WO2022191190A1 - Method for producing coating of cellulose nano-fibers and/or chitin nano-fibers - Google Patents

Method for producing coating of cellulose nano-fibers and/or chitin nano-fibers Download PDF

Info

Publication number
WO2022191190A1
WO2022191190A1 PCT/JP2022/010017 JP2022010017W WO2022191190A1 WO 2022191190 A1 WO2022191190 A1 WO 2022191190A1 JP 2022010017 W JP2022010017 W JP 2022010017W WO 2022191190 A1 WO2022191190 A1 WO 2022191190A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
cnf
cellulose
nanofibers
anionic
Prior art date
Application number
PCT/JP2022/010017
Other languages
French (fr)
Japanese (ja)
Inventor
昌浩 森田
啓吾 渡部
丈史 中谷
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2023505579A priority Critical patent/JP7367264B2/en
Publication of WO2022191190A1 publication Critical patent/WO2022191190A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/14Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with nitrogen-containing groups
    • C08B11/145Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with nitrogen-containing groups with basic nitrogen, e.g. aminoalkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • C08B5/14Cellulose sulfate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • C25D13/06Electrophoretic coating characterised by the process with organic material with polymers

Definitions

  • the present invention relates to a method for producing a coating of cellulose nanofibers and/or chitin nanofibers. More particularly, it relates to a method of depositing anionic cellulose nanofibers, or cationic cellulose nanofibers and/or tin nanofibers on a conductive substrate to form a coating using the principle of electrophoresis.
  • Cellulose nanofibers obtained by introducing anionic or cationic groups into cellulose and defibrating using the charge repulsion of these introduced groups have a very fine fiber diameter and are generally It has been extensively studied because of its characteristics such as high homogeneity, various functionalities based on the introduced groups, and high strength.
  • an anionic cellulose nanofiber obtained by introducing an anionic group into cellulose and defibrating it some of the hydroxyl groups of cellulose are oxidized to carboxyl groups using the surface oxidation reaction of cellulose by an N-oxyl compound.
  • oxidized cellulose nanofibers obtained by fibrillating and carboxymethylated cellulose nanofibers having a degree of carboxymethyl substitution of 0.01 to 0.30 and an average fiber diameter of 3 to 500 nm have been reported (patent References 1 and 2).
  • nanofibers have a long fiber length in spite of their small fiber diameter, generally have high elasticity, and exhibit high viscosity when dispersed.
  • Methods of forming a nanofiber coating on a substrate using these nanofiber dispersions include a method of applying a nanofiber dispersion onto a substrate with a bar coater, and a method of applying a nanofiber dispersion onto a substrate. A method of spraying on the material can be considered. In these methods, the nanofibers are deformed and applied onto the substrate by applying a shearing force to the nanofibers in the dispersion. However, since nanofibers have high elasticity, a force is exerted to restore the original shape after coating, and unevenness tends to occur in the finally obtained nanofiber coating.
  • the dispersion of nanofibers has pseudoplasticity, and the viscosity decreases while a shearing force is applied, but the viscosity recovers when the shearing force is released after being applied to the substrate. Leveling after application cannot be expected.
  • the nanofiber dispersion has low affinity for metals and hydrophobic materials and poor wettability with respect to these substrates. Cheap. Therefore, it has been difficult to evenly coat the substrate with the above nanofibers.
  • An object of the present invention is to provide a method capable of forming a uniform nanofiber coating on a substrate such as a metal with less unevenness.
  • a dispersion of anionic or cationic cellulose nanofibers having an anionic or cationic group, a dispersion of chitin nanofibers, or a dispersion containing cationic cellulose nanofibers and chitin nanofibers prepare.
  • a conductive base material which will be the base material for coating (object to be coated), is prepared and immersed in the dispersion.
  • the conductive substrate When anionic cellulose nanofibers are used, the conductive substrate is used as an anode, and when cationic cellulose nanofibers and/or chitin nanofibers are used, the conductive substrate is used as a cathode. This causes these nanofibers to migrate and deposit on the conductive substrate by the principle of electrophoresis, forming a coating of these nanofibers on the conductive substrate. As a result, the present inventors have found that a uniform nanofiber coating can be formed on a conductive substrate with little unevenness without being affected by the high elasticity of nanofibers and the pseudoplasticity of a nanofiber dispersion.
  • the present invention includes the following. [1] Putting a dispersion of anionic cellulose nanofibers in an electrolytic cell, immersing a conductive base material and an electrode in the dispersion in the electrolytic bath; and energizing the conductive base material as an anode and the electrode as a cathode to transfer the anionic cellulose nanofibers to the conductive base material.
  • a method of making a coating of anionic cellulose nanofibers, comprising coating the conductive substrate with the anionic cellulose nanofibers by electrophoresis to a substrate.
  • anionic or cationic cellulose nanofibers or chitin nanofibers that form a dispersion with high elasticity and high pseudoplasticity are used to form a uniform coating with less unevenness and less peeling on a conductive substrate.
  • these nanofibers have high elasticity, when bar coating or spray coating is used, a force of returning to the original shape acts, and unevenness tends to occur in the finally obtained nanofiber coating.
  • the dispersion of nanofibers has pseudoplasticity, and the viscosity decreases while a shearing force is applied. It was difficult to level (smooth) afterward, and the resulting irregularities tended to remain.
  • the nanofiber dispersion has a low affinity for metals and hydrophobic materials, and poor wettability with respect to these substrates. The problem was that it was easy.
  • the principle of electrophoresis is used to move the nanofibers to the conductive substrate and deposit/adhere them electrically. A coating can be formed thereon. This provides a uniform coating with few irregularities and wrinkles.
  • the nanofibers are tightly adhered to the base material by electricity, the nanofibers are not repelled on the base material and can be uniformly coated, and the problem of peeling of the coating is less likely to occur.
  • the present invention is a method for producing a coating of cellulose nanofibers (hereinafter, cellulose nanofibers will be referred to as “CNF”) or chitin nanofibers.
  • a method comprising depositing anionic or cationic CNF or chitin nanofibers thereon to form a coating.
  • anionic CNF, cationic CNF and chitin nanofibers may be collectively referred to simply as "nanofibers" or "NF”.
  • the NF dispersion is placed in an electrolytic cell.
  • a conductive substrate and an electrode are immersed in this dispersion, and when anionic CNF is used, the conductive substrate is used as the anode, and when cationic CNF or chitin NF is used, the conductive group
  • the material is used as a cathode and an electric current is applied.
  • the NFs electrophoretically migrate toward the conductive substrate and deposit on the conductive substrate, forming a gel-like coating of NFs on the conductive substrate.
  • This gel coating may be dried if desired. Drying may be performed using a normal method such as hot air drying after removing the conductive substrate having the gel-like coating from the electrolytic bath.
  • nanofibers refer to anionic CNF, cationic CNF, or chitin NF having an average fiber diameter of less than 1 ⁇ m.
  • the average fiber diameter is preferably about 3 nm to 500 nm, more preferably about 3 nm to 150 nm, still more preferably about 3 nm to 20 nm.
  • the aspect ratio is 30 or more, preferably 50 or more, more preferably 100 or more. Although the upper limit of the aspect ratio is not limited, it is about 500 or less.
  • Anionic CNF is NF in which an anionic group is introduced into the molecular chain of cellulose.
  • Anionic CNF can be obtained by defibrating anionic cellulose obtained by introducing an anionic group into the pyranose ring of cellulose so as to have an average fiber diameter of less than 1 ⁇ m.
  • the type of cellulose used as a raw material for anionic cellulose is not particularly limited.
  • bleached or unbleached mechanical pulp e.g., thermomechanical pulp (TMP), groundwood pulp
  • chemical pulp e.g., sulfite pulp
  • softwood hardwood, cotton, straw, bamboo, hemp, jute, kenaf, etc.
  • kraft pulp e.g., sulfite pulp
  • dissolving pulp e.g., regenerated cellulose, fine cellulose, microcrystalline cellulose excluding non-crystalline regions, and the like, and any of these can be used as the cellulose raw material.
  • An anionic cellulose can be produced by introducing an anionic group into such a cellulose raw material.
  • the method for introducing the anionic group is not particularly limited, but examples include a method of directly oxidizing the hydroxyl group of the pyranose ring of cellulose to a carboxyl group, or a method of introducing an anionic group by an esterification reaction at the hydroxyl group portion of the pyranose ring.
  • Anionic CNF can be obtained by fibrillating the obtained anionic cellulose so as to have an average fiber diameter of less than 1 ⁇ m.
  • the defibration method is not particularly limited, and a known defibration device such as a high speed rotation type, a colloid mill type, a high pressure type, a roll mill type, and an ultrasonic type may be used. Among them, it is preferable to use a wet high-pressure or ultrahigh-pressure homogenizer.
  • oxidized CNF An example of anionic CNF is oxidized CNF having a carboxyl group and/or a carboxylate group.
  • a carboxyl group refers to -COOH (acid form) and -COOM (metal salt form) (wherein M is a metal ion), and a carboxylate group refers to -COO - .
  • Oxidized CNF having a carboxyl group and/or a carboxylate group (also referred to herein simply as "oxidized CNF") is obtained by obtaining oxidized cellulose using a known method of oxidizing the hydroxyl group of the pyranose ring of cellulose to a carboxyl group. and then fibrillating.
  • oxidation is performed in the presence of an N-oxyl compound such as 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and bromide and/or iodide.
  • N-oxyl compound such as 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and bromide and/or iodide.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
  • bromide and/or iodide examples include a method of oxidizing cellulose in water using an agent, and a method of oxidizing cellulose by bringing it into contact with a cellulose raw material using an ozone-containing gas as an oxidizing agent.
  • the total amount of carboxyl groups and carboxylate groups in the oxidized CNF is preferably 0.4 to 3.0 mmol/g, more preferably 0.6 to 2.0 mmol/g, relative to the absolute dry mass of the oxidized CNF. 0 to 2.0 mmol/g, more preferably 1.1 to 2.0 mmol/g.
  • the amount of carboxyl groups and carboxylate groups in oxidized CNF can be adjusted by controlling reaction conditions such as the amount of oxidizing agent added and reaction time.
  • Carboxyalkylated CNF An example of an anionic CNF is a carboxyalkylated CNF having a carboxyalkyl group.
  • a carboxyalkyl group refers to -RCOOH (acid form) and -RCOOM (metal salt form).
  • R is an alkylene group such as a methylene group or ethylene group
  • M is a metal ion.
  • carboxyalkylated CNF having a carboxyalkyl group carboxymethylated CNF having a carboxymethyl group in which R is a methylene group is most preferred (hereinafter "carboxymethyl” is referred to as "CM").
  • Carboxyalkylated CNF is obtained by obtaining carboxyalkylated cellulose using a known method of treating a cellulose raw material with a mercerizing agent and then treating it with a carboxyalkylating agent to introduce a carboxyalkyl group, and then defibrating it. Obtainable.
  • the degree of carboxyalkyl substitution per anhydroglucose unit of the carboxyalkylated CNF is preferably less than 0.40. Moreover, the lower limit of the degree of carboxyalkyl substitution is preferably 0.01 or more. Considering the workability, the degree of substitution is particularly preferably 0.02 or more and 0.35 or less, more preferably 0.10 or more and 0.35 or less, and 0.15 or more and 0.35 or less. is more preferable, and more preferably 0.15 or more and 0.30 or less.
  • the anhydroglucose unit means an individual anhydroglucose (glucose residue) constituting cellulose, and the degree of carboxyalkyl substitution refers to the hydroxyl group (—OH) in the glucose residue constituting cellulose.
  • the ratio of those substituted by groups (-ORCOOH or -ORCOOM) (the number of carboxyalkyl groups per glucose residue) is shown.
  • the degree of carboxyalkyl substitution can be adjusted by controlling reaction conditions such as the amount of mercerizing agent and reaction time.
  • the degree of CM substitution per glucose unit can be measured by the following method: About 2.0 g of CM-modified CNF (absolute dry) is precisely weighed and placed in a 300 mL conical flask with a common stopper. Add 100 mL of a liquid obtained by adding 100 mL of special grade concentrated nitric acid to 900 mL of methanol and shake for 3 hours to convert the salt-type CM-CNF to the hydrogen-type CM-CNF.
  • CM-CNF hydrogen-type CM-CNF (absolute dry) is accurately weighed and placed in a 300 mL conical flask equipped with a common stopper. Hydrogen-type CM-CNF is wetted with 15 mL of 80 mass % methanol, 100 mL of 0.1N NaOH is added, and shaken at room temperature for 3 hours. Excess NaOH is back-titrated with 0.1 N H 2 SO 4 using phenolphthalein as an indicator.
  • the degree of substitution of carboxyalkyl groups other than CM groups can also be measured in the same manner as above.
  • Phosphate esterified CNF Phosphate-esterified CNF can be mentioned as an example of anionic CNF.
  • Phosphate-esterified CNF can be obtained by mixing the above-mentioned cellulose raw material with a phosphoric acid compound powder or aqueous solution, or by adding an aqueous solution of a phosphoric acid compound to a slurry of the cellulose raw material. It can be obtained by introducing an acid-based group into cellulose to obtain phosphate-esterified cellulose and defibrating it.
  • Phosphoric acid compounds include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, and esters or salts thereof.
  • phosphoric acid sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, potassium phosphite, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium metaphosphate and the like.
  • a phosphoric acid group derived from a phosphoric acid compound can be introduced into cellulose by using one or more of these in combination.
  • the phosphoric acid group derived from a phosphoric acid compound includes a phosphoric acid group, a phosphorous acid group, a hypophosphorous acid group, a pyrophosphate group, a metaphosphoric acid group, a polyphosphoric acid group, a phosphonic acid group, and polyphosphonic acid groups.
  • Phosphate-esterified cellulose and phosphate-esterified CNF include those in which one or more of these phosphoric acid groups are introduced into the molecular chain of cellulose.
  • the pH is preferably pH 3-7.
  • a nitrogen-containing compound such as urea may also be added.
  • the degree of substitution of a phosphate group per glucose unit in the phosphorylated CNF is preferably 0.001 or more and less than 0.40.
  • the degree of phosphate group substitution per glucose unit can be measured by the following method: A slurry of phosphorylated CNF having a solids content of 0.2% by weight is prepared. To the slurry, 1/10 by volume of a strongly acidic ion exchange resin (Amberjet 1024; manufactured by Organo, conditioned) was added, shaken for 1 hour, and then poured onto a mesh with an opening of 90 ⁇ m to pour the resin. and the slurry are separated to obtain hydrogen-type phosphate-esterified CNF.
  • a strongly acidic ion exchange resin Amberjet 1024; manufactured by Organo, conditioned
  • Sulfated CNF can be obtained by reacting the above-described cellulose raw material with a sulfuric acid-based compound to introduce a sulfuric acid-based group derived from the sulfuric acid-based compound into cellulose to obtain sulfated cellulose, which is defibrated. can be done.
  • sulfuric acid compounds include sulfuric acid, sulfamic acid, chlorosulfonic acid, sulfur trioxide, and esters or salts thereof. Among these, sulfamic acid is preferably used because cellulose has low solubility and low acidity.
  • the amount of sulfamic acid used can be appropriately adjusted in consideration of the amount of anionic groups to be introduced into the cellulose chain. For example, it can be used in an amount of preferably 0.01 to 50 mol, more preferably 0.1 to 3.0 mol, per 1 mol of glucose units in the cellulose molecule.
  • the amount of sulfate-based groups per glucose unit in the sulfated CNF is preferably 0.1 to 3.0 mmol/g.
  • the amount of sulfate groups per glucose unit can be measured by the following method: The aqueous dispersion of sulfated CNF is subjected to solvent substitution in the order of ethanol and t-butanol, and then freeze-dried. 15 ml of ethanol and 5 ml of water are added to 200 mg of the obtained sample, and the mixture is stirred for 30 minutes. After that, 10 ml of 0.5N sodium hydroxide aqueous solution is added, and the mixture is stirred at 70° C.
  • Cationic CNF is cationic CNF in which a cationic group is introduced into the molecular chain of cellulose.
  • Cationic CNF can be obtained by defibrating cationic cellulose obtained by introducing a cationic group into the pyranose ring of cellulose so as to have an average fiber diameter of less than 1 ⁇ m.
  • the type of cellulose used as a raw material for cationic cellulose is not particularly limited, and is the same as that described in the anionic CNF column.
  • the method of fibrillating cationic cellulose to make cationic CNF is not particularly limited, and is the same as that described in the section on anionic CNF.
  • Cationic cellulose is prepared by adding a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrate or its halohydrin type to the oxidized cellulose, and an alkali metal hydroxide (sodium hydroxide , potassium hydroxide, etc.) can be obtained by a known method of reacting in the presence of water or an alcohol having 1 to 4 carbon atoms, and the resulting cationic cellulose is fibrillated to obtain cationic CNF. can be done.
  • a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrate or its halohydrin type
  • an alkali metal hydroxide sodium hydroxide , potassium hydroxide, etc.
  • the degree of cation substitution per glucose unit in the cationic CNF is preferably 0.02-0.50.
  • the degree of cation substitution can be adjusted by adjusting the amount of the cationizing agent to be reacted and the composition ratio of water or alcohol having 1 to 4 carbon atoms.
  • Chitin NF can be mentioned as cationic NF other than cationic CNF.
  • Chitin is an aminopolysaccharide in which N-acetylglucosamine is linked in a chain form, and is industrially obtained from shrimp and crab shells and the like.
  • Chitin derived from organisms such as shrimp and crab usually has a matrix such as protein and calcium carbonate around it, and is subjected to treatment to remove these matrices.
  • a known alkali treatment method, proteolytic enzyme method, or the like can be used for the deproteinization treatment.
  • Known methods such as acid treatment and ethylenediaminetetraacetic acid treatment can be used to remove ash such as calcium carbonate.
  • Chitin NF can be obtained by fibrillating bio-derived chitin that has undergone deproteinization and deashing treatment using an apparatus such as a stone grinder or a high-pressure homogenizer.
  • An apparatus such as a stone grinder or a high-pressure homogenizer.
  • a method for producing chitin NF is described, for example, in WO2010/073758.
  • NF dispersion A dispersion of anionic or cationic CNF or chitin NF as described above is prepared and placed in an electrolytic cell.
  • the dispersion medium of the dispersion liquid is preferably water, but may contain a water-soluble organic solvent as long as it does not interfere with electrophoresis of NF.
  • water-soluble organic solvents examples include methanol, ethanol, isopropanol, 2-propanol, butanol, glycerin, acetone, methyl ethyl ketone, 1,4-dioxane, N-methyl-2-pyrrolidone, tetrahydrofuran, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, acetonitrile, ethylene glycol, and combinations thereof.
  • the proportion of water in the dispersion medium is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably 100% by mass (all water).
  • the solid content of NF in the dispersion is preferably 0.05 to 10.0% by mass, more preferably 0.1 to 7.5% by mass, in order to favorably advance electrophoresis during subsequent energization. .1 to 5.0% by mass is more preferable, and 0.1 to 3.0% by mass is more preferable.
  • the dispersion liquid preferably consists of water, which is a dispersion medium, and NF, but may contain substances other than NF as long as it does not interfere with the electrophoresis of NF.
  • substances include anionic polymers such as acrylic resins, carboxymethylcellulose, and uronic acid when anionic CNF is used.
  • anionic polymers such as acrylic resins, carboxymethylcellulose, and uronic acid when anionic CNF is used.
  • cationic CNF and/or chitin NF an alkylamine, an amine compound, a cationic polymer, etc. are mentioned.
  • polyethylene glycol, silane coupling agents, carbodiimide group-containing polymers, and the like can be used in any case of anionic CNF, cationic CNF, and chitin NF.
  • Electrolytes such as zinc chloride, aluminum chloride, magnesium chloride, sodium chloride, sodium hydroxide, acetic acid, and carbonic acid may be added to increase the electrical conductivity of the dispersion.
  • the ratio of the solid content of NF to the total solid content in the dispersion is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, still more preferably 90% or more, further preferably 95% or more.
  • electrolytic bath in which the dispersion liquid is placed, and any one that can cause electrophoresis of NF by energizing can be used.
  • electrolytic bath used for electrodeposition coating can be used.
  • a conductive substrate is a substrate for forming a coating of NF thereon.
  • the conductive substrate is not particularly limited as long as it is made of a material having conductivity. Examples include metals such as aluminum, copper, iron, zinc, titanium, nickel, lead, silver, platinum, tungsten, bismuth, stainless steel, brass, chromium, alloys thereof, or carbon. Moreover, it may be a material imparted with conductivity by containing one or more of these (for example, rubber to which carbon black is added).
  • the electrode is used as a counter electrode of the conductive base material when energized, and the type is not particularly limited.
  • an electrode or the like used as a counter electrode for an object to be coated in the field of electrodeposition coating can be used.
  • the NF is electrophoresed by energizing to form a NF coating on the conductive substrate.
  • the conductive base material is used as the anode
  • the electrode is used as the cathode.
  • cationic CNF and/or chitin NF let a conductive base material be a cathode and let an electrode be an anode. This causes the NFs to migrate to and deposit on the conductive substrate, coating the conductive substrate.
  • the conditions for energization are not particularly limited, and may be appropriately adjusted according to the desired thickness of the coating.
  • the voltage range is preferably about 0.1 to 1000V, more preferably about 1 to 500V, more preferably about 5 to 500V, even more preferably about 5 to 100V, and even more preferably about 5 to 50V.
  • the current density range is preferably about 0.1 to 10,000 mA/cm 2 , more preferably about 1 to 10,000 mA/cm 2 .
  • the energization time is preferably about 1 to 100 minutes, more preferably about 2 to 60 minutes.
  • the voltage during energization may be set higher within the above range, or the voltage may be increased during energization. You can change it higher.
  • a high voltage is not particularly limited, but a voltage of about 50 to 1000 V, more preferably about 100 to 500 V can be mentioned. can be held for about 1 to 5 minutes.
  • the conductive substrate After energization in the NF dispersion, the conductive substrate is placed in an electrolytic bath containing deionized water and allowed to stand while being energized for a certain period of time to wash the NF coating on the conductive substrate. you can go
  • the voltage range in the energization during cleaning is not particularly limited, but is preferably about 0.1 to 1000 V, more preferably about 10 to 500 V, and the energization time is preferably about 1 to 100 minutes. , more preferably about 5 to 60 minutes.
  • NF coating The energization described above forms a coating of NF on the conductive substrate.
  • the coating obtained immediately after energization is a layer of transparent to translucent gel-like NF dispersion containing NF and dispersion medium.
  • the conductive substrate with the gelled NF coating may be removed from the electrolytic bath and optionally dried to remove the dispersion in the gelled coating.
  • the drying method in this case is not particularly limited, and examples thereof include natural drying, hot air/hot air drying, and vacuum drying.
  • the thickness of the gel-like NF coating on the conductive substrate can be adjusted by adjusting the NF solid content of the NF dispersion, the energization time, etc. For example, the thickness is about 0.1 to 10 mm. coating can be formed.
  • the thickness of the coating obtained by drying (removing the dispersion medium from) the gel-like coating is not particularly limited, but is, for example, about 0.5 to 50 ⁇ m. After drying, the coating is a dense thin film consisting mainly of NF.
  • the ratio of the solid content of NF to the total solid content in the gel coating and the coating after drying is preferably 50% or more, more preferably 70% or more, more preferably 80% or more, and more preferably 90% or more. More preferably 95% or more.
  • the reaction was terminated when the sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain an oxidized pulp.
  • the pulp yield at this time was 90%, and the time required for the oxidation reaction was 90 minutes.
  • the oxidized pulp obtained in the above step is adjusted to 0.5% (w / v) with water, and defibration treatment is performed 5 times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to obtain a dispersion of oxidized CNF. Obtained.
  • the carboxyl group content of the obtained oxidized CNF was 1.42 mmol/g.
  • CM-CNF Preparation of CM-CNF 130 parts of water and 20 parts of sodium hydroxide dissolved in a mixed solvent of 10 parts of water and 90 parts of isopropanol (IPA) are added to a twin-screw kneader whose rotation speed is adjusted to 150 rpm, and hardwood pulp (Nippon Paper Industries ( LBKP manufactured by Co., Ltd.) was charged at 100° C. for 60 minutes in terms of dry weight. The mixture was stirred and mixed at 35° C. for 80 minutes for mercerization. Further, a mixed solvent of 23 parts of water and 207 parts of IPA and 40 parts of sodium monochloroacetate were added with stirring, and after stirring for 30 minutes, the temperature was raised to 70° C.
  • IPA isopropanol
  • CM-modified pulp obtained in the above step was adjusted to 0.5% (w/v) with water, and defibrated three times with an ultrahigh-pressure homogenizer (20°C, 150 MPa) to obtain a CM-CNF dispersion. got
  • the phosphate esterified pulp obtained in the above process is adjusted to 0.5% (w / v) with water, and defibrated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to perform phosphate esterification. A dispersion of CNF was obtained.
  • the sulfated pulp obtained in the above step was adjusted to 0.5% (w / v) with water, and defibrated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to produce sulfated CNF. A dispersion was obtained.
  • the cationic pulp obtained in the above step was adjusted to 0.5% (w / v) with water, and defibration treatment was performed three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa), and the cationized CNF dispersion liquid got
  • a suspension of washed crab shells with a concentration of 0.5% (w/v) was adjusted to pH 6 with acetic acid, pulverized with a home-use mixer for 1 hour, and further milled with Homodisper (manufactured by Primix) at 6000 rpm for 5 hours. Preliminarily defibrated. This suspension was defibrated three times with an ultrahigh-pressure homogenizer (20° C., 150 MPa) to obtain an aqueous dispersion of chitin nanofibers.
  • aqueous dispersion of each NF prepared by the method described above was prepared.
  • the solid content of NF in the dispersion is as described in Table 1.
  • 500 mL of aqueous dispersion of each NF was placed in an electrolytic bath, the conductive substrate (25 cm 2 ) listed in Table 1 and an aluminum plate (25 cm 2 ) as a counter electrode were immersed in the dispersion, and the voltage was 18 with a rectifier. 5 V and a current value of 0.1 A or less, and energized for about 1 hour.
  • each conductive substrate is taken out from the electrolytic cell, placed again in the separately prepared electrolytic cell containing deionized water, and left to stand for 1 hour under the same conditions as above while being energized.
  • the uniformity of the NF gel-like coating formed on the conductive substrate was evaluated by the method described below.
  • the presence or absence of repelling of the coating on the base material was evaluated by the method described later.
  • the conductive substrate with the NF gel-like coating was dried at 50°C to form a thin film.
  • the coating obtained after drying was evaluated for the presence or absence of unevenness, the presence or absence of wrinkles, and the presence or absence of peeling by the methods described later. Table 1 shows the results.
  • Test 2 Formation of coating by electrophoresis On the conductive substrate in the same manner as in Test 1, except that the NF aqueous dispersion and the conductive substrate described in Table 2 were used, the voltage was 30 V, the current value was 0.3 A or less, and the current was applied for 2 minutes. to form a gel-like coating of NF.
  • the uniformity of the coating and the presence or absence of flipping on the substrate were evaluated in the same manner as in Test 1 by the method described below. After these evaluations, the conductive substrates with each coating were dried at 50°C. Regarding the coating after drying, the presence or absence of unevenness, the presence or absence of wrinkles, and the presence or absence of peeling were evaluated in the same manner as in Test 1 by the methods described below. Table 2 shows the results.
  • Test 4 Formation of coating by electrophoresis A NF coating was formed and evaluated in the same manner as Test 2, except that the voltage was changed to 10V. Table 4 shows the results.
  • each NF dispersion liquid having the solid content shown in Table 6 was coated on each conductive substrate. Hand coated using a 40 wire bar (bar coat). Further, each NF dispersion liquid having the solid content shown in Table 6 was sprayed onto each conductive substrate using a two-fluid nozzle (spray coating). The uniformity of each coating obtained and the presence or absence of repelling on the substrate were evaluated by the methods described below in the same manner as in the Examples. After these evaluations, the conductive substrates with each coating were dried at 50°C. Regarding the coating after drying, the presence or absence of unevenness, the presence or absence of wrinkles, and the presence or absence of peeling were evaluated in the same manner as in Test 1 by the methods described below. Table 6 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Provided is a method for forming a coating of anionic or cationic cellulose nano-fibers or chitin nano-fibers which are less uneven and uniform on an electroconductive substrate. A liquid dispersion of anionic cellulose nano-fibers or a liquid dispersion of cationic cellulose nano-fibers and/or chitin nano-fibers, an electroconductive substrate that is an object to be coated, and an electrode are placed in an electrolysis bath, an electric current is passed using the electroconductive substrate as a positive electrode when the anionic cellulose nano-fibers are used and using the electroconductive substrate as a negative electrode when the cationic cellulose nano-fibers and/or the chitin nano-fibers are used, and the nano-fibers are electrophoresed to the electroconductive substrate to coat the electroconductive substrate with the nano-fibers.

