WO2023013632A1 - Laminate, anchoring agent for surface protective layer, anchor sheet, layered sheet, and application thereof - Google Patents

Laminate, anchoring agent for surface protective layer, anchor sheet, layered sheet, and application thereof Download PDF

Info

Publication number
WO2023013632A1
WO2023013632A1 PCT/JP2022/029635 JP2022029635W WO2023013632A1 WO 2023013632 A1 WO2023013632 A1 WO 2023013632A1 JP 2022029635 W JP2022029635 W JP 2022029635W WO 2023013632 A1 WO2023013632 A1 WO 2023013632A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
fibrous cellulose
mass
fiber
group
Prior art date
Application number
PCT/JP2022/029635
Other languages
French (fr)
Japanese (ja)
Inventor
紅 酒井
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2023013632A1 publication Critical patent/WO2023013632A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/02Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply

Definitions

  • the present invention relates to laminates, anchoring agents for surface protective layers, anchor sheets, laminated sheets, and applications thereof.
  • fibrous cellulose having a fiber diameter of 10 ⁇ m or more and 50 ⁇ m or less has been widely used mainly as paper products.
  • fibrous cellulose fine fibrous cellulose with a fiber diameter of 1 ⁇ m or less is also known. Further, development of a sheet containing such fine fibrous cellulose, a hard coat layer containing fine fibrous cellulose, and the like is underway.
  • Patent Document 1 discloses a resin glass plate including a transparent resin substrate and a hard coat layer formed on the transparent resin substrate, wherein the hard coat layer contains cellulose nanofibers and is a thermosetting silicone polymer.
  • a resin glass plate formed of a material discloses a laminated sheet comprising a substrate and a hard coat layer provided on one surface of the substrate, wherein the hard coat layer contains an active energy ray-curable monomer and nanocellulose.
  • Patent Document 3 discloses an antiglare film comprising an antiglare hard coat layer having composite particles and a binder matrix on a transparent substrate, wherein the composite particles are core particles containing at least one type of polymer. and a coating layer composed of micronized cellulose on the surface of the core particles.
  • a laminate in which a hard coat layer is provided on a base material.
  • it has been studied to incorporate fine fibrous cellulose into the hard coat layer for the purpose of increasing the hardness and scratch resistance of the hard coat layer.
  • the surface protective layer may contain fine fibrous cellulose in order to increase the hardness of the surface protective layer. being considered.
  • fine fibrous cellulose sometimes does not sufficiently increase the hardness of the surface protective layer, and further improvement has been expected.
  • Another object of the present invention is to provide a surface protective layer anchoring agent, an anchor sheet, and a laminate sheet which are used in the production of such a laminate.
  • the present invention has the following configurations.
  • the fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less, A laminate in which the content of fibrous cellulose is 15% by mass or more with respect to the total solid mass of the fiber layer.
  • An anchoring agent for a surface protective layer containing fibrous cellulose with a fiber width of 1000 nm or less.
  • An anchor sheet for surface protection layer lamination containing fibrous cellulose having a fiber width of 1000 nm or less, wherein the content of the fibrous cellulose is 15% by mass or more relative to the total solid mass of the anchor sheet.
  • the anchor sheet of [15] which has a thickness of 50 ⁇ m or less.
  • the anchor sheet of [15] or [16] which has a thickness of 0.1 ⁇ m to 25 ⁇ m.
  • [19] comprising a substrate and a fibrous layer;
  • the fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less, A laminated sheet in which the content of fibrous cellulose is 15% by mass or more relative to the total solid mass of the fiber layer.
  • [24] comprising a substrate and a fibrous layer;
  • the fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less, The content of fibrous cellulose is 15% by mass or more with respect to the total solid mass of the fiber layer,
  • a surface protective agent containing fibrous cellulose with a fiber width of 1000 nm or less [ii] A sheet containing fibrous cellulose with a fiber width of 1000 nm or less, A sheet for surface protection, wherein the content of fibrous cellulose is 15% by mass or more relative to the total solid mass of the sheet. [iii] The surface protection sheet according to [ii], which has a thickness of 50 ⁇ m or less. [iv] The surface protection sheet according to [ii] or [iii], which has a thickness of 0.1 to 25 ⁇ m. [v] The surface protection sheet according to any one of [ii] to [iv], having a pencil hardness of F or higher on the surface.
  • a method for producing an anchor sheet provided under a surface protective layer comprising mixing fibrous cellulose with a fiber width of 1000 nm or less.
  • B Use of fibrous cellulose with a fiber width of 1000 nm or less for manufacturing an anchor sheet provided under the surface protective layer.
  • C Use of an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less for protecting the surface of the laminate.
  • D A method for protecting the surface of a laminate, comprising laminating an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less under the surface protective layer.
  • E A method for protecting the surface of a laminate, comprising applying an anchoring agent containing fibrous cellulose having a fiber width of 1000 nm or less.
  • A' A method for producing a surface protection sheet, comprising mixing fibrous cellulose with a fiber width of 1000 nm or less.
  • B' Use of fibrous cellulose with a fiber width of 1000 nm or less for producing a surface protection sheet provided on a substrate.
  • C' Use of a sheet containing fibrous cellulose with a fiber width of 1000 nm or less for protecting the surface of the laminate.
  • D' A method for protecting the surface of a laminate, comprising laminating a sheet containing fibrous cellulose having a fiber width of 1000 nm or less on a substrate.
  • E' A method for protecting the surface of a substrate, comprising applying a surface protecting agent containing fibrous cellulose having a fiber width of 1000 nm or less.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the laminate of this embodiment.
  • FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and the pH for a fibrous cellulose-containing slurry having a phosphorous acid group.
  • FIG. 3 is a graph showing the relationship between the dropping amount of NaOH and the pH for a fibrous cellulose-containing slurry having carboxyl groups.
  • This embodiment has a substrate, a fiber layer and a surface protective layer in this order, the fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less, and the content of fibrous cellulose is the total solid mass of the fiber layer. It relates to a laminate that is 15% by mass or more with respect to the In this specification, fibrous cellulose having a fiber width of 1000 nm or less is sometimes referred to as fine fibrous cellulose or CNF.
  • FIG. 1 is a cross-sectional view for explaining the configuration of the laminate of this embodiment.
  • the laminate 10 of this embodiment has a substrate 2, a fiber layer 6, and a surface protection layer 8 in this order.
  • another layer such as an adhesive layer may be provided between the base material 2 and the fiber layer 6 and between the fiber layer 6 and the surface protective layer 8, and the layers are directly in contact with each other.
  • an adhesive layer may be provided between the base material 2 and the fiber layer 6, but the fiber layer 6 and the surface protective layer 8 are directly laminated in contact with each other. is preferred. No other layer such as an adhesive layer is provided between the fiber layer 6 and the surface protective layer 8, and the fiber layer 6 and the surface protective layer 8 are directly laminated in contact with each other, so that the surface of the surface protective layer 8 Hardness is enhanced more effectively.
  • the surface protective layer exhibits excellent hardness. Specifically, compared to a laminate (control laminate) in which a surface protective layer is directly laminated on a substrate, a laminate having a substrate, a fiber layer, and a surface protective layer in this order is used to protect the surface.
  • the pencil hardness of the layer can be increased.
  • the pencil hardness of the surface protective layer can be increased by providing a fiber layer containing a predetermined amount or more of fine fibrous cellulose between the substrate and the surface protective layer.
  • the pencil hardness of the surface protective layer is a value measured according to JIS K 5600-5-4:1999.
  • P when the numerical value of the pencil hardness of the surface on the surface protective layer side in the laminate (control laminate) in which the surface protective layer is formed directly on the base material is Q, when PQ ⁇ 1, it is good. It can be determined that there is
  • the pencil hardness of the surface on the surface protective layer side of the laminate of the present embodiment is preferably 2H or higher, more preferably 3H or higher, and even more preferably 4H or higher.
  • the upper limit of the pencil hardness of the surface of the laminate on the surface protection layer side is not particularly limited, it is preferably 9H or less, for example.
  • the pencil hardness of the surface protective layer in the laminate is measured according to JIS K 5600-5-4:1999.
  • the hardness of the surface protective layer was successfully increased by providing a separate layer (fiber layer) instead of intentionally blending the fine fibrous cellulose into the surface protective layer whose hardness is to be increased. be.
  • a separate layer fiber layer
  • Such an effect is exhibited more remarkably when a fiber layer with a relatively high surface hardness is provided on a base material with a relatively low surface hardness, and a surface protective layer is further provided thereon.
  • the haze of the laminate of this embodiment is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less.
  • the lower limit of the haze of the laminate is not particularly limited, and may be 0%.
  • the haze of the laminate is a value measured using a haze meter in accordance with JIS K 7136:2000. As the haze meter, for example, HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used.
  • the total light transmittance of the laminate of this embodiment is preferably 80% or more, more preferably 85% or more.
  • the total light transmittance of the laminate is a value measured using a haze meter in accordance with JIS K 7361-1:1997.
  • the haze meter for example, HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used.
  • the overall thickness of the laminate is not particularly limited, it is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more. Also, the total thickness of the laminate is preferably 10000 ⁇ m or less, more preferably 6000 ⁇ m or less, and even more preferably 4000 ⁇ m or less. It is preferable to appropriately adjust the thickness of the laminate according to its use. The thickness of the laminate can be measured with a constant pressure thickness gauge (PG-02, manufactured by TECLOCK CORPORATION).
  • PG-02 constant pressure thickness gauge
  • the fiber layer contains fibrous cellulose (fine fibrous cellulose) with a fiber width of 1000 nm or less.
  • the content of fine fibrous cellulose in the fiber layer is preferably 15% by mass or more, more preferably 20% by mass or more, and 25% by mass or more relative to the total solid mass of the fiber layer. is more preferred.
  • the upper limit of the content of fine fibrous cellulose in the fiber layer is not particularly limited, and may be 100% by mass.
  • the thickness of the fiber layer may be 0.01 ⁇ m or more, 0.05 ⁇ m or more, 0.1 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more. 0.7 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, or 50 ⁇ m or more may be
  • the upper limit of the thickness of the fiber layer may be, for example, 500 ⁇ m or less.
  • the thickness of the fiber layer may be 200 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less, or 50 ⁇ m or less.
  • the thickness of the fiber layer is preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, even more preferably less than 25 ⁇ m, and even more preferably 10 ⁇ m or less. It is more preferably 5 ⁇ m or less.
  • the thickness of the fiber layer may be 0.01 ⁇ m or more, 0.05 ⁇ m or more, or 0.1 ⁇ m or more.
  • the thickness of the fiber layer is preferably 0.01 ⁇ m to 500 ⁇ m, more preferably 0.05 ⁇ m to 200 ⁇ m, even more preferably 0.1 ⁇ m to 150 ⁇ m, and particularly preferably 0.1 ⁇ m to 25 ⁇ m.
  • the thickness of the fiber layer is preferably 0.1 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, even more preferably 5 to 50 ⁇ m, even more preferably 10 to 50 ⁇ m.
  • the thickness of the fiber layer constituting the laminate is measured by cutting out a cross section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass, or visually. is the value to be
  • the basis weight of the fiber layer is preferably 1.4 g/m 2 or more, more preferably 7 g/m 2 or more, even more preferably 10 g/m 2 or more. Also, the basis weight of the fiber layer is preferably 300 g/m 2 or less, more preferably 250 g/m 2 or less, and even more preferably 200 g/m 2 or less.
  • the density of the fiber layer is preferably 1.0 g/cm 3 or higher, more preferably 1.2 g/cm 3 or higher, and even more preferably 1.4 g/cm 3 or higher. Also, the density of the fiber layer is preferably 2.0 g/cm 3 or less, more preferably 1.8 g/cm 3 or less, and even more preferably 1.7 g/cm 3 or less.
  • the density of the fiber layer is calculated from the basis weight and thickness of the fiber layer.
  • the basis weight of the fiber layer is a value calculated according to the following method after cutting the laminate with an ultramicrotome UC-7 (manufactured by JEOL Ltd.) so that only the fiber layer remains.
  • a fiber layer cut into a size of 50 mm square or more is conditioned at 23° C. and a relative humidity of 50% for 24 hours, then weighed and divided by the area of the cut fiber layer to calculate the basis weight. do.
  • the density of the fiber layer is the density containing the optional components other than fine fibrous cellulose.
  • the fibrous layer is preferably a non-porous layer.
  • the fiber layer is non-porous means that the density of the entire fiber layer is 1.0 g/cm 3 or more. If the density of the entire fiber layer is 1.0 g/cm 3 or more, it means that the porosity contained in the fiber layer is suppressed to a predetermined value or less, and is distinguished from porous sheets and layers. .
  • the non-porous fiber layer is also characterized by having a porosity of 15% by volume or less. The porosity of the fiber layer referred to here is simply obtained by the following formula (a).
  • Porosity (volume%) ⁇ 1-B / (M ⁇ A ⁇ t) ⁇ ⁇ 100
  • A is the area of the fiber layer (cm 2 )
  • t is the thickness of the fiber layer (cm)
  • B is the mass of the fiber layer (g)
  • M is the density of solids constituting the fiber layer.
  • the pencil hardness of the fiber layer is preferably F or higher, more preferably H or higher, and even more preferably 2H or higher. Moreover, the fiber layer preferably has a pencil hardness of 9H or less. The pencil hardness of the fiber layer is measured according to JIS K 5600-5-4:1999.
  • the fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less.
  • the fiber width of the fibrous cellulose is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less, even more preferably 10 nm or less, and particularly preferably 8 nm or less.
  • the fiber width of the fibrous cellulose is preferably 2 nm or more.
  • the fiber width of fibrous cellulose can be measured, for example, by electron microscope observation.
  • the average fiber width of fibrous cellulose is, for example, 1000 nm or less.
  • the average fiber width of the fibrous cellulose is, for example, preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, even more preferably 2 nm or more and 50 nm or less, and 2 nm or more and 20 nm or less. More preferably, it is particularly preferably 2 nm or more and 10 nm or less.
  • the fibrous cellulose is, for example, single fibrous cellulose.
  • the average fiber width of fibrous cellulose is measured, for example, using an electron microscope as follows. First, an aqueous suspension of fibrous cellulose with a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a hydrophilized carbon film-coated grid to form a sample for TEM observation. and SEM images of surfaces cast on glass may be observed if they contain wide fibers. Then, an electron microscope image is observed at a magnification of 1,000, 5,000, 10,000, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification are adjusted so as to satisfy the following conditions.
  • a single straight line X is drawn at an arbitrary point in the observed image, and 20 or more fibers intersect the straight line X.
  • (2) Draw a straight line Y that intersects the straight line perpendicularly in the same image, and 20 or more fibers intersect the straight line Y. Widths of fibers intersecting the straight lines X and Y are visually read from the observation image satisfying the above conditions. In this way, at least three sets of observed images of surface portions that do not overlap each other are obtained. Then, for each image, the width of the fiber that crosses straight line X and straight line Y is read. This gives at least 20 x 2 x 3 120 fiber width readings. Then, the average value of the read fiber widths is taken as the average fiber width of the fibrous cellulose.
  • the fiber length of the fibrous cellulose is not particularly limited, it is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 600 ⁇ m or less. preferable.
  • the fiber length of fibrous cellulose can be determined by image analysis using, for example, TEM, SEM, and AFM.
  • the fibrous cellulose preferably has a type I crystal structure.
  • the proportion of the I-type crystal structure in the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, even more preferably 50% or more. As a result, even better performance can be expected in terms of heat resistance and low coefficient of linear thermal expansion.
  • the degree of crystallinity is determined by a conventional method by measuring an X-ray diffraction profile and using the pattern (Seagal et al., Textile Research Journal, vol. 29, p. 786, 1959).
  • the axial ratio (fiber length/fiber width) of the fibrous cellulose is not particularly limited, it is preferably 20 or more and 10000 or less, more preferably 50 or more and 1000 or less.
  • a sheet containing fine fibrous cellulose can be easily formed by making the axial ratio equal to or higher than the above lower limit. By setting the axial ratio to the above upper limit or less, handling such as dilution becomes easier, for example, when fibrous cellulose is treated as a dispersion liquid, which is preferable.
  • the fibrous cellulose in this embodiment has, for example, both a crystalline region and an amorphous region.
  • fine fibrous cellulose having both a crystalline region and an amorphous region and having a high axial ratio is realized by a method for producing fine fibrous cellulose, which will be described later.
  • the fibrous cellulose preferably has an ionic substituent.
  • the ionic substituents can include, for example, either one or both of an anionic group and a cationic group. In this embodiment, it is particularly preferable to have an anionic group as an ionic substituent.
  • the ionic substituent is preferably a group introduced into fibrous cellulose via an ester bond or an ether bond, more preferably a group introduced into fibrous cellulose via an ester bond. In this case, the ester bond is preferably formed by dehydration condensation between the hydroxyl group of the fibrous cellulose and the compound serving as the ionic substituent.
  • the anionic group includes, for example, a phosphate group or a substituent derived from a phosphate group (sometimes simply referred to as a phosphate group), a carboxy group or a substituent derived from a carboxy group (sometimes simply referred to as a carboxy group).
  • a sulfur oxoacid group or a substituent derived from a sulfur oxoacid group (sometimes simply referred to as a sulfur oxoacid group), a xanthate group or a substituent derived from a xanthate group (sometimes simply referred to as a xanthate group), a phosphonic group or A substituent derived from a phosphone group (sometimes simply referred to as a phosphon group), a phosphine group or a substituent derived from a phosphine group (sometimes simply referred to as a phosphine group), a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group) group), carboxyalkyl group (including carboxymethyl group and carboxyethyl group), and the like.
  • the anionic group is a phosphate group, a substituent derived from a phosphate group, a carboxy group, a substituent derived from a carboxy group, a carboxyalkyl group, a sulfur oxo acid group, and a substituent derived from a sulfur oxo acid group.
  • It is preferably at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a substituent derived from a carboxy group, a sulfur oxo acid group, and a sulfur oxo acid group derived from It is more preferably at least one selected from the group consisting of substituents, and particularly preferably a phosphorous acid group or a substituent derived from a phosphorous acid group.
  • a phosphorus oxoacid group as an anionic group, the dispersibility of fibrous cellulose can be further enhanced, for example, even under alkaline or acidic conditions, and as a result, a highly rigid and highly transparent fiber layer can be obtained. more likely to be
  • cationic groups examples include ammonium groups, phosphonium groups, and sulfonium groups. Among them, the cationic group is preferably an ammonium group.
  • a phosphorous acid group or a substituent derived from a phosphorous acid group is, for example, a substituent represented by the following formula (1).
  • a plurality of types of substituents represented by the following formula (1) may be introduced into each fibrous cellulose. In this case, the plural introduced substituents represented by the following formula (1) may be the same or different.
  • ⁇ b+ is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • Each R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated-branched hydrocarbon group A hydrogen group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or a derivative group thereof. Also, in formula (1), n is preferably 1.
  • the saturated straight-chain hydrocarbon group includes, but is not particularly limited to, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and the like.
  • the saturated-branched hydrocarbon group includes i-propyl group, t-butyl group and the like, but is not particularly limited.
  • the saturated cyclic hydrocarbon group includes, but is not particularly limited to, a cyclopentyl group, a cyclohexyl group, and the like.
  • the unsaturated straight-chain hydrocarbon group includes, but is not particularly limited to, a vinyl group, an allyl group, and the like.
  • the unsaturated-branched hydrocarbon group includes i-propenyl group, 3-butenyl group and the like, but is not particularly limited.
  • the unsaturated-cyclic hydrocarbon group includes, but is not limited to, a cyclopentenyl group, a cyclohexenyl group, and the like.
  • the aromatic group includes, but is not particularly limited to, a phenyl group, a naphthyl group, or the like.
  • the derivative group in R is selected from functional groups such as carboxy group, carboxylate group (—COO ⁇ ), hydroxy group, amino group and ammonium group for the main chain or side chain of the above various hydrocarbon groups.
  • functional groups to which at least one type is added or substituted but are not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, it is preferably 20 or less, more preferably 10 or less.
  • the molecular weight of the phosphorous acid group can be set within an appropriate range, facilitating penetration into the fiber raw material and increasing the yield of fibrous cellulose.
  • the plurality of Rs present are the same. There may be or may be different.
  • ⁇ b+ is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • An organic onium ion can be mentioned as a cation having a valence of 1 or more composed of an organic substance.
  • Organic onium ions include, for example, organic ammonium ions and organic phosphonium ions. Examples of organic ammonium ions include aliphatic ammonium ions and aromatic ammonium ions, and examples of organic phosphonium ions include aliphatic phosphonium ions and aromatic phosphonium ions.
  • Examples of monovalent or higher-valent cations composed of inorganic substances include ions of alkali metals such as sodium, potassium, or lithium, ions of divalent metals such as calcium or magnesium, hydrogen ions, and ammonium ions.
  • alkali metals such as sodium, potassium, or lithium
  • divalent metals such as calcium or magnesium
  • hydrogen ions such as sodium, potassium, or lithium
  • ammonium ions when a plurality of ⁇ b+ are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fibrous cellulose, the plurality of ⁇ b+ are each They may be the same or different.
  • sodium or potassium ions are preferable, but are not particularly limited, because they do not easily turn yellow when fiber raw materials containing ⁇ b+ are heated and are easily industrially available. .
  • the phosphoric acid group or the substituent derived from the phosphoric acid group includes a phosphoric acid group (—PO 3 H 2 ), a salt of a phosphoric acid group, a phosphorous acid group (phosphonic acid group) (—PO 2 H 2 ), salts of phosphite group (phosphonic acid group).
  • the phosphoric acid group or the substituent derived from the phosphoric acid group includes a condensed phosphoric acid group (e.g., pyrophosphate group), a condensed phosphonic acid group (e.g., polyphosphonic acid group), a phosphoric acid ester group ( For example, it may be a monomethyl phosphate group, a polyoxyethylene alkyl phosphate group), an alkylphosphonic acid group (eg, a methylphosphonic acid group), or the like.
  • the sulfur oxoacid group (a sulfur oxoacid group or a substituent derived from a sulfur oxoacid group) is, for example, a substituent represented by the following formula (2).
  • a plurality of substituents represented by the following formula (2) may be introduced into each fibrous cellulose. In this case, the plural introduced substituents represented by the following formula (2) may be the same or different.
  • ⁇ b+ is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • An organic onium ion can be mentioned as a cation having a valence of 1 or more composed of an organic substance.
  • Organic onium ions include, for example, organic ammonium ions and organic phosphonium ions.
  • organic ammonium ions include aliphatic ammonium ions and aromatic ammonium ions
  • organic phosphonium ions include aliphatic phosphonium ions and aromatic phosphonium ions.
  • monovalent or higher-valent cations composed of inorganic substances include ions of alkali metals such as sodium, potassium, or lithium, ions of divalent metals such as calcium or magnesium, hydrogen ions, and ammonium ions.
  • sodium or potassium ions are preferable, but are not particularly limited, because they do not easily turn yellow when fiber raw materials containing ⁇ b+ are heated and are easily industrially available. .
  • the amount of the ionic substituent introduced into fibrous cellulose is, for example, preferably 0.05 mmol/g or more, more preferably 0.10 mmol/g or more, more preferably 0.20 mmol per 1 g (mass) of fibrous cellulose. /g or more, more preferably 0.40 mmol/g or more, and particularly preferably 0.60 mmol/g or more.
  • the amount of the ionic substituent introduced into fibrous cellulose is, for example, preferably 5.20 mmol/g or less, more preferably 3.65 mmol/g or less per 1 g (mass) of fibrous cellulose.
  • the denominator in units of mmol/g indicates the mass of fibrous cellulose when the counter ion of the ionic substituent is hydrogen ion (H + ).
  • the amount of the ionic substituent introduced into fibrous cellulose may be, for example, less than 0.50 mmol/g per 1 g (mass) of fibrous cellulose, may be 0.40 mmol/g or less, or may be 0.40 mmol/g or less. It may be 30 mmol/g or less, 0.25 mmol/g or less, or 0.15 mmol/g or less.
  • the fibrous cellulose in which the content (introduction amount) of the ionic substituent is within the above range may be obtained through, for example, a substituent removal treatment step as described below. That is, the fibrous cellulose contained in the fiber layer may be fibrous cellulose after substituent removal treatment.
  • fibrous cellulose after substituent removal treatment as fibrous cellulose, yellowing of the fiber layer and laminate can be more effectively suppressed, and in particular, yellowing in a high-temperature and high-humidity environment can be more effectively prevented. can be effectively suppressed.
  • the amount of ionic substituents introduced into fibrous cellulose can be measured, for example, by a neutralization titration method.
  • the introduced amount is measured by determining the pH change while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing the fibrous cellulose.
  • FIG. 2 is a graph showing the relationship between the pH and the amount of NaOH added to a fibrous cellulose-containing slurry having a phosphorous acid group as an ionic substituent.
  • the amount of phosphorus oxoacid groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. In addition, before the treatment with the strongly acidic ion exchange resin, a defibration treatment similar to the fibrillation treatment step described below may be performed on the object to be measured, if necessary. Next, while adding sodium hydroxide aqueous solution, the change in pH is observed to obtain a titration curve as shown in the upper part of FIG.
  • the titration curve shown in the upper part of FIG. 2 plots the measured pH against the amount of alkali added
  • the titration curve shown in the lower part of FIG. 2 plots the pH against the amount of alkali added.
  • the increment (differential value) (1/mmol) is plotted.
  • two points where the increment (the differential value of the pH with respect to the amount of alkali dropped) are maximized are confirmed in the curve obtained by plotting the measured pH against the amount of alkali added.
  • the maximum point of the increment obtained first when the alkali is first added is called the first end point
  • the maximum point of the increment obtained next is called the second end point.
  • the amount of alkali required from the start of titration to the first end point is equal to the first dissociated acid amount of fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the first end point to the second end point
  • the amount is equal to the second dissociated acid amount of fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the start of titration to the second end point is equal to the amount of fibrous cellulose contained in the slurry used for titration.
  • the amount of phosphorus oxoacid group introduced mmol/g.
  • the amount of the first dissociated acid when simply referring to the amount of phosphorus oxoacid groups introduced (or the amount of phosphorus oxoacid groups), it means the amount of the first dissociated acid.
  • the region from the start of titration to the first end point is called the first region
  • the region from the first end point to the second end point is called the second region.
  • the weakly acidic group amount (second dissociated acid amount) in the phosphoric acid group is apparently decreased, and the first region The amount of alkali required for the second region is less than the amount of alkali required for the second region.
  • the amount of strongly acidic groups (the amount of first dissociated acid) in the phosphorus oxoacid group coincides with the amount of phosphorus atoms regardless of the presence or absence of condensation.
  • the phosphorous acid group is a phosphorous acid group
  • the weakly acidic group does not exist in the phosphorous acid group, so the amount of alkali required for the second region is reduced, or the amount of alkali required for the second region is may be zero.
  • the titration curve has one point at which the pH increment is maximum.
  • the denominator of the amount of introduced phosphate groups indicates the mass of the acid-form fibrous cellulose
  • the amount of phosphate groups possessed by the acid-form fibrous cellulose (hereinafter referred to as the phosphate group amount (acid form)).
  • the counter ion of the phosphooxy acid group is substituted with an arbitrary cation C so as to have a charge equivalent
  • the denominator is converted to the mass of fibrous cellulose when the cation C is the counter ion.
  • the amount of phosphate groups hereinafter referred to as the amount of phosphate groups (type C)
  • the amount of phosphate groups (type C) possessed by fibrous cellulose whose counter ion is cation C can be determined.
  • Phosphorus oxo acid group amount (C type) Phosphorus oxo acid group amount (acid type) / ⁇ 1 + (W-1) ⁇ A / 1000 ⁇ A [mmol/g]: Total amount of anions derived from phosphate groups possessed by fibrous cellulose (total dissociated acid amount of phosphate groups) W: Formula weight per valence of cation C (for example, 23 for Na and 9 for Al)
  • FIG. 3 is a graph showing the relationship between the amount of dropped NaOH and pH for a dispersion containing fibrous cellulose having a carboxyl group as an ionic substituent.
  • the amount of carboxyl groups introduced into fibrous cellulose is measured, for example, as follows. First, a dispersion containing fibrous cellulose is treated with a strongly acidic ion exchange resin. In addition, before the treatment with the strongly acidic ion exchange resin, a defibration treatment similar to the fibrillation treatment step described below may be performed on the object to be measured, if necessary. Next, while adding sodium hydroxide aqueous solution, the change in pH is observed to obtain a titration curve as shown in the upper part of FIG.
  • the titration curve shown in the upper part of FIG. 3 plots the measured pH against the amount of added alkali
  • the titration curve shown in the lower part of FIG. 3 plots the pH against the amount of added alkali.
  • the increment (differential value) (1/mmol) is plotted.
  • 1 end point in the curve plotting the measured pH against the amount of alkali added, one point where the increment (the differential value of pH with respect to the amount of alkali dropped) is maximum was confirmed. 1 end point.
  • the region from the start of titration to the first end point in FIG. 3 is called the first region.
  • the amount of alkali required in the first region is equal to the amount of carboxyl groups in the dispersion used for titration.
  • the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the dispersion containing the fibrous cellulose to be titrated to obtain the amount of carboxyl groups introduced (mmol / g).
  • the denominator of the amount of introduced carboxy groups is the mass of the acid-type fibrous cellulose
  • the amount of carboxy groups possessed by the acid-type fibrous cellulose (hereinafter referred to as the amount of carboxy groups (acid-type )).
  • the counterion of the carboxy group is substituted with an arbitrary cation C so as to have a charge equivalent
  • the denominator is converted to the mass of fibrous cellulose when the cation C is the counterion.
  • the amount of carboxy groups (hereinafter referred to as the amount of carboxy groups (C type)) possessed by fibrous cellulose whose counter ion is cation C can be obtained.
  • Carboxy group amount (C type) carboxy group amount (acid form) / ⁇ 1 + (W-1) x (carboxy group amount (acid form)) / 1000 ⁇ W: Formula weight per valence of cation C (for example, 23 for Na and 9 for Al)
  • the amount of ionic substituents When measuring the amount of ionic substituents by the titration method, if the amount of 1 drop of aqueous sodium hydroxide solution is too large, or if the titration interval is too short, the amount of ionic substituents will be lower than the original value. may not be obtained.
  • a suitable drop amount and titration interval for example, it is desirable to titrate 10 to 50 ⁇ L of 0.1N sodium hydroxide aqueous solution every 5 to 30 seconds.
  • an inert gas such as nitrogen gas into the slurry from 15 minutes before the start of titration to the end of titration.
  • the amount of sulfur oxoacid group or sulfone group introduced into fibrous cellulose is determined by wet ashing fibrous cellulose with perchloric acid and concentrated nitric acid, diluting it at an appropriate ratio, and measuring the amount of sulfur by ICP emission spectrometry. can be calculated by The sulfur oxoacid group content or sulfone group content (unit: mmol/g) is obtained by dividing the sulfur content by the absolute dry weight of the fibrous cellulose tested.
  • the amount of xanthate groups introduced into fibrous cellulose can be measured by the Bredee method as follows. First, 40 mL of a saturated ammonium chloride solution was added to 1.5 parts by mass (absolute dry mass) of fibrous cellulose, mixed well while crushing the sample with a glass rod, and left for about 15 minutes. 25) and wash thoroughly with saturated ammonium chloride solution. Next, the sample is placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5° C.) is added, stirred, and allowed to stand for 15 minutes.
  • Microfibrous cellulose is produced from fibrous raw materials containing cellulose.
  • the fibrous raw material containing cellulose is not particularly limited, but pulp is preferably used because it is readily available and inexpensive.
  • Pulp includes, for example, wood pulp, non-wood pulp, and deinked pulp. Examples of wood pulp include, but are not limited to, hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolving pulp (DP), soda pulp (AP), unbleached kraft pulp (UKP).
  • Non-wood pulps include, but are not limited to, cotton-based pulps such as cotton linters and cotton lints, and non-wood-based pulps such as hemp, straw, and bagasse.
  • the deinked pulp is not particularly limited, but includes, for example, deinked pulp made from waste paper.
  • the pulp of this embodiment may be used alone or in combination of two or more. Among the above pulps, wood pulp and deinked pulp are preferred, for example, from the viewpoint of availability.
  • the cellulose ratio is high and the yield of fine fibrous cellulose at the time of defibration is high, and the decomposition of cellulose in the pulp is small, and fine fibrous cellulose of long fibers with a large axial ratio can be obtained.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are more preferable.
  • the use of fine fibrous cellulose of long fibers with a large axial ratio tends to increase the viscosity.
  • fiber raw materials containing cellulose for example, cellulose contained in sea squirts and bacterial cellulose produced by acetic acid bacteria can be used. Fibers formed by straight-chain nitrogen-containing polysaccharide polymers such as chitin and chitosan can also be used instead of fiber raw materials containing cellulose.
  • the process for producing fine fibrous cellulose preferably includes an ionic substituent introduction process, and examples of the ionic substituent introduction process include a phosphorus oxoacid group introduction process.
  • the phosphorus oxoacid group-introducing step at least one compound selected from compounds capable of introducing a phosphorus oxoacid group (hereinafter also referred to as "compound A”) is added to cellulose by reacting with a hydroxyl group possessed by a fiber raw material containing cellulose. It is a step of acting on a fiber raw material containing. Through this step, the phosphate group-introduced fiber is obtained.
  • the reaction between the fiber material containing cellulose and compound A is performed in the presence of at least one selected from urea and derivatives thereof (hereinafter also referred to as "compound B").
  • compound B at least one selected from urea and derivatives thereof.
  • An example of a method of allowing the compound A to act on the fiber raw material in the presence of the compound B is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state, or a slurry state.
  • a fiber raw material in a dry state or a wet state it is preferable to use a fiber raw material in a dry state, because the uniformity of the reaction is high.
  • the form of the fiber material is not particularly limited, it is preferably in the form of cotton or a thin sheet, for example.
  • the compound A and the compound B can be added to the fiber raw material in the form of a powder, a solution dissolved in a solvent, or a melted state by heating to a melting point or higher.
  • the compound A and the compound B may be added simultaneously to the fiber raw material, may be added separately, or may be added as a mixture.
  • the method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out.
  • the solution may be added dropwise to the Further, the necessary amount of compound A and compound B may be added to the fiber raw material, or after adding excessive amounts of compound A and compound B to the fiber raw material, the excess compound A and compound B are removed by pressing or filtering. may be removed.
  • the compound A used in the present embodiment may be any compound having a phosphorus atom and capable of forming an ester bond with cellulose. Salts, phosphoric anhydride (diphosphorus pentoxide) and the like can be mentioned, but are not particularly limited.
  • Phosphoric acid of various purities can be used, for example, 100% phosphoric acid (orthophosphoric acid) or 85% phosphoric acid can be used.
  • Phosphorous acid includes 99% phosphorous acid (phosphonic acid).
  • Dehydration-condensed phosphoric acid is obtained by condensing two or more molecules of phosphoric acid by dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • Phosphates, phosphites and dehydrated condensed phosphates include lithium salts, sodium salts, potassium salts and ammonium salts of phosphoric acid, phosphorous acid or dehydrated condensed phosphoric acids. It can be a degree of harmony. Among these, the introduction efficiency of the phosphate group is high, the fibrillation efficiency is easily improved in the fibrillation step described later, the cost is low, and it is easy to apply industrially.
  • potassium phosphate, ammonium phosphate or phosphorous acid sodium phosphite, potassium phosphite, ammonium phosphite, phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphorous acid, sodium phosphite, sodium hydrogen phosphite are more preferred.
  • the amount of compound A added to the fiber raw material is not particularly limited.
  • the amount of phosphorus atoms added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and even more preferably 2% by mass or more and 30% by mass or less.
  • the amount of phosphorus atoms added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved.
  • the amount of phosphorus atoms added to the fiber raw material to be equal to or less than the above upper limit, it is possible to balance the effect of improving the yield and the cost.
  • the compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Compound B includes, for example, urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, and 1-ethylurea.
  • compound B is preferably used as an aqueous solution. From the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
  • the amount of compound B added to the fiber raw material is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100% by mass or more and 350% by mass or less.
  • amides or amines may be included in the reaction system.
  • amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine and hexamethylenediamine.
  • triethylamine in particular is known to work as a good reaction catalyst.
  • the heat treatment temperature it is preferable to select a temperature that can efficiently introduce phosphorus oxoacid groups while suppressing thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is, for example, preferably 50° C. or higher and 300° C. or lower, more preferably 100° C. or higher and 250° C. or lower, and even more preferably 130° C. or higher and 200° C. or lower.
  • equipment having various heat media can be used, for example, a stirring dryer, a rotary dryer, a disk dryer, a roll heater, a plate heater, a fluidized bed dryer, and a band dryer.
  • a mold drying device, a filter drying device, a vibrating fluidized drying device, a flash drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
  • the compound A is added to a thin sheet-like fiber raw material by a method such as impregnation, and then heated, or the fiber raw material and the compound A are heated while kneading or stirring with a kneader or the like. method can be adopted. This makes it possible to suppress unevenness in the concentration of the compound A in the fiber raw material, and to more uniformly introduce the phosphorous acid groups to the surface of the cellulose fibers contained in the fiber raw material.
  • the heating device used for the heat treatment always removes the moisture retained by the slurry and the moisture generated due to the dehydration condensation (phosphorylation) reaction between the compound A and the hydroxyl groups contained in the cellulose etc. in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. As such a heating device, for example, an air-blowing oven can be used. By constantly draining the water in the device system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of phosphorylation, and to suppress the acid hydrolysis of the sugar chains in the fiber. can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
  • the heat treatment time is, for example, preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less, after water is substantially removed from the fiber raw material. is more preferable.
  • the amount of phosphorus oxoacid groups to be introduced can be set within a preferable range by setting the heating temperature and the heating time within appropriate ranges.
  • the phosphorus oxoacid group-introducing step may be performed at least once, but may be performed repeatedly two or more times. By performing the phosphorus oxoacid group-introducing step two or more times, many phosphorus oxoacid groups can be introduced into the fiber raw material.
  • the amount of phosphorus oxoacid groups introduced in the step of introducing phosphorus oxoacid groups is, for example, preferably 0.05 mmol/g or more, more preferably 0.10 mmol/g or more, per 1 g (mass) of fine fibrous cellulose. It is more preferably 0.20 mmol/g or more, still more preferably 0.40 mmol/g or more, and particularly preferably 0.60 mmol/g or more.
  • the amount of phosphorus oxoacid groups introduced in the phosphorus oxoacid group-introducing step is, for example, preferably 5.20 mmol/g or less, more preferably 3.65 mmol/g or less per 1 g (mass) of fine fibrous cellulose. , 3.00 mmol/g or less.
  • the amount of phosphorous acid groups possessed by the finally obtained fine fibrous cellulose is, for example, 1 g of fine fibrous cellulose per (mass) may be less than 0.50 mmol/g, may be 0.40 mmol/g or less, may be 0.30 mmol/g or less, or may be 0.25 mmol/g or less It may be 0.15 mmol/g or less.
  • the production process of fine fibrous cellulose may include, for example, a carboxyl group introduction process as an ionic substituent introduction process.
  • a carboxyl group introduction process as an ionic substituent introduction process.
  • the fiber raw material containing cellulose is subjected to oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a carboxylic acid-derived group or a derivative thereof, or a carboxylic acid-derived group. This is done by treating the compound with an acid anhydride or a derivative thereof.
  • the compound having a carboxylic acid-derived group is not particularly limited. Examples include tricarboxylic acid compounds. Derivatives of compounds having a carboxylic acid-derived group are not particularly limited, but include, for example, imidized acid anhydrides of compounds having a carboxy group and derivatives of acid anhydrides of compounds having a carboxy group. Examples of imidized acid anhydrides of compounds having a carboxyl group include, but are not particularly limited to, imidized dicarboxylic acid compounds such as maleimide, succinimide and phthalimide.
  • the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited. acid anhydrides;
  • the acid anhydride derivative of the compound having a group derived from carboxylic acid is not particularly limited. Acid anhydrides in which at least some of the hydrogen atoms are substituted with substituents such as alkyl groups and phenyl groups can be mentioned.
  • the TEMPO oxidation treatment may be performed under the condition that the pH is 10 or more and 11 or less. Such treatment is also called alkali TEMPO oxidation treatment.
  • Alkaline TEMPO oxidation treatment can be performed, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. .
  • the amount of carboxy groups to be introduced in the carboxy group introduction step varies depending on the type of substituents. For example, when introducing carboxy groups by TEMPO oxidation, the amount should be 0.05 mmol/g or more per 1 g (mass) of fine fibrous cellulose. is preferably 0.10 mmol/g or more, more preferably 0.20 mmol/g or more, even more preferably 0.40 mmol/g or more, and 0.60 mmol/g or more is particularly preferred.
  • the amount of carboxy groups introduced in the carboxy group introduction step is preferably 2.5 mmol/g or less, more preferably 2.20 mmol/g or less, and further preferably 2.00 mmol/g or less. preferable.
  • the substituent when it is a carboxymethyl group, it may be 5.8 mmol/g or less per 1 g (mass) of fine fibrous cellulose.
  • the fiber raw material can be easily made finer, and the stability of the fibrous cellulose can be enhanced.
  • the amount of carboxyl groups to be introduced within the above range it becomes easier to obtain a laminate having high hardness and high transparency.
  • the amount of carboxy groups possessed by the finally obtained fine fibrous cellulose is, for example, 1 g of fine fibrous cellulose ( mass) may be less than 0.50 mmol/g, may be 0.40 mmol/g or less, may be 0.30 mmol/g or less, or may be 0.25 mmol/g or less , 0.15 mmol/g or less.
  • the step of producing fine fibrous cellulose may include, for example, a step of introducing a sulfur oxoacid group as the step of introducing an ionic substituent.
  • cellulose fibers having sulfur oxo acid groups can be obtained by reacting hydroxyl groups of the fiber raw material containing cellulose with sulfur oxo acids.
  • a compound that can introduce a sulfur oxoacid group by reacting with a hydroxyl group possessed by a fiber raw material containing cellulose is selected.
  • At least one compound (hereinafter also referred to as "compound C") is used.
  • Compound C is not particularly limited as long as it has a sulfur atom and is capable of forming an ester bond with cellulose, and includes sulfuric acid or its salts, sulfurous acid or its salts, and sulfate amides.
  • Sulfuric acid of various purities can be used, for example, 96% sulfuric acid (concentrated sulfuric acid) can be used.
  • Sulfurous acid includes 5% sulfurous acid water.
  • Sulfates or sulfites include lithium, sodium, potassium, ammonium salts, etc. of sulfates or sulfites, which can be of varying degrees of neutralization.
  • As the sulfate amide, sulfamic acid or the like can be used.
  • sulfur oxoacid group-introducing step it is preferable to use compound B in the same manner as in ⁇ phosphorus oxoacid group-introducing step>.
  • the heat treatment temperature it is preferable to select a temperature at which sulfur oxoacid groups can be efficiently introduced while suppressing thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is preferably 100° C. or higher, more preferably 120° C. or higher, and even more preferably 150° C. or higher.
  • the heat treatment temperature is preferably 300° C. or lower, more preferably 250° C. or lower, and even more preferably 200° C. or lower.
  • the heat treatment step it is preferable to heat until the water content is substantially gone.
  • the heat treatment time varies depending on the amount of water contained in the cellulose raw material, sulfur oxo acid, and the added amount of the aqueous solution containing urea and/or urea derivatives, but for example, 10 seconds or more and 10000 seconds or less. preferably.
  • equipment having various heat media can be used, such as hot air dryers, stirring dryers, rotary dryers, disk dryers, roll type heaters, plate type heaters, and fluidized bed dryers.
  • a band-type drying device a filter drying device, a vibrating fluidized drying device, a flash drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
  • the amount of sulfur oxoacid groups introduced in the step of introducing sulfur oxoacid groups is preferably 0.05 mmol/g or more, more preferably 0.10 mmol/g or more, and 0.20 mmol/g or more. is more preferable, 0.40 mmol/g or more is even more preferable, and 0.60 mmol/g or more is particularly preferable.
  • the amount of sulfur oxo acid groups introduced in the step of introducing sulfur oxo acid groups is preferably 5.00 mmol/g or less, more preferably 3.00 mmol/g or less.
  • the amount of sulfur oxo acid groups possessed by the finally obtained fine fibrous cellulose is, for example, per 1 g (mass) may be less than 0.50 mmol/g, may be 0.40 mmol/g or less, may be 0.30 mmol/g or less, or may be 0.25 mmol/g or less; may be 0.15 mmol/g or less.
  • the step of producing fine fibrous cellulose may include a step of introducing a xanthate group as the step of introducing an ionic substituent.
  • a cellulose fiber having a xanthate group (a xanthate group-introduced fiber) is obtained by substituting a xanthate group represented by the following formula (3) for a hydroxyl group of a fiber raw material containing cellulose.
  • M + is at least one selected from hydrogen ions, monovalent metal ions, ammonium ions, and aliphatic or aromatic ammonium ions.
  • alkali treatment is performed by treating the fiber raw material containing cellulose with an alkali solution to obtain alkali cellulose.
  • the alkaline solution include an aqueous alkali metal hydroxide solution and an aqueous alkaline earth metal hydroxide solution.
  • the alkaline solution is preferably an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide, and particularly preferably an aqueous sodium hydroxide solution.
  • the concentration of the alkali metal hydroxide in the aqueous alkali metal hydroxide solution is preferably 4% by mass or more, more preferably 5% by mass or more. Further, the alkali metal hydroxide concentration in the aqueous alkali metal hydroxide solution is preferably 9% by mass or less.
  • the fibrillation process mentioned later can be performed more effectively.
  • the alkali metal hydroxide concentration to the above upper limit or less, it is possible to suppress the penetration of the aqueous alkali metal hydroxide solution into the crystalline region of cellulose while promoting mercerization.
  • the crystalline structure of the mold is easily maintained, and the yield of fine fibrous cellulose can be further increased.
  • the duration of the alkali treatment is preferably 30 minutes or longer, more preferably 1 hour or longer. Also, the alkali treatment time is preferably 6 hours or less, more preferably 5 hours or less. By setting the alkali treatment time within the above range, the final yield can be increased and the productivity can be increased.
  • the alkali cellulose obtained by the above alkali treatment is then subjected to solid-liquid separation to remove as much of the aqueous solution as possible.
  • the water content during the subsequent xanthate treatment can be reduced, and the reaction can be promoted.
  • a solid-liquid separation method a general dehydration method such as centrifugation or filtration can be used.
  • the concentration of the alkali metal hydroxide contained in the alkali cellulose after solid-liquid separation is preferably 3% by mass or more and 8% by mass or less with respect to the total mass of the alkali cellulose after solid-liquid separation.
  • the xanthate-forming treatment step is performed after the alkali treatment.
  • alkali cellulose is reacted with carbon disulfide (CS 2 ) to convert (-O - Na + ) groups to (-OCSS - Na + ) groups to obtain xanthate group-introduced fibers.
  • CS 2 carbon disulfide
  • the metal ions introduced into the alkali cellulose are represented by Na + , but similar reactions proceed with other alkali metal ions.
  • the contact time between carbon disulfide and alkali cellulose is preferably 30 minutes or longer, more preferably 1 hour or longer. Xanthate formation proceeds rapidly when carbon disulfide comes into contact with alkali cellulose, but it takes time for carbon disulfide to penetrate into the interior of alkali cellulose, so the reaction time is preferably within the above range.
  • the contact time between the carbon disulfide and the alkali cellulose should be 6 hours or less, whereby the alkali cellulose mass after dehydration is sufficiently permeated, and the reactable xanthate is almost completely formed. can be completed.
  • the reaction temperature in the xanthate-forming treatment is preferably 46°C or lower.
  • the step of producing fine fibrous cellulose may include an oxidation step using a chlorine-based oxidizing agent as the step of introducing an ionic substituent.
  • a carboxyl group is introduced into the fiber raw material by adding the chlorine-based oxidizing agent to a fiber raw material having hydroxyl groups in a wet or dry state and performing a reaction.
  • Chlorine-based oxidizing agents include hypochlorous acid, hypochlorite, chlorous acid, chlorite, chloric acid, chlorate, perchloric acid, perchlorate, and chlorine dioxide.
  • the chlorine-based oxidizing agent is preferably sodium hypochlorite, sodium chlorite, or chlorine dioxide from the viewpoints of introduction efficiency of substituents, defibration efficiency, cost, and ease of handling.
  • the chlorine-based oxidizing agent When the chlorine-based oxidizing agent is added, it may be added as a reagent (solid or liquid) to the fiber raw material as it is, or it may be dissolved in an appropriate solvent and added.
  • the concentration of the chlorine-based oxidizing agent in the solution in the oxidation step using the chlorine-based oxidizing agent is preferably 1% by mass or more and 1,000% by mass or less, and is preferably 5% by mass or more and 500% by mass in terms of effective chlorine concentration. It is more preferably 10% by mass or more and 100% by mass or less.
  • the amount of the chlorine-based oxidizing agent added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 10 parts by mass or more and 10,000 parts by mass or less, and 100 parts by mass. It is more preferable that the content is 5,000 parts by mass or more and 5,000 parts by mass or less.
  • the reaction time with the chlorine-based oxidizing agent in the oxidation step with the chlorine-based oxidizing agent may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, and 10 minutes or more and 500 minutes or less. More preferably, the time is 20 minutes or more and 400 minutes or less.
  • the pH during the reaction is preferably 5 or more and 15 or less, more preferably 7 or more and 14 or less, and even more preferably 9 or more and 13 or less.
  • the pH during the reaction is preferably kept constant (for example, pH 11) by appropriately adding hydrochloric acid or sodium hydroxide. After the reaction, excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
  • the production process of fine fibrous cellulose may include a carboxyalkylation process as an ionic substituent introduction process.
  • a compound having a reactive group and a carboxyl group (compound E C ) as an essential component, an alkali compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives are added to a fiber having a hydroxyl group in a wet or dry state.
  • a carboxyl group is introduced into the fiber raw material by adding it to the raw material and reacting it.
  • Examples of reactive groups include halogenated alkyl groups, vinyl groups, epoxy groups (glycidyl groups), and the like.
  • monochloroacetic acid, sodium monochloroacetate, 2-chloropropionic acid, 3-chloropropionic acid, and sodium 2-chloropropionate can be used from the viewpoints of introduction efficiency of substituents, and thus fibrillation efficiency, cost, and ease of handling.
  • sodium 3-chloropropionate is preferred.
  • compound B it is preferable to use compound B in the same manner as in the above-described ⁇ Phosphorus oxoacid group-introducing step>, and the amount added is preferably as described above.
  • compound E C When compound E C is added, it may be added as a reagent (solid or liquid) to the fiber raw material as it is, or it may be dissolved in an appropriate solvent and added. It is preferable that the fiber raw material is converted to alkali cellulose in advance or is converted to alkali cellulose simultaneously with the reaction.
  • the method of alkali cellulose conversion is as described above.
  • the temperature during the reaction is, for example, preferably 50°C or higher and 300°C or lower, more preferably 100°C or higher and 250°C or lower, and even more preferably 130°C or higher and 200°C or lower.
