
 そのため、リーク隙間の大きさを大きく設定した場合は、低温時のダンパ力が過大となるのを防ぐことができるが、高温時のダンパ力が過小となってチェーンのばたつきが生じるおそれがある。一方、リーク隙間の大きさを小さく設定した場合は、高温時のダンパ力が過小となるのを防ぐことができるが、低温時のダンパ力が過大となってチェーンの張力が過大となるおそれがある。 Therefore, if the size of the leak gap is set large, it is possible to prevent the damping force from becoming excessive at low temperatures, but there is a risk that the damping force at high temperatures will be too small, causing the chain to rattle. On the other hand, if the size of the leak gap is set small, it is possible to prevent the damping force from becoming too small at high temperatures, but there is a risk that the damping force at low temperatures will be excessive and the chain tension will be excessive. be.
 そこで、本願の発明者は、温度変化によらず安定したダンパ力を得るため、特許文献1のチェーンテンショナに、圧力室の圧力が予め設定した圧力よりも大きくなったときに圧力室からオイルを逃がすリリーフバルブを設けることを検討した。リリーフバルブを設けると、低温時は、リリーフバルブが開くことによって圧力室の圧力上昇が抑えられるので、ダンパ力が過大となるのを防ぐことができ、一方、高温時は、リーク隙間を流れるオイルの粘性抵抗によるダンパ力の大きさを確保し、チェーンのばたつきを防止することが可能となる。 Therefore, in order to obtain a stable damping force regardless of temperature changes, the inventors of the present application proposed that the chain tensioner disclosed in Patent Document 1 be designed so that oil is supplied from the pressure chamber when the pressure in the pressure chamber exceeds a preset pressure. We considered installing a relief valve to let the air escape. If a relief valve is provided, the pressure rise in the pressure chamber can be suppressed by opening the relief valve at low temperatures, preventing the damper force from becoming excessive. It is possible to secure the magnitude of the damping force due to the viscous resistance of the chain and prevent the chain from fluttering.
 ここで、本願の発明者は、特許文献1のチェーンテンショナにリリーフバルブを設けるに際し、リリーフバルブを、スリーブのプランジャ内への挿入端のチェックバルブの位置に設けることを検討した。このようにすると、リリーフバルブが開いたときに、リリーフバルブを通って圧力室から流出するオイルを、リザーバ室に回収することができるので、チェーンテンショナでのオイル消費量を抑えることが可能となる。 Here, when providing the relief valve in the chain tensioner of Patent Document 1, the inventor of the present application considered providing the relief valve at the position of the check valve at the insertion end of the sleeve into the plunger. In this way, when the relief valve is opened, the oil that flows out from the pressure chamber through the relief valve can be collected in the reservoir chamber, so it is possible to reduce the amount of oil consumed by the chain tensioner. .
 さらに、本願の発明者は、スリーブのプランジャ内への挿入端のチェックバルブの位置にリリーフバルブを組み付ける方法として、リリーフバルブとチェックバルブを一体化したバルブユニットを、スリーブのプランジャへの挿入端に圧入する方法を検討した。 Furthermore, the inventors of the present application proposed a method for assembling a relief valve at the position of the check valve at the insertion end of the sleeve into the plunger. A method of press-fitting was investigated.
 しかしながら、この方法でリリーフバルブを組み付けると、チェーンテンショナのダンパ力の大きさが不安定となる可能性があることが分かった。 However, it was found that if the relief valve was assembled using this method, the magnitude of the chain tensioner's damping force could become unstable.
 すなわち、リリーフバルブとチェックバルブを一体化したバルブユニットを、スリーブのプランジャへの挿入端に圧入する場合、その圧入による変形で、スリーブの外径寸法がわずかに拡大する。ここで、スリーブの内径寸法は公差の範囲でばらつきを有し、バルブユニットの外径寸法も公差の範囲でばらつきを有するため、スリーブにバルブユニットを圧入したときのスリーブの外径寸法の拡大量もばらついたものとなり、スリーブの外径寸法を一定に管理することが難しい。その結果、スリーブの外周とプランジャの内周との間に形成されるリーク隙間の大きさが安定せず、リーク隙間を流れるオイルの粘性抵抗によって生じるダンパ力の大きさが不安定となる可能性があることが分かった。 That is, when a valve unit that integrates a relief valve and a check valve is press-fitted into the insertion end of the sleeve into the plunger, the deformation caused by the press-fitting slightly expands the outer diameter of the sleeve. Here, the inner diameter of the sleeve varies within the tolerance range, and the outer diameter of the valve unit also varies within the tolerance range. Therefore, it is difficult to keep the outer diameter of the sleeve constant. As a result, the size of the leak gap formed between the outer circumference of the sleeve and the inner circumference of the plunger may not be stable, and the damping force generated by the viscous resistance of the oil flowing through the leak gap may become unstable. It turns out that there is
 この発明が解決しようとする課題は、安定した大きさのダンパ力を得ることが可能なチェーンテンショナを提供することである。 The problem to be solved by the present invention is to provide a chain tensioner capable of obtaining a damping force of stable magnitude.
 上記課題を解決するため、本願の発明者は、特許文献1のチェーンテンショナのスリーブに相当する部材を、リザーバ室を形成するための第1スリーブと、リーク隙間を形成するための第2スリーブとに分割し、その第2スリーブにチェックバルブを組み込むとともに、第2スリーブにリリーブバルブのシート面を直接形成するという着想を得た。 In order to solve the above problems, the inventors of the present application have proposed that members corresponding to the sleeves of the chain tensioner disclosed in Patent Document 1 are divided into a first sleeve for forming a reservoir chamber and a second sleeve for forming a leak gap. The inventors have come up with the idea of dividing the valve into two parts, incorporating the check valve into the second sleeve, and directly forming the seat surface of the relief valve on the second sleeve.
 この着想に基づき、この発明では、以下の構成のチェーンテンショナを提供する。
 軸方向の一端を閉塞端とし、軸方向の他端を開口端とするシリンダと、
 前記シリンダに軸方向に摺動可能に挿入され、前記シリンダ内への挿入端が開口し、前記シリンダからの突出端が閉塞した筒状のプランジャと、
 軸方向の一端が前記プランジャ内に挿入され、軸方向の他端が前記プランジャから突出した状態となるように前記プランジャに挿入され、前記プランジャからの突出端が前記シリンダの閉塞端で支持された第1スリーブと、
 前記第1スリーブの前記プランジャ内への挿入端に接続して設けられ、前記第1スリーブとは別体の第2スリーブと、
 前記第1スリーブと前記プランジャの内部領域を、前記第1スリーブの側のリザーバ室と前記プランジャの側の圧力室とに区画するように前記第2スリーブに組み込まれ、前記リザーバ室の側から前記圧力室の側へのオイルの流れのみを許容するチェックバルブと、
 前記第2スリーブの外周に形成され、前記プランジャの内周に軸方向に摺動可能に嵌合する嵌合円筒面と、
 前記嵌合円筒面と前記プランジャの内周との間に形成され、前記圧力室からオイルをリークさせる円筒状のリーク隙間と、
 前記シリンダの外部から供給されるオイルを前記リザーバ室に導入する給油通路と、
 前記プランジャを前記シリンダから突出する方向に付勢するリターンスプリングと、を有し、
 前記チェックバルブは、前記圧力室と前記リザーバ室の間を連通する弁孔が形成されたシート部材と、前記弁孔の圧力室の側の端部を開閉する弁体とを有し、
 前記シート部材は、前記第2スリーブに対して軸方向に移動可能に設けられ、
 前記第1スリーブには、前記シート部材を前記リザーバ室の側から前記圧力室の側に向けて軸方向に押圧するリリーフスプリングが組み込まれ、
 前記第2スリーブには、前記シート部材を前記圧力室の側から接触して支持する環状のリリーフシート面が形成され、
 前記シート部材と前記リリーフスプリングと前記リリーフシート面は、前記圧力室の圧力が予め設定した圧力よりも大きくなったときに前記圧力室から前記リザーバ室にオイルを逃がすリリーフバルブを構成するチェーンテンショナ。
Based on this idea, the present invention provides a chain tensioner having the following configuration.
a cylinder having one end in the axial direction as a closed end and the other end in the axial direction as an open end;
a cylindrical plunger that is axially slidably inserted into the cylinder, has an open end for insertion into the cylinder, and a closed end that protrudes from the cylinder;
One end in the axial direction is inserted into the plunger, the other end in the axial direction is inserted into the plunger so as to protrude from the plunger, and the protruding end from the plunger is supported by the closed end of the cylinder. a first sleeve;
a second sleeve provided in connection with the insertion end of the first sleeve into the plunger and separate from the first sleeve;
The inner region of the first sleeve and the plunger is incorporated into the second sleeve so as to partition the inner region into a reservoir chamber on the first sleeve side and a pressure chamber on the plunger side. a check valve that only allows oil flow to the side of the pressure chamber;
a fitting cylindrical surface formed on the outer periphery of the second sleeve and axially slidably fitted to the inner periphery of the plunger;
a cylindrical leak gap formed between the fitting cylindrical surface and the inner circumference of the plunger for leaking oil from the pressure chamber;
an oil supply passage for introducing oil supplied from the outside of the cylinder into the reservoir chamber;
a return spring that biases the plunger in a direction of protruding from the cylinder;
The check valve has a seat member in which a valve hole communicating between the pressure chamber and the reservoir chamber is formed, and a valve body that opens and closes an end portion of the valve hole on the side of the pressure chamber,
The sheet member is provided axially movably with respect to the second sleeve,
The first sleeve incorporates a relief spring that axially presses the sheet member from the reservoir chamber side toward the pressure chamber side,
The second sleeve is formed with an annular relief sheet surface that contacts and supports the sheet member from the pressure chamber side,
The seat member, the relief spring, and the relief seat surface constitute a relief valve that releases oil from the pressure chamber to the reservoir chamber when the pressure in the pressure chamber exceeds a preset pressure.
