WO2020189403A1 - Chain tensioner - Google Patents

Chain tensioner Download PDF

Info

Publication number
WO2020189403A1
WO2020189403A1 PCT/JP2020/010249 JP2020010249W WO2020189403A1 WO 2020189403 A1 WO2020189403 A1 WO 2020189403A1 JP 2020010249 W JP2020010249 W JP 2020010249W WO 2020189403 A1 WO2020189403 A1 WO 2020189403A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
cylinder
return spring
chain tensioner
chain
Prior art date
Application number
PCT/JP2020/010249
Other languages
French (fr)
Japanese (ja)
Inventor
好一 鬼丸
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2020189403A1 publication Critical patent/WO2020189403A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains

Definitions

  • the present invention relates to a chain tensioner used to maintain tension in a chain.
  • Chain transmission devices used in engines such as automobiles include, for example, a device that transmits the rotation of a crankshaft to a camshaft, a device that transmits the rotation of a crankshaft to an auxiliary machine such as an oil pump, and a device that transmits the rotation of a crankshaft.
  • auxiliary machine such as an oil pump
  • auxiliary machine such as an oil pump
  • auxiliary machine such as an oil pump
  • auxiliary machine such as an oil pump
  • a device that transmits the rotation of a crankshaft There are those that transmit to the balancer shaft, and those that connect the intake cam and exhaust cam of a twin cam engine to each other. Chain tensioners are used to keep the chain tension in these chain transmissions within the proper range.
  • the chain tensioner generally generates a hydraulic damper by supplying oil from the engine to keep the fluctuation of the tension of the chain constant.
  • oil supply is stopped when the engine is stopped, it may not be possible to generate a predetermined hydraulic damper after the engine is started until the pressure chamber inside the chain tensioner is filled with oil.
  • a mechanism called a no-back mechanism to prevent the plunger from being pushed in more than a certain amount.
  • the chain tensioner 50 shown in FIG. 6 has a tubular cylinder 9 having one end open and the other end closed, and a tubular plunger 10 slidably supported by the inner circumference of the cylinder 9 in the axial direction.
  • a pressure chamber 18 whose volume changes with the axial movement of the plunger 10 and a check valve 20 provided at the insertion end of the plunger 10 into the cylinder 9 to allow only the flow of oil from the reservoir chamber 27 to the pressure chamber 18. And have.
  • the cylinder 9 has an oil supply passage 31 for introducing oil supplied by an engine oil pump or the like inside, and the oil supply passage 31 is formed between the outer circumference of the plunger 10 and the inner circumference of the cylinder 9. It is open to the supply space 28.
  • a leak gap 19 is formed between the outer circumference of the plunger 10 and the inner circumference of the cylinder 9.
  • the leak gap 19 is composed of a minute gap, and reaches the opening at one end of the cylinder 9 from the pressure chamber 18 through the oil supply space 28. Further, the leak gap 19, the oil supply space 28, and the reservoir chamber 27 are communicated with each other by a connecting passage 30. Further, in order to make the plunger 10 follow the fluttering of the chain, a return spring 33 for applying thrust to the plunger 10 is provided.
  • the tension of the chain moves the plunger 10 in the direction of being pushed toward the other end side in the cylinder 9 (hereinafter referred to as "pushing direction") to absorb the tension of the chain.
  • the check valve 20 is closed due to the pressure increase on the pressure chamber 18 side, and the oil flows out from the pressure chamber 18 to the oil supply space 28 side through the leak gap 19.
  • a damper force is generated by the viscous resistance of the oil passing through the leak gap 19 to prevent the chain from fluttering.
  • a part of the oil flows out of the chain tensioner 50 through the leak gap 19 on one end side of the oil supply space 28 and returns to the engine side.
  • the leak gap 19 is a minute gap and the resistance of the flow path is large, most of the oil is returned from the oil supply space 28 to the reservoir chamber 27 through the communication passage 30.
  • the urging force of the return spring 33 causes the plunger 10 to move in the direction of projecting from the cylinder 9 toward one end (hereinafter referred to as "projecting direction"), resulting in slackening of the chain.
  • projecting direction the direction of projecting from the cylinder 9 toward one end
  • the check valve 20 opens and oil flows from the reservoir chamber 27 into the pressure chamber 18, so that the plunger 10 quickly moves in the protruding direction.
  • the hydraulic damper force is generated by the oil stored inside the tensioner immediately after the engine is started until the oil is supplied to the tensioner. Therefore, it is advantageous that the amount of stored oil increases when the space volume inside the plunger 10 is large.
  • the size (length and diameter) of the plunger 10 which causes a problem that the tensioner becomes large and the weight increases.
  • the problem to be solved by this invention is to make a chain tensioner that generates an appropriate thrust by following a change in tension or fluttering of the chain.
  • the present invention presents a tubular cylinder having one end open and the other end closed, and an opening end that is slidably supported in the axial direction on the inner circumference of the cylinder and is inserted into the cylinder.
  • a tubular plunger whose protruding end from the cylinder is closed, a return spring that urges the plunger in a direction protruding from one end of the cylinder, and a volume that changes with the axial movement of the plunger.
  • a pressure chamber formed in the cylinder a check valve that allows only the flow of oil from the inside of the plunger to the pressure chamber, an oil supply passage that introduces oil from the outside to the inside of the cylinder, and the return spring.
  • a chain tensioner having an auxiliary spring having a smaller elastic force and urging the plunger in a direction protruding from one end of the cylinder was adopted.
  • the return spring and the auxiliary spring are coil springs, and the auxiliary spring can adopt a configuration in which the coil diameter is larger than that of the return spring and is arranged coaxially with the return spring. ..
  • the return spring and the auxiliary spring can adopt a configuration in which the winding directions of the coil springs are opposite to each other.
  • the check valve comprises a valve seat addressed to the end face of the plunger facing the other end, a valve hole formed in the valve seat, and a valve body that opens and closes the valve hole.
  • the return spring can adopt a configuration in which the valve seat is pressed toward the end face side.
  • the return spring can adopt a structure having a tapered shape in which the end face side has a small diameter.
  • the total thrust (unit: N) of the return spring and the auxiliary spring within the stroke range of the plunger is 0.8 times or more the numerical value of the mass (unit: g) of the plunger.
  • the set configuration can be adopted.
  • the present invention can be a chain tensioner that generates an appropriate thrust by following a change in tension or fluttering of the chain.
  • FIG. 1 shows a chain transmission device incorporating the chain tensioner 1 according to the embodiment of the present invention.
  • a sprocket 3 fixed to the crankshaft 2 of the engine and a sprocket 5 fixed to each of the two camshafts 4 are connected via a chain 6, and the chain 6 is connected to the crankshaft.
  • the rotation of 2 is transmitted to the camshaft 4, and the rotation of the camshaft 4 opens and closes the valve of the combustion chamber.
  • the rotation direction of the crankshaft 2 when the engine is operating is constant (clockwise in FIG. 1), and at this time, the chain 6 is pulled into the sprocket 3 as the crankshaft 2 rotates (in FIG. 1).
  • the portion on the right side) is the tension side, and the portion on the side sent out from the sprocket 3 (left side in FIG. 1) is the slack side.
  • a chain guide 8 swingably supported around the fulcrum shaft 7 is in contact with the loosened portion of the chain 6.
  • the chain tensioner 1 presses the chain 6 via the chain guide 8.
  • the chain tensioner 1 is supported by a cylindrical cylinder 9 having one end open and the other end closed so as to be slidable in the axial direction on the inner circumference of the cylinder 9. It is equipped with a cylinder 10. The protruding end 17 of the plunger 10 protruding from one end of the cylinder 9 presses the chain guide 8.
  • the cylinder 9 is integrally molded with a metal (for example, an aluminum alloy).
  • the cylinder 9 is fixed to an engine wall surface such as a cylinder block by tightening bolts 12 inserted into holes 11a (see FIG. 2B) of a plurality of mounting pieces 11 integrally formed on the outer periphery of the cylinder 9. .. Further, the cylinder 9 is attached to the engine wall surface so that the projecting direction of the plunger 10 from the cylinder 9 is obliquely upward.
  • the plunger 10 is formed in a tubular shape in which the insertion end into the cylinder 9 at the other end is open and the protruding end 17 from the cylinder 9 at one end is closed.
  • the material of the plunger 10 is an iron-based material (for example, a steel material such as SCM (chrome molybdenum steel) or SCr (chrome steel)).
  • a pressure chamber 18 whose volume changes with the axial movement of the plunger 10 is formed.
  • the volume of the pressure chamber 18 increases when the plunger 10 moves in the protruding direction, and decreases when the plunger 10 moves in the pushing direction.
  • a check valve that allows only the flow of oil from the inside of the plunger 10 to the pressure chamber 18 side at the insertion end of the plunger 10 into the cylinder 9 and regulates the flow of oil from the pressure chamber 18 to the inside of the plunger 10. 20 is provided.
  • the check valve 20 has a valve seat 21 provided at the insertion end of the plunger 10 into the cylinder 9, a valve hole 21a provided in the valve seat 21, and a spherical shape that opens and closes the valve hole 21a from the pressure chamber 18 side. It is composed of a check ball (hereinafter referred to as a check ball 25) which is a valve body 25 of the above, and a retainer 26 which regulates a moving range of the check ball 25.
  • the retainer 26 includes a holding portion 26a that prevents the check ball 25 from detaching toward the pressure chamber 18, and a hem portion 26b that supports the holding portion 26a on the valve seat 21.
  • the radial holding portion 26a rising from the hem portion 26b toward the pressure chamber 18 side is fitted into a cylindrical protrusion around the valve hole 21a of the valve seat 21.
  • the inside of the plunger 10 is a reservoir chamber 27 having a diameter larger than the diameter of the valve hole 21a of the check valve 20.