Description

セルロースナノファイバー及び/又はキチンナノファイバーのコーティングの製造方法Method for producing cellulose nanofiber and/or chitin nanofiber coating
 本発明は、セルロースナノファイバー及び/又はキチンナノファイバーのコーティングの製造方法に関する。より詳細には、電気泳動の原理を用いて、導電性基材上にアニオン性セルロースナノファイバー、あるいはカチオン性セルロースナノファイバー及び/又はチンナノファイバーを堆積させてコーティングを形成する方法に関する。 The present invention relates to a method for producing a coating of cellulose nanofibers and/or chitin nanofibers. More particularly, it relates to a method of depositing anionic cellulose nanofibers, or cationic cellulose nanofibers and/or tin nanofibers on a conductive substrate to form a coating using the principle of electrophoresis.
 アニオン性またはカチオン性の基をセルロースに導入し、導入されたこれらの基の電荷反発力を利用して解繊して得られるセルロースナノファイバーは、非常に細い繊維径を有し、一般的に均質性が高く、また、導入された基に基づく各種の機能性を有し、強度が高いなどの特徴から、広く研究されている。例えば、アニオン性の基をセルロースに導入し解繊して得たアニオン性セルロースナノファイバーとしては、N-オキシル化合物によるセルロースの表面酸化反応を利用してセルロースの水酸基の一部をカルボキシル基に酸化して解繊して得た酸化セルロースナノファイバーや、カルボキシメチル置換度が0.01~0.30であり平均繊維径が3~500nmであるカルボキシメチル化セルロースナノファイバーが報告されている(特許文献1及び2)。 Cellulose nanofibers obtained by introducing anionic or cationic groups into cellulose and defibrating using the charge repulsion of these introduced groups have a very fine fiber diameter and are generally It has been extensively studied because of its characteristics such as high homogeneity, various functionalities based on the introduced groups, and high strength. For example, as an anionic cellulose nanofiber obtained by introducing an anionic group into cellulose and defibrating it, some of the hydroxyl groups of cellulose are oxidized to carboxyl groups using the surface oxidation reaction of cellulose by an N-oxyl compound. oxidized cellulose nanofibers obtained by fibrillating and carboxymethylated cellulose nanofibers having a degree of carboxymethyl substitution of 0.01 to 0.30 and an average fiber diameter of 3 to 500 nm have been reported (patent References 1 and 2).
 また、通常は廃棄されるエビやカニなどの甲殻類の甲羅や殻から、簡便な手法でキチンナノファイバーを製造して塗料組成物などに応用することも報告されている(特許文献3)。 In addition, it has also been reported that chitin nanofibers are produced by a simple method from the shells and shells of crustaceans such as shrimp and crabs, which are usually discarded, and applied to coating compositions and the like (Patent Document 3).
特開2008-1728号公報Japanese Unexamined Patent Application Publication No. 2008-1728 国際公開第2014/088072号WO2014/088072 国際公開第2010/073758号WO2010/073758
 これらのナノファイバーは、その微小な繊維径に対して長い繊維長を有しており、一般に弾性が高く、分散液とした際に高い粘性を示す。これらのナノファイバーの分散液を用いて基材上にナノファイバーのコーティングを形成する方法としては、ナノファイバーの分散液をバーコーターで基材上に塗布する方法や、ナノファイバーの分散液を基材上に噴霧する方法が考えられる。これらの方法では、分散液中のナノファイバーに剪断力が与えられることにより、ナノファイバーが変形して基材上に塗布される。しかし、ナノファイバーは高い弾性を有するため、塗布後に元の形状に戻る力が働き、最終的に得られるナノファイバーのコーティングに凹凸が生じやすい。また、上記ナノファイバーの分散液は擬塑性があり、剪断力が与えられている間は低粘度化するが、基材上に塗布された後に剪断力から解放されると粘度が回復するため、塗布後のレベリングが期待できない。さらに、上記ナノファイバーの分散液は、金属や疎水系材料との親和性が低く、これらの基材に対する濡れ性が悪いため、これらの基材上にコーティングを形成しようとすると、非常に弾かれやすい。そのため、上記のナノファイバーを、基材上に均一にコーティングすることは難しかった。本発明は、凹凸が少なく均一なナノファイバーのコーティングを金属などの基材上に形成することができる方法を提供することを目的とする。 These nanofibers have a long fiber length in spite of their small fiber diameter, generally have high elasticity, and exhibit high viscosity when dispersed. Methods of forming a nanofiber coating on a substrate using these nanofiber dispersions include a method of applying a nanofiber dispersion onto a substrate with a bar coater, and a method of applying a nanofiber dispersion onto a substrate. A method of spraying on the material can be considered. In these methods, the nanofibers are deformed and applied onto the substrate by applying a shearing force to the nanofibers in the dispersion. However, since nanofibers have high elasticity, a force is exerted to restore the original shape after coating, and unevenness tends to occur in the finally obtained nanofiber coating. In addition, the dispersion of nanofibers has pseudoplasticity, and the viscosity decreases while a shearing force is applied, but the viscosity recovers when the shearing force is released after being applied to the substrate. Leveling after application cannot be expected. Furthermore, the nanofiber dispersion has low affinity for metals and hydrophobic materials and poor wettability with respect to these substrates. Cheap. Therefore, it has been difficult to evenly coat the substrate with the above nanofibers. An object of the present invention is to provide a method capable of forming a uniform nanofiber coating on a substrate such as a metal with less unevenness.
 本発明者らは、上記目的に対し鋭意検討を行った結果、電気泳動の原理を用いることにより、金属などの導電性基材上に凹凸が少なく均一なセルロースナノファイバー及び/又はキチンナノファイバーのコーティングを形成することができることを見出した。具体的には、アニオン性又はカチオン性の基を有するアニオン性又はカチオン性のセルロースナノファイバーの分散液、あるいはキチンナノファイバーの分散液、あるいはカチオン性セルロースナノファイバーとキチンナノファイバーを含む分散液を用意する。コーティングの基材(被塗物)となる導電性の基材を用意して分散液中に浸漬させる。そして、アニオン性セルロースナノファイバーを用いる場合には、導電性基材を陽極として通電し、また、カチオン性セルロースナノファイバー及び/又はキチンナノファイバーを用いる場合には、導電性基材を陰極として通電することにより、これらのナノファイバーを電気泳動の原理により導電性基材へと移動させて堆積させ、導電性基材上にこれらのナノファイバーのコーティングを形成する。これにより、ナノファイバーの高弾性やナノファイバー分散液の擬塑性の影響を受けることなく、導電性基材上に凹凸の少ない均一なナノファイバーのコーティングを形成させることができることを見出した。また、ナノファイバーが導電性基材上に電気によって密に吸着されるため、弾かれずに均一にコーティングすることができることを見出した。本発明は、以下を含む。
[1]アニオン性セルロースナノファイバーの分散液を電解槽に入れること、
 導電性基材及び電極を前記電解槽中の前記分散液に浸漬させること、及び
 前記導電性基材を陽極とし前記電極を陰極として通電して、前記アニオン性セルロースナノファイバーを前記導電性基材へと電気泳動させることにより、前記導電性基材を前記アニオン性セルロースナノファイバーでコーティングすること
を含む、アニオン性セルロースナノファイバーのコーティングの製造方法。
[2]カチオン性セルロースナノファイバー及び/またはキチンナノファイバーの分散液を電解槽に入れること、
 導電性基材及び電極を前記電解槽中の前記分散液に浸漬させること、及び
 前記導電性基材を陰極とし前記電極を陽極として通電して、前記カチオン性セルロースナノファイバー及び/またはキチンナノファイバーを前記導電性基材へと電気泳動させることにより、前記導電性基材を前記カチオン性セルロースナノファイバー及び/またはキチンナノファイバーでコーティングすること
を含む、カチオン性セルロースナノファイバー及び/またはキチンナノファイバーのコーティングの製造方法。
[3]前記アニオン性セルロースナノファイバーがカルボキシル基及び/またはカルボキシレート基を有する酸化セルロースナノファイバーである[1]に記載の方法。
[4]前記アニオン性セルロースナノファイバーがカルボキシアルキル化セルロースナノファイバーである[1]に記載の方法。
[5]前記アニオン性セルロースナノファイバーがリン酸エステル化セルロースナノファイバーである[1]に記載の方法。
[6]前記アニオン性セルロースナノファイバーが硫酸エステル化セルロースナノファイバーである[1]に記載の方法。
[7]前記導電性基材が金属又はカーボンである[1]から[6]のいずれか一項に記載の方法。
As a result of intensive studies on the above object, the present inventors have found that by using the principle of electrophoresis, uniform cellulose nanofibers and/or chitin nanofibers with little unevenness can be produced on a conductive substrate such as metal. It has been found that coatings can be formed. Specifically, a dispersion of anionic or cationic cellulose nanofibers having an anionic or cationic group, a dispersion of chitin nanofibers, or a dispersion containing cationic cellulose nanofibers and chitin nanofibers. prepare. A conductive base material, which will be the base material for coating (object to be coated), is prepared and immersed in the dispersion. When anionic cellulose nanofibers are used, the conductive substrate is used as an anode, and when cationic cellulose nanofibers and/or chitin nanofibers are used, the conductive substrate is used as a cathode. This causes these nanofibers to migrate and deposit on the conductive substrate by the principle of electrophoresis, forming a coating of these nanofibers on the conductive substrate. As a result, the present inventors have found that a uniform nanofiber coating can be formed on a conductive substrate with little unevenness without being affected by the high elasticity of nanofibers and the pseudoplasticity of a nanofiber dispersion. In addition, the inventors have found that the nanofibers can be uniformly coated without being repelled because the nanofibers are densely adhered to the conductive substrate by electricity. The present invention includes the following.
[1] Putting a dispersion of anionic cellulose nanofibers in an electrolytic cell,
immersing a conductive base material and an electrode in the dispersion in the electrolytic bath; and energizing the conductive base material as an anode and the electrode as a cathode to transfer the anionic cellulose nanofibers to the conductive base material. A method of making a coating of anionic cellulose nanofibers, comprising coating the conductive substrate with the anionic cellulose nanofibers by electrophoresis to a substrate.
[2] placing a dispersion of cationic cellulose nanofibers and/or chitin nanofibers in an electrolytic cell;
immersing a conductive base material and an electrode in the dispersion in the electrolytic bath; and energizing the conductive base material as a cathode and the electrode as an anode to obtain the cationic cellulose nanofibers and/or chitin nanofibers. to the conductive substrate to coat the conductive substrate with the cationic cellulose nanofibers and/or chitin nanofibers. coating manufacturing method.
[3] The method according to [1], wherein the anionic cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups.
[4] The method according to [1], wherein the anionic cellulose nanofibers are carboxyalkylated cellulose nanofibers.
[5] The method according to [1], wherein the anionic cellulose nanofibers are phosphorylated cellulose nanofibers.
[6] The method according to [1], wherein the anionic cellulose nanofibers are sulfate-esterified cellulose nanofibers.
[7] The method according to any one of [1] to [6], wherein the conductive substrate is metal or carbon.
 本発明により、高弾性であり、擬塑性の高い分散液を形成するアニオン性又はカチオン性セルロースナノファイバーあるいはキチンナノファイバーを用いて、導電性基材上に、凹凸が少なく均一で剥がれの少ないコーティングを形成することができるようになる。これらのナノファイバーは高い弾性を有するため、バーコートやスプレーコートを用いた場合には塗布後に元の形状に戻る力が働き、最終的に得られるナノファイバーのコーティングに凹凸が生じやすかった。また、上記ナノファイバーの分散液は擬塑性があり、剪断力が与えられている間は低粘度化するが、基材上に塗布されて剪断力から解放されると粘度が回復するため、塗布後にレベリング(平滑化)しにくく、生じた凹凸が残りやすかった。さらに、上記ナノファイバーの分散液は、金属や疎水系材料との親和性が低く、これらの基材に対する濡れ性が悪いため、これらの基材上にコーティングを形成しようとすると、非常に弾かれやすいという問題があった。一方、本発明では、電気泳動の原理を用いてナノファイバーを導電性基材へと移動させて電気的に堆積/密着させるので、ナノファイバーの高弾性及び擬塑性の影響を受けずに基材上にコーティングを形成することができる。これにより、凹凸や皺の少ない、均一なコーティングが得られる。また、ナノファイバーが基材に電気によって密に吸着されるため、ナノファイバーが基材上で弾かれることなく均一にコーティングすることができ、また、コーティングの剥がれの問題も生じにくい。 According to the present invention, anionic or cationic cellulose nanofibers or chitin nanofibers that form a dispersion with high elasticity and high pseudoplasticity are used to form a uniform coating with less unevenness and less peeling on a conductive substrate. will be able to form Since these nanofibers have high elasticity, when bar coating or spray coating is used, a force of returning to the original shape acts, and unevenness tends to occur in the finally obtained nanofiber coating. In addition, the dispersion of nanofibers has pseudoplasticity, and the viscosity decreases while a shearing force is applied. It was difficult to level (smooth) afterward, and the resulting irregularities tended to remain. Furthermore, the nanofiber dispersion has a low affinity for metals and hydrophobic materials, and poor wettability with respect to these substrates. The problem was that it was easy. On the other hand, in the present invention, the principle of electrophoresis is used to move the nanofibers to the conductive substrate and deposit/adhere them electrically. A coating can be formed thereon. This provides a uniform coating with few irregularities and wrinkles. In addition, since the nanofibers are tightly adhered to the base material by electricity, the nanofibers are not repelled on the base material and can be uniformly coated, and the problem of peeling of the coating is less likely to occur.
 本発明は、セルロースナノファイバー(以下、セルロースナノファイバーを「CNF」と呼ぶ。)又はキチンナノファイバーのコーティングの製造方法であり、より詳細には、電気泳動の原理を用いて、導電性基材上にアニオン性又はカチオン性CNF、あるいはキチンナノファイバーを堆積させてコーティングを形成することを含む方法である。本明細書において、アニオン性CNFとカチオン性CNFとキチンナノファイバーを合わせて、単に「ナノファイバー」又は「NF」と呼ぶことがある。本発明の方法では、まず、上記のNFの分散液を電解槽に入れる。次にこの分散液中に、導電性基材と電極を浸漬させ、アニオン性CNFを用いる場合には導電性基材を陽極とし、また、カチオン性CNF又はキチンNFを用いる場合には導電性基材を陰極として、通電する。通電によりNFは、電気泳動により導電性基材側に移動して導電性基材上に堆積し、NFのゲル状のコーティングが導電性基材上に生成される。このゲル状のコーティングは必要に応じ乾燥してもよい。乾燥は、ゲル状のコーティングを有する導電性基材を電解槽から取り出してから、温風乾燥などの通常の方法を用いて行ってもよい。 The present invention is a method for producing a coating of cellulose nanofibers (hereinafter, cellulose nanofibers will be referred to as “CNF”) or chitin nanofibers. A method comprising depositing anionic or cationic CNF or chitin nanofibers thereon to form a coating. In the present specification, anionic CNF, cationic CNF and chitin nanofibers may be collectively referred to simply as "nanofibers" or "NF". In the method of the present invention, first, the NF dispersion is placed in an electrolytic cell. Next, a conductive substrate and an electrode are immersed in this dispersion, and when anionic CNF is used, the conductive substrate is used as the anode, and when cationic CNF or chitin NF is used, the conductive group The material is used as a cathode and an electric current is applied. When energized, the NFs electrophoretically migrate toward the conductive substrate and deposit on the conductive substrate, forming a gel-like coating of NFs on the conductive substrate. This gel coating may be dried if desired. Drying may be performed using a normal method such as hot air drying after removing the conductive substrate having the gel-like coating from the electrolytic bath.