  • the amount of the compound E to be added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 2 parts by mass or more and 10,000 parts by mass or less, and 5 parts by mass. It is more preferable that the amount is 1,000 parts by mass or less.
  • the reaction time may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, more preferably 3 minutes or more and 500 minutes or less, and 5 minutes or more and 400 minutes or less. is more preferred.
  • excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
  • the step of producing fine fibrous cellulose may include a step of introducing a phosphonic group or a phosphine group (phosphoalkylation step) as the step of introducing an ionic substituent.
  • a compound having a reactive group and a phospho group or a phosphine group (compound E A ) as an essential component, an alkali compound as an optional component, and a compound B selected from the aforementioned urea and its derivatives are wetted.
  • a phosphonic group or a phosphine group is introduced into the fiber raw material by adding it to the fiber raw material having hydroxyl groups in a dry state and performing a reaction.
  • Examples of reactive groups include halogenated alkyl groups, vinyl groups, epoxy groups (glycidyl groups), and the like.
  • Compound EA includes, for example, vinylphosphonic acid, phenylvinylphosphonic acid, phenylvinylphosphinic acid and the like.
  • Compound EA is preferably vinylphosphonic acid from the viewpoints of the efficiency of introduction of substituents, the efficiency of fibrillation, the cost, and the ease of handling.
  • compound EA When compound EA is added, it may be added as a reagent (solid or liquid) to the fiber raw material as it is, or it may be dissolved in an appropriate solvent and added. It is preferable that the fiber raw material is converted to alkali cellulose in advance or is converted to alkali cellulose simultaneously with the reaction. The method of alkali cellulose conversion is as described above.
  • the temperature during the reaction is, for example, preferably 50°C or higher and 300°C or lower, more preferably 100°C or higher and 250°C or lower, and even more preferably 130°C or higher and 200°C or lower.
  • the amount of Compound E A added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 2 parts by mass or more and 10,000 parts by mass or less, and 5 parts by mass. It is more preferable that the amount is 1,000 parts by mass or less.
  • the reaction time may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. is more preferred.
  • excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
  • the ionic substituent introduction step may include a sulfone group introduction step (sulfoalkylation step).
  • a compound (compound E B ) having a reactive group and a sulfone group as essential components, an alkali compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives are mixed in a wet or dry state.
  • the sulfone group is introduced into the fiber raw material by reacting with the fiber raw material having a hydroxyl group.
  • Examples of reactive groups include halogenated alkyl groups, vinyl groups, epoxy groups (glycidyl groups), and the like.
  • Compound E B includes sodium 2-chloroethanesulfonate, sodium vinylsulfonate, sodium p-styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid and the like.
  • the compound EB is preferably sodium vinyl sulfonate from the viewpoints of the efficiency of introduction of substituents, the efficiency of fibrillation, the cost, and the ease of handling.
  • compound EB When compound EB is added, it may be added as a reagent (solid or liquid) to the fiber raw material as it is, or it may be dissolved in an appropriate solvent and added. It is preferable that the fiber raw material is converted to alkali cellulose in advance or is converted to alkali cellulose simultaneously with the reaction.
  • the method of alkali cellulose conversion is as described above.
  • the temperature during the reaction is, for example, preferably 50°C or higher and 300°C or lower, more preferably 100°C or higher and 250°C or lower, and even more preferably 130°C or higher and 200°C or lower.
  • the amount of Compound E B added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 2 parts by mass or more and 10,000 parts by mass or less, and 5 parts by mass. It is more preferable that the amount is 1,000 parts by mass or less.
  • the reaction time may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 15 minutes or more and 400 minutes or less. is more preferred.
  • excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
  • ⁇ Cationic group introduction step (cationization step)> A compound having a reactive group and a cationic group (compound E D ) as an essential component, an alkali compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives, in a wet or dry state, having a hydroxyl group Cationic groups are introduced into the fiber raw material by reacting with the fiber raw material.
  • reactive groups include halogenated alkyl groups, vinyl groups, epoxy groups (glycidyl groups), and the like.
  • Cationic groups include an ammonium group, a phosphonium group, a sulfonium group, and the like.
  • the cationic group is preferably an ammonium group.
  • the compound E D glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrimethylammonium chloride, and the like are preferable from the viewpoints of introduction efficiency of substituents, defibration efficiency, cost, and ease of handling.
  • compound B in the above-described ⁇ Phosphorus oxoacid group-introducing step> in the same manner. It is preferable that the amount to be added is also as described above.
  • compound E D When compound E D is added, it may be added as it is as a reagent (solid or liquid) to the fiber raw material, or it may be added after being dissolved in an appropriate solvent. It is preferable that the fiber raw material is converted to alkali cellulose in advance or is converted to alkali cellulose simultaneously with the reaction. The method of alkali cellulose conversion is as described above.
  • the temperature during the reaction is, for example, preferably 50°C or higher and 300°C or lower, more preferably 100°C or higher and 250°C or lower, and even more preferably 130°C or higher and 200°C or lower.
  • the amount of compound E D added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 2 parts by mass or more and 10,000 parts by mass or less, and 5 parts by mass. It is more preferable that the amount is 1,000 parts by mass or less.
  • the reaction time may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. is more preferred.
  • excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
  • the ionic substituent-introduced fiber can be subjected to a washing step, if necessary.
  • the washing step is performed by washing the ionic substituent-introduced fiber with, for example, water or an organic solvent. Further, the washing step may be performed after each step described later, and the number of washings performed in each washing step is not particularly limited.
  • the fiber raw material may be subjected to alkali treatment between the ionic substituent introduction step and the fibrillation treatment step described later.
  • the method of alkali treatment is not particularly limited, but includes, for example, a method of immersing the ionic substituent-introduced fiber in an alkali solution.
  • the alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In the present embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkaline compound because of its high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably water or a polar solvent including a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent including at least water.
  • an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution is preferable because of its high versatility.
  • the temperature of the alkaline solution in the alkaline treatment step is not particularly limited, it is preferably, for example, 5°C or higher and 80°C or lower, more preferably 10°C or higher and 60°C or lower.
  • the immersion time of the ionic substituent-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkaline solution used in the alkaline treatment is not particularly limited, but for example, it is preferably 100% by mass or more and 100000% by mass or less, and 1000% by mass or more and 10000% by mass with respect to the absolute dry mass of the ionic substituent-introduced fiber. The following are more preferable.
  • the alkali treatment may include neutralization and/or ion exchange of the anionic groups.
  • the temperature of the alkaline solution is preferably room temperature.
  • the ionic substituent-introduced fiber may be washed with water or an organic solvent after the ionic substituent introduction step and before the alkali treatment step. After the alkali treatment step and before the fibrillation treatment step, it is preferable to wash the alkali-treated ionic substituent-introduced fibers with water or an organic solvent from the viewpoint of improving handleability.
  • the fiber raw material may be subjected to an acid treatment between the step of introducing an ionic substituent and the later-described fibrillation treatment step.
  • an ionic substituent introduction step, an acid treatment, an alkali treatment and a fibrillation treatment may be performed in this order.
  • the acid treatment method is not particularly limited, but includes, for example, a method of immersing the fiber raw material in an acidic liquid containing an acid.
  • concentration of the acid liquid used is not particularly limited, it is preferably 10% by mass or less, more preferably 5% by mass or less.
  • pH of the acidic liquid to be used is not particularly limited.
  • acids contained in the acid solution include inorganic acids, sulfonic acids, and carboxylic acids.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid and boric acid.
  • sulfonic acid examples include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Carboxylic acids include, for example, formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, and tartaric acid. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5°C or higher and 100°C or lower, more preferably 20°C or higher and 90°C or lower.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited. is more preferred.
  • the acid treatment may include neutralization and/or ion exchange of the cationic groups.
  • the temperature of the acid solution is preferably room temperature.
  • a fibrillation treatment device By defibrating the ionic substituent-introduced fibers in the fibrillation treatment step, fine fibrous cellulose can be obtained.
  • a fibrillation treatment device can be used.
  • the fibrillation treatment device is not particularly limited, but for example, a high-speed fibrillator, a grinder (stone mill type pulverizer), a high pressure homogenizer, an ultra-high pressure homogenizer, a high pressure impact type pulverizer, a ball mill, a bead mill, a disk refiner, a conical refiner, and a biaxial refiner.
  • a kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, a beater, or the like can be used.
  • a high-speed fibrillation machine, a high-pressure homogenizer, and an ultrahigh-pressure homogenizer which are less affected by the grinding media and less likely to cause contamination.
  • the ionic substituent-introduced fibers are preferably diluted with a dispersion medium to form a slurry.
  • a dispersion medium one or more selected from organic solvents such as water and polar organic solvents can be used.
  • the polar organic solvent is not particularly limited, but alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol and glycerin.
  • Ketones include acetone, methyl ethyl ketone (MEK), and the like.
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether and the like.
  • esters include ethyl acetate and butyl acetate.
  • Aprotic polar solvents include dimethylsulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of fine fibrous cellulose during defibration can be set as appropriate.
  • the slurry obtained by dispersing the ionic substituent-introduced fiber in the dispersion medium may contain a solid content other than the ionic substituent-introduced fiber, such as urea having hydrogen bonding properties.
  • the step of producing fine fibrous cellulose may further include a step of reducing the amount of nitrogen introduced into the fibrous cellulose and the amount of nitrogen present in the system (nitrogen removal treatment step). By reducing the nitrogen content, it is possible to obtain fine fibrous cellulose that can further suppress coloration.
  • the nitrogen removal treatment step may be provided after the defibration treatment step, but is preferably provided before the fibrillation treatment step.
  • the pH of the slurry containing the ionic substituent-introduced fiber it is preferable to adjust the pH of the slurry containing the ionic substituent-introduced fiber to 10 or higher and perform heat treatment.
  • the liquid temperature of the slurry is preferably 50° C. or higher and 100° C. or lower, and the heating time is preferably 15 minutes or longer and 180 minutes or shorter.
  • the ionic substituent-introduced fiber can be washed if necessary.
  • the washing step is performed by washing the ionic substituent-introduced fiber with, for example, water or an organic solvent. Moreover, the number of washings performed in each washing step is not particularly limited.
  • the method for producing fine fibrous cellulose may include a step of removing at least part of the substituent from fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less. Through such steps, it is possible to obtain fine fibrous cellulose with a small fiber width, although the amount of substituent introduced is low.
  • the step of removing at least part of the substituents from the fine fibrous cellulose is also referred to as a substituent removal treatment step.
  • the substituent-removing treatment step examples include a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, and an alkali treatment step. These may be carried out singly or in combination.
  • the substituent removal treatment step is preferably a heat treatment step or an enzyme treatment step.
  • the substituent removal treatment step is preferably performed in a slurry state. That is, in the substituent removal treatment step, a slurry containing fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less is subjected to heat treatment, enzyme treatment, acid treatment, and alkali treatment. etc. is preferable.
  • a slurry containing fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less is subjected to heat treatment, enzyme treatment, acid treatment, and alkali treatment. etc. is preferable.
  • By carrying out the substituent removal treatment step in a slurry form it is possible to prevent residual coloring substances caused by heating or the like during the substituent removal treatment, and added or generated acids, alkalis, salts, and the like. Thereby, coloring of a fiber layer or a laminated body can be suppressed.
  • the salt derived from the removed substituent is removed after the substituent removal treatment, it is possible to increase the salt removal efficiency.
  • the concentration of the fine fibrous cellulose in the slurry is 0.05% by mass or more. It is preferably 0.1% by mass or more, more preferably 0.2% by mass or more.
  • the concentration of fine fibrous cellulose in the slurry is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less.
  • the concentration of the fine fibrous cellulose in the slurry within the above range, it is possible to prevent the residual coloring matter caused by heating during the substituent removal treatment, and the acid, alkali, salt, etc. added or generated. can. Thereby, coloring of a fiber layer or a laminated body can be suppressed.
  • the salt derived from the removed substituent is removed after the substituent removal treatment, it is possible to increase the salt removal efficiency.
  • the heating temperature in the heat-treating step is preferably 40° C. or higher. , more preferably 50° C. or higher, and even more preferably 60° C. or higher.
  • the heating temperature in the heat treatment step is preferably 250° C. or lower, more preferably 230° C. or lower, and even more preferably 200° C. or lower.
  • the heating temperature in the heat treatment step is preferably 80° C. or higher, more preferably 100° C. or higher. More preferably, it is 120° C. or higher.
  • the heating device that can be used in the heat treatment step is not particularly limited, but hot air heating device, steam heating device, electric heating device, hydrothermal heating device, thermal heating device. , infrared heating device, far infrared heating device, microwave heating device, high frequency heating device, stirring drying device, rotary drying device, disk drying device, roll type heating device, plate type heating device, fluidized bed drying device, band type drying device , a filtration drying apparatus, a vibrating fluidized drying apparatus, a flash drying apparatus, and a vacuum drying apparatus can be used.
  • the heating is preferably performed in a closed system, and from the viewpoint of increasing the heating temperature, it is preferably performed in a pressure-resistant device or container.
  • the heat treatment may be batch treatment, batch continuous treatment, or continuous treatment.
  • the substituent removal treatment step is a step of enzymatically treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less
  • the enzymatic treatment step depending on the type of substituent, phosphate ester It is preferable to use a hydrolase, a sulfate ester hydrolase, or the like.
  • the enzyme is preferably added so that the enzyme activity per 1 g of fine fibrous cellulose is 0.1 nkat or more, more preferably 1.0 nkat or more, and 10 nkat or more. It is more preferable to add the enzyme so that the Further, the enzyme is preferably added so that the enzyme activity is 100,000 nkat or less, more preferably 50,000 nkat or less, and more preferably 10,000 nkat or less, per 1 g of fine fibrous cellulose. More preferred. After adding the enzyme to the fine fibrous cellulose dispersion (slurry), it is preferable to carry out the treatment at a temperature of 0° C. or more and less than 50° C. for 1 minute or more and 100 hours or less.
  • a step of deactivating the enzyme may be provided.
  • an acid component or an alkaline component is added to the enzyme-treated slurry to deactivate the enzyme.
  • a method of deactivation can be mentioned.
  • the acid-treating step includes acid that can be used in the acid treatment step described above. It is preferred to add the compound to the slurry.
  • the substituent-removing treatment step is a step of treating with an alkali fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less
  • the step of treating with an alkali includes an alkali that can be used in the above-described alkali treatment step. It is preferred to add the compound to the slurry.
  • the substituent removal reaction proceeds uniformly.
  • the slurry containing fine fibrous cellulose may be stirred, or the specific surface area of the slurry in contact with the heating medium may be increased.
  • a mechanical shear may be applied from the outside, or the self-agitation may be promoted by increasing the feeding speed of the slurry during the reaction.
  • a spacer molecule may be added in the substituent removal treatment step.
  • Spacer molecules act as spacers to get between adjacent fibrous celluloses, thereby providing fine spaces between the fine fibrous celluloses.
  • the spacer molecule is preferably a water-soluble organic compound.
  • water-soluble organic compounds include sugars, water-soluble polymers, and urea. Specifically, trehalose, urea, polyethylene glycol (PEG), polyethylene oxide (PEO), carboxymethylcellulose, polyvinyl alcohol (PVA) and the like can be mentioned.
  • water-soluble organic compounds include alkyl methacrylate/acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, propylene glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, and polyacrylamide.
  • xanthan gum guar gum
  • tamarind gum carrageenan
  • locust bean gum quince seed
  • alginic acid pullulan
  • carrageenan pectin
  • cationic starch raw starch, oxidized starch, etherified starch, esterified starch, starches such as amylose, glycerin , diglycerin, polyglycerin, hyaluronic acid, and metal salts of hyaluronic acid can also be used.
  • pigments can be used as spacer molecules.
  • spacer molecules for example, kaolin (including clay), calcium carbonate, titanium oxide, zinc oxide, amorphous silica (including colloidal silica), aluminum oxide, zeolite, sepiolite, smectite, synthetic smectite, magnesium silicate, magnesium carbonate, magnesium oxide, diatomaceous earth,
  • kaolin including clay
  • calcium carbonate titanium oxide
  • zinc oxide amorphous silica (including colloidal silica)
  • aluminum oxide zeolite, sepiolite, smectite, synthetic smectite
  • magnesium silicate magnesium carbonate
  • magnesium oxide diatomaceous earth
  • examples include styrene plastic pigments, hydrotalcite, urea resin plastic pigments, benzoguanamine plastic pigments, and the like.
  • a step of adjusting the pH of the slurry containing fine fibrous cellulose may be provided before the substituent-removing treatment step.
  • the slurry containing fine fibrous cellulose after fibrillation exhibits weak alkalinity.
  • monosaccharides which are one of the coloring factors, may be generated due to decomposition of cellulose, so it is preferable to adjust the pH of the slurry to 8 or less, more preferably 6 or less. preferable.
  • the pH of the slurry is preferably adjusted to 3 or higher, more preferably 4 or higher.
  • the fine fibrous cellulose having a substituent is a fine fibrous cellulose having a phosphate group
  • phosphorus of the phosphate group should be in a state of being susceptible to nucleophilic attack.
  • the pH of the slurry is adjusted to 3 or more and 8 or less, more preferably 4 or more and 6 or less.
  • an acid component or an alkali component may be added to the slurry containing fine fibrous cellulose.
  • the acid component may be either an inorganic acid or an organic acid.
  • inorganic acids include sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid.
  • Organic acids include formic acid, acetic acid, citric acid, malic acid, lactic acid, adipic acid, sebacic acid, stearic acid, maleic acid, succinic acid, tartaric acid, fumaric acid, gluconic acid and the like.
  • the alkali component may be an inorganic alkali compound or an organic alkali compound.
  • inorganic alkali compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, lithium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium carbonate, and sodium hydrogen carbonate.
  • Organic alkaline compounds include ammonia, hydrazine, methylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, diaminoethane, diaminopropane, diaminobutane, diaminopentane, diaminohexane, cyclohexylamine, aniline, tetramethyl ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, pyridine, N,N-dimethyl-4-aminopyridine and the like.
  • ion exchange treatment may be performed to adjust the pH.
  • a strongly acidic cation exchange resin or a weakly acidic ion exchange resin can be used.
  • a slurry containing fine fibrous cellulose at a desired pH can be obtained.
  • the addition of an acid component or an alkali component and the ion exchange treatment may be combined.
  • ⁇ Salt removal treatment step> After the substituent-removing treatment step, it is preferable to perform a treatment for removing salts derived from the removed substituents. By removing the salt derived from the substituent, it becomes easier to obtain fine fibrous cellulose capable of suppressing coloration.
  • the means for removing the salt derived from the substituent is not particularly limited, washing treatment can be mentioned, for example.
  • the washing treatment is performed, for example, by washing the fine fibrous cellulose aggregated by the substituent removal treatment with water or an organic solvent. From the viewpoint of more effectively suppressing yellowing, the washing treatment is preferably performed by filtration dehydration, centrifugal dehydration, or centrifugation.
  • a step of uniformly dispersing the fine fibrous cellulose obtained through the substituent-removing treatment may be provided.
  • the uniformly dispersing treatment step is a step of uniformly dispersing the aggregated fine fibrous cellulose.
  • uniform dispersion treatment process for example, high-speed fibrillation machine, grinder (stone mill type crusher), high pressure homogenizer, high pressure collision type crusher, ball mill, bead mill, disc refiner, conical refiner, twin screw kneader, vibration mill, under high speed rotation A homomixer, an ultrasonic disperser, a beater, or the like can be used.
  • grinder stone mill type crusher
  • high pressure homogenizer high pressure collision type crusher
  • ball mill bead mill
  • disc refiner disc refiner
  • conical refiner conical refiner
  • twin screw kneader vibration mill
  • vibration mill under high speed rotation
  • a homomixer an ultrasonic disperser, a beater, or the like
  • the treatment conditions in the uniform dispersion treatment step are not particularly limited, but it is preferable to increase the maximum moving speed of the fine fibrous cellulose during treatment and the pressure during treatment.
  • the peripheral speed of the high-speed defibrator is preferably 20 m/sec or higher, more preferably 25 m/sec or higher, and even more preferably 30 m/sec or higher.
  • a high-pressure homogenizer can be used more preferably than a high-speed defibrator because the maximum moving speed of fine fibrous cellulose during treatment and the pressure during treatment are higher.
  • the pressure during treatment is preferably 1 MPa or higher, more preferably 10 MPa or higher, even more preferably 50 MPa or higher, and particularly preferably 100 MPa or higher.
  • the pressure during treatment is preferably 350 MPa or less, more preferably 300 MPa or less, and even more preferably 250 MPa or less.
  • the spacer molecules described above may be newly added.
  • uniform dispersion of the fine fibrous cellulose can be carried out more smoothly. Thereby, the transparency of the fiber layer or laminate can be more effectively improved.
  • the fiber layer may further contain a resin component in addition to the fine fibrous cellulose described above.
  • the resin component contained in the fiber layer is preferably a hydrophilic polymer or a hydrophilic low-molecular weight compound, and more preferably a hydrophilic polymer component.
  • Hydrophilic polymers include polyethylene glycol, polyethylene oxide, casein, dextrin, starch, modified starch, polyvinyl alcohol, modified polyvinyl alcohol (such as acetoacetylated polyvinyl alcohol), polyvinyl butyral, polyethylene oxide, polyvinylpyrrolidone, polyvinyl methyl ether, Polyacrylic acid salts, polyacrylamide, acrylic acid alkyl ester copolymers, urethane copolymers, cellulose derivatives (hydroxyethyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, etc.) and the like can be mentioned.
  • the fiber layer may also contain spacer molecules used in the above-described substituent removal treatment step and the like.
  • the hydrophilic polymer is preferably polyvinyl alcohol or a cellulose derivative. Moreover, by using a cellulose derivative as the hydrophilic polymer, it is possible to improve the transparency of the fiber layer and the laminate, and more effectively suppress yellowing.
  • the degree of saponification of polyvinyl alcohol is preferably 99.9% or less, more preferably 99% or less, and even more preferably 95% or less. Moreover, the degree of saponification of polyvinyl alcohol is preferably 85% or more.
  • the weight-average molecular weight of the cellulose derivative is determined from the viewpoint of forming the fiber layer by suppressing shape stability and gelation as the fiber layer, and high tensile modulus and high tensile elongation. From the viewpoint of compatibility of the degree of heat and the viewpoint of suppressing yellowing before and after heating, the , and preferably 2.8 ⁇ 10 5 or less, more preferably 2.6 ⁇ 10 5 or less.
  • the weight average molecular weight of the cellulose derivative is measured by a gel permeation chromatography method (GPC-MALLS method) using a light scattering method.
  • the cellulose derivative is preferably a water-soluble cellulose ether from the viewpoint of enhancing affinity with fine fibrous cellulose and from the viewpoint of being easily added to a slurry of fine fibrous cellulose (fine fibrous cellulose dispersion). preferable.
  • being water-soluble means that 1 g or more is dissolved in 100 g of water at 20°C.
  • Cellulose ether is a general term for cellulose derivatives obtained by etherifying the hydroxyl group of cellulose.
  • Preferred examples of water-soluble cellulose ethers include methylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, carboxyethylcellulose and the like.
  • the water-soluble cellulose ether is preferably a nonionic water-soluble cellulose ether from the viewpoint of suppressing yellowing of the fiber layer due to heating.
  • nonionic water-soluble cellulose ethers include methylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and the like.
  • the nonionic water-soluble cellulose ether preferably has at least one functional group selected from the group consisting of methoxy and hydroxypropoxy groups, more preferably selected from the group consisting of methylcellulose and hydroxypropylmethylcellulose. , and hydroxypropyl methylcellulose are more preferred.
  • the degree of methoxy group substitution is preferably 0.5 or more, more preferably 0.8 or more, still more preferably 1.0 or more, still more preferably 1.2 or more, and particularly preferably It is 1.5 or more, and preferably 3.0 or less, more preferably 2.6 or less, even more preferably 2.2 or less, and even more preferably 2.0 or less.
  • the preferred range of the degree of substitution of methoxy groups is the same as the degree of substitution of methoxy groups in methylcellulose described above.
  • the degree of substitution of the hydroxypropoxy group is preferably 0.08 or more, more preferably 0.10 or more, still more preferably 0.12 or more, still more preferably 0.15 or more, and particularly preferably 0.18 or more. Yes, and preferably 0.50 or less, more preferably 0.40 or less, even more preferably 0.35 or less, and even more preferably 0.30 or less.
  • the weight average molecular weight of the hydrophilic polymer may be 10,000 or more, preferably 50,000 or more, and more preferably 100,000 or more. Also, the weight average molecular weight of the hydrophilic polymer is preferably 8,000,000 or less, more preferably 5,000,000 or less.
  • Hydrophilic low molecules include glycerin, sorbitol, ethylene glycol, and the like. As used herein, a hydrophilic low molecular weight molecule has a weight average molecular weight of less than 10,000.
  • the content of the resin component is preferably 5% by mass or more, more preferably 10% by mass, and further preferably 15% by mass or more, based on the total solid mass contained in the fiber layer. It is preferably 20% by mass or more, and particularly preferably 20% by mass or more. In addition, the content of the resin component is preferably 95% by mass or less, more preferably 90% by mass or less, and 80% by mass or less with respect to the total solid mass contained in the fiber layer. is more preferred. By setting the content of the resin component within the above range, it becomes easier to obtain a highly rigid and highly transparent fiber layer and laminate.
  • the fibrous layer may optionally contain an adhesion aid and/or a structure derived from the adhesion aid.
  • adhesion promoters include compounds containing at least one selected from the group consisting of isocyanate groups, carbodiimide groups, epoxy groups, oxazoline groups, amino groups and silanol groups, and organosilicon compounds.
  • organic silicon compounds include condensates of silane coupling agents and silane coupling agents.
  • the adhesion aid is preferably at least one selected from silane coupling agents and isocyanate compounds (compounds containing an isocyanate group).
  • the adhesion aid is a silane coupling agent
  • the fiber layer contains a structure derived from the silane coupling agent
  • the adhesion aid is an isocyanate compound
  • the fiber layer contains It contains a structure that
  • isocyanate compounds include polyisocyanate compounds and polyfunctional isocyanates.
  • polyisocyanate compounds include aromatic polyisocyanates having 6 to 20 carbon atoms excluding carbon atoms in the NCO group, aliphatic polyisocyanates having 2 to 18 carbon atoms, and 6 to 15 carbon atoms.
  • Alicyclic polyisocyanates, aralkyl polyisocyanates having 8 to 15 carbon atoms, modified products of these polyisocyanates, and mixtures of two or more thereof can be mentioned.
  • alicyclic polyisocyanates having 6 to 15 carbon atoms, that is, isocyanurates are preferably used.
  • alicyclic polyisocyanates include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis(2-isocyanatoethyl). -4-cyclohexene-1,2-dicarboxylate, 2,5-norbornane diisocyanate, 2,6-norbornane diisocyanate and the like.
  • the silane coupling agent may have a functional group other than an alkoxysilyl group, or may have no other functional group.
  • Functional groups other than alkoxysilyl groups include vinyl groups, epoxy groups, styryl groups, methacryloxy groups, acryloxy groups, amino groups, ureido groups, mercapto groups, sulfide groups, and isocyanate groups.
  • the silane coupling agent used in this embodiment is preferably a silane coupling agent containing a methacryloxy group.
  • silane coupling agents having a methacryloxy group in the molecule include methacryloxypropylmethyldimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropyltriethoxysilane, 1,3-bis(3-methacryloxypropyl)tetramethyldisiloxane and the like. Among them, at least one selected from methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane and 1,3-bis(3-methacryloxypropyl)tetramethyldisiloxane is preferably used.
  • the silane coupling agent preferably contains 3 or more alkoxysilyl groups.
  • the amount of the adhesion aid added in the manufacturing process of the fiber layer is It is preferably 0.1% by mass or more, more preferably 0.5% by mass or more. Also, the amount of adhesion aid added is preferably 40% by mass or less, more preferably 35% by mass or less, relative to the total solid mass contained in the fiber layer.
  • the fiber layer may contain other optional components in addition to the components described above.
  • Optional components include, for example, paper strength agents, surfactants, organic ions, inorganic stratiform compounds, inorganic compounds, leveling agents, preservatives, antifoaming agents, organic particles, lubricants, antistatic agents, and UV protection agents. , dyes, pigments, stabilizers, magnetic powders, alignment promoters, plasticizers, dispersants, anti-coloring agents, polymerization inhibitors, pH adjusters and the like.
  • organic ions include tetraalkylammonium ions and tetraalkylphosphonium ions.
  • Tetraalkylammonium ions include, for example, tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, tetrabutylammonium ion, tetrapentylammonium ion, tetrahexylammonium ion, tetraheptylammonium ion, tributylmethylammonium ion, lauryltrimethyl ammonium ion, cetyltrimethylammonium ion, stearyltrimethylammonium ion, octyldimethylethylammonium ion, lauryldimethylethylammonium ion, didecyldimethylammonium ion, lauryldimethyl
  • the surface protective layer constituting the laminate is preferably a hard coat layer.
  • the surface protective layer is preferably an active energy ray-curable resin layer, a silicone resin layer, or an inorganic layer.
  • the active energy ray-curable resin layer is a layer containing a polymer obtained by polymerizing an active energy ray-curable monomer.
  • the active energy ray-curable monomer include monomers having a polymerizable unsaturated group, and examples of the polymerizable unsaturated group include a vinyl group, an allyl group, and a (meth)acryloyl group.
  • the sexual energy ray-curable monomer is preferably a monomer having a (meth)acryloyl group.
  • the active energy ray-curable monomer has two or more polymerizable unsaturated groups.
  • a (meth)acryloyl group means including both an "acryloyl group" and a "methacryloyl group.”
  • active energy ray-curable monomers include urethane (meth)acrylates, acrylic (meth)acrylates, epoxy (meth)acrylates, polyether (meth)acrylates, polyester (meth)acrylates, acrylic acid esters, and the like. mentioned. These active energy ray-curable monomers may be used singly or in combination of two or more.
  • the resin coating liquid forming the active energy ray-curable resin layer contains a solvent and a photopolymerization initiator in addition to the active energy ray-curable monomer.
  • the photopolymerization initiator is preferably one that accelerates the polymerization reaction of the active energy ray-curable monomer with light having a wavelength of 380 to 700 nm.
  • a resin coating liquid for forming an active energy ray-curable resin layer is applied onto the fiber layer, and if necessary, the solvent is volatilized by heating and drying, and then the active energy ray (for example, ultraviolet rays) is irradiated.
  • the active energy ray for example, ultraviolet rays
  • a surface protective layer can be formed. It is preferable to adjust the irradiation amount of the active energy ray within a range in which the photopolymerization initiator generates radicals.
  • the silicone-based resin layer is a layer formed by curing a silicone-based coating liquid containing a silane compound. Specifically, a coating liquid containing a silane compound is applied onto the fiber layer, and heat treatment is performed to crosslink and condense the silane compound, thereby forming the surface protective layer.
  • the material constituting the inorganic layer is not particularly limited, but for example, aluminum, silicon, magnesium, zinc, tin, nickel, titanium; or mixtures thereof.
  • the inorganic layer is selected from the group consisting of titanium oxide, aluminum oxide, silicon oxide (silicon dioxide), silicon nitride, aluminum nitride, silicon oxycarbide, silicon oxynitride, silicon oxycarbide, aluminum oxycarbide and aluminum oxynitride. preferably contains at least one selected from the group consisting of titanium oxide, aluminum oxide and silicon dioxide.
  • the inorganic layer may contain a mixture of these.
  • the surface protective layer may contain an adhesion aid and/or a structure derived from the adhesion aid as an optional component.
  • the adhesion aid the adhesion aid described above can be used as appropriate, and the adhesion aid is preferably at least one selected from silane coupling agents and isocyanate compounds (compounds containing isocyanate groups).
  • the adhesion aid is a silane coupling agent
  • the surface protective layer contains a structure derived from the silane coupling agent
  • the adhesion aid is an isocyanate compound
  • the surface protective layer contains an isocyanate compound. includes structures derived from
  • the amount of the adhesion aid added in the manufacturing process of the surface protective layer is equal to the total solid mass contained in the surface protective layer. On the other hand, it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more. Also, the amount of adhesion aid added is preferably 40% by mass or less, more preferably 35% by mass or less, relative to the total solid mass contained in the surface protective layer.
  • the surface protective layer may contain other optional components in addition to the components described above.
  • Optional components include, for example, surfactants, inorganic stratiform compounds, inorganic compounds, leveling agents, preservatives, antifoaming agents, organic particles, lubricants, antistatic agents, UV protection agents, dyes, pigments, stabilizers, Magnetic powders, orientation accelerators, plasticizers, dispersants, anti-coloring agents, polymerization inhibitors, pH adjusters and the like.
  • the thickness of the surface protective layer is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the thickness of the surface protective layer is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the base material that constitutes the laminate includes a resin base material (excluding the active energy ray-curable resin layer described above), a paper base material, a glass base material (including quartz glass), and other base materials normally used in semiconductors. can be used.
  • the substrate is preferably a resin substrate, and preferably a layer containing a natural resin or a synthetic resin as a main component.
  • the main component refers to a component that is contained in an amount of 50% by mass or more with respect to the total mass of the substrate.
  • Examples of natural resins that make up the base material include rosin-based resins such as rosin, rosin esters, and hydrogenated rosin esters.
  • Synthetic resins constituting the substrate include, for example, polycarbonate resins, polyester resins, polyethylene terephthalate resins, polyethylene naphthalate resins, polyethylene resins, polypropylene resins, polyimide resins, polystyrene resins, urethane resins, acrylic resins, fluororesins, and ABS resins. , cellulose acetate resin and the like.
  • the substrate may contain two or more of these resins, such as a polymer alloy.
  • the base material is preferably a resin base material, and is preferably a resin base material containing at least one selected from the group consisting of polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, acrylic resin and polypropylene resin. More preferably, the resin substrate contains at least one selected from polycarbonate resin and polyethylene terephthalate resin.
  • polycarbonate resins that make up the base material include aromatic polycarbonate-based resins and aliphatic polycarbonate-based resins. Specific polycarbonate-based resins for these are known, and include, for example, the polycarbonate-based resins described in JP-A-2010-023275.
  • the base material may contain an adhesion aid and/or a structure derived from the adhesion aid as an optional component.
  • adhesion aid the adhesion aid described above can be used as appropriate.
  • a surface treatment may be applied to the fiber layer side of the base material.
  • Examples of surface treatment methods include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, and flame treatment.
  • the surface treatment is preferably at least one selected from corona treatment and plasma discharge treatment.
  • the plasma discharge treatment is preferably vacuum plasma discharge treatment.
  • the base material may contain optional components other than the synthetic resin as long as the effects of the present invention are not impaired.
  • optional components include known components used in the field of resin films, such as fillers, pigments, dyes, and ultraviolet absorbers.
  • the pencil hardness of the substrate is preferably H or less, more preferably HB or less, and even more preferably B or less.
  • the pencil hardness of the substrate is preferably 3B or more.
  • the pencil hardness of the substrate is measured according to JIS K 5600-5-4:1999.
  • the thickness of the substrate is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 50 ⁇ m or more. Also, the thickness of the substrate is preferably 10000 ⁇ m or less, more preferably 6000 ⁇ m or less, and even more preferably 4000 ⁇ m or less. It is preferable to select the thickness of the substrate according to various uses. Here, the thickness of the base material constituting the laminate is measured by cutting out the cross section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass, or visually. is the value to be
  • the laminate of the present embodiment may include an adhesive layer between the fiber layer and the base material.
  • the adhesive layer may be provided between the fiber layer and the surface protective layer. are directly laminated in contact with each other.
  • the adhesive layer is a layer whose main component is natural resin or synthetic resin.
  • the main component refers to a component contained in an amount of 50% by mass or more with respect to the total mass of the adhesive layer.
  • the content of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass with respect to the total mass of the adhesive layer. It is particularly preferable that it is above.
  • the content of the resin may be 100% by mass, or may be 95% by mass or less.
  • Natural resins and synthetic resins include resins that can be used in the base material.
  • the synthetic resin constituting the adhesive layer is preferably at least one selected from the group consisting of polycarbonate resin, acrylic resin and polypropylene resin.
  • the resin constituting the adhesive layer one kind may be used alone, or a copolymer obtained by copolymerizing or graft-polymerizing a plurality of resin components may be used. Also, it may be used as a blend material in which a plurality of resin components are mixed by a physical process.
  • polycarbonate resins that make up the adhesive layer include aromatic polycarbonate resins and aliphatic polycarbonate resins. Specific polycarbonate-based resins for these are known, and include, for example, the polycarbonate-based resins described in JP-A-2010-023275.
  • polypropylene resins that make up the adhesive layer include acid-modified polypropylene resins and chlorinated polypropylene resins. Among them, an acid-modified polypropylene resin is preferable, and a maleated polypropylene resin or a maleic anhydride-modified polypropylene resin is more preferable.
  • the acrylic resin constituting the adhesive layer it is preferable to use a (meth)acrylic acid ester polymer from the viewpoint of improving adhesion and mechanical strength and improving transparency.
  • the (meth)acrylic acid ester polymer is preferably a composite of silica particles and/or a compound having a silanol group and the (meth)acrylic acid ester polymer.
  • the (meth)acrylic acid ester polymer may be a polymer obtained by graft-polymerizing a synthetic resin other than (meth)acrylic resin such as epoxy resin and urethane resin onto (meth)acrylic resin.
  • a copolymer obtained by copolymerizing an acid ester and another monomer may also be used.
  • the molar fraction of monomers other than the (meth)acrylic acid ester in the (meth)acrylic acid ester polymer is 50 mol % or less.
  • the content of the synthetic resin other than the graft-polymerized (meth)acrylic resin is 50% by mass or less in the (100% by mass) of the (meth)acrylic acid ester polymer.
  • the adhesive layer may contain an adhesion aid and/or a structure derived from the adhesion aid.
  • the adhesion aid the adhesion aid described above can be used as appropriate, and the adhesion aid is preferably at least one selected from silane coupling agents and isocyanate compounds (compounds containing isocyanate groups).
  • the adhesion aid is a silane coupling agent
  • the adhesive layer contains a structure derived from the silane coupling agent
  • the adhesion aid is an isocyanate compound
  • the adhesive layer contains It contains a structure that
  • the amount of the adhesion aid added in the manufacturing process of the adhesive layer is, with respect to the total solid mass contained in the adhesive layer, It is preferably 0.1% by mass or more, more preferably 0.5% by mass or more. Also, the amount of adhesion aid added is preferably 40% by mass or less, more preferably 35% by mass or less, relative to the total solid mass contained in the adhesive layer.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the thickness of the adhesive layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the thickness of the adhesive layer is determined by cutting out a cross section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.), and examining the cross section with an electron microscope. It is a value measured by observing with a magnifying glass or visually.
  • the relationship is the thickness of the base material > the thickness of the adhesive layer.
  • the thickness ratio of the substrate and the adhesive layer is preferably 5 or more, more preferably 10 or more, and even more preferably 20 or more.
  • the upper limit of the thickness ratio is not particularly limited, and is appropriately set according to the application and the thickness of the base material.
  • the laminate of the present embodiment may have optional layers in addition to the layers described above.
  • optional layers for example, a decorative layer (decorative layer), a metal layer, etc. may be provided.
  • a method for producing a laminate includes a step of forming a substrate on one side of a fibrous layer containing fibrous cellulose having a fiber width of 1000 nm or less, and a step of forming a surface protective layer on the other side of the fibrous layer. , (formation method 1).
  • the method for producing a laminate includes a step of forming a fiber layer containing fibrous cellulose having a fiber width of 1000 nm or less on a substrate, and an exposed surface of the fiber layer (opposite to the surface on which the substrate is laminated) forming a surface protective layer on the side surface) (formation method 2). Formation method 2 can reduce the heat load applied to the fiber layer, so that the transparency and yellowing resistance of the fiber layer and laminate can be further enhanced.
  • the step of forming a fibrous layer containing fibrous cellulose with a fiber width of 1000 nm or less includes a step of obtaining a fibrous cellulose dispersion (hereinafter also referred to as slurry) and coating the fibrous cellulose dispersion on a substrate. It includes a coating step or a papermaking step of papermaking the fibrous cellulose dispersion. Thereby, the fiber layer mentioned above will be obtained.
  • a step of forming a fiber layer containing fibrous cellulose having a fiber width of 1000 nm or less on the base material is provided. Therefore, when forming the fiber layer, It is preferable to provide a step of coating the fibrous cellulose dispersion on the substrate constituting the laminate.
  • a surface treatment may be applied to the surface of the fiber layer obtained through the fiber layer forming process.
  • Examples of surface treatment methods include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, and flame treatment.
  • the surface treatment is preferably at least one selected from corona treatment and plasma discharge treatment.
  • the plasma discharge treatment is preferably vacuum plasma discharge treatment.
  • a fibrous cellulose dispersion (slurry) is applied onto a substrate, dried, and a fiber sheet formed by peeling from the substrate to obtain a fiber layer. Further, by using a coating device and a long base material, it is possible to continuously produce a fiber sheet to be a fiber layer.
  • the material of the base material used in the coating step is not particularly limited, but a material having high wettability with respect to the fibrous cellulose dispersion (slurry) can suppress shrinkage of the fiber sheet during drying. It is preferable to select one from which the fiber sheet formed after drying can be easily peeled off.
  • a resin film or plate or a metal film or plate is preferable, but is not particularly limited.
  • resin films and plates such as polypropylene, acrylic, polyethylene terephthalate, vinyl chloride, polystyrene, polycarbonate, and polyvinylidene chloride, metal films and plates such as aluminum, zinc, copper, and iron plates, and those whose surfaces have been oxidized.
  • a stainless steel film or plate, a brass film or plate, or the like can be used.
  • a dam frame is fixed on the base material in order to obtain a fiber sheet with a predetermined thickness and basis weight.
  • the frame for damming is not particularly limited, but it is preferable to select, for example, one that allows the ends of the fiber sheet adhered after drying to be easily peeled off. From such a point of view, a molded resin plate or metal plate is more preferable.
  • resin plates such as polypropylene plates, acrylic plates, polyethylene terephthalate plates, vinyl chloride plates, polystyrene plates, polycarbonate plates, and polyvinylidene chloride plates, and metal plates such as aluminum plates, zinc plates, copper plates, iron plates, etc. , and those whose surfaces have been oxidized, and those obtained by molding a stainless steel plate, a brass plate, or the like can be used.
  • the coating machine for coating the slurry on the base material is not particularly limited, but for example, a roll coater, gravure coater, die coater, curtain coater, air doctor coater, etc. can be used.
  • a die coater, a curtain coater, and a spray coater are particularly preferable because the thickness of the fiber sheet can be made more uniform.
  • the slurry temperature and the ambient temperature when the slurry is applied to the substrate are not particularly limited, but are preferably 5° C. or higher and 80° C. or lower, more preferably 10° C. or higher and 60° C. or lower, and 15° C. It is more preferably 50° C. or higher, and particularly preferably 20° C. or higher and 40° C. or lower. If the coating temperature is at least the above lower limit, the slurry can be more easily coated. When the coating temperature is equal to or lower than the above upper limit, volatilization of the dispersion medium during coating can be suppressed.
  • the finished basis weight of the fiber sheet is preferably 1.4 g/m 2 or more and 300 g/m 2 or less, more preferably 7 g/m 2 or more and 200 g/m 2 or less. More preferably, the slurry is applied to the substrate so as to have a coating weight of 10 g/m 2 or more and 200 g/m 2 or less. By coating so that the basis weight is within the above range, a fiber sheet having more excellent strength can be obtained.
  • the coating step includes the step of drying the slurry applied onto the substrate.
  • the step of drying the slurry is not particularly limited, but may be performed by, for example, a non-contact drying method, a method of drying while restraining the fiber sheet, or a combination thereof.
  • the non-contact drying method is not particularly limited, but for example, a method of drying by heating with hot air, infrared rays, far infrared rays, or near infrared rays (heat drying method), or a method of drying in a vacuum (vacuum drying method) is applied. can do. Although the heat drying method and the vacuum drying method may be combined, the heat drying method is usually applied. Drying with infrared rays, far-infrared rays, or near-infrared rays is not particularly limited.
  • the heating temperature in the heat drying method is not particularly limited, it is preferably 20°C or higher and 150°C or lower, and more preferably 25°C or higher and 105°C or lower. If the heating temperature is equal to or higher than the above lower limit, the dispersion medium can be rapidly volatilized. Moreover, if the heating temperature is equal to or lower than the above upper limit, it is possible to suppress the cost required for heating and suppress discoloration of fibrous cellulose due to heat.
  • the papermaking process is performed by papermaking the slurry using a papermaking machine.
  • the paper machine used in the papermaking process is not particularly limited, but examples thereof include continuous paper machines such as fourdrinier, cylinder, and inclined paper machines, and multi-layer paper machines combining these.
  • a known paper-making method such as hand-making may be adopted.
  • the papermaking process is carried out by filtering the slurry with a wire and dehydrating it to obtain a fibrous sheet in a wet paper state, then pressing and drying this fibrous sheet.
  • the filter cloth used for filtering and dewatering the slurry is not particularly limited, but it is more preferable that, for example, fibrous cellulose does not pass through and the filtration rate does not become too slow.
  • Such a filter cloth is not particularly limited, but for example, a fiber sheet, a woven fabric, or a porous membrane made of an organic polymer is preferable.
  • the organic polymer is not particularly limited, non-cellulose organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, and polytetrafluoroethylene (PTFE) are preferred.
  • a polytetrafluoroethylene porous film having a pore size of 0.1 ⁇ m or more and 20 ⁇ m or less, or a polyethylene terephthalate or polyethylene fabric having a pore size of 0.1 ⁇ m or more and 20 ⁇ m or less can be used.
  • a method for producing a fibrous sheet from a slurry includes, for example, a slurry containing fibrous cellulose, which is discharged onto the upper surface of an endless belt, and a water squeezing section for squeezing a dispersion medium from the discharged slurry to form a web, and drying the web. and a drying section to produce a fibrous sheet.
  • An endless belt is provided from the water squeezing section to the drying section, and the web produced in the water squeezing section is conveyed to the drying section while being placed on the endless belt.
  • the dehydration method used in the papermaking process is not particularly limited, but includes, for example, dehydration methods commonly used in paper manufacturing. Among these, the method of dehydrating with a fourdrinier, a circular net, an inclined wire, or the like and then further dehydrating with a roll press is preferable.
  • the drying method used in the papermaking process is not particularly limited, but includes, for example, methods used in the manufacture of paper. Among these, a drying method using a cylinder dryer, Yankee dryer, hot air drying, near-infrared heater, infrared heater, or the like is more preferable.
  • Formation method 1 in the method for producing a laminate includes a step of forming a substrate on one surface of a fiber layer containing fibrous cellulose having a fiber width of 1000 nm or less.
  • the resin layer is formed by laminating a resin film or resin sheet on one side of the fiber layer, or by applying a resin coating liquid on one side of the fiber layer and drying by heating.
  • the substrate forming step is preferably a step of laminating a resin film or resin sheet on one surface of the fiber layer and performing hot pressing.
  • the laminate manufacturing method includes a step of forming a surface protective layer on the other side of the fiber layer (the side opposite to the side on which the substrate is laminated).
  • the surface protective layer is an active energy ray-curable resin layer or a silicone resin layer
  • a known coating apparatus can be used to apply the resin coating liquid.
  • Coating devices include, for example, blade coaters, air knife coaters, roll coaters, bar coaters, gravure coaters, micro gravure coaters, rod blade coaters, lip coaters, die coaters and curtain coaters. At this time, it is preferable to apply the surface protective layer so that it has a predetermined thickness.
  • an active energy irradiation step is provided after applying the resin coating liquid.
  • active energy rays include ultraviolet rays, electron rays, visible rays, X-rays, and ion rays, which are appropriately selected according to the monomers, photopolymerization initiators, and the like contained in the resin coating liquid.
  • the active energy rays are preferably ultraviolet rays
  • the active energy irradiation step is preferably the ultraviolet irradiation step.
  • the ultraviolet light source for example, a high-pressure mercury lamp, a low-pressure mercury lamp, an extra-high pressure mercury lamp, a metal halide lamp, a UV LED lamp, a carbon arc, a xenon arc, an electrodeless ultraviolet lamp, or the like can be used.
  • the irradiation output of ultraviolet rays is preferably such that the integrated light amount is 100 to 10000 mJ/cm 2 , more preferably 500 to 5000 mJ/cm 2 .
  • the surface protective layer is a silicone-based resin layer
  • the inorganic layer can be formed using, for example, chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Specific examples of the CVD method include plasma CVD using plasma, catalytic chemical vapor deposition (Cat-CVD) in which a material gas is catalytically thermally decomposed using a heated catalyst, and the like.
  • Specific examples of PVD methods include vacuum deposition, ion plating, ion-assisted deposition, molecular beam deposition, and sputtering.
  • an atomic layer deposition (ALD) method can be adopted as a method for forming the inorganic layer.
  • the ALD method is a method of forming a thin film in units of atomic layers by alternately supplying raw material gases of elements constituting a film to be formed to a surface on which a layer is to be formed.
  • it has the disadvantage of a slow deposition rate, it has the advantage over the plasma CVD method that even surfaces with complicated shapes can be covered cleanly, and a thin film with few defects can be deposited.
  • the ALD method has the advantage that the film thickness can be controlled on the order of nanometers, and that it is relatively easy to cover a wide surface.
  • the ALD method is expected to improve the reaction rate, lower the temperature of the process, and reduce unreacted gas by using plasma.
  • the present embodiment may relate to an anchoring agent for a surface protective layer containing fibrous cellulose having a fiber width of 1000 nm or less and an anchor sheet formed from the anchoring agent.
  • the anchoring agent is used to form an anchor sheet (fiber layer), and the anchor sheet constitutes the fiber layer in the laminate.
  • the fiber layer is a base layer for increasing the hardness of the surface protective layer, and the fiber layer also functions as an anchor layer provided between the surface protective layer and the substrate.
  • the present embodiment may relate to a method for manufacturing an anchor sheet provided under the surface protective layer, which includes mixing fibrous cellulose having a fiber width of 1000 nm or less. It may also relate to the use of fibrous cellulose with a fiber width of 1000 nm or less for manufacturing an anchor sheet, and the use of an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less for protecting the surface of a laminate. may be related to Furthermore, the present embodiment may relate to a method for protecting the surface of a laminate, including laminating an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less under the surface protective layer, wherein the fiber width is 1000 nm. It may also relate to a method for protecting the surface of a laminate including applying an anchoring agent containing fibrous cellulose as described below.
  • the anchor sheet (fiber layer) formed from the surface protective layer anchoring agent described above is an anchor sheet for bonding the surface protective layer, and the anchor sheet increases the hardness of the surface protective layer, It also works to enhance the adhesion of the base material.
  • the anchor sheet contains fibrous cellulose with a fiber width of 1000 nm or less, and the content of fibrous cellulose in the anchor sheet is 15% by mass or more with respect to the total solid mass of the anchor sheet.
  • the thickness of the anchor sheet may be 200 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less, or 50 ⁇ m or less. Depending on the application, the thickness of the anchor sheet is preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, even more preferably less than 25 ⁇ m, still more preferably 10 ⁇ m or less, and 5 ⁇ m or less. More preferably. By reducing the thickness of the anchor sheet, it is preferably used, for example, for optical members that require flexibility. In addition, yellowing can be more effectively suppressed by reducing the thickness of the anchor sheet.