  • the valve seat 21 of the check valve 20 is attached to the other end of the reservoir chamber 27.
  • the valve seat 21 has a cylindrical or disk shape, and the valve hole 21a is formed so as to penetrate one end side and the other end side of the axis of the valve seat 21.
  • a leak gap 19 for leaking oil from the inside of the pressure chamber 18 to the outside of the pressure chamber 18 is provided between the outer circumference 15 of the plunger 10 and the inner circumference 14 of the cylinder 9.
  • the size of the leak gap 19 can be set in the range of 0.005 to 0.100 mm, for example, by the radius difference between the outer circumference 15 of the plunger 10 and the inner circumference 14 of the cylinder 9.
  • an oil supply space 28 communicating with the leak gap 19 is formed between the outer circumference 15 of the plunger 10 and the inner circumference 14 of the cylinder 9.
  • the oil supply space 28 is formed in an annular shape between the recess 16 formed on the entire outer circumference of the plunger 10 and the inner circumference 14 of the cylinder 9.
  • the recess 16 for forming the oil supply space 28 is provided in a range where the plunger 10 communicates with the oil supply passage 31 even when the plunger 10 moves in the protruding direction and the pushing direction, respectively, and one end side and the other end thereof sandwich the recess 16. There are leak gaps 19 on each side.
  • a return spring 33 is incorporated in the pressure chamber 18.
  • the other end 33b of the return spring 33 is supported by the bottom 13 of the cylinder 9, and one end 33a presses the plunger 10 and urges the plunger 10 in the protruding direction by the pressing.
  • the pressure chamber 18 incorporates an auxiliary spring 34 having an elastic force smaller than that of the return spring 33.
  • the other end 34b of the auxiliary spring 34 is supported by the bottom portion 13 of the cylinder 9, one end 34a presses the plunger 10, and the pressing forcees the plunger 10 in the projecting direction.
  • the return spring 33 and the auxiliary spring 34 are both composed of a coil spring in which a wire rod is spirally wound.
  • the outer diameter of the auxiliary spring 34 is larger than the outer diameter of the return spring 33, and the auxiliary spring 34 is arranged on the outer diameter side of the return spring 33. Further, the auxiliary spring 34 and the return spring 33 are arranged coaxially so that the axis of the auxiliary spring 34 coincides with the axis of the return spring 33.
  • the plunger 10 is provided with a connecting passage 30 that communicates between the oil supply space 28 and the reservoir chamber 27.
  • the communication passage 30 also communicates with the leak gap 19 through the oil supply space 28.
  • the communication passage 30 is provided so as to be located on the upper half circumference of the plunger 10 with the mounting piece 11 of the cylinder 9 fixed to the engine wall surface. Specifically, the communication passage 30 is provided in the radial upper portion of the plunger 10 and within a range corresponding to half of the outer peripheral dimension of the plunger 10. In particular, in this embodiment, the communication passage 30 is a plunger. It is provided so as to be located at the top of the outer circumference of 10. Therefore, when air is present inside the reservoir chamber 27, the air can be smoothly discharged from the communication passage 30.
  • the cylinder 9 is provided with a refueling passage 31 for introducing oil from the outside to the inside of the cylinder 9.
  • the refueling passage 31 is a through hole that penetrates the cylinder 9 in the radial direction.
  • the inlet of the refueling passage 31 (see FIG. 2B) is connected to the oil supply port on the wall surface side of the engine.
  • the outlet of the oil supply passage 31 opens to the cylindrical surface on the inner circumference of the cylinder 9 and faces the oil supply space 28.
  • the oil supplied from the oil pump of the engine is introduced from the outside to the inside of the cylinder 9 through the oil supply passage 31.
  • this chain tensioner 1 An operation example of this chain tensioner 1 will be described.
  • the tension of the chain 6 becomes larger than the thrust of the return spring 33 that urges the plunger 10
  • the tension of the chain 6 causes the plunger 10 to move in the pushing direction into the cylinder 9, and the tension of the chain 6 is increased.
  • the valve seat 21 moves to the pressure chamber 18 side together with the plunger 10. Since the volume of the pressure chamber 18 is reduced according to the movement of the plunger 10 and the valve seat 21, the pressure of the pressure chamber 18 becomes higher than the pressure of the reservoir chamber 27, and the check valve 20 is closed to seal the pressure chamber 18.
  • most of the oil flowing out from the pressure chamber 18 through the leak gap 19 returns to the reservoir chamber 27 through the oil supply space 28 and the communication passage 30.
  • a damper force is generated by the viscous resistance of the oil flowing through the leak gap 19, and the chain 6 is prevented from fluttering.
  • the plunger 10 moves in the protruding direction by the urging force of the return spring 33 and the auxiliary spring 34 to absorb the slack of the chain 6.
  • the pressure in the pressure chamber 18 becomes lower than the pressure in the reservoir chamber 27, and the check valve 20 opens.
  • the pressure of the oil pump introduces oil from the outside of the cylinder 9 into the reservoir chamber 27 through the oil supply passage 31, the oil supply space 28, and the communication passage 30. Therefore, the pressure drop in the reservoir chamber 27 is unlikely to occur, and the chain 6 has excellent followability to slack.
  • the chain tensioner 1 since the chain tensioner 1 has a reservoir chamber 27 having a diameter larger than the diameter of the valve hole 21a of the check valve 20 formed inside the plunger 10, a large amount of oil is stored inside the plunger 10. Can be secured. Therefore, even when the oil is not supplied from the engine to the chain tensioner 1 immediately after the engine is started, the damper force can be generated by using the oil stored in the reservoir chamber 27.
  • the return spring 33 is required to have a sufficient thrust (elastic force) to press the plunger 10 in the protruding direction in order to absorb the slack of the chain 6.
  • the return spring 33 that generates a large thrust is adopted, the diameter (outer diameter) and the length (total length) of the return spring 33 become large, so that the space in the pressure chamber 18 also needs to be large. Therefore, there is a problem that the size of the entire tensioner becomes large. Therefore, in the present invention, in order to obtain the necessary thrust of the plunger 10 without increasing the size of the entire tensioner, two coil springs that give the thrust to the plunger 10 are adopted. That is, as a coil spring that applies thrust to the plunger 10, in addition to the return spring 33, an auxiliary spring 34 having a coil outer diameter different from that of the return spring 33 is arranged.
  • valve seat 21 of the check valve 20 is not press-fitted and fixed to the plunger 10, and the valve seat 21 is an end face facing the other end side of the plunger 10. It is addressed to 10a. Further, one end 34a of the auxiliary spring 34 directly contacts the end surface 10b of the portion closer to the outer diameter of the plunger 10 and presses the plunger 10 in the projecting direction. Further, the return spring 33 abuts on the hem portion 26b of the retainer 26 which is in contact with the end surface 21b of the valve seat 21 and presses the plunger 10 in the projecting direction via the valve seat 21.
  • the valve seat 21 of the check valve 20 and the plunger 10 may separate from each other. If the check valve 20 separates from the plunger 10 when the plunger 10 protrudes, the hydraulic damper may not operate normally. Therefore, in the present invention, when the auxiliary spring 34 is added, the thrust of the auxiliary spring 34 to the plunger 10 is set so as not to exceed the thrust of the return spring 33 in the stroke range of the plunger 10 in the state of using the chain tensioner 1. are doing. This prevents the valve seat 21 from separating from the plunger 10.
  • the total thrust (unit: N / Newton) of the return spring 33 and the auxiliary spring 34 within the stroke range of the plunger 10 is 0.8 times or more the value of the mass (unit: g / gram) of the plunger 10.
  • the tracking failure of the plunger 10 occurs under normal usage conditions (for example, a 4-cylinder engine, a rotation speed of the crankshaft 2 of the engine of 8000 rpm, and an acceleration of 86 G at a total mass of 0.6 mm of the plunger 10). It is possible to provide stable damper characteristics.
  • FIG. 5 is a graph showing the relationship between the stroke amount of the plunger 10 and the thrust applied to the plunger 10.
  • Reference numeral A in the figure indicates the thrust of the return spring 33 with respect to the plunger 10.
  • Reference numeral B indicates the thrust of the auxiliary spring 34 with respect to the plunger 10.
  • Reference numeral C indicates the thrust required to be applied to the plunger 10.
  • the thrust B of the auxiliary spring 34 has a value smaller than the thrust A of the return spring 33 over the entire stroke range of the plunger 10.
  • the total thrust A + B of the return spring 33 and the auxiliary spring 34 is set to be equal to or greater than the required thrust C of the plunger 10 over the entire stroke range of the plunger 10.
  • the return spring 33 and the auxiliary spring 34 have the spiral winding directions of the coil springs opposite to each other. That is, when the winding direction of the spiral of the return spring 33 is one direction around the axis from one end 33a to the other end 33b, the winding direction of the spiral of the auxiliary spring 34 is the axis from one end 34a to the other end 34b. It is in the other direction. In this way, by reversing the winding directions of the coil springs of the return spring 33 and the auxiliary spring 34, the springs are prevented from interfering with each other. Further, in particular, even when the body bending of the spring is large when the spring is compressed, contact between the two can be prevented and a stable thrust can be obtained.
  • the auxiliary spring 34 is a coil spring having a constant outer diameter over the entire length, whereas the return spring 33 has one end 33a facing the end face 10a side and the other end facing the bottom 13 side. It is composed of a tapered coil spring having a diameter smaller than 33b. Further, the hem portion 26b of the retainer 26 is located around the valve hole 21a of the valve seat 21 and is located relatively closer to the inner diameter. Therefore, one end 33a on the small diameter side of the return spring 33 easily presses the hem portion 26b of the retainer 26, and the retainer 26 is easily held by the valve seat 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