 (ナノファイバー)
 本発明において、ナノファイバー(NF)とは、平均繊維径が1μm未満であるアニオン性CNF、カチオン性CNF、またはキチンNFをいう。好ましくは平均繊維径が3nm~500nm程度、更に好ましくは3nm~150nm程度、更に好ましくは3nm~20nm程度である。アスペクト比は30以上、好ましくは50以上、さらに好ましくは100以上である。アスペクト比の上限は限定されないが、500以下程度である。NFの平均繊維径および平均繊維長は、径が20nm未満の場合は原子間力顕微鏡(AFM)、20nm以上の場合は電界放出型走査電子顕微鏡(FE-SEM)を用いて、ランダムに選んだ200本の繊維について解析し、平均を算出することにより、測定することができる。また、アスペクト比は下記の式により算出することができる:
 アスペクト比=平均繊維長/平均繊維径。
(Nanofiber)
In the present invention, nanofibers (NF) refer to anionic CNF, cationic CNF, or chitin NF having an average fiber diameter of less than 1 μm. The average fiber diameter is preferably about 3 nm to 500 nm, more preferably about 3 nm to 150 nm, still more preferably about 3 nm to 20 nm. The aspect ratio is 30 or more, preferably 50 or more, more preferably 100 or more. Although the upper limit of the aspect ratio is not limited, it is about 500 or less. The average fiber diameter and average fiber length of NF were randomly selected using an atomic force microscope (AFM) when the diameter was less than 20 nm and a field emission scanning electron microscope (FE-SEM) when the diameter was 20 nm or more. It can be measured by analyzing 200 fibers and calculating the average. Also, the aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length/average fiber diameter.
 (アニオン性CNF)
 アニオン性CNFとは、セルロースの分子鎖にアニオン基が導入されたNFである。アニオン性CNFは、セルロースのピラノース環にアニオン基を導入して得られたアニオン性セルロースを1μm未満の平均繊維径となるように解繊することにより得ることができる。
(Anionic CNF)
Anionic CNF is NF in which an anionic group is introduced into the molecular chain of cellulose. Anionic CNF can be obtained by defibrating anionic cellulose obtained by introducing an anionic group into the pyranose ring of cellulose so as to have an average fiber diameter of less than 1 μm.
 アニオン性セルロースの原料となるセルロースの種類は、特に限定されない。例えば、針葉樹、広葉樹、木綿、わら、竹、麻、ジュート、ケナフ等を原料とする晒又は未晒のメカニカルパルプ(例えば、サーモメカニカルパルプ(TMP)、砕木パルプ)やケミカルパルプ(例えば、亜硫酸パルプ、クラフトパルプ)、また、溶解パルプ、再生セルロース、微細セルロース、非結晶領域を除いた微結晶セルロース等を挙げることができ、これらのいずれも、セルロース原料として用いることができる。 The type of cellulose used as a raw material for anionic cellulose is not particularly limited. For example, bleached or unbleached mechanical pulp (e.g., thermomechanical pulp (TMP), groundwood pulp) and chemical pulp (e.g., sulfite pulp) made from softwood, hardwood, cotton, straw, bamboo, hemp, jute, kenaf, etc. , kraft pulp), dissolving pulp, regenerated cellulose, fine cellulose, microcrystalline cellulose excluding non-crystalline regions, and the like, and any of these can be used as the cellulose raw material.
 このようなセルロース原料にアニオン基を導入することにより、アニオン性セルロースを製造することができる。アニオン基の導入方法は特に限定されないが、例えば、セルロースのピラノース環の水酸基を直接カルボキシル基に酸化したり、あるいは、ピラノース環の水酸基部分でエステル化反応によりアニオン基を導入する方法が挙げられる。得られたアニオン性セルロースを、1μm未満の平均繊維径となるように解繊することにより、アニオン性CNFを得ることができる。解繊方法は特に限定されず、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの公知の解繊装置を用いればよい。中でも、湿式の高圧または超高圧ホモジナイザを用いることは好ましい。 An anionic cellulose can be produced by introducing an anionic group into such a cellulose raw material. The method for introducing the anionic group is not particularly limited, but examples include a method of directly oxidizing the hydroxyl group of the pyranose ring of cellulose to a carboxyl group, or a method of introducing an anionic group by an esterification reaction at the hydroxyl group portion of the pyranose ring. Anionic CNF can be obtained by fibrillating the obtained anionic cellulose so as to have an average fiber diameter of less than 1 μm. The defibration method is not particularly limited, and a known defibration device such as a high speed rotation type, a colloid mill type, a high pressure type, a roll mill type, and an ultrasonic type may be used. Among them, it is preferable to use a wet high-pressure or ultrahigh-pressure homogenizer.
 (酸化CNF)
 アニオン性CNFの一例として、カルボキシル基及び/またはカルボキシレート基を有する酸化CNFを挙げることができる。本明細書においてカルボキシル基とは、-COOH(酸型)および-COOM(金属塩型)(式中、Mは金属イオンである)をいい、カルボキシレート基とは-COOをいう。カルボキシル基及び/またはカルボキシレート基を有する酸化CNF(本明細書において、単に「酸化CNF」とも呼ぶ)は、セルロースのピラノース環の水酸基をカルボキシル基に酸化する公知の方法を用いて酸化セルロースを得て、次いで解繊することにより得ることができる。セルロースの酸化方法としては、例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)のようなN-オキシル化合物と、臭化物及び/又はヨウ化物との存在下で、酸化剤を用いてセルロースを水中で酸化する方法や、オゾンを含む気体を酸化剤として用いてセルロース原料と接触させることによりセルロースを酸化する方法を挙げることができる。
(oxidized CNF)
An example of anionic CNF is oxidized CNF having a carboxyl group and/or a carboxylate group. As used herein, a carboxyl group refers to -COOH (acid form) and -COOM (metal salt form) (wherein M is a metal ion), and a carboxylate group refers to -COO - . Oxidized CNF having a carboxyl group and/or a carboxylate group (also referred to herein simply as "oxidized CNF") is obtained by obtaining oxidized cellulose using a known method of oxidizing the hydroxyl group of the pyranose ring of cellulose to a carboxyl group. and then fibrillating. As a method of oxidizing cellulose, for example, oxidation is performed in the presence of an N-oxyl compound such as 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and bromide and/or iodide. Examples include a method of oxidizing cellulose in water using an agent, and a method of oxidizing cellulose by bringing it into contact with a cellulose raw material using an ozone-containing gas as an oxidizing agent.
 酸化CNFにおけるカルボキシル基及びカルボキシレート基の合計量は、酸化CNFの絶乾質量に対して、0.4~3.0mmol/gが好ましく、0.6~2.0mmol/gがさらに好ましく、1.0~2.0mmol/gがさらに好ましく、1.1~2.0mmol/gがさらに好ましい。酸化CNFのカルボキシル基及びカルボキシレート基の量は、酸化剤の添加量や反応時間等の反応条件をコントロールすることで調整することができる。カルボキシル基及びカルボキシレート基の量は、以下の方法で測定することができる:
 酸化CNFの0.5質量%スラリー(水分散液)60mlを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出する:
 カルボキシル及びカルボキシレート基量〔mmol/g酸化CNF〕=a〔ml〕×0.05/酸化CNF質量〔g〕。
The total amount of carboxyl groups and carboxylate groups in the oxidized CNF is preferably 0.4 to 3.0 mmol/g, more preferably 0.6 to 2.0 mmol/g, relative to the absolute dry mass of the oxidized CNF. 0 to 2.0 mmol/g, more preferably 1.1 to 2.0 mmol/g. The amount of carboxyl groups and carboxylate groups in oxidized CNF can be adjusted by controlling reaction conditions such as the amount of oxidizing agent added and reaction time. The amount of carboxyl groups and carboxylate groups can be measured by the following methods:
Prepare 60 ml of 0.5% by mass slurry (aqueous dispersion) of oxidized CNF, add 0.1 M hydrochloric acid aqueous solution to adjust the pH to 2.5, and then drop 0.05 N sodium hydroxide aqueous solution to adjust the pH to 11. The electrical conductivity is measured until it becomes , and the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid, in which the change in electrical conductivity is gradual, is calculated using the following formula:
Carboxyl and carboxylate group amount [mmol/g oxidized CNF]=a [ml]×0.05/oxidized CNF mass [g].
 (カルボキシアルキル化CNF)
 アニオン性CNFの一例として、カルボキシアルキル基を有するカルボキシアルキル化CNFを挙げることができる。本明細書においてカルボキシアルキル基とは、-RCOOH(酸型)および-RCOOM(金属塩型)をいう。ここでRはメチレン基、エチレン基等のアルキレン基であり、Mは金属イオンである。カルボキシアルキル基を有するカルボキシアルキル化CNFとしては、Rがメチレン基であるカルボキシメチル基を有するカルボキシメチル化CNFが最も好ましい(以下、「カルボキシメチル」を「CM」と呼ぶ)。カルボキシアルキル化CNFは、セルロース原料をマーセル化剤で処理した後にカルボキシアルキル化剤で処理してカルボキシアルキル基を導入する公知の方法を用いてカルボキシアルキル化セルロースを得て、次いで解繊することにより得ることができる。
(Carboxyalkylated CNF)
An example of an anionic CNF is a carboxyalkylated CNF having a carboxyalkyl group. As used herein, a carboxyalkyl group refers to -RCOOH (acid form) and -RCOOM (metal salt form). Here, R is an alkylene group such as a methylene group or ethylene group, and M is a metal ion. As the carboxyalkylated CNF having a carboxyalkyl group, carboxymethylated CNF having a carboxymethyl group in which R is a methylene group is most preferred (hereinafter "carboxymethyl" is referred to as "CM"). Carboxyalkylated CNF is obtained by obtaining carboxyalkylated cellulose using a known method of treating a cellulose raw material with a mercerizing agent and then treating it with a carboxyalkylating agent to introduce a carboxyalkyl group, and then defibrating it. Obtainable.
 カルボキシアルキル化CNFの無水グルコース単位当たりのカルボキシアルキル置換度は、0.40未満であることが好ましい。また、カルボキシアルキル置換度の下限値は0.01以上が好ましい。操業性を考慮すると当該置換度は0.02以上0.35以下であることが特に好ましく、0.10以上0.35以下であることが更に好ましく、0.15以上0.35以下であることが更に好ましく、0.15以上0.30以下であることが更に好ましい。なお、無水グルコース単位とは、セルロースを構成する個々の無水グルコース(グルコース残基)を意味し、カルボキシアルキル置換度とは、セルロースを構成するグルコース残基中の水酸基(-OH)のうちカルボキシアルキル基(-ORCOOHまたは-ORCOOM)に置換されているものの割合(1つのグルコース残基当たりのカルボキシアルキル基の数)を示す。カルボキシアルキル置換度は、マーセル化剤の量や反応時間等の反応条件をコントロールすることで調整することができる。グルコース単位当たりのCM置換度は、以下の方法で測定することができる:
 CM化CNF(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。メタノール900mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、塩型のCM化CNFを水素型CM化CNFに変換する。水素型CM化CNF(絶乾)を1.5g~2.0g精秤し、300mL容共栓付き三角フラスコに入れる。80質量%メタノール15mLで水素型CM化CNFを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。指示薬として、フェノールフタレインを用いて、0.1NのHSOで過剰のNaOHを逆滴定する。CM置換度(DS)を、次式によって算出する:
 A=[(100×F’-(0.1NのHSO)(mL)×F)×0.1]/(水素型CM化CNFの絶乾質量(g))
 DS=0.162×A/(1-0.058×A)
 A:水素型CM化CNFの1gの中和に要する1NのNaOH量(mL)
 F:0.1NのHSOのファクター
 F’:0.1NのNaOHのファクター
 CM基以外のカルボキシアルキル基置換度の測定も、上記と同様の方法で行うことができる。
The degree of carboxyalkyl substitution per anhydroglucose unit of the carboxyalkylated CNF is preferably less than 0.40. Moreover, the lower limit of the degree of carboxyalkyl substitution is preferably 0.01 or more. Considering the workability, the degree of substitution is particularly preferably 0.02 or more and 0.35 or less, more preferably 0.10 or more and 0.35 or less, and 0.15 or more and 0.35 or less. is more preferable, and more preferably 0.15 or more and 0.30 or less. The anhydroglucose unit means an individual anhydroglucose (glucose residue) constituting cellulose, and the degree of carboxyalkyl substitution refers to the hydroxyl group (—OH) in the glucose residue constituting cellulose. The ratio of those substituted by groups (-ORCOOH or -ORCOOM) (the number of carboxyalkyl groups per glucose residue) is shown. The degree of carboxyalkyl substitution can be adjusted by controlling reaction conditions such as the amount of mercerizing agent and reaction time. The degree of CM substitution per glucose unit can be measured by the following method:
About 2.0 g of CM-modified CNF (absolute dry) is precisely weighed and placed in a 300 mL conical flask with a common stopper. Add 100 mL of a liquid obtained by adding 100 mL of special grade concentrated nitric acid to 900 mL of methanol and shake for 3 hours to convert the salt-type CM-CNF to the hydrogen-type CM-CNF. 1.5 g to 2.0 g of hydrogen-type CM-CNF (absolute dry) is accurately weighed and placed in a 300 mL conical flask equipped with a common stopper. Hydrogen-type CM-CNF is wetted with 15 mL of 80 mass % methanol, 100 mL of 0.1N NaOH is added, and shaken at room temperature for 3 hours. Excess NaOH is back-titrated with 0.1 N H 2 SO 4 using phenolphthalein as an indicator. The degree of CM substitution (DS) is calculated by the following formula:
A = [(100 × F'-(0.1 N H 2 SO 4 ) (mL) × F) × 0.1] / (absolute dry mass of hydrogen-type CM-CNF (g))
DS = 0.162 x A/(1 - 0.058 x A)
A: Amount of 1N NaOH (mL) required to neutralize 1 g of hydrogen-type CM-CNF
F: factor of 0.1N H 2 SO 4 F': factor of 0.1N NaOH The degree of substitution of carboxyalkyl groups other than CM groups can also be measured in the same manner as above.
 (リン酸エステル化CNF)
 アニオン性CNFの一例として、リン酸エステル化CNFを挙げることができる。リン酸エステル化CNFは、上述したセルロース原料にリン酸系化合物の粉末又は水溶液を混合する、あるいは、セルロース原料のスラリーにリン酸系化合物の水溶液を添加するなどにより、リン酸系化合物由来のリン酸系の基をセルロースに導入してリン酸エステル化セルロースとし、これを解繊することにより得ることができる。リン酸系化合物としては、リン酸、ポリリン酸、亜リン酸、次亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステル又は塩が挙げられる。具体的には、例えば、これらに限定されないが、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらの1種、あるいは2種以上を併用してセルロースにリン酸系化合物由来のリン酸系の基を導入することができる。本明細書において、リン酸系化合物由来のリン酸系の基には、リン酸基、亜リン酸基、次亜リン酸基、ピロリン酸基、メタリン酸基、ポリリン酸基、ホスホン酸基、及びポリホスホン酸基が含まれる。リン酸エステル化セルロース及びリン酸エステル化CNFは、セルロースの分子鎖にこれらのリン酸系の基の1種または2種以上が導入されているものを含む。セルロース原料をリン酸系化合物と反応させる際には、反応を均一に進行できかつ上記基の導入の効率が高くなることから前記リン酸系化合物は水溶液として用いることが望ましく、その際、水溶液のpHは、pH3~7が好ましい。また、尿素等の窒素含有化合物を添加してもよい。