  • the thickness of the anchor sheet may be 0.01 ⁇ m or more, 0.05 ⁇ m or more, or 0.1 ⁇ m or more.
  • the thickness of the anchor sheet is preferably 0.01 ⁇ m to 500 ⁇ m, more preferably 0.05 ⁇ m to 200 ⁇ m, even more preferably 0.1 ⁇ m to 150 ⁇ m, and particularly preferably 0.1 ⁇ m to 25 ⁇ m.
  • the thickness of the anchor sheet is preferably 0.1 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, even more preferably 5 to 50 ⁇ m, even more preferably 10 to 50 ⁇ m.
  • the pencil hardness of the anchor sheet is preferably F or higher, more preferably H or higher, and even more preferably 2H or higher. Further, the anchor sheet preferably has a pencil hardness of 9H or less. The pencil hardness of the anchor sheet is measured according to JIS K 5600-5-4:1999.
  • the basis weight and density of the anchor sheet are preferably in the same ranges as those of the fiber layer described above.
  • the present embodiment may also relate to a laminated sheet for laminating a surface protective layer containing a base material and a fiber layer.
  • the fibrous layer contains fibrous cellulose with a fiber width of 1000 nm or less, and the content of fibrous cellulose is 15% by mass or more with respect to the total solid mass of the fibrous layer.
  • a laminate sheet containing the substrate and the fiber layer described above is a sheet capable of increasing the hardness of the surface protective layer, and is useful for laminating the surface protective layer.
  • the thickness of the fiber layer may be 200 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less, or 50 ⁇ m or less.
  • the thickness of the fiber layer is preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, even more preferably less than 25 ⁇ m, and even more preferably 10 ⁇ m or less. It is more preferably 5 ⁇ m or less.
  • the thickness of the fiber layer may be 0.01 ⁇ m or more, 0.05 ⁇ m or more, or 0.1 ⁇ m or more.
  • the thickness of the fiber layer is preferably 0.01 ⁇ m to 500 ⁇ m, more preferably 0.05 ⁇ m to 200 ⁇ m, even more preferably 0.1 ⁇ m to 150 ⁇ m, and particularly preferably 0.1 ⁇ m to 25 ⁇ m.
  • the thickness of the fiber layer is preferably 0.1 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, even more preferably 5 to 50 ⁇ m, even more preferably 10 to 50 ⁇ m. .
  • the thickness of the fiber layer constituting the laminated sheet is measured by cutting out a cross-section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.) and observing the cross-section with an electron microscope, a magnifying glass, or visually. is the value to be
  • the pencil hardness of the fiber layer is preferably F or higher, more preferably H or higher, and even more preferably 2H or higher. Moreover, the fiber layer preferably has a pencil hardness of 9H or less.
  • the pencil hardness of the anchor sheet is measured according to JIS K 5600-5-4:1999.
  • the basis weight and density of the fiber layers in the laminated sheet are preferably in the same ranges as those of the fiber layers in the laminate described above.
  • This embodiment may relate to a surface protective agent containing fibrous cellulose having a fiber width of 1000 nm or less. Further, the present embodiment is a sheet containing fibrous cellulose having a fiber width of 1000 nm or less, wherein the content of the fibrous cellulose is 15% by mass or more with respect to the total solid mass of the sheet. It may relate to a seat.
  • the surface protective layer described above may be formed on the surface protective sheet, or the surface protective sheet may be disposed on the outermost surface of the laminate to form the surface protective layer.
  • a laminate in which a surface protective layer containing fine fibrous cellulose is provided on a base material. was expected.
  • the hardness of the surface protective layer containing fine fibrous cellulose is also successfully increased.
  • the thickness of the surface protection sheet may be 200 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less, or 50 ⁇ m or less. Depending on the application, the thickness of the surface protection sheet is preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, even more preferably less than 25 ⁇ m, even more preferably 10 ⁇ m or less, and 5 ⁇ m. The following are more preferable. By reducing the thickness of the surface protection sheet, it is preferably used for optical members that require flexibility, for example. In addition, yellowing can be more effectively suppressed by reducing the thickness of the surface protection sheet.
  • the thickness of the surface protection sheet may be 0.01 ⁇ m or more, 0.05 ⁇ m or more, or 0.1 ⁇ m or more.
  • the thickness of the surface protection sheet is preferably 0.01 ⁇ m to 500 ⁇ m, more preferably 0.05 ⁇ m to 200 ⁇ m, still more preferably 0.1 ⁇ m to 150 ⁇ m, and particularly preferably 0.1 ⁇ m to 25 ⁇ m.
  • the thickness of the surface protection sheet is preferably 0.1 to 150 ⁇ m, more preferably 1 to 100 ⁇ m, even more preferably 5 to 50 ⁇ m, even more preferably 10 to 50 ⁇ m.
  • the pencil hardness of the surface protection sheet is preferably F or higher, more preferably H or higher, and even more preferably 2H or higher. Moreover, it is preferable that the pencil hardness of the surface protection sheet is 9H or less.
  • the pencil hardness of the surface protection sheet is measured according to JIS K 5600-5-4:1999.
  • the present embodiment includes a method for producing a surface protection sheet, which includes mixing fibrous cellulose with a fiber width of 1000 nm or less, and a fiber width of 1000 nm or less for producing a surface protection sheet provided on a substrate.
  • a method for producing a surface protection sheet which includes mixing fibrous cellulose with a fiber width of 1000 nm or less, and a fiber width of 1000 nm or less for producing a surface protection sheet provided on a substrate.
  • use of fibrous cellulose use of a sheet containing fibrous cellulose with a fiber width of 1000 nm or less for protecting the surface of the laminate, laminating a sheet containing fibrous cellulose with a fiber width of 1000 nm or less on a substrate and a surface protection method for a substrate, which includes applying a surface protective agent containing fibrous cellulose having a fiber width of 1000 nm or less.
  • the laminate of this embodiment has high transparency, and the surface on the side of the surface protective layer exhibits high hardness. Therefore, the laminate of the present embodiment is suitable for optical films and resin glasses. More specifically, the laminate of the present embodiment is preferably used as optical films used in various optical display devices, window materials, interior materials, and exterior materials for various vehicles and buildings. Therefore, the present invention may also relate to an optical film including the laminate described above, or a resin glass including the laminate described above.
  • the laminate of the present embodiment is also suitable for applications such as electronic device substrates, home appliance members, packaging materials, and gas barrier materials.
  • This raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. A chemical-impregnated pulp was obtained by adjusting as follows. Next, the resulting chemical solution-impregnated pulp was heated in a hot air dryer at 165° C. for 250 seconds to introduce phosphoric acid groups into cellulose in the pulp to obtain phosphorylated pulp.
  • the obtained phosphorylated pulp was washed.
  • a pulp dispersion liquid obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp is stirred so that the pulp is uniformly dispersed, and then filtration and dehydration are repeated. gone.
  • the washing was finished when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • the washed phosphorylated pulp was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N sodium hydroxide aqueous solution was added little by little while stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. . Next, the phosphorylated pulp slurry was dehydrated and washed to obtain neutralized phosphorylated pulp.
  • Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry with a solid content concentration of 2% by mass.
  • This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (A) containing fine fibrous cellulose.
  • the phosphate group content (first dissociated acid content) measured by the measurement method described in [Measurement of phosphate group content] described later was 1.45 mmol/g.
  • the total amount of dissociated acid was 2.45 mmol/g.
  • Fine fibrous cellulose dispersion containing phosphorous acid pulp and fine fibrous cellulose was performed in the same manner as in Production Example A1 except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate. A liquid (B) was obtained.
  • the amount of phosphite groups (first dissociated acid amount) of the resulting fine fibrous cellulose measured by the measurement method described in [Measurement of amount of phosphooxy acid groups] described later was 1.51 mmol/g. .
  • the total amount of dissociated acid was 1.54 mmol/g.
  • the fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm.
  • the fine fibrous cellulose thus obtained had a sulfur oxoacid group content of 1.47 mmol/g measured by the measurement method described in [Measurement of sulfur oxoacid group content and sulfone group content] described later.
  • the raw pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 10 parts by mass of sodium bromide, and 10000 parts by mass of water distributed in parts. Then, a 13% by mass sodium hypochlorite aqueous solution was added to 10 mmol per 1.0 g of pulp to initiate the reaction. During the reaction, a 0.5 M sodium hydroxide aqueous solution was added dropwise to maintain the pH at 10 or more and 10.5 or less, and the reaction was considered completed when no change in pH was observed.
  • the washing treatment is performed by dehydrating the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring to uniformly disperse, and then filtering and dehydrating repeatedly. rice field. The washing was finished when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • This dehydrated sheet was subjected to a post-oxidation treatment of the remaining aldehyde groups as follows.
  • the dehydrated sheet equivalent to 100 parts by mass of dry mass was dispersed in 10000 parts by mass of 0.1 mol/L acetate buffer (pH 4.8).
  • 113 parts by mass of 80% by mass sodium chlorite was added, and the mixture was immediately sealed, followed by reaction at room temperature for 48 hours while stirring at 500 rpm using a magnetic stirrer to obtain a pulp slurry.
  • the washing treatment is carried out by dehydrating the post-oxidized pulp slurry to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring to uniformly disperse, and then filtering and dehydrating repeatedly. rice field. The washing was finished when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • Ion-exchanged water was added to the obtained TEMPO oxidized pulp to prepare a slurry with a solid concentration of 2% by mass.
  • This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (D) containing fine fibrous cellulose.
  • a wet atomization device Starburst, manufactured by Sugino Machine Co., Ltd.
  • the washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion liquid obtained by pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp.
  • the washing was finished when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • Ion-exchanged water was added to the resulting carboxy group-introduced pulp to prepare a slurry with a solid content concentration of 2% by mass.
  • This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (E) containing fine fibrous cellulose.
  • ⁇ Production Example F1> [Maleic acid esterification] A sheet of softwood bleached kraft pulp (NBKP) (solid content concentration 90% by mass) is processed with a hand mixer (Labo Milcer PLUS, manufactured by Osaka Chemical Co., Ltd.) at a rotation speed of 20000 rpm for 15 seconds to form a flocculent. Fluffing pulp (solid content concentration 90% by mass) was prepared. An autoclave was charged with 100 parts by mass of cotton-like fluffing pulp and 50 parts by mass of maleic anhydride and treated at 150° C. for 2 hours to obtain a carboxy group-introduced pulp.
  • NNKP softwood bleached kraft pulp
  • Fluffing pulp solid content concentration 90% by mass
  • the washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion liquid obtained by pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp.
  • the washing was finished when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • Ion-exchanged water was added to the resulting carboxy group-introduced pulp to prepare a slurry with a solid content concentration of 2% by mass.
  • This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (F) containing fine fibrous cellulose.
  • a wet atomization device Starburst, manufactured by Sugino Machine Co., Ltd.
  • the washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion liquid obtained by pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp.
  • the washing was finished when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • the washed carboxyl group-introduced pulp was neutralized as follows. First, after diluting the washed carboxy group-introduced pulp with 10 L of deionized water, a 1 N sodium hydroxide aqueous solution was added little by little while stirring to prepare a carboxy group-introduced pulp slurry having a pH of 12 or more and 13 or less. Obtained. Next, the carboxyl group-introduced pulp slurry was dewatered and washed to obtain neutralized carboxyl group-introduced pulp.
  • Ion-exchanged water was added to the resulting carboxy group-introduced pulp to prepare a slurry with a solid content concentration of 2% by mass.
  • This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (G) containing fine fibrous cellulose.
  • the washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion liquid obtained by pouring ion-exchanged water into the resulting sulfoethyl group-introduced pulp, stirring the pulp to uniformly disperse the pulp, and then filtering and dehydrating the pulp.
  • the washing was finished when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • Ion-exchanged water was added to the resulting sulfoethyl group-introduced pulp to prepare a slurry with a solid content concentration of 2% by mass.
  • This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (H) containing fine fibrous cellulose.
  • the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm.
  • the washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion obtained by pouring ion-exchanged water into the obtained cationic group-introduced pulp, stirring the pulp so that the pulp is uniformly dispersed, and then filtering and dehydrating.
  • the washing was finished when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • the cationic group-introduced pulp after washing was neutralized as follows. First, the cationic group-introduced pulp after washing was diluted with 10 L of deionized water, and then 1N hydrochloric acid was added little by little while stirring to obtain a cationic group-introduced pulp slurry having a pH of 1 or more and 2 or less. Next, the cationic group-introduced pulp slurry was dehydrated and washed to obtain a neutralized cationic group-introduced pulp.
  • Ion-exchanged water was added to the resulting cationic group-introduced pulp to prepare a slurry with a solid concentration of 2% by mass.
  • This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (J) containing fine fibrous cellulose.
  • the pulp slurry is dehydrated, and the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry weight) of phosphorylated pulp is stirred so that the pulp is uniformly dispersed, followed by filtration and dehydration. was repeated to remove excess sodium hydroxide. The removal was terminated when the electric conductivity of the filtrate became 100 ⁇ S/cm or less.
  • the amount of introduced carbamide groups measured in [Measurement of Carbamide Group Amount] described later was 0.01 mmol/g.
  • the phosphate group content (first dissociated acid content) measured by the measurement method described in [Measurement of phosphate group content] described later was 1.35 mmol/g. The total amount of dissociated acid was 2.30 mmol/g.
  • Example 1-1 (Dissolution of polyvinyl alcohol) Acetoacetyl group-modified polyvinyl alcohol (manufactured by Mitsubishi Chemical Corporation, Gohsenex TMZ-200) was added to ion-exchanged water so as to make 12% by mass, and dissolved by stirring at 95° C. for 1 hour. A polyvinyl alcohol aqueous solution was obtained by the above procedure.
  • the fine fibrous cellulose dispersion liquid (A) and the polyvinyl alcohol aqueous solution were each diluted with ion-exchanged water so that the solid content concentration was 0.6% by mass.
  • 30 parts by mass of the diluted polyvinyl alcohol aqueous solution was mixed with 70 parts by mass of the diluted fine fibrous cellulose dispersion (A) to obtain a mixture (A-1).
  • the mixed liquid was measured so that the finished basis weight of the sheet was 70 g/m 2 and spread on a commercially available acrylic plate.
  • a damming frame (inner dimensions: 250 mm ⁇ 250 mm, height: 5 cm) was arranged on the acrylic plate so as to obtain a predetermined basis weight. After that, it was dried in a drier at 70° C. for 24 hours to form a fiber layer (fine fibrous cellulose-containing layer).
  • Laminate formation method 1 (Formation of adhesive layer) A silane-modified acrylic resin (Compoceran AC601, manufactured by Arakawa Chemical Industries, Ltd.) was applied to the surface of the fiber layer with a bar coater so as to have a thickness of 3 ⁇ m. Then, it was heated at 100° C. for 1 hour to form an adhesive layer. After forming the adhesive layer, the fiber layer having the adhesive layer formed thereon was obtained by peeling from the acrylic plate. The thickness of the fiber layer was 50 ⁇ m, and the thickness of the adhesive layer was 3 ⁇ m.
  • a 50 ⁇ m-thick polycarbonate base material (manufactured by Teijin Limited, Pure Ace) is attached to the adhesive layer surface of the fiber layer on which the adhesive layer is formed, and pressed with a small heat press at 160 ° C. and 10 MPa for 15 minutes. A laminated sheet of substrate/adhesive layer/fiber layer was obtained.
  • An ultraviolet curable resin (A) tripentaerythritol acrylate was diluted with toluene to obtain a solution having a solid content of 20% by mass. Furthermore, a polymerization initiator (Omnirad 184; manufactured by IGM Resins B.V.) was added to the solution in an amount of 15 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). This resin solution was applied to the surface of the fiber layer of the laminated sheet with a bar coater so as to have a thickness of 3 ⁇ m, and then heated at 100° C. for 5 minutes.
  • a belt conveyor type exposure device (manufactured by Eyegraphic Co., Ltd., ECS-401GX, with an IR cut filter) equipped with a metal halide lamp (manufactured by Eyegraphic Co., Ltd., M04-L41) is equipped with an illuminance meter (manufactured by Ushio Denki Co., Ltd., UIT-150).
  • the sensor part is UVD-C365
  • the sensitivity wavelength range is 310 to 390 nm)
  • the UV curable resin side of the laminated sheet is turned up. It was cured by irradiating it with ultraviolet light to obtain a laminate of base material/adhesive layer/fiber layer/surface protective layer.
  • Examples 1-2 to 1-6> A laminate was obtained in the same manner as in Example 1-1, except that the thickness of the fiber layer was changed to the thickness shown in Table 1.
  • Example 1-7 A laminate was obtained in the same manner as in Example 1-1 except that a polycarbonate substrate (manufactured by Takiron C.I. Co., Ltd.) having a thickness of 5 mm (5000 ⁇ m) was used as the substrate.
  • a polycarbonate substrate manufactured by Takiron C.I. Co., Ltd.
  • Example 1-8> A laminate was obtained in the same manner as in Example 1-7, except that the thickness of the fiber layer was 10 ⁇ m.
  • Example 1-9 A polyethylene terephthalate film (Lumirror S-10, thickness 50 ⁇ m, manufactured by Toray Industries, Inc.) was cut into a size of 210 mm ⁇ 297 mm, and placed in a corona surface reforming device (TEC-4AX, manufactured by Kasuga Denki Co., Ltd.). Then, corona discharge treatment was performed at a treatment output of 60 W and a treatment speed of 1 m/min. The above corona discharge treatment was repeated 20 times to obtain a surface-treated polyethylene terephthalate film having a hydrophilic surface. A laminate was obtained in the same manner as in Example 1-1, except that this surface-treated polyethylene terephthalate film was used as the substrate.
  • TEC-4AX corona surface reforming device
  • Example 1-10> A laminate was obtained in the same manner as in Example 1-9, except that the thickness of the fiber layer was 10 ⁇ m.
  • Example 1-11> In (Formation of surface protective layer), a laminate was prepared in the same manner as in Example 1-1, except that the amount of the polymerization initiator added was 3 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). Obtained.
  • Example 1-12 In (Formation of surface protective layer), a laminate was prepared in the same manner as in Example 1-1, except that the amount of the polymerization initiator added was 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). Obtained.
  • Example 1-13> In (Formation of surface protective layer), a laminate was prepared in the same manner as in Example 1-1, except that the amount of the polymerization initiator added was 35 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). Obtained.
  • Example 1-14> A laminate was obtained in the same manner as in Example 1-1, except that an ultraviolet curable resin (B) (manufactured by Nippon Kako Toryo Co., Ltd., NXD-001A, containing a polymerization initiator) was used as the surface protective layer.
  • B ultraviolet curable resin
  • Example 1-15> A laminate was obtained in the same manner as in Example 1-3, except that the ultraviolet curable resin (B) was used as the surface protective layer.
  • Example 1-16> As a surface protective layer, a film of SiO 2 was formed using an ion beam sputtering device (manufactured by Hakuto Co., Ltd.). Specifically, the laminated sheet of base material/adhesive layer/fiber layer obtained in Example 1-1 was placed in an ion beam sputtering apparatus so that the fiber layer faced up, and was evacuated. After heating for a period of time, it was allowed to cool, and film formation was carried out while the temperature was lowered as much as possible.
  • an ion beam sputtering device manufactured by Hakuto Co., Ltd.
  • the film formation time was set so as to obtain the desired film thickness, and an inorganic layer film of 200 nm was laminated on the fiber layer. , to obtain a laminate.
  • Example 1-17> A laminate was obtained in the same manner as in Example 1-3, except that a laminate sheet having an inorganic layer film formed by the same method as in Example 1-16 was used as the surface protective layer.
  • a silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503
  • the resin solution after adding the polymerization initiator was added so that the amount of the silane coupling agent added was 1 part by mass with respect to 100 parts by mass of the ultraviolet curable resin (A).
  • a solution was obtained.
  • a laminate was obtained in the same manner as in Example 1-1, except that this was used as the resin for forming the surface protective layer.
  • Example 1-20> In Example 1-19, instead of the silane coupling agent, an isocyanate compound (manufactured by Showa Denko Co., Ltd., Karenz BEI) was added so as to be 15 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). A resin solution was obtained. A laminate was obtained in the same manner as in Example 1-1 except that this resin was used for forming the surface protective layer.
  • an isocyanate compound manufactured by Showa Denko Co., Ltd., Karenz BEI
  • Example 1-21> After Example 1-1 (lamination with the substrate), the silica-modified acrylate resin was applied to the other side of the laminated sheet in the same manner as in Example 1-1. A surface protective layer is formed on one side of this adhesive layer in the same manner as in Example 1-1 (formation of surface protective layer), and a laminate consisting of a substrate/adhesive layer/fiber layer/adhesive layer/surface protective layer. got a body
  • Example 1-22> In Example 1-20, a polycarbonate resin (Mitsubishi Gas Chemical Co., Ltd., Iupizeta FPC-2136) was used instead of the silica-modified acrylate resin, and an isocyanate compound was added as an adhesion aid in an amount of 15 parts per 100 parts by mass of the polycarbonate resin. A laminate was obtained in the same manner as in Example 1-20, except that the one added in parts by mass was used as the adhesive layer-forming coating solution.
  • a polycarbonate resin Mitsubishi Gas Chemical Co., Ltd., Iupizeta FPC-2136
  • a laminate was formed according to the following (Laminate formation method 2).
  • (Laminate formation method 2) Formation of adhesive layer
  • a silane-modified acrylic resin (Compoceran AC601, manufactured by Arakawa Chemical Industries, Ltd.) was diluted with methyl ethyl ketone to obtain a solution with a solid content of 20% by mass.
  • a silane-modified acrylic resin was applied as an adhesive layer onto a polycarbonate substrate having a thickness of 50 ⁇ m and dried at 100° C. for 1 hour to form an adhesive layer.
  • a damming frame (inner dimensions: 250 mm x 250 mm, height: 5 cm) was placed on the adhesive layer of the base material on which the adhesive layer was formed, and the finished basis weight of the fiber layer was adjusted to 70 g/ m2 .
  • Mixture (A) was weighed and developed. After that, it was dried at 70° C. for 24 hours, and after drying, the damming frame was removed to obtain a base material/fiber layer laminated sheet.
  • the fiber layer surface of the laminated sheet was coated with the UV curable resin (A) to a thickness of 3 ⁇ m with a bar coater and dried at 100° C. for 5 minutes.
  • a belt conveyor type exposure device manufactured by Eyegraphic Co., Ltd., ECS-401GX, with an IR cut filter
  • a metal halide lamp manufactured by Eyegraphic Co., Ltd., M04-L41
  • an illuminance meter manufactured by Ushio Denki Co., Ltd., UIT-150.
  • the sensor part is UVD-C365, the sensitivity wavelength range is 310 to 390 nm), and after setting the illuminance to 160 mW/cm 2 and the integrated light amount to 1000 mJ/cm 2 , the UV curable resin side of the laminated sheet is turned up.
  • the laminate was cured by irradiating it with ultraviolet light to obtain a laminate of base material/fiber layer/surface protective layer.
  • Example 2-1 In Example 1-1 (formation of fiber layer), 50 parts by mass of the polyvinyl alcohol aqueous solution after dilution was added to 50 parts by mass of the fine fibrous cellulose dispersion (A) after dilution to 0.6% by mass. to obtain a mixture (A-2). A laminate was obtained in the same manner as in Example 1-1, except that the mixed liquid (A-2) was used instead of the mixed liquid (A-1).
  • Example 2-2> A laminate was obtained in the same manner as in Example 1-3, except that the mixed solution (A-2) was used.
  • Example 2-3> A laminate was obtained in the same manner as in Example 1-7, except that the mixed solution (A-2) was used.
  • Example 2-4 A laminate was obtained in the same manner as in Example 1-8, except that the mixed solution (A-2) was used.
  • Example 2-5 A laminate was obtained in the same manner as in Example 1-9, except that the mixed solution (A-2) was used.
  • Example 2-6> A laminate was obtained in the same manner as in Example 1-10, except that the mixed solution (A-2) was used.
  • Example 1-1 formation of fiber layer
  • 70 parts by mass of the polyvinyl alcohol aqueous solution after dilution was added to 30 parts by mass of the fine fibrous cellulose dispersion (A) after dilution to 0.6% by mass. to obtain a mixture (A-3).
  • Examples 2-1 to 2-2 except that the mixture (A-3) was used instead of the mixture (A-2) in each of Examples 2-1 to 2-6 (formation of the fiber layer).
  • a laminate was obtained in the same manner as in -6.
  • Example 4-1 (Dissolution of cellulose ether) Methyl cellulose (manufactured by Shin-Etsu Chemical Co., Ltd., Metolose 65SH-1500, weight average molecular weight: 2.2 ⁇ 10 5 , degree of substitution (methoxy group): 1.8, number of moles of substitution (hydroxypropoxy group): 0.15) was added so as to be 2% by mass, and the solution was dissolved by stirring at room temperature for 1 hour. A cellulose ether aqueous solution was obtained by the above procedure. Next, the cellulose ether aqueous solution was diluted with ion-exchanged water so that the solid content concentration was 0.6% by mass.
  • Example 1-1 formation of fiber layer
  • the diluted polyvinyl alcohol aqueous solution instead of the diluted polyvinyl alcohol aqueous solution, the diluted cellulose ether aqueous solution was used to obtain a mixed solution (A-4).
  • a laminate was obtained in the same manner as in Example 1-1, except that the mixed solution (A-4) was used instead of the mixed solution (A-1).
  • Examples 4-2 to 4-6> In each of Examples 2-1 to 2-6 (formation of fiber layer), Examples 2-2 to 2-2 except that the mixture (A-4) was used instead of the mixture (A-2). A laminate was obtained in the same manner as in -6.
  • Example 1-1 formation of fiber layer
  • 70 parts by mass of the diluted cellulose ether aqueous solution was added to 30 parts by mass of the fine fibrous cellulose dispersion (A) diluted to 0.6% by mass. to obtain a mixture (A-5).
  • Examples 2-1 to 2-6 formation of fiber layer
  • Examples 2-1 to 2-2 except that the mixture (A-5) was used instead of the mixture (A-2).
  • a laminate was obtained in the same manner as in -6.
  • Example 1-1 Formation of fibrous layer
  • the fine fibrous cellulose dispersion (B) to ( A laminate was obtained in the same manner as in Example 1-1, except that J)) was used.
  • Examples 7-1 to 7-6 In Examples 4-1 to 4-6 (Formation of fibrous layer), the fine fibrous cellulose dispersion (K) was used instead of the fine fibrous cellulose dispersion (A), and the cellulose ether after dilution was used. Laminates were obtained in the same manner as in Examples 4-1 to 4-6, except that diluted polyvinyl alcohol was used instead.
  • Examples 8-1 to 8-6 Examples 4-1 to 4-6 except that the fine fibrous cellulose dispersion (K) was used in place of the fine fibrous cellulose dispersion (A) in Examples 4-1 to 4-6 (formation of the fibrous layer). A laminate was obtained in the same manner as in 4-6.
  • Example 1 A laminate was obtained in which a surface protective layer was directly formed on a 50 ⁇ m-thick polycarbonate base material according to the procedure of Example 1-1 (Formation of surface protective layer) (Laminate forming method 3).
  • Example 3 In the neutralization treatment of Production Example A1, the same operation as in Production Example A1 was performed except that 40% by mass concentration of tetrabutylammonium hydroxide was used instead of sodium hydroxide, and 2% by mass concentration of fine fibrous cellulose A dispersion was obtained.
  • the fine fibrous cellulose had tetrabutylammonium ions (TBA + ) as counterions.
  • TSA + tetrabutylammonium ions
  • Example 1-1 formation of surface protective layer
  • the fine fibrous cellulose dispersion was added so that the fine fibrous cellulose content was 4 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A).
  • A ultraviolet curable resin
  • a microfibrous cellulose-containing UV curable resin was prepared.
  • a laminate having a surface protective layer formed directly on the substrate was obtained in the same manner as in Comparative Example 1, except that this fine fibrous cellulose-containing ultraviolet curable resin was used to form the surface protective layer.
  • Example 1-1 formation of fiber layer
  • 90 parts by mass of the polyvinyl alcohol aqueous solution after dilution is added to 10 parts by mass of the fine fibrous cellulose dispersion (A) after dilution to 0.6% by mass. to obtain a mixture (A-6).
  • a laminate was obtained in the same manner as in Example 1-1, except that the mixed solution (A-6) was used instead of the mixed solution (A-1) in Example 1-1.
  • ion-exchanged water is first added to the target fine fibrous cellulose to prepare a slurry having a solid content concentration of 0.2% by mass. bottom.
  • the obtained slurry was treated with an ion-exchange resin and then titrated with an alkali for measurement.
  • the ion-exchange resin treatment is carried out by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo Co., Ltd., conditioned) to the fine fibrous cellulose-containing slurry and shaking for 1 hour.
  • the maximum point of the increment obtained first when the alkali is first added is called the first end point, and the maximum point of the increment obtained next is called the second end point (Fig. 2).
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration.
  • the amount of alkali required from the start of titration to the second end point is equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated to obtain the amount of phosphate group (mmol/g).
  • the amount of sulfur oxoacid groups or the amount of sulfone groups was measured as follows.
  • the obtained fine fibrous cellulose (solid content obtained by heating and drying the dispersion) is wet ashed using perchloric acid and concentrated nitric acid, diluted by an appropriate ratio, and the amount of sulfur is measured by ICP emission analysis. It was measured.
  • the amount of sulfur oxoacid groups or the amount of sulfone groups (unit: mmol/g) was obtained by dividing this amount of sulfur by the absolute dry mass of the fine fibrous cellulose tested.
  • the amount of carboxy groups in fine fibrous cellulose can be determined by adding deionized water to a fine fibrous cellulose dispersion containing target (maleated, TEMPO oxidized, hypochlorous acid oxidized or carboxyethylated) fine fibrous cellulose. , the content was set to 0.2% by mass, treated with an ion-exchange resin, and then titrated with an alkali.
  • target maleated, TEMPO oxidized, hypochlorous acid oxidized or carboxyethylated
  • the treatment with an ion-exchange resin is carried out by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; manufactured by Organo Co., Ltd., conditioned) to a slurry containing 0.2% by mass of fine fibrous cellulose, followed by shaking for 1 hour. After being treated, the slurry was separated from the resin by pouring it onto a mesh with an opening of 90 ⁇ m. In addition, the titration using an alkali was performed by measuring the change in the pH value of the slurry while adding a 0.1N sodium hydroxide aqueous solution to the fibrous cellulose-containing slurry after treatment with the ion-exchange resin. .
  • a strongly acidic ion-exchange resin Amberjet 1024; manufactured by Organo Co., Ltd., conditioned
  • the amount of carboxyl groups introduced (mmol/g) described above is the amount of substituents per 1 g of mass of fibrous cellulose (hereinafter referred to as the amount of carboxyl groups (acid type)).
  • the introduction amount of carbamide groups in fibrous cellulose can be calculated by freeze-drying a slurry containing fibrous cellulose and further pulverizing the sample, and analyzing a trace amount of nitrogen.
  • the introduction amount (mmol/g) of carbamide groups per unit mass of fibrous cellulose is obtained by dividing the nitrogen content (g/g) per unit mass of fibrous cellulose obtained by trace nitrogen analysis by the atomic weight of nitrogen. can be calculated.
  • a cross-section of the laminate is cut out with an ultramicrotome UC-7 (manufactured by JEOL Ltd., UC-7), and the fiber layer or adhesive layer of the cross-section is observed with an electron microscope, a magnifying glass, or visually, and measured. The value was taken as the thickness of the fiber layer or adhesive layer.
  • the surface protective layer is a resin layer such as modified acrylate
  • the value measured according to the method for measuring was used as the thickness of the surface protective layer.
  • the surface protective layer is an inorganic layer such as silica
  • a stylus type step thickness meter (P-6, manufactured by KLA Tencor) is used to measure the difference in film thickness between the inorganic layer film formation treated surface and the non-treated surface. was measured, and the difference was taken as the thickness of the surface protective layer.
  • the pencil hardness of the surface protective layer was increased compared to the laminate in which the surface protective layer was provided directly on the base material. On the other hand, no increase in the pencil hardness of the surface protective layer was observed in the comparative examples.

Abstract

The present invention addresses the problem of providing a laminate having a surface protective layer in which the hardness thereof is sufficiently enhanced. The present invention pertains to a laminate which includes a substrate, a fiber layer, and a surface protective layer in the stated order, and in which the fiber layer contains a fibrous cellulose having a fiber width of not more than 1000 nm, and the contained amount of the fibrous cellulose is 15 mass% or more with respect to the total solid content mass of the fiber layer.

Description

積層体、表面保護層用アンカー剤、アンカーシート、積層シート及びその応用Laminate, anchor agent for surface protective layer, anchor sheet, laminated sheet and its application
 本発明は、積層体、表面保護層用アンカー剤、アンカーシート、積層シート及びその応用に関する。 The present invention relates to laminates, anchoring agents for surface protective layers, anchor sheets, laminated sheets, and applications thereof.
 近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10μm以上50μm以下の繊維状セルロース、特に木材由来の繊維状セルロース(パルプ)は、主に紙製品としてこれまで幅広く使用されてきた。 In recent years, attention has been focused on materials that use reproducible natural fibers due to the growing awareness of the need to replace petroleum resources and the environment. Among natural fibers, fibrous cellulose having a fiber diameter of 10 μm or more and 50 μm or less, particularly wood-derived fibrous cellulose (pulp) has been widely used mainly as paper products.
 繊維状セルロースとしては、繊維径が1μm以下の微細繊維状セルロースも知られている。そして、このような微細繊維状セルロースを含むシートや、微細繊維状セルロースを含むハードコート層などの開発が進められている。 As fibrous cellulose, fine fibrous cellulose with a fiber diameter of 1 μm or less is also known. Further, development of a sheet containing such fine fibrous cellulose, a hard coat layer containing fine fibrous cellulose, and the like is underway.
 例えば、特許文献1には、透明樹脂基板と、この透明樹脂基板上に形成されたハードコート層とを含む樹脂ガラス板であって、ハードコート層がセルロースナノファイバーを含有するシリコーンポリマーの熱硬化物で形成された樹脂ガラス板が開示されている。特許文献2には、基材と、基材の一方の面に設けられるハードコート層とを備える積層シートであって、ハードコート層が活性エネルギー線硬化性モノマーとナノセルロースとを含む積層シートが開示されている。また、特許文献3には、透明基材上に、複合粒子とバインダマトリックスを有する防眩性ハードコート層を備えた防眩フィルムであって、複合粒子が、少なくとも一種類のポリマーを含むコア粒子と、コア粒子の表面に微細化セルロースにより構成された被覆層とを有する複合粒子である防眩フィルムが開示されている。 For example, Patent Document 1 discloses a resin glass plate including a transparent resin substrate and a hard coat layer formed on the transparent resin substrate, wherein the hard coat layer contains cellulose nanofibers and is a thermosetting silicone polymer. Disclosed is a resin glass plate formed of a material. Patent Document 2 discloses a laminated sheet comprising a substrate and a hard coat layer provided on one surface of the substrate, wherein the hard coat layer contains an active energy ray-curable monomer and nanocellulose. disclosed. Further, Patent Document 3 discloses an antiglare film comprising an antiglare hard coat layer having composite particles and a binder matrix on a transparent substrate, wherein the composite particles are core particles containing at least one type of polymer. and a coating layer composed of micronized cellulose on the surface of the core particles.
 このように、基材上にハードコート層が設けられた積層体が知られている。そして、これら積層体においては、ハードコート層の硬度や耐擦傷性等を高める目的で、ハードコート層に微細繊維状セルロースを含有させることが検討されている。 Thus, a laminate is known in which a hard coat layer is provided on a base material. In these laminates, it has been studied to incorporate fine fibrous cellulose into the hard coat layer for the purpose of increasing the hardness and scratch resistance of the hard coat layer.
国際公開第2017/195350号WO2017/195350 特開2019-81877号公報JP 2019-81877 A 特開2020-192765号公報JP 2020-192765 A
 上述したように、基材上に、ハードコート層などの表面保護層を設けてなる積層体においては、表面保護層の硬度を高めるために、表面保護層に微細繊維状セルロースを含有させることが検討されている。しかしながら、従来の積層体においては、微細繊維状セルロースの添加によっても表面保護層の硬度が十分に上昇しない場合があり、さらなる改善が期待されていた。 As described above, in a laminate in which a surface protective layer such as a hard coat layer is provided on a substrate, the surface protective layer may contain fine fibrous cellulose in order to increase the hardness of the surface protective layer. being considered. However, in conventional laminates, the addition of fine fibrous cellulose sometimes does not sufficiently increase the hardness of the surface protective layer, and further improvement has been expected.
 そこで本発明者らは、このような従来技術の課題を解決するために、表面保護層の硬度が十分に高められた積層体を提供することを目的として検討を進めた。また、本発明は、このような積層体の製造に用いられる表面保護層用アンカー剤、アンカーシート、積層シートを提供することを目的とするものでもある。 Therefore, in order to solve such problems of the prior art, the present inventors conducted studies with the aim of providing a laminate in which the hardness of the surface protective layer is sufficiently increased. Another object of the present invention is to provide a surface protective layer anchoring agent, an anchor sheet, and a laminate sheet which are used in the production of such a laminate.
 具体的に、本発明は、以下の構成を有する。 Specifically, the present invention has the following configurations.
[1] 基材、繊維層及び表面保護層をこの順に有し、
 繊維層は繊維幅が1000nm以下の繊維状セルロースを含有し、
 繊維状セルロースの含有量は繊維層の全固形分質量に対して15質量%以上である、積層体。
[2] 繊維層と表面保護層は直接積層されてなる、[1]に記載の積層体。
[3] 繊維層の厚みが50μm以下である、[1]又は[2]に記載の積層体。
[4] 繊維層の厚みが0.1μm~25μmである、[1]~[3]のいずれかに記載の積層体。
[5] ヘーズが10%以下である、[1]~[4]のいずれかに記載の積層体。
[6] 繊維層は密着助剤及び/又は密着助剤に由来する構造を含む、[1]~[5]のいずれかに記載の積層体。
[7] 密着助剤は、シランカップリング剤及びイソシアネート化合物から選択される少なくとも1種である、[6]に記載の積層体。
[8] 表面保護層は密着助剤及び/又は密着助剤に由来する構造を含む、[1]~[7]のいずれかに記載の積層体。
[9] 密着助剤は、シランカップリング剤及びイソシアネート化合物から選択される少なくとも1種である、[8]に記載の積層体。
[10] 積層体における表面保護層側の表面の鉛筆硬度が2H以上である、[1]~[9]のいずれかに記載の積層体。
[11] 鉛筆硬度について6B=1、5B=2、4B=3、3B=4、2B=5、B=6、HB=7、F=8、H=9、2H=10、3H=11、4H=12、5H=13、6H=14、7H=15、8H=16、9H=17として数値を割り振り、積層体における表面保護層側の表面の鉛筆硬度の数値をPとし、基材に表面保護層を直接積層してなるコントロール積層体における表面保護層側の表面の鉛筆硬度の数値をQとした場合、
 P-Q≧1となる、[1]~[10]のいずれかに記載の積層体。
[12] 繊維層の表面の鉛筆硬度がF以上である、[1]~[11]のいずれかに記載の積層体。
[13] 繊維状セルロースはイオン性置換基を有する、[1]~[12]のいずれかに記載の積層体。
[1] Having a base material, a fiber layer and a surface protective layer in this order,
The fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less,
A laminate in which the content of fibrous cellulose is 15% by mass or more with respect to the total solid mass of the fiber layer.
[2] The laminate according to [1], wherein the fiber layer and the surface protective layer are directly laminated.
[3] The laminate according to [1] or [2], wherein the fiber layer has a thickness of 50 µm or less.
[4] The laminate according to any one of [1] to [3], wherein the fiber layer has a thickness of 0.1 μm to 25 μm.
[5] The laminate according to any one of [1] to [4], which has a haze of 10% or less.
[6] The laminate according to any one of [1] to [5], wherein the fiber layer includes an adhesion aid and/or a structure derived from the adhesion aid.
[7] The laminate according to [6], wherein the adhesion aid is at least one selected from silane coupling agents and isocyanate compounds.
[8] The laminate according to any one of [1] to [7], wherein the surface protective layer includes an adhesion aid and/or a structure derived from the adhesion aid.
[9] The laminate according to [8], wherein the adhesion aid is at least one selected from silane coupling agents and isocyanate compounds.
[10] The laminate according to any one of [1] to [9], wherein the pencil hardness of the surface on the surface protective layer side of the laminate is 2H or more.
[11] For pencil hardness 6B = 1, 5B = 2, 4B = 3, 3B = 4, 2B = 5, B = 6, HB = 7, F = 8, H = 9, 2H = 10, 3H = 11, Numerical values are assigned as 4H = 12, 5H = 13, 6H = 14, 7H = 15, 8H = 16, and 9H = 17. When Q is the numerical value of the pencil hardness of the surface on the side of the surface protective layer in the control laminate obtained by directly laminating the protective layer,
The laminate according to any one of [1] to [10], wherein PQ≧1.
[12] The laminate according to any one of [1] to [11], wherein the surface of the fiber layer has a pencil hardness of F or higher.
[13] The laminate according to any one of [1] to [12], wherein the fibrous cellulose has an ionic substituent.
[14] 繊維幅が1000nm以下の繊維状セルロースを含む、表面保護層用アンカー剤。
[15] 繊維幅が1000nm以下の繊維状セルロースを含み、前記繊維状セルロースの含有量は前記アンカーシートの全固形分質量に対して15質量%以上である、表面保護層積層用アンカーシート。
[16] 厚みが50μm以下である、[15]に記載のアンカーシート。
[17] 厚みが0.1μm~25μmである、[15]又は[16]に記載のアンカーシート。
[18] 表面の鉛筆硬度がF以上である、[15]~[17]のいずれかに記載のアンカーシート。
[14] An anchoring agent for a surface protective layer, containing fibrous cellulose with a fiber width of 1000 nm or less.
[15] An anchor sheet for surface protection layer lamination, containing fibrous cellulose having a fiber width of 1000 nm or less, wherein the content of the fibrous cellulose is 15% by mass or more relative to the total solid mass of the anchor sheet.
[16] The anchor sheet of [15], which has a thickness of 50 µm or less.
[17] The anchor sheet of [15] or [16], which has a thickness of 0.1 μm to 25 μm.
[18] The anchor sheet according to any one of [15] to [17], whose surface has a pencil hardness of F or higher.
[19] 基材と繊維層を含み、
 繊維層は繊維幅が1000nm以下の繊維状セルロースを含有し、
 繊維状セルロースの含有量は繊維層の全固形分質量に対して15質量%以上である、積層シート。
[20] 繊維層の厚みが50μm以下である、[19]に記載の積層シート。
[21] 繊維層の厚みが0.1~25μmである、[19]又は[20]に記載の積層シート。
[22] 繊維層の表面の鉛筆硬度がF以上である、[19]~[21]のいずれかに記載の積層シート。
[23] 表面保護層積層用である、[19]~[22]のいずれかに記載の積層シート。
[24] 基材と繊維層を含み、
 繊維層は繊維幅が1000nm以下の繊維状セルロースを含有し、
 繊維状セルロースの含有量は繊維層の全固形分質量に対して15質量%以上であり、
 表面保護層積層用である、積層シート。
[19] comprising a substrate and a fibrous layer;
The fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less,
A laminated sheet in which the content of fibrous cellulose is 15% by mass or more relative to the total solid mass of the fiber layer.
[20] The laminated sheet of [19], wherein the fiber layer has a thickness of 50 µm or less.
[21] The laminated sheet of [19] or [20], wherein the fiber layer has a thickness of 0.1 to 25 μm.
[22] The laminated sheet according to any one of [19] to [21], wherein the surface of the fiber layer has a pencil hardness of F or higher.
[23] The laminated sheet according to any one of [19] to [22], which is for laminating a surface protective layer.
[24] comprising a substrate and a fibrous layer;
The fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less,
The content of fibrous cellulose is 15% by mass or more with respect to the total solid mass of the fiber layer,
A laminated sheet for laminating a surface protective layer.
[i] 繊維幅が1000nm以下の繊維状セルロースを含む、表面保護剤。
[ii] 繊維幅が1000nm以下の繊維状セルロースを含む、シートであって、
 繊維状セルロースの含有量はシートの全固形分質量に対して15質量%以上である、表面保護用シート。
[iii] 厚みが50μm以下である、[ii]に記載の表面保護用シート。
[iv] 厚みが0.1~25μmである、[ii]又は[iii]に記載の表面保護用シート。
[v] 表面の鉛筆硬度がF以上である、[ii]~[iv]のいずれかに記載の表面保護用シート。
[i] A surface protective agent containing fibrous cellulose with a fiber width of 1000 nm or less.
[ii] A sheet containing fibrous cellulose with a fiber width of 1000 nm or less,
A sheet for surface protection, wherein the content of fibrous cellulose is 15% by mass or more relative to the total solid mass of the sheet.
[iii] The surface protection sheet according to [ii], which has a thickness of 50 µm or less.
[iv] The surface protection sheet according to [ii] or [iii], which has a thickness of 0.1 to 25 μm.
[v] The surface protection sheet according to any one of [ii] to [iv], having a pencil hardness of F or higher on the surface.
(A) 繊維幅が1000nm以下の繊維状セルロースを混合することを含む、表面保護層下に設けられるアンカーシートの製造方法。
(B) 表面保護層下に設けられるアンカーシートの製造のための繊維幅が1000nm以下の繊維状セルロースの使用。
(C) 積層体の表面を保護するための繊維幅が1000nm以下の繊維状セルロースを含むアンカーシートの使用。
(D) 表面保護層下に繊維幅が1000nm以下の繊維状セルロースを含むアンカーシートを積層することを含む、積層体の表面保護方法。
(E) 繊維幅が1000nm以下の繊維状セルロースを含むアンカー剤を塗工することを含む、積層体の表面保護方法。
(A) A method for producing an anchor sheet provided under a surface protective layer, comprising mixing fibrous cellulose with a fiber width of 1000 nm or less.
(B) Use of fibrous cellulose with a fiber width of 1000 nm or less for manufacturing an anchor sheet provided under the surface protective layer.
(C) Use of an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less for protecting the surface of the laminate.
(D) A method for protecting the surface of a laminate, comprising laminating an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less under the surface protective layer.
(E) A method for protecting the surface of a laminate, comprising applying an anchoring agent containing fibrous cellulose having a fiber width of 1000 nm or less.
(A’) 繊維幅が1000nm以下の繊維状セルロースを混合することを含む、表面保護用シートの製造方法。
(B’) 基板上に設けられる表面保護用シートの製造のための繊維幅が1000nm以下の繊維状セルロースの使用。
(C’) 積層体の表面を保護するための繊維幅が1000nm以下の繊維状セルロースを含むシートの使用。
(D’) 基板上に繊維幅が1000nm以下の繊維状セルロースを含むシートを積層することを含む、積層体の表面保護方法。
(E’) 繊維幅が1000nm以下の繊維状セルロースを含む表面保護剤を塗工することを含む、基板の表面保護方法。
(A') A method for producing a surface protection sheet, comprising mixing fibrous cellulose with a fiber width of 1000 nm or less.
(B') Use of fibrous cellulose with a fiber width of 1000 nm or less for producing a surface protection sheet provided on a substrate.
(C') Use of a sheet containing fibrous cellulose with a fiber width of 1000 nm or less for protecting the surface of the laminate.
(D') A method for protecting the surface of a laminate, comprising laminating a sheet containing fibrous cellulose having a fiber width of 1000 nm or less on a substrate.
(E') A method for protecting the surface of a substrate, comprising applying a surface protecting agent containing fibrous cellulose having a fiber width of 1000 nm or less.
 本発明によれば、表面保護層の硬度が十分に高められた積層体を得ることができる。 According to the present invention, it is possible to obtain a laminate in which the hardness of the surface protective layer is sufficiently increased.
図1は、本実施形態の積層体の構成を説明する断面図である。FIG. 1 is a cross-sectional view illustrating the configuration of the laminate of this embodiment. 図2は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and the pH for a fibrous cellulose-containing slurry having a phosphorous acid group. 図3は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the dropping amount of NaOH and the pH for a fibrous cellulose-containing slurry having carboxyl groups.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 The present invention will be described in detail below. Although the constituent elements described below may be described based on representative embodiments and specific examples, the present invention is not limited to such embodiments. In this specification, the numerical range represented by "-" means a range including the numerical values described before and after "-" as lower and upper limits.
(積層体)
 本実施形態は、基材、繊維層及び表面保護層をこの順に有し、繊維層は繊維幅が1000nm以下の繊維状セルロースを含有し、繊維状セルロースの含有量は繊維層の全固形分質量に対して15質量%以上である、積層体に関するものである。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースもしくはCNFと呼ぶこともある。
(Laminate)
This embodiment has a substrate, a fiber layer and a surface protective layer in this order, the fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less, and the content of fibrous cellulose is the total solid mass of the fiber layer. It relates to a laminate that is 15% by mass or more with respect to the In this specification, fibrous cellulose having a fiber width of 1000 nm or less is sometimes referred to as fine fibrous cellulose or CNF.
 図1は、本実施形態の積層体の構成を説明する断面図である。図1に示されているように、本実施形態の積層体10は、基材2と、繊維層6と、表面保護層8をこの順に有している。積層体10においては、基材2と繊維層6の間、繊維層6と表面保護層8の間には接着層等の他の層が設けられてもよく、各層は互いに接した状態で直接積層された構成であってもよい。本実施形態においては、基材2と繊維層6の間には、接着層が設けられていてもよいが、繊維層6と表面保護層8は互いに接した状態で直接積層された構成であることが好ましい。繊維層6と表面保護層8の間に接着層等の他の層が設けられず、繊維層6と表面保護層8が互いに接した状態で直接積層されることで、表面保護層8の表面硬度はより効果的に高められる。 FIG. 1 is a cross-sectional view for explaining the configuration of the laminate of this embodiment. As shown in FIG. 1, the laminate 10 of this embodiment has a substrate 2, a fiber layer 6, and a surface protection layer 8 in this order. In the laminate 10, another layer such as an adhesive layer may be provided between the base material 2 and the fiber layer 6 and between the fiber layer 6 and the surface protective layer 8, and the layers are directly in contact with each other. It may be a laminated configuration. In this embodiment, an adhesive layer may be provided between the base material 2 and the fiber layer 6, but the fiber layer 6 and the surface protective layer 8 are directly laminated in contact with each other. is preferred. No other layer such as an adhesive layer is provided between the fiber layer 6 and the surface protective layer 8, and the fiber layer 6 and the surface protective layer 8 are directly laminated in contact with each other, so that the surface of the surface protective layer 8 Hardness is enhanced more effectively.