 このようにすると、低温時は、リーク隙間を流れるオイルの粘性抵抗が高くなり、圧力室の圧力が上昇しやすくなるが、圧力室の圧力が予め設定した圧力よりも大きくなると、その圧力室の圧力によってシート部材がリリーフシート面から離反し、そのシート部材とリリーフシート面の間の隙間を通って圧力室のオイルがリザーバ室に逃がされる。そのため、圧力室の圧力上昇が抑えられ、ダンパ力が過大となるのを防ぐことができる。一方、高温時は、リーク隙間を流れるオイルの粘性抵抗によるダンパ力の大きさを確保し、チェーンのばたつきを防止することが可能となる。 In this way, when the temperature is low, the viscous resistance of the oil flowing through the leak gap increases, and the pressure in the pressure chamber tends to increase. The sheet member is separated from the relief sheet surface by the pressure, and the oil in the pressure chamber is released to the reservoir chamber through the gap between the sheet member and the relief sheet surface. Therefore, an increase in pressure in the pressure chamber is suppressed, and an excessive damping force can be prevented. On the other hand, when the temperature is high, it is possible to secure the magnitude of the damping force due to the viscous resistance of the oil flowing through the leak gap and prevent the chain from rattling.
 また、リリーフバルブのリリーフシート面が、第1スリーブとは別体の第2スリーブに形成されているので、第1スリーブと第2スリーブを分割した状態でリリーフバルブの構成部材を組み付けることでき、リリーフバルブの組み立て作業性を確保することが可能である。また、リリーフシート面を有する第2スリーブの外周に直接、プランジャの内周に軸方向に摺動可能に嵌合する嵌合円筒面が形成されているので、リリーフシート面を形成した部材の圧入等により嵌合円筒面の寸法が変化するのを防止することができ、嵌合円筒面の寸法を精度良く一定に管理することができる。そのため、嵌合円筒面とプランジャの内周との間のリーク隙間の大きさを、高い寸法精度をもって管理することができ、安定した大きさのダンパ力を得ることが可能である。 Further, since the relief seat surface of the relief valve is formed on the second sleeve which is separate from the first sleeve, the constituent members of the relief valve can be assembled while the first sleeve and the second sleeve are separated, It is possible to secure the assembling workability of the relief valve. In addition, since the fitting cylindrical surface that is axially slidably fitted to the inner periphery of the plunger is formed directly on the outer periphery of the second sleeve having the relief seat surface, the member having the relief seat surface is press-fitted. It is possible to prevent the dimension of the fitting cylindrical surface from changing due to such factors as the above, and it is possible to control the dimension of the fitting cylindrical surface with high accuracy and constant. Therefore, the size of the leakage gap between the fitting cylindrical surface and the inner circumference of the plunger can be controlled with high dimensional accuracy, and a stable damping force can be obtained.
 前記第1スリーブに、前記圧力室から前記リーク隙間を通ってリークしたオイルを前記リザーバ室に戻す通油路を形成すると好ましい。 It is preferable that the first sleeve is formed with an oil passage for returning oil leaked from the pressure chamber through the leak gap to the reservoir chamber.
 このようにすると、プランジャが押し込み方向に移動するときに、圧力室からリーク隙間を通ってオイルがリークし、このとき圧力室からリークしたオイルの一部が通油路を通ってリザーバ室に戻る。そのため、チェーンテンショナから外部に排出されるオイルの量を低減することができ、チェーンテンショナでのオイル消費量を抑えることが可能となる。 With this configuration, oil leaks from the pressure chamber through the leak gap when the plunger moves in the pushing direction, and part of the oil leaked from the pressure chamber at this time returns to the reservoir chamber through the oil passage. . Therefore, the amount of oil discharged from the chain tensioner to the outside can be reduced, and the oil consumption of the chain tensioner can be suppressed.
 前記第1スリーブの前記プランジャ内への挿入部分の外周は、前記嵌合円筒面よりも小径に形成すると好ましい。 The outer circumference of the portion of the first sleeve inserted into the plunger is preferably formed to have a smaller diameter than the fitting cylindrical surface.
 このようにすると、第1スリーブの外周とプランジャの内周との間の隙間が比較的大きいものとなり、その隙間を流れるオイルの粘性抵抗を小さく抑えることができるので、プランジャの移動により第1スリーブのプランジャ内への挿入長さが変化したときにダンパ力の大きさが変化しにくく、安定したダンパ力を得ることができる。 With this configuration, the gap between the outer circumference of the first sleeve and the inner circumference of the plunger becomes relatively large, and the viscous resistance of the oil flowing through the gap can be kept small. When the insertion length into the plunger changes, the magnitude of the damping force is less likely to change, and a stable damping force can be obtained.
 前記シート部材の前記リリーフシート面との接触面、または前記リリーフシート面に、前記シート部材が前記リリーフシート面に接触した状態で前記第2スリーブ内のエアを前記リザーバ室に逃がすエア抜き溝を形成すると好ましい。 The contact surface of the sheet member with the relief sheet surface or the relief sheet surface is provided with an air release groove for releasing air in the second sleeve to the reservoir chamber while the sheet member is in contact with the relief sheet surface. preferably formed.
 このようにすると、第2スリーブ内に存在するエアが、エア抜き溝を通ってリザーバ室に排出されるので、より安定したダンパ力を得ることが可能となる。 With this configuration, the air existing in the second sleeve is discharged to the reservoir chamber through the air release groove, so that a more stable damping force can be obtained.
 また、前記シート部材の前記弁体との接触面に、前記弁体が前記弁孔の圧力室の側の端部を閉じた状態で前記第2スリーブ内のエアを前記弁孔に排出するエア抜き溝を形成すると好ましい。 In addition, an air valve for discharging air in the second sleeve to the valve hole in a state where the valve body closes the end of the valve hole on the side of the pressure chamber is provided on the contact surface of the seat member with the valve body. It is preferable to form a draft groove.
 このようにすると、第2スリーブ内に存在するエアが、エア抜き溝と弁孔を順に通ってリザーバ室に排出されるので、より安定したダンパ力を得ることが可能となる。 By doing so, the air existing in the second sleeve is discharged to the reservoir chamber through the air release groove and the valve hole in order, so that a more stable damping force can be obtained.
 前記第2スリーブは、前記第1スリーブに対する前記第2スリーブの径方向の移動を許容するように前記第1スリーブの前記プランジャ内への挿入端で摺動可能に支持することができる。 The second sleeve can be slidably supported at an insertion end of the first sleeve into the plunger so as to allow radial movement of the second sleeve relative to the first sleeve.
 このようにすると、第1スリーブの軸心と、シリンダに挿入されたプランジャの軸心との間にずれがある場合にも、そのずれに応じて第2スリーブが第1スリーブに対して径方向に移動し、第2スリーブの外周の嵌合円筒面とプランジャの内周との間のリーク隙間の大きさが、径方向で均一化される。そのため、安定したダンパ力を得ることが可能である。 With this configuration, even if there is a deviation between the axis of the first sleeve and the axis of the plunger inserted into the cylinder, the second sleeve moves radially relative to the first sleeve according to the deviation. , and the size of the leakage gap between the fitting cylindrical surface of the outer circumference of the second sleeve and the inner circumference of the plunger is made uniform in the radial direction. Therefore, it is possible to obtain a stable damper force.
 前記第1スリーブの前記プランジャ内への挿入端に環状凸部が形成され、
 前記第2スリーブには、前記環状凸部に嵌合して前記第2スリーブを前記第1スリーブに対して径方向に位置決めする環状凹部が形成された構成を採用することができる。
An annular projection is formed at the end of the first sleeve inserted into the plunger,
A configuration may be adopted in which the second sleeve is formed with an annular recess that fits into the annular protrusion to radially position the second sleeve with respect to the first sleeve.
 このようにすると、環状凸部と環状凹部の嵌合により、第1スリーブの軸心と第2スリーブの軸心とを合致させることが可能となる。 By doing so, it is possible to align the axial center of the first sleeve and the axial center of the second sleeve by fitting the annular projection and the annular recess.
 この場合、前記第1スリーブの前記プランジャからの突出端は、前記シリンダの閉塞端に軸方向に当接して支持される環状の部分球面を有し、
 前記シリンダの閉塞端は、前記第1スリーブの傾動を許容するように前記部分球面を摺動可能に支持する凹テーパ面または凹球面を有する構成を採用すると好ましい。
In this case, the protruding end of the first sleeve from the plunger has an annular partial spherical surface supported in axial contact with the closed end of the cylinder,
It is preferable that the closed end of the cylinder has a concave tapered surface or a concave spherical surface that slidably supports the partial spherical surface so as to allow tilting of the first sleeve.
 このようにすると、第1スリーブの軸心と、シリンダに挿入されたプランジャの軸心との間にずれがある場合にも、そのずれに応じて第1スリーブがシリンダに対して傾動し、第2スリーブの外周の嵌合円筒面とプランジャの内周との間のリーク隙間の大きさが、軸方向で均一化される。そのため、安定したダンパ力を得ることが可能である。 With this configuration, even if there is a misalignment between the axis of the first sleeve and the axis of the plunger inserted into the cylinder, the first sleeve tilts with respect to the cylinder in accordance with the misalignment. 2 The size of the leakage gap between the fitting cylindrical surface of the outer circumference of the sleeve and the inner circumference of the plunger is made uniform in the axial direction. Therefore, it is possible to obtain a stable damper force.
 前記リターンスプリングを前記第2スリーブで支持した構成を採用すると好ましい。 It is preferable to employ a configuration in which the return spring is supported by the second sleeve.
 このようにすると、リターンスプリングがプランジャを付勢する力の反力で第2スリーブが第1スリーブに押し付けられるので、エンジンの振動等により第1スリーブと第2スリーブが離反するのを防止することができる。 With this configuration, the second sleeve is pressed against the first sleeve by the reaction force of the force of the return spring that urges the plunger, thereby preventing the separation of the first and second sleeves due to vibrations of the engine or the like. can be done.