(Phosphate esterified CNF)
Phosphate-esterified CNF can be mentioned as an example of anionic CNF. Phosphate-esterified CNF can be obtained by mixing the above-mentioned cellulose raw material with a phosphoric acid compound powder or aqueous solution, or by adding an aqueous solution of a phosphoric acid compound to a slurry of the cellulose raw material. It can be obtained by introducing an acid-based group into cellulose to obtain phosphate-esterified cellulose and defibrating it. Phosphoric acid compounds include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, and esters or salts thereof. Specifically, for example, but not limited to, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, potassium phosphite, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium metaphosphate and the like. A phosphoric acid group derived from a phosphoric acid compound can be introduced into cellulose by using one or more of these in combination. As used herein, the phosphoric acid group derived from a phosphoric acid compound includes a phosphoric acid group, a phosphorous acid group, a hypophosphorous acid group, a pyrophosphate group, a metaphosphoric acid group, a polyphosphoric acid group, a phosphonic acid group, and polyphosphonic acid groups. Phosphate-esterified cellulose and phosphate-esterified CNF include those in which one or more of these phosphoric acid groups are introduced into the molecular chain of cellulose. When the cellulose raw material is reacted with the phosphoric acid compound, it is desirable to use the phosphoric acid compound in the form of an aqueous solution because the reaction can proceed uniformly and the efficiency of introduction of the above group increases. The pH is preferably pH 3-7. A nitrogen-containing compound such as urea may also be added.
 リン酸エステル化CNFにおけるグルコース単位当たりのリン酸系の基の置換度(以下、単に「リン酸基置換度」と呼ぶ。)は、0.001以上0.40未満であることが好ましい。グルコース単位当たりのリン酸基置換度は、以下の方法で測定することができる:
 固形分量が0.2質量%のリン酸エステル化CNFのスラリーを調製する。スラリーに対し、体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ社製、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーとを分離することにより、水素型リン酸エステル化CNFを得る。次いで、イオン交換樹脂による処理後のスラリーに、0.1Nの水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測する。計測結果のうち、急激に電気伝導度が低下する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除すことにより、水素型リン酸エステル化CNF1g当たりのリン酸基量(mmol/g)を算出する。さらに、リン酸エステル化CNFのグルコース単位当たりのリン酸基置換度(DS)を、次式によって算出する:
 DS=0.162×A/(1-0.079×A)
 A:水素型リン酸エステル化CNFの1gあたりのリン酸基量(mmol/g)。
The degree of substitution of a phosphate group per glucose unit in the phosphorylated CNF (hereinafter simply referred to as "degree of phosphate group substitution") is preferably 0.001 or more and less than 0.40. The degree of phosphate group substitution per glucose unit can be measured by the following method:
A slurry of phosphorylated CNF having a solids content of 0.2% by weight is prepared. To the slurry, 1/10 by volume of a strongly acidic ion exchange resin (Amberjet 1024; manufactured by Organo, conditioned) was added, shaken for 1 hour, and then poured onto a mesh with an opening of 90 μm to pour the resin. and the slurry are separated to obtain hydrogen-type phosphate-esterified CNF. Next, while adding 50 μL of 0.1N sodium hydroxide aqueous solution to the slurry after the treatment with the ion-exchange resin once every 30 seconds, the change in the electrical conductivity of the slurry is measured. Among the measurement results, by dividing the alkali amount (mmol) required in the region where the electrical conductivity sharply decreases by the solid content (g) in the slurry to be titrated, the hydrogen-type phosphate-esterified CNF per 1 g A phosphate group amount (mmol/g) is calculated. Furthermore, the degree of phosphate group substitution (DS) per glucose unit of the phosphorylated CNF is calculated by the following formula:
DS = 0.162 x A/(1 - 0.079 x A)
A: Phosphate group amount (mmol/g) per 1 g of hydrogen-type phosphate-esterified CNF.
 (硫酸エステル化CNF)
 アニオン性CNFの一例として、硫酸エステル化CNFを挙げることができる。硫酸エステル化CNFは、上述したセルロース原料に硫酸系化合物を反応させることにより、硫酸系化合物由来の硫酸系の基をセルロースに導入して硫酸エステル化セルロースとし、これを解繊することにより得ることができる。硫酸系化合物としては、例えば、硫酸、スルファミン酸、クロロスルホン酸、三酸化硫黄、あるいはこれらのエステル又は塩が挙げられる。これらの中では、セルロースの溶解性が小さく、また、酸性度が低いことから、スルファミン酸を用いることが好ましい。
(Sulfuric acid esterified CNF)
An example of anionic CNF is sulfated CNF. Sulfated CNF can be obtained by reacting the above-described cellulose raw material with a sulfuric acid-based compound to introduce a sulfuric acid-based group derived from the sulfuric acid-based compound into cellulose to obtain sulfated cellulose, which is defibrated. can be done. Examples of sulfuric acid compounds include sulfuric acid, sulfamic acid, chlorosulfonic acid, sulfur trioxide, and esters or salts thereof. Among these, sulfamic acid is preferably used because cellulose has low solubility and low acidity.
 例えば、硫酸系化合物としてスルファミン酸を用いる場合、スルファミン酸の使用量は、セルロース鎖へのアニオン基の導入量を考慮して適宜調整することができる。例えば、セルロース分子中のグルコース単位1mol当たり、好ましくは0.01~50molの量で用いることができ、より好ましくは0.1~3.0molの量で用いることができる。 For example, when sulfamic acid is used as the sulfuric acid compound, the amount of sulfamic acid used can be appropriately adjusted in consideration of the amount of anionic groups to be introduced into the cellulose chain. For example, it can be used in an amount of preferably 0.01 to 50 mol, more preferably 0.1 to 3.0 mol, per 1 mol of glucose units in the cellulose molecule.
 硫酸エステル化CNFにおけるグルコース単位当たりの硫酸系の基の量(以下、単に「硫酸基量」と呼ぶ。)は、0.1~3.0mmol/gであることが好ましい。グルコース単位当たりの硫酸基量は、以下の方法で測定することができる:
 硫酸エステル化CNFの水分散液をエタノール、t-ブタノールの順に溶媒置換した後、凍結乾燥する。得られた試料200mgにエタノール15ml及び水5mlを加え、30分間撹拌する。その後、0.5Nの水酸化ナトリウム水溶液を10ml加え、70℃で30分間撹拌し、さらに30℃で24時間撹拌する。次いで、指示薬としてフェノールフタレインを加え、塩酸で滴定を行い、下式を用いて算出する:
 硫酸基量[mmol/g試料]=(5-(0.1×塩酸滴定量[ml]×2))/0.2。
The amount of sulfate-based groups per glucose unit in the sulfated CNF (hereinafter simply referred to as "amount of sulfate groups") is preferably 0.1 to 3.0 mmol/g. The amount of sulfate groups per glucose unit can be measured by the following method:
The aqueous dispersion of sulfated CNF is subjected to solvent substitution in the order of ethanol and t-butanol, and then freeze-dried. 15 ml of ethanol and 5 ml of water are added to 200 mg of the obtained sample, and the mixture is stirred for 30 minutes. After that, 10 ml of 0.5N sodium hydroxide aqueous solution is added, and the mixture is stirred at 70° C. for 30 minutes and further stirred at 30° C. for 24 hours. Then, add phenolphthalein as an indicator, titrate with hydrochloric acid, and calculate using the following formula:
Sulfate group amount [mmol/g sample]=(5−(0.1×hydrochloric acid titration amount [ml]×2))/0.2.
 (カチオン性CNF)
 カチオン性CNFとは、セルロースの分子鎖にカチオン基が導入されたカチオン性CNFである。カチオン性CNFは、セルロースのピラノース環にカチオン基を導入して得られたカチオン性セルロースを1μm未満の平均繊維径となるように解繊することにより得ることができる。
(Cationic CNF)
Cationic CNF is cationic CNF in which a cationic group is introduced into the molecular chain of cellulose. Cationic CNF can be obtained by defibrating cationic cellulose obtained by introducing a cationic group into the pyranose ring of cellulose so as to have an average fiber diameter of less than 1 μm.
 カチオン性セルロースの原料となるセルロースの種類は、特に限定されず、アニオン性CNFの欄に記載したものと同様である。また、カチオン性セルロースを解繊してカチオン性CNFとする方法も、特に限定されず、アニオン性CNFの欄に記載したものと同様である。 The type of cellulose used as a raw material for cationic cellulose is not particularly limited, and is the same as that described in the anionic CNF column. In addition, the method of fibrillating cationic cellulose to make cationic CNF is not particularly limited, and is the same as that described in the section on anionic CNF.
 カチオン性セルロースは、前記酸化セルロースに、グリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリアルキルアンモニウムハイドライトまたはそのハロヒドリン型などのカチオン化剤と、触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を、水または炭素数1~4のアルコールの存在下で反応させる公知の方法によって得ることができ、得られたカチオン性セルロースを解繊することによりカチオン性CNFを得ることができる。 Cationic cellulose is prepared by adding a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrate or its halohydrin type to the oxidized cellulose, and an alkali metal hydroxide (sodium hydroxide , potassium hydroxide, etc.) can be obtained by a known method of reacting in the presence of water or an alcohol having 1 to 4 carbon atoms, and the resulting cationic cellulose is fibrillated to obtain cationic CNF. can be done.
 カチオン性CNFにおけるグルコース単位当たりのカチオン置換度は0.02~0.50であることが好ましい。カチオン置換度は、反応させるカチオン化剤の添加量、水または炭素数1~4のアルコールの組成比率によって調整できる。グルコース単位当たりのカチオン置換度は、以下の方法で測定することができる:
 カチオン性CNFを乾燥させた後、全窒素分析計(三菱化学社製TN-10)を用いて窒素含有量を測定し、次式によりカチオン置換度(無水グルコース単位1モル当たりの置換基のモル数の平均値)を算出する:
 カチオン置換度=(162×N)/(1-151.6×N)
 N:窒素含有量。
The degree of cation substitution per glucose unit in the cationic CNF is preferably 0.02-0.50. The degree of cation substitution can be adjusted by adjusting the amount of the cationizing agent to be reacted and the composition ratio of water or alcohol having 1 to 4 carbon atoms. The degree of cation substitution per glucose unit can be measured by the following method:
After drying the cationic CNF, the nitrogen content was measured using a total nitrogen analyzer (TN-10 manufactured by Mitsubishi Chemical Corporation), and the degree of cation substitution (mole of substituent per 1 mol of anhydroglucose unit) was determined by the following formula. Calculate the mean of the numbers):
Degree of cation substitution = (162 × N) / (1-151.6 × N)
N: nitrogen content.
 (キチンNF)
 カチオン性CNF以外のカチオン性NFとして、キチンNFを挙げることができる。キチンは、N-アセチルグルコサミンが鎖状に連結したアミノ多糖であり、工業的にはエビやカニの甲羅、殻などから得られる。エビやカニなどの生物由来のキチンは、通常、その周囲にタンパク質や炭酸カルシウムのようなマトリクスを有しており、これらのマトリクスを除去する処理を行う。脱タンパク処理には、公知のアルカリ処理法、タンパク質分解酵素法などを用いることができる。炭酸カルシウムのような灰分の除去には、酸処理法、エチレンジアミン四酢酸処理法などの公知の方法を用いることができる。脱タンパク質処理及び脱灰分処理を行った生物由来のキチンを石臼式磨砕器や高圧ホモジナイザーなどの装置を用いて解繊することにより、キチンNFを得ることができる。キチンNFの製造方法は、例えば国際公開第2010/073758号に記載されている。
(Chitin NF)
Chitin NF can be mentioned as cationic NF other than cationic CNF. Chitin is an aminopolysaccharide in which N-acetylglucosamine is linked in a chain form, and is industrially obtained from shrimp and crab shells and the like. Chitin derived from organisms such as shrimp and crab usually has a matrix such as protein and calcium carbonate around it, and is subjected to treatment to remove these matrices. A known alkali treatment method, proteolytic enzyme method, or the like can be used for the deproteinization treatment. Known methods such as acid treatment and ethylenediaminetetraacetic acid treatment can be used to remove ash such as calcium carbonate. Chitin NF can be obtained by fibrillating bio-derived chitin that has undergone deproteinization and deashing treatment using an apparatus such as a stone grinder or a high-pressure homogenizer. A method for producing chitin NF is described, for example, in WO2010/073758.
 (NFの分散液)
 上述したアニオン性又はカチオン性CNFあるいはキチンNFの分散液を調製し、電解槽に入れる。分散液の分散媒は、水が好ましいが、NFの電気泳動を妨げない範囲で水溶性の有機溶媒が含まれていてもよい。水溶性有機溶媒の例としては、メタノール、エタノール、イソプロパノール、2-プロパノール、ブタノール、グリセリン、アセトン、メチルエチルケトン、1,4-ジオキサン、N-メチル-2-ピロリドン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、エチレングリコール、およびこれらの組合せが挙げられる。分散媒中の水の割合は、80質量%以上が好ましく、90質量%以上がさらに好ましく、95質量%以上がさらに好ましく、100質量%(すべて水)が最も好ましい。
(NF dispersion)
A dispersion of anionic or cationic CNF or chitin NF as described above is prepared and placed in an electrolytic cell. The dispersion medium of the dispersion liquid is preferably water, but may contain a water-soluble organic solvent as long as it does not interfere with electrophoresis of NF. Examples of water-soluble organic solvents include methanol, ethanol, isopropanol, 2-propanol, butanol, glycerin, acetone, methyl ethyl ketone, 1,4-dioxane, N-methyl-2-pyrrolidone, tetrahydrofuran, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, acetonitrile, ethylene glycol, and combinations thereof. The proportion of water in the dispersion medium is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably 100% by mass (all water).