 本実施形態の積層体は上記構成を有するため、表面保護層は優れた硬度を発現する。具体的には、基材上に表面保護層を直接積層した積層体(コントロール積層体)と比較して、基材、繊維層及び表面保護層をこの順に有する積層体とすることで、表面保護層の鉛筆硬度を上昇させることができる。このように、本実施形態においては、基材と表面保護層の間に、微細繊維状セルロースを所定量以上含む繊維層を設けることで表面保護層の鉛筆硬度を高めることができる。なお、表面保護層の鉛筆硬度は、JIS K 5600-5-4:1999に準拠して測定される値である。 Because the laminate of this embodiment has the above configuration, the surface protective layer exhibits excellent hardness. Specifically, compared to a laminate (control laminate) in which a surface protective layer is directly laminated on a substrate, a laminate having a substrate, a fiber layer, and a surface protective layer in this order is used to protect the surface. The pencil hardness of the layer can be increased. Thus, in the present embodiment, the pencil hardness of the surface protective layer can be increased by providing a fiber layer containing a predetermined amount or more of fine fibrous cellulose between the substrate and the surface protective layer. The pencil hardness of the surface protective layer is a value measured according to JIS K 5600-5-4:1999.
 表面保護層の鉛筆硬度上昇度は、鉛筆硬度について6B=1、5B=2、4B=3、3B=4、2B=5、B=6、HB=7、F=8、H=9、2H=10、3H=11、4H=12、5H=13、6H=14、7H=15、8H=16、9H=17として数値を割り振り、積層体における表面保護層側の表面の鉛筆硬度の数値をP、基材上に直接表面保護層を形成した積層体(コントロール積層体)における表面保護層側の表面の鉛筆硬度の数値をQとした場合、P-Q≧1である場合に、良好であると判定することができる。 The degree of increase in pencil hardness of the surface protective layer is 6B = 1, 5B = 2, 4B = 3, 3B = 4, 2B = 5, B = 6, HB = 7, F = 8, H = 9, 2H with respect to pencil hardness. = 10, 3H = 11, 4H = 12, 5H = 13, 6H = 14, 7H = 15, 8H = 16, 9H = 17. P, when the numerical value of the pencil hardness of the surface on the surface protective layer side in the laminate (control laminate) in which the surface protective layer is formed directly on the base material is Q, when PQ ≥ 1, it is good. It can be determined that there is
 本実施形態の積層体における表面保護層側の表面の鉛筆硬度は、2H以上であることが好ましく、3H以上であることがより好ましく、4H以上であることがさらに好ましい。なお、積層体における表面保護層側の表面の鉛筆硬度の上限値は特に限定されるものではないが、例えば9H以下であることが好ましい。積層体における表面保護層の鉛筆硬度は、JIS K 5600-5-4:1999に準拠して測定される。 The pencil hardness of the surface on the surface protective layer side of the laminate of the present embodiment is preferably 2H or higher, more preferably 3H or higher, and even more preferably 4H or higher. Although the upper limit of the pencil hardness of the surface of the laminate on the surface protection layer side is not particularly limited, it is preferably 9H or less, for example. The pencil hardness of the surface protective layer in the laminate is measured according to JIS K 5600-5-4:1999.
 ところで、従来技術においては、ハードコート層などの表面保護層の硬度を高めるために、表面保護層に微細繊維状セルロースを含有させることが検討されていたが、表面保護層(ハードコート層)を構成する成分の多くは疎水性であるため、表面保護層中に十分量の微細繊維状セルロースを配合することができず、その結果、表面保護層の硬度が十分に高められないといった課題があった。一方、本実施形態においては、表面保護層中に微細繊維状セルロースを配合するのではなく、表面保護層の直下に微細繊維状セルロースを含む繊維層を別途設けることで、積層体の表面に設けられた表面保護層の硬度を高めることができる。本実施形態においては、硬度を高めたい表面保護層中に微細繊維状セルロースを敢えて配合せずに、別の層(繊維層)として設けることで表面保護層の硬度を高めることに成功したものである。そして、このような効果は、比較的表面硬度の低い基材上に比較的表面硬度の高い繊維層を設け、さらにその上に表面保護層を設けた場合に、より顕著に発現される。 By the way, in the prior art, in order to increase the hardness of a surface protective layer such as a hard coat layer, it has been considered to contain fine fibrous cellulose in the surface protective layer. Since most of the constituent components are hydrophobic, a sufficient amount of fine fibrous cellulose cannot be blended into the surface protective layer, and as a result, there is a problem that the hardness of the surface protective layer cannot be sufficiently increased. rice field. On the other hand, in the present embodiment, instead of blending fine fibrous cellulose in the surface protective layer, a fiber layer containing fine fibrous cellulose is separately provided directly below the surface protective layer, so that the It is possible to increase the hardness of the applied surface protective layer. In the present embodiment, the hardness of the surface protective layer was successfully increased by providing a separate layer (fiber layer) instead of intentionally blending the fine fibrous cellulose into the surface protective layer whose hardness is to be increased. be. Such an effect is exhibited more remarkably when a fiber layer with a relatively high surface hardness is provided on a base material with a relatively low surface hardness, and a surface protective layer is further provided thereon.
 本実施形態の積層体のヘーズは、10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましい。積層体のヘーズの下限値は特に限定されるものではなく、0%であってもよい。積層体のヘーズは、JIS K 7136:2000に準拠し、ヘーズメーターを用いて、測定される値である。ヘーズメーターとしては、例えば、株式会社村上色彩技術研究所製、HM-150を使用できる。 The haze of the laminate of this embodiment is preferably 10% or less, more preferably 5% or less, and even more preferably 3% or less. The lower limit of the haze of the laminate is not particularly limited, and may be 0%. The haze of the laminate is a value measured using a haze meter in accordance with JIS K 7136:2000. As the haze meter, for example, HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used.
 本実施形態の積層体の全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましい。ここで、積層体の全光線透過率は、JIS K 7361-1:1997に準拠し、ヘーズメーターを用いて、測定される値である。ヘーズメーターとしては、例えば、株式会社村上色彩技術研究所製、HM-150を使用できる。 The total light transmittance of the laminate of this embodiment is preferably 80% or more, more preferably 85% or more. Here, the total light transmittance of the laminate is a value measured using a haze meter in accordance with JIS K 7361-1:1997. As the haze meter, for example, HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd. can be used.
 積層体の全体厚みは、特に制限されるものではないが、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましい。また、積層体の全体厚みは、10000μm以下であることが好ましく、6000μm以下であることがより好ましく、4000μm以下であることがさらに好ましい。積層体の厚みはその用途に応じて適宜調整することが好ましい。なお、積層体の厚みは定圧厚さ計測定器(TECLOCK CORPORATION製、PG-02)で測定することができる。 Although the overall thickness of the laminate is not particularly limited, it is preferably 10 μm or more, more preferably 20 μm or more, and even more preferably 30 μm or more. Also, the total thickness of the laminate is preferably 10000 μm or less, more preferably 6000 μm or less, and even more preferably 4000 μm or less. It is preferable to appropriately adjust the thickness of the laminate according to its use. The thickness of the laminate can be measured with a constant pressure thickness gauge (PG-02, manufactured by TECLOCK CORPORATION).
(繊維層)
 繊維層は、繊維幅が1000nm以下の繊維状セルロース(微細繊維状セルロース)を含む。繊維層における微細繊維状セルロースの含有量は、繊維層の全固形分質量に対して15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。なお、繊維層における微細繊維状セルロースの含有量の上限値は特に限定されるものではなく、100質量%であってもよい。繊維層における微細繊維状セルロースの含有量を上記範囲内とすることにより、積層体における表面保護層の硬度をより効果的に高めることができる。
(fiber layer)
The fiber layer contains fibrous cellulose (fine fibrous cellulose) with a fiber width of 1000 nm or less. The content of fine fibrous cellulose in the fiber layer is preferably 15% by mass or more, more preferably 20% by mass or more, and 25% by mass or more relative to the total solid mass of the fiber layer. is more preferred. The upper limit of the content of fine fibrous cellulose in the fiber layer is not particularly limited, and may be 100% by mass. By setting the content of fine fibrous cellulose in the fiber layer within the above range, the hardness of the surface protective layer in the laminate can be increased more effectively.
 繊維層の厚みは、0.01μm以上であってもよく、0.05μm以上であってもよく、0.1μm以上であってもよく、0.3μm以上であってもよく、0.5μm以上であってもよく、0.7μm以上であってもよく、1μm以上であってもよく、3μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよく、50μm以上であってもよい。繊維層の厚みの上限値は、例えば、500μm以下であってもよい。繊維層の厚みを上記範囲内とすることにより、積層体における表面保護層の硬度をより効果的に高めることができる。 The thickness of the fiber layer may be 0.01 μm or more, 0.05 μm or more, 0.1 μm or more, 0.3 μm or more, or 0.5 μm or more. 0.7 μm or more, 1 μm or more, 3 μm or more, 5 μm or more, 10 μm or more, or 50 μm or more may be The upper limit of the thickness of the fiber layer may be, for example, 500 µm or less. By setting the thickness of the fiber layer within the above range, the hardness of the surface protective layer in the laminate can be more effectively increased.
 一方で、繊維層の厚みは200μm以下であってもよく、150μm以下であってもよく、100μm以下であってもよく、75μm以下であってもよく、50μm以下であってもよい。なお、積層体の用途によっては、繊維層の厚みは50μm以下であることが好ましく、25μm以下であることがより好ましく、25μm未満であることがさらに好ましく、10μm以下であることがよりさらに好ましく、5μm以下であることが一層好ましい。繊維層の厚みを薄くすることで、例えば、柔軟性が要求される光学部材等に好ましく用いられる。また、繊維層の厚みを薄くすること積層体の黄変をより効果的に抑制することができ、さらに積層体の耐衝撃性を高めることもできる。繊維層の厚みは、0.01μm以上であってもよく、0.05μm以上であってもよく、0.1μm以上であってもよい。また、繊維層の厚みは0.01μm~500μmが好ましく、0.05μm~200μmがより好ましく、0.1μm~150μmがさらに好ましく、0.1μm~25μmが特に好ましい。柔軟性が要求される光学部材等に用いる場合は、繊維層の厚みは0.1~150μmが好ましく、1~100μmがより好ましく、5~50μmがさらに好ましく、10~50μmが一層好ましい。ここで、積層体を構成する繊維層の厚さは、ウルトラミクロトームUC-7(日本電子株式会社)によって積層体の断面を切り出し、当該断面を電子顕微鏡、拡大鏡又は目視で観察して、測定される値である。 On the other hand, the thickness of the fiber layer may be 200 μm or less, 150 μm or less, 100 μm or less, 75 μm or less, or 50 μm or less. Depending on the application of the laminate, the thickness of the fiber layer is preferably 50 μm or less, more preferably 25 μm or less, even more preferably less than 25 μm, and even more preferably 10 μm or less. It is more preferably 5 μm or less. By reducing the thickness of the fiber layer, it is preferably used, for example, for optical members that require flexibility. Also, by reducing the thickness of the fiber layer, yellowing of the laminate can be more effectively suppressed, and the impact resistance of the laminate can be enhanced. The thickness of the fiber layer may be 0.01 μm or more, 0.05 μm or more, or 0.1 μm or more. The thickness of the fiber layer is preferably 0.01 μm to 500 μm, more preferably 0.05 μm to 200 μm, even more preferably 0.1 μm to 150 μm, and particularly preferably 0.1 μm to 25 μm. When used for an optical member or the like that requires flexibility, the thickness of the fiber layer is preferably 0.1 to 150 μm, more preferably 1 to 100 μm, even more preferably 5 to 50 μm, even more preferably 10 to 50 μm. Here, the thickness of the fiber layer constituting the laminate is measured by cutting out a cross section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass, or visually. is the value to be
 繊維層の坪量は1.4g/m以上であることが好ましく、7g/m以上であることがより好ましく、10g/m以上であることがさらに好ましい。また、繊維層の坪量は、300g/m以下であることが好ましく、250g/m以下であることがより好ましく、200g/m以下であることがさらに好ましい。 The basis weight of the fiber layer is preferably 1.4 g/m 2 or more, more preferably 7 g/m 2 or more, even more preferably 10 g/m 2 or more. Also, the basis weight of the fiber layer is preferably 300 g/m 2 or less, more preferably 250 g/m 2 or less, and even more preferably 200 g/m 2 or less.
 繊維層の密度は、1.0g/cm以上であることが好ましく、1.2g/cm以上であることがより好ましく、1.4g/cm以上であることがさらに好ましい。また、繊維層の密度は、2.0g/cm以下であることが好ましく、1.8g/cm以下であることがより好ましく、1.7g/cm以下であることがさらに好ましい。 The density of the fiber layer is preferably 1.0 g/cm 3 or higher, more preferably 1.2 g/cm 3 or higher, and even more preferably 1.4 g/cm 3 or higher. Also, the density of the fiber layer is preferably 2.0 g/cm 3 or less, more preferably 1.8 g/cm 3 or less, and even more preferably 1.7 g/cm 3 or less.
 繊維層の密度は、繊維層の坪量と厚さから、算出される。繊維層の坪量は、ウルトラミクロトームUC-7(日本電子株式会社)によって積層体の繊維層のみが残るように切削し、以下の方法にしたがって算出される値である。50mm角以上の大きさに切り出した繊維層を23℃、相対湿度50%で24時間調湿した後、重量を測定し、この重量を切り出した繊維層の面積で除することで坪量を算出する。なお、繊維層が微細繊維状セルロース以外の任意成分を含む場合は、繊維層の密度は、微細繊維状セルロース以外の任意成分を含む密度である。 The density of the fiber layer is calculated from the basis weight and thickness of the fiber layer. The basis weight of the fiber layer is a value calculated according to the following method after cutting the laminate with an ultramicrotome UC-7 (manufactured by JEOL Ltd.) so that only the fiber layer remains. A fiber layer cut into a size of 50 mm square or more is conditioned at 23° C. and a relative humidity of 50% for 24 hours, then weighed and divided by the area of the cut fiber layer to calculate the basis weight. do. When the fiber layer contains optional components other than fine fibrous cellulose, the density of the fiber layer is the density containing the optional components other than fine fibrous cellulose.
 本実施形態においては、繊維層は非多孔性の層であることが好ましい。ここで、繊維層が非多孔性であるとは、繊維層全体の密度が1.0g/cm以上であることを意味する。繊維層全体の密度が1.0g/cm以上であれば、繊維層に含まれる空隙率が、所定値以下に抑えられていることを意味し、多孔性のシートや層とは区別される。
 また、繊維層が非多孔性であることは、空隙率が15体積%以下であることからも特徴付けられる。ここでいう繊維層の空隙率は簡易的に下記式(a)により求められるものである。
 式(a):空隙率(体積%)={1-B/(M×A×t)}×100
 ここで、Aは繊維層の面積(cm)、tは繊維層の厚み(cm)、Bは繊維層の質量(g)、Mは繊維層を構成する固形分の密度である。
In this embodiment, the fibrous layer is preferably a non-porous layer. Here, that the fiber layer is non-porous means that the density of the entire fiber layer is 1.0 g/cm 3 or more. If the density of the entire fiber layer is 1.0 g/cm 3 or more, it means that the porosity contained in the fiber layer is suppressed to a predetermined value or less, and is distinguished from porous sheets and layers. .
The non-porous fiber layer is also characterized by having a porosity of 15% by volume or less. The porosity of the fiber layer referred to here is simply obtained by the following formula (a).
Formula (a): Porosity (volume%) = {1-B / (M × A × t)} × 100
Here, A is the area of the fiber layer (cm 2 ), t is the thickness of the fiber layer (cm), B is the mass of the fiber layer (g), and M is the density of solids constituting the fiber layer.
 繊維層の鉛筆硬度は、F以上であることが好ましく、H以上であることがより好ましく、2H以上であることがさらに好ましい。また、繊維層の鉛筆硬度は9H以下であることが好ましい。繊維層の鉛筆硬度は、JIS K 5600-5-4:1999に準拠して測定される。 The pencil hardness of the fiber layer is preferably F or higher, more preferably H or higher, and even more preferably 2H or higher. Moreover, the fiber layer preferably has a pencil hardness of 9H or less. The pencil hardness of the fiber layer is measured according to JIS K 5600-5-4:1999.
<微細繊維状セルロース>
 繊維層は、繊維幅が1000nm以下の繊維状セルロースを含む。繊維状セルロースの繊維幅は100nm以下であることが好ましく、50nm以下であることがより好ましく、20nm以下であることがさらに好ましく、10nm以下であることが一層好ましく、8nm以下であることが特に好ましい。また、繊維状セルロースの繊維幅は2nm以上であることが好ましい。繊維状セルロースの繊維幅を上記範囲内とすることにより、繊維状セルロースの分散性をより効果的に高めることができ、高強度かつ高透明な繊維層が得られやすくなる。
<Fine fibrous cellulose>
The fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less. The fiber width of the fibrous cellulose is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less, even more preferably 10 nm or less, and particularly preferably 8 nm or less. . Further, the fiber width of the fibrous cellulose is preferably 2 nm or more. By setting the fiber width of the fibrous cellulose within the above range, the dispersibility of the fibrous cellulose can be more effectively enhanced, and a high-strength and highly transparent fiber layer can be easily obtained.
 繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上20nm以下であることが一層好ましく、2nm以上10nm以下であることが特に好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制しやすくなる。なお、繊維状セルロースは、たとえば単繊維状のセルロースである。 The fiber width of fibrous cellulose can be measured, for example, by electron microscope observation. The average fiber width of fibrous cellulose is, for example, 1000 nm or less. The average fiber width of the fibrous cellulose is, for example, preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, even more preferably 2 nm or more and 50 nm or less, and 2 nm or more and 20 nm or less. More preferably, it is particularly preferably 2 nm or more and 10 nm or less. By setting the average fiber width of fibrous cellulose to 2 nm or more, it becomes easier to suppress dissolution in water as cellulose molecules. The fibrous cellulose is, for example, single fibrous cellulose.
 繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
The average fiber width of fibrous cellulose is measured, for example, using an electron microscope as follows. First, an aqueous suspension of fibrous cellulose with a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a hydrophilized carbon film-coated grid to form a sample for TEM observation. and SEM images of surfaces cast on glass may be observed if they contain wide fibers. Then, an electron microscope image is observed at a magnification of 1,000, 5,000, 10,000, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification are adjusted so as to satisfy the following conditions.
(1) A single straight line X is drawn at an arbitrary point in the observed image, and 20 or more fibers intersect the straight line X.
(2) Draw a straight line Y that intersects the straight line perpendicularly in the same image, and 20 or more fibers intersect the straight line Y.
Widths of fibers intersecting the straight lines X and Y are visually read from the observation image satisfying the above conditions. In this way, at least three sets of observed images of surface portions that do not overlap each other are obtained. Then, for each image, the width of the fiber that crosses straight line X and straight line Y is read. This gives at least 20 x 2 x 3 = 120 fiber width readings. Then, the average value of the read fiber widths is taken as the average fiber width of the fibrous cellulose.
 繊維状セルロースの繊維長は、特に限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。 Although the fiber length of the fibrous cellulose is not particularly limited, it is preferably 0.1 μm or more and 1000 μm or less, more preferably 0.1 μm or more and 800 μm or less, and further preferably 0.1 μm or more and 600 μm or less. preferable. By setting the fiber length within the above range, destruction of the crystalline regions of the fibrous cellulose can be suppressed. Moreover, it becomes possible to make the slurry viscosity of fibrous cellulose into an appropriate range. The fiber length of fibrous cellulose can be determined by image analysis using, for example, TEM, SEM, and AFM.
 繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。 The fibrous cellulose preferably has a type I crystal structure. Here, the fact that the fibrous cellulose has a type I crystal structure can be identified in a diffraction profile obtained from a wide-angle X-ray diffraction photograph using CuKα (λ=1.5418 Å) monochromated with graphite. Specifically, it can be identified by having typical peaks at two positions near 2θ=14° or more and 17° or less and 2θ=22° or more and 23° or less. The proportion of the I-type crystal structure in the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, even more preferably 50% or more. As a result, even better performance can be expected in terms of heat resistance and low coefficient of linear thermal expansion. The degree of crystallinity is determined by a conventional method by measuring an X-ray diffraction profile and using the pattern (Seagal et al., Textile Research Journal, vol. 29, p. 786, 1959).
 繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。 Although the axial ratio (fiber length/fiber width) of the fibrous cellulose is not particularly limited, it is preferably 20 or more and 10000 or less, more preferably 50 or more and 1000 or less. A sheet containing fine fibrous cellulose can be easily formed by making the axial ratio equal to or higher than the above lower limit. By setting the axial ratio to the above upper limit or less, handling such as dilution becomes easier, for example, when fibrous cellulose is treated as a dispersion liquid, which is preferable.
 本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。特に、結晶領域と非結晶領域をともに有し、かつ軸比が高い微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。 The fibrous cellulose in this embodiment has, for example, both a crystalline region and an amorphous region. In particular, fine fibrous cellulose having both a crystalline region and an amorphous region and having a high axial ratio is realized by a method for producing fine fibrous cellulose, which will be described later.
 繊維状セルロースは、イオン性置換基を有することが好ましい。繊維状セルロースがイオン性置換基を有することで、分散媒中における繊維状セルロースの分散性を向上させ、解繊処理における解繊効率を高めることができる。イオン性置換基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。本実施形態においては、イオン性置換基としてアニオン性基を有することが特に好ましい。また、イオン性置換基は、エステル結合またはエーテル結合を介して繊維状セルロースに導入される基であることが好ましく、エステル結合を介して繊維状セルロースに導入される基であることがより好ましい。この場合、エステル結合は、繊維状セルロースの水酸基とイオン性置換基となる化合物の脱水縮合で形成されることが好ましい。 The fibrous cellulose preferably has an ionic substituent. When the fibrous cellulose has an ionic substituent, the dispersibility of the fibrous cellulose in the dispersion medium can be improved, and the defibration efficiency in the fibrillation treatment can be increased. The ionic substituents can include, for example, either one or both of an anionic group and a cationic group. In this embodiment, it is particularly preferable to have an anionic group as an ionic substituent. The ionic substituent is preferably a group introduced into fibrous cellulose via an ester bond or an ether bond, more preferably a group introduced into fibrous cellulose via an ester bond. In this case, the ester bond is preferably formed by dehydration condensation between the hydroxyl group of the fibrous cellulose and the compound serving as the ionic substituent.
 アニオン性基としては、例えば、リンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、硫黄オキソ酸基または硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)、ザンテート基またはザンテート基に由来する置換基(単にザンテート基ということもある)、ホスホン基またはホスホン基に由来する置換基(単にホスホン基ということもある)、ホスフィン基またはホスフィン基に由来する置換基(単にホスフィン基ということもある)、スルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)、カルボキシアルキル基(カルボキシメチル基やカルボキシエチル基を含む)等を挙げることができる。中でも、アニオン性基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、カルボキシ基、カルボキシ基に由来する置換基、カルボキシアルキル基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種であることが好ましく、リンオキソ酸基、リンオキソ酸基に由来する置換基、カルボキシ基、カルボキシ基に由来する置換基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種であることがより好ましく、リンオキソ酸基又はリンオキソ酸基に由来する置換基であることが特に好ましい。アニオン性基としてリンオキソ酸基を導入することにより、例えば、アルカリ性条件下や酸性条件下においても、繊維状セルロースの分散性をより高めることができ、結果として高硬度かつ高透明な繊維層が得られやすくなる。 The anionic group includes, for example, a phosphate group or a substituent derived from a phosphate group (sometimes simply referred to as a phosphate group), a carboxy group or a substituent derived from a carboxy group (sometimes simply referred to as a carboxy group). , a sulfur oxoacid group or a substituent derived from a sulfur oxoacid group (sometimes simply referred to as a sulfur oxoacid group), a xanthate group or a substituent derived from a xanthate group (sometimes simply referred to as a xanthate group), a phosphonic group or A substituent derived from a phosphone group (sometimes simply referred to as a phosphon group), a phosphine group or a substituent derived from a phosphine group (sometimes simply referred to as a phosphine group), a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group) group), carboxyalkyl group (including carboxymethyl group and carboxyethyl group), and the like. Among them, the anionic group is a phosphate group, a substituent derived from a phosphate group, a carboxy group, a substituent derived from a carboxy group, a carboxyalkyl group, a sulfur oxo acid group, and a substituent derived from a sulfur oxo acid group. It is preferably at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a substituent derived from a carboxy group, a sulfur oxo acid group, and a sulfur oxo acid group derived from It is more preferably at least one selected from the group consisting of substituents, and particularly preferably a phosphorous acid group or a substituent derived from a phosphorous acid group. By introducing a phosphorus oxoacid group as an anionic group, the dispersibility of fibrous cellulose can be further enhanced, for example, even under alkaline or acidic conditions, and as a result, a highly rigid and highly transparent fiber layer can be obtained. more likely to be
 カチオン性基としては、たとえばアンモニウム基、ホスホニウム基、スルホニウム基等を挙げることができる。中でもカチオン性基はアンモニウム基であることが好ましい。 Examples of cationic groups include ammonium groups, phosphonium groups, and sulfonium groups. Among them, the cationic group is preferably an ammonium group.
 リンオキソ酸基又はリンオキソ酸基に由来する置換基は、例えば下記式(1)で表される置換基である。各繊維状セルロースには、下記式(1)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(1)で表される置換基はそれぞれ同一であっても異なっていてもよい。 A phosphorous acid group or a substituent derived from a phosphorous acid group is, for example, a substituent represented by the following formula (1). A plurality of types of substituents represented by the following formula (1) may be introduced into each fibrous cellulose. In this case, the plural introduced substituents represented by the following formula (1) may be the same or different.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。n個あるαおよびα’のうち少なくとも1つはOであり、残りはR又はORである。なお、各αおよびα’の全てがOであっても構わない。n個あるαは全て同じでも、それぞれ異なっていてもよい。βb+は有機物又は無機物からなる1価以上の陽イオンである。 In formula (1), a, b and n are natural numbers, and m is an arbitrary number (where a=b×m). At least one of n α and α' is O 2 - , and the rest are R or OR. Note that all of α and α' may be O 2 − . All of the n αs may be the same or different. β b+ is a monovalent or higher cation composed of an organic substance or an inorganic substance.
 Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、式(1)においては、nは1であることが好ましい。 Each R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated linear hydrocarbon group, an unsaturated-branched hydrocarbon group A hydrogen group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or a derivative group thereof. Also, in formula (1), n is preferably 1.
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。 The saturated straight-chain hydrocarbon group includes, but is not particularly limited to, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and the like. The saturated-branched hydrocarbon group includes i-propyl group, t-butyl group and the like, but is not particularly limited. The saturated cyclic hydrocarbon group includes, but is not particularly limited to, a cyclopentyl group, a cyclohexyl group, and the like. The unsaturated straight-chain hydrocarbon group includes, but is not particularly limited to, a vinyl group, an allyl group, and the like. The unsaturated-branched hydrocarbon group includes i-propenyl group, 3-butenyl group and the like, but is not particularly limited. The unsaturated-cyclic hydrocarbon group includes, but is not limited to, a cyclopentenyl group, a cyclohexenyl group, and the like. The aromatic group includes, but is not particularly limited to, a phenyl group, a naphthyl group, or the like.
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、カルボキシレート基(-COO)、ヒドロキシ基、アミノ基及びアンモニウム基などの官能基から選択される少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、繊維状セルロースの収率を高めることもできる。なお、式(1)中にRが複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するRはそれぞれ同一であっても異なっていてもよい。 In addition, the derivative group in R is selected from functional groups such as carboxy group, carboxylate group (—COO ), hydroxy group, amino group and ammonium group for the main chain or side chain of the above various hydrocarbon groups. functional groups to which at least one type is added or substituted, but are not particularly limited. Although the number of carbon atoms constituting the main chain of R is not particularly limited, it is preferably 20 or less, more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R within the above range, the molecular weight of the phosphorous acid group can be set within an appropriate range, facilitating penetration into the fiber raw material and increasing the yield of fibrous cellulose. can also In addition, when a plurality of R are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fibrous cellulose, the plurality of Rs present are the same. There may be or may be different.
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、式(1)中にβb+が複数個存在する場合や繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 β b+ is a monovalent or higher cation composed of an organic substance or an inorganic substance. An organic onium ion can be mentioned as a cation having a valence of 1 or more composed of an organic substance. Organic onium ions include, for example, organic ammonium ions and organic phosphonium ions. Examples of organic ammonium ions include aliphatic ammonium ions and aromatic ammonium ions, and examples of organic phosphonium ions include aliphatic phosphonium ions and aromatic phosphonium ions. Examples of monovalent or higher-valent cations composed of inorganic substances include ions of alkali metals such as sodium, potassium, or lithium, ions of divalent metals such as calcium or magnesium, hydrogen ions, and ammonium ions. In addition, when a plurality of β b+ are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fibrous cellulose, the plurality of β b+ are each They may be the same or different. As the cation having a valence of 1 or more composed of an organic substance or an inorganic substance, sodium or potassium ions are preferable, but are not particularly limited, because they do not easily turn yellow when fiber raw materials containing β b+ are heated and are easily industrially available. .
 リンオキソ酸基又はリンオキソ酸基に由来する置換基としては、より具体的には、リン酸基(-PO)、リン酸基の塩、亜リン酸基(ホスホン酸基)(-PO)、亜リン酸基(ホスホン酸基)の塩が挙げられる。また、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、リン酸基が縮合した基(例えば、ピロリン酸基)、ホスホン酸が縮合した基(例えば、ポリホスホン酸基)、リン酸エステル基(例えば、モノメチルリン酸基、ポリオキシエチレンアルキルリン酸基)、アルキルホスホン酸基(例えば、メチルホスホン酸基)などであってもよい。 More specifically, the phosphoric acid group or the substituent derived from the phosphoric acid group includes a phosphoric acid group (—PO 3 H 2 ), a salt of a phosphoric acid group, a phosphorous acid group (phosphonic acid group) (—PO 2 H 2 ), salts of phosphite group (phosphonic acid group). In addition, the phosphoric acid group or the substituent derived from the phosphoric acid group includes a condensed phosphoric acid group (e.g., pyrophosphate group), a condensed phosphonic acid group (e.g., polyphosphonic acid group), a phosphoric acid ester group ( For example, it may be a monomethyl phosphate group, a polyoxyethylene alkyl phosphate group), an alkylphosphonic acid group (eg, a methylphosphonic acid group), or the like.
 また、硫黄オキソ酸基(硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基)は、例えば下記式(2)で表される置換基である。各繊維状セルロースには、下記式(2)で表される置換基が複数導入されていてもよい。この場合、複数導入される下記式(2)で表される置換基はそれぞれ同一であっても異なっていてもよい。 Further, the sulfur oxoacid group (a sulfur oxoacid group or a substituent derived from a sulfur oxoacid group) is, for example, a substituent represented by the following formula (2). A plurality of substituents represented by the following formula (2) may be introduced into each fibrous cellulose. In this case, the plural introduced substituents represented by the following formula (2) may be the same or different.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記構造式中、bおよびnは自然数であり、pは0または1であり、mは任意の数である(ただし、1=b×mである)。なお、nが2以上である場合、複数あるpは同一の数であってもよく、異なる数であってもよい。上記構造式中、βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、繊維状セルロースに上記式(2)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 In the above structural formula, b and n are natural numbers, p is 0 or 1, and m is an arbitrary number (where 1=b×m). In addition, when n is 2 or more, multiple p may be the same number or may be different numbers. In the above structural formula, β b+ is a monovalent or higher cation composed of an organic substance or an inorganic substance. An organic onium ion can be mentioned as a cation having a valence of 1 or more composed of an organic substance. Organic onium ions include, for example, organic ammonium ions and organic phosphonium ions. Examples of organic ammonium ions include aliphatic ammonium ions and aromatic ammonium ions, and examples of organic phosphonium ions include aliphatic phosphonium ions and aromatic phosphonium ions. Examples of monovalent or higher-valent cations composed of inorganic substances include ions of alkali metals such as sodium, potassium, or lithium, ions of divalent metals such as calcium or magnesium, hydrogen ions, and ammonium ions. When multiple types of substituents represented by the above formula (2) are introduced into fibrous cellulose, the multiple β b+ may be the same or different. As the cation having a valence of 1 or more composed of an organic substance or an inorganic substance, sodium or potassium ions are preferable, but are not particularly limited, because they do not easily turn yellow when fiber raw materials containing β b+ are heated and are easily industrially available. .
 繊維状セルロースに対するイオン性置換基の導入量は、例えば繊維状セルロース1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、繊維状セルロースに対するイオン性置換基の導入量は、例えば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましく、2.50mmol/g以下であることが一層好ましく、2.00mmol/g以下であることが特に好ましい。ここで、単位mmol/gにおける分母は、イオン性置換基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量を示す。イオン性置換基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、イオン性置換基の導入量を上記範囲内とすることにより、高硬度かつ高透明な積層体が得られやすくなる。 The amount of the ionic substituent introduced into fibrous cellulose is, for example, preferably 0.05 mmol/g or more, more preferably 0.10 mmol/g or more, more preferably 0.20 mmol per 1 g (mass) of fibrous cellulose. /g or more, more preferably 0.40 mmol/g or more, and particularly preferably 0.60 mmol/g or more. In addition, the amount of the ionic substituent introduced into fibrous cellulose is, for example, preferably 5.20 mmol/g or less, more preferably 3.65 mmol/g or less per 1 g (mass) of fibrous cellulose. 00 mmol/g or less, more preferably 2.50 mmol/g or less, and particularly preferably 2.00 mmol/g or less. Here, the denominator in units of mmol/g indicates the mass of fibrous cellulose when the counter ion of the ionic substituent is hydrogen ion (H + ). By setting the amount of the ionic substituent to be introduced within the above range, the fiber raw material can be easily made finer, and the stability of the fibrous cellulose can be enhanced. Also, by setting the amount of the ionic substituent to be introduced within the above range, it becomes easier to obtain a laminate having high hardness and high transparency.
 なお、繊維状セルロースに対するイオン性置換基の導入量は、例えば繊維状セルロース1g(質量)あたり0.50mmol/g未満であってもよく、0.40mmol/g以下であってもよく、0.30mmol/g以下であってもよく、0.25mmol/g以下であってもよく、0.15mmol/g以下であってもよい。イオン性置換基の含有量(導入量)が上記範囲内にある繊維状セルロースは、例えば、後述するような置換基除去処理工程を経て得られるものであってもよい。すなわち、繊維層に含まれる繊維状セルロースは置換基除去処理後の繊維状セルロースであってもよい。繊維状セルロースとして置換基除去処理後の繊維状セルロースを用いることにより、繊維層及び積層体の黄変をより効果的に抑制することができ、特に、高温高湿環境下における黄変をより効果的に抑制することができる。 The amount of the ionic substituent introduced into fibrous cellulose may be, for example, less than 0.50 mmol/g per 1 g (mass) of fibrous cellulose, may be 0.40 mmol/g or less, or may be 0.40 mmol/g or less. It may be 30 mmol/g or less, 0.25 mmol/g or less, or 0.15 mmol/g or less. The fibrous cellulose in which the content (introduction amount) of the ionic substituent is within the above range may be obtained through, for example, a substituent removal treatment step as described below. That is, the fibrous cellulose contained in the fiber layer may be fibrous cellulose after substituent removal treatment. By using fibrous cellulose after substituent removal treatment as fibrous cellulose, yellowing of the fiber layer and laminate can be more effectively suppressed, and in particular, yellowing in a high-temperature and high-humidity environment can be more effectively prevented. can be effectively suppressed.
 繊維状セルロースに対するイオン性置換基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。 The amount of ionic substituents introduced into fibrous cellulose can be measured, for example, by a neutralization titration method. In the measurement by the neutralization titration method, the introduced amount is measured by determining the pH change while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing the fibrous cellulose.
 図2は、イオン性置換基としてリンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
 まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2の上側部に示すような滴定曲線を得る。図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
 なお、図2において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(第2解離酸量)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(第1解離酸量)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
FIG. 2 is a graph showing the relationship between the pH and the amount of NaOH added to a fibrous cellulose-containing slurry having a phosphorous acid group as an ionic substituent. The amount of phosphorus oxoacid groups introduced into fibrous cellulose is measured, for example, as follows.
First, a slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. In addition, before the treatment with the strongly acidic ion exchange resin, a defibration treatment similar to the fibrillation treatment step described below may be performed on the object to be measured, if necessary.
Next, while adding sodium hydroxide aqueous solution, the change in pH is observed to obtain a titration curve as shown in the upper part of FIG. The titration curve shown in the upper part of FIG. 2 plots the measured pH against the amount of alkali added, and the titration curve shown in the lower part of FIG. 2 plots the pH against the amount of alkali added. The increment (differential value) (1/mmol) is plotted. In this neutralization titration, two points where the increment (the differential value of the pH with respect to the amount of alkali dropped) are maximized are confirmed in the curve obtained by plotting the measured pH against the amount of alkali added. Among these, the maximum point of the increment obtained first when the alkali is first added is called the first end point, and the maximum point of the increment obtained next is called the second end point. The amount of alkali required from the start of titration to the first end point is equal to the first dissociated acid amount of fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the first end point to the second end point The amount is equal to the second dissociated acid amount of fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the start of titration to the second end point is equal to the amount of fibrous cellulose contained in the slurry used for titration. equal to the total dissociated acid content of A value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxoacid group introduced (mmol/g). In addition, when simply referring to the amount of phosphorus oxoacid groups introduced (or the amount of phosphorus oxoacid groups), it means the amount of the first dissociated acid.
In FIG. 2, the region from the start of titration to the first end point is called the first region, and the region from the first end point to the second end point is called the second region. For example, when the phosphoric acid group is a phosphoric acid group and the phosphoric acid group causes condensation, the weakly acidic group amount (second dissociated acid amount) in the phosphoric acid group is apparently decreased, and the first region The amount of alkali required for the second region is less than the amount of alkali required for the second region. On the other hand, the amount of strongly acidic groups (the amount of first dissociated acid) in the phosphorus oxoacid group coincides with the amount of phosphorus atoms regardless of the presence or absence of condensation. In addition, when the phosphorous acid group is a phosphorous acid group, the weakly acidic group does not exist in the phosphorous acid group, so the amount of alkali required for the second region is reduced, or the amount of alkali required for the second region is may be zero. In this case, the titration curve has one point at which the pH increment is maximum.
 なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
In addition, since the denominator of the amount of introduced phosphate groups (mmol/g) indicates the mass of the acid-form fibrous cellulose, the amount of phosphate groups possessed by the acid-form fibrous cellulose (hereinafter referred to as the phosphate group amount (acid form)). On the other hand, when the counter ion of the phosphooxy acid group is substituted with an arbitrary cation C so as to have a charge equivalent, the denominator is converted to the mass of fibrous cellulose when the cation C is the counter ion. Thus, the amount of phosphate groups (hereinafter referred to as the amount of phosphate groups (type C)) possessed by fibrous cellulose whose counter ion is cation C can be determined.
That is, it is calculated by the following formula.
Phosphorus oxo acid group amount (C type) = Phosphorus oxo acid group amount (acid type) / {1 + (W-1) × A / 1000}
A [mmol/g]: Total amount of anions derived from phosphate groups possessed by fibrous cellulose (total dissociated acid amount of phosphate groups)
W: Formula weight per valence of cation C (for example, 23 for Na and 9 for Al)
 図3は、イオン性置換基としてカルボキシ基を有する繊維状セルロースを含有する分散液に対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。
 まず、繊維状セルロースを含有する分散液を強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図3の上側部に示すような滴定曲線を得る。図3の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図3の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ確認され、この極大点を第1終点と呼ぶ。ここで、図3における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用した分散液中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の繊維状セルロースを含有する分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出する。
FIG. 3 is a graph showing the relationship between the amount of dropped NaOH and pH for a dispersion containing fibrous cellulose having a carboxyl group as an ionic substituent. The amount of carboxyl groups introduced into fibrous cellulose is measured, for example, as follows.
First, a dispersion containing fibrous cellulose is treated with a strongly acidic ion exchange resin. In addition, before the treatment with the strongly acidic ion exchange resin, a defibration treatment similar to the fibrillation treatment step described below may be performed on the object to be measured, if necessary.
Next, while adding sodium hydroxide aqueous solution, the change in pH is observed to obtain a titration curve as shown in the upper part of FIG. The titration curve shown in the upper part of FIG. 3 plots the measured pH against the amount of added alkali, and the titration curve shown in the lower part of FIG. 3 plots the pH against the amount of added alkali. The increment (differential value) (1/mmol) is plotted. In this neutralization titration, in the curve plotting the measured pH against the amount of alkali added, one point where the increment (the differential value of pH with respect to the amount of alkali dropped) is maximum was confirmed. 1 end point. Here, the region from the start of titration to the first end point in FIG. 3 is called the first region. The amount of alkali required in the first region is equal to the amount of carboxyl groups in the dispersion used for titration. Then, the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the dispersion containing the fibrous cellulose to be titrated to obtain the amount of carboxyl groups introduced (mmol / g).
 なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量であることから、酸型の繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
 カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
 W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
In addition, since the denominator of the amount of introduced carboxy groups (mmol/g) is the mass of the acid-type fibrous cellulose, the amount of carboxy groups possessed by the acid-type fibrous cellulose (hereinafter referred to as the amount of carboxy groups (acid-type )). On the other hand, when the counterion of the carboxy group is substituted with an arbitrary cation C so as to have a charge equivalent, the denominator is converted to the mass of fibrous cellulose when the cation C is the counterion. , the amount of carboxy groups (hereinafter referred to as the amount of carboxy groups (C type)) possessed by fibrous cellulose whose counter ion is cation C can be obtained. That is, it is calculated by the following formula.
Carboxy group amount (C type) = carboxy group amount (acid form) / {1 + (W-1) x (carboxy group amount (acid form)) / 1000}
W: Formula weight per valence of cation C (for example, 23 for Na and 9 for Al)
 滴定法によるイオン性置換基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いイオン性置換基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。 When measuring the amount of ionic substituents by the titration method, if the amount of 1 drop of aqueous sodium hydroxide solution is too large, or if the titration interval is too short, the amount of ionic substituents will be lower than the original value. may not be obtained. As a suitable drop amount and titration interval, for example, it is desirable to titrate 10 to 50 μL of 0.1N sodium hydroxide aqueous solution every 5 to 30 seconds. In order to eliminate the influence of carbon dioxide dissolved in the fibrous cellulose-containing slurry, for example, it is desirable to measure while blowing an inert gas such as nitrogen gas into the slurry from 15 minutes before the start of titration to the end of titration.
 繊維状セルロースに対する硫黄オキソ酸基又はスルホン基の導入量は、繊維状セルロースを過塩素酸と濃硝酸を用いて湿式灰化した後に、適当な倍率で希釈してICP発光分析により硫黄量を測定することで算出することができる。硫黄量を、供試した繊維状セルロースの絶乾質量で除した値が硫黄オキソ酸基量又はスルホン基量(単位:mmol/g)である。 The amount of sulfur oxoacid group or sulfone group introduced into fibrous cellulose is determined by wet ashing fibrous cellulose with perchloric acid and concentrated nitric acid, diluting it at an appropriate ratio, and measuring the amount of sulfur by ICP emission spectrometry. can be calculated by The sulfur oxoacid group content or sulfone group content (unit: mmol/g) is obtained by dividing the sulfur content by the absolute dry weight of the fibrous cellulose tested.
 繊維状セルロースに対するザンテート基の導入量は、Bredee法により以下の方法で測定することができる。まず、繊維状セルロース1.5質量部(絶乾質量)に飽和塩化アンモニウム溶液を40mL添加し、ガラス棒でサンプルを潰しながらよく混合し、約15分間放置後、GFPろ紙(ADVANTEC社製GS-25)でろ過して、飽和塩化アンモニウム溶液で十分に洗浄する。次いで、サンプルをGFPろ紙ごと500mLのトールビーカーに入れ、0.5M水酸化ナトリウム溶液(5℃)を50mL添加して撹拌し、15分間放置する。溶液がピンク色になるまでフェノールフタレイン溶液を添加した後、1.5M酢酸を添加して、溶液がピンク色から無色になった点を中和点とする。中和後蒸留水を250mL添加してよく撹拌し、1.5M酢酸10mL、0.05mol/Lヨウ素溶液10mLをホールピペットを使用して添加する。そして、この溶液を0.05mol/Lチオ硫酸ナトリウム溶液で滴定し、チオ硫酸ナトリウムの滴定量、繊維状セルロースの絶乾質量より次式からザンテート基量を算出する。
 ザンテート基量(mmol/g)=(0.05×10×2-0.05×チオ硫酸ナトリウム滴定量(mL))/1000/繊維状セルロースの絶乾質量(g)
The amount of xanthate groups introduced into fibrous cellulose can be measured by the Bredee method as follows. First, 40 mL of a saturated ammonium chloride solution was added to 1.5 parts by mass (absolute dry mass) of fibrous cellulose, mixed well while crushing the sample with a glass rod, and left for about 15 minutes. 25) and wash thoroughly with saturated ammonium chloride solution. Next, the sample is placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5° C.) is added, stirred, and allowed to stand for 15 minutes. After adding the phenolphthalein solution until the solution turns pink, 1.5 M acetic acid is added and the point at which the solution turns from pink to colorless is taken as the neutralization point. After neutralization, 250 mL of distilled water is added and well stirred, and 10 mL of 1.5 M acetic acid and 10 mL of 0.05 mol/L iodine solution are added using a whole pipette. Then, this solution is titrated with a 0.05 mol/L sodium thiosulfate solution, and the amount of xanthate groups is calculated from the following equation from the titration amount of sodium thiosulfate and the absolute dry mass of fibrous cellulose.
Xanthate group amount (mmol/g) = (0.05 x 10 x 2-0.05 x sodium thiosulfate titer (mL))/1000/absolute dry mass of fibrous cellulose (g)
 繊維状セルロースに対するカチオン基の導入量は、微量窒素分析を行い、下記式で算出することができる。
(カチオン基量)[mmol/g]=(窒素量)[g]/14×1000/(供試した微細繊維状セルロース量)[g]
The amount of cationic groups to be introduced into fibrous cellulose can be calculated by the following formula after performing trace nitrogen analysis.
(Amount of cationic groups) [mmol/g]=(Amount of nitrogen) [g]/14×1000/(Amount of fine fibrous cellulose tested) [g]
<微細繊維状セルロースの製造工程>
<繊維原料>
 微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
<Manufacturing process of fine fibrous cellulose>
<Textile raw material>
Microfibrous cellulose is produced from fibrous raw materials containing cellulose. The fibrous raw material containing cellulose is not particularly limited, but pulp is preferably used because it is readily available and inexpensive. Pulp includes, for example, wood pulp, non-wood pulp, and deinked pulp. Examples of wood pulp include, but are not limited to, hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolving pulp (DP), soda pulp (AP), unbleached kraft pulp (UKP). ) and chemical pulp such as oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP) and chemigroundwood pulp (CGP), groundwood pulp (GP) and thermomechanical pulp (TMP, BCTMP) A mechanical pulp etc. are mentioned. Non-wood pulps include, but are not limited to, cotton-based pulps such as cotton linters and cotton lints, and non-wood-based pulps such as hemp, straw, and bagasse. The deinked pulp is not particularly limited, but includes, for example, deinked pulp made from waste paper. The pulp of this embodiment may be used alone or in combination of two or more. Among the above pulps, wood pulp and deinked pulp are preferred, for example, from the viewpoint of availability. In addition, among wood pulps, the cellulose ratio is high and the yield of fine fibrous cellulose at the time of defibration is high, and the decomposition of cellulose in the pulp is small, and fine fibrous cellulose of long fibers with a large axial ratio can be obtained. From the point of view, for example, chemical pulp is more preferable, and kraft pulp and sulfite pulp are more preferable. The use of fine fibrous cellulose of long fibers with a large axial ratio tends to increase the viscosity.
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。 As fiber raw materials containing cellulose, for example, cellulose contained in sea squirts and bacterial cellulose produced by acetic acid bacteria can be used. Fibers formed by straight-chain nitrogen-containing polysaccharide polymers such as chitin and chitosan can also be used instead of fiber raw materials containing cellulose.
<リンオキソ酸基導入工程>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程を含むことが好ましく、イオン性置換基導入工程としては、例えば、リンオキソ酸基導入工程が挙げられる。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
<Phosphorus oxoacid group introduction step>
The process for producing fine fibrous cellulose preferably includes an ionic substituent introduction process, and examples of the ionic substituent introduction process include a phosphorus oxoacid group introduction process. In the phosphorus oxoacid group-introducing step, at least one compound selected from compounds capable of introducing a phosphorus oxoacid group (hereinafter also referred to as "compound A") is added to cellulose by reacting with a hydroxyl group possessed by a fiber raw material containing cellulose. It is a step of acting on a fiber raw material containing. Through this step, the phosphate group-introduced fiber is obtained.
 本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。 In the phosphorus oxoacid group-introducing step according to the present embodiment, the reaction between the fiber material containing cellulose and compound A is performed in the presence of at least one selected from urea and derivatives thereof (hereinafter also referred to as "compound B"). may On the other hand, the reaction between the cellulose-containing fiber raw material and the compound A may be carried out in the absence of the compound B.
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。 An example of a method of allowing the compound A to act on the fiber raw material in the presence of the compound B is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state, or a slurry state. Among these, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state, because the uniformity of the reaction is high. Although the form of the fiber material is not particularly limited, it is preferably in the form of cotton or a thin sheet, for example. The compound A and the compound B can be added to the fiber raw material in the form of a powder, a solution dissolved in a solvent, or a melted state by heating to a melting point or higher. Among these, it is preferable to add in the form of a solution dissolved in a solvent, particularly in the form of an aqueous solution, since the uniformity of the reaction is high. Moreover, the compound A and the compound B may be added simultaneously to the fiber raw material, may be added separately, or may be added as a mixture. The method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be added dropwise to the Further, the necessary amount of compound A and compound B may be added to the fiber raw material, or after adding excessive amounts of compound A and compound B to the fiber raw material, the excess compound A and compound B are removed by pressing or filtering. may be removed.
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩または亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、または亜リン酸、亜リン酸ナトリウム、亜リン酸水素ナトリウムがより好ましい。 The compound A used in the present embodiment may be any compound having a phosphorus atom and capable of forming an ester bond with cellulose. Salts, phosphoric anhydride (diphosphorus pentoxide) and the like can be mentioned, but are not particularly limited. Phosphoric acid of various purities can be used, for example, 100% phosphoric acid (orthophosphoric acid) or 85% phosphoric acid can be used. Phosphorous acid includes 99% phosphorous acid (phosphonic acid). Dehydration-condensed phosphoric acid is obtained by condensing two or more molecules of phosphoric acid by dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid. Phosphates, phosphites and dehydrated condensed phosphates include lithium salts, sodium salts, potassium salts and ammonium salts of phosphoric acid, phosphorous acid or dehydrated condensed phosphoric acids. It can be a degree of harmony. Among these, the introduction efficiency of the phosphate group is high, the fibrillation efficiency is easily improved in the fibrillation step described later, the cost is low, and it is easy to apply industrially. salt, potassium phosphate, ammonium phosphate or phosphorous acid, sodium phosphite, potassium phosphite, ammonium phosphite, phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphorous acid, sodium phosphite, sodium hydrogen phosphite are more preferred.