 この発明のチェーンテンショナは、リリーフバルブのリリーフシート面が、第1スリーブとは別体の第2スリーブに形成されているので、第1スリーブと第2スリーブを分割した状態でリリーフバルブの構成部材を組み付けることでき、リリーフバルブの組み立て作業性を確保することが可能である。また、リリーフシート面を有する第2スリーブの外周に直接、プランジャの内周に軸方向に摺動可能に嵌合する嵌合円筒面が形成されているので、リリーフシート面を形成した部材の圧入等により嵌合円筒面の寸法が変化するのを防止することができ、嵌合円筒面の寸法を精度良く一定に管理することができる。そのため、嵌合円筒面とプランジャの内周との間のリーク隙間の大きさを、高い寸法精度をもって管理することができ、安定した大きさのダンパ力を得ることが可能である。 In the chain tensioner of the present invention, the relief seat surface of the relief valve is formed on the second sleeve, which is separate from the first sleeve. can be assembled, and it is possible to secure the assembling workability of the relief valve. In addition, since the fitting cylindrical surface that is axially slidably fitted to the inner periphery of the plunger is formed directly on the outer periphery of the second sleeve having the relief seat surface, the member having the relief seat surface is press-fitted. It is possible to prevent the dimension of the fitting cylindrical surface from changing due to such factors as the above, and it is possible to control the dimension of the fitting cylindrical surface with high accuracy and constant. Therefore, the size of the leakage gap between the fitting cylindrical surface and the inner circumference of the plunger can be controlled with high dimensional accuracy, and a stable damping force can be obtained.
この発明の第1実施形態のチェーンテンショナを組み込んだチェーン伝動装置を示す図1 is a diagram showing a chain transmission incorporating a chain tensioner according to a first embodiment of the present invention; FIG. 図1のチェーンテンショナ近傍の拡大断面図Enlarged cross-sectional view of the vicinity of the chain tensioner in FIG. 図2のシート部材の近傍の拡大断面図FIG. 3 is an enlarged cross-sectional view of the vicinity of the sheet member in FIG. 2 図3のリリーフバルブが開いた状態を示すシート部材の近傍の拡大断面図FIG. 4 is an enlarged cross-sectional view of the vicinity of the seat member showing the state in which the relief valve of FIG. 3 is opened; 図3のリリーフシート面と、リリーフシート面に対する接触面との変形例を示す図A diagram showing a modified example of the relief sheet surface of FIG. 3 and a contact surface with respect to the relief sheet surface. 図3のシート部材に通油溝を追加した変形例を示す図The figure which shows the modification which added the oil passage groove to the sheet|seat member of FIG. 図6のVII-VII線に沿った断面図Cross-sectional view along line VII-VII in Fig. 6 図3のシート部材のリリーフシート面との接触面にエア抜き溝を形成した変形例を示すシート部材の斜視図4 is a perspective view of a seat member showing a modification in which air vent grooves are formed in the contact surface of the seat member in FIG. 3 with the relief sheet surface; FIG. 図8に示すシート部材を組み込んだチェーンテンショナのシート部材の近傍の拡大断面図FIG. 9 is an enlarged cross-sectional view of the vicinity of the seat member of the chain tensioner incorporating the seat member shown in FIG. 8 ; 図3のシート部材の弁体との接触面にエア抜き溝を形成した変形例を示すシート部材の近傍の拡大断面図FIG. 4 is an enlarged cross-sectional view of the vicinity of the seat member in FIG. 3, showing a modification in which an air vent groove is formed on the contact surface of the seat member with the valve body; 図3のシート部材のリリーフシート面との接触面にエア抜き溝を形成し、さらに、シート部材の弁体との接触面にもエア抜き溝を形成した変形例を示すシート部材の近傍の拡大断面図Enlargement of the vicinity of the seat member showing a modified example in which an air release groove is formed on the contact surface of the seat member with the relief seat surface of FIG. 3 and an air release groove is also formed on the contact surface of the seat member with the valve body cross section この発明の第2実施形態のチェーンテンショナを示す要部断面図FIG. 2 is a cross-sectional view of a main part showing a chain tensioner according to a second embodiment of the invention; 図12の第2スリーブの近傍の拡大断面図FIG. 12 is an enlarged cross-sectional view of the vicinity of the second sleeve in FIG. 12 図12の第1スリーブのプランジャからの突出端の近傍の拡大断面図FIG. 13 is an enlarged cross-sectional view of the vicinity of the projecting end from the plunger of the first sleeve in FIG. 12; 図14のシリンダの閉塞端を凹球面とした変形例を示す拡大断面図Enlarged cross-sectional view showing a modified example in which the closed end of the cylinder in FIG. 14 is a concave spherical surface
 図1に、この発明の第1実施形態のチェーンテンショナ1を組み込んだチェーン伝動装置を示す。このチェーン伝動装置は、エンジンのクランクシャフト2に固定されたスプロケット3と、カムシャフト4に固定されたスプロケット5とがチェーン6を介して連結されており、そのチェーン6がクランクシャフト2の回転をカムシャフト4に伝達し、そのカムシャフト4の回転により燃焼室のバルブ(図示せず)の開閉を行なう。 Fig. 1 shows a chain transmission incorporating a chain tensioner 1 of the first embodiment of the invention. In this chain transmission device, a sprocket 3 fixed to a crankshaft 2 of an engine and a sprocket 5 fixed to a camshaft 4 are connected via a chain 6, and the chain 6 drives the rotation of the crankshaft 2. It is transmitted to the camshaft 4, and the rotation of the camshaft 4 opens and closes a valve (not shown) of the combustion chamber.
 エンジンが作動しているときのクランクシャフト2の回転方向は一定(図では右回転)であり、このときチェーン6は、クランクシャフト2の回転に伴ってスプロケット3に引き込まれる側(図の右側)の部分が張り側となり、スプロケット3から送り出される側(図の左側)の部分が弛み側となる。そして、チェーン6の弛み側の部分には、支点軸7を中心として揺動可能に支持されたチェーンガイド8が接触している。チェーンテンショナ1は、チェーンガイド8を介してチェーン6を押圧している。 When the engine is running, the direction of rotation of the crankshaft 2 is constant (right rotation in the figure), and at this time, the chain 6 is drawn into the sprocket 3 as the crankshaft 2 rotates (right side in the figure). is the tight side, and the side (left side in the figure) sent out from the sprocket 3 is the slack side. A chain guide 8 supported so as to be swingable about a fulcrum shaft 7 is in contact with the slack side of the chain 6 . Chain tensioner 1 presses chain 6 via chain guide 8 .
 図2に示すように、チェーンテンショナ1は、軸方向の一端を閉塞端とし、軸方向の他端を開口端とする筒状のシリンダ9と、シリンダ9に軸方向に摺動可能に挿入されたプランジャ10とを有する。プランジャ10のシリンダ9からの突出端はチェーンガイド8を押圧している。 As shown in FIG. 2, the chain tensioner 1 includes a tubular cylinder 9 having one end in the axial direction closed and the other end in the axial direction open, and is axially slidably inserted into the cylinder 9. and a plunger 10. A projecting end of the plunger 10 from the cylinder 9 presses the chain guide 8 .
 シリンダ9は、アルミ合金で一体成形されている。シリンダ9は、シリンダ9の外周に一体に形成された複数の取り付け片11にボルト12を締め込むことによって、エンジンブロック(図示せず)に固定されている。ここで、シリンダ9は、プランジャ10のシリンダ9からの突出方向が、水平よりも下側に傾斜する方向となる状態に取り付けられている。  The cylinder 9 is integrally formed of an aluminum alloy. The cylinder 9 is fixed to an engine block (not shown) by fastening bolts 12 to a plurality of mounting pieces 11 integrally formed on the outer circumference of the cylinder 9 . Here, the cylinder 9 is attached so that the direction in which the plunger 10 protrudes from the cylinder 9 is inclined downward from the horizontal.
 プランジャ10は、プランジャ10のシリンダ9内への挿入端が開口し、プランジャ10のシリンダ9からの突出端が閉塞した筒状に形成されている。プランジャ10の材質は、鉄系材料(例えばSCM(クロムモリブデン鋼)やSCr(クロム鋼)等の鋼材)である。 The plunger 10 is formed in a tubular shape with an open end inserted into the cylinder 9 of the plunger 10 and a closed end protruding from the cylinder 9 of the plunger 10 . The material of the plunger 10 is a ferrous material (for example, a steel material such as SCM (chromium molybdenum steel) or SCr (chromium steel)).
 プランジャ10には、軸方向の一端がプランジャ10内に挿入され、軸方向の他端がプランジャ10から突出した状態となるように第1スリーブ13が挿入されている。第1スリーブ13は、軸方向の両端がいずれも開放した筒状の部材である。第1スリーブ13は、プランジャ10と同様、鉄系材料で形成されている。第1スリーブ13のプランジャ10からの突出端は、シリンダ9の閉塞端で支持されている。 A first sleeve 13 is inserted into the plunger 10 so that one end in the axial direction is inserted into the plunger 10 and the other end in the axial direction protrudes from the plunger 10 . The first sleeve 13 is a cylindrical member with both ends in the axial direction open. The first sleeve 13, like the plunger 10, is made of a ferrous material. A protruding end of the first sleeve 13 from the plunger 10 is supported by the closed end of the cylinder 9 .
 第1スリーブ13のプランジャ10内への挿入端には、第1スリーブ13とは別体の第2スリーブ14が接続して設けられている。第2スリーブ14は、第1スリーブ13と軸方向に一列に並んで配置された筒状の部材である。第2スリーブ14の軸方向長さは、第1スリーブ13の軸方向長さよりも短く、例えば、第1スリーブ13の軸方向長さの1/3以下に設定することができる。第2スリーブ14は、プランジャ10と同様、鉄系材料で形成されている。 A second sleeve 14 that is separate from the first sleeve 13 is connected to the insertion end of the first sleeve 13 into the plunger 10 . The second sleeve 14 is a cylindrical member that is arranged in line with the first sleeve 13 in the axial direction. The axial length of the second sleeve 14 is shorter than the axial length of the first sleeve 13 , and can be set to, for example, ⅓ or less of the axial length of the first sleeve 13 . The second sleeve 14, like the plunger 10, is made of a ferrous material.