A chain tensioner that comprises a cylindrical plunger (10) that is slidably supported in a cylinder (9), a return spring (33) that urges the plunger (10) in the direction in which the plunger (10) protrudes from one end of the cylinder (9), a check valve (20) that is arranged between the plunger (10) and a pressure chamber (18) that is formed inside the cylinder (9), an oil supply passage (31) that connects the inside and the outside of the cylinder (9), and an auxiliary spring (34) that has less elastic force than the return spring (33) and urges the plunger (10) in the direction in which the plunger (10) protrudes from the one end of the cylinder (9).

Description

チェーンテンショナChain tensioner
 この発明は、チェーンの張力保持に用いられるチェーンテンショナに関する。 The present invention relates to a chain tensioner used to maintain tension in a chain.
 自動車等のエンジンに使用されるチェーン伝動装置として、例えば、クランクシャフトの回転をカムシャフトに伝達するものや、クランクシャフトの回転をオイルポンプ等の補機に伝達するものや、クランクシャフトの回転をバランサシャフトに伝達するものや、あるいは、ツインカムエンジンの吸気カムと排気カムを互いに連結するもの等がある。これらのチェーン伝動装置のチェーンの張力を適正範囲に保つために、チェーンテンショナが使用される。 Chain transmission devices used in engines such as automobiles include, for example, a device that transmits the rotation of a crankshaft to a camshaft, a device that transmits the rotation of a crankshaft to an auxiliary machine such as an oil pump, and a device that transmits the rotation of a crankshaft. There are those that transmit to the balancer shaft, and those that connect the intake cam and exhaust cam of a twin cam engine to each other. Chain tensioners are used to keep the chain tension in these chain transmissions within the proper range.
 チェーンテンショナは、一般的に、エンジンからのオイル供給により油圧ダンパを発生させて、チェーンの張力の変動を一定に保っている。しかし、エンジン停止時はオイル供給が止まっているため、エンジン始動後、チェーンテンショナ内部の圧力室にオイルが充填されるまでの間は、所定の油圧ダンパを発生させることができない場合がある。このような場合、チェーンテンショナが大きく押し込まれて、チェーンのばたつきや異音が発生するという問題がある。そこで、多くのチェーンテンショナでは、ノーバック機構と呼ばれる機構を備え、プランジャが一定量を超えて押し込まれないようにしている。 The chain tensioner generally generates a hydraulic damper by supplying oil from the engine to keep the fluctuation of the tension of the chain constant. However, since the oil supply is stopped when the engine is stopped, it may not be possible to generate a predetermined hydraulic damper after the engine is started until the pressure chamber inside the chain tensioner is filled with oil. In such a case, there is a problem that the chain tensioner is pushed in greatly and the chain flutters or makes an abnormal noise. Therefore, many chain tensioners are equipped with a mechanism called a no-back mechanism to prevent the plunger from being pushed in more than a certain amount.
 また、チェーンテンショナ内部でオイルを循環することで、チェーンテンショナの外部へのオイルの流出を抑制するとともに、そのオイルをチェーンテンショナ内部に貯留させることで、エンジン始動直後から油圧ダンパを発生できるようにしたチェーンテンショナもある(例えば、特許文献1、2参照)。 In addition, by circulating the oil inside the chain tensioner, the outflow of oil to the outside of the chain tensioner is suppressed, and by storing the oil inside the chain tensioner, a hydraulic damper can be generated immediately after the engine is started. There is also a chain tensioner (see, for example, Patent Documents 1 and 2).
 例えば、図6に示すチェーンテンショナ50は、一端が開口し、他端が閉じた筒状のシリンダ9と、そのシリンダ9の内周で軸方向へ摺動可能に支持された筒状のプランジャ10と、そのプランジャ10をシリンダ9から一端側へ突出する方向に付勢するリターンスプリング33と、プランジャ10の内部に形成されたリザーバ室27と、シリンダ9内においてプランジャ10の他端側に形成されプランジャ10の軸方向移動に伴って容積が変化する圧力室18と、プランジャ10のシリンダ9内への挿入端に設けられリザーバ室27から圧力室18へのオイルの流れのみを許容するチェックバルブ20と、を備えている。 For example, the chain tensioner 50 shown in FIG. 6 has a tubular cylinder 9 having one end open and the other end closed, and a tubular plunger 10 slidably supported by the inner circumference of the cylinder 9 in the axial direction. A return spring 33 for urging the plunger 10 in a direction protruding from the cylinder 9 toward one end, a reservoir chamber 27 formed inside the plunger 10, and the other end side of the plunger 10 in the cylinder 9. A pressure chamber 18 whose volume changes with the axial movement of the plunger 10 and a check valve 20 provided at the insertion end of the plunger 10 into the cylinder 9 to allow only the flow of oil from the reservoir chamber 27 to the pressure chamber 18. And have.
 シリンダ9は、エンジンのオイルポンプ等によって供給されるオイルを内側に導入する給油通路31を有し、その給油通路31が、プランジャ10の外周とシリンダ9の内周との間に形成されたオイル供給空間28に開口している。プランジャ10の外周とシリンダ9の内周の間にはリーク隙間19が形成されている。リーク隙間19は微小な隙間で構成され、圧力室18からオイル供給空間28を経てシリンダ9の一端の開口に至っている。また、リーク隙間19及びオイル供給空間28とリザーバ室27とは連通路30で連通している。また、プランジャ10をチェーンのバタつきに追従させるため、プランジャ10に推力を付与するリターンスプリング33を設けている。 The cylinder 9 has an oil supply passage 31 for introducing oil supplied by an engine oil pump or the like inside, and the oil supply passage 31 is formed between the outer circumference of the plunger 10 and the inner circumference of the cylinder 9. It is open to the supply space 28. A leak gap 19 is formed between the outer circumference of the plunger 10 and the inner circumference of the cylinder 9. The leak gap 19 is composed of a minute gap, and reaches the opening at one end of the cylinder 9 from the pressure chamber 18 through the oil supply space 28. Further, the leak gap 19, the oil supply space 28, and the reservoir chamber 27 are communicated with each other by a connecting passage 30. Further, in order to make the plunger 10 follow the fluttering of the chain, a return spring 33 for applying thrust to the plunger 10 is provided.
 エンジン作動中にチェーンの張力が大きくなると、そのチェーンの張力によって、プランジャ10がシリンダ9内の他端側に押し込まれる方向(以下、「押し込み方向」と称する)に移動し、チェーンの緊張を吸収する。このとき、圧力室18側の圧力増大によってチェックバルブ20は閉じられ、オイルは、圧力室18からリーク隙間19を通ってオイル供給空間28側へ流出する。このリーク隙間19を通るオイルの粘性抵抗によってダンパ力が発生し、チェーンのバタつきを防止する。このとき、オイルの一部は、オイル供給空間28よりも一端側のリーク隙間19を通じてチェーンテンショナ50の外部へ流出し、エンジン側へ戻っていく。しかし、リーク隙間19は微小な隙間であり流路の抵抗が大きいので、大部分のオイルは、連通路30を通じてオイル供給空間28からリザーバ室27へと戻される。 When the tension of the chain increases while the engine is operating, the tension of the chain moves the plunger 10 in the direction of being pushed toward the other end side in the cylinder 9 (hereinafter referred to as "pushing direction") to absorb the tension of the chain. To do. At this time, the check valve 20 is closed due to the pressure increase on the pressure chamber 18 side, and the oil flows out from the pressure chamber 18 to the oil supply space 28 side through the leak gap 19. A damper force is generated by the viscous resistance of the oil passing through the leak gap 19 to prevent the chain from fluttering. At this time, a part of the oil flows out of the chain tensioner 50 through the leak gap 19 on one end side of the oil supply space 28 and returns to the engine side. However, since the leak gap 19 is a minute gap and the resistance of the flow path is large, most of the oil is returned from the oil supply space 28 to the reservoir chamber 27 through the communication passage 30.
 一方、エンジン作動中にチェーンの張力が小さくなると、リターンスプリング33の付勢力によって、プランジャ10がシリンダ9から一端側へ突出する方向(以下、「突出方向」と称する)に移動し、チェーンの弛みを吸収する。このとき、チェックバルブ20が開き、リザーバ室27から圧力室18にオイルが流入するので、プランジャ10は速やかに突出方向へ移動する。 On the other hand, when the tension of the chain decreases during engine operation, the urging force of the return spring 33 causes the plunger 10 to move in the direction of projecting from the cylinder 9 toward one end (hereinafter referred to as "projecting direction"), resulting in slackening of the chain. To absorb. At this time, the check valve 20 opens and oil flows from the reservoir chamber 27 into the pressure chamber 18, so that the plunger 10 quickly moves in the protruding direction.
特公平3-010819号公報Special Fair 3-010819 Gazette 特開2015-183767号公報Japanese Unexamined Patent Publication No. 2015-183767
 図6に記載の従来のチェーンテンショナ50では、エンジン始動直後において、オイルがテンショナへ供給されるまでの間は、テンショナの内部に貯留したオイルで油圧ダンパ力を発生させることとなる。このため、プランジャ10の内部の空間容積が大きいほうが、貯留オイルが増加し有利である。しかし、プランジャ10の内部の空間容積を増やすには、プランジャ10のサイズ(長さや直径)を大きくする必要があり、これは、テンショナの大型化や重量の増加につながってしまうという問題がある。 In the conventional chain tensioner 50 shown in FIG. 6, the hydraulic damper force is generated by the oil stored inside the tensioner immediately after the engine is started until the oil is supplied to the tensioner. Therefore, it is advantageous that the amount of stored oil increases when the space volume inside the plunger 10 is large. However, in order to increase the internal space volume of the plunger 10, it is necessary to increase the size (length and diameter) of the plunger 10, which causes a problem that the tensioner becomes large and the weight increases.
 また、プランジャ10の推力不足を補う手段として、リターンスプリング33の弾性力を強化する方法が公知である。しかし、テンショナのサイズを従来と同等とする場合、内部に組み込むことができるリターンスプリング33の線径や巻き数には、スペース上の制限がある。このため、リターンスプリング33の強化によって、プランジャ10に付与される推力を増強するには限界があった。その結果、プランジャの質量と使用条件(加速度)に対して、スプリングによる推力が不足する場合、プランジャの追従不良が生じ、チェーンのばたつきや異音の発生につながる可能性があった。 Further, as a means for compensating for the insufficient thrust of the plunger 10, a method of strengthening the elastic force of the return spring 33 is known. However, when the size of the tensioner is the same as that of the conventional one, there is a space limitation on the wire diameter and the number of turns of the return spring 33 that can be incorporated inside. Therefore, there is a limit to increasing the thrust applied to the plunger 10 by strengthening the return spring 33. As a result, if the thrust by the spring is insufficient with respect to the mass of the plunger and the usage conditions (acceleration), the plunger may not follow properly, which may lead to fluttering of the chain and generation of abnormal noise.