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。 The amount of compound A added to the fiber raw material is not particularly limited. For example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atoms added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and even more preferably 2% by mass or more and 30% by mass or less. By setting the amount of phosphorus atoms added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved. On the other hand, by setting the amount of phosphorus atoms added to the fiber raw material to be equal to or less than the above upper limit, it is possible to balance the effect of improving the yield and the cost.
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。 The compound B used in this embodiment is at least one selected from urea and its derivatives as described above. Compound B includes, for example, urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, and 1-ethylurea. From the viewpoint of improving the uniformity of the reaction, compound B is preferably used as an aqueous solution. From the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
 繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。 The amount of compound B added to the fiber raw material (absolute dry mass) is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100% by mass or more and 350% by mass or less.
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 In the reaction between the fiber raw material containing cellulose and compound A, in addition to compound B, for example, amides or amines may be included in the reaction system. Examples of amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine and hexamethylenediamine. Among these, triethylamine in particular is known to work as a good reaction catalyst.
 リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。 In the phosphorus oxoacid group-introducing step, it is preferable to heat-treat the fiber raw material after adding or mixing the compound A or the like to the fiber raw material. As the heat treatment temperature, it is preferable to select a temperature that can efficiently introduce phosphorus oxoacid groups while suppressing thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is, for example, preferably 50° C. or higher and 300° C. or lower, more preferably 100° C. or higher and 250° C. or lower, and even more preferably 130° C. or higher and 200° C. or lower. In addition, for the heat treatment, equipment having various heat media can be used, for example, a stirring dryer, a rotary dryer, a disk dryer, a roll heater, a plate heater, a fluidized bed dryer, and a band dryer. A mold drying device, a filter drying device, a vibrating fluidized drying device, a flash drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。 In the heat treatment according to the present embodiment, for example, the compound A is added to a thin sheet-like fiber raw material by a method such as impregnation, and then heated, or the fiber raw material and the compound A are heated while kneading or stirring with a kneader or the like. method can be adopted. This makes it possible to suppress unevenness in the concentration of the compound A in the fiber raw material, and to more uniformly introduce the phosphorous acid groups to the surface of the cellulose fibers contained in the fiber raw material. This is because when water molecules move to the surface of the fiber material during drying, the dissolved compound A is attracted to the water molecules by surface tension and similarly moves to the surface of the fiber material (that is, the concentration unevenness of the compound A is It is thought that this is due to the fact that it is possible to suppress the occurrence of
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。 In addition, the heating device used for the heat treatment always removes the moisture retained by the slurry and the moisture generated due to the dehydration condensation (phosphorylation) reaction between the compound A and the hydroxyl groups contained in the cellulose etc. in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. As such a heating device, for example, an air-blowing oven can be used. By constantly draining the water in the device system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of phosphorylation, and to suppress the acid hydrolysis of the sugar chains in the fiber. can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。 The heat treatment time is, for example, preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less, after water is substantially removed from the fiber raw material. is more preferable. In the present embodiment, the amount of phosphorus oxoacid groups to be introduced can be set within a preferable range by setting the heating temperature and the heating time within appropriate ranges.
 リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。 The phosphorus oxoacid group-introducing step may be performed at least once, but may be performed repeatedly two or more times. By performing the phosphorus oxoacid group-introducing step two or more times, many phosphorus oxoacid groups can be introduced into the fiber raw material.
 リンオキソ酸基導入工程におけるリンオキソ酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、リンオキソ酸基導入工程におけるリンオキソ酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リンオキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができ、高硬度かつ高透明な積層体が得られやすくなる。 The amount of phosphorus oxoacid groups introduced in the step of introducing phosphorus oxoacid groups is, for example, preferably 0.05 mmol/g or more, more preferably 0.10 mmol/g or more, per 1 g (mass) of fine fibrous cellulose. It is more preferably 0.20 mmol/g or more, still more preferably 0.40 mmol/g or more, and particularly preferably 0.60 mmol/g or more. In addition, the amount of phosphorus oxoacid groups introduced in the phosphorus oxoacid group-introducing step is, for example, preferably 5.20 mmol/g or less, more preferably 3.65 mmol/g or less per 1 g (mass) of fine fibrous cellulose. , 3.00 mmol/g or less. By setting the amount of the phosphorus oxoacid group to be introduced within the above range, the fiber raw material can be easily refined, the stability of the fine fibrous cellulose can be enhanced, and a highly rigid and highly transparent laminate can be easily obtained. .
 なお、微細繊維状セルロースの製造工程において、後述するような置換基除去処理工程が設けられる場合には、最終的に得られる微細繊維状セルロースが有するリンオキソ酸基量は、たとえば微細繊維状セルロース1g(質量)あたり0.50mmol/g未満であってもよく、0.40mmol/g以下であってもよく、0.30mmol/g以下であってもよく、0.25mmol/g以下であってもよく、0.15mmol/g以下であってもよい。 In addition, in the production process of fine fibrous cellulose, when a substituent removal treatment step as described later is provided, the amount of phosphorous acid groups possessed by the finally obtained fine fibrous cellulose is, for example, 1 g of fine fibrous cellulose per (mass) may be less than 0.50 mmol/g, may be 0.40 mmol/g or less, may be 0.30 mmol/g or less, or may be 0.25 mmol/g or less It may be 0.15 mmol/g or less.
<カルボキシ基導入工程>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、例えば、カルボキシ基導入工程を含んでもよい。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
<Carboxy Group Introduction Step>
The production process of fine fibrous cellulose may include, for example, a carboxyl group introduction process as an ionic substituent introduction process. In the step of introducing a carboxy group, the fiber raw material containing cellulose is subjected to oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a carboxylic acid-derived group or a derivative thereof, or a carboxylic acid-derived group. This is done by treating the compound with an acid anhydride or a derivative thereof.
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、とくに限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。 The compound having a carboxylic acid-derived group is not particularly limited. Examples include tricarboxylic acid compounds. Derivatives of compounds having a carboxylic acid-derived group are not particularly limited, but include, for example, imidized acid anhydrides of compounds having a carboxy group and derivatives of acid anhydrides of compounds having a carboxy group. Examples of imidized acid anhydrides of compounds having a carboxyl group include, but are not particularly limited to, imidized dicarboxylic acid compounds such as maleimide, succinimide and phthalimide.
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。 The acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited. acid anhydrides; In addition, the acid anhydride derivative of the compound having a group derived from carboxylic acid is not particularly limited. Acid anhydrides in which at least some of the hydrogen atoms are substituted with substituents such as alkyl groups and phenyl groups can be mentioned.
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、たとえばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。 In the carboxyl group introduction step, when TEMPO oxidation treatment is performed, it is preferable to perform the treatment under the condition that the pH is 6 or more and 8 or less. Such treatment is also referred to as neutral TEMPO oxidation treatment. Neutral TEMPO oxidation treatment includes, for example, sodium phosphate buffer (pH=6.8), pulp as a fiber raw material, and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a catalyst. This can be done by adding sodium hypochlorite as a nitroxy radical, sacrificial reagent. Furthermore, coexistence of sodium chlorite enables efficient oxidation of aldehydes generated in the process of oxidation to carboxyl groups. Moreover, the TEMPO oxidation treatment may be performed under the condition that the pH is 10 or more and 11 or less. Such treatment is also called alkali TEMPO oxidation treatment. Alkaline TEMPO oxidation treatment can be performed, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. .
 カルボキシ基導入工程におけるカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、微細繊維状セルロース1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、カルボキシ基導入工程におけるカルボキシ基の導入量は、2.5mmol/g以下であることが好ましく、2.20mmol/g以下であることがより好ましく、2.00mmol/g以下であることがさらに好ましい。その他、置換基がカルボキシメチル基である場合、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、カルボキシ基の導入量を上記範囲内とすることにより、高硬度かつ高透明な積層体が得られやすくなる。 The amount of carboxy groups to be introduced in the carboxy group introduction step varies depending on the type of substituents. For example, when introducing carboxy groups by TEMPO oxidation, the amount should be 0.05 mmol/g or more per 1 g (mass) of fine fibrous cellulose. is preferably 0.10 mmol/g or more, more preferably 0.20 mmol/g or more, even more preferably 0.40 mmol/g or more, and 0.60 mmol/g or more is particularly preferred. In addition, the amount of carboxy groups introduced in the carboxy group introduction step is preferably 2.5 mmol/g or less, more preferably 2.20 mmol/g or less, and further preferably 2.00 mmol/g or less. preferable. In addition, when the substituent is a carboxymethyl group, it may be 5.8 mmol/g or less per 1 g (mass) of fine fibrous cellulose. By setting the amount of carboxyl groups to be introduced within the above range, the fiber raw material can be easily made finer, and the stability of the fibrous cellulose can be enhanced. Also, by setting the amount of carboxyl groups to be introduced within the above range, it becomes easier to obtain a laminate having high hardness and high transparency.
 なお、微細繊維状セルロースの製造工程において、後述するような置換基除去処理工程が設けられる場合には、最終的に得られる微細繊維状セルロースが有するカルボキシ基量は、たとえば微細繊維状セルロース1g(質量)あたり0.50mmol/g未満であってもよく、0.40mmol/g以下であってもよく、0.30mmol/g以下であってもよく、0.25mmol/g以下であってもよく、0.15mmol/g以下であってもよい。 In addition, in the production process of fine fibrous cellulose, when a substituent removal treatment step as described later is provided, the amount of carboxy groups possessed by the finally obtained fine fibrous cellulose is, for example, 1 g of fine fibrous cellulose ( mass) may be less than 0.50 mmol/g, may be 0.40 mmol/g or less, may be 0.30 mmol/g or less, or may be 0.25 mmol/g or less , 0.15 mmol/g or less.
<硫黄オキソ酸基導入工程>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、例えば、硫黄オキソ酸基導入工程を含んでもよい。硫黄オキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と硫黄オキソ酸が反応することで、硫黄オキソ酸基を有するセルロース繊維(硫黄オキソ酸基導入繊維)を得ることができる。
<Sulfur oxoacid group introduction step>
The step of producing fine fibrous cellulose may include, for example, a step of introducing a sulfur oxoacid group as the step of introducing an ionic substituent. In the step of introducing sulfur oxo acid groups, cellulose fibers having sulfur oxo acid groups (sulfur oxo acid group-introduced fibers) can be obtained by reacting hydroxyl groups of the fiber raw material containing cellulose with sulfur oxo acids.
 硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Aに代えて、セルロースを含む繊維原料が有する水酸基と反応することで、硫黄オキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物C」ともいう)を用いる。化合物Cとしては、硫黄原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、硫酸もしくはその塩、亜硫酸もしくはその塩、硫酸アミドなどが挙げられるが特に限定されない。硫酸としては、種々の純度のものを使用することができ、例えば96%硫酸(濃硫酸)を使用することができる。亜硫酸としては、5%亜硫酸水が挙げられる。硫酸塩又は亜硫酸塩としては、硫酸塩又は亜硫酸塩のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。硫酸アミドとしては、スルファミン酸などを使用することができる。硫黄オキソ酸基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることが好ましい。 In the sulfur oxoacid group introduction step, in place of compound A in the <phosphorus oxoacid group introduction step> described above, a compound that can introduce a sulfur oxoacid group by reacting with a hydroxyl group possessed by a fiber raw material containing cellulose is selected. At least one compound (hereinafter also referred to as "compound C") is used. Compound C is not particularly limited as long as it has a sulfur atom and is capable of forming an ester bond with cellulose, and includes sulfuric acid or its salts, sulfurous acid or its salts, and sulfate amides. Sulfuric acid of various purities can be used, for example, 96% sulfuric acid (concentrated sulfuric acid) can be used. Sulfurous acid includes 5% sulfurous acid water. Sulfates or sulfites include lithium, sodium, potassium, ammonium salts, etc. of sulfates or sulfites, which can be of varying degrees of neutralization. As the sulfate amide, sulfamic acid or the like can be used. In the sulfur oxoacid group-introducing step, it is preferable to use compound B in the same manner as in <phosphorus oxoacid group-introducing step>.
 硫黄オキソ酸基導入工程においては、セルロース原料に硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液を混合した後、当該セルロース原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、硫黄オキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、加熱処理温度は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。 In the step of introducing sulfur oxo acid groups, it is preferable to heat-treat the cellulose raw material after mixing the cellulose raw material with an aqueous solution containing sulfur oxo acid and urea and/or a urea derivative. As the heat treatment temperature, it is preferable to select a temperature at which sulfur oxoacid groups can be efficiently introduced while suppressing thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is preferably 100° C. or higher, more preferably 120° C. or higher, and even more preferably 150° C. or higher. The heat treatment temperature is preferably 300° C. or lower, more preferably 250° C. or lower, and even more preferably 200° C. or lower.
 加熱処理工程では、実質的に水分がなくなるまで加熱をすることが好ましい。このため、加熱処理時間は、セルロース原料に含まれる水分量や、硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液の添加量によって、変動するが、例えば、10秒以上10000秒以下とすることが好ましい。加熱処理には、種々の熱媒体を有する機器を利用することができ、例えば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。 In the heat treatment step, it is preferable to heat until the water content is substantially gone. For this reason, the heat treatment time varies depending on the amount of water contained in the cellulose raw material, sulfur oxo acid, and the added amount of the aqueous solution containing urea and/or urea derivatives, but for example, 10 seconds or more and 10000 seconds or less. preferably. For the heat treatment, equipment having various heat media can be used, such as hot air dryers, stirring dryers, rotary dryers, disk dryers, roll type heaters, plate type heaters, and fluidized bed dryers. , a band-type drying device, a filter drying device, a vibrating fluidized drying device, a flash drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
 硫黄オキソ酸基導入工程における硫黄オキソ酸基の導入量は、0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、硫黄オキソ酸基導入工程における硫黄オキソ酸基の導入量は、5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。硫黄オキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。また、硫黄オキソ酸基の導入量を上記範囲内とすることにより、高硬度かつ高透明な積層体が得られやすくなる。 The amount of sulfur oxoacid groups introduced in the step of introducing sulfur oxoacid groups is preferably 0.05 mmol/g or more, more preferably 0.10 mmol/g or more, and 0.20 mmol/g or more. is more preferable, 0.40 mmol/g or more is even more preferable, and 0.60 mmol/g or more is particularly preferable. The amount of sulfur oxo acid groups introduced in the step of introducing sulfur oxo acid groups is preferably 5.00 mmol/g or less, more preferably 3.00 mmol/g or less. By setting the amount of sulfur oxoacid groups to be introduced within the above range, the fiber raw material can be easily refined, and the stability of the fibrous cellulose can be enhanced. Also, by setting the amount of the sulfur oxoacid group to be introduced within the above range, it becomes easier to obtain a laminate having high hardness and high transparency.
 なお、微細繊維状セルロースの製造工程において、後述するような置換基除去処理工程が設けられる場合には、最終的に得られる微細繊維状セルロースが有する硫黄オキソ酸基量は、たとえば微細繊維状セルロース1g(質量)あたり0.50mmol/g未満であってもよく、0.40mmol/g以下であってもよく、0.30mmol/g以下であってもよく、0.25mmol/g以下であってもよく、0.15mmol/g以下であってもよい。 In addition, in the production process of fine fibrous cellulose, when a substituent removal treatment step as described later is provided, the amount of sulfur oxo acid groups possessed by the finally obtained fine fibrous cellulose is, for example, per 1 g (mass) may be less than 0.50 mmol/g, may be 0.40 mmol/g or less, may be 0.30 mmol/g or less, or may be 0.25 mmol/g or less; may be 0.15 mmol/g or less.
<ザンテート基導入工程(キサントゲン酸エステル化工程)>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、ザンテート基導入工程を含んでもよい。ザンテート基導入工程は、セルロースを含む繊維原料が有する水酸基を下記式(3)で表されるザンテート基で置換することで、ザンテート基を有するセルロース繊維(ザンテート基導入繊維)を得ることができる。
 ―OCSS……(3)
 ここで、Mは水素イオン、一価金属イオン、アンモニウムイオン、脂肪族又は芳香族アンモニウムイオンから選ばれる少なくとも一種である。
<Xanthate group introduction step (xanthate esterification step)>
The step of producing fine fibrous cellulose may include a step of introducing a xanthate group as the step of introducing an ionic substituent. In the xanthate group-introducing step, a cellulose fiber having a xanthate group (a xanthate group-introduced fiber) is obtained by substituting a xanthate group represented by the following formula (3) for a hydroxyl group of a fiber raw material containing cellulose.
- OCSS - M + (3)
Here, M + is at least one selected from hydrogen ions, monovalent metal ions, ammonium ions, and aliphatic or aromatic ammonium ions.
 ザンテート基導入工程では、まず、上記セルロースを含む繊維原料をアルカリ溶液で処理するアルカリ処理を行って、アルカリセルロースを得る。アルカリ溶液としては、水酸化アルカリ金属水溶液、水酸化アルカリ土類金属水溶液などが挙げられる。中でも、アルカリ溶液は、水酸化ナトリウムや水酸化カリウムなどの水酸化アルカリ金属水溶液であることが好ましく、水酸化ナトリウム水溶液であることが特に好ましい。アルカリ溶液が水酸化アルカリ金属水溶液の場合、水酸化アルカリ金属水溶液中の水酸化アルカリ金属濃度は4質量%以上であることが好ましく、5質量%以上であることがより好ましい。また、水酸化アルカリ金属水溶液中の水酸化アルカリ金属濃度は9質量%以下であることが好ましい。水酸化アルカリ金属濃度を上記下限値以上とすることにより、セルロースのマーセル化を十分に進行させることができ、その後のザンテート化の際に生じる副生成物の量を減らすことができ、結果として、ザンテート基導入繊維の収率を高めることができる。これにより、後述する解繊処理をより効果的に行うことができる。また、水酸化アルカリ金属濃度を上記上限値以下とすることにより、マーセル化を進行させつつも、セルロースの結晶領域にまで水酸化アルカリ金属水溶液が浸透することを抑制することができるため、セルロースI型の結晶構造が維持されやすくなり、微細繊維状セルロースの収率をより高めることができる。 In the xanthate group-introducing step, first, alkali treatment is performed by treating the fiber raw material containing cellulose with an alkali solution to obtain alkali cellulose. Examples of the alkaline solution include an aqueous alkali metal hydroxide solution and an aqueous alkaline earth metal hydroxide solution. Among them, the alkaline solution is preferably an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide, and particularly preferably an aqueous sodium hydroxide solution. When the alkaline solution is an aqueous alkali metal hydroxide solution, the concentration of the alkali metal hydroxide in the aqueous alkali metal hydroxide solution is preferably 4% by mass or more, more preferably 5% by mass or more. Further, the alkali metal hydroxide concentration in the aqueous alkali metal hydroxide solution is preferably 9% by mass or less. By setting the alkali metal hydroxide concentration to the above lower limit or more, cellulose mercerization can be sufficiently advanced, and the amount of by-products generated during the subsequent xanthate formation can be reduced. As a result, The yield of the xanthate group-introduced fiber can be increased. Thereby, the fibrillation process mentioned later can be performed more effectively. In addition, by setting the alkali metal hydroxide concentration to the above upper limit or less, it is possible to suppress the penetration of the aqueous alkali metal hydroxide solution into the crystalline region of cellulose while promoting mercerization. The crystalline structure of the mold is easily maintained, and the yield of fine fibrous cellulose can be further increased.
 上記アルカリ処理の時間は、30分間以上であることが好ましく、1時間以上であることがより好ましい。また、アルカリ処理の時間は、6時間以下であることが好ましく、5時間以下であることがより好ましい。アルカリ処理の時間を上記範囲内とすることにより、最終的な収率を高めることができ、生産性を高めることができる。 The duration of the alkali treatment is preferably 30 minutes or longer, more preferably 1 hour or longer. Also, the alkali treatment time is preferably 6 hours or less, more preferably 5 hours or less. By setting the alkali treatment time within the above range, the final yield can be increased and the productivity can be increased.
 上記アルカリ処理で得られたアルカリセルロースは、その後に固液分離して水溶液分をできるだけ除去しておくことが好ましい。これにより、次いで行われるザンテート化処理時の水分含有量を減らすことができ、反応を促進できる。固液分離の方法としては、例えば遠心分離や濾別などの一般的な脱水方法を用いることができる。なお、固液分離後のアルカリセルロースに含まれる水酸化アルカリ金属の濃度は固液分離後のアルカリセルロースの全質量に対して3質量%以上8質量%以下であることが好ましい。 It is preferable that the alkali cellulose obtained by the above alkali treatment is then subjected to solid-liquid separation to remove as much of the aqueous solution as possible. As a result, the water content during the subsequent xanthate treatment can be reduced, and the reaction can be promoted. As a solid-liquid separation method, a general dehydration method such as centrifugation or filtration can be used. The concentration of the alkali metal hydroxide contained in the alkali cellulose after solid-liquid separation is preferably 3% by mass or more and 8% by mass or less with respect to the total mass of the alkali cellulose after solid-liquid separation.
 ザンテート基導入工程では、アルカリ処理の後にザンテート化処理工程を行う。ザンテート化処理工程ではアルカリセルロースに二硫化炭素(CS)を反応させて、(-ONa)基を(-OCSSNa)基にしてザンテート基導入繊維を得る。なお、上記において、アルカリセルロースに導入された金属イオンは、代表してNaで記述しているが、他のアルカリ金属イオンでも同様の反応が進行する。 In the xanthate group-introducing step, the xanthate-forming treatment step is performed after the alkali treatment. In the xanthate treatment step, alkali cellulose is reacted with carbon disulfide (CS 2 ) to convert (-O - Na + ) groups to (-OCSS - Na + ) groups to obtain xanthate group-introduced fibers. In the above description, the metal ions introduced into the alkali cellulose are represented by Na + , but similar reactions proceed with other alkali metal ions.
 ザンテート化処理では、アルカリセルロース中のセルロースの絶乾質量に対して、10質量%以上の二硫化炭素を供給することが好ましい。また、ザンテート化処理において、二硫化炭素とアルカリセルロースとが接触する時間は、30分以上であることが好ましく、1時間以上であることがより好ましい。アルカリセルロースに二硫化炭素が接触することでザンテート化は速やかに進行するが、アルカリセルロースの内部にまで二硫化炭素が浸透するには時間がかかるため、反応時間を上記範囲とすることが好ましい。一方で、二硫化炭素とアルカリセルロースとが接触する時間は6時間以下であればよく、これにより脱水後のアルカリセルロースの塊に対しても十分に浸透が進んで、反応可能なザンテート化をほぼ完了させることができる。 In the xanthate treatment, it is preferable to supply 10% by mass or more of carbon disulfide relative to the absolute dry mass of cellulose in the alkali cellulose. In addition, in the xanthate-forming treatment, the contact time between carbon disulfide and alkali cellulose is preferably 30 minutes or longer, more preferably 1 hour or longer. Xanthate formation proceeds rapidly when carbon disulfide comes into contact with alkali cellulose, but it takes time for carbon disulfide to penetrate into the interior of alkali cellulose, so the reaction time is preferably within the above range. On the other hand, the contact time between the carbon disulfide and the alkali cellulose should be 6 hours or less, whereby the alkali cellulose mass after dehydration is sufficiently permeated, and the reactable xanthate is almost completely formed. can be completed.
 ザンテート化処理における反応温度は、46℃以下であることが好ましい。反応温度を上記範囲内とすることにより、アルカリセルロースの分解を抑制し易くなる。また、反応温度を上記範囲内とすることにより、均一に反応し易くなるため、副生成物の生成を抑制でき、さらには、生成したザンテート基の除去を抑制することもできる。 The reaction temperature in the xanthate-forming treatment is preferably 46°C or lower. By setting the reaction temperature within the above range, decomposition of alkali cellulose can be easily suppressed. Further, by setting the reaction temperature within the above range, uniform reaction is facilitated, so that the generation of by-products can be suppressed, and furthermore, the removal of the generated xanthate groups can be suppressed.
<塩素系酸化剤による酸化工程(第二のカルボキシ基導入工程)>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、塩素系酸化剤による酸化工程を含んでもよい。塩素系酸化剤による酸化工程では、塩素系酸化剤を湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカルボキシ基が導入される。
<Oxidation step with chlorine-based oxidizing agent (second carboxyl group introduction step)>
The step of producing fine fibrous cellulose may include an oxidation step using a chlorine-based oxidizing agent as the step of introducing an ionic substituent. In the oxidation step using a chlorine-based oxidizing agent, a carboxyl group is introduced into the fiber raw material by adding the chlorine-based oxidizing agent to a fiber raw material having hydroxyl groups in a wet or dry state and performing a reaction.
 塩素系酸化剤としては、次亜塩素酸、次亜塩素酸塩、亜塩素酸、亜塩素酸塩、塩素酸、塩素酸塩、過塩素酸、過塩素酸塩、二酸化塩素などが挙げられる。置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点から、塩素系酸化剤は、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、二酸化塩素であることが好ましい。塩素系酸化剤を添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。  Chlorine-based oxidizing agents include hypochlorous acid, hypochlorite, chlorous acid, chlorite, chloric acid, chlorate, perchloric acid, perchlorate, and chlorine dioxide. The chlorine-based oxidizing agent is preferably sodium hypochlorite, sodium chlorite, or chlorine dioxide from the viewpoints of introduction efficiency of substituents, defibration efficiency, cost, and ease of handling. When the chlorine-based oxidizing agent is added, it may be added as a reagent (solid or liquid) to the fiber raw material as it is, or it may be dissolved in an appropriate solvent and added.
 塩素系酸化剤による酸化工程における塩素系酸化剤の溶液中濃度は、たとえば有効塩素濃度に換算して、1質量%以上1,000質量%以下であることが好ましく、5質量%以上500質量%以下であることがより好ましく、10質量%以上100質量%以下であることがさらに好ましい。塩素系酸化剤の繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、10質量部以上10,000質量部以下であることがより好ましく、100質量部以上5,000質量部以下であることがさらに好ましい。 The concentration of the chlorine-based oxidizing agent in the solution in the oxidation step using the chlorine-based oxidizing agent is preferably 1% by mass or more and 1,000% by mass or less, and is preferably 5% by mass or more and 500% by mass in terms of effective chlorine concentration. It is more preferably 10% by mass or more and 100% by mass or less. The amount of the chlorine-based oxidizing agent added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 10 parts by mass or more and 10,000 parts by mass or less, and 100 parts by mass. It is more preferable that the content is 5,000 parts by mass or more and 5,000 parts by mass or less.
 塩素系酸化剤による酸化工程における塩素系酸化剤との反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。反応時のpHは、5以上15以下であることが好ましく、7以上14以下であることがより好ましく、9以上13以下であることがさらに好ましい。また、反応開始時、反応中のpHは塩酸や水酸化ナトリウムを適宜添加しながら一定(たとえば、pH11)を保つことが好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time with the chlorine-based oxidizing agent in the oxidation step with the chlorine-based oxidizing agent may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, and 10 minutes or more and 500 minutes or less. More preferably, the time is 20 minutes or more and 400 minutes or less. The pH during the reaction is preferably 5 or more and 15 or less, more preferably 7 or more and 14 or less, and even more preferably 9 or more and 13 or less. Moreover, at the start of the reaction, the pH during the reaction is preferably kept constant (for example, pH 11) by appropriately adding hydrochloric acid or sodium hydroxide. After the reaction, excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
<カルボキシアルキル化工程(第三のカルボキシ基導入工程)>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、カルボキシアルキル化工程を含んでもよい。必須成分として、反応性基とカルボキシ基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカルボキシ基が導入される。
<Carboxyalkylation step (third carboxy group introduction step)>
The production process of fine fibrous cellulose may include a carboxyalkylation process as an ionic substituent introduction process. A compound having a reactive group and a carboxyl group (compound E C ) as an essential component, an alkali compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives are added to a fiber having a hydroxyl group in a wet or dry state. A carboxyl group is introduced into the fiber raw material by adding it to the raw material and reacting it.
 反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
 化合物Eとしては、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点からモノクロロ酢酸、モノクロロ酢酸ナトリウム、2-クロロプロピオン酸、3-クロロプロピオン酸、2-クロロプロピオン酸ナトリウム、3-クロロプロピオン酸ナトリウムが好ましい。
 さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
Examples of reactive groups include halogenated alkyl groups, vinyl groups, epoxy groups (glycidyl groups), and the like.
As the compound E C , monochloroacetic acid, sodium monochloroacetate, 2-chloropropionic acid, 3-chloropropionic acid, and sodium 2-chloropropionate can be used from the viewpoints of introduction efficiency of substituents, and thus fibrillation efficiency, cost, and ease of handling. , sodium 3-chloropropionate is preferred.
Furthermore, as an optional component, it is preferable to use compound B in the same manner as in the above-described <Phosphorus oxoacid group-introducing step>, and the amount added is preferably as described above.
 化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。 When compound E C is added, it may be added as a reagent (solid or liquid) to the fiber raw material as it is, or it may be dissolved in an appropriate solvent and added. It is preferable that the fiber raw material is converted to alkali cellulose in advance or is converted to alkali cellulose simultaneously with the reaction. The method of alkali cellulose conversion is as described above.
 反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。 The temperature during the reaction is, for example, preferably 50°C or higher and 300°C or lower, more preferably 100°C or higher and 250°C or lower, and even more preferably 130°C or higher and 200°C or lower.
 化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。 The amount of the compound E to be added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 2 parts by mass or more and 10,000 parts by mass or less, and 5 parts by mass. It is more preferable that the amount is 1,000 parts by mass or less.
 反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、3分間以上500分間以下であることがより好ましく、5分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, more preferably 3 minutes or more and 500 minutes or less, and 5 minutes or more and 400 minutes or less. is more preferred. After the reaction, excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
<ホスホン基またはホスフィン基導入工程(ホスホアルキル化工程)>
 微細繊維状セルロースの製造工程は、イオン性置換基導入工程として、ホスホン基またはホスフィン基導入工程(ホスホアルキル化工程)を含んでもよい。ホスホアルキル化工程では、必須成分として、反応性基とホスホ基またはホスフィン基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にホスホン基またはホスフィン基が導入される。
<Phosphonic group or phosphine group introduction step (phosphoalkylation step)>
The step of producing fine fibrous cellulose may include a step of introducing a phosphonic group or a phosphine group (phosphoalkylation step) as the step of introducing an ionic substituent. In the phosphoalkylation step, a compound having a reactive group and a phospho group or a phosphine group (compound E A ) as an essential component, an alkali compound as an optional component, and a compound B selected from the aforementioned urea and its derivatives are wetted. Alternatively, a phosphonic group or a phosphine group is introduced into the fiber raw material by adding it to the fiber raw material having hydroxyl groups in a dry state and performing a reaction.
 反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
 化合物Eとしては、たとえばビニルホスホン酸、フェニルビニルホスホン酸、フェニルビニルホスフィン酸等が挙げられる。置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点から化合物Eはビニルホスホン酸であることが好ましい。
 さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
Examples of reactive groups include halogenated alkyl groups, vinyl groups, epoxy groups (glycidyl groups), and the like.
Compound EA includes, for example, vinylphosphonic acid, phenylvinylphosphonic acid, phenylvinylphosphinic acid and the like. Compound EA is preferably vinylphosphonic acid from the viewpoints of the efficiency of introduction of substituents, the efficiency of fibrillation, the cost, and the ease of handling.
Furthermore, as an optional component, it is preferable to use compound B in the same manner as in the above-described <Phosphorus oxoacid group-introducing step>, and the amount added is preferably as described above.
 化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。 When compound EA is added, it may be added as a reagent (solid or liquid) to the fiber raw material as it is, or it may be dissolved in an appropriate solvent and added. It is preferable that the fiber raw material is converted to alkali cellulose in advance or is converted to alkali cellulose simultaneously with the reaction. The method of alkali cellulose conversion is as described above.
 反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。 The temperature during the reaction is, for example, preferably 50°C or higher and 300°C or lower, more preferably 100°C or higher and 250°C or lower, and even more preferably 130°C or higher and 200°C or lower.
 化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。 The amount of Compound E A added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 2 parts by mass or more and 10,000 parts by mass or less, and 5 parts by mass. It is more preferable that the amount is 1,000 parts by mass or less.
 反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. is more preferred. After the reaction, excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
<スルホン基導入工程(スルホアルキル化工程)(第二のスルホン基導入工程)>
 イオン性置換基導入工程としては、スルホン基導入工程(スルホアルキル化工程)を含んでもよい。スルホアルキル化では、必須成分として、反応性基とスルホン基とを有する化合物(化合物E)と、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にスルホン基が導入される。
<Sulfone group introduction step (sulfoalkylation step) (second sulfone group introduction step)>
The ionic substituent introduction step may include a sulfone group introduction step (sulfoalkylation step). In the sulfoalkylation, a compound (compound E B ) having a reactive group and a sulfone group as essential components, an alkali compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives are mixed in a wet or dry state. The sulfone group is introduced into the fiber raw material by reacting with the fiber raw material having a hydroxyl group.
 反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
 化合物Eとしては、2-クロロエタンスルホン酸ナトリウム、ビニルスルホン酸ナトリウム、p-スチレンスルホン酸ナトリウム、2-アクリルアミド-2-メチルプロパンスルホン酸等が挙げられる。中でも、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点から化合物Eはビニルスルホン酸ナトリウムであることが好ましい。
 さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
Examples of reactive groups include halogenated alkyl groups, vinyl groups, epoxy groups (glycidyl groups), and the like.
Compound E B includes sodium 2-chloroethanesulfonate, sodium vinylsulfonate, sodium p-styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid and the like. Above all, the compound EB is preferably sodium vinyl sulfonate from the viewpoints of the efficiency of introduction of substituents, the efficiency of fibrillation, the cost, and the ease of handling.
Furthermore, as an optional component, it is preferable to use compound B in the same manner as in the above-described <Phosphorus oxoacid group-introducing step>, and the amount added is preferably as described above.
 化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。 When compound EB is added, it may be added as a reagent (solid or liquid) to the fiber raw material as it is, or it may be dissolved in an appropriate solvent and added. It is preferable that the fiber raw material is converted to alkali cellulose in advance or is converted to alkali cellulose simultaneously with the reaction. The method of alkali cellulose conversion is as described above.
 反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。 The temperature during the reaction is, for example, preferably 50°C or higher and 300°C or lower, more preferably 100°C or higher and 250°C or lower, and even more preferably 130°C or higher and 200°C or lower.
 化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。 The amount of Compound E B added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 2 parts by mass or more and 10,000 parts by mass or less, and 5 parts by mass. It is more preferable that the amount is 1,000 parts by mass or less.
 反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、15分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 15 minutes or more and 400 minutes or less. is more preferred. After the reaction, excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
<カチオン性基導入工程(カチオン化工程)>
 必須成分として、反応性基とカチオン性基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカチオン基が導入される。
<Cationic group introduction step (cationization step)>
A compound having a reactive group and a cationic group (compound E D ) as an essential component, an alkali compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives, in a wet or dry state, having a hydroxyl group Cationic groups are introduced into the fiber raw material by reacting with the fiber raw material.
 反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
 カチオン性基としては、アンモニウム基、ホスホニウム基、スルホニウム基等を挙げることができる。中でもカチオン性基はアンモニウム基であることが好ましい。
 化合物Eとしては、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点からグリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロリド等が好ましい。
 さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましい。添加量も前述のようにすることが好ましい。
Examples of reactive groups include halogenated alkyl groups, vinyl groups, epoxy groups (glycidyl groups), and the like.
Cationic groups include an ammonium group, a phosphonium group, a sulfonium group, and the like. Among them, the cationic group is preferably an ammonium group.
As the compound E D , glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrimethylammonium chloride, and the like are preferable from the viewpoints of introduction efficiency of substituents, defibration efficiency, cost, and ease of handling.
Furthermore, as an optional component, it is also preferable to use compound B in the above-described <Phosphorus oxoacid group-introducing step> in the same manner. It is preferable that the amount to be added is also as described above.
 化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。 When compound E D is added, it may be added as it is as a reagent (solid or liquid) to the fiber raw material, or it may be added after being dissolved in an appropriate solvent. It is preferable that the fiber raw material is converted to alkali cellulose in advance or is converted to alkali cellulose simultaneously with the reaction. The method of alkali cellulose conversion is as described above.
 反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。 The temperature during the reaction is, for example, preferably 50°C or higher and 300°C or lower, more preferably 100°C or higher and 250°C or lower, and even more preferably 130°C or higher and 200°C or lower.
 化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。 The amount of compound E D added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 2 parts by mass or more and 10,000 parts by mass or less, and 5 parts by mass. It is more preferable that the amount is 1,000 parts by mass or less.
 反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time may vary depending on the reaction temperature, but is preferably, for example, 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. is more preferred. After the reaction, excess reaction reagents, by-products and the like may be washed with water and removed by filtration or the like.
<洗浄工程>
 本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりイオン性置換基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<Washing process>
In the method for producing fine fibrous cellulose according to the present embodiment, the ionic substituent-introduced fiber can be subjected to a washing step, if necessary. The washing step is performed by washing the ionic substituent-introduced fiber with, for example, water or an organic solvent. Further, the washing step may be performed after each step described later, and the number of washings performed in each washing step is not particularly limited.
<アルカリ処理工程>
 微細繊維状セルロースを製造する場合、イオン性置換基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、イオン性置換基導入繊維を浸漬する方法が挙げられる。
<Alkali treatment process>
When producing fine fibrous cellulose, the fiber raw material may be subjected to alkali treatment between the ionic substituent introduction step and the fibrillation treatment step described later. The method of alkali treatment is not particularly limited, but includes, for example, a method of immersing the ionic substituent-introduced fiber in an alkali solution.
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。 The alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In the present embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkaline compound because of its high versatility. Moreover, the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably water or a polar solvent including a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent including at least water. As the alkaline solution, for example, an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution is preferable because of its high versatility.
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるイオン性置換基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばイオン性置換基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。繊維状セルロースがアニオン性基を有する場合、アルカリ処理では、そのアニオン性基の中和処理及び/又はイオン交換処理が行われてもよい。この場合、アルカリ溶液の温度は室温であることが好ましい。 Although the temperature of the alkaline solution in the alkaline treatment step is not particularly limited, it is preferably, for example, 5°C or higher and 80°C or lower, more preferably 10°C or higher and 60°C or lower. The immersion time of the ionic substituent-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, more preferably 10 minutes or more and 20 minutes or less. The amount of the alkaline solution used in the alkaline treatment is not particularly limited, but for example, it is preferably 100% by mass or more and 100000% by mass or less, and 1000% by mass or more and 10000% by mass with respect to the absolute dry mass of the ionic substituent-introduced fiber. The following are more preferable. When the fibrous cellulose has anionic groups, the alkali treatment may include neutralization and/or ion exchange of the anionic groups. In this case, the temperature of the alkaline solution is preferably room temperature.
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、イオン性置換基導入工程の後であってアルカリ処理工程の前に、イオン性置換基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったイオン性置換基導入繊維を水や有機溶媒により洗浄することが好ましい。 In order to reduce the amount of alkaline solution used in the alkali treatment step, the ionic substituent-introduced fiber may be washed with water or an organic solvent after the ionic substituent introduction step and before the alkali treatment step. After the alkali treatment step and before the fibrillation treatment step, it is preferable to wash the alkali-treated ionic substituent-introduced fibers with water or an organic solvent from the viewpoint of improving handleability.
<酸処理工程>
 微細繊維状セルロースを製造する場合、イオン性置換基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、イオン性置換基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
<Acid treatment step>
When producing fine fibrous cellulose, the fiber raw material may be subjected to an acid treatment between the step of introducing an ionic substituent and the later-described fibrillation treatment step. For example, an ionic substituent introduction step, an acid treatment, an alkali treatment and a fibrillation treatment may be performed in this order.
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることが特に好ましい。 The acid treatment method is not particularly limited, but includes, for example, a method of immersing the fiber raw material in an acidic liquid containing an acid. Although the concentration of the acid liquid used is not particularly limited, it is preferably 10% by mass or less, more preferably 5% by mass or less. Moreover, the pH of the acidic liquid to be used is not particularly limited. Examples of acids contained in the acid solution include inorganic acids, sulfonic acids, and carboxylic acids. Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid and boric acid. Examples of sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Carboxylic acids include, for example, formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, and tartaric acid. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。微細繊維状セルロースがカチオン性基を有する場合、酸処理では、そのカチオン性基の中和処理及び/又はイオン交換処理が行われてもよい。この場合、酸溶液の温度は室温であることが好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5°C or higher and 100°C or lower, more preferably 20°C or higher and 90°C or lower. The immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, more preferably 10 minutes or more and 60 minutes or less. The amount of the acid solution used in the acid treatment is not particularly limited. is more preferred. When the fine fibrous cellulose has cationic groups, the acid treatment may include neutralization and/or ion exchange of the cationic groups. In this case, the temperature of the acid solution is preferably room temperature.
<解繊処理>
 イオン性置換基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
<Fibrillation treatment>
By defibrating the ionic substituent-introduced fibers in the fibrillation treatment step, fine fibrous cellulose can be obtained. In the defibration treatment process, for example, a fibrillation treatment device can be used. The fibrillation treatment device is not particularly limited, but for example, a high-speed fibrillator, a grinder (stone mill type pulverizer), a high pressure homogenizer, an ultra-high pressure homogenizer, a high pressure impact type pulverizer, a ball mill, a bead mill, a disk refiner, a conical refiner, and a biaxial refiner. A kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, a beater, or the like can be used. Among the above defibration equipment, it is more preferable to use a high-speed fibrillation machine, a high-pressure homogenizer, and an ultrahigh-pressure homogenizer, which are less affected by the grinding media and less likely to cause contamination.
 解繊処理工程においては、たとえばイオン性置換基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。 In the fibrillation treatment step, for example, the ionic substituent-introduced fibers are preferably diluted with a dispersion medium to form a slurry. As the dispersion medium, one or more selected from organic solvents such as water and polar organic solvents can be used. The polar organic solvent is not particularly limited, but alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like. Examples of polyhydric alcohols include ethylene glycol, propylene glycol and glycerin. Ketones include acetone, methyl ethyl ketone (MEK), and the like. Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether and the like. Examples of esters include ethyl acetate and butyl acetate. Aprotic polar solvents include dimethylsulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
 解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、イオン性置換基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのイオン性置換基導入繊維以外の固形分が含まれていてもよい。 The solid content concentration of fine fibrous cellulose during defibration can be set as appropriate. Further, the slurry obtained by dispersing the ionic substituent-introduced fiber in the dispersion medium may contain a solid content other than the ionic substituent-introduced fiber, such as urea having hydrogen bonding properties.
<窒素除去処理工程>
 微細繊維状セルロースの製造工程は、繊維状セルロースに導入された窒素量や系内に存在する窒素量を低減させる工程(窒素除去処理工程)をさらに含んでもよい。窒素量を低減させることで、さらに着色を抑制し得る微細繊維状セルロースを得ることができる。窒素除去処理工程は、解繊処理工程の後に設けられてもよいが、解繊処理工程の前に設けられることが好ましい。
<Nitrogen removal treatment step>
The step of producing fine fibrous cellulose may further include a step of reducing the amount of nitrogen introduced into the fibrous cellulose and the amount of nitrogen present in the system (nitrogen removal treatment step). By reducing the nitrogen content, it is possible to obtain fine fibrous cellulose that can further suppress coloration. The nitrogen removal treatment step may be provided after the defibration treatment step, but is preferably provided before the fibrillation treatment step.
 窒素除去処理工程においては、イオン性置換基導入繊維を含むスラリーのpHを10以上に調整し、加熱処理を行うことが好ましい。加熱処理においては、スラリーの液温を50℃以上100℃以下とすることが好ましく、加熱時間は15分以上180分以下とすることが好ましい。イオン性置換基導入繊維を含むスラリーのpHを調整する際には、上述したアルカリ処理工程で用いることができるアルカリ化合物をスラリーに添加することが好ましい。 In the nitrogen removal treatment step, it is preferable to adjust the pH of the slurry containing the ionic substituent-introduced fiber to 10 or higher and perform heat treatment. In the heat treatment, the liquid temperature of the slurry is preferably 50° C. or higher and 100° C. or lower, and the heating time is preferably 15 minutes or longer and 180 minutes or shorter. When adjusting the pH of the slurry containing the ionic substituent-introduced fiber, it is preferable to add an alkali compound that can be used in the alkali treatment step described above to the slurry.
 窒素除去処理工程の後、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、例えば水や有機溶媒によりイオン性置換基導入繊維を洗浄することにより行われる。また、各洗浄工程において実施される洗浄回数は、特に限定されない。 After the nitrogen removal treatment process, the ionic substituent-introduced fiber can be washed if necessary. The washing step is performed by washing the ionic substituent-introduced fiber with, for example, water or an organic solvent. Moreover, the number of washings performed in each washing step is not particularly limited.
<置換基除去処理工程>
 微細繊維状セルロースの製造方法は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去する工程を含んでもよい。このような工程を経ることで、置換基導入量が低いが、繊維幅の小さい微細繊維状セルロースを得ることもできる。本明細書において、微細繊維状セルロースから、置換基の少なくとも一部を除去する工程は、置換基除去処理工程とも言う。
<Substituent removal treatment step>
The method for producing fine fibrous cellulose may include a step of removing at least part of the substituent from fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less. Through such steps, it is possible to obtain fine fibrous cellulose with a small fiber width, although the amount of substituent introduced is low. In this specification, the step of removing at least part of the substituents from the fine fibrous cellulose is also referred to as a substituent removal treatment step.
 置換基除去処理工程としては、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを加熱処理する工程、酵素処理する工程、酸処理する工程、アルカリ処理する工程等が挙げられる。これらは単独で行ってもよく、組み合わせて行ってもよい。中でも、置換基除去処理工程は、加熱処理する工程又は酵素処理する工程であることが好ましい。上記処理工程を経ることで、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部が除去され、例えば、置換基導入量が0.5mmol/g未満の微細繊維状セルロースを得ることができる。 Examples of the substituent-removing treatment step include a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, and an alkali treatment step. These may be carried out singly or in combination. Among them, the substituent removal treatment step is preferably a heat treatment step or an enzyme treatment step. Through the above treatment step, at least a portion of the substituents are removed from the fine fibrous cellulose having the substituents and a fiber width of 1000 nm or less, for example, the amount of the substituent introduced is less than 0.5 mmol/g. of fine fibrous cellulose can be obtained.
 置換基除去処理工程は、スラリー状で行われることが好ましい。すなわち、置換基除去処理工程は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを含むスラリーを、加熱処理する工程、酵素処理する工程、酸処理する工程、アルカリ処理する工程等であることが好ましい。置換基除去処理工程をスラリー状で実施することによって、置換基除去処理時の加熱等によって生じる着色物質や、添加もしくは発生する酸、アルカリ、塩などの残留を防ぐことができる。これにより、繊維層や積層体の着色を抑制することができる。また、置換基除去処理後に除去した置換基由来の塩の除去処理を行う場合、塩の除去効率を高めることも可能となる。 The substituent removal treatment step is preferably performed in a slurry state. That is, in the substituent removal treatment step, a slurry containing fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less is subjected to heat treatment, enzyme treatment, acid treatment, and alkali treatment. etc. is preferable. By carrying out the substituent removal treatment step in a slurry form, it is possible to prevent residual coloring substances caused by heating or the like during the substituent removal treatment, and added or generated acids, alkalis, salts, and the like. Thereby, coloring of a fiber layer or a laminated body can be suppressed. In addition, when the salt derived from the removed substituent is removed after the substituent removal treatment, it is possible to increase the salt removal efficiency.
 置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを含むスラリーに対して置換基除去処理を行う場合、該スラリー中の微細繊維状セルロースの濃度は、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましい。また、該スラリー中の微細繊維状セルロースの濃度は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。スラリー中の微細繊維状セルロースの濃度を上記範囲内とすることにより、置換基除去処理をより効率よく行うことができる。さらに、スラリー中の微細繊維状セルロースの濃度を上記範囲内とすることにより、置換基除去処理時の加熱等によって生じる着色物質や、添加もしくは発生する酸、アルカリ、塩などの残留を防ぐことができる。これにより、繊維層や積層体の着色を抑制することができる。また、置換基除去処理後に除去した置換基由来の塩の除去処理を行う場合、塩の除去効率を高めることも可能となる。 When a slurry containing fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less is subjected to the substituent removal treatment, the concentration of the fine fibrous cellulose in the slurry is 0.05% by mass or more. It is preferably 0.1% by mass or more, more preferably 0.2% by mass or more. The concentration of fine fibrous cellulose in the slurry is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. By setting the concentration of the fine fibrous cellulose in the slurry within the above range, the substituent removal treatment can be performed more efficiently. Furthermore, by setting the concentration of the fine fibrous cellulose in the slurry within the above range, it is possible to prevent the residual coloring matter caused by heating during the substituent removal treatment, and the acid, alkali, salt, etc. added or generated. can. Thereby, coloring of a fiber layer or a laminated body can be suppressed. In addition, when the salt derived from the removed substituent is removed after the substituent removal treatment, it is possible to increase the salt removal efficiency.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを加熱処理する工程である場合、加熱処理する工程における加熱温度は、40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましい。また、加熱処理する工程における加熱温度は、250℃以下であることが好ましく、230℃以下であることがより好ましく、200℃以下であることがさらに好ましい。中でも、置換基除去処理工程に供する微細繊維状セルロースが有する置換基がリンオキソ酸基である場合、加熱処理する工程における加熱温度は、80℃以上であることが好ましく、100℃以上であることがより好ましく、120℃以上であることがさらに好ましい。 When the substituent-removing treatment step is a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, the heating temperature in the heat-treating step is preferably 40° C. or higher. , more preferably 50° C. or higher, and even more preferably 60° C. or higher. The heating temperature in the heat treatment step is preferably 250° C. or lower, more preferably 230° C. or lower, and even more preferably 200° C. or lower. Above all, when the substituent of the fine fibrous cellulose to be subjected to the substituent removal treatment step is a phosphorous acid group, the heating temperature in the heat treatment step is preferably 80° C. or higher, more preferably 100° C. or higher. More preferably, it is 120° C. or higher.
 置換基除去処理工程が加熱処理する工程である場合、加熱処理工程において使用できる加熱装置としては、特に限定されないが、熱風加熱装置、蒸気加熱装置、電熱加熱装置、水熱加熱装置、火力加熱装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波加熱装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置を用いることができる。蒸発を防ぐ観点から、加熱は密閉系で行われることが好ましく、さらに加熱温度を高める観点から、耐圧性の装置内や容器内で行われることが好ましい。加熱処理はバッチ処理であってもよく、バッチ連続処理であってもよく、連続処理であってもよい。 When the substituent removal treatment step is a heat treatment step, the heating device that can be used in the heat treatment step is not particularly limited, but hot air heating device, steam heating device, electric heating device, hydrothermal heating device, thermal heating device. , infrared heating device, far infrared heating device, microwave heating device, high frequency heating device, stirring drying device, rotary drying device, disk drying device, roll type heating device, plate type heating device, fluidized bed drying device, band type drying device , a filtration drying apparatus, a vibrating fluidized drying apparatus, a flash drying apparatus, and a vacuum drying apparatus can be used. From the viewpoint of preventing evaporation, the heating is preferably performed in a closed system, and from the viewpoint of increasing the heating temperature, it is preferably performed in a pressure-resistant device or container. The heat treatment may be batch treatment, batch continuous treatment, or continuous treatment.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを酵素処理する工程である場合、酵素処理する工程では、置換基の種類に応じて、リン酸エステル加水分解酵素、硫酸エステル加水分解酵素等を用いることが好ましい。 When the substituent removal treatment step is a step of enzymatically treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, in the enzymatic treatment step, depending on the type of substituent, phosphate ester It is preferable to use a hydrolase, a sulfate ester hydrolase, or the like.