 第2スリーブ14には、チェックバルブ15が組み込まれている。チェックバルブ15は、第1スリーブ13とプランジャ10の内部領域を、第1スリーブ13の側のリザーバ室16とプランジャ10の側の圧力室17とに区画している。ここで、リザーバ室16の容積は、プランジャ10が軸方向移動しても変化せず、一定である。一方、圧力室17の容積は、プランジャ10がシリンダ9から突出する方向に軸方向移動するときは拡大し、プランジャ10がシリンダ9に押し込まれる方向に軸方向移動するときは縮小する。 A check valve 15 is incorporated in the second sleeve 14 . The check valve 15 divides the internal region of the first sleeve 13 and the plunger 10 into a reservoir chamber 16 on the first sleeve 13 side and a pressure chamber 17 on the plunger 10 side. Here, the volume of the reservoir chamber 16 is constant and does not change even when the plunger 10 moves in the axial direction. On the other hand, the volume of the pressure chamber 17 expands when the plunger 10 axially moves in the direction of protruding from the cylinder 9 and contracts when the plunger 10 axially moves in the direction of being pushed into the cylinder 9 .
 圧力室17には、リターンスプリング18が組み込まれている。リターンスプリング18は、金属製の線材を螺旋状に巻回した圧縮コイルばねである。リターンスプリング18は、一端が第2スリーブ14で支持され、他端がプランジャ10を軸方向に押圧し、その押圧によって、プランジャ10をシリンダ9から突出する方向に付勢している。 A return spring 18 is incorporated in the pressure chamber 17 . The return spring 18 is a compression coil spring formed by spirally winding a metal wire. One end of the return spring 18 is supported by the second sleeve 14 , and the other end presses the plunger 10 in the axial direction.
 図3に示すように、チェックバルブ15は、弁孔20が形成されたシート部材21と、弁孔20の圧力室17の側の端部を開閉する球状の弁体22とを有する。弁孔20は、圧力室17とリザーバ室16の間を連通するようにシート部材21に形成された軸方向の貫通孔である。弁体22は、鋼球である。弁体22は、第2スリーブ14に形成された端板23で軸方向の移動範囲が制限されている。端板23には、オイルが端板23を通過することができるように複数の貫通孔24が形成されている。チェックバルブ15は、圧力室17の側からリザーバ室16の側へのオイルの流れを制限し、リザーバ室16の側から圧力室17の側へのオイルの流れのみを許容する。 As shown in FIG. 3, the check valve 15 has a seat member 21 in which a valve hole 20 is formed, and a spherical valve body 22 that opens and closes the end of the valve hole 20 on the pressure chamber 17 side. The valve hole 20 is an axial through hole formed in the seat member 21 so as to communicate between the pressure chamber 17 and the reservoir chamber 16 . The valve body 22 is a steel ball. The axial movement range of the valve body 22 is limited by an end plate 23 formed on the second sleeve 14 . A plurality of through holes 24 are formed in the end plate 23 so that oil can pass through the end plate 23 . The check valve 15 restricts the flow of oil from the pressure chamber 17 side to the reservoir chamber 16 side and allows oil to flow only from the reservoir chamber 16 side to the pressure chamber 17 side.
 第2スリーブ14の外周には、プランジャ10の内周に軸方向に摺動可能に嵌合する嵌合円筒面25が形成されている。嵌合円筒面25は、軸方向に沿って外径が変化せず一定の円筒面である。プランジャ10の内周も、軸方向に沿って内径が変化せず一定の円筒面とされている。嵌合円筒面25とプランジャ10の内周との間には、圧力室17の容積が縮小するときに圧力室17からオイルをリークさせるリーク隙間26が形成されている。リーク隙間26は、半径方向の幅が0.010~0.050mmの範囲に設定された円筒状の微小隙間である。 The outer periphery of the second sleeve 14 is formed with a fitting cylindrical surface 25 that is axially slidably fitted to the inner periphery of the plunger 10 . The fitting cylindrical surface 25 is a cylindrical surface whose outer diameter does not change along the axial direction. The inner circumference of the plunger 10 is also a constant cylindrical surface whose inner diameter does not change along the axial direction. A leak gap 26 is formed between the fitting cylindrical surface 25 and the inner circumference of the plunger 10 to allow oil to leak from the pressure chamber 17 when the volume of the pressure chamber 17 is reduced. The leak gap 26 is a cylindrical minute gap with a radial width set in the range of 0.010 to 0.050 mm.
 図2に示すように、第1スリーブ13のプランジャ10内への挿入部分の外周は、軸方向に沿って外径が変化せず一定の円筒面とされ、その外径が、第2スリーブ14の外周の嵌合円筒面25よりも小径となるように形成されている。また、プランジャ10のシリンダ9内への挿入部分の外周も、軸方向に沿って外径が変化せず一定の円筒面とされている。シリンダ9の内周の、プランジャ10の外周を軸方向に摺動可能に支持する部分も、軸方向に沿って内径が変化せず一定の円筒面とされている。シリンダ9の内周とプランジャ10の外周との間には、円筒状のガイド隙間27が形成されている。ガイド隙間27の半径方向の幅は、リーク隙間26の半径方向の幅よりも大きく設定され、例えば、0.015~0.065mmの範囲に設定することができる。 As shown in FIG. 2, the outer circumference of the portion of the first sleeve 13 inserted into the plunger 10 is a cylindrical surface with a constant outer diameter that does not change along the axial direction. It is formed to have a smaller diameter than the fitting cylindrical surface 25 on the outer periphery of the. Further, the outer circumference of the portion where the plunger 10 is inserted into the cylinder 9 is also a constant cylindrical surface whose outer diameter does not change along the axial direction. A portion of the inner circumference of the cylinder 9 that axially slidably supports the outer circumference of the plunger 10 is also a cylindrical surface whose inner diameter does not change along the axial direction. A cylindrical guide gap 27 is formed between the inner circumference of the cylinder 9 and the outer circumference of the plunger 10 . The radial width of the guide gap 27 is set larger than the radial width of the leak gap 26, and can be set in the range of 0.015 to 0.065 mm, for example.
 シリンダ9および第1スリーブ13には、シリンダ9の外部の図示しないオイルポンプから供給されるオイルをリザーバ室16に導入する給油通路30が設けられている。給油通路30は、シリンダ9の外周から内周にオイルを導入するようにシリンダ9に形成されたシリンダ側油路31と、シリンダ9の内周と第1スリーブ13の外周との間に形成される筒状空間32と、第1スリーブ13のプランジャ10からの突出部分に設けられた通油路33とで構成されている。 The cylinder 9 and the first sleeve 13 are provided with an oil supply passage 30 for introducing oil supplied from an oil pump (not shown) outside the cylinder 9 into the reservoir chamber 16 . The oil supply passage 30 is formed between a cylinder-side oil passage 31 formed in the cylinder 9 so as to introduce oil from the outer circumference to the inner circumference of the cylinder 9 and between the inner circumference of the cylinder 9 and the outer circumference of the first sleeve 13 . and an oil passage 33 provided in a projecting portion of the first sleeve 13 from the plunger 10 .
 筒状空間32は、プランジャ10のシリンダ9内への挿入端よりもシリンダ9の閉塞端に近い側において、シリンダ9の内周と第1スリーブ13の外周とで半径方向に挟まれる円筒状の領域である。シリンダ側油路31のシリンダ9の内周側の端部は、筒状空間32に接続する位置に開口している。 The cylindrical space 32 is radially sandwiched between the inner periphery of the cylinder 9 and the outer periphery of the first sleeve 13 on the side closer to the closed end of the cylinder 9 than the insertion end of the plunger 10 into the cylinder 9 . area. An end portion of the cylinder-side oil passage 31 on the inner peripheral side of the cylinder 9 opens at a position connected to the cylindrical space 32 .
 通油路33は、第1スリーブ13を径方向に貫通して形成された貫通孔である。通油路33は、給油通路30の一部でもあり、圧力室17からリーク隙間26を通って筒状空間32にリークしたオイルを、筒状空間32からリザーバ室16に戻すための油回収孔でもある。 The oil passage 33 is a through hole formed through the first sleeve 13 in the radial direction. The oil passage 33 is also a part of the oil supply passage 30, and is an oil recovery hole for returning the oil that has leaked from the pressure chamber 17 to the tubular space 32 through the leak gap 26 from the tubular space 32 to the reservoir chamber 16. But also.
 図3に示すように、チェックバルブ15のシート部材21は、第2スリーブ14とは別体に形成された部材であり、第2スリーブ14に対して軸方向に移動可能に設けられている。第1スリーブ13には、シート部材21をリザーバ室16の側から圧力室17の側に向けて軸方向に押圧するリリーフスプリング34が組み込まれている。リリーフスプリング34は、金属製の線材を螺旋状に巻回した圧縮コイルばねである。リリーフスプリング34の一端は、第1スリーブ13の内周に形成された段部35(図2参照)で支持され、リリーフスプリング34の他端は、シート部材21を軸方向に押圧している。 As shown in FIG. 3, the seat member 21 of the check valve 15 is a member formed separately from the second sleeve 14 and is provided axially movably with respect to the second sleeve 14 . The first sleeve 13 incorporates a relief spring 34 that axially presses the sheet member 21 from the reservoir chamber 16 side toward the pressure chamber 17 side. The relief spring 34 is a compression coil spring formed by spirally winding a metal wire. One end of the relief spring 34 is supported by a stepped portion 35 (see FIG. 2) formed on the inner circumference of the first sleeve 13, and the other end of the relief spring 34 presses the seat member 21 in the axial direction.