 分散液におけるNFの固形分量は、後の通電時の電気泳動を良好に進行させるために、0.05~10.0質量%が好ましく、0.1~7.5質量%がさらに好ましく、0.1~5.0質量%がさらに好ましく、0.1~3.0質量%がさらに好ましい。 The solid content of NF in the dispersion is preferably 0.05 to 10.0% by mass, more preferably 0.1 to 7.5% by mass, in order to favorably advance electrophoresis during subsequent energization. .1 to 5.0% by mass is more preferable, and 0.1 to 3.0% by mass is more preferable.
 分散液は、分散媒である水と、NFとからなることが好ましいが、NFの電気泳動を妨げない範囲で、NF以外の物質を含んでいてもよい。そのような物質としては、例えば、アニオン性CNFを用いる場合、アクリル樹脂、カルボキシメチルセルロース、ウロン酸などのアニオン性ポリマーが挙げられる。また、カチオン性CNF及び/またはキチンNFを用いる場合、アルキルアミン、アミン化合物、カチオン性ポリマーなどが挙げられる。そのほか、ポリエチレングリコール、シランカップリング剤、カルボジイミド基含有ポリマーなどは、アニオン性CNF、カチオン性CNF、及びキチンNFのいずれの場合でも用いることができる。また、分散液の電気伝導度を高めるために、例えば塩化亜鉛、塩化アルミニウム、塩化マグネシウム、塩化ナトリウム、水酸化ナトリウム、酢酸、炭酸などの電解質を添加してもよい。分散液中の全固形分量におけるNFの固形分量の割合は、50%以上が好ましく、70%以上がさらに好ましく、80%以上がさらに好ましく、90%以上がさらに好ましく、95%以上がさらに好ましい。 The dispersion liquid preferably consists of water, which is a dispersion medium, and NF, but may contain substances other than NF as long as it does not interfere with the electrophoresis of NF. Examples of such substances include anionic polymers such as acrylic resins, carboxymethylcellulose, and uronic acid when anionic CNF is used. Moreover, when using cationic CNF and/or chitin NF, an alkylamine, an amine compound, a cationic polymer, etc. are mentioned. In addition, polyethylene glycol, silane coupling agents, carbodiimide group-containing polymers, and the like can be used in any case of anionic CNF, cationic CNF, and chitin NF. Electrolytes such as zinc chloride, aluminum chloride, magnesium chloride, sodium chloride, sodium hydroxide, acetic acid, and carbonic acid may be added to increase the electrical conductivity of the dispersion. The ratio of the solid content of NF to the total solid content in the dispersion is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, still more preferably 90% or more, further preferably 95% or more.
 分散液を入れる電解槽は特に限定されず、通電させることでNFの電気泳動を起こすことができるものであればよい。例えば、電着塗装に用いられる電解槽を用いることができる。 There are no particular restrictions on the electrolytic bath in which the dispersion liquid is placed, and any one that can cause electrophoresis of NF by energizing can be used. For example, an electrolytic bath used for electrodeposition coating can be used.
 (導電性基材、電極)
 上述したNFの分散液を電解槽に入れた後、電解槽中の分散液に導電性基材及び電極を浸漬させる。導電性基材は、NFのコーティングをその上に形成させるための基材である。導電性基材は、導電性を有する材料で形成されたものであればよく、特に限定されない。例えば、アルミニウム、銅、鉄、亜鉛、チタン、ニッケル、鉛、銀、白金、タングステン、ビスマス、ステンレス、真鍮、クロムなどの金属またはこれらの合金、あるいはカーボンを挙げることができる。また、これらの1種又は2種以上を含有させることで導電性が付与された材料(例えば、カーボンブラックを添加したゴムなど)であってもよい。
(Conductive base material, electrode)
After the dispersion of NF described above is placed in the electrolytic bath, the conductive substrate and the electrodes are immersed in the dispersion in the electrolytic bath. A conductive substrate is a substrate for forming a coating of NF thereon. The conductive substrate is not particularly limited as long as it is made of a material having conductivity. Examples include metals such as aluminum, copper, iron, zinc, titanium, nickel, lead, silver, platinum, tungsten, bismuth, stainless steel, brass, chromium, alloys thereof, or carbon. Moreover, it may be a material imparted with conductivity by containing one or more of these (for example, rubber to which carbon black is added).
 電極は、通電の際に導電性基材の対極として用いられるものであり、その種類は特に限定されない。例えば、電着塗装の分野において被塗物の対極として用いられる電極などを用いることができる。 The electrode is used as a counter electrode of the conductive base material when energized, and the type is not particularly limited. For example, an electrode or the like used as a counter electrode for an object to be coated in the field of electrodeposition coating can be used.
 (通電)
 導電性基材及び電極をNFの分散液に浸漬させた後、通電することによりNFを電気泳動させて、導電性基材上にNFのコーティングを形成する。通電の際には、アニオン性CNFを用いる場合には、導電性基材を陽極とし、電極を陰極とする。また、カチオン性CNF及び/又はキチンNFを用いる場合には、導電性基材を陰極とし、電極を陽極とする。これにより、NFは、導電性基材へと移動して導電性基材上に堆積し、導電性基材をコーティングする。
(energization)
After the conductive substrate and the electrodes are immersed in the NF dispersion, the NF is electrophoresed by energizing to form a NF coating on the conductive substrate. In the case of energization, when using anionic CNF, the conductive base material is used as the anode, and the electrode is used as the cathode. Moreover, when using cationic CNF and/or chitin NF, let a conductive base material be a cathode and let an electrode be an anode. This causes the NFs to migrate to and deposit on the conductive substrate, coating the conductive substrate.
 通電の際の条件は、特に限定されず、コーティングの所望の厚さなどに応じて適宜調整すればよい。例えば、電圧の範囲は0.1~1000V程度が好ましく、1~500V程度がさらに好ましく、5~500V程度がさらに好ましく、5~100V程度がさらに好ましく、5~50V程度がさらに好ましい。電流密度の範囲は、0.1~10000mA/cm程度が好ましく、1~10000mA/cm程度がさらに好ましい。通電の時間は、1~100分程度が好ましく、2~60分程度がさらに好ましい。また、導電性基材上のゲル状のNFのコーティングにおけるNFの密度を高めたい場合には、通電時の電圧を上記範囲の中で高めに設定してもよいし、通電の途中で電圧を高めに変更してもよい。例えば、そのような高めの電圧としては、特に限定されないが、50~1000V程度、より好ましくは100~500V程度の電圧を挙げることができ、そのような電圧で0.1~10分、より好ましくは1~5分程度の長さ保持することが挙げられる。 The conditions for energization are not particularly limited, and may be appropriately adjusted according to the desired thickness of the coating. For example, the voltage range is preferably about 0.1 to 1000V, more preferably about 1 to 500V, more preferably about 5 to 500V, even more preferably about 5 to 100V, and even more preferably about 5 to 50V. The current density range is preferably about 0.1 to 10,000 mA/cm 2 , more preferably about 1 to 10,000 mA/cm 2 . The energization time is preferably about 1 to 100 minutes, more preferably about 2 to 60 minutes. In addition, if it is desired to increase the density of NF in the gel-like NF coating on the conductive substrate, the voltage during energization may be set higher within the above range, or the voltage may be increased during energization. You can change it higher. For example, such a high voltage is not particularly limited, but a voltage of about 50 to 1000 V, more preferably about 100 to 500 V can be mentioned. can be held for about 1 to 5 minutes.
 NFの分散液中での通電の後に、導電性基材をイオン交換水の入った電解槽に入れ、一定時間通電しながら静置することにより、導電性基材上のNFのコーティングの洗浄を行ってもよい。洗浄の際の通電における電圧の範囲は、特に限定されないが、好ましくは0.1~1000V程度であり、より好ましくは10~500V程度であり、また、通電時間は、好ましくは1~100分程度、より好ましくは5~60分程度である。 After energization in the NF dispersion, the conductive substrate is placed in an electrolytic bath containing deionized water and allowed to stand while being energized for a certain period of time to wash the NF coating on the conductive substrate. you can go The voltage range in the energization during cleaning is not particularly limited, but is preferably about 0.1 to 1000 V, more preferably about 10 to 500 V, and the energization time is preferably about 1 to 100 minutes. , more preferably about 5 to 60 minutes.
 (NFのコーティング)
 上記の通電により、導電性基材上にNFのコーティングが形成される。通電直後に得られるコーティングは、NFと分散媒とを含有する透明から半透明のゲル状のNF分散体の層である。ゲル状のNFのコーティングを有する導電性基材を電解槽から取り出し、必要に応じて乾燥させることでゲル状のコーティング中の分散体を除去してもよい。この場合の乾燥方法は特に限定されず、例えば、自然乾燥、温風/熱風乾燥、または真空乾燥等を挙げることができる。
(NF coating)
The energization described above forms a coating of NF on the conductive substrate. The coating obtained immediately after energization is a layer of transparent to translucent gel-like NF dispersion containing NF and dispersion medium. The conductive substrate with the gelled NF coating may be removed from the electrolytic bath and optionally dried to remove the dispersion in the gelled coating. The drying method in this case is not particularly limited, and examples thereof include natural drying, hot air/hot air drying, and vacuum drying.
 導電性基材上のゲル状のNFのコーティングの厚さは、NF分散液のNF固形分量や通電時間などを調整することにより調整することができ、例えば、0.1~10mm程度の厚さのコーティングを形成することができる。ゲル状のコーティングを乾燥(分散媒を除去)させて得たコーティングの厚さは、特に限定されないが、例えば、0.5~50μm程度の厚さとなる。乾燥後のコーティングは、主にNFからなる緻密な薄膜である。 The thickness of the gel-like NF coating on the conductive substrate can be adjusted by adjusting the NF solid content of the NF dispersion, the energization time, etc. For example, the thickness is about 0.1 to 10 mm. coating can be formed. The thickness of the coating obtained by drying (removing the dispersion medium from) the gel-like coating is not particularly limited, but is, for example, about 0.5 to 50 μm. After drying, the coating is a dense thin film consisting mainly of NF.
 ゲル状のコーティング及び乾燥後のコーティング中の全固形分量におけるNFの固形分量の割合は、50%以上が好ましく、70%以上がさらに好ましく、80%以上がさらに好ましく、90%以上がさらに好ましく、95%以上がさらに好ましい。 The ratio of the solid content of NF to the total solid content in the gel coating and the coating after drying is preferably 50% or more, more preferably 70% or more, more preferably 80% or more, and more preferably 90% or more. More preferably 95% or more.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.
 (酸化CNFの準備)
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)500g(絶乾)を、TEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gとを溶解した水溶液500mlに加え、パルプが均一に分散されるまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗することで、酸化されたパルプを得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分であった。上記の工程で得られた酸化パルプを、水で0.5%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で5回解繊処理を行い、酸化CNFの分散液を得た。得られた酸化CNFのカルボキシル基量は、1.42mmol/gであった。
(Preparation of oxidized CNF)
500 g (absolute dry) of bleached unbeaten kraft pulp (85% whiteness) derived from softwood is added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide are dissolved, and the pulp is uniformly dispersed. Stir until done. An aqueous sodium hypochlorite solution was added to the reaction system so as to have a concentration of 6.0 mmol/g to initiate an oxidation reaction. The pH in the system decreased during the reaction, but was adjusted to pH 10 by successively adding 3M sodium hydroxide aqueous solution. The reaction was terminated when the sodium hypochlorite was consumed and the pH in the system stopped changing. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain an oxidized pulp. The pulp yield at this time was 90%, and the time required for the oxidation reaction was 90 minutes. The oxidized pulp obtained in the above step is adjusted to 0.5% (w / v) with water, and defibration treatment is performed 5 times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to obtain a dispersion of oxidized CNF. Obtained. The carboxyl group content of the obtained oxidized CNF was 1.42 mmol/g.
 (CM化CNFの準備)
 回転数を150rpmに調節した二軸ニーダーに、水130部と、水酸化ナトリウム20部を水10部とイソプロパノール(IPA)90部の混合溶媒に溶解したものとを加え、広葉樹パルプ(日本製紙(株)製、LBKP)を100℃、60分間乾燥した際の乾燥質量で100部仕込んだ。35℃で80分間撹拌、混合しマーセル化処理を行った。さらに撹拌しつつ水23部とIPA207部の混合溶媒と、モノクロロ酢酸ナトリウム40部とを添加し、30分間撹拌した後、70℃に昇温して90分間エーテル化処理を行った。反応終了後、pH7になるまで酢酸で中和、含水メタノールで洗浄、脱液、乾燥、粉砕して、CM化パルプのナトリウム塩を得た。得られたCM化パルプにおけるCM置換度は0.17であった。上記の工程で得られたCM化パルプを水で0.5%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、CM化CNFの分散液を得た。
(Preparation of CM-CNF)
130 parts of water and 20 parts of sodium hydroxide dissolved in a mixed solvent of 10 parts of water and 90 parts of isopropanol (IPA) are added to a twin-screw kneader whose rotation speed is adjusted to 150 rpm, and hardwood pulp (Nippon Paper Industries ( LBKP manufactured by Co., Ltd.) was charged at 100° C. for 60 minutes in terms of dry weight. The mixture was stirred and mixed at 35° C. for 80 minutes for mercerization. Further, a mixed solvent of 23 parts of water and 207 parts of IPA and 40 parts of sodium monochloroacetate were added with stirring, and after stirring for 30 minutes, the temperature was raised to 70° C. and etherification treatment was performed for 90 minutes. After completion of the reaction, the mixture was neutralized with acetic acid until the pH reached 7, washed with water-containing methanol, deliquored, dried and pulverized to obtain a sodium salt of CM pulp. The degree of CM substitution in the obtained CM pulp was 0.17. The CM-modified pulp obtained in the above step was adjusted to 0.5% (w/v) with water, and defibrated three times with an ultrahigh-pressure homogenizer (20°C, 150 MPa) to obtain a CM-CNF dispersion. got
 (リン酸エステル化CNFの準備)
 広葉樹パルプ(日本製紙(株)製、LBKP)100gを尿素120g、リン酸二水素アンモニウム45gを溶解させた水溶液400gに浸漬した後、70℃のオーブンで24時間乾燥させ、さらに150℃で10分間加熱した。その後、イオン交換水で5回洗浄し、リン酸エステル化パルプを得た。リン酸エステル化パルプのリン酸基量を上述の方法で測定したところ、0.87mmol/gであった。上記の工程で得られたリン酸エステル化パルプを水で0.5%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、リン酸エステル化CNFの分散液を得た。
(Preparation of phosphorylated CNF)