 酵素処理工程では、微細繊維状セルロース1gに対して酵素活性が0.1nkat以上となるよう酵素を添加することが好ましく、1.0nkat以上となるよう酵素を添加することがより好ましく、10nkat以上となるよう酵素を添加することがさらに好ましい。また、微細繊維状セルロース1gに対して酵素活性が100000nkat以下となるよう酵素を添加することが好ましく、50000nkat以下となるよう酵素を添加することがより好ましく10000nkat以下となるよう酵素を添加することがさらに好ましい。微細繊維状セルロース分散液(スラリー)に酵素を添加した後には、0℃以上50℃未満の条件下で1分以上100時間以下処理を行うことが好ましい。 In the enzymatic treatment step, the enzyme is preferably added so that the enzyme activity per 1 g of fine fibrous cellulose is 0.1 nkat or more, more preferably 1.0 nkat or more, and 10 nkat or more. It is more preferable to add the enzyme so that the Further, the enzyme is preferably added so that the enzyme activity is 100,000 nkat or less, more preferably 50,000 nkat or less, and more preferably 10,000 nkat or less, per 1 g of fine fibrous cellulose. More preferred. After adding the enzyme to the fine fibrous cellulose dispersion (slurry), it is preferable to carry out the treatment at a temperature of 0° C. or more and less than 50° C. for 1 minute or more and 100 hours or less.
 酵素反応の後、酵素を失活させる工程を設けてもよい。酵素を失活させる方法としては、酵素処理を施したスラリーに酸成分もしくはアルカリ成分を添加して酵素を失活させる方法、酵素処理を施したスラリーの温度を90℃以上に上昇させて酵素を失活させる方法が挙げられる。 After the enzymatic reaction, a step of deactivating the enzyme may be provided. As a method for deactivating the enzyme, an acid component or an alkaline component is added to the enzyme-treated slurry to deactivate the enzyme. A method of deactivation can be mentioned.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを酸処理する工程である場合、酸処理する工程では、上述した酸処理工程で用いることができる酸化合物をスラリーに添加することが好ましい。 When the substituent-removing treatment step is a step of acid-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, the acid-treating step includes acid that can be used in the acid treatment step described above. It is preferred to add the compound to the slurry.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースをアルカリ処理する工程である場合、アルカリ処理する工程では、上述したアルカリ処理工程で用いることができるアルカリ化合物をスラリーに添加することが好ましい。 When the substituent-removing treatment step is a step of treating with an alkali fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, the step of treating with an alkali includes an alkali that can be used in the above-described alkali treatment step. It is preferred to add the compound to the slurry.
 置換基除去処理工程では、置換基除去反応が均一に進むことが好ましい。反応を均一に進めるためには、例えば微細繊維状セルロースを含むスラリーを撹拌してもよく、加熱媒体と接するスラリーの比表面積を高めてもよい。スラリーを撹拌する方法としては、外部からの機械的シェアを与えてもよく、反応中のスラリーの送液速度を上げることで自己撹拌を促してもよい。 In the substituent removal treatment step, it is preferable that the substituent removal reaction proceeds uniformly. In order to proceed the reaction uniformly, for example, the slurry containing fine fibrous cellulose may be stirred, or the specific surface area of the slurry in contact with the heating medium may be increased. As a method for agitating the slurry, a mechanical shear may be applied from the outside, or the self-agitation may be promoted by increasing the feeding speed of the slurry during the reaction.
 置換基除去処理工程では、スペーサー分子を添加してもよい。スペーサー分子は、隣接する微細繊維状セルロースの間に入り込み、それにより微細繊維状セルロース間に微細なスペースを設けるためのスペーサーとして働く。置換基除去処理工程において、このようなスペーサー分子を添加することで、置換基除去処理後の微細繊維状セルロースの凝集を抑制することができる。これにより、繊維層や積層体の透明性をより効果的に高めることができる。 A spacer molecule may be added in the substituent removal treatment step. Spacer molecules act as spacers to get between adjacent fibrous celluloses, thereby providing fine spaces between the fine fibrous celluloses. By adding such a spacer molecule in the substituent-removing treatment step, aggregation of the fine fibrous cellulose after the substituent-removing treatment can be suppressed. Thereby, the transparency of the fiber layer or laminate can be more effectively improved.
 スペーサー分子は水溶性有機化合物であることが好ましい。水溶性有機化合物としては、例えば、糖や水溶性高分子、尿素等を挙げることができる。具体的には、トレハロース、尿素、ポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)、カルボキシメチルセルロース、ポリビニルアルコール(PVA)等を挙げることができる。また、水溶性有機化合物として、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミド、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチン、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン、ヒアルロン酸、ヒアルロン酸の金属塩を用いることもできる。 The spacer molecule is preferably a water-soluble organic compound. Examples of water-soluble organic compounds include sugars, water-soluble polymers, and urea. Specifically, trehalose, urea, polyethylene glycol (PEG), polyethylene oxide (PEO), carboxymethylcellulose, polyvinyl alcohol (PVA) and the like can be mentioned. Examples of water-soluble organic compounds include alkyl methacrylate/acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, propylene glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, and polyacrylamide. , xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, pullulan, carrageenan, pectin, cationic starch, raw starch, oxidized starch, etherified starch, esterified starch, starches such as amylose, glycerin , diglycerin, polyglycerin, hyaluronic acid, and metal salts of hyaluronic acid can also be used.
 また、スペーサー分子として公知の顔料を使用することができる。例えば、カオリン(含クレー)、炭酸カルシウム、酸化チタン、酸化亜鉛、非晶質シリカ(含コロイダルシリカ)、酸化アルミニウム、ゼオライト、セピオライト、スメクタイト、合成スメクタイト、珪酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、珪藻土、スチレン系プラスチックピグメント、ハイドロタルサイト、尿素樹脂系プラスチックピグメント、ベンゾグアナミン系プラスチックピグメント等が挙げられる。 Also, known pigments can be used as spacer molecules. For example, kaolin (including clay), calcium carbonate, titanium oxide, zinc oxide, amorphous silica (including colloidal silica), aluminum oxide, zeolite, sepiolite, smectite, synthetic smectite, magnesium silicate, magnesium carbonate, magnesium oxide, diatomaceous earth, Examples include styrene plastic pigments, hydrotalcite, urea resin plastic pigments, benzoguanamine plastic pigments, and the like.
<pH調整工程>
 上述した置換基除去処理工程がスラリー状で行われる場合、置換基除去処理工程の前に、微細繊維状セルロースを含むスラリーのpHを調整する工程を設けてもよい。例えば、セルロース繊維にイオン性置換基を導入し、このイオン性置換基の対イオンがNaである場合、解繊後の微細繊維状セルロースを含むスラリーは弱アルカリ性を示す。この状態で加熱を行うと、セルロースの分解により着色要因の一つである単糖が発生する場合があるため、スラリーのpHを8以下に調整することが好ましく、6以下に調整することがより好ましい。また、酸性条件においても同様に単糖が発生する場合があるため、スラリーのpHを3以上に調整することが好ましく、4以上に調整することがより好ましい。
<pH adjustment step>
When the above-described substituent-removing treatment step is performed in the form of a slurry, a step of adjusting the pH of the slurry containing fine fibrous cellulose may be provided before the substituent-removing treatment step. For example, when an ionic substituent is introduced into cellulose fibers and the counter ion of this ionic substituent is Na + , the slurry containing fine fibrous cellulose after fibrillation exhibits weak alkalinity. If heating is performed in this state, monosaccharides, which are one of the coloring factors, may be generated due to decomposition of cellulose, so it is preferable to adjust the pH of the slurry to 8 or less, more preferably 6 or less. preferable. In addition, since monosaccharides may also be generated under acidic conditions, the pH of the slurry is preferably adjusted to 3 or higher, more preferably 4 or higher.
 また、置換基を有する微細繊維状セルロースがリン酸基を有する微細繊維状セルロースである場合、置換基の除去効率向上の観点から、リン酸基のリンが求核攻撃を受けやすい状態であることが好ましい。求核攻撃を受けやすいのは、セルロース-O-P(=O)(-O-H)(-O-Na)と表される中和度1の状態であり、この状態とするには、スラリーのpHを3以上8以下に調整することが好ましく、pHを4以上6以下に調整することがさらに好ましい。 Further, when the fine fibrous cellulose having a substituent is a fine fibrous cellulose having a phosphate group, from the viewpoint of improving the efficiency of removing the substituent, phosphorus of the phosphate group should be in a state of being susceptible to nucleophilic attack. is preferred. Cellulose -OP (=O) (-OH + ) (-O-Na + ) with a degree of neutralization of 1 is susceptible to nucleophilic attack. Preferably, the pH of the slurry is adjusted to 3 or more and 8 or less, more preferably 4 or more and 6 or less.
 pHを調整する手段は特に限定されないが、例えば微細繊維状セルロースを含むスラリーに酸成分やアルカリ成分を添加してもよい。酸成分は無機酸および有機酸のいずれであってもよく、無機酸としては、硫酸、塩酸、硝酸、リン酸等が挙げられる。有機酸としては、ギ酸、酢酸、クエン酸、リンゴ酸、乳酸、アジピン酸、セバシン酸、ステアリン酸、マレイン酸、コハク酸、酒石酸、フマル酸、グルコン酸等が挙げられる。アルカリ成分は、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。無機アルカリ化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸水素リチウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどが挙げられる。有機アルカリ化合物としては、アンモニア、ヒドラジン、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、シクロヘキシルアミン、アニリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ピリジン、N,N-ジメチル-4-アミノピリジン等が挙げられる。 Although the means for adjusting the pH is not particularly limited, for example, an acid component or an alkali component may be added to the slurry containing fine fibrous cellulose. The acid component may be either an inorganic acid or an organic acid. Examples of inorganic acids include sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid. Organic acids include formic acid, acetic acid, citric acid, malic acid, lactic acid, adipic acid, sebacic acid, stearic acid, maleic acid, succinic acid, tartaric acid, fumaric acid, gluconic acid and the like. The alkali component may be an inorganic alkali compound or an organic alkali compound. Examples of inorganic alkali compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, lithium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium carbonate, and sodium hydrogen carbonate. Organic alkaline compounds include ammonia, hydrazine, methylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, diaminoethane, diaminopropane, diaminobutane, diaminopentane, diaminohexane, cyclohexylamine, aniline, tetramethyl ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, pyridine, N,N-dimethyl-4-aminopyridine and the like.
 また、pH調整工程では、pHを調整するためにイオン交換処理を行ってもよい。イオン交換処理に際しては、強酸性陽イオン交換樹脂もしくは弱酸性イオン交換樹脂を用いることができる。適切な量の陽イオン交換樹脂で十分な時間処理することにより、目的とするpHの微細繊維状セルロースを含むスラリーを得ることができる。さらに、pH調整工程では酸成分やアルカリ成分の添加とイオン交換処理を組み合わせてもよい。 In addition, in the pH adjustment step, ion exchange treatment may be performed to adjust the pH. For the ion exchange treatment, a strongly acidic cation exchange resin or a weakly acidic ion exchange resin can be used. By treating with an appropriate amount of cation exchange resin for a sufficient period of time, a slurry containing fine fibrous cellulose at a desired pH can be obtained. Furthermore, in the pH adjustment step, the addition of an acid component or an alkali component and the ion exchange treatment may be combined.
<塩の除去処理工程>
 置換基除去処理工程の後には、除去した置換基由来の塩の除去処理を行うことが好ましい。置換基由来の塩を除去することで、着色を抑制し得る微細繊維状セルロースが得られ易くなる。置換基由来の塩を除去する手段は特に限定されないが、例えば洗浄処理が挙げられる。洗浄処理は、たとえば水や有機溶媒により、置換基除去処理で凝集した微細繊維状セルロースを洗浄することにより行われる。黄変をより効果的に抑制する観点から、洗浄処理は濾過脱水や、遠心脱水、遠心分離により行うことが好ましい。
<Salt removal treatment step>
After the substituent-removing treatment step, it is preferable to perform a treatment for removing salts derived from the removed substituents. By removing the salt derived from the substituent, it becomes easier to obtain fine fibrous cellulose capable of suppressing coloration. Although the means for removing the salt derived from the substituent is not particularly limited, washing treatment can be mentioned, for example. The washing treatment is performed, for example, by washing the fine fibrous cellulose aggregated by the substituent removal treatment with water or an organic solvent. From the viewpoint of more effectively suppressing yellowing, the washing treatment is preferably performed by filtration dehydration, centrifugal dehydration, or centrifugation.
<均一分散処理工程>
 置換基除去処理工程の後には、置換基除去処理を経て得られた微細繊維状セルロースを均一分散処理する工程を設けてもよい。微細繊維状セルロースに対して置換基除去処理を施すことにより、少なくとも一部の微細繊維状セルロースが凝集する。均一分散処理工程においては、このように凝集した微細繊維状セルロースを均一分散する工程である。
<Uniform dispersion treatment step>
After the substituent-removing treatment step, a step of uniformly dispersing the fine fibrous cellulose obtained through the substituent-removing treatment may be provided. By subjecting the fine fibrous cellulose to the substituent-removing treatment, at least a part of the fine fibrous cellulose aggregates. The uniformly dispersing treatment step is a step of uniformly dispersing the aggregated fine fibrous cellulose.
 均一分散処理工程では、例えば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザー高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機又はビーターなどを使用することができる。上記均一分散処理装置の中でも、高速解繊機、高圧ホモジナイザーを用いることがより好ましい。 In the uniform dispersion treatment process, for example, high-speed fibrillation machine, grinder (stone mill type crusher), high pressure homogenizer, high pressure collision type crusher, ball mill, bead mill, disc refiner, conical refiner, twin screw kneader, vibration mill, under high speed rotation A homomixer, an ultrasonic disperser, a beater, or the like can be used. Among the uniform dispersion treatment apparatuses, it is more preferable to use a high-speed defibrator and a high-pressure homogenizer.
 均一分散処理工程における処理条件は特に限定されないが、処理中の微細繊維状セルロースの最高移動速度や、処理時の圧力を大きくすることが好ましい。高速解繊機においては、その周速が20m/sec以上であることが好ましく、25m/sec以上であることがより好ましく、30m/sec以上であることがさらに好ましい。高圧ホモジナイザーは、高速解繊機よりも、処理中の微細繊維状セルロースの最高移動速度や、処理時の圧力が大きくなるため、より好ましく使用できる。高圧ホモジナイザー処理においては、処理時の圧力は1MPa以上であることが好ましく、10MPa以上であることがより好ましく、50MPa以上であることがさらに好ましく、100MPa以上であることが特に好ましい。また、高圧ホモジナイザー処理においては、処理時の圧力は350MPa以下であることが好ましく、300MPa以下であることがより好ましく、250MPa以下がさらに好ましい。 The treatment conditions in the uniform dispersion treatment step are not particularly limited, but it is preferable to increase the maximum moving speed of the fine fibrous cellulose during treatment and the pressure during treatment. The peripheral speed of the high-speed defibrator is preferably 20 m/sec or higher, more preferably 25 m/sec or higher, and even more preferably 30 m/sec or higher. A high-pressure homogenizer can be used more preferably than a high-speed defibrator because the maximum moving speed of fine fibrous cellulose during treatment and the pressure during treatment are higher. In the high-pressure homogenizer treatment, the pressure during treatment is preferably 1 MPa or higher, more preferably 10 MPa or higher, even more preferably 50 MPa or higher, and particularly preferably 100 MPa or higher. In the high-pressure homogenizer treatment, the pressure during treatment is preferably 350 MPa or less, more preferably 300 MPa or less, and even more preferably 250 MPa or less.
 なお、均一分散処理工程においては、上述したスペーサー分子を新たに添加してもよい。均一分散処理工程において、このようなスペーサー分子を添加することで、微細繊維状セルロースの均一分散をよりスムーズに行うことができる。これにより、繊維層や積層体の透明性をより効果的に高めることができる。 In addition, in the uniform dispersion treatment step, the spacer molecules described above may be newly added. By adding such a spacer molecule in the uniform dispersion treatment step, uniform dispersion of the fine fibrous cellulose can be carried out more smoothly. Thereby, the transparency of the fiber layer or laminate can be more effectively improved.
 以上のようにして、繊維層形成用の微細繊維状セルロース分散液が得られる。 As described above, a fine fibrous cellulose dispersion for forming a fiber layer is obtained.
<樹脂成分>
 繊維層は、上述した微細繊維状セルロースに加えて、樹脂成分をさらに含んでもよい。繊維層に含まれる樹脂成分は親水性高分子又は親水性低分子であることが好ましく、親水性高分子であることが特に好ましい。
<Resin component>
The fiber layer may further contain a resin component in addition to the fine fibrous cellulose described above. The resin component contained in the fiber layer is preferably a hydrophilic polymer or a hydrophilic low-molecular weight compound, and more preferably a hydrophilic polymer component.
 親水性高分子としては、ポリエチレングリコール、ポリエチレンオキサイド、カゼイン、デキストリン、澱粉、変性澱粉、ポリビニルアルコール、変性ポリビニルアルコール(アセトアセチル化ポリビニルアルコール等)、ポリビニルブチラール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸塩類、ポリアクリルアミド、アクリル酸アルキルエステル共重合体、ウレタン系共重合体、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシエチルセルロース、カルボキシメチルセルロース等)等が挙げられる。また、繊維層には、上述した置換基除去処理工程等で用いられるスペーサー分子が含まれていてもよい。中でも、繊維層及び積層体の透明性を向上させる観点から、親水性高分子は、ポリビニルアルコール又はセルロース誘導体であることが好ましい。また、親水性高分子としてセルロース誘導体を用いることにより、繊維層及び積層体の透明性を向上させることに加えて、黄変をより効果的に抑制することもできる。 Hydrophilic polymers include polyethylene glycol, polyethylene oxide, casein, dextrin, starch, modified starch, polyvinyl alcohol, modified polyvinyl alcohol (such as acetoacetylated polyvinyl alcohol), polyvinyl butyral, polyethylene oxide, polyvinylpyrrolidone, polyvinyl methyl ether, Polyacrylic acid salts, polyacrylamide, acrylic acid alkyl ester copolymers, urethane copolymers, cellulose derivatives (hydroxyethyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, etc.) and the like can be mentioned. The fiber layer may also contain spacer molecules used in the above-described substituent removal treatment step and the like. Among them, from the viewpoint of improving the transparency of the fiber layer and the laminate, the hydrophilic polymer is preferably polyvinyl alcohol or a cellulose derivative. Moreover, by using a cellulose derivative as the hydrophilic polymer, it is possible to improve the transparency of the fiber layer and the laminate, and more effectively suppress yellowing.
 繊維層にポリビニルアルコールが配合される場合、ポリビニルアルコールのけん化度は、99.9%以下であることが好ましく、99%以下であることがより好ましく、95%以下であることがさらに好ましい。また、ポリビニルアルコールのけん化度は、85%以上であることが好ましい。けん化度が上記範囲内にあるポリビニルアルコールを繊維層に含有させることで、繊維層の透明性をより効果的に高めることができ、結果として、より高い透明性を有する積層体を得ることができる。 When the fiber layer contains polyvinyl alcohol, the degree of saponification of polyvinyl alcohol is preferably 99.9% or less, more preferably 99% or less, and even more preferably 95% or less. Moreover, the degree of saponification of polyvinyl alcohol is preferably 85% or more. By including polyvinyl alcohol having a degree of saponification within the above range in the fiber layer, the transparency of the fiber layer can be more effectively increased, and as a result, a laminate having higher transparency can be obtained. .
 繊維層にセルロース誘導体が配合される場合、セルロース誘導体の重量平均分子量は、繊維層としての形状安定性およびゲル化を抑制して繊維層を形成する観点、ならびに、高い引張弾性率および高い引張伸度の両立の観点、加熱前後の黄変を抑制する観点から、好ましくは2.5×10以上、より好ましくは5.0×10以上、さらに好ましくは1.0×10以上であり、そして、好ましくは2.8×10以下、より好ましくは2.6×10以下である。セルロース誘導体の重量平均分子量は、光散乱法によるゲル浸透クロマトグラフィー法(GPC-MALLS法)により測定される。 When a cellulose derivative is blended in the fiber layer, the weight-average molecular weight of the cellulose derivative is determined from the viewpoint of forming the fiber layer by suppressing shape stability and gelation as the fiber layer, and high tensile modulus and high tensile elongation. From the viewpoint of compatibility of the degree of heat and the viewpoint of suppressing yellowing before and after heating, the , and preferably 2.8×10 5 or less, more preferably 2.6×10 5 or less. The weight average molecular weight of the cellulose derivative is measured by a gel permeation chromatography method (GPC-MALLS method) using a light scattering method.
 セルロース誘導体は、微細繊維状セルロースとの親和性を高める観点、および微細繊維状セルロースのスラリー(微細繊維状セルロース分散液)中への添加が容易である観点から、水溶性セルロースエーテルであることが好ましい。ここで、水溶性であるとは、20℃の水100gに対して、1g以上が溶解することを意味する。また、セルロースエーテルとは、セルロースのヒドロキシ基をエーテル化したセルロース誘導体の総称である。水溶性セルロースエーテルとしては、メチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース等が好ましく例示される。また、水溶性セルロースエーテルは、加熱による繊維層の黄変を抑制する観点から、非イオン性の水溶性セルロースエーテルであることが好ましい。非イオン性水溶性セルロースエーテルとしては、メチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等が例示される。非イオン性水溶性セルロースエーテルは、メトキシ基およびヒドロキシプロポキシ基よりなる群から選択される少なくとも1種の官能基を有することが好ましく、メチルセルロースおよびヒドロキシプロピルメチルセルロースよりなる群から選択されることがより好ましく、ヒドロキシプロピルメチルセルロースがさらに好ましい。 The cellulose derivative is preferably a water-soluble cellulose ether from the viewpoint of enhancing affinity with fine fibrous cellulose and from the viewpoint of being easily added to a slurry of fine fibrous cellulose (fine fibrous cellulose dispersion). preferable. Here, being water-soluble means that 1 g or more is dissolved in 100 g of water at 20°C. Cellulose ether is a general term for cellulose derivatives obtained by etherifying the hydroxyl group of cellulose. Preferred examples of water-soluble cellulose ethers include methylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, carboxyethylcellulose and the like. Moreover, the water-soluble cellulose ether is preferably a nonionic water-soluble cellulose ether from the viewpoint of suppressing yellowing of the fiber layer due to heating. Examples of nonionic water-soluble cellulose ethers include methylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and the like. The nonionic water-soluble cellulose ether preferably has at least one functional group selected from the group consisting of methoxy and hydroxypropoxy groups, more preferably selected from the group consisting of methylcellulose and hydroxypropylmethylcellulose. , and hydroxypropyl methylcellulose are more preferred.
 セルロース誘導体がメチルセルロースである場合、メトキシ基の置換度は、好ましくは0.5以上、より好ましくは0.8以上、さらに好ましくは1.0以上、よりさらに好ましくは1.2以上、とくに好ましくは1.5以上であり、そして、好ましくは3.0以下、より好ましくは2.6以下、さらに好ましくは2.2以下、よりさらに好ましくは2.0以下である。 When the cellulose derivative is methylcellulose, the degree of methoxy group substitution is preferably 0.5 or more, more preferably 0.8 or more, still more preferably 1.0 or more, still more preferably 1.2 or more, and particularly preferably It is 1.5 or more, and preferably 3.0 or less, more preferably 2.6 or less, even more preferably 2.2 or less, and even more preferably 2.0 or less.
 セルロース誘導体がヒドロキシプロピルメチルセルロースである場合、メトキシ基の置換度の好ましい範囲は、上述したメチルセルロースにおけるメトキシ基の置換度と同様である。また、ヒドロキシプロポキシ基の置換度は、好ましくは0.08以上、より好ましくは0.10以上、さらに好ましくは0.12以上、よりさらに好ましくは0.15以上、とくに好ましくは0.18以上であり、そして、好ましくは0.50以下、より好ましくは0.40以下、さらに好ましくは0.35以下、よりさらに好ましくは0.30以下である。 When the cellulose derivative is hydroxypropylmethylcellulose, the preferred range of the degree of substitution of methoxy groups is the same as the degree of substitution of methoxy groups in methylcellulose described above. The degree of substitution of the hydroxypropoxy group is preferably 0.08 or more, more preferably 0.10 or more, still more preferably 0.12 or more, still more preferably 0.15 or more, and particularly preferably 0.18 or more. Yes, and preferably 0.50 or less, more preferably 0.40 or less, even more preferably 0.35 or less, and even more preferably 0.30 or less.
 親水性高分子の重量平均分子量は、1万以上であればよく、5万以上であることが好ましく、10万以上であることがより好ましい。また、親水性高分子の重量平均分子量は800万以下であることが好ましく、500万以下であることがより好ましい。 The weight average molecular weight of the hydrophilic polymer may be 10,000 or more, preferably 50,000 or more, and more preferably 100,000 or more. Also, the weight average molecular weight of the hydrophilic polymer is preferably 8,000,000 or less, more preferably 5,000,000 or less.
 親水性低分子としては、グリセリン、ソルビトール、エチレングリコール等が挙げられる。本明細書において、親水性低分子とは重量平均分子量が1万未満のものである。 Hydrophilic low molecules include glycerin, sorbitol, ethylene glycol, and the like. As used herein, a hydrophilic low molecular weight molecule has a weight average molecular weight of less than 10,000.
 樹脂成分の含有量は、繊維層中に含まれる全固形分質量に対して、5質量%以上であることが好ましく、10質量%であることがより好ましく、15質量%以上であることがさらに好ましく、20質量%以上であることが特に好ましい。また、樹脂成分の含有量は、繊維層中に含まれる全固形分質量に対して、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。樹脂成分の含有量を上記範囲内とすることにより、高硬度かつ高透明な繊維層及び積層体が得られやすくなる。 The content of the resin component is preferably 5% by mass or more, more preferably 10% by mass, and further preferably 15% by mass or more, based on the total solid mass contained in the fiber layer. It is preferably 20% by mass or more, and particularly preferably 20% by mass or more. In addition, the content of the resin component is preferably 95% by mass or less, more preferably 90% by mass or less, and 80% by mass or less with respect to the total solid mass contained in the fiber layer. is more preferred. By setting the content of the resin component within the above range, it becomes easier to obtain a highly rigid and highly transparent fiber layer and laminate.
<密着助剤>
 繊維層には、任意成分として密着助剤及び/又は密着助剤に由来する構造が含まれていてもよい。密着助剤としては、例えば、イソシアネート基、カルボジイミド基、エポキシ基、オキサゾリン基、アミノ基及びシラノール基からなる群から選択される少なくとも1種を含む化合物や、有機ケイ素化合物が挙げられる。有機ケイ素化合物としては、例えば、シランカップリング剤縮合物や、シランカップリング剤を挙げることができる。中でも、密着助剤はシランカップリング剤及びイソシアネート化合物(イソシアネート基を含む化合物)から選択される少なくとも1種であることが好ましい。なお、密着助剤がシランカップリング剤である場合、繊維層には、シランカップリング剤に由来する構造が含まれ、密着助剤がイソシアネート化合物である場合、繊維層には、イソシアネート化合物に由来する構造が含まれる。
<Adhesion aid>
The fibrous layer may optionally contain an adhesion aid and/or a structure derived from the adhesion aid. Examples of adhesion promoters include compounds containing at least one selected from the group consisting of isocyanate groups, carbodiimide groups, epoxy groups, oxazoline groups, amino groups and silanol groups, and organosilicon compounds. Examples of organic silicon compounds include condensates of silane coupling agents and silane coupling agents. Among them, the adhesion aid is preferably at least one selected from silane coupling agents and isocyanate compounds (compounds containing an isocyanate group). When the adhesion aid is a silane coupling agent, the fiber layer contains a structure derived from the silane coupling agent, and when the adhesion aid is an isocyanate compound, the fiber layer contains It contains a structure that
 イソシアネート化合物としては、ポリイソシアネート化合物又は多官能イソシアネートが挙げられる。ポリイソシアネート化合物としては、具体的には、NCO基中の炭素を除く炭素数が6以上20以下の芳香族ポリイソシアネート、炭素数2以上18以下の脂肪族ポリイソシアネート、炭素数6以上15以下の脂環式ポリイソシアネート、炭素数8以上15以下のアラルキル型ポリイソシアネート、これらのポリイソシアネートの変性物、およびこれらの2種以上の混合物を挙げることができる。中でも、炭素数6以上15以下の脂環式ポリイソシアネート、すなわちイソシアヌレートは好ましく用いられる。 Examples of isocyanate compounds include polyisocyanate compounds and polyfunctional isocyanates. Specific examples of polyisocyanate compounds include aromatic polyisocyanates having 6 to 20 carbon atoms excluding carbon atoms in the NCO group, aliphatic polyisocyanates having 2 to 18 carbon atoms, and 6 to 15 carbon atoms. Alicyclic polyisocyanates, aralkyl polyisocyanates having 8 to 15 carbon atoms, modified products of these polyisocyanates, and mixtures of two or more thereof can be mentioned. Among them, alicyclic polyisocyanates having 6 to 15 carbon atoms, that is, isocyanurates, are preferably used.
 脂環式ポリイソシアネートの具体例としては、例えばイソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキセン-1,2-ジカルボキシレート、2,5-ノルボルナンジイソシアネート、2,6-ノルボルナンジイソシアネート等が挙げられる。 Specific examples of alicyclic polyisocyanates include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis(2-isocyanatoethyl). -4-cyclohexene-1,2-dicarboxylate, 2,5-norbornane diisocyanate, 2,6-norbornane diisocyanate and the like.
 シランカップリング剤としては、アルコキシシリル基以外の官能基を有するものであってもよいし、それ以外の官能基を有しないものであってもよい。アルコキシシリル基以外の官能基としては、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などが挙げられる。本実施形態で用いるシランカップリング剤は、メタクリロキシ基を含有するシランカップリング剤であることが好ましい。 The silane coupling agent may have a functional group other than an alkoxysilyl group, or may have no other functional group. Functional groups other than alkoxysilyl groups include vinyl groups, epoxy groups, styryl groups, methacryloxy groups, acryloxy groups, amino groups, ureido groups, mercapto groups, sulfide groups, and isocyanate groups. The silane coupling agent used in this embodiment is preferably a silane coupling agent containing a methacryloxy group.
 分子内にメタクリロキシ基を有するシランカップリング剤の具体的な例としては、例えば、メタクリロキシプロピルメチルジメトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルトリエトキシシラン、1,3-ビス(3-メタクリロキシプロピル)テトラメチルジシロキサンなどが挙げられる。中でも、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン及び1,3-ビス(3-メタクリロキシプロピル)テトラメチルジシロキサンから選択される少なくとも1種は好ましく用いられる。シランカップリング剤は、アルコキシシリル基を3つ以上含有するものであることが好ましい。 Specific examples of silane coupling agents having a methacryloxy group in the molecule include methacryloxypropylmethyldimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropyltriethoxysilane, 1,3-bis(3-methacryloxypropyl)tetramethyldisiloxane and the like. Among them, at least one selected from methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane and 1,3-bis(3-methacryloxypropyl)tetramethyldisiloxane is preferably used. The silane coupling agent preferably contains 3 or more alkoxysilyl groups.
 繊維層中に密着助剤及び/又は密着助剤に由来する構造が含まれる場合、繊維層の製造工程における密着助剤の添加量は、繊維層中に含まれる全固形分質量に対して、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。また、密着助剤の添加量は、繊維層中に含まれる全固形分質量に対して、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。 When the fiber layer contains an adhesion aid and/or a structure derived from the adhesion aid, the amount of the adhesion aid added in the manufacturing process of the fiber layer is It is preferably 0.1% by mass or more, more preferably 0.5% by mass or more. Also, the amount of adhesion aid added is preferably 40% by mass or less, more preferably 35% by mass or less, relative to the total solid mass contained in the fiber layer.
<任意成分>
 繊維層には、上述した成分以外に、他の任意成分が含まれていてもよい。任意成分としては、例えば、紙力増強剤、界面活性剤、有機イオン、無機層状化合物、無機化合物、レベリング剤、防腐剤、消泡剤、有機系粒子、潤滑剤、帯電防止剤、紫外線防御剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、分散剤、着色防止剤、重合禁止剤、pH調整剤等が挙げられる。
<Optional component>
The fiber layer may contain other optional components in addition to the components described above. Optional components include, for example, paper strength agents, surfactants, organic ions, inorganic stratiform compounds, inorganic compounds, leveling agents, preservatives, antifoaming agents, organic particles, lubricants, antistatic agents, and UV protection agents. , dyes, pigments, stabilizers, magnetic powders, alignment promoters, plasticizers, dispersants, anti-coloring agents, polymerization inhibitors, pH adjusters and the like.
 有機イオンとしては、テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオンを挙げることができる。テトラアルキルアンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラヘプチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、ラウリルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、オクチルジメチルエチルアンモニウムイオン、ラウリルジメチルエチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン、ラウリルジメチルベンジルアンモニウムイオン、トリブチルベンジルアンモニウムイオンが挙げられる。テトラアルキルホスホニウムイオンとしては、例えばテトラメチルホスホニウムイオン、テトラエチルホスホニウムイオン、テトラプロピルホスホニウムイオン、テトラブチルホスホニウムイオン、およびラウリルトリメチルホスホニウムイオンが挙げられる。また、テトラプロピルオニウムイオン、テトラブチルオニウムイオンとして、それぞれテトラn-プロピルオニウムイオン、テトラn-ブチルオニウムイオンなども挙げることができる。 Examples of organic ions include tetraalkylammonium ions and tetraalkylphosphonium ions. Tetraalkylammonium ions include, for example, tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, tetrabutylammonium ion, tetrapentylammonium ion, tetrahexylammonium ion, tetraheptylammonium ion, tributylmethylammonium ion, lauryltrimethyl ammonium ion, cetyltrimethylammonium ion, stearyltrimethylammonium ion, octyldimethylethylammonium ion, lauryldimethylethylammonium ion, didecyldimethylammonium ion, lauryldimethylbenzylammonium ion, tributylbenzylammonium ion; Tetraalkylphosphonium ions include, for example, tetramethylphosphonium ion, tetraethylphosphonium ion, tetrapropylphosphonium ion, tetrabutylphosphonium ion, and lauryltrimethylphosphonium ion. Moreover, tetra-n-propylonium ion and tetra-n-butylonium ion can also be mentioned as examples of tetrapropylonium ion and tetrabutylonium ion, respectively.
(表面保護層)
 積層体を構成する表面保護層は、ハードコート層であることが好ましい。具体的に、表面保護層は活性エネルギー線硬化性樹脂層、シリコーン系樹脂層又は無機層であることが好ましい。
(Surface protective layer)
The surface protective layer constituting the laminate is preferably a hard coat layer. Specifically, the surface protective layer is preferably an active energy ray-curable resin layer, a silicone resin layer, or an inorganic layer.
 活性エネルギー線硬化性樹脂層は、活性エネルギー線硬化性モノマーを重合させてなるポリマーを含む層である。活性エネルギー線硬化性モノマーとしては、重合性の不飽和基を有するモノマーが挙げられ、重合性の不飽和基としては、例えば、ビニル基、アリル基、(メタ)アクリロイル基等を挙げることができる。中でも、性エネルギー線硬化性モノマーは(メタ)アクリロイル基を有するモノマーであることが好ましい。また、活性エネルギー線硬化性モノマーは重合性の不飽和基を2個以上有することが好ましい。なお、本明細書において、(メタ)アクリロイル基とは、「アクリロイル基」及び「メタクリロイル基」の両方を含むことを意味する。 The active energy ray-curable resin layer is a layer containing a polymer obtained by polymerizing an active energy ray-curable monomer. Examples of the active energy ray-curable monomer include monomers having a polymerizable unsaturated group, and examples of the polymerizable unsaturated group include a vinyl group, an allyl group, and a (meth)acryloyl group. . Among them, the sexual energy ray-curable monomer is preferably a monomer having a (meth)acryloyl group. Moreover, it is preferable that the active energy ray-curable monomer has two or more polymerizable unsaturated groups. In addition, in this specification, a (meth)acryloyl group means including both an "acryloyl group" and a "methacryloyl group."
 活性エネルギー線硬化性モノマーとしては、具体的には、ウレタン(メタ)アクリレート、アクリル(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリエステル(メタ)アクリレート、アクリル酸エステルなどが挙げられる。これら活性エネルギー線硬化性モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。 Specific examples of active energy ray-curable monomers include urethane (meth)acrylates, acrylic (meth)acrylates, epoxy (meth)acrylates, polyether (meth)acrylates, polyester (meth)acrylates, acrylic acid esters, and the like. mentioned. These active energy ray-curable monomers may be used singly or in combination of two or more.
 表面保護層が、活性エネルギー線硬化性樹脂層である場合、活性エネルギー線硬化性樹脂層を形成する樹脂塗工液は、活性エネルギー線硬化性モノマーに加えて、溶剤や光重合開始剤を含むことが好ましい。光重合開始剤は、380~700nmの波長の光によって、活性エネルギー線硬化性モノマーの重合反応を促進するものであることが好ましい。この場合、繊維層上に活性エネルギー線硬化性樹脂層を形成する樹脂塗工液を塗工し、必要に応じて加熱乾燥により溶剤を揮発させた後、活性エネルギー線(例えば紫外線)を照射することにより表面保護層を形成することができる。活性エネルギー線の照射量は、光重合開始剤がラジカルを発生させる範囲に調整することが好ましい。 When the surface protective layer is an active energy ray-curable resin layer, the resin coating liquid forming the active energy ray-curable resin layer contains a solvent and a photopolymerization initiator in addition to the active energy ray-curable monomer. is preferred. The photopolymerization initiator is preferably one that accelerates the polymerization reaction of the active energy ray-curable monomer with light having a wavelength of 380 to 700 nm. In this case, a resin coating liquid for forming an active energy ray-curable resin layer is applied onto the fiber layer, and if necessary, the solvent is volatilized by heating and drying, and then the active energy ray (for example, ultraviolet rays) is irradiated. Thus, a surface protective layer can be formed. It is preferable to adjust the irradiation amount of the active energy ray within a range in which the photopolymerization initiator generates radicals.
 シリコーン系樹脂層は、シラン化合物を含むシリコーン系塗工液を硬化させてなる層である。具体的には、シラン化合物を含む塗工液を繊維層上に塗工し、加熱処理を行うことで、シラン化合物を架橋・縮合させ、表面保護層を形成することができる。 The silicone-based resin layer is a layer formed by curing a silicone-based coating liquid containing a silane compound. Specifically, a coating liquid containing a silane compound is applied onto the fiber layer, and heat treatment is performed to crosslink and condense the silane compound, thereby forming the surface protective layer.
 無機層を構成する物質としては、特に限定されないが、例えばアルミニウム、ケイ素、マグネシウム、亜鉛、錫、ニッケル、チタン;これらの酸化物、炭化物、窒化物、酸化炭化物、酸化窒化物、もしくは酸化炭化窒化物;またはこれらの混合物が挙げられる。中でも、無機層は、酸化チタン、酸化アルミニウム、酸化ケイ素(二酸化ケイ素)、窒化ケイ素、窒化アルミニウム、酸化炭化ケイ素、酸化窒化ケイ素、酸化炭化窒化ケイ素、酸化炭化アルミニウム及び酸化窒化アルミニウムからなる群から選択される少なくとも1種を含むことが好ましく、酸化チタン、酸化アルミニウム及び二酸化ケイ素からなる群から選択される少なくとも1種を含むことがより好ましい。なお、無機層はこれらの混合物を含むものであってもよい。 The material constituting the inorganic layer is not particularly limited, but for example, aluminum, silicon, magnesium, zinc, tin, nickel, titanium; or mixtures thereof. Among others, the inorganic layer is selected from the group consisting of titanium oxide, aluminum oxide, silicon oxide (silicon dioxide), silicon nitride, aluminum nitride, silicon oxycarbide, silicon oxynitride, silicon oxycarbide, aluminum oxycarbide and aluminum oxynitride. preferably contains at least one selected from the group consisting of titanium oxide, aluminum oxide and silicon dioxide. In addition, the inorganic layer may contain a mixture of these.
 表面保護層には、任意成分として密着助剤及び/又は密着助剤に由来する構造が含まれていてもよい。密着助剤としては、上述した密着助剤を適宜用いることができ、密着助剤はシランカップリング剤及びイソシアネート化合物(イソシアネート基を含む化合物)から選択される少なくとも1種であることが好ましい。なお、密着助剤がシランカップリング剤である場合、表面保護層には、シランカップリング剤に由来する構造が含まれ、密着助剤がイソシアネート化合物である場合、表面保護層には、イソシアネート化合物に由来する構造が含まれる。 The surface protective layer may contain an adhesion aid and/or a structure derived from the adhesion aid as an optional component. As the adhesion aid, the adhesion aid described above can be used as appropriate, and the adhesion aid is preferably at least one selected from silane coupling agents and isocyanate compounds (compounds containing isocyanate groups). When the adhesion aid is a silane coupling agent, the surface protective layer contains a structure derived from the silane coupling agent, and when the adhesion aid is an isocyanate compound, the surface protective layer contains an isocyanate compound. includes structures derived from
 表面保護層中に密着助剤及び/又は密着助剤に由来する構造が含まれる場合、表面保護層の製造工程における密着助剤の添加量は、表面保護層中に含まれる全固形分質量に対して、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。また、密着助剤の添加量は、表面保護層中に含まれる全固形分質量に対して、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。 When the surface protective layer contains an adhesion aid and/or a structure derived from the adhesion aid, the amount of the adhesion aid added in the manufacturing process of the surface protective layer is equal to the total solid mass contained in the surface protective layer. On the other hand, it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more. Also, the amount of adhesion aid added is preferably 40% by mass or less, more preferably 35% by mass or less, relative to the total solid mass contained in the surface protective layer.
 表面保護層には、上述した成分以外に、他の任意成分が含まれていてもよい。任意成分としては、例えば、界面活性剤、無機層状化合物、無機化合物、レベリング剤、防腐剤、消泡剤、有機系粒子、潤滑剤、帯電防止剤、紫外線防御剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、分散剤、着色防止剤、重合禁止剤、pH調整剤等が挙げられる。 The surface protective layer may contain other optional components in addition to the components described above. Optional components include, for example, surfactants, inorganic stratiform compounds, inorganic compounds, leveling agents, preservatives, antifoaming agents, organic particles, lubricants, antistatic agents, UV protection agents, dyes, pigments, stabilizers, Magnetic powders, orientation accelerators, plasticizers, dispersants, anti-coloring agents, polymerization inhibitors, pH adjusters and the like.
 表面保護層の厚みは、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、1μm以上であることがさらに好ましい。また、表面保護層の厚みは、10μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることがさらに好ましい。表面保護層の厚みを上記範囲内とすることにより、高硬度であり、かつ高透明の積層体を得ることができる。ここで、積層体を構成する表面保護層の厚さは、ウルトラミクロトームUC-7(日本電子株式会社)によって積層体の断面を切り出し、当該断面を電子顕微鏡、拡大鏡又は目視で観察して、測定される値である。 The thickness of the surface protective layer is preferably 0.01 µm or more, more preferably 0.1 µm or more, and even more preferably 1 µm or more. The thickness of the surface protective layer is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. By setting the thickness of the surface protective layer within the above range, a laminate having high hardness and high transparency can be obtained. Here, the thickness of the surface protective layer constituting the laminate is determined by cutting out a cross section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass, or visually. It is the measured value.
(基材)
 積層体を構成する基材としては、樹脂基材(上述した活性エネルギー線硬化性樹脂層を除く)、紙基材、ガラス基材(石英ガラス含む)、その他半導体において通常使用される基材等を用いることができる。中でも、基材は樹脂基材であることが好ましく、天然樹脂や合成樹脂を主成分とする層であることが好ましい。ここで、主成分とは、基材の全質量に対して、50質量%以上含まれている成分を指す。
(Base material)
The base material that constitutes the laminate includes a resin base material (excluding the active energy ray-curable resin layer described above), a paper base material, a glass base material (including quartz glass), and other base materials normally used in semiconductors. can be used. Among them, the substrate is preferably a resin substrate, and preferably a layer containing a natural resin or a synthetic resin as a main component. Here, the main component refers to a component that is contained in an amount of 50% by mass or more with respect to the total mass of the substrate.
 基材を構成する天然樹脂としては、例えば、ロジン、ロジンエステル、水添ロジンエステル等のロジン系樹脂を挙げることができる。基材を構成する合成樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ウレタン樹脂、アクリル樹脂、フッ素樹脂、ABS樹脂、セルロースアセテート樹脂等を挙げることができる。また、基材は、ポリマーアロイのように、これらの樹脂を2以上含むものであってもよい。中でも、基材は樹脂基材であることが好ましく、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、アクリル樹脂及びポリプロピレン樹脂からなる群から選択される少なくとも1種を含む樹脂基材であることがより好ましく、ポリカーボネート樹脂及びポリエチレンテレフタレート樹脂から選択される少なくとも1種を含む樹脂基材であることがさらに好ましい。 Examples of natural resins that make up the base material include rosin-based resins such as rosin, rosin esters, and hydrogenated rosin esters. Synthetic resins constituting the substrate include, for example, polycarbonate resins, polyester resins, polyethylene terephthalate resins, polyethylene naphthalate resins, polyethylene resins, polypropylene resins, polyimide resins, polystyrene resins, urethane resins, acrylic resins, fluororesins, and ABS resins. , cellulose acetate resin and the like. Also, the substrate may contain two or more of these resins, such as a polymer alloy. Among them, the base material is preferably a resin base material, and is preferably a resin base material containing at least one selected from the group consisting of polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, acrylic resin and polypropylene resin. More preferably, the resin substrate contains at least one selected from polycarbonate resin and polyethylene terephthalate resin.
 基材を構成するポリカーボネート樹脂としては、例えば、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂が挙げられる。これらの具体的なポリカーボネート系樹脂は公知であり、例えば特開2010-023275号公報に記載されたポリカーボネート系樹脂が挙げられる。 Examples of polycarbonate resins that make up the base material include aromatic polycarbonate-based resins and aliphatic polycarbonate-based resins. Specific polycarbonate-based resins for these are known, and include, for example, the polycarbonate-based resins described in JP-A-2010-023275.
 基材には、任意成分として密着助剤及び/又は密着助剤に由来する構造が含まれていてもよい。密着助剤としては、上述した密着助剤を適宜用いることができる。 The base material may contain an adhesion aid and/or a structure derived from the adhesion aid as an optional component. As the adhesion aid, the adhesion aid described above can be used as appropriate.
 基材の繊維層側の面には表面処理を施してもよい。表面処理の方法としては、例えば、コロナ処理、プラズマ放電処理、UV照射処理、電子線照射処理、火炎処理等を挙げることができる。中でも、表面処理は、コロナ処理及びプラズマ放電処理から選択される少なくとも1種であることが好ましい。なお、プラズマ放電処理は真空プラズマ放電処理であることが好ましい。 A surface treatment may be applied to the fiber layer side of the base material. Examples of surface treatment methods include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, and flame treatment. Among them, the surface treatment is preferably at least one selected from corona treatment and plasma discharge treatment. The plasma discharge treatment is preferably vacuum plasma discharge treatment.
 基材には、本発明の効果を損なわない範囲において、合成樹脂以外の任意成分が含まれていてもよい。任意成分としては、例えば、フィラー、顔料、染料、紫外線吸収剤等の樹脂フィルム分野で使用される公知成分が挙げられる。 The base material may contain optional components other than the synthetic resin as long as the effects of the present invention are not impaired. Examples of optional components include known components used in the field of resin films, such as fillers, pigments, dyes, and ultraviolet absorbers.
 基材の鉛筆硬度は、H以下であることが好ましく、HB以下であることがより好ましく、B以下であることがさらに好ましい。なお、基材の鉛筆硬度は3B以上であることが好ましい。基材の鉛筆硬度は、JIS K 5600-5-4:1999に準拠して測定される。 The pencil hardness of the substrate is preferably H or less, more preferably HB or less, and even more preferably B or less. The pencil hardness of the substrate is preferably 3B or more. The pencil hardness of the substrate is measured according to JIS K 5600-5-4:1999.
 基材の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましく、50μm以上であることがさらに好ましい。また、基材の厚みは、10000μm以下であることが好ましく、6000μm以下であることがより好ましく、4000μm以下であることがさらに好ましい。基材の厚みは各種用途に応じて選択することが好ましい。ここで、積層体を構成する基材の厚さは、ウルトラミクロトームUC-7(日本電子株式会社)によって積層体の断面を切り出し、当該断面を電子顕微鏡、拡大鏡又は目視で観察して、測定される値である。 The thickness of the substrate is preferably 10 µm or more, more preferably 20 µm or more, and even more preferably 50 µm or more. Also, the thickness of the substrate is preferably 10000 μm or less, more preferably 6000 μm or less, and even more preferably 4000 μm or less. It is preferable to select the thickness of the substrate according to various uses. Here, the thickness of the base material constituting the laminate is measured by cutting out the cross section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass, or visually. is the value to be
(接着層)
 本実施形態の積層体は、繊維層と基材の間に接着層を含んでもよい、なお、接着層は繊維層と表面保護層の間に設けられてもよいが、繊維層と表面保護層は互いに接した状態で直接積層された構成であることが好ましい。
(adhesive layer)
The laminate of the present embodiment may include an adhesive layer between the fiber layer and the base material. The adhesive layer may be provided between the fiber layer and the surface protective layer. are directly laminated in contact with each other.
 接着層は、天然樹脂や合成樹脂を主成分とする層である。ここで、主成分とは、接着層の全質量に対して、50質量%以上含まれている成分を指す。樹脂の含有量は、接着層の全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることがとくに好ましい。なお、樹脂の含有量は、100質量%とすることもでき、95質量%以下であってもよい。 The adhesive layer is a layer whose main component is natural resin or synthetic resin. Here, the main component refers to a component contained in an amount of 50% by mass or more with respect to the total mass of the adhesive layer. The content of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass with respect to the total mass of the adhesive layer. It is particularly preferable that it is above. In addition, the content of the resin may be 100% by mass, or may be 95% by mass or less.
 天然樹脂及び合成樹脂としては、基材において用いることができる樹脂を挙げることができる。中でも、接着層を構成する合成樹脂はポリカーボネート樹脂、アクリル樹脂及びポリプロピレン樹脂からなる群から選択される少なくとも1種であることが好ましい。接着層を構成する樹脂は1種を単独で用いてもよく、複数の樹脂成分が共重合または、グラフト重合してなる共重合体を用いてもよい。また、複数の樹脂成分を物理的なプロセスで混合したブレンド材料として用いてもよい。 Natural resins and synthetic resins include resins that can be used in the base material. Among them, the synthetic resin constituting the adhesive layer is preferably at least one selected from the group consisting of polycarbonate resin, acrylic resin and polypropylene resin. As the resin constituting the adhesive layer, one kind may be used alone, or a copolymer obtained by copolymerizing or graft-polymerizing a plurality of resin components may be used. Also, it may be used as a blend material in which a plurality of resin components are mixed by a physical process.