 シート部材21は、リリーフスプリング34の押圧力によって、第2スリーブ14に形成されたリリーフシート面36に押し付けられている。リリーフシート面36は、シート部材21を圧力室17の側(図では右側)から接触して支持する断面凸円弧状の環状の面である。シート部材21のリリーフシート面36との接触面37は、リリーフシート面36と円環状の部位で線接触するテーパ面とされている。 The seat member 21 is pressed against the relief seat surface 36 formed on the second sleeve 14 by the pressing force of the relief spring 34 . The relief seat surface 36 is an annular surface having a convex arcuate cross section that contacts and supports the seat member 21 from the pressure chamber 17 side (right side in the figure). A contact surface 37 of the sheet member 21 with the relief sheet surface 36 is a tapered surface that makes line contact with the relief sheet surface 36 at an annular portion.
 ここで、シート部材21とリリーフスプリング34とリリーフシート面36は、圧力室17の圧力が予め設定した圧力よりも大きくなったときに圧力室17からリザーバ室16にオイルを逃がすリリーフバルブ38を構成している。すなわち、圧力室17の圧力が予め設定した圧力よりも大きくなると、その圧力室17の圧力によって、図4に示すように、シート部材21がリリーフスプリング34の付勢力に抗して圧力室17の側(図では右側)からリザーバ室16の側(図では左側)に移動し、リリーフシート面36から離反する。そして、そのシート部材21とリリーフシート面36の間の隙間を通って、圧力室17のオイルがリザーバ室16に逃げ、圧力室17の圧力上昇が抑えられる。 Here, the seat member 21, the relief spring 34, and the relief seat surface 36 constitute a relief valve 38 that releases oil from the pressure chamber 17 to the reservoir chamber 16 when the pressure in the pressure chamber 17 exceeds a preset pressure. is doing. That is, when the pressure in the pressure chamber 17 becomes higher than the preset pressure, the pressure in the pressure chamber 17 causes the seat member 21 to move against the biasing force of the relief spring 34 as shown in FIG. side (right side in the figure) toward the reservoir chamber 16 side (left side in the figure) and separates from the relief sheet surface 36 . Then, the oil in the pressure chamber 17 escapes to the reservoir chamber 16 through the gap between the sheet member 21 and the relief sheet surface 36, and the pressure rise in the pressure chamber 17 is suppressed.
 図3に示すように、第2スリーブ14は、第1スリーブ13に対する第2スリーブ14の径方向の移動を許容するように第1スリーブ13のプランジャ10内への挿入端で摺動可能に支持されている。具体的には、第1スリーブ13のプランジャ10内への挿入端に軸方向に直角な平面39が形成され、その平面39に第2スリーブ14の軸方向端面40が軸方向に当接し、平面39と軸方向端面40とが径方向に摺動可能に接触している。 As shown in FIG. 3 , the second sleeve 14 is slidably supported at the insertion end of the first sleeve 13 into the plunger 10 to allow radial movement of the second sleeve 14 relative to the first sleeve 13 . It is Specifically, a flat surface 39 perpendicular to the axial direction is formed at the insertion end of the first sleeve 13 into the plunger 10, and the axial end surface 40 of the second sleeve 14 abuts on the flat surface 39 in the axial direction. 39 and the axial end surface 40 are in contact with each other so as to be slidable in the radial direction.
 次に、このチェーンテンショナ1の動作例を説明する。 Next, an operation example of this chain tensioner 1 will be described.
 エンジン作動中に、図1に示すチェーン6の張力が大きくなると、そのチェーン6の張力によって、プランジャ10がシリンダ9内に押し込まれる方向に移動し、チェーン6の緊張を吸収する。このとき、図2に示す圧力室17の圧力がリザーバ室16の圧力よりも高くなるので、チェックバルブ15は閉じた状態となる。また、プランジャ10の移動に応じて圧力室17の容積が縮小するので、その縮小した容積の分、圧力室17からリーク隙間26を通ってオイルがリークし、このときリーク隙間26を流れるオイルの粘性抵抗でダンパ力が発生し、そのダンパ力によってチェーン6のばたつきが防止される。そして、圧力室17からリーク隙間26を通って筒状空間32にリークしたオイルの大部分は、通油路33を通ってリザーバ室16に戻る。また、圧力室17からリーク隙間26を通って筒状空間32にリークしたオイルの一部は、ガイド隙間27を潤滑する。 When the tension of the chain 6 shown in FIG. 1 increases during engine operation, the tension of the chain 6 causes the plunger 10 to move in the direction of being pushed into the cylinder 9 to absorb the tension of the chain 6 . At this time, since the pressure in the pressure chamber 17 shown in FIG. 2 becomes higher than the pressure in the reservoir chamber 16, the check valve 15 is closed. Further, since the volume of the pressure chamber 17 is reduced in accordance with the movement of the plunger 10, oil leaks from the pressure chamber 17 through the leak gap 26 by the amount of the reduced volume. A damping force is generated by the viscous resistance, and the damping force prevents the chain 6 from fluttering. Most of the oil that has leaked from the pressure chamber 17 through the leak gap 26 into the tubular space 32 returns to the reservoir chamber 16 through the oil passage 33 . Also, part of the oil leaked from the pressure chamber 17 through the leak gap 26 into the cylindrical space 32 lubricates the guide gap 27 .
 一方、エンジン作動中に、図1に示すチェーン6の張力が小さくなると、図2に示すリターンスプリング18の付勢力と圧力室17の油圧とによって、プランジャ10が突出方向に移動し、チェーン6の弛みを吸収する。このとき、プランジャ10の移動に応じて圧力室17の容積が拡大するので、圧力室17の圧力がリザーバ室16の圧力よりも低くなり、チェックバルブ15が開く。そして、リザーバ室16からチェックバルブ15を通って圧力室17にオイルが流入し、プランジャ10が速やかに移動する。このとき、シリンダ9の外部から給油通路30を通ってリザーバ室16にオイルが導入される。 On the other hand, when the tension of the chain 6 shown in FIG. 1 decreases during engine operation, the plunger 10 moves in the projecting direction due to the biasing force of the return spring 18 and the hydraulic pressure in the pressure chamber 17 shown in FIG. Absorb relaxation. At this time, since the volume of the pressure chamber 17 expands according to the movement of the plunger 10, the pressure in the pressure chamber 17 becomes lower than the pressure in the reservoir chamber 16, and the check valve 15 opens. Then, oil flows from the reservoir chamber 16 through the check valve 15 into the pressure chamber 17, and the plunger 10 moves rapidly. At this time, oil is introduced into the reservoir chamber 16 from the outside of the cylinder 9 through the oil supply passage 30 .
 ここで、オイルの粘度は、オイルの温度が低くなるほど高くなる。また、低温時は各部材が収縮するのでリーク隙間26も小さくなる。そのため、低温時は、リーク隙間26を流れるオイルの粘性抵抗が高くなり、圧力室17の圧力が上昇しやすくなる。そして、圧力室17の圧力が予め設定した圧力よりも大きくなると、その圧力室17の圧力によってシート部材21がリリーフシート面36から離反し(図4参照)、そのシート部材21とリリーフシート面36の間の隙間を通って圧力室17のオイルがリザーバ室16に逃がされる。そのため、圧力室17の圧力上昇が抑えられ、ダンパ力が過大となるのを防ぐことができる。 Here, the viscosity of the oil increases as the temperature of the oil decreases. In addition, since each member contracts at low temperatures, the leak gap 26 also becomes smaller. Therefore, when the temperature is low, the viscosity resistance of the oil flowing through the leak gap 26 increases, and the pressure in the pressure chamber 17 tends to increase. When the pressure in the pressure chamber 17 becomes greater than the preset pressure, the pressure in the pressure chamber 17 causes the sheet member 21 to move away from the relief sheet surface 36 (see FIG. 4). The oil in the pressure chamber 17 is released to the reservoir chamber 16 through the gap between . Therefore, an increase in pressure in the pressure chamber 17 is suppressed, and an excessive damping force can be prevented.
 エンジンが停止し、その後、エンジンが再始動するとき、一般に、シリンダ9の外部の図示しない油路内のオイルの油面はいったん下がった状態となっていることから、シリンダ側油路31からチェーンテンショナ1へのオイル供給が開始するまでに時間がかかる。この場合、エンジンが再始動してから、オイル供給が開始されるまでの間、図2に示すようにリザーバ室16内にあらかじめ溜まったオイルが、チェックバルブ15を通って圧力室17に流入することで、圧力室17がオイルで満たした状態に保たれる。そのため、エンジン再始動の直後からダンパ力を発生することが可能であり、チェーン6のばたつきを抑えることが可能となっている。 When the engine is stopped and then restarted, generally, the oil level in the oil passage (not shown) outside the cylinder 9 is once lowered. It takes time before the oil supply to the tensioner 1 starts. In this case, from the time the engine is restarted until the oil supply is started, as shown in FIG. Thus, the pressure chamber 17 is kept filled with oil. Therefore, it is possible to generate a damping force immediately after the engine is restarted, and it is possible to suppress the chain 6 from fluttering.
 このチェーンテンショナ1は、図3に示すように、リリーフバルブ38のリリーフシート面36が、第1スリーブ13とは別体の第2スリーブ14に形成されているので、第1スリーブ13と第2スリーブ14を分割した状態でリリーフバルブ38の構成部材を組み付けることでき、リリーフバルブ38の組み立て作業性を確保することが可能である。 In this chain tensioner 1, as shown in FIG. The constituent members of the relief valve 38 can be assembled while the sleeve 14 is divided, and the assembling workability of the relief valve 38 can be ensured.