 そこで、この発明が解決しようとする課題は、チェーンの張力変化やばたつきに追随して適切な推力を発生するチェーンテンショナとすることである。 Therefore, the problem to be solved by this invention is to make a chain tensioner that generates an appropriate thrust by following a change in tension or fluttering of the chain.
 上記課題を解決するため、この発明は、一端が開口し他端が閉じた筒状のシリンダと、前記シリンダの内周で軸方向に摺動可能に支持され前記シリンダ内への挿入端が開口し前記シリンダからの突出端が閉塞した筒状のプランジャと、前記プランジャを前記シリンダの一端から突出する方向に付勢するリターンスプリングと、前記プランジャの軸方向移動に伴って容積が変化するように前記シリンダ内に形成された圧力室と、前記プランジャの内部から前記圧力室へのオイルの流れのみを許容するチェックバルブと、前記シリンダの外側から内側へオイルを導入する給油通路と、前記リターンスプリングよりも小さい弾性力を有し前記プランジャを前記シリンダの一端から突出する方向に付勢する補助スプリングと、を備えるチェーンテンショナを採用した。 In order to solve the above problems, the present invention presents a tubular cylinder having one end open and the other end closed, and an opening end that is slidably supported in the axial direction on the inner circumference of the cylinder and is inserted into the cylinder. A tubular plunger whose protruding end from the cylinder is closed, a return spring that urges the plunger in a direction protruding from one end of the cylinder, and a volume that changes with the axial movement of the plunger. A pressure chamber formed in the cylinder, a check valve that allows only the flow of oil from the inside of the plunger to the pressure chamber, an oil supply passage that introduces oil from the outside to the inside of the cylinder, and the return spring. A chain tensioner having an auxiliary spring having a smaller elastic force and urging the plunger in a direction protruding from one end of the cylinder was adopted.
 ここで、前記リターンスプリング及び前記補助スプリングはコイルスプリングであり、前記補助スプリングは前記リターンスプリングよりもコイル径が大径で且つ前記リターンスプリングと同軸状に配置されている構成を採用することができる。 Here, the return spring and the auxiliary spring are coil springs, and the auxiliary spring can adopt a configuration in which the coil diameter is larger than that of the return spring and is arranged coaxially with the return spring. ..
 また、前記リターンスプリング及び前記補助スプリングは、コイルスプリングの巻方向が互いに反対方向である構成を採用することができる。 Further, the return spring and the auxiliary spring can adopt a configuration in which the winding directions of the coil springs are opposite to each other.
 これらの各態様において、前記チェックバルブは、前記プランジャの他端側へ向く端面に宛がわれるバルブシートと、前記バルブシートに形成された弁孔と、前記弁孔を開閉する弁体と、を備え、前記リターンスプリングは前記バルブシートを前記端面側へ押圧している構成を採用することができる。 In each of these aspects, the check valve comprises a valve seat addressed to the end face of the plunger facing the other end, a valve hole formed in the valve seat, and a valve body that opens and closes the valve hole. The return spring can adopt a configuration in which the valve seat is pressed toward the end face side.
 また、前記リターンスプリングは前記端面側が小径となるテーパー形状である構成を採用することができる。 Further, the return spring can adopt a structure having a tapered shape in which the end face side has a small diameter.
 これらの各態様において、前記プランジャのストローク範囲内における前記リターンスプリングと前記補助スプリングの合計推力(単位:N)は、前記プランジャの質量(単位:g)の数値の0.8倍以上の数値に設定されている構成を採用することができる。 In each of these embodiments, the total thrust (unit: N) of the return spring and the auxiliary spring within the stroke range of the plunger is 0.8 times or more the numerical value of the mass (unit: g) of the plunger. The set configuration can be adopted.
 この発明は、チェーンの張力変化やばたつきに追随して適切な推力を発生するチェーンテンショナとすることができる。 The present invention can be a chain tensioner that generates an appropriate thrust by following a change in tension or fluttering of the chain.
この発明の実施形態のチェーンテンショナを組み込んだチェーン伝動装置を示す全体図Overall view which shows the chain transmission device which incorporated the chain tensioner of embodiment of this invention. 図1のチェーンテンショナの右側面図Right side view of the chain tensioner in FIG. 図2Aの背面図Rear view of FIG. 2A この発明の実施形態のチェーンテンショナを示す縦断面図Longitudinal sectional view showing a chain tensioner according to an embodiment of the present invention. 図3の要部拡大図Enlarged view of the main part of FIG. この発明の実施形態のチェーンテンショナの特性を模式的に示すグラフ図Graph diagram schematically showing the characteristics of the chain tensioner according to the embodiment of the present invention. 従来例のチェーンテンショナを示す縦断面図Longitudinal section showing a conventional chain tensioner
 図1に、この発明の実施形態のチェーンテンショナ1を組み込んだチェーン伝動装置を示す。このチェーン伝動装置は、エンジンのクランクシャフト2に固定されたスプロケット3と、2本のカムシャフト4にそれぞれ固定されたスプロケット5とがチェーン6を介して連結されており、そのチェーン6がクランクシャフト2の回転をカムシャフト4に伝達し、そのカムシャフト4の回転により燃焼室のバルブの開閉を行なう。 FIG. 1 shows a chain transmission device incorporating the chain tensioner 1 according to the embodiment of the present invention. In this chain transmission device, a sprocket 3 fixed to the crankshaft 2 of the engine and a sprocket 5 fixed to each of the two camshafts 4 are connected via a chain 6, and the chain 6 is connected to the crankshaft. The rotation of 2 is transmitted to the camshaft 4, and the rotation of the camshaft 4 opens and closes the valve of the combustion chamber.
 エンジンが作動しているときのクランクシャフト2の回転方向は一定(図1では右回転)であり、このときチェーン6は、クランクシャフト2の回転に伴ってスプロケット3に引き込まれる側(図1の右側)の部分が張り側となり、スプロケット3から送り出される側(図1の左側)の部分が弛み側となる。そして、チェーン6の弛み側の部分には、支点軸7を中心として揺動可能に支持されたチェーンガイド8が接触している。チェーンテンショナ1は、チェーンガイド8を介してチェーン6を押圧している。 The rotation direction of the crankshaft 2 when the engine is operating is constant (clockwise in FIG. 1), and at this time, the chain 6 is pulled into the sprocket 3 as the crankshaft 2 rotates (in FIG. 1). The portion on the right side) is the tension side, and the portion on the side sent out from the sprocket 3 (left side in FIG. 1) is the slack side. Then, a chain guide 8 swingably supported around the fulcrum shaft 7 is in contact with the loosened portion of the chain 6. The chain tensioner 1 presses the chain 6 via the chain guide 8.
 図2A、図2B及び図3に示すように、チェーンテンショナ1は、一端が開口し、他端が閉じた筒状のシリンダ9と、シリンダ9の内周で軸方向に摺動可能に支持されたプランジャ10とを備えている。シリンダ9の一端から突出するプランジャ10の突出端17は、チェーンガイド8を押圧している。 As shown in FIGS. 2A, 2B and 3, the chain tensioner 1 is supported by a cylindrical cylinder 9 having one end open and the other end closed so as to be slidable in the axial direction on the inner circumference of the cylinder 9. It is equipped with a cylinder 10. The protruding end 17 of the plunger 10 protruding from one end of the cylinder 9 presses the chain guide 8.
 シリンダ9は、金属(例えば、アルミ合金)で一体成形されている。シリンダ9は、シリンダ9の外周に一体に形成された複数の取付片11の孔11a(図2B参照)に挿通されたボルト12を締め込むことによって、シリンダブロック等のエンジン壁面に固定されている。また、シリンダ9は、プランジャ10のシリンダ9からの突出方向が斜め上向きとなるようにエンジン壁面に取り付けられている。 The cylinder 9 is integrally molded with a metal (for example, an aluminum alloy). The cylinder 9 is fixed to an engine wall surface such as a cylinder block by tightening bolts 12 inserted into holes 11a (see FIG. 2B) of a plurality of mounting pieces 11 integrally formed on the outer periphery of the cylinder 9. .. Further, the cylinder 9 is attached to the engine wall surface so that the projecting direction of the plunger 10 from the cylinder 9 is obliquely upward.
 プランジャ10は、その他端のシリンダ9内への挿入端が開口し、一端のシリンダ9からの突出端17が閉塞する筒状に形成されている。プランジャ10の材質は、鉄系材料(例えば、SCM(クロームモリブデンン鋼)やSCr(クローム鋼)等の鋼材)である。 The plunger 10 is formed in a tubular shape in which the insertion end into the cylinder 9 at the other end is open and the protruding end 17 from the cylinder 9 at one end is closed. The material of the plunger 10 is an iron-based material (for example, a steel material such as SCM (chrome molybdenum steel) or SCr (chrome steel)).
 シリンダ9内の他端には、プランジャ10の軸方向移動に伴ってその容積が変化する圧力室18が形成されている。圧力室18の容積は、プランジャ10が突出方向に移動したときに拡大し、プランジャ10が押し込み方向に移動したときに縮小する。 At the other end of the cylinder 9, a pressure chamber 18 whose volume changes with the axial movement of the plunger 10 is formed. The volume of the pressure chamber 18 increases when the plunger 10 moves in the protruding direction, and decreases when the plunger 10 moves in the pushing direction.
 プランジャ10のシリンダ9内への挿入端には、プランジャ10の内部から圧力室18側へのオイルの流れのみを許容し、圧力室18からプランジャ10の内部へのオイルの流れを規制するチェックバルブ20が設けられている。チェックバルブ20は、プランジャ10のシリンダ9内への挿入端に設けられたバルブシート21と、そのバルブシート21に備えられる弁孔21aと、その弁孔21aを圧力室18の側から開閉する球状の弁体25であるチェックボール(以下、チェックボール25と称する)と、チェックボール25の移動範囲を規制するリテーナ26とからなる。リテーナ26は、チェックボール25が圧力室18側へ離脱することを防止する保持部26aと、その保持部26aをバルブシート21に支持する裾部26bとを備えている。裾部26bから圧力室18側に立ち上がる放射状の保持部26aは、バルブシート21の弁孔21a周囲の円筒状の突部に嵌合している。 A check valve that allows only the flow of oil from the inside of the plunger 10 to the pressure chamber 18 side at the insertion end of the plunger 10 into the cylinder 9 and regulates the flow of oil from the pressure chamber 18 to the inside of the plunger 10. 20 is provided. The check valve 20 has a valve seat 21 provided at the insertion end of the plunger 10 into the cylinder 9, a valve hole 21a provided in the valve seat 21, and a spherical shape that opens and closes the valve hole 21a from the pressure chamber 18 side. It is composed of a check ball (hereinafter referred to as a check ball 25) which is a valve body 25 of the above, and a retainer 26 which regulates a moving range of the check ball 25. The retainer 26 includes a holding portion 26a that prevents the check ball 25 from detaching toward the pressure chamber 18, and a hem portion 26b that supports the holding portion 26a on the valve seat 21. The radial holding portion 26a rising from the hem portion 26b toward the pressure chamber 18 side is fitted into a cylindrical protrusion around the valve hole 21a of the valve seat 21.