 接着層を構成するポリカーボネート樹脂としては、例えば、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂が挙げられる。これらの具体的なポリカーボネート系樹脂は公知であり、例えば特開2010-023275号公報に記載されたポリカーボネート系樹脂が挙げられる。 Examples of polycarbonate resins that make up the adhesive layer include aromatic polycarbonate resins and aliphatic polycarbonate resins. Specific polycarbonate-based resins for these are known, and include, for example, the polycarbonate-based resins described in JP-A-2010-023275.
 接着層を構成するポリプロピレン樹脂としては、例えば、酸変性ポリプロピレン樹脂、塩素化ポリプロピレン樹脂が挙げられる。中でも、酸変性ポリプロピレン樹脂であることが好ましく、マレイン酸化ポリプロピレン樹脂または無水マレイン酸変性ポリプロピレン樹脂であることがさらに好ましい。 Examples of polypropylene resins that make up the adhesive layer include acid-modified polypropylene resins and chlorinated polypropylene resins. Among them, an acid-modified polypropylene resin is preferable, and a maleated polypropylene resin or a maleic anhydride-modified polypropylene resin is more preferable.
 接着層を構成するアクリル系樹脂としては、密着力及び機械的強度の向上と透明性向上の観点から、(メタ)アクリル酸エステル重合体を用いることが好ましい。中でも、(メタ)アクリル酸エステル重合体は、シリカ粒子及び/又はシラノール基を有する化合物と(メタ)アクリル酸エステル重合体との複合体であることが好ましい。(メタ)アクリル酸エステル重合体として上記複合体を用いることにより接着層の密着力をより効果的に高めることができる。 As the acrylic resin constituting the adhesive layer, it is preferable to use a (meth)acrylic acid ester polymer from the viewpoint of improving adhesion and mechanical strength and improving transparency. Among them, the (meth)acrylic acid ester polymer is preferably a composite of silica particles and/or a compound having a silanol group and the (meth)acrylic acid ester polymer. By using the composite as the (meth)acrylic acid ester polymer, the adhesive strength of the adhesive layer can be increased more effectively.
 (メタ)アクリル酸エステル重合体は、エポキシ樹脂、ウレタン樹脂等の(メタ)アクリル樹脂以外の合成樹脂が(メタ)アクリル樹脂にグラフト重合してなる重合体であってもよく、(メタ)アクリル酸エステルと他のモノマーとが共重合してなる共重合体であってもよい。ただし、(メタ)アクリル酸エステル重合体中の(メタ)アクリル酸エステル以外のモノマーのモル分率は、50モル%以下である。また、(メタ)アクリル酸エステル重合体(100質量%)中、グラフト重合した(メタ)アクリル樹脂以外の合成樹脂の含有量は、50質量%以下である。 The (meth)acrylic acid ester polymer may be a polymer obtained by graft-polymerizing a synthetic resin other than (meth)acrylic resin such as epoxy resin and urethane resin onto (meth)acrylic resin. A copolymer obtained by copolymerizing an acid ester and another monomer may also be used. However, the molar fraction of monomers other than the (meth)acrylic acid ester in the (meth)acrylic acid ester polymer is 50 mol % or less. Further, the content of the synthetic resin other than the graft-polymerized (meth)acrylic resin is 50% by mass or less in the (100% by mass) of the (meth)acrylic acid ester polymer.
 接着層は、密着助剤及び/又は密着助剤に由来する構造を含有していてもよい。密着助剤としては、上述した密着助剤を適宜用いることができ、密着助剤はシランカップリング剤及びイソシアネート化合物(イソシアネート基を含む化合物)から選択される少なくとも1種であることが好ましい。なお、密着助剤がシランカップリング剤である場合、接着層には、シランカップリング剤に由来する構造が含まれ、密着助剤がイソシアネート化合物である場合、接着層には、イソシアネート化合物に由来する構造が含まれる。 The adhesive layer may contain an adhesion aid and/or a structure derived from the adhesion aid. As the adhesion aid, the adhesion aid described above can be used as appropriate, and the adhesion aid is preferably at least one selected from silane coupling agents and isocyanate compounds (compounds containing isocyanate groups). When the adhesion aid is a silane coupling agent, the adhesive layer contains a structure derived from the silane coupling agent, and when the adhesion aid is an isocyanate compound, the adhesive layer contains It contains a structure that
 接着層中に密着助剤及び/又は密着助剤に由来する構造が含まれる場合、接着層の製造工程における密着助剤の添加量は、接着層中に含まれる全固形分質量に対して、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。また、密着助剤の添加量は、接着層中に含まれる全固形分質量に対して、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。 When the adhesive layer contains an adhesion aid and/or a structure derived from the adhesion aid, the amount of the adhesion aid added in the manufacturing process of the adhesive layer is, with respect to the total solid mass contained in the adhesive layer, It is preferably 0.1% by mass or more, more preferably 0.5% by mass or more. Also, the amount of adhesion aid added is preferably 40% by mass or less, more preferably 35% by mass or less, relative to the total solid mass contained in the adhesive layer.
 接着層の厚みは、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。また、接着層の厚みは、100μm以下であることが好ましく、50μm以下であることがより好ましく、10μm以下であることがさらに好ましく、5μm以下であることが特に好ましい。接着層の厚みを上記範囲内とすることにより、繊維層と基材の密着性をより効果的に高めることができる。ここで、繊維層と基材の間に接着層が設けられる場合、接着層の厚さは、ウルトラミクロトームUC-7(日本電子株式会社)によって積層体の断面を切り出し、当該断面を電子顕微鏡、拡大鏡又は目視で観察して、測定される値である。 The thickness of the adhesive layer is preferably 0.1 μm or more, more preferably 0.5 μm or more, and even more preferably 1 μm or more. The thickness of the adhesive layer is preferably 100 μm or less, more preferably 50 μm or less, even more preferably 10 μm or less, and particularly preferably 5 μm or less. By setting the thickness of the adhesive layer within the above range, the adhesion between the fiber layer and the substrate can be more effectively enhanced. Here, when an adhesive layer is provided between the fiber layer and the base material, the thickness of the adhesive layer is determined by cutting out a cross section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.), and examining the cross section with an electron microscope. It is a value measured by observing with a magnifying glass or visually.
 本実施形態の積層体が接着層を有する場合、基材の厚み>接着層の厚みの関係となる。基材の厚みと接着層の厚みを上記関係とすることにより、繊維層と基材の密着性をより高めつつ表面保護層の硬度が十分に高められた積層体を得ることができる。 When the laminate of the present embodiment has an adhesive layer, the relationship is the thickness of the base material > the thickness of the adhesive layer. By setting the thickness of the base material and the thickness of the adhesive layer in the above relationship, it is possible to obtain a laminate in which the adhesion between the fiber layer and the base material is further enhanced and the hardness of the surface protective layer is sufficiently increased.
 基材と、接着層の厚さの比(基材の厚さ/接着層の厚さ)は、5以上が好ましく、10以上がより好ましく、20以上がさらに好ましい。なお、上記厚さの比の上限は特に限定されず、用途や基材の厚みに応じて適宜設定され、例えば5000以上にすることもできる。 The thickness ratio of the substrate and the adhesive layer (thickness of the substrate/thickness of the adhesive layer) is preferably 5 or more, more preferably 10 or more, and even more preferably 20 or more. The upper limit of the thickness ratio is not particularly limited, and is appropriately set according to the application and the thickness of the base material.
(任意層)
 本実施形態の積層体は、上述した層に加えて、さらに任意層を有するものであってもよい。任意層としては、例えば、装飾層(加飾層)、金属層などが設けられることも
(arbitrary layer)
The laminate of the present embodiment may have optional layers in addition to the layers described above. As optional layers, for example, a decorative layer (decorative layer), a metal layer, etc. may be provided.
(積層体の製造方法)
 積層体の製造方法は、繊維幅が1000nm以下の繊維状セルロースを含む繊維層の一方の面上に基材を形成する工程と、繊維層の他方の面上に表面保護層を形成する工程と、を含む(形成方法1)。また、積層体の製造方法は、基材上に繊維幅が1000nm以下の繊維状セルロースを含む繊維層を形成する工程と、繊維層の露出面(基材が積層された側の面とは反対側面)に表面保護層を形成する工程と、を含むものであってもよい(形成方法2)。なお、形成方法2の方が繊維層にかかる熱負荷を減らすことができるため、繊維層及び積層体の透明性や耐黄変性をより高めることができる。
(Laminate manufacturing method)
A method for producing a laminate includes a step of forming a substrate on one side of a fibrous layer containing fibrous cellulose having a fiber width of 1000 nm or less, and a step of forming a surface protective layer on the other side of the fibrous layer. , (formation method 1). In addition, the method for producing a laminate includes a step of forming a fiber layer containing fibrous cellulose having a fiber width of 1000 nm or less on a substrate, and an exposed surface of the fiber layer (opposite to the surface on which the substrate is laminated) forming a surface protective layer on the side surface) (formation method 2). Formation method 2 can reduce the heat load applied to the fiber layer, so that the transparency and yellowing resistance of the fiber layer and laminate can be further enhanced.
<繊維層形成工程>
 繊維幅が1000nm以下の繊維状セルロースを含む繊維層を形成する工程は、繊維状セルロース分散液(以下、スラリーともいう)を得る工程と、該繊維状セルロース分散液を基材上に塗工する塗工工程、または該繊維状セルロース分散液を抄紙する抄紙工程を含む。これにより、上述した繊維層が得られることとなる。なお、上述した積層体の製造方法の形成方法2では、基材上に繊維幅が1000nm以下の繊維状セルロースを含む繊維層を形成する工程が設けられるため、繊維層を形成する際には、積層体を構成する基材上に繊維状セルロース分散液を塗工する工程を設けることが好ましい。
<Fiber layer forming step>
The step of forming a fibrous layer containing fibrous cellulose with a fiber width of 1000 nm or less includes a step of obtaining a fibrous cellulose dispersion (hereinafter also referred to as slurry) and coating the fibrous cellulose dispersion on a substrate. It includes a coating step or a papermaking step of papermaking the fibrous cellulose dispersion. Thereby, the fiber layer mentioned above will be obtained. In addition, in the formation method 2 of the above-described laminate manufacturing method, a step of forming a fiber layer containing fibrous cellulose having a fiber width of 1000 nm or less on the base material is provided. Therefore, when forming the fiber layer, It is preferable to provide a step of coating the fibrous cellulose dispersion on the substrate constituting the laminate.
 繊維層形成工程を経て得られた繊維層の表面には表面処理を施してもよい。表面処理の方法としては、例えば、コロナ処理、プラズマ放電処理、UV照射処理、電子線照射処理、火炎処理等を挙げることができる。中でも、表面処理は、コロナ処理及びプラズマ放電処理から選択される少なくとも1種であることが好ましい。なお、プラズマ放電処理は真空プラズマ放電処理であることが好ましい。 A surface treatment may be applied to the surface of the fiber layer obtained through the fiber layer forming process. Examples of surface treatment methods include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, and flame treatment. Among them, the surface treatment is preferably at least one selected from corona treatment and plasma discharge treatment. The plasma discharge treatment is preferably vacuum plasma discharge treatment.
<<塗工工程>>
 塗工工程では、たとえば繊維状セルロース分散液(スラリー)を基材上に塗工し、これを乾燥して形成された繊維シートを基材から剥離することにより繊維層を得ることができる。また、塗工装置と長尺の基材を用いることで、繊維層となる繊維シートを連続的に生産することができる。
<<Coating process>>
In the coating step, for example, a fibrous cellulose dispersion (slurry) is applied onto a substrate, dried, and a fiber sheet formed by peeling from the substrate to obtain a fiber layer. Further, by using a coating device and a long base material, it is possible to continuously produce a fiber sheet to be a fiber layer.
 塗工工程で用いる基材の材質は、とくに限定されないが、繊維状セルロース分散液(スラリー)に対する濡れ性が高いものの方が乾燥時の繊維シートの収縮等を抑制することができて良いが、乾燥後に形成された繊維シートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、とくに限定されない。たとえばポリプロピレン、アクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリカーボネート、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。 The material of the base material used in the coating step is not particularly limited, but a material having high wettability with respect to the fibrous cellulose dispersion (slurry) can suppress shrinkage of the fiber sheet during drying. It is preferable to select one from which the fiber sheet formed after drying can be easily peeled off. Among them, a resin film or plate or a metal film or plate is preferable, but is not particularly limited. For example, resin films and plates such as polypropylene, acrylic, polyethylene terephthalate, vinyl chloride, polystyrene, polycarbonate, and polyvinylidene chloride, metal films and plates such as aluminum, zinc, copper, and iron plates, and those whose surfaces have been oxidized. , a stainless steel film or plate, a brass film or plate, or the like can be used.
 塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合には、所定の厚みおよび坪量の繊維シートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠としては、とくに限定されないが、たとえば乾燥後に付着する繊維シートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板を成形したものがより好ましい。本実施形態においては、たとえばポリプロピレン板、アクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリカーボネート板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板、およびこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。
 スラリーを基材に塗工する塗工機としては、とくに限定されないが、たとえばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。繊維シートの厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターがとくに好ましい。
In the coating process, when the viscosity of the slurry is low and it spreads on the base material, a dam frame is fixed on the base material in order to obtain a fiber sheet with a predetermined thickness and basis weight. You may The frame for damming is not particularly limited, but it is preferable to select, for example, one that allows the ends of the fiber sheet adhered after drying to be easily peeled off. From such a point of view, a molded resin plate or metal plate is more preferable. In this embodiment, for example, resin plates such as polypropylene plates, acrylic plates, polyethylene terephthalate plates, vinyl chloride plates, polystyrene plates, polycarbonate plates, and polyvinylidene chloride plates, and metal plates such as aluminum plates, zinc plates, copper plates, iron plates, etc. , and those whose surfaces have been oxidized, and those obtained by molding a stainless steel plate, a brass plate, or the like can be used.
The coating machine for coating the slurry on the base material is not particularly limited, but for example, a roll coater, gravure coater, die coater, curtain coater, air doctor coater, etc. can be used. A die coater, a curtain coater, and a spray coater are particularly preferable because the thickness of the fiber sheet can be made more uniform.
 スラリーを基材へ塗工する際のスラリー温度および雰囲気温度は、とくに限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることがとくに好ましい。塗工温度が上記下限値以上であれば、スラリーをより容易に塗工できる。塗工温度が上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。 The slurry temperature and the ambient temperature when the slurry is applied to the substrate are not particularly limited, but are preferably 5° C. or higher and 80° C. or lower, more preferably 10° C. or higher and 60° C. or lower, and 15° C. It is more preferably 50° C. or higher, and particularly preferably 20° C. or higher and 40° C. or lower. If the coating temperature is at least the above lower limit, the slurry can be more easily coated. When the coating temperature is equal to or lower than the above upper limit, volatilization of the dispersion medium during coating can be suppressed.
 塗工工程においては、繊維シートの仕上がり坪量が好ましくは1.4g/m以上300g/m以下となるように、より好ましくは7g/m以上200g/m以下となるように、さらに好ましくは10g/m以上200g/m以下となるように、スラリーを基材に塗工することが好ましい。坪量が上記範囲内となるように塗工することで、より強度に優れた繊維シートが得られる。 In the coating step, the finished basis weight of the fiber sheet is preferably 1.4 g/m 2 or more and 300 g/m 2 or less, more preferably 7 g/m 2 or more and 200 g/m 2 or less. More preferably, the slurry is applied to the substrate so as to have a coating weight of 10 g/m 2 or more and 200 g/m 2 or less. By coating so that the basis weight is within the above range, a fiber sheet having more excellent strength can be obtained.
 塗工工程は、上述のとおり、基材上に塗工したスラリーを乾燥させる工程を含む。スラリーを乾燥させる工程は、とくに限定されないが、たとえば非接触の乾燥方法、もしくは繊維シートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。 As described above, the coating step includes the step of drying the slurry applied onto the substrate. The step of drying the slurry is not particularly limited, but may be performed by, for example, a non-contact drying method, a method of drying while restraining the fiber sheet, or a combination thereof.
 非接触の乾燥方法としては、とくに限定されないが、たとえば熱風、赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、とくに限定されないが、たとえば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。 The non-contact drying method is not particularly limited, but for example, a method of drying by heating with hot air, infrared rays, far infrared rays, or near infrared rays (heat drying method), or a method of drying in a vacuum (vacuum drying method) is applied. can do. Although the heat drying method and the vacuum drying method may be combined, the heat drying method is usually applied. Drying with infrared rays, far-infrared rays, or near-infrared rays is not particularly limited.
 加熱乾燥法における加熱温度は、とくに限定されないが、たとえば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制および繊維状セルロースの熱による変色の抑制を実現できる。 Although the heating temperature in the heat drying method is not particularly limited, it is preferably 20°C or higher and 150°C or lower, and more preferably 25°C or higher and 105°C or lower. If the heating temperature is equal to or higher than the above lower limit, the dispersion medium can be rapidly volatilized. Moreover, if the heating temperature is equal to or lower than the above upper limit, it is possible to suppress the cost required for heating and suppress discoloration of fibrous cellulose due to heat.
<<抄紙工程>>
 抄紙工程は、抄紙機によりスラリーを抄紙することにより行われる。抄紙工程で用いられる抄紙機としては、とくに限定されないが、たとえば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。
<<Papermaking process>>
The papermaking process is performed by papermaking the slurry using a papermaking machine. The paper machine used in the papermaking process is not particularly limited, but examples thereof include continuous paper machines such as fourdrinier, cylinder, and inclined paper machines, and multi-layer paper machines combining these. In the paper-making process, a known paper-making method such as hand-making may be adopted.
 抄紙工程は、スラリーをワイヤーにより濾過、脱水して湿紙状態の繊維シートを得た後、この繊維シートをプレス、乾燥することにより行われる。スラリーを濾過、脱水する際に用いられる濾布としては、とくに限定されないが、たとえば繊維状セルロースは通過せず、かつ濾過速度が遅くなりすぎないものであることがより好ましい。このような濾布としては、とくに限定されないが、たとえば有機ポリマーからなる繊維シート、織物、多孔膜が好ましい。有機ポリマーとしてはとくに限定されないが、たとえばポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。本実施形態においては、たとえば孔径0.1μm以上20μm以下であるポリテトラフルオロエチレンの多孔膜や、孔径0.1μm以上20μm以下であるポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。 The papermaking process is carried out by filtering the slurry with a wire and dehydrating it to obtain a fibrous sheet in a wet paper state, then pressing and drying this fibrous sheet. The filter cloth used for filtering and dewatering the slurry is not particularly limited, but it is more preferable that, for example, fibrous cellulose does not pass through and the filtration rate does not become too slow. Such a filter cloth is not particularly limited, but for example, a fiber sheet, a woven fabric, or a porous membrane made of an organic polymer is preferable. Although the organic polymer is not particularly limited, non-cellulose organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, and polytetrafluoroethylene (PTFE) are preferred. In this embodiment, for example, a polytetrafluoroethylene porous film having a pore size of 0.1 μm or more and 20 μm or less, or a polyethylene terephthalate or polyethylene fabric having a pore size of 0.1 μm or more and 20 μm or less can be used.
 スラリーから繊維シートを製造する方法は、たとえば繊維状セルロースを含むスラリーを無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させて繊維シートを生成する乾燥セクションとを備える製造装置を用いて行うことができる。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。 A method for producing a fibrous sheet from a slurry includes, for example, a slurry containing fibrous cellulose, which is discharged onto the upper surface of an endless belt, and a water squeezing section for squeezing a dispersion medium from the discharged slurry to form a web, and drying the web. and a drying section to produce a fibrous sheet. An endless belt is provided from the water squeezing section to the drying section, and the web produced in the water squeezing section is conveyed to the drying section while being placed on the endless belt.
 抄紙工程において用いられる脱水方法としては、とくに限定されないが、たとえば紙の製造で通常に使用している脱水方法が挙げられる。これらの中でも、長網、円網、傾斜ワイヤーなどで脱水した後、さらにロールプレスで脱水する方法が好ましい。また、抄紙工程において用いられる乾燥方法としては、とくに限定されないが、たとえば紙の製造で用いられている方法が挙げられる。これらの中でも、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどを用いた乾燥方法がより好ましい。 The dehydration method used in the papermaking process is not particularly limited, but includes, for example, dehydration methods commonly used in paper manufacturing. Among these, the method of dehydrating with a fourdrinier, a circular net, an inclined wire, or the like and then further dehydrating with a roll press is preferable. The drying method used in the papermaking process is not particularly limited, but includes, for example, methods used in the manufacture of paper. Among these, a drying method using a cylinder dryer, Yankee dryer, hot air drying, near-infrared heater, infrared heater, or the like is more preferable.
<基材形成工程>
 積層体の製造方法における形成方法1では、繊維幅が1000nm以下の繊維状セルロースを含む繊維層の一方の面上に基材を形成する工程が設けられる。この場合、繊維層の一方の面上に樹脂フィルムもしくは樹脂シートを貼合するか、もしくは、繊維層の一方の面上に樹脂塗工液を塗工し、加熱乾燥することで樹脂層を形成することが好ましい。中でも、基材形成工程は、繊維層の一方の面上に樹脂フィルムもしくは樹脂シートを貼合し、熱プレスを行う工程であることが好ましい。
<Base material forming step>
Formation method 1 in the method for producing a laminate includes a step of forming a substrate on one surface of a fiber layer containing fibrous cellulose having a fiber width of 1000 nm or less. In this case, the resin layer is formed by laminating a resin film or resin sheet on one side of the fiber layer, or by applying a resin coating liquid on one side of the fiber layer and drying by heating. preferably. Among them, the substrate forming step is preferably a step of laminating a resin film or resin sheet on one surface of the fiber layer and performing hot pressing.
<表面保護層形成工程>
 積層体の製造方法は、繊維層の他方の面(基材が積層された側の面とは反対側面)に表面保護層を形成する工程を含む。
<Surface protective layer forming step>
The laminate manufacturing method includes a step of forming a surface protective layer on the other side of the fiber layer (the side opposite to the side on which the substrate is laminated).
 表面保護層が活性エネルギー線硬化性樹脂層又はシリコーン系樹脂層である場合、繊維層上に樹脂塗工液を塗工して表面保護層(硬化層)を形成することが好ましい。樹脂塗工液を塗工する際には、公知の塗工装置を用いて実施できる。塗工装置としては、例えば、ブレードコーター、エアナイフコーター、ロールコーター、バーコーター、グラビアコーター、マイクログラビアコーター、ロッドブレードコーター、リップコーター、ダイコーター、カーテンコーター等が挙げられる。この際、表面保護層の厚みが、所定の厚みとなるように塗工することが好ましい。 When the surface protective layer is an active energy ray-curable resin layer or a silicone resin layer, it is preferable to form the surface protective layer (cured layer) by applying a resin coating liquid onto the fiber layer. A known coating apparatus can be used to apply the resin coating liquid. Coating devices include, for example, blade coaters, air knife coaters, roll coaters, bar coaters, gravure coaters, micro gravure coaters, rod blade coaters, lip coaters, die coaters and curtain coaters. At this time, it is preferable to apply the surface protective layer so that it has a predetermined thickness.
 表面保護層が活性エネルギー線硬化性樹脂層である場合、樹脂塗工液を塗工した後に、活性エネルギー照射工程が設けられる。活性エネルギー線としては、紫外線、電子線、可視光線、X線、イオン線等が挙げられ、樹脂塗工液中に含まれるモノマーや光重合開始剤等応じて適宜選択される。中でも活性エネルギー線は、紫外線であることが好ましく、活性エネルギー照射工程は紫外線照射工程であることが好ましい。 When the surface protective layer is an active energy ray-curable resin layer, an active energy irradiation step is provided after applying the resin coating liquid. Examples of active energy rays include ultraviolet rays, electron rays, visible rays, X-rays, and ion rays, which are appropriately selected according to the monomers, photopolymerization initiators, and the like contained in the resin coating liquid. Among them, the active energy rays are preferably ultraviolet rays, and the active energy irradiation step is preferably the ultraviolet irradiation step.
 紫外線の光源としては、例えば、高圧水銀灯、低圧水銀灯、超高圧水銀灯、メタルハライドランプ、UV LEDランプ、カーボンアーク、キセノンアーク、無電極紫外線ランプ等を使用できる。紫外線の照射出力は、積算光量が100~10000mJ/cmとなるようにすることが好ましく、500~5000mJ/cmとなるようにすることがより好ましい。 As the ultraviolet light source, for example, a high-pressure mercury lamp, a low-pressure mercury lamp, an extra-high pressure mercury lamp, a metal halide lamp, a UV LED lamp, a carbon arc, a xenon arc, an electrodeless ultraviolet lamp, or the like can be used. The irradiation output of ultraviolet rays is preferably such that the integrated light amount is 100 to 10000 mJ/cm 2 , more preferably 500 to 5000 mJ/cm 2 .
 表面保護層がシリコーン系樹脂層である場合、樹脂塗工液を塗工した後には加熱工程が設けられることが好ましい。 When the surface protective layer is a silicone-based resin layer, it is preferable to provide a heating step after applying the resin coating liquid.
 表面保護層が無機層である場合、例えば、化学的気相成長法(Chemical Vapor Deposition、CVD)や物理成膜法(Physical Vapor Deposition、PVD)を用いて無機層を形成することができる。CVD法としては、具体的には、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。PVD法としては、具体的には、真空蒸着、イオンプレーティング、イオンアシスト蒸着、分子線蒸着、スパッタリング等が挙げられる。 When the surface protective layer is an inorganic layer, the inorganic layer can be formed using, for example, chemical vapor deposition (CVD) or physical vapor deposition (PVD). Specific examples of the CVD method include plasma CVD using plasma, catalytic chemical vapor deposition (Cat-CVD) in which a material gas is catalytically thermally decomposed using a heated catalyst, and the like. Specific examples of PVD methods include vacuum deposition, ion plating, ion-assisted deposition, molecular beam deposition, and sputtering.
 また、無機層の形成方法としては、原子層堆積法(Atomic Layer Deposition、ALD)を採用することもできる。ALD法は、形成しようとする膜を構成する各元素の原料ガスを、層を形成する面に交互に供給することにより、原子層単位で薄膜を形成する方法である。成膜速度が遅いという欠点はあるが、プラズマCVD法以上に、複雑な形状の面でもきれいに覆うことができ、欠陥の少ない薄膜を成膜することが可能であるという利点がある。また、ALD法には、膜厚をナノオーダーで制御することができ、広い面を覆うことが比較的容易である等の利点がある。さらにALD法は、プラズマを用いることにより、反応速度の向上、低温プロセス化、未反応ガスの減少が期待できる。 Also, as a method for forming the inorganic layer, an atomic layer deposition (ALD) method can be adopted. The ALD method is a method of forming a thin film in units of atomic layers by alternately supplying raw material gases of elements constituting a film to be formed to a surface on which a layer is to be formed. Although it has the disadvantage of a slow deposition rate, it has the advantage over the plasma CVD method that even surfaces with complicated shapes can be covered cleanly, and a thin film with few defects can be deposited. In addition, the ALD method has the advantage that the film thickness can be controlled on the order of nanometers, and that it is relatively easy to cover a wide surface. Furthermore, the ALD method is expected to improve the reaction rate, lower the temperature of the process, and reduce unreacted gas by using plasma.
(表面保護層用アンカー剤/アンカーシート/積層シート)
 本実施形態は、繊維幅が1000nm以下の繊維状セルロースを含む表面保護層用アンカー剤及びアンカー剤から形成されるアンカーシートに関するものであってもよい。
アンカー剤はアンカーシート(繊維層)を形成するために用いられ、アンカーシートは、積層体において繊維層を構成するものである。本実施形態において、繊維層は、表面保護層の硬度を高めるための下地層であり、さらに、繊維層は表面保護層と基材の間に設けられるアンカー層としても機能する。
(Anchor agent for surface protective layer/anchor sheet/laminate sheet)
The present embodiment may relate to an anchoring agent for a surface protective layer containing fibrous cellulose having a fiber width of 1000 nm or less and an anchor sheet formed from the anchoring agent.
The anchoring agent is used to form an anchor sheet (fiber layer), and the anchor sheet constitutes the fiber layer in the laminate. In this embodiment, the fiber layer is a base layer for increasing the hardness of the surface protective layer, and the fiber layer also functions as an anchor layer provided between the surface protective layer and the substrate.
 また、本実施形態は、繊維幅が1000nm以下の繊維状セルロースを混合することを含む、表面保護層下に設けられるアンカーシートの製造方法に関するものであってもよく、表面保護層下に設けられるアンカーシートの製造のための繊維幅が1000nm以下の繊維状セルロースの使用に関するものであってもよく、積層体の表面を保護するための繊維幅が1000nm以下の繊維状セルロースを含むアンカーシートの使用に関するものであってもよい。さらに、本実施形態は、表面保護層下に繊維幅が1000nm以下の繊維状セルロースを含むアンカーシートを積層することを含む、積層体の表面保護方法に関するものであってもよく、繊維幅が1000nm以下の繊維状セルロースを含むアンカー剤を塗工することを含む、積層体の表面保護方法に関するものであってもよい。 Further, the present embodiment may relate to a method for manufacturing an anchor sheet provided under the surface protective layer, which includes mixing fibrous cellulose having a fiber width of 1000 nm or less. It may also relate to the use of fibrous cellulose with a fiber width of 1000 nm or less for manufacturing an anchor sheet, and the use of an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less for protecting the surface of a laminate. may be related to Furthermore, the present embodiment may relate to a method for protecting the surface of a laminate, including laminating an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less under the surface protective layer, wherein the fiber width is 1000 nm. It may also relate to a method for protecting the surface of a laminate including applying an anchoring agent containing fibrous cellulose as described below.
 上述した表面保護層用アンカー剤から形成されたアンカーシート(繊維層)は、表面保護層貼合用のアンカーシートであり、アンカーシートは、表面保護層の硬度を高め、さらに、表面保護層と基材の密着性を高める働きもする。なお、アンカーシートは、繊維幅が1000nm以下の繊維状セルロースを含み、アンカーシートにおける繊維状セルロースの含有量はアンカーシートの全固形分質量に対して15質量%以上である。 The anchor sheet (fiber layer) formed from the surface protective layer anchoring agent described above is an anchor sheet for bonding the surface protective layer, and the anchor sheet increases the hardness of the surface protective layer, It also works to enhance the adhesion of the base material. The anchor sheet contains fibrous cellulose with a fiber width of 1000 nm or less, and the content of fibrous cellulose in the anchor sheet is 15% by mass or more with respect to the total solid mass of the anchor sheet.
 アンカーシートの厚みは、200μm以下であってもよく、150μm以下であってもよく、100μm以下であってもよく、75μm以下であってもよく、50μm以下であってもよい。なお、用途によっては、アンカーシートの厚みは50μm以下であることが好ましく、25μm以下であることがより好ましく、25μm未満であることがさらに好ましく、10μm以下であることがよりさらに好ましく、5μm以下であることが一層好ましい。アンカーシートの厚みを薄くすることで、例えば、柔軟性が要求される光学部材等に好ましく用いられる。また、アンカーシートの厚みを薄くすること黄変をより効果的に抑制することもできる。アンカーシートの厚みは、0.01μm以上であってもよく、0.05μm以上であってもよく、0.1μm以上であってもよい。また、アンカーシートの厚みは、0.01μm~500μmが好ましく、0.05μm~200μmがより好ましく、0.1μm~150μmがさらに好ましく、0.1μm~25μmが特に好ましい。柔軟性が要求される光学部材等に用いる場合は、アンカーシートの厚みは0.1~150μmが好ましく、1~100μmがより好ましく、5~50μmがさらに好ましく、10~50μmが一層好ましい。 The thickness of the anchor sheet may be 200 μm or less, 150 μm or less, 100 μm or less, 75 μm or less, or 50 μm or less. Depending on the application, the thickness of the anchor sheet is preferably 50 µm or less, more preferably 25 µm or less, even more preferably less than 25 µm, still more preferably 10 µm or less, and 5 µm or less. More preferably. By reducing the thickness of the anchor sheet, it is preferably used, for example, for optical members that require flexibility. In addition, yellowing can be more effectively suppressed by reducing the thickness of the anchor sheet. The thickness of the anchor sheet may be 0.01 μm or more, 0.05 μm or more, or 0.1 μm or more. The thickness of the anchor sheet is preferably 0.01 μm to 500 μm, more preferably 0.05 μm to 200 μm, even more preferably 0.1 μm to 150 μm, and particularly preferably 0.1 μm to 25 μm. When used for optical members that require flexibility, the thickness of the anchor sheet is preferably 0.1 to 150 μm, more preferably 1 to 100 μm, even more preferably 5 to 50 μm, even more preferably 10 to 50 μm.
 アンカーシートの鉛筆硬度は、F以上であることが好ましく、H以上であることがより好ましく、2H以上であることがさらに好ましい。また、アンカーシートの鉛筆硬度は9H以下であることが好ましい。アンカーシートの鉛筆硬度は、JIS K 5600-5-4:1999に準拠して測定される。 The pencil hardness of the anchor sheet is preferably F or higher, more preferably H or higher, and even more preferably 2H or higher. Further, the anchor sheet preferably has a pencil hardness of 9H or less. The pencil hardness of the anchor sheet is measured according to JIS K 5600-5-4:1999.
 なお、アンカーシートの坪量や密度は上述した繊維層と同様の範囲とすることが好ましい。 The basis weight and density of the anchor sheet are preferably in the same ranges as those of the fiber layer described above.
 また、本実施形態は、基材と繊維層を含む表面保護層積層用の積層シートに関するものであってもよい。ここで、繊維層は繊維幅が1000nm以下の繊維状セルロースを含有し、繊維状セルロースの含有量は繊維層の全固形分質量に対して15質量%以上である。上述した基材と上述した繊維層を含む積層シートは、表面保護層の硬度を高め得るシートであり、表面保護層積層用として有用である。 In addition, the present embodiment may also relate to a laminated sheet for laminating a surface protective layer containing a base material and a fiber layer. Here, the fibrous layer contains fibrous cellulose with a fiber width of 1000 nm or less, and the content of fibrous cellulose is 15% by mass or more with respect to the total solid mass of the fibrous layer. A laminate sheet containing the substrate and the fiber layer described above is a sheet capable of increasing the hardness of the surface protective layer, and is useful for laminating the surface protective layer.
 繊維層の厚みは200μm以下であってもよく、150μm以下であってもよく、100μm以下であってもよく、75μm以下であってもよく、50μm以下であってもよい。なお、積層体の用途によっては、繊維層の厚みは50μm以下であることが好ましく、25μm以下であることがより好ましく、25μm未満であることがさらに好ましく、10μm以下であることがよりさらに好ましく、5μm以下であることが一層好ましい。繊維層の厚みを薄くすることで、例えば、柔軟性が要求される光学部材等に好ましく用いられる。また、繊維層の厚みを薄くすること積層体の黄変をより効果的に抑制することもでき、さらに積層シートの耐衝撃性を高めることもできる。繊維層の厚みは、0.01μm以上であってもよく、0.05μm以上であってもよく、0.1μm以上であってもよい。また、繊維層の厚みは0.01μm~500μmが好ましく、0.05μm~200μmがより好ましく、0.1μm~150μmがさらに好ましく、0.1μm~25μmが特に好ましい。積層シートが柔軟性が要求される光学部材等に用いる場合は、繊維層の厚みは0.1~150μmが好ましく、1~100μmがより好ましく、5~50μmがさらに好ましく、10~50μmが一層好ましい。ここで、積層シートを構成する繊維層の厚さは、ウルトラミクロトームUC-7(日本電子株式会社)によって積層体の断面を切り出し、当該断面を電子顕微鏡、拡大鏡又は目視で観察して、測定される値である。 The thickness of the fiber layer may be 200 μm or less, 150 μm or less, 100 μm or less, 75 μm or less, or 50 μm or less. Depending on the application of the laminate, the thickness of the fiber layer is preferably 50 μm or less, more preferably 25 μm or less, even more preferably less than 25 μm, and even more preferably 10 μm or less. It is more preferably 5 μm or less. By reducing the thickness of the fiber layer, it is preferably used, for example, for optical members that require flexibility. Also, by reducing the thickness of the fiber layer, yellowing of the laminate can be more effectively suppressed, and the impact resistance of the laminate sheet can be enhanced. The thickness of the fiber layer may be 0.01 μm or more, 0.05 μm or more, or 0.1 μm or more. The thickness of the fiber layer is preferably 0.01 μm to 500 μm, more preferably 0.05 μm to 200 μm, even more preferably 0.1 μm to 150 μm, and particularly preferably 0.1 μm to 25 μm. When the laminated sheet is used for an optical member or the like that requires flexibility, the thickness of the fiber layer is preferably 0.1 to 150 μm, more preferably 1 to 100 μm, even more preferably 5 to 50 μm, even more preferably 10 to 50 μm. . Here, the thickness of the fiber layer constituting the laminated sheet is measured by cutting out a cross-section of the laminate with an ultramicrotome UC-7 (JEOL Ltd.) and observing the cross-section with an electron microscope, a magnifying glass, or visually. is the value to be
 繊維層の鉛筆硬度は、F以上であることが好ましく、H以上であることがより好ましく、2H以上であることがさらに好ましい。また、繊維層の鉛筆硬度は9H以下であることが好ましい。アンカーシートの鉛筆硬度は、JIS K 5600-5-4:1999に準拠して測定される。 The pencil hardness of the fiber layer is preferably F or higher, more preferably H or higher, and even more preferably 2H or higher. Moreover, the fiber layer preferably has a pencil hardness of 9H or less. The pencil hardness of the anchor sheet is measured according to JIS K 5600-5-4:1999.
 なお、積層シートにおける繊維層の坪量や密度は上述した積層体における繊維層と同様の範囲とすることが好ましい。 The basis weight and density of the fiber layers in the laminated sheet are preferably in the same ranges as those of the fiber layers in the laminate described above.
(表面保護剤/表面保護用シート/表面保護用シートの製造方法)
 本実施形態は、繊維幅が1000nm以下の繊維状セルロースを含む表面保護剤に関するものであってもよい。また、本実施形態は、繊維幅が1000nm以下の繊維状セルロースを含む、シートであって、繊維状セルロースの含有量はシートの全固形分質量に対して15質量%以上である、表面保護用シートに関するものであってもよい。表面保護用シート上には、上述した表面保護層が形成されてもよく、また、表面保護用シートが積層体の最表面に配され、表面保護層を形成してもよい。
(Surface protective agent/Surface protective sheet/Method for producing surface protective sheet)
This embodiment may relate to a surface protective agent containing fibrous cellulose having a fiber width of 1000 nm or less. Further, the present embodiment is a sheet containing fibrous cellulose having a fiber width of 1000 nm or less, wherein the content of the fibrous cellulose is 15% by mass or more with respect to the total solid mass of the sheet. It may relate to a seat. The surface protective layer described above may be formed on the surface protective sheet, or the surface protective sheet may be disposed on the outermost surface of the laminate to form the surface protective layer.
 従来、基材上に、微細繊維状セルロースを含む表面保護層を設けてなる積層体が知られているが、このような積層体においては、表面保護層の硬度が十分ではなく、さらなる改善が期待されていた。本実施形態においては、所定の繊維状セルロースを用いることで、微細繊維状セルロースを含む表面保護層の硬度を高めることにも成功している。 Conventionally, a laminate is known in which a surface protective layer containing fine fibrous cellulose is provided on a base material. was expected. In this embodiment, by using a predetermined fibrous cellulose, the hardness of the surface protective layer containing fine fibrous cellulose is also successfully increased.
 表面保護用シートの厚みは、200μm以下であってもよく、150μm以下であってもよく、100μm以下であってもよく、75μm以下であってもよく、50μm以下であってもよい。なお、用途によっては、表面保護用シートの厚みは50μm以下であることが好ましく、25μm以下であることがより好ましく、25μm未満であることがさらに好ましく、10μm以下であることがよりさらに好ましく、5μm以下であることが一層好ましい。表面保護用シートの厚みを薄くすることで、例えば、柔軟性が要求される光学部材等に好ましく用いられる。また、表面保護用シートの厚みを薄くすること黄変をより効果的に抑制することもできる。表面保護用シートの厚みは、0.01μm以上であってもよく、0.05μm以上であってもよく、0.1μm以上であってもよい。また、表面保護用シートの厚みは0.01μm~500μmが好ましく、0.05μm~200μmがより好ましく、0.1μm~150μmがさらに好ましく、0.1μm~25μmが特に好ましい。柔軟性が要求される光学部材等に用いる場合は、表面保護用シートの厚みは0.1~150μmが好ましく、1~100μmがより好ましく、5~50μmがさらに好ましく、10~50μmが一層好ましい。 The thickness of the surface protection sheet may be 200 µm or less, 150 µm or less, 100 µm or less, 75 µm or less, or 50 µm or less. Depending on the application, the thickness of the surface protection sheet is preferably 50 µm or less, more preferably 25 µm or less, even more preferably less than 25 µm, even more preferably 10 µm or less, and 5 µm. The following are more preferable. By reducing the thickness of the surface protection sheet, it is preferably used for optical members that require flexibility, for example. In addition, yellowing can be more effectively suppressed by reducing the thickness of the surface protection sheet. The thickness of the surface protection sheet may be 0.01 μm or more, 0.05 μm or more, or 0.1 μm or more. The thickness of the surface protection sheet is preferably 0.01 μm to 500 μm, more preferably 0.05 μm to 200 μm, still more preferably 0.1 μm to 150 μm, and particularly preferably 0.1 μm to 25 μm. When used for optical members or the like that require flexibility, the thickness of the surface protection sheet is preferably 0.1 to 150 μm, more preferably 1 to 100 μm, even more preferably 5 to 50 μm, even more preferably 10 to 50 μm.
 表面保護用シートの鉛筆硬度は、F以上であることが好ましく、H以上であることがより好ましく、2H以上であることがさらに好ましい。また、表面保護用シートの鉛筆硬度は9H以下であることが好ましい。表面保護用シートの鉛筆硬度は、JIS K 5600-5-4:1999に準拠して測定される。 The pencil hardness of the surface protection sheet is preferably F or higher, more preferably H or higher, and even more preferably 2H or higher. Moreover, it is preferable that the pencil hardness of the surface protection sheet is 9H or less. The pencil hardness of the surface protection sheet is measured according to JIS K 5600-5-4:1999.
 また、本実施形態は、繊維幅が1000nm以下の繊維状セルロースを混合することを含む、表面保護用シートの製造方法、基板上に設けられる表面保護用シートの製造のための繊維幅が1000nm以下の繊維状セルロースの使用、積層体の表面を保護するための繊維幅が1000nm以下の繊維状セルロースを含むシートの使用、基板上に繊維幅が1000nm以下の繊維状セルロースを含むシートを積層することを含む、積層体の表面保護方法、繊維幅が1000nm以下の繊維状セルロースを含む表面保護剤を塗工することを含む、基板の表面保護方法に関するものであってもよい。 Further, the present embodiment includes a method for producing a surface protection sheet, which includes mixing fibrous cellulose with a fiber width of 1000 nm or less, and a fiber width of 1000 nm or less for producing a surface protection sheet provided on a substrate. use of fibrous cellulose, use of a sheet containing fibrous cellulose with a fiber width of 1000 nm or less for protecting the surface of the laminate, laminating a sheet containing fibrous cellulose with a fiber width of 1000 nm or less on a substrate and a surface protection method for a substrate, which includes applying a surface protective agent containing fibrous cellulose having a fiber width of 1000 nm or less.
(用途)      
 本実施形態の積層体は高い透明性を有しており、かつ表面保護層側の表面は高硬度を発揮する。このため、本実施形態の積層体は、光学フィルム用や樹脂ガラス用として好適である。より具体的には、本実施形態の積層体は各種の光学ディスプレイ装置に用いられる光学フィルムや各種の乗り物や建物の窓材、内装材、外装材として好ましく用いられる。このため、本発明は、上述した積層体を含む光学フィルムや、上述した積層体を含む樹脂ガラスに関するものであってもよい。
(Application)
The laminate of this embodiment has high transparency, and the surface on the side of the surface protective layer exhibits high hardness. Therefore, the laminate of the present embodiment is suitable for optical films and resin glasses. More specifically, the laminate of the present embodiment is preferably used as optical films used in various optical display devices, window materials, interior materials, and exterior materials for various vehicles and buildings. Therefore, the present invention may also relate to an optical film including the laminate described above, or a resin glass including the laminate described above.
 また、本実施形態の積層体は、電子機器の基板、家電の部材、包装用資材、ガスバリア性資材等の用途にも適している。 In addition, the laminate of the present embodiment is also suitable for applications such as electronic device substrates, home appliance members, packaging materials, and gas barrier materials.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described more specifically below with reference to examples and comparative examples. The materials, amounts used, proportions, treatment details, treatment procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the specific examples shown below.
<製造例A1>
 原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Production Example A1>
As raw material pulp, softwood kraft pulp manufactured by Oji Paper Co., Ltd. (solid content 93% by mass, basis weight 245 g / m 2 sheet, disaggregated and Canadian standard freeness measured according to JIS P 8121-2: 2012 (CSF) of 700 ml) was used.
 この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。 This raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. A chemical-impregnated pulp was obtained by adjusting as follows. Next, the resulting chemical solution-impregnated pulp was heated in a hot air dryer at 165° C. for 250 seconds to introduce phosphoric acid groups into cellulose in the pulp to obtain phosphorylated pulp.
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained phosphorylated pulp was washed. In the washing treatment, a pulp dispersion liquid obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp is stirred so that the pulp is uniformly dispersed, and then filtration and dehydration are repeated. gone. The washing was finished when the electric conductivity of the filtrate became 100 μS/cm or less.
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水および洗浄して、中和処理が施されたリン酸化パルプを得た。 Next, the washed phosphorylated pulp was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N sodium hydroxide aqueous solution was added little by little while stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. . Next, the phosphorylated pulp slurry was dehydrated and washed to obtain neutralized phosphorylated pulp.
 得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 An infrared absorption spectrum was measured for the obtained phosphorylated pulp using FT-IR. As a result, an absorption based on P=O of the phosphate group was observed near 1230 cm -1 , confirming that the phosphate group was added to the pulp. In addition, when the obtained phosphorylated pulp was tested and analyzed with an X-ray diffraction device, it was found that the A typical peak was confirmed, confirming that it had cellulose type I crystals.
 得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(A)を得た。 Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry with a solid content concentration of 2% by mass. This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (A) containing fine fibrous cellulose.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。 It was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. The phosphate group content (first dissociated acid content) measured by the measurement method described in [Measurement of phosphate group content] described later was 1.45 mmol/g. The total amount of dissociated acid was 2.45 mmol/g.
<製造例B1>
 リン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例A1と同様に操作を行い、亜リン酸化パルプおよび微細繊維状セルロースを含む微細繊維状セルロース分散液(B)を得た。
<Production Example B1>
Fine fibrous cellulose dispersion containing phosphorous acid pulp and fine fibrous cellulose was performed in the same manner as in Production Example A1 except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate. A liquid (B) was obtained.
 得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 An infrared absorption spectrum was measured for the obtained phosphorous oxidized pulp using FT-IR. As a result, an absorption based on P=O of a phosphonic acid group, which is a tautomer of a phosphite group, was observed near 1210 cm −1 , indicating that a phosphite group (phosphonic acid group) was added to the pulp. was confirmed. In addition, when the obtained phosphorous acid pulp was tested and analyzed with an X-ray diffractometer, two positions near 2θ = 14° or more and 17° or less and 2θ = 22° or more and 23° or less were found. A typical peak was confirmed in , and it was confirmed to have cellulose type I crystals.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定される亜リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。 It was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. The amount of phosphite groups (first dissociated acid amount) of the resulting fine fibrous cellulose measured by the measurement method described in [Measurement of amount of phosphooxy acid groups] described later was 1.51 mmol/g. . The total amount of dissociated acid was 1.54 mmol/g.
<製造例C1>
 リン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用い、加熱時間を20分間に延長した以外は、製造例A1と同様に操作を行い、硫酸化パルプおよび微細セルロースを含む微細繊維状セルロース分散液(C)を得た。
<Production Example C1>
The same operation as in Production Example A1 was performed except that 38 parts by mass of amidosulfuric acid (sulfamic acid) was used instead of ammonium dihydrogen phosphate and the heating time was extended to 20 minutes. A fibrous cellulose dispersion (C) was obtained.
 得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸エステル基のS=Oに基づく吸収が観察され、パルプに硫酸エステル基が付加されていることが確認された。また、得られた硫酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 An infrared absorption spectrum was measured for the obtained sulfated pulp using FT-IR. As a result, absorption due to S=O of the sulfate group was observed near 1220-1260 cm -1 , confirming that the sulfate group was added to the pulp. Further, when the obtained sulfated pulp was tested and analyzed with an X-ray diffraction device, it was found that there were two positions near 2θ = 14° to 17° and 2θ = 22° to 23°. A typical peak was confirmed, confirming that it had cellulose type I crystals.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する[硫黄オキソ酸基量・スルホン基量の測定]に記載の測定方法で測定される硫黄オキソ酸基量は1.47mmol/gだった。 It was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. The fine fibrous cellulose thus obtained had a sulfur oxoacid group content of 1.47 mmol/g measured by the measurement method described in [Measurement of sulfur oxoacid group content and sulfone group content] described later.
<製造例D1>
 原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。
<Production Example D1>
Softwood kraft pulp (undried) manufactured by Oji Paper Co., Ltd. was used as raw material pulp. The raw material pulp was subjected to alkali TEMPO oxidation treatment as follows.
 まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して10mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。 First, the raw pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 10 parts by mass of sodium bromide, and 10000 parts by mass of water distributed in parts. Then, a 13% by mass sodium hypochlorite aqueous solution was added to 10 mmol per 1.0 g of pulp to initiate the reaction. During the reaction, a 0.5 M sodium hydroxide aqueous solution was added dropwise to maintain the pH at 10 or more and 10.5 or less, and the reaction was considered completed when no change in pH was observed.
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained TEMPO oxidized pulp was washed. The washing treatment is performed by dehydrating the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring to uniformly disperse, and then filtering and dehydrating repeatedly. rice field. The washing was finished when the electric conductivity of the filtrate became 100 μS/cm or less.
 この脱水シートに対して、残存するアルデヒド基の追酸化処理を次のようにして行った。乾燥質量100質量部相当の上記脱水シートを、0.1mol/L酢酸緩衝液(pH4.8)10000質量部に分散させた。次いで80質量%亜塩素酸ナトリウム113質量部を加え、直ちに密閉した後、マグネチックスターラーを用いて500rpmで撹拌しながら室温で48時間反応させ、パルプスラリーを得た。 This dehydrated sheet was subjected to a post-oxidation treatment of the remaining aldehyde groups as follows. The dehydrated sheet equivalent to 100 parts by mass of dry mass was dispersed in 10000 parts by mass of 0.1 mol/L acetate buffer (pH 4.8). Next, 113 parts by mass of 80% by mass sodium chlorite was added, and the mixture was immediately sealed, followed by reaction at room temperature for 48 hours while stirring at 500 rpm using a magnetic stirrer to obtain a pulp slurry.