100 g of hardwood pulp (LBKP, manufactured by Nippon Paper Industries Co., Ltd.) is immersed in 400 g of an aqueous solution of 120 g of urea and 45 g of ammonium dihydrogen phosphate, dried in an oven at 70 ° C. for 24 hours, and further at 150 ° C. for 10 minutes. heated. After that, it was washed with ion-exchanged water five times to obtain a phosphate-esterified pulp. When the amount of phosphate groups in the phosphate-esterified pulp was measured by the method described above, it was 0.87 mmol/g. The phosphate esterified pulp obtained in the above process is adjusted to 0.5% (w / v) with water, and defibrated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to perform phosphate esterification. A dispersion of CNF was obtained.
 (硫酸エステル化CNFの準備)
 広葉樹パルプ(日本製紙(株)製、LBKP)100gを105℃のオーブンで24時間乾燥させた後、60%硫酸水溶液2000gを添加して、50℃で1時間撹拌した。その後、イオン交換水で5回洗浄し、硫酸エステル化パルプを得た。硫酸エステル化パルプの硫酸基量を上述の方法で測定したところ、0.79mmol/gであった。上記の工程で得られた硫酸エステル化パルプを水で0.5%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、硫酸エステル化CNFの分散液を得た。
(Preparation of sulfate esterified CNF)
After drying 100 g of hardwood pulp (LBKP, manufactured by Nippon Paper Industries Co., Ltd.) in an oven at 105° C. for 24 hours, 2000 g of a 60% aqueous sulfuric acid solution was added and stirred at 50° C. for 1 hour. After that, it was washed with ion-exchanged water five times to obtain sulfate-esterified pulp. The amount of sulfate groups in the sulfate-esterified pulp was measured by the method described above and found to be 0.79 mmol/g. The sulfated pulp obtained in the above step was adjusted to 0.5% (w / v) with water, and defibrated three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa) to produce sulfated CNF. A dispersion was obtained.
 (カチオン性CNFの準備)
 パルプを攪拌することができるパルパーに、パルプ(NBKP、日本製紙(株)製)を乾燥重量で200g、水酸化ナトリウムを乾燥重量で24g加え、パルプ固形分が15質量%になるように水を加えた。その後、30℃で30分攪拌した後に70℃まで昇温し、カチオン化剤として3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロライドを200g(有効成分換算)添加した。1時間反応させた後に、反応物を取り出して中和、洗浄して、グルコース単位当たりのカチオン置換度0.05のカチオン変性されたパルプを得た。上記の工程で得られたカチオン性パルプを水で0.5%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、カチオン化CNFの分散液を得た。
(Preparation of cationic CNF)
200 g of pulp (NBKP, manufactured by Nippon Paper Industries Co., Ltd.) in dry weight and 24 g of sodium hydroxide in dry weight are added to a pulper capable of stirring pulp, and water is added so that the solid content of the pulp becomes 15% by mass. added. Then, after stirring at 30° C. for 30 minutes, the temperature was raised to 70° C., and 200 g (converted to active ingredient) of 3-chloro-2-hydroxypropyltrimethylammonium chloride was added as a cationizing agent. After reacting for 1 hour, the reactant was taken out, neutralized and washed to obtain a cation-modified pulp having a degree of cation substitution per glucose unit of 0.05. The cationic pulp obtained in the above step was adjusted to 0.5% (w / v) with water, and defibration treatment was performed three times with an ultrahigh pressure homogenizer (20 ° C., 150 MPa), and the cationized CNF dispersion liquid got
 (キチンNFの準備)
 ズワイガニの殻500gを20%水酸化ナトリウム水溶液5L中に24時間静置し、イオン交換水5Lで3回洗浄した。次いで、10%塩酸5L中に24時間静置し、イオン交換水5Lで3回洗浄した。その後、エタノール2L中に静置し、イオン交換水5Lで3回洗浄した。洗浄したカニ殻の濃度が0.5%(w/v)の懸濁液を酢酸でpH6に調整し、家庭用ミキサーで1時間粉砕し、さらにホモディスパー(プライミクス社製)で6000rpm、5時間予備解繊した。この懸濁液を超高圧ホモジナイザー(20℃、150MPa)で3回解繊処理を行い、キチンナノファイバー水分散液を得た。
(Preparation of chitin NF)
500 g of snow crab shells were allowed to stand in 5 L of a 20% aqueous sodium hydroxide solution for 24 hours, and washed with 5 L of deionized water three times. Then, it was allowed to stand in 5 L of 10% hydrochloric acid for 24 hours, and washed with 5 L of deionized water three times. After that, it was left standing in 2 L of ethanol and washed with 5 L of deionized water three times. A suspension of washed crab shells with a concentration of 0.5% (w/v) was adjusted to pH 6 with acetic acid, pulverized with a home-use mixer for 1 hour, and further milled with Homodisper (manufactured by Primix) at 6000 rpm for 5 hours. Preliminarily defibrated. This suspension was defibrated three times with an ultrahigh-pressure homogenizer (20° C., 150 MPa) to obtain an aqueous dispersion of chitin nanofibers.
 (試験1 電気泳動によるコーティングの形成)
 上述した方法で用意した各NFの水分散液を調製した。分散液におけるNFの固形分量は、表1に記載した通りである。各NFの水分散液500mLを電解槽中に入れ、表1に記載の導電性基材(25cm)と、対極としてのアルミ板(25cm)を分散液中に浸漬し、整流器で電圧18.5V、電流値0.1A以下として、約1時間通電を行った。通電後、各導電性基材を電解槽から取り出し、別に用意しておいたイオン交換水の入った電解槽に再度入れ、上記と同じ条件で1時間通電しながら静置することにより洗浄した後、導電性基材上に形成されたNFのゲル状のコーティングの均一性を後述の方法で評価した。また、コーティングの基材上での弾きの有無を後述の方法で評価した。
(Test 1 Formation of coating by electrophoresis)
An aqueous dispersion of each NF prepared by the method described above was prepared. The solid content of NF in the dispersion is as described in Table 1. 500 mL of aqueous dispersion of each NF was placed in an electrolytic bath, the conductive substrate (25 cm 2 ) listed in Table 1 and an aluminum plate (25 cm 2 ) as a counter electrode were immersed in the dispersion, and the voltage was 18 with a rectifier. 5 V and a current value of 0.1 A or less, and energized for about 1 hour. After energization, each conductive substrate is taken out from the electrolytic cell, placed again in the separately prepared electrolytic cell containing deionized water, and left to stand for 1 hour under the same conditions as above while being energized. , the uniformity of the NF gel-like coating formed on the conductive substrate was evaluated by the method described below. In addition, the presence or absence of repelling of the coating on the base material was evaluated by the method described later.
 均一性と弾きの評価後、NFのゲル状のコーティングを有する導電性基材を50℃で乾燥させて、薄膜状とした。得られた乾燥後のコーティングについて、凹凸の有無、皺の有無、剥がれの有無を後述の方法で評価した。結果を表1に示す。 After evaluating the uniformity and resilience, the conductive substrate with the NF gel-like coating was dried at 50°C to form a thin film. The coating obtained after drying was evaluated for the presence or absence of unevenness, the presence or absence of wrinkles, and the presence or absence of peeling by the methods described later. Table 1 shows the results.
 (試験2 電気泳動によるコーティングの形成)
 表2に記載のNF水分散液及び導電性基材を用い、電圧を30V、電流値を0.3A以下として、2分間通電を行った以外は、試験1と同様にして導電性基材上にNFのゲル状のコーティングを形成した。コーティングの均一性と、基材上での弾きの有無を、試験1と同様に、後述の方法で評価した。これらの評価後、各コーティングを有する導電性基材を50℃で乾燥した。乾燥後のコーティングについて、凹凸の有無、皺の有無、剥がれの有無を、試験1と同様に、後述の方法で評価した。結果を表2に示す。
(Test 2 Formation of coating by electrophoresis)
On the conductive substrate in the same manner as in Test 1, except that the NF aqueous dispersion and the conductive substrate described in Table 2 were used, the voltage was 30 V, the current value was 0.3 A or less, and the current was applied for 2 minutes. to form a gel-like coating of NF. The uniformity of the coating and the presence or absence of flipping on the substrate were evaluated in the same manner as in Test 1 by the method described below. After these evaluations, the conductive substrates with each coating were dried at 50°C. Regarding the coating after drying, the presence or absence of unevenness, the presence or absence of wrinkles, and the presence or absence of peeling were evaluated in the same manner as in Test 1 by the methods described below. Table 2 shows the results.
 (試験3 電気泳動によるコーティングの形成)
 電圧を20Vに変更した以外は、試験2と同様にしてNFのコーティングを形成し、評価した。結果を表3に示す。
(Test 3 Formation of coating by electrophoresis)
A NF coating was formed and evaluated in the same manner as Test 2 except that the voltage was changed to 20V. Table 3 shows the results.
 (試験4 電気泳動によるコーティングの形成)
 電圧を10Vに変更した以外は、試験2と同様にしてNFのコーティングを形成し、評価した。結果を表4に示す。
(Test 4 Formation of coating by electrophoresis)
A NF coating was formed and evaluated in the same manner as Test 2, except that the voltage was changed to 10V. Table 4 shows the results.
 (試験5 電気泳動によるコーティングの形成)
 電圧を5Vに変更した以外は、試験2と同様にしてNFのコーティングを形成し、評価した。結果を表5に示す。
(Test 5 Formation of coating by electrophoresis)
A NF coating was formed and evaluated in the same manner as Test 2, except that the voltage was changed to 5V. Table 5 shows the results.
 (比較試験 バーコート/スプレーコート)
 比較例として、表6に記載の固形分量を有する各NFの分散液を、各導電性基材上にNo.40のワイヤーバーを用いて手塗した(バーコート)。また、表6に記載の固形分量を有する各NFの分散液を、二流体ノズルを用いて、各導電性基材上に噴霧した(スプレーコート)。得られた各コーティングの均一性と、基材上での弾きの有無を、実施例と同様に、後述の方法で評価した。これらの評価後、各コーティングを有する導電性基材を50℃で乾燥した。乾燥後のコーティングについて、凹凸の有無、皺の有無、剥がれの有無を、試験1と同様に、後述の方法で評価した。結果を表6に示す。
(Comparative test bar coat/spray coat)
As a comparative example, each NF dispersion liquid having the solid content shown in Table 6 was coated on each conductive substrate. Hand coated using a 40 wire bar (bar coat). Further, each NF dispersion liquid having the solid content shown in Table 6 was sprayed onto each conductive substrate using a two-fluid nozzle (spray coating). The uniformity of each coating obtained and the presence or absence of repelling on the substrate were evaluated by the methods described below in the same manner as in the Examples. After these evaluations, the conductive substrates with each coating were dried at 50°C. Regarding the coating after drying, the presence or absence of unevenness, the presence or absence of wrinkles, and the presence or absence of peeling were evaluated in the same manner as in Test 1 by the methods described below. Table 6 shows the results.
 (均一性の評価)
 乾燥前の状態において、導電性基材に形成されたNFコーティングが目視で平滑である場合を均一性が良い(良)と評価し、一方、目視で凹凸があり、厚さにムラある場合を均一性が悪い(悪)と評価した。
(Evaluation of uniformity)
In the state before drying, if the NF coating formed on the conductive substrate is visually smooth, the uniformity is evaluated as good (good). Uniformity was evaluated as poor (bad).
 (弾きの有無の評価)
 乾燥前の状態において、NFコーティングが流動せずに留まっている場合を弾きが無い(無)と評価し、一方、コーティングが時間と共に局所的に集合する場合や、導電性基材の表面が露出する場合を弾きがある(有)と評価した。
(Evaluation of presence/absence of flicking)
In the state before drying, the case where the NF coating remains without flowing is evaluated as not repelled (no), while the case where the coating locally aggregates over time or the surface of the conductive substrate is exposed It was evaluated that there is a rebound (yes) when it does.
 (凹凸の有無の評価)
 乾燥後のコーティングの表面について、目視で平滑である場合を凹凸が無い(無)と評価し、一方、目視で表面が波打っていたり、厚さにムラがある場合を凹凸がある(有)と評価した。
(Evaluation of presence or absence of unevenness)
If the surface of the coating after drying is visually smooth, it is evaluated as having no unevenness (no), while if the surface is visually wavy or uneven in thickness, it is evaluated as having unevenness (yes). and evaluated.
 (皺の有無の評価)
 乾燥後のコーティングの表面について、目視で光沢があり、均一な表面である場合を皺が無い(無)と評価し、一方、目視で局所的に曇る場合や局所的にざらざらしている場合を皺がある(有)と評価した。
(Evaluation of presence or absence of wrinkles)
Regarding the surface of the coating after drying, when it is visually glossy and uniform, it is evaluated as wrinkle-free (none), while when it is visually locally cloudy or locally rough, it is evaluated. It was evaluated as wrinkled (present).
 (剥がれの有無の評価)
 乾燥後のコーティングについて、目視でコーティングが導電性基材から浮いていない場合を剥がれが無い(無)と評価し、一方、目視で導電性基材からコーティングが浮いている場合を剥がれがある(有)と評価した。
(Evaluation of presence or absence of peeling)
Regarding the coating after drying, if the coating is visually not floating from the conductive substrate, it is evaluated as no peeling (no), while if the coating is visually floating from the conductive substrate, there is peeling ( Yes).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の結果より、従来のバーコートやスプレーコートを用いてNFを金属等の基材上にコーティングした場合、均一性が悪く、また、基材の種類によっては弾きが生じ、乾燥後のコーティングにおいて、凹凸、皺、剥がれが生じることがわかる。一方、電気泳動の原理を用いて導電性基材上に各NFを堆積させてコーティングを形成する本発明の方法では、表1~5の結果より、導電性基材上に均一で弾きのないコーティングを形成させることができ、また、乾燥後のコーティングにおいても、凹凸、皺、剥がれが生じないことがわかる。 From the results in Table 6, when NF is coated on a substrate such as metal using conventional bar coating or spray coating, the uniformity is poor, and depending on the type of substrate, repelling occurs, and the coating after drying , it can be seen that unevenness, wrinkles, and peeling occur. On the other hand, according to the method of the present invention, in which each NF is deposited on a conductive substrate using the principle of electrophoresis to form a coating, the results in Tables 1 to 5 show that uniform and non-repelling on the conductive substrate. It can be seen that a coating can be formed, and even after drying, unevenness, wrinkles, and peeling do not occur.