 ここで、プランジャ10の内部は、チェックバルブ20の弁孔21aの径よりも大径のリザーバ室27となっている。チェックバルブ20のバルブシート21はリザーバ室27の他端に取り付けられている。バルブシート21は円柱又は円盤状を成し、弁孔21aは、そのバルブシート21の軸心に一端側と他端側を貫通するように形成されている。弁体25が弁孔21aから他端側へ離脱している場合には、その弁孔21aを通じて、圧力室18とリザーバ室27とが連通する。 Here, the inside of the plunger 10 is a reservoir chamber 27 having a diameter larger than the diameter of the valve hole 21a of the check valve 20. The valve seat 21 of the check valve 20 is attached to the other end of the reservoir chamber 27. The valve seat 21 has a cylindrical or disk shape, and the valve hole 21a is formed so as to penetrate one end side and the other end side of the axis of the valve seat 21. When the valve body 25 is separated from the valve hole 21a to the other end side, the pressure chamber 18 and the reservoir chamber 27 communicate with each other through the valve hole 21a.
 図3に示すように、プランジャ10の外周15とシリンダ9の内周14との間には、圧力室18内から圧力室18外へオイルをリークさせるリーク隙間19が設けられている。リーク隙間19の大きさは、例えば、プランジャ10の外周15とシリンダ9の内周14との半径差で0.005~0.100mmの範囲に設定することができる。 As shown in FIG. 3, a leak gap 19 for leaking oil from the inside of the pressure chamber 18 to the outside of the pressure chamber 18 is provided between the outer circumference 15 of the plunger 10 and the inner circumference 14 of the cylinder 9. The size of the leak gap 19 can be set in the range of 0.005 to 0.100 mm, for example, by the radius difference between the outer circumference 15 of the plunger 10 and the inner circumference 14 of the cylinder 9.
 また、プランジャ10の外周15とシリンダ9の内周14の間には、リーク隙間19に連通するオイル供給空間28が形成されている。オイル供給空間28は、プランジャ10の外周全周に形成された凹部16と、シリンダ9の内周14との間に環状に形成されている。オイル供給空間28を形成するための凹部16は、プランジャ10が突出方向、押込み方向にそれぞれ移動した際にも給油通路31と連通する範囲に設けられ、その凹部16を挟んで一端側と他端側にそれぞれリーク隙間19が存在する。 Further, an oil supply space 28 communicating with the leak gap 19 is formed between the outer circumference 15 of the plunger 10 and the inner circumference 14 of the cylinder 9. The oil supply space 28 is formed in an annular shape between the recess 16 formed on the entire outer circumference of the plunger 10 and the inner circumference 14 of the cylinder 9. The recess 16 for forming the oil supply space 28 is provided in a range where the plunger 10 communicates with the oil supply passage 31 even when the plunger 10 moves in the protruding direction and the pushing direction, respectively, and one end side and the other end thereof sandwich the recess 16. There are leak gaps 19 on each side.
 図3及び図4に示すように、圧力室18には、リターンスプリング33が組み込まれている。リターンスプリング33は、他端33bがシリンダ9の底部13で支持され、一端33aがプランジャ10を押圧し、その押圧によってプランジャ10を突出方向へ付勢している。 As shown in FIGS. 3 and 4, a return spring 33 is incorporated in the pressure chamber 18. The other end 33b of the return spring 33 is supported by the bottom 13 of the cylinder 9, and one end 33a presses the plunger 10 and urges the plunger 10 in the protruding direction by the pressing.
 また、圧力室18には、リターンスプリング33よりも小さい弾性力を有する補助スプリング34が組み込まれている。補助スプリング34は、同じく他端34bがシリンダ9の底部13で支持され、一端34aがプランジャ10を押圧し、その押圧によって、プランジャ10を突出方向へ付勢している。 Further, the pressure chamber 18 incorporates an auxiliary spring 34 having an elastic force smaller than that of the return spring 33. Similarly, the other end 34b of the auxiliary spring 34 is supported by the bottom portion 13 of the cylinder 9, one end 34a presses the plunger 10, and the pressing forcees the plunger 10 in the projecting direction.
 図3及び図4に示すように、リターンスプリング33及び補助スプリング34は、いずれも線材を螺旋状に巻回したコイルスプリングで構成されている。補助スプリング34の外径は、リターンスプリング33の外径よりも大径であり、補助スプリング34は、リターンスプリング33の外径側に配置されている。また、補助スプリング34の軸心がリターンスプリング33の軸心と一致するように、補助スプリング34とリターンスプリング33とが同軸状に配置されている。 As shown in FIGS. 3 and 4, the return spring 33 and the auxiliary spring 34 are both composed of a coil spring in which a wire rod is spirally wound. The outer diameter of the auxiliary spring 34 is larger than the outer diameter of the return spring 33, and the auxiliary spring 34 is arranged on the outer diameter side of the return spring 33. Further, the auxiliary spring 34 and the return spring 33 are arranged coaxially so that the axis of the auxiliary spring 34 coincides with the axis of the return spring 33.
 プランジャ10には、オイル供給空間28とリザーバ室27との間を連通する連通路30が設けられている。連通路30は、オイル供給空間28を通じて、リーク隙間19とも連通している。 The plunger 10 is provided with a connecting passage 30 that communicates between the oil supply space 28 and the reservoir chamber 27. The communication passage 30 also communicates with the leak gap 19 through the oil supply space 28.
 連通路30は、シリンダ9の取付片11をエンジン壁面に固定した状態で、プランジャ10の上側の半周に位置するように設けられている。具体的には、連通路30は、プランジャ10の径方向上側部分で、且つ、プランジャ10の外周寸法の半分に相当する範囲内に設けられ、特に、この実施形態では、連通路30は、プランジャ10の外周の頂上に位置するように設けられている。このため、リザーバ室27の内部に空気が存在するときに、その空気を連通路30から円滑に排出することが可能である。 The communication passage 30 is provided so as to be located on the upper half circumference of the plunger 10 with the mounting piece 11 of the cylinder 9 fixed to the engine wall surface. Specifically, the communication passage 30 is provided in the radial upper portion of the plunger 10 and within a range corresponding to half of the outer peripheral dimension of the plunger 10. In particular, in this embodiment, the communication passage 30 is a plunger. It is provided so as to be located at the top of the outer circumference of 10. Therefore, when air is present inside the reservoir chamber 27, the air can be smoothly discharged from the communication passage 30.
 また、図3に示すように、シリンダ9には、シリンダ9の外側から内側にオイルを導入する給油通路31が設けられている。給油通路31は、シリンダ9を半径方向に貫通する貫通孔である。給油通路31の入口(図2B参照)は、エンジン壁面側のオイル供給口に接続される。給油通路31の出口は、シリンダ9の内周の円筒面に開口して、オイル供給空間28に臨んでいる。この給油通路31によって、エンジンのオイルポンプから供給されるオイルが、シリンダ9の外側から内側へ導入される。 Further, as shown in FIG. 3, the cylinder 9 is provided with a refueling passage 31 for introducing oil from the outside to the inside of the cylinder 9. The refueling passage 31 is a through hole that penetrates the cylinder 9 in the radial direction. The inlet of the refueling passage 31 (see FIG. 2B) is connected to the oil supply port on the wall surface side of the engine. The outlet of the oil supply passage 31 opens to the cylindrical surface on the inner circumference of the cylinder 9 and faces the oil supply space 28. The oil supplied from the oil pump of the engine is introduced from the outside to the inside of the cylinder 9 through the oil supply passage 31.
 このチェーンテンショナ1の動作例を説明する。通常運転時、プランジャ10を付勢するリターンスプリング33の推力よりもチェーン6の張力が大きくなると、そのチェーン6の張力によって、プランジャ10がシリンダ9内への押し込み方向へ移動し、チェーン6の緊張を吸収する。そして、プランジャ10とともにバルブシート21が圧力室18側へ移動する。プランジャ10及びバルブシート21の移動に応じて圧力室18の容積が縮小するので、圧力室18の圧力がリザーバ室27の圧力より高くなり、チェックバルブ20が閉じられて圧力室18を密閉する。このとき、圧力室18内からリーク隙間19を通じて流出するオイルのほとんどは、オイル供給空間28、連通路30を通じてリザーバ室27へ戻っていく。このリーク隙間19を流れるオイルの粘性抵抗によってダンパ力が発生し、チェーン6のバタつきを防止する。 An operation example of this chain tensioner 1 will be described. During normal operation, when the tension of the chain 6 becomes larger than the thrust of the return spring 33 that urges the plunger 10, the tension of the chain 6 causes the plunger 10 to move in the pushing direction into the cylinder 9, and the tension of the chain 6 is increased. To absorb. Then, the valve seat 21 moves to the pressure chamber 18 side together with the plunger 10. Since the volume of the pressure chamber 18 is reduced according to the movement of the plunger 10 and the valve seat 21, the pressure of the pressure chamber 18 becomes higher than the pressure of the reservoir chamber 27, and the check valve 20 is closed to seal the pressure chamber 18. At this time, most of the oil flowing out from the pressure chamber 18 through the leak gap 19 returns to the reservoir chamber 27 through the oil supply space 28 and the communication passage 30. A damper force is generated by the viscous resistance of the oil flowing through the leak gap 19, and the chain 6 is prevented from fluttering.
 また、エンジン作動中にチェーン6の張力が小さくなった場合には、リターンスプリング33及び補助スプリング34の付勢力によって、プランジャ10が突出方向へ移動し、チェーン6の弛みを吸収する。このとき、プランジャ10の移動に応じて圧力室18の容積が拡大するので、圧力室18の圧力がリザーバ室27の圧力より低くなり、チェックバルブ20が開く。そして、チェックバルブ20の弁孔21aを通じてリザーバ室27から圧力室18にオイルが流入するので、プランジャ10は速やかに移動する。このとき、オイルポンプの圧力によって、シリンダ9の外側から、給油通路31、オイル供給空間28、連通路30を通じて、リザーバ室27へオイルが導入される。このため、リザーバ室27内の圧力低下が生じにくく、チェーン6の弛みに対する追従性に優れている。 Further, when the tension of the chain 6 becomes small during engine operation, the plunger 10 moves in the protruding direction by the urging force of the return spring 33 and the auxiliary spring 34 to absorb the slack of the chain 6. At this time, since the volume of the pressure chamber 18 expands according to the movement of the plunger 10, the pressure in the pressure chamber 18 becomes lower than the pressure in the reservoir chamber 27, and the check valve 20 opens. Then, since oil flows from the reservoir chamber 27 into the pressure chamber 18 through the valve hole 21a of the check valve 20, the plunger 10 moves quickly. At this time, the pressure of the oil pump introduces oil from the outside of the cylinder 9 into the reservoir chamber 27 through the oil supply passage 31, the oil supply space 28, and the communication passage 30. Therefore, the pressure drop in the reservoir chamber 27 is unlikely to occur, and the chain 6 has excellent followability to slack.
 また、このチェーンテンショナ1は、プランジャ10の内部に、チェックバルブ20の弁孔21aの径よりも大径のリザーバ室27が形成されているので、プランジャ10の内部に貯留するオイルの量を多く確保することができる。このため、エンジン始動直後で、エンジンからチェーンテンショナ1へのオイルの供給が無い状態においても、リザーバ室27に貯留されたオイルを用いてダンパ力を発生することができる。 Further, since the chain tensioner 1 has a reservoir chamber 27 having a diameter larger than the diameter of the valve hole 21a of the check valve 20 formed inside the plunger 10, a large amount of oil is stored inside the plunger 10. Can be secured. Therefore, even when the oil is not supplied from the engine to the chain tensioner 1 immediately after the engine is started, the damper force can be generated by using the oil stored in the reservoir chamber 27.