 また、このチェーンテンショナ1は、リリーフシート面36を有する第2スリーブ14の外周に直接、プランジャ10の内周に軸方向に摺動可能に嵌合する嵌合円筒面25が形成されているので、リリーフシート面36を形成した部材の圧入等により嵌合円筒面25の寸法が変化するのを防止することができ、嵌合円筒面25の寸法を精度良く一定に管理することができる。そのため、嵌合円筒面25とプランジャ10の内周との間のリーク隙間26の大きさを、高い寸法精度をもって管理することができ、安定した大きさのダンパ力を得ることが可能である。 In addition, since the chain tensioner 1 is formed with the fitting cylindrical surface 25 that fits directly on the outer periphery of the second sleeve 14 having the relief seat surface 36 and on the inner periphery of the plunger 10 so as to be slidable in the axial direction. Also, it is possible to prevent the dimension of the fitting cylindrical surface 25 from being changed due to press-fitting of the member forming the relief seat surface 36, etc., and the dimension of the fitting cylindrical surface 25 can be managed accurately and constantly. Therefore, the size of the leakage gap 26 between the fitting cylindrical surface 25 and the inner circumference of the plunger 10 can be controlled with high dimensional accuracy, and a stable damping force can be obtained.
 また、このチェーンテンショナ1は、図2に示すプランジャ10が押し込み方向に移動するときに、圧力室17からリーク隙間26を通ってオイルがリークし、このとき圧力室17からリークしたオイルの一部が、第1スリーブ13に形成された通油路33を通ってリザーバ室16に戻る。そのため、チェーンテンショナ1から外部に排出されるオイルの量を低減することができ、チェーンテンショナ1でのオイル消費量を抑えることが可能である。 Also, in this chain tensioner 1, oil leaks from the pressure chamber 17 through the leak gap 26 when the plunger 10 shown in FIG. 2 moves in the pushing direction. returns to the reservoir chamber 16 through the oil passage 33 formed in the first sleeve 13 . Therefore, the amount of oil discharged from the chain tensioner 1 to the outside can be reduced, and the amount of oil consumed by the chain tensioner 1 can be suppressed.
 また、このチェーンテンショナ1は、図2に示すように、第1スリーブ13のプランジャ10内への挿入部分の外周が、第2スリーブ14の外周の嵌合円筒面25よりも小径に形成されているので、第1スリーブ13の外周とプランジャ10の内周との間の隙間が比較的大きく、その隙間を流れるオイルの粘性抵抗が小さい。そのため、プランジャ10の移動により第1スリーブ13のプランジャ10内への挿入長さが変化したときにダンパ力の大きさが変化しにくく、安定したダンパ力を得ることができる。 2, the outer circumference of the portion of the first sleeve 13 inserted into the plunger 10 is formed to have a smaller diameter than the fitting cylindrical surface 25 of the outer circumference of the second sleeve 14. Therefore, the gap between the outer circumference of the first sleeve 13 and the inner circumference of the plunger 10 is relatively large, and the viscous resistance of oil flowing through the gap is small. Therefore, when the insertion length of the first sleeve 13 into the plunger 10 changes due to the movement of the plunger 10, the magnitude of the damping force is less likely to change, and a stable damping force can be obtained.
 また、このチェーンテンショナ1は、図3に示すように、第2スリーブ14が、第1スリーブ13に対する第2スリーブ14の径方向の移動を許容するように支持されているので、第1スリーブ13の軸心と、シリンダ9に挿入されたプランジャ10の軸心との間にずれがある場合にも、そのずれに応じて第2スリーブ14が第1スリーブ13に対して径方向に移動し、第2スリーブ14の外周の嵌合円筒面25とプランジャ10の内周との間のリーク隙間26の大きさが、径方向で均一化される。そのため、安定したダンパ力を得ることが可能である。 Further, in the chain tensioner 1, as shown in FIG. 3, the second sleeve 14 is supported so as to allow radial movement of the second sleeve 14 with respect to the first sleeve 13. and the axis of the plunger 10 inserted into the cylinder 9, the second sleeve 14 moves radially with respect to the first sleeve 13 according to the deviation, The size of the leakage gap 26 between the fitting cylindrical surface 25 on the outer circumference of the second sleeve 14 and the inner circumference of the plunger 10 is made uniform in the radial direction. Therefore, it is possible to obtain a stable damper force.
 また、このチェーンテンショナ1は、図3に示すように、リターンスプリング18を第2スリーブ14で支持しているので、リターンスプリング18がプランジャ10(図2参照)を付勢する力の反力で第2スリーブ14が第1スリーブ13に押し付けられる。そのため、エンジンの振動等により第1スリーブ13と第2スリーブ14が離反するのを防止することができる。 In addition, as shown in FIG. 3, the chain tensioner 1 supports the return spring 18 with the second sleeve 14, so that the reaction force of the return spring 18 urging the plunger 10 (see FIG. 2) A second sleeve 14 is pressed against the first sleeve 13 . Therefore, it is possible to prevent the first sleeve 13 and the second sleeve 14 from separating due to engine vibration or the like.
 上記実施形態では、第2スリーブ14に形成するリリーフシート面36を断面凸円弧状の環状面とし、シート部材21のリリーフシート面36との接触面37をテーパ面としたものを例に挙げて説明したが、図5に示すように、第2スリーブ14に形成するリリーフシート面36をテーパ面とし、シート部材21のリリーフシート面36との接触面37を断面凸円弧状の環状面としてもよい。 In the above-described embodiment, the relief sheet surface 36 formed on the second sleeve 14 is an annular surface having a convex arcuate cross section, and the contact surface 37 of the sheet member 21 with the relief sheet surface 36 is a tapered surface. As described above, as shown in FIG. 5, the relief seat surface 36 formed on the second sleeve 14 may be a tapered surface, and the contact surface 37 of the sheet member 21 with the relief seat surface 36 may be an annular surface having a convex arcuate cross section. good.
 図6、図7に、シート部材21の変形例を示す。図6において、シート部材21は、リリーフシート面36との接触位置よりもリザーバ室16の側(図では左側)に、第1スリーブ13または第2スリーブ14の内周で軸方向に移動可能に案内される外周円筒面41と、その外周円筒面41を周方向に分断するように軸方向に貫通して形成された通油溝42とが形成されている。図7に示すように、通油溝42は、周方向に間隔をおいて複数設けられている。この構成を採用すると、シート部材21がリリーフシート面36から離反したときのシート部材21の姿勢を外周円筒面41で安定させるとともに、シート部材21がリリーフシート面36から離反したときのオイルの流路を通油溝42で確保することが可能となる。 A modified example of the sheet member 21 is shown in FIGS. In FIG. 6, the sheet member 21 is axially movable on the inner periphery of the first sleeve 13 or the second sleeve 14 to the reservoir chamber 16 side (left side in the figure) from the contact position with the relief sheet surface 36. An outer cylindrical surface 41 to be guided and an oil passage groove 42 axially penetrating the outer cylindrical surface 41 are formed so as to divide the outer cylindrical surface 41 in the circumferential direction. As shown in FIG. 7, a plurality of oil passage grooves 42 are provided at intervals in the circumferential direction. By adopting this configuration, the posture of the seat member 21 when the seat member 21 is separated from the relief seat surface 36 is stabilized by the outer cylindrical surface 41, and the oil flows when the seat member 21 is separated from the relief seat surface 36. The passage can be secured by the oil passage groove 42 .
 図8、図9に示すように、シート部材21のリリーフシート面36との接触面37に、エア抜き溝43を形成してもよい。図8、図9において、エア抜き溝43は、シート部材21とリリーフシート面36とが接触する円環状の部位を横切って延びる溝である。このエア抜き溝43を設けると、図9に示すように、シート部材21がリリーフシート面36に接触した状態で、第2スリーブ14内に存在するエアが、エア抜き溝43を通ってリザーバ室16に排出される。そのため、より安定したダンパ力を得ることが可能となる。エア抜き溝43は、リリーフシート面36に設けるようにしてもよい。 As shown in FIGS. 8 and 9, an air vent groove 43 may be formed in the contact surface 37 of the sheet member 21 with the relief sheet surface 36 . 8 and 9, the air vent groove 43 is a groove extending across an annular portion where the seat member 21 and the relief seat surface 36 are in contact with each other. By providing the air vent groove 43, as shown in FIG. 9, when the sheet member 21 is in contact with the relief sheet surface 36, the air present in the second sleeve 14 passes through the air vent groove 43 to the reservoir chamber. 16 is discharged. Therefore, it is possible to obtain a more stable damper force. The air vent groove 43 may be provided on the relief sheet surface 36 .
 図10に示すように、シート部材21の弁体22との接触面(すなわち、チェックバルブ15のシート面)に、エア抜き溝44を形成してもよい。図10において、エア抜き溝44は、弁体22とシート部材21とが接触する円環状の部位を横切って延びる溝である。このエア抜き溝44を設けると、弁体22が弁孔20の圧力室17の側の端部を閉じた状態で、第2スリーブ14内に存在するエアが、エア抜き溝44と弁孔20を順に通ってリザーバ室16に排出される。そのため、より安定したダンパ力を得ることが可能となる。 As shown in FIG. 10, an air vent groove 44 may be formed in the contact surface of the seat member 21 with the valve body 22 (that is, the seat surface of the check valve 15). In FIG. 10, the air vent groove 44 is a groove that extends across an annular portion where the valve body 22 and the seat member 21 contact each other. When the air vent groove 44 is provided, when the valve element 22 closes the end of the valve hole 20 on the side of the pressure chamber 17 , the air existing in the second sleeve 14 flows through the air vent groove 44 and the valve hole 20 . in order to be discharged into the reservoir chamber 16 . Therefore, it is possible to obtain a more stable damper force.
 図11に示すように、シート部材21のリリーフシート面36との接触面37にエア抜き溝43を形成するとともに、シート部材21の弁体22との接触面にエア抜き溝44を形成することも可能である。 As shown in FIG. 11, an air release groove 43 is formed in the contact surface 37 of the seat member 21 with the relief seat surface 36, and an air release groove 44 is formed in the contact surface of the seat member 21 with the valve body 22. is also possible.