Claims (7)

  1.  アニオン性セルロースナノファイバーの分散液を電解槽に入れること、
     導電性基材及び電極を前記電解槽中の前記分散液に浸漬させること、及び
     前記導電性基材を陽極とし前記電極を陰極として通電して、前記アニオン性セルロースナノファイバーを前記導電性基材へと電気泳動させることにより、前記導電性基材を前記アニオン性セルロースナノファイバーでコーティングすること
    を含む、アニオン性セルロースナノファイバーのコーティングの製造方法。
    placing a dispersion of anionic cellulose nanofibers in an electrolytic cell;
    immersing a conductive base material and an electrode in the dispersion in the electrolytic bath; and energizing the conductive base material as an anode and the electrode as a cathode to transfer the anionic cellulose nanofibers to the conductive base material. A method of making a coating of anionic cellulose nanofibers, comprising coating the conductive substrate with the anionic cellulose nanofibers by electrophoresis to a substrate.
  2.  カチオン性セルロースナノファイバー及び/またはキチンナノファイバーの分散液を電解槽に入れること、
     導電性基材及び電極を前記電解槽中の前記分散液に浸漬させること、及び
     前記導電性基材を陰極とし前記電極を陽極として通電して、前記カチオン性セルロースナノファイバー及び/またはキチンナノファイバーを前記導電性基材へと電気泳動させることにより、前記導電性基材を前記カチオン性セルロースナノファイバー及び/またはキチンナノファイバーでコーティングすること
    を含む、カチオン性セルロースナノファイバー及び/またはキチンナノファイバーのコーティングの製造方法。
    placing a dispersion of cationic cellulose nanofibers and/or chitin nanofibers in an electrolytic cell;
    immersing a conductive base material and an electrode in the dispersion in the electrolytic bath; and energizing the conductive base material as a cathode and the electrode as an anode to obtain the cationic cellulose nanofibers and/or chitin nanofibers. to the conductive substrate to coat the conductive substrate with the cationic cellulose nanofibers and/or chitin nanofibers. coating manufacturing method.
  3.  前記アニオン性セルロースナノファイバーがカルボキシル基及び/またはカルボキシレート基を有する酸化セルロースナノファイバーである請求項1に記載の方法。 The method according to claim 1, wherein the anionic cellulose nanofibers are oxidized cellulose nanofibers having carboxyl groups and/or carboxylate groups.
  4.  前記アニオン性セルロースナノファイバーがカルボキシアルキル化セルロースナノファイバーである請求項1に記載の方法。 The method according to claim 1, wherein the anionic cellulose nanofibers are carboxyalkylated cellulose nanofibers.
  5.  前記アニオン性セルロースナノファイバーがリン酸エステル化セルロースナノファイバーである請求項1に記載の方法。 The method according to claim 1, wherein the anionic cellulose nanofibers are phosphorylated cellulose nanofibers.
  6.  前記アニオン性セルロースナノファイバーが硫酸エステル化セルロースナノファイバーである請求項1に記載の方法。 The method according to claim 1, wherein the anionic cellulose nanofibers are sulfate esterified cellulose nanofibers.
  7.  前記導電性基材が金属又はカーボンである請求項1から6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the conductive substrate is metal or carbon.
PCT/JP2022/010017 2021-03-09 2022-03-08 Method for producing coating of cellulose nano-fibers and/or chitin nano-fibers WO2022191190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505579A JP7367264B2 (en) 2021-03-09 2022-03-08 Method for producing cellulose nanofiber and/or chitin nanofiber coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021037368 2021-03-09
JP2021-037368 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022191190A1 true WO2022191190A1 (en) 2022-09-15