 ここで、リターンスプリング33には、チェーン6の弛みを吸収するために、プランジャ10を突出方向へ押圧する充分な推力(弾性力)が求められる。しかし、大きな推力を発生させるリターンスプリング33を採用すると、リターンスプリング33の直径(外径)や長さ(全長)が大きくなるので、圧力室18内の空間も大きくする必要がある。このため、テンショナ全体のサイズが大型化してしまうという問題があった。そこで、この発明では、テンショナ全体のサイズを大型化することなく必要なプランジャ10の推力を得るため、プランジャ10に推力を与えるコイルばねを2本採用している。すなわち、プランジャ10に推力を付与するコイルばねとして、リターンスプリング33に加えて、リターンスプリング33とはコイルの外径が異なる補助スプリング34を配置している。 Here, the return spring 33 is required to have a sufficient thrust (elastic force) to press the plunger 10 in the protruding direction in order to absorb the slack of the chain 6. However, if the return spring 33 that generates a large thrust is adopted, the diameter (outer diameter) and the length (total length) of the return spring 33 become large, so that the space in the pressure chamber 18 also needs to be large. Therefore, there is a problem that the size of the entire tensioner becomes large. Therefore, in the present invention, in order to obtain the necessary thrust of the plunger 10 without increasing the size of the entire tensioner, two coil springs that give the thrust to the plunger 10 are adopted. That is, as a coil spring that applies thrust to the plunger 10, in addition to the return spring 33, an auxiliary spring 34 having a coil outer diameter different from that of the return spring 33 is arranged.
 従来のように、リターンスプリング33のみでプランジャ10に推力を付与していた場合、プランジャ10のストローク位置(運転中の使用位置)によっては、チェーン6の弛みを解消するのに必要な推力が得られない場合もある。しかし、リターンスプリング33に加えて補助スプリング34を配置することにより、プランジャ10のストローク全域で必要な推力を確保することができる。 When thrust is applied to the plunger 10 only by the return spring 33 as in the conventional case, the thrust required to eliminate the slack of the chain 6 is obtained depending on the stroke position (use position during operation) of the plunger 10. It may not be possible. However, by arranging the auxiliary spring 34 in addition to the return spring 33, it is possible to secure the required thrust over the entire stroke of the plunger 10.
 ここで、この実施形態では、図4に示すように、チェックバルブ20のバルブシート21は、プランジャ10に対して圧入固定されておらず、バルブシート21は、プランジャ10の他端側へ向く端面10aに宛がわれている。また、補助スプリング34の一端34aは、プランジャ10の外径寄りの部分の端面10bに直接当接して、プランジャ10を突出方向へ押圧している。また、リターンスプリング33は、バルブシート21の端面21bに当接しているリテーナ26の裾部26bに当接して、そのバルブシート21を介してプランジャ10を突出方向へ押圧している。 Here, in this embodiment, as shown in FIG. 4, the valve seat 21 of the check valve 20 is not press-fitted and fixed to the plunger 10, and the valve seat 21 is an end face facing the other end side of the plunger 10. It is addressed to 10a. Further, one end 34a of the auxiliary spring 34 directly contacts the end surface 10b of the portion closer to the outer diameter of the plunger 10 and presses the plunger 10 in the projecting direction. Further, the return spring 33 abuts on the hem portion 26b of the retainer 26 which is in contact with the end surface 21b of the valve seat 21 and presses the plunger 10 in the projecting direction via the valve seat 21.
 このため、補助スプリング34の弾性力によってプランジャ10に付与される推力が強すぎる場合、チェックバルブ20のバルブシート21とプランジャ10とが離反する可能性がある。プランジャ10が突出する際にプランジャ10からチェックバルブ20が離反してしまうと、油圧ダンパが正常に作用しない可能性がある。そこで、この発明では、補助スプリング34を追加するに際し、チェーンテンショナ1の使用状態におけるプランジャ10のストローク範囲において、補助スプリング34によるプランジャ10への推力が、リターンスプリング33による推力を上回らないように設定している。これにより、バルブシート21のプランジャ10からの離反を防止している。 Therefore, if the thrust applied to the plunger 10 by the elastic force of the auxiliary spring 34 is too strong, the valve seat 21 of the check valve 20 and the plunger 10 may separate from each other. If the check valve 20 separates from the plunger 10 when the plunger 10 protrudes, the hydraulic damper may not operate normally. Therefore, in the present invention, when the auxiliary spring 34 is added, the thrust of the auxiliary spring 34 to the plunger 10 is set so as not to exceed the thrust of the return spring 33 in the stroke range of the plunger 10 in the state of using the chain tensioner 1. are doing. This prevents the valve seat 21 from separating from the plunger 10.
 また、プランジャ10のストローク範囲内におけるリターンスプリング33と補助スプリング34の合計推力(単位:N/ニュートン)が、プランジャ10の質量(単位:g/グラム)の数値の0.8倍以上の数値になるように設定することで、通常の使用条件(例えば、4気筒エンジン,エンジンのクランクシャフト2の回転速度8000rpm,プランジャ10の全振幅0.6mmにおける加速度86G)において、プランジャ10の追従不良が生じず、安定したダンパ特性を与えることができる。例えば、プランジャ10の質量30gの場合、プランジャ10に付与される推力の合計は、プランジャ10のストローク全域において、30×0.8=24N以上とすることが望ましい。 Further, the total thrust (unit: N / Newton) of the return spring 33 and the auxiliary spring 34 within the stroke range of the plunger 10 is 0.8 times or more the value of the mass (unit: g / gram) of the plunger 10. By setting so as to be, the tracking failure of the plunger 10 occurs under normal usage conditions (for example, a 4-cylinder engine, a rotation speed of the crankshaft 2 of the engine of 8000 rpm, and an acceleration of 86 G at a total mass of 0.6 mm of the plunger 10). It is possible to provide stable damper characteristics. For example, when the mass of the plunger 10 is 30 g, it is desirable that the total thrust applied to the plunger 10 is 30 × 0.8 = 24 N or more over the entire stroke of the plunger 10.
 図5は、プランジャ10のストローク量と、プランジャ10に付与される推力との関係を示すグラフ図である。図中の符号Aは、プランジャ10に対するリターンスプリング33による推力を示している。符号Bは、プランジャ10に対する補助スプリング34による推力を示している。符号Cは、プランジャ10に付与されることが必要な推力を示している。補助スプリング34の推力Bは、プランジャ10のストローク範囲全域に亘って、リターンスプリング33の推力Aよりも小さい値となっている。リターンスプリング33と補助スプリング34の合計推力A+Bは、プランジャ10のストローク範囲全域に亘って、プランジャ10の必要推力C以上となるように設定されている。 FIG. 5 is a graph showing the relationship between the stroke amount of the plunger 10 and the thrust applied to the plunger 10. Reference numeral A in the figure indicates the thrust of the return spring 33 with respect to the plunger 10. Reference numeral B indicates the thrust of the auxiliary spring 34 with respect to the plunger 10. Reference numeral C indicates the thrust required to be applied to the plunger 10. The thrust B of the auxiliary spring 34 has a value smaller than the thrust A of the return spring 33 over the entire stroke range of the plunger 10. The total thrust A + B of the return spring 33 and the auxiliary spring 34 is set to be equal to or greater than the required thrust C of the plunger 10 over the entire stroke range of the plunger 10.
 また、図4に示すように、リターンスプリング33と補助スプリング34とは、コイルばねの螺旋の巻方向が互いに反対方向となっている。すなわち、リターンスプリング33の螺旋の巻方向が、一端33aから他端33bに向かって軸周り一方向である場合に、補助スプリング34の螺旋の巻方向は、一端34aから他端34bに向かって軸周り他方向となっている。このように、リターンスプリング33と補助スプリング34のコイルばねの巻方向を逆向きとすることで、スプリング同士が互いに干渉することを防いでいる。また、特に、スプリングの圧縮時にスプリングの胴曲がりが大きい場合においても、両者の接触を防ぎ、安定した推力を得ることができる。 Further, as shown in FIG. 4, the return spring 33 and the auxiliary spring 34 have the spiral winding directions of the coil springs opposite to each other. That is, when the winding direction of the spiral of the return spring 33 is one direction around the axis from one end 33a to the other end 33b, the winding direction of the spiral of the auxiliary spring 34 is the axis from one end 34a to the other end 34b. It is in the other direction. In this way, by reversing the winding directions of the coil springs of the return spring 33 and the auxiliary spring 34, the springs are prevented from interfering with each other. Further, in particular, even when the body bending of the spring is large when the spring is compressed, contact between the two can be prevented and a stable thrust can be obtained.
 また、この実施形態では、補助スプリング34は、全長に亘って外径が一定のコイルばねであるのに対し、リターンスプリング33は、端面10a側に向く一端33aが、底部13側に向く他端33bよりも小径となるテーパー形状のコイルばねで構成されている。また、リテーナ26の裾部26bは、バルブシート21の弁孔21a周囲に位置し、比較的内径寄りの部分にある。このため、リターンスプリング33の小径側の一端33aがリテーナ26の裾部26bを押圧しやすくなり、リテーナ26がバルブシート21に保持されやすくなる。また、リテーナ26の裾部26bから圧力室18側に立ち上がる放射状の保持部26aの外周にリターンスプリング33の小径側の一端33aが嵌ることで、その一端33aがリテーナ26及びバルブシート21に固定されて、リターンスプリング33の伸縮動作が安定する効果も期待できる。 Further, in this embodiment, the auxiliary spring 34 is a coil spring having a constant outer diameter over the entire length, whereas the return spring 33 has one end 33a facing the end face 10a side and the other end facing the bottom 13 side. It is composed of a tapered coil spring having a diameter smaller than 33b. Further, the hem portion 26b of the retainer 26 is located around the valve hole 21a of the valve seat 21 and is located relatively closer to the inner diameter. Therefore, one end 33a on the small diameter side of the return spring 33 easily presses the hem portion 26b of the retainer 26, and the retainer 26 is easily held by the valve seat 21. Further, by fitting one end 33a on the small diameter side of the return spring 33 into the outer circumference of the radial holding portion 26a rising from the hem portion 26b of the retainer 26 toward the pressure chamber 18, the one end 33a is fixed to the retainer 26 and the valve seat 21. Therefore, the effect of stabilizing the expansion / contraction operation of the return spring 33 can be expected.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1 チェーンテンショナ
9 シリンダ
10 プランジャ
10a 端面
18 圧力室
20 チェックバルブ
21 バルブシート
21a 弁孔
25 弁体(チェックボール)
31 給油通路
33 リターンスプリング
34 補助スプリング
1 Chain tensioner 9 Cylinder 10 Plunger 10a End face 18 Pressure chamber 20 Check valve 21 Valve seat 21a Valve hole 25 Valve body (check ball)
31 Refueling passage 33 Return spring 34 Auxiliary spring