 図12~図14に、この発明の第2実施形態のチェーンテンショナ1を示す。第1実施形態に対応する部分は同一の符号を付して説明を省略する。 12 to 14 show a chain tensioner 1 according to a second embodiment of the invention. Parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図13に示すように、第1スリーブ13のプランジャ10内への挿入端には、環状凸部50が形成されている。環状凸部50は、第1スリーブ13の軸心を中心とする環状の軸方向突起である。第2スリーブ14には、環状凸部50に嵌合する環状凹部51が形成されている。環状凹部51は、第2スリーブ14の軸心を中心とする環状の軸方向の凹みである。第2スリーブ14は、環状凸部50と環状凹部51の嵌合により、第1スリーブ13に対して径方向に位置決めされている。 As shown in FIG. 13, an annular projection 50 is formed at the insertion end of the first sleeve 13 into the plunger 10 . The annular projection 50 is an annular axial projection around the axis of the first sleeve 13 . The second sleeve 14 is formed with an annular recess 51 that fits into the annular protrusion 50 . The annular recess 51 is an annular axial recess around the axis of the second sleeve 14 . The second sleeve 14 is radially positioned with respect to the first sleeve 13 by fitting the annular projection 50 and the annular recess 51 .
 図12、図14に示すように、第1スリーブ13のプランジャ10からの突出端は、シリンダ9の閉塞端に軸方向に当接して支持される環状の部分球面52を有する。部分球面52は、第1スリーブ13の軸心上に中心をもつ球面の一部分である。シリンダ9の閉塞端は、第1スリーブ13の傾動を許容するように部分球面52を摺動可能に支持する凹テーパ面53を有する。 As shown in FIGS. 12 and 14, the protruding end of the first sleeve 13 from the plunger 10 has an annular partial spherical surface 52 axially abutted against and supported by the closed end of the cylinder 9 . The partial spherical surface 52 is a portion of a spherical surface centered on the axis of the first sleeve 13 . The closed end of the cylinder 9 has a concave tapered surface 53 that slidably supports a partial spherical surface 52 to allow tilting of the first sleeve 13 .
 この実施形態のチェーンテンショナ1は、環状凸部50と環状凹部51の嵌合により、第1スリーブ13の軸心と第2スリーブ14の軸心とを合致させることが可能である。そのため、リーク隙間26のオイルの流れを安定させることが可能となる。 The chain tensioner 1 of this embodiment can align the axial center of the first sleeve 13 and the axial center of the second sleeve 14 by fitting the annular projection 50 and the annular recess 51 together. Therefore, it is possible to stabilize the oil flow in the leak gap 26 .
 また、この実施形態のチェーンテンショナ1は、第1スリーブ13のプランジャ10からの突出端が、シリンダ9の閉塞端で傾動可能に支持されているので、第1スリーブ13の軸心と、シリンダ9に挿入されたプランジャ10の軸心との間にずれがある場合にも、そのずれに応じて第1スリーブ13がシリンダ9に対して傾動し、第2スリーブ14の外周の嵌合円筒面25とプランジャ10の内周との間のリーク隙間26の大きさが、軸方向で均一化される。そのため、安定したダンパ力を得ることが可能である。 Further, in the chain tensioner 1 of this embodiment, the end of the first sleeve 13 protruding from the plunger 10 is supported by the closed end of the cylinder 9 so as to be tiltable. When there is a deviation between the axial center of the plunger 10 inserted into the outer circumference of the second sleeve 14, the first sleeve 13 tilts with respect to the cylinder 9 according to the deviation, and the fitting cylindrical surface 25 of the outer circumference of the second sleeve 14 and the inner circumference of the plunger 10, the size of the leak gap 26 is made uniform in the axial direction. Therefore, it is possible to obtain a stable damper force.
 図13に示す環状凸部50と環状凹部51の間に、締め代を設定すると好ましい。このようにすると、その締め代によって第2スリーブ14が第1スリーブ13に固定されるので、第1スリーブ13、第2スリーブ14、リリーフスプリング34、シート部材21、弁体22とを一体化した組立体(アッシー)として扱うことが可能となり、チェーンテンショナ1の組み立て作業性を向上させることができる。 It is preferable to set an interference between the annular convex portion 50 and the annular concave portion 51 shown in FIG. By doing so, the second sleeve 14 is fixed to the first sleeve 13 by the interference, so that the first sleeve 13, the second sleeve 14, the relief spring 34, the seat member 21, and the valve body 22 are integrated. It can be handled as an assembly (assie), and the assembling workability of the chain tensioner 1 can be improved.
 環状凸部50と環状凹部51の間に締め代を設定する場合、その締め代によってリーク隙間26の大きさが変化しないよう、図13に示すように、環状凸部50と環状凹部51とが嵌合する部位の軸方向長さを短く(例えば、図13に示す第2スリーブ14の半径方向の肉厚未満に)設定するとともに、環状凸部50と環状凹部51とが嵌合する部位を、嵌合円筒面25と半径方向に重なり合わないように配置すると好ましい。 When an interference is set between the annular protrusion 50 and the annular recess 51, the annular protrusion 50 and the annular recess 51 are separated from each other as shown in FIG. The axial length of the portion to be fitted is set short (for example, less than the radial thickness of the second sleeve 14 shown in FIG. 13), and the portion to which the annular convex portion 50 and the annular concave portion 51 are fitted is shortened. , preferably arranged so as not to radially overlap the fitting cylindrical surface 25 .
 図14では、シリンダ9の閉塞端に凹テーパ面53を形成した例を示したが、図15に示すように、シリンダ9の閉塞端に凹球面54を形成するようにしてもよい。図15において、第1スリーブ13のプランジャ10からの突出端の部分球面52は、シリンダ9の閉塞端に形成された凹球面54で摺動可能に支持され、その摺動によって第1スリーブ13の傾動を許容するようになっている。 Although FIG. 14 shows an example in which the closed end of the cylinder 9 is formed with a concave tapered surface 53, the closed end of the cylinder 9 may be formed with a concave spherical surface 54 as shown in FIG. In FIG. 15, the partial spherical surface 52 of the protruding end of the first sleeve 13 from the plunger 10 is slidably supported by the concave spherical surface 54 formed at the closed end of the cylinder 9, and the sliding causes the first sleeve 13 to move. It is designed to allow tilting.
 上記各実施形態では、チェーンテンショナ1を、クランクシャフト2の回転をカムシャフト4に伝達するチェーン伝動装置に組み込んだ例を挙げて説明したが、チェーンテンショナ1は、クランクシャフトの回転をオイルポンプやウォーターポンプやスーパーチャージャー等の補機に伝達するチェーン伝動装置や、クランクシャフトの回転をバランサシャフトに伝達するチェーン伝動装置や、ツインカムエンジンの吸気カムと排気カムを互いに連結するチェーン伝動装置に組み込むことも可能である。 In the above embodiments, the chain tensioner 1 is incorporated in a chain transmission device that transmits the rotation of the crankshaft 2 to the camshaft 4. To be incorporated into a chain transmission that transmits power to accessories such as a water pump and a supercharger, a chain transmission that transmits the rotation of a crankshaft to a balancer shaft, or a chain transmission that connects intake and exhaust cams of a twin-cam engine. is also possible.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and range of equivalents of the scope of the claims.
1    チェーンテンショナ
9    シリンダ
10   プランジャ
13   第1スリーブ
14   第2スリーブ
15   チェックバルブ
16   リザーバ室
17   圧力室
18   リターンスプリング
20   弁孔
21   シート部材
22   弁体
25   嵌合円筒面
26   リーク隙間
30   給油通路
33   通油路
34   リリーフスプリング
36   リリーフシート面
37   接触面
38   リリーフバルブ
43   エア抜き溝
44   エア抜き溝
50   環状凸部
51   環状凹部
52   部分球面
53   凹テーパ面
54   凹球面
1 Chain tensioner 9 Cylinder 10 Plunger 13 First sleeve 14 Second sleeve 15 Check valve 16 Reservoir chamber 17 Pressure chamber 18 Return spring 20 Valve hole 21 Seat member 22 Valve body 25 Fitting cylindrical surface 26 Leak gap 30 Oil supply passage 33 Oil passage Path 34 Relief spring 36 Relief seat surface 37 Contact surface 38 Relief valve 43 Air release groove 44 Air release groove 50 Annular protrusion 51 Annular recess 52 Partial spherical surface 53 Concave taper surface 54 Concave spherical surface

Claims (9)

  1.  軸方向の一端を閉塞端とし、軸方向の他端を開口端とするシリンダ(9)と、
     前記シリンダ(9)に軸方向に摺動可能に挿入され、前記シリンダ(9)内への挿入端が開口し、前記シリンダ(9)からの突出端が閉塞した筒状のプランジャ(10)と、
     軸方向の一端が前記プランジャ(10)内に挿入され、軸方向の他端が前記プランジャ(10)から突出した状態となるように前記プランジャ(10)に挿入され、前記プランジャ(10)からの突出端が前記シリンダ(9)の閉塞端で支持された第1スリーブ(13)と、
     前記第1スリーブ(13)の前記プランジャ(10)内への挿入端に接続して設けられ、前記第1スリーブ(13)とは別体の第2スリーブ(14)と、
     前記第1スリーブ(13)と前記プランジャ(10)の内部領域を、前記第1スリーブ(13)の側のリザーバ室(16)と前記プランジャ(10)の側の圧力室(17)とに区画するように前記第2スリーブ(14)に組み込まれ、前記リザーバ室(16)の側から前記圧力室(17)の側へのオイルの流れのみを許容するチェックバルブ(15)と、
     前記第2スリーブ(14)の外周に形成され、前記プランジャ(10)の内周に軸方向に摺動可能に嵌合する嵌合円筒面(25)と、
     前記嵌合円筒面(25)と前記プランジャ(10)の内周との間に形成され、前記圧力室(17)からオイルをリークさせる円筒状のリーク隙間(26)と、
     前記シリンダ(9)の外部から供給されるオイルを前記リザーバ室(16)に導入する給油通路(30)と、
     前記プランジャ(10)を前記シリンダ(9)から突出する方向に付勢するリターンスプリング(18)と、を有し、
     前記チェックバルブ(15)は、前記圧力室(17)と前記リザーバ室(16)の間を連通する弁孔(20)が形成されたシート部材(21)と、前記弁孔(20)の圧力室(17)の側の端部を開閉する弁体(22)とを有し、
     前記シート部材(21)は、前記第2スリーブ(14)に対して軸方向に移動可能に設けられ、
     前記第1スリーブ(13)には、前記シート部材(21)を前記リザーバ室(16)の側から前記圧力室(17)の側に向けて軸方向に押圧するリリーフスプリング(34)が組み込まれ、
     前記第2スリーブ(14)には、前記シート部材(21)を前記圧力室(17)の側から接触して支持する環状のリリーフシート面(36)が形成され、
     前記シート部材(21)と前記リリーフスプリング(34)と前記リリーフシート面(36)は、前記圧力室(17)の圧力が予め設定した圧力よりも大きくなったときに前記圧力室(17)から前記リザーバ室(16)にオイルを逃がすリリーフバルブ(38)を構成するチェーンテンショナ。
    a cylinder (9) having one end in the axial direction as a closed end and the other end in the axial direction as an open end;