Family

ID=83227965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010017 WO2022191190A1 (en) 2021-03-09 2022-03-08 Method for producing coating of cellulose nano-fibers and/or chitin nano-fibers

Country Status (2)

Country Link
JP (1) JP7367264B2 (en)
WO (1) WO2022191190A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181480A1 (en) * 2017-03-29 2018-10-04 古河電気工業株式会社 Integrally formed body, composite material including said integrally formed body, electrical contact terminal and printed wiring board
KR20190034933A (en) * 2017-09-25 2019-04-03 포항공과대학교 산학협력단 Glucose based nanofiber application to coating material for electrical insulation related process
JP2019173253A (en) * 2018-03-27 2019-10-10 株式会社富山環境整備 Method for producing fiber material, method for producing composite material, fiber material and composite material
CN110904490A (en) * 2019-11-18 2020-03-24 武汉大学 Preparation method of carboxylated cellulose nanofiber hydrogel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181480A1 (en) * 2017-03-29 2018-10-04 古河電気工業株式会社 Integrally formed body, composite material including said integrally formed body, electrical contact terminal and printed wiring board
KR20190034933A (en) * 2017-09-25 2019-04-03 포항공과대학교 산학협력단 Glucose based nanofiber application to coating material for electrical insulation related process
JP2019173253A (en) * 2018-03-27 2019-10-10 株式会社富山環境整備 Method for producing fiber material, method for producing composite material, fiber material and composite material
CN110904490A (en) * 2019-11-18 2020-03-24 武汉大学 Preparation method of carboxylated cellulose nanofiber hydrogel

Also Published As

Publication number Publication date
JP7367264B2 (en) 2023-10-23
JPWO2022191190A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP6228707B1 (en) Acid-type carboxymethylated cellulose nanofiber and method for producing the same
Saito et al. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions
JP6402442B2 (en) Method for producing cellulose nanofiber dispersion and membrane using the method
US11034806B2 (en) Resin composite and method for producing resin composite
JP2017066272A (en) Fine fibrous cellulose inclusion
JP6819048B2 (en) Resin composition, resin molded product and its manufacturing method
WO2017078084A1 (en) Filtration method for cellulose nanofiber dispersion, and production process therefor
CN115427459A (en) Fibrous cellulose, fibrous cellulose dispersion liquid, and method for producing fibrous cellulose
JP7334773B2 (en) Fibrous cellulose-containing composition and paint
JPWO2020059860A1 (en) Manufacturing method of fine cellulose fiber and paper containing it
JP7367264B2 (en) Method for producing cellulose nanofiber and/or chitin nanofiber coating
WO2023090362A1 (en) Method for producing cellulose fiber layer-containing multilayer body
KR20190062101A (en) Cellulose nanofibrils and manufacturing method thereof
JP7131296B2 (en) Fine fibrous cellulose-containing composition and method for producing the same
JP7183627B2 (en) Fine fibrous cellulose-containing composition and method for producing the same
JP2020063351A (en) Fibrous cellulose, fibrous cellulose dispersion and production method of fibrous cellulose
JP6607295B2 (en) Membrane using cellulose nanofiber dispersion and method for producing dispersion
Korhonen et al. Strengthening wood fiber networks by adsorption of complexes of chitosan with dialdehyde starch
KR101981216B1 (en) Glucose based nanofiber application to coating material for electrical insulation related process
WO2024128319A1 (en) Laminate for power storage body and application thereof
WO2022172832A1 (en) Sheet and layered body
WO2022124290A1 (en) Biopolymer adsorption sheet and method for producing same
JP7127005B2 (en) Fine fibrous cellulose inclusions
JP2022132151A (en) Ionic functional group-introduced cellulose nanocrystals and method of producing the same, and dispersion liquids, sheets, and powders containing the same
WO2023013632A1 (en) Laminate, anchoring agent for surface protective layer, anchor sheet, layered sheet, and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767144

Country of ref document: EP

Kind code of ref document: A1