Claims (6)

  1.  一端が開口し他端が閉じた筒状のシリンダ(9)と、
     前記シリンダ(9)の内周で軸方向に摺動可能に支持され前記シリンダ(9)内への挿入端が開口し前記シリンダ(9)からの突出端が閉塞した筒状のプランジャ(10)と、前記プランジャ(10)を前記シリンダ(9)の一端から突出する方向に付勢するリターンスプリング(33)と、
     前記プランジャ(10)の軸方向移動に伴って容積が変化するように前記シリンダ(9)内に形成された圧力室(18)と、
     前記プランジャ(10)の内部から前記圧力室(18)へのオイルの流れのみを許容するチェックバルブ(20)と、
     前記シリンダ(9)の外側から内側へオイルを導入する給油通路(31)と、
     前記リターンスプリング(33)よりも小さい弾性力を有し前記プランジャ(10)を前記シリンダ(9)の一端から突出する方向に付勢する補助スプリング(34)と、
    を備えるチェーンテンショナ。
    A tubular cylinder (9) with one end open and the other end closed,
    A tubular plunger (10) that is supported so as to be slidable in the axial direction on the inner circumference of the cylinder (9), and the insertion end into the cylinder (9) is opened and the protruding end from the cylinder (9) is closed. And a return spring (33) that urges the plunger (10) in a direction protruding from one end of the cylinder (9).
    A pressure chamber (18) formed in the cylinder (9) so that the volume changes with the axial movement of the plunger (10).
    A check valve (20) that allows only the flow of oil from the inside of the plunger (10) to the pressure chamber (18).
    A refueling passage (31) for introducing oil from the outside to the inside of the cylinder (9),
    An auxiliary spring (34) having an elastic force smaller than that of the return spring (33) and urging the plunger (10) in a direction protruding from one end of the cylinder (9).
    Chain tensioner with.
  2.  前記リターンスプリング(33)及び前記補助スプリング(34)はコイルスプリングであり、前記補助スプリング(34)は前記リターンスプリング(33)よりもコイル径が大径で且つ前記リターンスプリング(33)と同軸状に配置されている請求項1に記載のチェーンテンショナ。 The return spring (33) and the auxiliary spring (34) are coil springs, and the auxiliary spring (34) has a coil diameter larger than that of the return spring (33) and is coaxial with the return spring (33). The chain tensioner according to claim 1, which is arranged in.
  3.  前記リターンスプリング(33)及び前記補助スプリング(34)は、コイルスプリングの巻方向が互いに反対方向である請求項2に記載のチェーンテンショナ。 The chain tensioner according to claim 2, wherein the return spring (33) and the auxiliary spring (34) have coil springs wound in opposite directions to each other.
  4.  前記チェックバルブ(20)は、前記プランジャ(10)の他端側へ向く端面(10a)に宛がわれるバルブシート(21)と、前記バルブシート(21)に形成された弁孔(21a)と、前記弁孔(21a)を開閉する弁体(25)と、を備え、
     前記リターンスプリング(33)は前記バルブシート(21)を前記端面(10a)側へ押圧している請求項1から3のいずれか1つに記載のチェーンテンショナ。
    The check valve (20) includes a valve seat (21) addressed to an end surface (10a) facing the other end side of the plunger (10) and a valve hole (21a) formed in the valve seat (21). A valve body (25) that opens and closes the valve hole (21a).
    The chain tensioner according to any one of claims 1 to 3, wherein the return spring (33) presses the valve seat (21) toward the end surface (10a).
  5.  前記リターンスプリング(33)は前記端面(10a)側が小径となるテーパー形状である請求項4に記載のチェーンテンショナ。 The chain tensioner according to claim 4, wherein the return spring (33) has a tapered shape having a small diameter on the end surface (10a) side.
  6.  前記プランジャ(10)のストローク範囲内における前記リターンスプリング(33)と前記補助スプリング(34)の合計推力(単位:N)は、前記プランジャ(10)の質量(単位:g)の数値の0.8倍以上の数値に設定されている請求項1から5のいずれか1つに記載のチェーンテンショナ。 The total thrust (unit: N) of the return spring (33) and the auxiliary spring (34) within the stroke range of the plunger (10) is a numerical value of the mass (unit: g) of the plunger (10). The chain tensioner according to any one of claims 1 to 5, which is set to a numerical value of 8 times or more.
PCT/JP2020/010249 2019-03-18 2020-03-10 Chain tensioner WO2020189403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049608A JP7262256B2 (en) 2019-03-18 2019-03-18 chain tensioner
JP2019-049608 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189403A1 true WO2020189403A1 (en) 2020-09-24