    a cylindrical plunger (10) inserted slidably in the cylinder (9) in the axial direction, having an open end for insertion into the cylinder (9) and a closed end protruding from the cylinder (9); ,
    One end in the axial direction is inserted into the plunger (10), the other end in the axial direction is inserted into the plunger (10) so as to protrude from the plunger (10). a first sleeve (13) whose projecting end is supported by the closed end of said cylinder (9);
    a second sleeve (14) connected to the insertion end of the first sleeve (13) into the plunger (10) and separate from the first sleeve (13);
    The internal area of the first sleeve (13) and the plunger (10) is divided into a reservoir chamber (16) on the first sleeve (13) side and a pressure chamber (17) on the plunger (10) side. a check valve (15) incorporated in the second sleeve (14) so as to allow oil to flow only from the reservoir chamber (16) side to the pressure chamber (17) side;
    a fitting cylindrical surface (25) formed on the outer periphery of the second sleeve (14) and axially slidably fitted to the inner periphery of the plunger (10);
    a cylindrical leak gap (26) formed between the fitting cylindrical surface (25) and the inner periphery of the plunger (10) for leaking oil from the pressure chamber (17);
    an oil supply passage (30) for introducing oil supplied from outside the cylinder (9) into the reservoir chamber (16);
    a return spring (18) that biases the plunger (10) in a direction of protruding from the cylinder (9);
    The check valve (15) includes a seat member (21) formed with a valve hole (20) communicating between the pressure chamber (17) and the reservoir chamber (16), and a pressure valve in the valve hole (20). and a valve body (22) for opening and closing the end on the chamber (17) side,
    The sheet member (21) is axially movably provided with respect to the second sleeve (14),
    The first sleeve (13) incorporates a relief spring (34) that axially presses the seat member (21) from the reservoir chamber (16) side toward the pressure chamber (17) side. ,
    The second sleeve (14) is formed with an annular relief seat surface (36) that contacts and supports the seat member (21) from the pressure chamber (17) side,
    The seat member (21), the relief spring (34) and the relief seat surface (36) are released from the pressure chamber (17) when the pressure in the pressure chamber (17) exceeds a preset pressure. A chain tensioner forming a relief valve (38) for releasing oil to the reservoir chamber (16).
  2.  前記第1スリーブ(13)に、前記圧力室(17)から前記リーク隙間(26)を通ってリークしたオイルを前記リザーバ室(16)に戻す通油路(33)が形成されている請求項1に記載のチェーンテンショナ。 An oil passage (33) is formed in the first sleeve (13) to return oil leaked from the pressure chamber (17) through the leak gap (26) to the reservoir chamber (16). 1. The chain tensioner according to 1.
  3.  前記第1スリーブ(13)の前記プランジャ(10)内への挿入部分の外周は、前記嵌合円筒面(25)よりも小径に形成されている請求項1または2に記載のチェーンテンショナ。 The chain tensioner according to claim 1 or 2, wherein the outer circumference of the portion of the first sleeve (13) inserted into the plunger (10) is formed to have a smaller diameter than the fitting cylindrical surface (25).
  4.  前記シート部材(21)の前記リリーフシート面(36)との接触面(37)、または前記リリーフシート面(36)に、前記シート部材(21)が前記リリーフシート面(36)に接触した状態で前記第2スリーブ(14)内のエアを前記リザーバ室(16)に排出するエア抜き溝(43)が形成されている請求項1から3のいずれかに記載のチェーンテンショナ。 A contact surface (37) of the sheet member (21) with the relief sheet surface (36), or a state in which the sheet member (21) is in contact with the relief sheet surface (36). 4. A chain tensioner according to any one of claims 1 to 3, wherein an air release groove (43) is formed for discharging air in said second sleeve (14) to said reservoir chamber (16).
  5.  前記シート部材(21)の前記弁体(22)との接触面に、前記弁体(22)が前記弁孔(20)の圧力室(17)の側の端部を閉じた状態で前記第2スリーブ(14)内のエアを前記弁孔(20)に排出するエア抜き溝(44)が形成されている請求項1から4のいずれかに記載のチェーンテンショナ。 In a state in which the valve body (22) closes the end of the valve hole (20) on the pressure chamber (17) side, the first contact surface of the seat member (21) contacts the valve body (22). 5. The chain tensioner according to any one of claims 1 to 4, further comprising an air release groove (44) for discharging air in the second sleeve (14) to the valve hole (20).
  6.  前記第2スリーブ(14)は、前記第1スリーブ(13)に対する前記第2スリーブ(14)の径方向の移動を許容するように前記第1スリーブ(13)の前記プランジャ(10)内への挿入端で摺動可能に支持されている請求項1から5のいずれかに記載のチェーンテンショナ。 Said second sleeve (14) is adapted to extend said first sleeve (13) into said plunger (10) to allow radial movement of said second sleeve (14) relative to said first sleeve (13). The chain tensioner according to any one of claims 1 to 5, wherein the chain tensioner is slidably supported at the insertion end.
  7.  前記第1スリーブ(13)の前記プランジャ(10)内への挿入端に環状凸部(50)が形成され、
     前記第2スリーブ(14)には、前記環状凸部(50)に嵌合して前記第2スリーブ(14)を前記第1スリーブ(13)に対して径方向に位置決めする環状凹部(51)が形成されている請求項1から5のいずれかに記載のチェーンテンショナ。
    An annular protrusion (50) is formed at the insertion end of the first sleeve (13) into the plunger (10),
    The second sleeve (14) has an annular recess (51) that fits into the annular protrusion (50) to radially position the second sleeve (14) with respect to the first sleeve (13). 6. The chain tensioner according to any one of claims 1 to 5, wherein
  8.  前記第1スリーブ(13)の前記プランジャ(10)からの突出端は、前記シリンダ(9)の閉塞端に軸方向に当接して支持される環状の部分球面(52)を有し、
     前記シリンダ(9)の閉塞端は、前記第1スリーブ(13)の傾動を許容するように前記部分球面(52)を摺動可能に支持する凹テーパ面(53)または凹球面(54)を有する請求項7に記載のチェーンテンショナ。
    the protruding end of the first sleeve (13) from the plunger (10) has an annular partial spherical surface (52) supported in axial contact with the closed end of the cylinder (9);
    The closed end of the cylinder (9) has a concave tapered surface (53) or a concave spherical surface (54) slidably supporting the partial spherical surface (52) to allow tilting of the first sleeve (13). 8. The chain tensioner of claim 7, comprising:
  9.  前記リターンスプリング(18)を前記第2スリーブ(14)で支持した請求項1から8のいずれかに記載のチェーンテンショナ。 The chain tensioner according to any one of claims 1 to 8, wherein the return spring (18) is supported by the second sleeve (14).
PCT/JP2022/010039 2021-03-11 2022-03-08 Chain tensioner WO2022191195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021039131A JP2022138953A (en) 2021-03-11 2021-03-11 chain tensioner
JP2021-039131 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022191195A1 true WO2022191195A1 (en) 2022-09-15

Family

ID=83226766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010039 WO2022191195A1 (en) 2021-03-11 2022-03-08 Chain tensioner

Country Status (2)

Country Link
JP (1) JP2022138953A (en)
WO (1) WO2022191195A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076878A (en) * 2016-11-07 2018-05-17 株式会社椿本チエイン Tensioner
JP2019078299A (en) * 2017-10-20 2019-05-23 株式会社椿本チエイン Tensioner and relief valve unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076878A (en) * 2016-11-07 2018-05-17 株式会社椿本チエイン Tensioner
JP2019078299A (en) * 2017-10-20 2019-05-23 株式会社椿本チエイン Tensioner and relief valve unit

Also Published As

Publication number Publication date
JP2022138953A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
WO2020189403A1 (en) Chain tensioner
WO2020032094A1 (en) Chain tensioner
WO2022191195A1 (en) Chain tensioner
JP2007032678A (en) Hydraulic auto-tensioner
JP7100467B2 (en) Chain tensioner
JP2015155718A (en) hydraulic auto tensioner
WO2021187317A1 (en) Chain tensioner
JP2022138974A (en) chain tensioner
WO2020189487A1 (en) Chain tensioner
JP7250586B2 (en) chain tensioner
WO2023276808A1 (en) Chain tensioner
WO2020184322A1 (en) Chain tensioner
JP2022138949A (en) chain tensioner
JP7186042B2 (en) chain tensioner
JP6250343B2 (en) Hydraulic auto tensioner
WO2022191198A1 (en) Chain tensioner
JP4880441B2 (en) Chain tensioner
JP2022045528A (en) Chain tensioner
JP2021162063A (en) Chain tensioner
JP2020165502A (en) Chain tensioner
JP2018162813A (en) Chain Tensioner
JP2008267456A (en) Hydraulic auto tensioner
JP2017223371A (en) Hydraulic automatic tensioner
JP2007255615A (en) Hydraulic auto tensioner
JP2008256120A (en) Hydraulic automatic tensioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767149

Country of ref document: EP

Kind code of ref document: A1