Family

ID=72520933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010249 WO2020189403A1 (en) 2019-03-18 2020-03-10 Chain tensioner

Country Status (2)

Country Link
JP (1) JP7262256B2 (en)
WO (1) WO2020189403A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023005479A (en) * 2021-06-29 2023-01-18 Ntn株式会社 chain tensioner
JP2023160078A (en) * 2022-04-21 2023-11-02 Ntn株式会社 chain tensioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223290A (en) * 2009-03-23 2010-10-07 Ntn Corp Hydraulic auto tensioner
JP2011141006A (en) * 2010-01-08 2011-07-21 Ntn Corp Hydraulic automatic tensioner
JP2015183767A (en) * 2014-03-24 2015-10-22 株式会社椿本チエイン chain tensioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223290A (en) * 2009-03-23 2010-10-07 Ntn Corp Hydraulic auto tensioner
JP2011141006A (en) * 2010-01-08 2011-07-21 Ntn Corp Hydraulic automatic tensioner
JP2015183767A (en) * 2014-03-24 2015-10-22 株式会社椿本チエイン chain tensioner

Also Published As

Publication number Publication date
JP7262256B2 (en) 2023-04-21
JP2020153383A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
US20030216202A1 (en) Hydraulic tensioner lifter
WO2020189403A1 (en) Chain tensioner
US20100130320A1 (en) Chain tensioner
WO2020032094A1 (en) Chain tensioner
JP2013204767A (en) Hydraulic auto-tensioner
JP5122876B2 (en) Chain tensioner manufacturing method
WO2020184322A1 (en) Chain tensioner
WO2020189487A1 (en) Chain tensioner
JP4017427B2 (en) Hydraulic tensioner lifter
JP7100467B2 (en) Chain tensioner
JP7093704B2 (en) Chain tensioner
JP7250586B2 (en) chain tensioner
JP6933766B1 (en) Chain tensioner
WO2022191195A1 (en) Chain tensioner
JP5311226B2 (en) Auto tensioner
WO2020054666A1 (en) Chain tensioner
JP2022138974A (en) chain tensioner
WO2008013129A1 (en) Hydraulic automatic tensioner
JP2018146101A (en) Tensioner integrated chain guide and chain tensile force adjusting device
WO2023204168A1 (en) Chain tensioner
JP2022158088A (en) tensioner
JP2008202776A (en) Hydraulic auto tensioner
JP2020165502A (en) Chain tensioner
JP2022045528A (en) Chain tensioner
JP2023140947A (en) timing chain mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773924

Country of ref document: EP

Kind code of ref document: A1