 次いで、得られた追酸化済みTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、追酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained post-oxidized TEMPO oxidized pulp was washed. The washing treatment is carried out by dehydrating the post-oxidized pulp slurry to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring to uniformly disperse, and then filtering and dehydrating repeatedly. rice field. The washing was finished when the electric conductivity of the filtrate became 100 μS/cm or less.
 得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 When the obtained TEMPO oxidized pulp was tested and analyzed with an X-ray diffraction device, it was found to be typical at two positions near 2θ = 14° or more and 17° or less and 2θ = 22° or more and 23° or less. A peak was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたTEMPO酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(D)を得た。 Ion-exchanged water was added to the obtained TEMPO oxidized pulp to prepare a slurry with a solid concentration of 2% by mass. This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (D) containing fine fibrous cellulose.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する[カルボキシ基量の測定]に記載の測定方法で測定されるカルボキシ基量は、1.80mmol/gだった。 It was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. The carboxy group content of the obtained fine fibrous cellulose measured by the measurement method described in [Measurement of carboxy group content] described later was 1.80 mmol/g.
<製造例E1>
[次亜塩素酸酸化]
 針葉樹晒クラフトパルプ(NBKP)を抄き上げたシート(固形分濃度90質量%)を、ハンドミキサー(大阪ケミカル株式会社製、ラボミルサーPLUS)を用い、回転数20000rpmで15秒処理して綿状のフラッフィングパルプ(固形分濃度90質量%)にした。次いで、次亜塩素酸ナトリウム・5水和物をイオン交換水に加え、次亜塩素酸ナトリウムの固形分濃度を22質量%とした水溶液を準備した。綿状のフラッフィングパルプ100質量部に、22質量%の次亜塩素酸ナトリウム水溶液を9000質量部加え、温浴で30℃に調整しながら2時間反応させ、カルボキシ基導入パルプを得た。反応中は1N水酸化ナトリウム水溶液を適宜加え、pHを11に維持した。
<Production Example E1>
[Hypochlorous acid oxidation]
A sheet of softwood bleached kraft pulp (NBKP) (solid content concentration 90% by mass) is processed with a hand mixer (Labo Milcer PLUS, manufactured by Osaka Chemical Co., Ltd.) at a rotation speed of 20000 rpm for 15 seconds to form a flocculent. Fluffing pulp (solid content concentration 90% by mass) was prepared. Next, sodium hypochlorite pentahydrate was added to the ion-exchanged water to prepare an aqueous solution having a sodium hypochlorite solid content concentration of 22% by mass. 9000 parts by mass of a 22% by mass sodium hypochlorite aqueous solution was added to 100 parts by mass of cotton-like fluffing pulp, and the mixture was reacted for 2 hours while adjusting the temperature to 30°C in a hot bath to obtain a carboxy group-introduced pulp. The pH was maintained at 11 by appropriately adding 1N sodium hydroxide aqueous solution during the reaction.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion liquid obtained by pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. The washing was finished when the electric conductivity of the filtrate became 100 μS/cm or less.
 得られたカルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 When the obtained carboxyl group-introduced pulp was tested and analyzed with an X-ray diffractometer, it was found to be typical at two positions near 2θ = 14° or more and 17° or less and 2θ = 22° or more and 23° or less. A specific peak was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたカルボキシ基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(E)を得た。 Ion-exchanged water was added to the resulting carboxy group-introduced pulp to prepare a slurry with a solid content concentration of 2% by mass. This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (E) containing fine fibrous cellulose.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する[カルボキシ基量の測定]に記載の測定方法で測定されるカルボキシ基量は、0.70mmol/gだった。 It was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. The carboxy group content of the resulting fine fibrous cellulose measured by the measurement method described in [Measurement of carboxy group content] described later was 0.70 mmol/g.
<製造例F1>
[マレイン酸エステル化]
 針葉樹晒クラフトパルプ(NBKP)を抄き上げたシート(固形分濃度90質量%)を、ハンドミキサー(大阪ケミカル株式会社製、ラボミルサーPLUS)を用い、回転数20000rpmで15秒処理して綿状のフラッフィングパルプ(固形分濃度90質量%)にした。オートクレーブに、綿状のフラッフィングパルプ100質量部と無水マレイン酸50質量部とを充填し、150℃で2時間処理して、カルボキシ基導入パルプを得た。
<Production Example F1>
[Maleic acid esterification]
A sheet of softwood bleached kraft pulp (NBKP) (solid content concentration 90% by mass) is processed with a hand mixer (Labo Milcer PLUS, manufactured by Osaka Chemical Co., Ltd.) at a rotation speed of 20000 rpm for 15 seconds to form a flocculent. Fluffing pulp (solid content concentration 90% by mass) was prepared. An autoclave was charged with 100 parts by mass of cotton-like fluffing pulp and 50 parts by mass of maleic anhydride and treated at 150° C. for 2 hours to obtain a carboxy group-introduced pulp.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion liquid obtained by pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. The washing was finished when the electric conductivity of the filtrate became 100 μS/cm or less.
 得られたカルボキシ基導入パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1580および1720cm-1付近にカルボキシ基に基づく吸収が観察され、マレイン酸エステル化されていることを確認した。また、カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 An infrared absorption spectrum was measured for the resulting carboxy group-introduced pulp using FT-IR. As a result, absorption due to carboxy groups was observed near 1580 and 1720 cm −1 , confirming maleic acid esterification. In addition, when the carboxy group-introduced pulp was tested and analyzed with an X-ray diffraction device, typical A peak was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたカルボキシ基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(F)を得た。 Ion-exchanged water was added to the resulting carboxy group-introduced pulp to prepare a slurry with a solid content concentration of 2% by mass. This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (F) containing fine fibrous cellulose.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する[カルボキシ基量の測定]に記載の測定方法で測定されるカルボキシ基量は、1.22mmol/gだった。 It was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. The carboxy group content of the resulting fine fibrous cellulose measured by the measurement method described in [Measurement of carboxy group content] described later was 1.22 mmol/g.
<製造例G1>
[カルボキシエチル化]
 原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Production Example G1>
[Carboxyethylation]
As raw material pulp, softwood kraft pulp manufactured by Oji Paper Co., Ltd. (solid content 93% by mass, basis weight 245 g / m 2 sheet, disaggregated and Canadian standard freeness measured according to JIS P 8121-2: 2012 (CSF) of 700 ml) was used.
 この原料パルプ100質量部(絶乾質量)に、12N NaOH水溶液を250質量部と、2-クロロプロピオン酸163質量部、イオン交換水140質量部からなる薬液(合計553質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で10分加熱し、パルプ中のセルロースにカルボキシエチル基(カルボキシ基)を導入し、カルボキシ基導入パルプを得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp was added a chemical solution consisting of 250 parts by mass of 12N NaOH aqueous solution, 163 parts by mass of 2-chloropropionic acid, and 140 parts by mass of ion-exchanged water (553 parts by mass in total). An impregnated pulp was obtained. Next, the resulting chemical solution-impregnated pulp was heated in a hot air dryer at 165° C. for 10 minutes to introduce carboxyethyl groups (carboxy groups) into the cellulose in the pulp to obtain carboxy group-introduced pulp.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion liquid obtained by pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. The washing was finished when the electric conductivity of the filtrate became 100 μS/cm or less.
 次いで、洗浄後のカルボキシ基導入パルプに対して中和処理を次のようにして行った。まず、洗浄後のカルボキシ基導入パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のカルボキシ基導入パルプスラリーを得た。次いで、当該カルボキシ基導入パルプスラリーを脱水および洗浄をして、中和処理が施されたカルボキシ基導入パルプを得た。 Next, the washed carboxyl group-introduced pulp was neutralized as follows. First, after diluting the washed carboxy group-introduced pulp with 10 L of deionized water, a 1 N sodium hydroxide aqueous solution was added little by little while stirring to prepare a carboxy group-introduced pulp slurry having a pH of 12 or more and 13 or less. Obtained. Next, the carboxyl group-introduced pulp slurry was dewatered and washed to obtain neutralized carboxyl group-introduced pulp.
 カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 When the carboxy group-introduced pulp was tested and analyzed with an X-ray diffraction device, typical peaks were observed at two positions near 2θ = 14° or more and 17° or less and 2θ = 22° or more and 23° or less. was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたカルボキシ基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(G)を得た。 Ion-exchanged water was added to the resulting carboxy group-introduced pulp to prepare a slurry with a solid content concentration of 2% by mass. This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (G) containing fine fibrous cellulose.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する[カルボキシ基量の測定]に記載の測定方法で測定されるカルボキシ基量は、1.41mmol/gだった。 It was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. The carboxy group content of the resulting fine fibrous cellulose measured by the measurement method described in [Measurement of carboxy group content] described later was 1.41 mmol/g.
<製造例H1>
[スルホエチル化]
 原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Production Example H1>
[Sulfoethylation]
As raw material pulp, softwood kraft pulp manufactured by Oji Paper Co., Ltd. (solid content 93% by mass, basis weight 245 g / m 2 sheet, disaggregated and Canadian standard freeness measured according to JIS P 8121-2: 2012 (CSF) of 700 ml) was used.
 この原料パルプ100質量部(絶乾質量)に、2N NaOH水溶液を180質量部と25質量%濃度のビニルスルホン酸ナトリウム水溶液780質量部からなる薬液(合計960質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で16分加熱し、パルプ中のセルロースにスルホエチル基(スルホン基)を導入し、スルホエチル基導入パルプ(スルホン基導入パルプ)を得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp, a chemical solution consisting of 180 parts by mass of a 2N NaOH aqueous solution and 780 parts by mass of a 25% by mass sodium vinylsulfonate aqueous solution (total of 960 parts by mass) was added to obtain a chemical solution-impregnated pulp. Obtained. Next, the resulting chemical solution-impregnated pulp was heated in a hot air dryer at 165° C. for 16 minutes to introduce sulfoethyl groups (sulfone groups) into the cellulose in the pulp to obtain sulfoethyl group-introduced pulp (sulfone group-introduced pulp).
 次いで、得られたスルホエチル基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたスルホエチル基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained sulfoethyl group-introduced pulp was washed. The washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion liquid obtained by pouring ion-exchanged water into the resulting sulfoethyl group-introduced pulp, stirring the pulp to uniformly disperse the pulp, and then filtering and dehydrating the pulp. The washing was finished when the electric conductivity of the filtrate became 100 μS/cm or less.
 スルホエチル基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 When the sulfoethyl group-introduced pulp was tested and analyzed with an X-ray diffraction device, typical peaks were observed at two positions near 2θ = 14° or more and 17° or less and 2θ = 22° or more and 23° or less. was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたスルホエチル基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(H)を得た。 Ion-exchanged water was added to the resulting sulfoethyl group-introduced pulp to prepare a slurry with a solid content concentration of 2% by mass. This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (H) containing fine fibrous cellulose.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、後述する[硫黄オキソ酸基量・スルホン基量の測定]に記載の測定方法で測定されるスルホエチル基量(スルホン基量)は、1.48mmol/gだった。 It was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. Regarding the obtained fine fibrous cellulose, the sulfoethyl group content (sulfone group content) measured by the measuring method described in [Measurement of sulfur oxoacid group content and sulfone group content] described later was 1.48 mmol/g. was.
<製造例J1>
[カチオン化処理]
 原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing Example J1>
[Cationization treatment]
As raw material pulp, softwood kraft pulp manufactured by Oji Paper Co., Ltd. (solid content 93% by mass, basis weight 245 g / m 2 sheet, disaggregated and Canadian standard freeness measured according to JIS P 8121-2: 2012 (CSF) of 700 ml) was used.
 この原料パルプ100質量部(絶乾質量)に、1N NaOH水溶液180質量部とカチオン化剤(カチオマスターG、四日市合成株式会社製、グリシジルトリメチルアンモニウムクロリド、純分73.1質量%、含水率20.2質量%)325質量部からなる薬液(合計505質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で12分加熱し、パルプ中のセルロースにカチオン基を導入し、カチオン基導入パルプを得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp, 180 parts by mass of a 1N NaOH aqueous solution and a cationizing agent (Catiomaster G, manufactured by Yokkaichi Gosei Co., Ltd., glycidyltrimethylammonium chloride, pure content 73.1% by mass, moisture content 20) were added. .2% by mass) 325 parts by mass (505 parts by mass in total) of the chemical solution was added to obtain a chemical solution-impregnated pulp. Next, the resulting chemical solution-impregnated pulp was heated in a hot air dryer at 165° C. for 12 minutes to introduce cationic groups into the cellulose in the pulp to obtain cationic group-introduced pulp.
 次いで、得られたカチオン基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカチオン基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the resulting cationic group-introduced pulp was washed. The washing treatment was carried out by repeating an operation of filtering and dehydrating a pulp dispersion obtained by pouring ion-exchanged water into the obtained cationic group-introduced pulp, stirring the pulp so that the pulp is uniformly dispersed, and then filtering and dehydrating. The washing was finished when the electric conductivity of the filtrate became 100 μS/cm or less.
 次いで、洗浄後のカチオン基導入パルプに対して中和処理を次のようにして行った。まず、洗浄後のカチオン基導入パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの塩酸を少しずつ添加することにより、pHが1以上2以下のカチオン基導入パルプスラリーを得た。次いで、当該カチオン基導入パルプスラリーを脱水および洗浄をして、中和処理が施されたカチオン基導入パルプを得た。 Next, the cationic group-introduced pulp after washing was neutralized as follows. First, the cationic group-introduced pulp after washing was diluted with 10 L of deionized water, and then 1N hydrochloric acid was added little by little while stirring to obtain a cationic group-introduced pulp slurry having a pH of 1 or more and 2 or less. Next, the cationic group-introduced pulp slurry was dehydrated and washed to obtain a neutralized cationic group-introduced pulp.
 カチオン基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 When the cationic group-introduced pulp was tested and analyzed with an X-ray diffractometer, there were typical peaks at two positions near 2θ = 14° or more and 17° or less and 2θ = 22° or more and 23° or less. was confirmed, and it was confirmed to have cellulose type I crystals.
 得られたカチオン基導入パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(J)を得た。 Ion-exchanged water was added to the resulting cationic group-introduced pulp to prepare a slurry with a solid concentration of 2% by mass. This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (J) containing fine fibrous cellulose.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、得られた微細繊維状セルロースについて、微量窒素分析を行い、下記式でカチオン基量を計算したところ、1.45mmol/gだった。
(カチオン基量)[mmol/g]=(窒素量)[g]/14×1000/(供試した微細繊維状セルロース量)[g]
It was confirmed by X-ray diffraction that the resulting fine fibrous cellulose maintained cellulose type I crystals. Further, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm. The obtained fine fibrous cellulose was subjected to trace nitrogen analysis, and the cationic group content was calculated according to the following formula and found to be 1.45 mmol/g.
(Amount of cationic groups) [mmol/g]=(Amount of nitrogen) [g]/14×1000/(Amount of fine fibrous cellulose tested) [g]
<製造例K1>
[置換基除去処理セルロースの作製]
<窒素除去処理>
 製造例A1にて作製したリン酸化パルプにイオン交換水を添加し、固形分濃度が4質量%のスラリーを調製した。スラリーに48質量%の水酸化ナトリウム水溶液を添加してpH13.4に調整し、液温85℃の条件で1時間加熱した。その後、このパルプスラリーを脱水し、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌し、濾過脱水する操作を繰り返すことにより余剰の水酸化ナトリウムを除去した。ろ液の電気伝導度が100μS/cm以下となった時点で、除去の終点とした。なお、後述する[カルバミド基量の測定]で測定されるカルバミド基の導入量は、0.01mmol/gであった。
<Production example K1>
[Preparation of Substituent Removal Treated Cellulose]
<Nitrogen removal treatment>
Ion-exchanged water was added to the phosphorylated pulp produced in Production Example A1 to prepare a slurry having a solid content concentration of 4% by mass. A 48% by mass sodium hydroxide aqueous solution was added to the slurry to adjust the pH to 13.4, and the slurry was heated at a liquid temperature of 85° C. for 1 hour. After that, the pulp slurry is dehydrated, and the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry weight) of phosphorylated pulp is stirred so that the pulp is uniformly dispersed, followed by filtration and dehydration. was repeated to remove excess sodium hydroxide. The removal was terminated when the electric conductivity of the filtrate became 100 μS/cm or less. The amount of introduced carbamide groups measured in [Measurement of Carbamide Group Amount] described later was 0.01 mmol/g.
 これにより得られたリンオキソ酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定されるリン酸基量(第1解離酸量)は、1.35mmol/gだった。なお、総解離酸量は、2.30mmol/gであった。 The phosphorus oxyoxidized pulp thus obtained was subjected to infrared absorption spectrum measurement using FT-IR. As a result, an absorption based on P=O of the phosphate group was observed near 1230 cm -1 , confirming that the phosphate group was added to the pulp. Moreover, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained cellulose type I crystals. The phosphate group content (first dissociated acid content) measured by the measurement method described in [Measurement of phosphate group content] described later was 1.35 mmol/g. The total amount of dissociated acid was 2.30 mmol/g.
<解繊処理>
 得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Fibrillation treatment>
Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated six times with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion containing fine fibrous cellulose.
<置換基除去処理(高温熱処理)>
 微細繊維状セルロース分散液を耐圧容器に入れ、液温160℃で15分間加熱し、リン酸基量が0.08mmol/gとなるまで加熱を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。
<Substituent removal treatment (high temperature heat treatment)>
The fine fibrous cellulose dispersion was placed in a pressure vessel and heated at a liquid temperature of 160° C. for 15 minutes until the amount of phosphate groups reached 0.08 mmol/g. This operation confirmed the formation of fine fibrous cellulose aggregates.
<置換基除去後スラリーの洗浄処理>
 加熱後のスラリーに、スラリーと同量のイオン交換水を加えて固形分濃度が約1質量%のスラリーとし、スラリーを撹拌した後、濾過脱水する操作を繰り返すことにより、スラリーの洗浄を行った。ろ液の電気伝導度が10μS/cm以下となった時点で、再びイオン交換水を添加して約1質量%のスラリーとし、24時間静置した。そこからさらに濾過脱水する操作を繰り返し、再び濾液の電気伝導度が10μS/cm以下となった時点を洗浄終点とした。得られた微細繊維状セルロース凝集物にイオン交換水を加え、置換基除去後スラリーを得た。このスラリーの固形分濃度は1.7質量%であった。
<Washing treatment of slurry after removal of substituents>
After the heating, the same amount of ion-exchanged water as the slurry was added to the slurry to obtain a slurry having a solid content concentration of about 1% by mass, and after stirring the slurry, the slurry was washed by repeating the operation of filtering and dehydrating. . When the electric conductivity of the filtrate became 10 μS/cm or less, ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours. From there, the operation of filtering and dehydrating was repeated, and the washing was finished when the electrical conductivity of the filtrate became 10 μS/cm or less. Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to obtain a slurry after removal of substituents. The solid content concentration of this slurry was 1.7% by mass.
<置換基除去後スラリーの均一分散>
 得られた置換基除去後スラリーにイオン交換水を加え、固形分濃度が1.0質量%のスラリーとした後、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて3回処理し、置換基除去微細繊維状セルロースを含む置換基除去微細繊維状セルロース分散液(K)を得た。また、透過型電子顕微鏡を用いて微細繊維状セルロースの数平均繊維幅を測定したところ、4nmであった。
<Uniform dispersion of slurry after removal of substituents>
Ion-exchanged water was added to the obtained slurry after removing the substituents to obtain a slurry having a solid content concentration of 1.0% by mass, and then a wet atomization apparatus (Starburst manufactured by Sugino Machine Co., Ltd.) was used at a pressure of 200 MPa. After three treatments, a substituent-removed fine fibrous cellulose dispersion (K) containing substituent-removed fine fibrous cellulose was obtained. Further, when the number average fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 4 nm.
<実施例1-1>
(ポリビニルアルコールの溶解)
 イオン交換水に、アセトアセチル基変性ポリビニルアルコール(三菱ケミカル株式会社製、ゴーセネックスTMZ-200)を12質量%になるように加え、95℃で1時間撹拌し、溶解した。以上の手順により、ポリビニルアルコール水溶液を得た。
<Example 1-1>
(Dissolution of polyvinyl alcohol)
Acetoacetyl group-modified polyvinyl alcohol (manufactured by Mitsubishi Chemical Corporation, Gohsenex TMZ-200) was added to ion-exchanged water so as to make 12% by mass, and dissolved by stirring at 95° C. for 1 hour. A polyvinyl alcohol aqueous solution was obtained by the above procedure.
(繊維層の形成)
 微細繊維状セルロース分散液(A)、および上記ポリビニルアルコール水溶液をそれぞれ固形分濃度が0.6質量%となるようにイオン交換水で希釈した。次いで、希釈後の微細繊維状セルロース分散液(A)70質量部に対し、希釈後のポリビニルアルコール水溶液が30質量部になるように混合し、混合液(A-1)を得た。さらに、シートの仕上がり坪量が70g/mになるように混合液を計量して、市販のアクリル板上に展開した。なお、所定の坪量となるようアクリル板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後、70℃の乾燥機で24時間乾燥し、繊維層(微細繊維状セルロース含有層)を形成した。
(Formation of fiber layer)
The fine fibrous cellulose dispersion liquid (A) and the polyvinyl alcohol aqueous solution were each diluted with ion-exchanged water so that the solid content concentration was 0.6% by mass. Next, 30 parts by mass of the diluted polyvinyl alcohol aqueous solution was mixed with 70 parts by mass of the diluted fine fibrous cellulose dispersion (A) to obtain a mixture (A-1). Further, the mixed liquid was measured so that the finished basis weight of the sheet was 70 g/m 2 and spread on a commercially available acrylic plate. A damming frame (inner dimensions: 250 mm×250 mm, height: 5 cm) was arranged on the acrylic plate so as to obtain a predetermined basis weight. After that, it was dried in a drier at 70° C. for 24 hours to form a fiber layer (fine fibrous cellulose-containing layer).
(積層体形成方法1)
(接着層の形成)
 シラン変性アクリル樹脂(荒川化学工業株式会社製、コンポセランAC601)を厚みが3μmとなるように繊維層表面にバーコーターにて塗布した。その後、100℃で1時間加熱し、接着層を形成した。接着層を形成後、アクリル板から剥離することで、接着層が形成された繊維層を得た。繊維層の厚みは50μm、接着層の厚みは3μmであった。
(Laminate formation method 1)
(Formation of adhesive layer)
A silane-modified acrylic resin (Compoceran AC601, manufactured by Arakawa Chemical Industries, Ltd.) was applied to the surface of the fiber layer with a bar coater so as to have a thickness of 3 μm. Then, it was heated at 100° C. for 1 hour to form an adhesive layer. After forming the adhesive layer, the fiber layer having the adhesive layer formed thereon was obtained by peeling from the acrylic plate. The thickness of the fiber layer was 50 μm, and the thickness of the adhesive layer was 3 μm.
(基材との積層)
 接着層を形成した繊維層の接着層面に、厚み50μmのポリカーボネート基材(帝人株式会社製、ピュアエース)を貼合し、小型熱プレス機で160℃、10MPaの条件下15分プレスすることで基材/接着層/繊維層の積層シートを得た。
(Lamination with base material)
A 50 μm-thick polycarbonate base material (manufactured by Teijin Limited, Pure Ace) is attached to the adhesive layer surface of the fiber layer on which the adhesive layer is formed, and pressed with a small heat press at 160 ° C. and 10 MPa for 15 minutes. A laminated sheet of substrate/adhesive layer/fiber layer was obtained.
(表面保護層の形成)
 紫外線硬化樹脂(A)(トリペンタエリスリトールアクリレート)をトルエンで希釈し、固形分20質量%の溶液を得た。さらに溶液中に、重合開始剤(Omnirad 184;IGM Resins B.V.社製)を、紫外線硬化樹脂(A)100質量部に対し、15質量部となるように添加した。この樹脂溶液を、積層シートの繊維層の面に厚みが3μmとなるようにバーコーターにて塗布し、その後100℃で5分加熱した。メタルハライドランプ(アイグラフィック株式会社製、M04-L41)を備えたベルトコンベア式露光装置(アイグラフィック株式会社製、ECS-401GX、IRカットフィルター付)に照度計(ウシオ電機株式会社製、UIT-150-A、センサー部はUVD-C365、感度波長域310~390nm)を設置し、照度160mW/cm、積算光量1000mJ/cmとなるように設定した後に積層シートの紫外線硬化樹脂面を上にして紫外線を照射して硬化させ、基材/接着層/繊維層/表面保護層の積層体を得た。
(Formation of surface protective layer)
An ultraviolet curable resin (A) (tripentaerythritol acrylate) was diluted with toluene to obtain a solution having a solid content of 20% by mass. Furthermore, a polymerization initiator (Omnirad 184; manufactured by IGM Resins B.V.) was added to the solution in an amount of 15 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). This resin solution was applied to the surface of the fiber layer of the laminated sheet with a bar coater so as to have a thickness of 3 μm, and then heated at 100° C. for 5 minutes. A belt conveyor type exposure device (manufactured by Eyegraphic Co., Ltd., ECS-401GX, with an IR cut filter) equipped with a metal halide lamp (manufactured by Eyegraphic Co., Ltd., M04-L41) is equipped with an illuminance meter (manufactured by Ushio Denki Co., Ltd., UIT-150). -A, the sensor part is UVD-C365, the sensitivity wavelength range is 310 to 390 nm), and after setting the illuminance to 160 mW/cm 2 and the integrated light amount to 1000 mJ/cm 2 , the UV curable resin side of the laminated sheet is turned up. It was cured by irradiating it with ultraviolet light to obtain a laminate of base material/adhesive layer/fiber layer/surface protective layer.
<実施例1-2~1-6>
 繊維層の厚みを表1の記載の厚みに変更した以外は、実施例1-1と同様にして積層体を得た。
<Examples 1-2 to 1-6>
A laminate was obtained in the same manner as in Example 1-1, except that the thickness of the fiber layer was changed to the thickness shown in Table 1.
<実施例1-7>
 基材として厚み5mm(5000μm)のポリカーボネート基材(タキロンシーアイ株式会社製)を使用した以外は、実施例1-1と同様にして積層体を得た。
<Example 1-7>
A laminate was obtained in the same manner as in Example 1-1 except that a polycarbonate substrate (manufactured by Takiron C.I. Co., Ltd.) having a thickness of 5 mm (5000 μm) was used as the substrate.
<実施例1-8>
 繊維層の厚みを10μmとした以外は、実施例1-7と同様にして積層体を得た。
<Example 1-8>
A laminate was obtained in the same manner as in Example 1-7, except that the thickness of the fiber layer was 10 μm.
<実施例1-9>
 ポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラーS-10:厚み50μm)を寸法210mm×297mmに切り出し、コロナ表面改質装置(春日電機社製、TEC-4AX)に設置した。次いで、処理出力60W、処理速度1m/分にてコロナ放電処理を行った。上記のコロナ放電処理を20回繰り返して行い、表面が親水化された、表面処理ポリエチレンテレフタレートフィルムを得た。この表面処理ポリエチレンテレフタレートフィルムを基材として使用した以外は実施例1-1と同様にして積層体を得た。
<Example 1-9>
A polyethylene terephthalate film (Lumirror S-10, thickness 50 μm, manufactured by Toray Industries, Inc.) was cut into a size of 210 mm×297 mm, and placed in a corona surface reforming device (TEC-4AX, manufactured by Kasuga Denki Co., Ltd.). Then, corona discharge treatment was performed at a treatment output of 60 W and a treatment speed of 1 m/min. The above corona discharge treatment was repeated 20 times to obtain a surface-treated polyethylene terephthalate film having a hydrophilic surface. A laminate was obtained in the same manner as in Example 1-1, except that this surface-treated polyethylene terephthalate film was used as the substrate.
<実施例1-10>
 繊維層の厚みを10μmとした以外は、実施例1-9と同様にして積層体を得た。
<Example 1-10>
A laminate was obtained in the same manner as in Example 1-9, except that the thickness of the fiber layer was 10 μm.
<実施例1-11>
 (表面保護層の形成)において、重合開始剤の添加量を、紫外線硬化樹脂(A)100質量部に対して、3質量部とした以外は、実施例1-1と同様にして積層体を得た。
<Example 1-11>
In (Formation of surface protective layer), a laminate was prepared in the same manner as in Example 1-1, except that the amount of the polymerization initiator added was 3 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). Obtained.
<実施例1-12>
 (表面保護層の形成)において、重合開始剤の添加量を、紫外線硬化樹脂(A)100質量部に対して、5質量部とした以外は、実施例1-1と同様にして積層体を得た。
<Example 1-12>
In (Formation of surface protective layer), a laminate was prepared in the same manner as in Example 1-1, except that the amount of the polymerization initiator added was 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). Obtained.
<実施例1-13>
 (表面保護層の形成)において、重合開始剤の添加量を、紫外線硬化樹脂(A)100質量部に対して、35質量部とした以外は、実施例1-1と同様にして積層体を得た。
<Example 1-13>
In (Formation of surface protective layer), a laminate was prepared in the same manner as in Example 1-1, except that the amount of the polymerization initiator added was 35 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). Obtained.
<実施例1-14>
 表面保護層として紫外線硬化樹脂(B)(日本化工塗料株式会社製、NXD-001A、重合開始剤含有)を使用した以外は実施例1-1と同様にして積層体を得た。
<Example 1-14>
A laminate was obtained in the same manner as in Example 1-1, except that an ultraviolet curable resin (B) (manufactured by Nippon Kako Toryo Co., Ltd., NXD-001A, containing a polymerization initiator) was used as the surface protective layer.
<実施例1-15>
 表面保護層として紫外線硬化樹脂(B)を使用した以外は実施例1-3と同様にして積層体を得た。
<Example 1-15>
A laminate was obtained in the same manner as in Example 1-3, except that the ultraviolet curable resin (B) was used as the surface protective layer.
<実施例1-16>
 表面保護層として、イオンビームスパッタ装置(伯東株式会社製)にてSiOの成膜を実施した。具体的には、実施例1-1で得た基材/接着層/繊維層の積層シートを繊維層が上面となるようにイオンビームスパッタ装置に設置し、真空排気し、100℃設定で1時間加熱した後、放冷し、できるだけ温度を下げた状態で成膜を実施した。イオンビームスパッタによるシリコン基板上へのSiO成膜速度9.65nm/minをもとに、目的の膜厚になるよう、成膜時間を設定し、繊維層上に無機層膜を200nm積層し、積層体を得た。
<Example 1-16>
As a surface protective layer, a film of SiO 2 was formed using an ion beam sputtering device (manufactured by Hakuto Co., Ltd.). Specifically, the laminated sheet of base material/adhesive layer/fiber layer obtained in Example 1-1 was placed in an ion beam sputtering apparatus so that the fiber layer faced up, and was evacuated. After heating for a period of time, it was allowed to cool, and film formation was carried out while the temperature was lowered as much as possible. Based on the SiO 2 film formation rate of 9.65 nm/min on the silicon substrate by ion beam sputtering, the film formation time was set so as to obtain the desired film thickness, and an inorganic layer film of 200 nm was laminated on the fiber layer. , to obtain a laminate.
<実施例1-17>
 表面保護層として実施例1-16と同様の方法により無機層膜を形成した積層シートを使用した以外は実施例1-3と同様にして積層体を得た。
<Example 1-17>
A laminate was obtained in the same manner as in Example 1-3, except that a laminate sheet having an inorganic layer film formed by the same method as in Example 1-16 was used as the surface protective layer.
<実施例1-18>
 実施例1-1における混合液(A-1)99質量部に、0.6質量%に希釈したシランカップリング剤(信越化学工業株式会社製、KBM-503)を1質量部添加し、混合液(A-1’)を得た。混合液(A-1)に代えて、混合液(A-1’)を用いた以外は実施例1-1と同様にして積層体を得た。
<Example 1-18>
To 99 parts by mass of the mixture (A-1) in Example 1-1, 1 part by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503) diluted to 0.6% by mass was added and mixed. A liquid (A-1') was obtained. A laminate was obtained in the same manner as in Example 1-1, except that the mixed liquid (A-1′) was used instead of the mixed liquid (A-1).
<実施例1-19>
 実施例1-1で重合開始剤を添加後の樹脂溶液に、紫外線硬化樹脂(A)100質量部に対して、シランカップリング剤の添加量が1質量部となるように添加して、樹脂溶液を得た。これを表面保護層の形成用樹脂として使用した以外は、実施例1-1と同様にして積層体を得た。
<Example 1-19>
In Example 1-1, the resin solution after adding the polymerization initiator was added so that the amount of the silane coupling agent added was 1 part by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). A solution was obtained. A laminate was obtained in the same manner as in Example 1-1, except that this was used as the resin for forming the surface protective layer.
<実施例1-20>
 実施例1-19において、シランカップリング剤の代わりにイソシアネート化合物(昭和電工株式会社製、カレンズBEI)を紫外線硬化樹脂(A)100質量部に対して15質量部となるように添加して、樹脂溶液を得た。これを表面保護層の形成用樹脂とした以外は、実施例1-1と同様にして積層体を得た。
<Example 1-20>
In Example 1-19, instead of the silane coupling agent, an isocyanate compound (manufactured by Showa Denko Co., Ltd., Karenz BEI) was added so as to be 15 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). A resin solution was obtained. A laminate was obtained in the same manner as in Example 1-1 except that this resin was used for forming the surface protective layer.
<実施例1-21>
 実施例1-1(基材との積層)後に、積層シートのもう一方の面にも実施例1-1と同様の方法でシリカ変性アクリレート樹脂を塗布した。この接着層の片面に実施例1-1(表面保護層の形成)と同様の手順で表面保護層を形成し、基材/接着層/繊維層/接着層/表面保護層の構成からなる積層体を得た。
<Example 1-21>
After Example 1-1 (lamination with the substrate), the silica-modified acrylate resin was applied to the other side of the laminated sheet in the same manner as in Example 1-1. A surface protective layer is formed on one side of this adhesive layer in the same manner as in Example 1-1 (formation of surface protective layer), and a laminate consisting of a substrate/adhesive layer/fiber layer/adhesive layer/surface protective layer. got a body
<実施例1-22>
 実施例1-20において、シリカ変性アクリレート樹脂の代わりにポリカーボネート樹脂(三菱ガス化学株式会社製、ユピゼータFPC-2136)を使用し、密着助剤としてイソシアネート化合物を、ポリカーボネート樹脂100質量部に対して15質量部添加したものを接着層形成用塗工液として使用した以外は、実施例1-20と同様にして積層体を得た。
<Example 1-22>
In Example 1-20, a polycarbonate resin (Mitsubishi Gas Chemical Co., Ltd., Iupizeta FPC-2136) was used instead of the silica-modified acrylate resin, and an isocyanate compound was added as an adhesion aid in an amount of 15 parts per 100 parts by mass of the polycarbonate resin. A laminate was obtained in the same manner as in Example 1-20, except that the one added in parts by mass was used as the adhesive layer-forming coating solution.
<実施例1-23>
 以下の(積層体形成方法2)に従って積層体を形成した。
(積層体形成方法2)
(接着層の形成)
 シラン変性アクリル樹脂(荒川化学工業株式会社製、コンポセランAC601)を、メチルエチルケトンで希釈し、固形分20質量%の溶液を得た。厚み50μmのポリカーボネート基材上に、接着層としてシラン変性アクリル樹脂を塗工し、100℃で1時間乾燥し、接着層を形成した。
<Example 1-23>
A laminate was formed according to the following (Laminate formation method 2).
(Laminate formation method 2)
(Formation of adhesive layer)
A silane-modified acrylic resin (Compoceran AC601, manufactured by Arakawa Chemical Industries, Ltd.) was diluted with methyl ethyl ketone to obtain a solution with a solid content of 20% by mass. A silane-modified acrylic resin was applied as an adhesive layer onto a polycarbonate substrate having a thickness of 50 μm and dried at 100° C. for 1 hour to form an adhesive layer.
(繊維層の形成)
 接着層を形成した基材の接着層上に堰止用の枠(内寸250mm×250mm、高さ5cm)を配置し、その中に繊維層の仕上がり坪量が70g/mになるように混合液(A)を計量し、展開した。その後、70℃で24時間乾燥し、乾燥後に堰止用の枠を除去することで、基材/繊維層の積層シートを得た。
(Formation of fiber layer)
A damming frame (inner dimensions: 250 mm x 250 mm, height: 5 cm) was placed on the adhesive layer of the base material on which the adhesive layer was formed, and the finished basis weight of the fiber layer was adjusted to 70 g/ m2 . Mixture (A) was weighed and developed. After that, it was dried at 70° C. for 24 hours, and after drying, the damming frame was removed to obtain a base material/fiber layer laminated sheet.
(表面保護層の形成)
 積層シートの繊維層の面に繊維層の面に紫外線硬化樹脂(A)を厚みが3μmとなるようにバーコーターにて塗布し、100℃で5分乾燥させた。メタルハライドランプ(アイグラフィック株式会社製、M04-L41)を備えたベルトコンベア式露光装置(アイグラフィック株式会社製、ECS-401GX、IRカットフィルター付)に照度計(ウシオ電機株式会社製、UIT-150-A、センサー部はUVD-C365、感度波長域310~390nm)を設置し、照度160mW/cm、積算光量1000mJ/cmとなるように設定した後に積層シートの紫外線硬化樹脂面を上にして紫外線を照射して硬化させ、基材/繊維層/表面保護層の積層体を得た。
(Formation of surface protective layer)
The fiber layer surface of the laminated sheet was coated with the UV curable resin (A) to a thickness of 3 μm with a bar coater and dried at 100° C. for 5 minutes. A belt conveyor type exposure device (manufactured by Eyegraphic Co., Ltd., ECS-401GX, with an IR cut filter) equipped with a metal halide lamp (manufactured by Eyegraphic Co., Ltd., M04-L41) is equipped with an illuminance meter (manufactured by Ushio Denki Co., Ltd., UIT-150). -A, the sensor part is UVD-C365, the sensitivity wavelength range is 310 to 390 nm), and after setting the illuminance to 160 mW/cm 2 and the integrated light amount to 1000 mJ/cm 2 , the UV curable resin side of the laminated sheet is turned up. The laminate was cured by irradiating it with ultraviolet light to obtain a laminate of base material/fiber layer/surface protective layer.
<実施例2-1>
 実施例1-1の(繊維層の形成)において、0.6質量%に希釈後の微細繊維状セルロース分散液(A)50質量部に対し、希釈後のポリビニルアルコール水溶液が50質量部になるように混合し、混合液(A-2)を得た。混合液(A-1)に代えて、混合液(A-2)を用いた以外は、実施例1-1と同様にして積層体を得た。
<Example 2-1>
In Example 1-1 (formation of fiber layer), 50 parts by mass of the polyvinyl alcohol aqueous solution after dilution was added to 50 parts by mass of the fine fibrous cellulose dispersion (A) after dilution to 0.6% by mass. to obtain a mixture (A-2). A laminate was obtained in the same manner as in Example 1-1, except that the mixed liquid (A-2) was used instead of the mixed liquid (A-1).
<実施例2-2>
 混合液(A-2)を用いた以外は、実施例1-3と同様にして積層体を得た。
<Example 2-2>
A laminate was obtained in the same manner as in Example 1-3, except that the mixed solution (A-2) was used.
<実施例2-3>
 混合液(A-2)を用いた以外は、実施例1-7と同様にして積層体を得た。
<Example 2-3>
A laminate was obtained in the same manner as in Example 1-7, except that the mixed solution (A-2) was used.
<実施例2-4>
 混合液(A-2)を用いた以外は、実施例1-8と同様にして積層体を得た。
<Example 2-4>
A laminate was obtained in the same manner as in Example 1-8, except that the mixed solution (A-2) was used.
<実施例2-5>
 混合液(A-2)を用いた以外は、実施例1-9と同様にして積層体を得た。
<Example 2-5>
A laminate was obtained in the same manner as in Example 1-9, except that the mixed solution (A-2) was used.
<実施例2-6>
 混合液(A-2)を用いた以外は、実施例1-10と同様にして積層体を得た。
<Example 2-6>
A laminate was obtained in the same manner as in Example 1-10, except that the mixed solution (A-2) was used.
<実施例3-1~3-6>
 実施例1-1の(繊維層の形成)において、0.6質量%に希釈後の微細繊維状セルロース分散液(A)30質量部に対し、希釈後のポリビニルアルコール水溶液が70質量部になるように混合し、混合液(A-3)を得た。実施例2-1~2-6のそれぞれの(繊維層の形成)において、混合液(A-2)に代えて混合液(A-3)を用いた以外は、実施例2-1~2-6とそれぞれ同様にして、積層体を得た。
<Examples 3-1 to 3-6>
In Example 1-1 (formation of fiber layer), 70 parts by mass of the polyvinyl alcohol aqueous solution after dilution was added to 30 parts by mass of the fine fibrous cellulose dispersion (A) after dilution to 0.6% by mass. to obtain a mixture (A-3). Examples 2-1 to 2-2 except that the mixture (A-3) was used instead of the mixture (A-2) in each of Examples 2-1 to 2-6 (formation of the fiber layer). A laminate was obtained in the same manner as in -6.
<実施例4-1>
(セルロースエーテルの溶解)
 イオン交換水に、メチルセルロース(信越化学工業株式会社製、メトローズ65SH-1500、重量平均分子量:2.2×10、置換度(メトキシ基):1.8、置換モル数(ヒドロキシプロポキシ基):0.15)を2質量%になるように加え、室温で1時間撹拌し、溶解した。以上の手順により、セルロースエーテル水溶液を得た。
 次いで、上記セルロースエーテル水溶液を固形分濃度が0.6質量%となるようにイオン交換水で希釈した。実施例1-1の(繊維層の形成)において、希釈後のポリビニルアルコール水溶液の代わりに、希釈後のセルロースエーテル水溶液を使用して混合液(A-4)を得た。混合液(A-1)に代えて混合液(A-4)を用いた以外は実施例1-1と同様にし、積層体を得た。
<Example 4-1>
(Dissolution of cellulose ether)
Methyl cellulose (manufactured by Shin-Etsu Chemical Co., Ltd., Metolose 65SH-1500, weight average molecular weight: 2.2 × 10 5 , degree of substitution (methoxy group): 1.8, number of moles of substitution (hydroxypropoxy group): 0.15) was added so as to be 2% by mass, and the solution was dissolved by stirring at room temperature for 1 hour. A cellulose ether aqueous solution was obtained by the above procedure.
Next, the cellulose ether aqueous solution was diluted with ion-exchanged water so that the solid content concentration was 0.6% by mass. In Example 1-1 (formation of fiber layer), instead of the diluted polyvinyl alcohol aqueous solution, the diluted cellulose ether aqueous solution was used to obtain a mixed solution (A-4). A laminate was obtained in the same manner as in Example 1-1, except that the mixed solution (A-4) was used instead of the mixed solution (A-1).
<実施例4-2~4-6>
 実施例2-1~2-6のそれぞれの(繊維層の形成)において、混合液(A-2)に代えて混合液(A-4)を用いた以外は、実施例2-2~2-6とそれぞれ同様にして、積層体を得た。
<Examples 4-2 to 4-6>
In each of Examples 2-1 to 2-6 (formation of fiber layer), Examples 2-2 to 2-2 except that the mixture (A-4) was used instead of the mixture (A-2). A laminate was obtained in the same manner as in -6.
<実施例5-1~5-6>
 実施例1-1の(繊維層の形成)において、0.6質量%に希釈後の微細繊維状セルロース分散液(A)30質量部に対し、希釈後のセルロースエーテル水溶液が70質量部になるように混合し、混合液(A-5)を得た。実施例2-1~2-6のそれぞれの(繊維層の形成)において、混合液(A-2)に代えて混合液(A-5)を用いた以外は、実施例2-1~2-6とそれぞれ同様にして、積層体を得た。
<Examples 5-1 to 5-6>
In Example 1-1 (formation of fiber layer), 70 parts by mass of the diluted cellulose ether aqueous solution was added to 30 parts by mass of the fine fibrous cellulose dispersion (A) diluted to 0.6% by mass. to obtain a mixture (A-5). In each of Examples 2-1 to 2-6 (formation of fiber layer), Examples 2-1 to 2-2 except that the mixture (A-5) was used instead of the mixture (A-2). A laminate was obtained in the same manner as in -6.
<実施例6-1~6-8>
 実施例1-1の(繊維層の形成)において、微細繊維状セルロース分散液(A)に代えて表9に記載された微細繊維状セルロース分散液(微細繊維状セルロース分散液(B)~(J))をそれぞれ用いた以外は、実施例1-1と同様にして、積層体を得た。
<Examples 6-1 to 6-8>
In Example 1-1 (Formation of fibrous layer), instead of the fine fibrous cellulose dispersion (A), the fine fibrous cellulose dispersion (fine fibrous cellulose dispersion (B) to ( A laminate was obtained in the same manner as in Example 1-1, except that J)) was used.
<実施例7-1~7-6>
 実施例4-1~4-6の(繊維層の形成)において、微細繊維状セルロース分散液(A)に代えて微細繊維状セルロース分散液(K)を用い、また、希釈後のセルロースエーテルのかわりに希釈後のポリビニルアルコールを使用した以外は実施例4-1~4-6とそれぞれ同様にし、積層体を得た。
<Examples 7-1 to 7-6>
In Examples 4-1 to 4-6 (Formation of fibrous layer), the fine fibrous cellulose dispersion (K) was used instead of the fine fibrous cellulose dispersion (A), and the cellulose ether after dilution was used. Laminates were obtained in the same manner as in Examples 4-1 to 4-6, except that diluted polyvinyl alcohol was used instead.
<実施例8-1~8-6>
 実施例4-1~4-6の(繊維層の形成)において、微細繊維状セルロース分散液(A)に代えて微細繊維状セルロース分散液(K)を用いた以外は実施例4-1~4-6とそれぞれ同様にし、積層体を得た。
<Examples 8-1 to 8-6>
Examples 4-1 to 4-6 except that the fine fibrous cellulose dispersion (K) was used in place of the fine fibrous cellulose dispersion (A) in Examples 4-1 to 4-6 (formation of the fibrous layer). A laminate was obtained in the same manner as in 4-6.
<比較例1>
 厚み50μmのポリカーボネート基材上に、実施例1-1の(表面保護層の形成)の手順に従って直接表面保護層を形成した積層体を得た(積層体形成方法3)。
<Comparative Example 1>
A laminate was obtained in which a surface protective layer was directly formed on a 50 μm-thick polycarbonate base material according to the procedure of Example 1-1 (Formation of surface protective layer) (Laminate forming method 3).
<比較例2>
 基材を、実施例1-9に記載の厚み50μmのポリエチレンテレフタレートとした以外は、比較例1と同様にして積層体を得た。
<Comparative Example 2>
A laminate was obtained in the same manner as in Comparative Example 1 except that polyethylene terephthalate having a thickness of 50 μm described in Examples 1-9 was used as the substrate.
<比較例3>
 製造例A1の中和処理において、水酸化ナトリウムの代わりに、40質量%濃度のテトラブチルアンモニウムヒドロキシドを用いた以外は製造例A1と同様に操作を行い、2質量%濃度の微細繊維状セルロース分散液を得た。微細繊維状セルロースは対イオンとしてテトラブチルアンモニウムイオン(TBA)を有していた。実施例1-1の(表面保護層の形成)において、紫外線硬化樹脂(A)100質量部に対して微細繊維状セルロース分が4質量部となるように上記微細繊維状セルロース分散液を添加し、微細繊維状セルロース含有紫外線硬化樹脂を調製した。そして、表面保護層の形成に、この微細繊維状セルロース含有紫外線硬化樹脂を用いた以外は、比較例1と同様にして基材上に直接表面保護層が形成された積層体を得た。
<Comparative Example 3>
In the neutralization treatment of Production Example A1, the same operation as in Production Example A1 was performed except that 40% by mass concentration of tetrabutylammonium hydroxide was used instead of sodium hydroxide, and 2% by mass concentration of fine fibrous cellulose A dispersion was obtained. The fine fibrous cellulose had tetrabutylammonium ions (TBA + ) as counterions. In Example 1-1 (formation of surface protective layer), the fine fibrous cellulose dispersion was added so that the fine fibrous cellulose content was 4 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin (A). , a microfibrous cellulose-containing UV curable resin was prepared. Then, a laminate having a surface protective layer formed directly on the substrate was obtained in the same manner as in Comparative Example 1, except that this fine fibrous cellulose-containing ultraviolet curable resin was used to form the surface protective layer.
<比較例4>
 実施例1-1の(繊維層の形成)において、0.6質量%に希釈後の微細繊維状セルロース分散液(A)10質量部に対し、希釈後のポリビニルアルコール水溶液が90質量部になるように混合し、混合液(A-6)を得た。実施例1-1における混合液(A-1)に代えて混合液(A-6)を用いた以外は、実施例1-1と同様にして積層体を得た。
<Comparative Example 4>
In Example 1-1 (formation of fiber layer), 90 parts by mass of the polyvinyl alcohol aqueous solution after dilution is added to 10 parts by mass of the fine fibrous cellulose dispersion (A) after dilution to 0.6% by mass. to obtain a mixture (A-6). A laminate was obtained in the same manner as in Example 1-1, except that the mixed solution (A-6) was used instead of the mixed solution (A-1) in Example 1-1.
<測定及び評価>
[リンオキソ酸基量の測定]
 リンオキソ酸基量(リン酸基もしくは亜リン酸基量)の測定においては、まず、対象となる微細繊維状セルロースにイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製した。得られたスラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図2)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。
<Measurement and evaluation>
[Measurement of Phosphorus Acid Group Amount]
In the measurement of the phosphate group content (phosphoric acid group or phosphite group content), ion-exchanged water is first added to the target fine fibrous cellulose to prepare a slurry having a solid content concentration of 0.2% by mass. bottom. The obtained slurry was treated with an ion-exchange resin and then titrated with an alkali for measurement.
The ion-exchange resin treatment is carried out by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo Co., Ltd., conditioned) to the fine fibrous cellulose-containing slurry and shaking for 1 hour. , by pouring it onto a mesh with an opening of 90 μm to separate the resin and the slurry.
In the titration with alkali, 0.1 N sodium hydroxide aqueous solution is added to the fine fibrous cellulose-containing slurry after treatment with the ion exchange resin, and 10 μL of 0.1 N sodium hydroxide solution is added every 5 seconds. was measured. The titration was performed while nitrogen gas was blown into the slurry from 15 minutes before the start of the titration. In this neutralization titration, two points where the increment (the differential value of the pH with respect to the amount of alkali added) are maximized are observed in the curve obtained by plotting the measured pH against the amount of alkali added. Among these, the maximum point of the increment obtained first when the alkali is first added is called the first end point, and the maximum point of the increment obtained next is called the second end point (Fig. 2). The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Also, the amount of alkali required from the start of titration to the second end point is equal to the total amount of dissociated acid in the slurry used for titration. The amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated to obtain the amount of phosphate group (mmol/g).
[硫黄オキソ酸基量・スルホン基量の測定]
 硫黄オキソ酸基量又はスルホン基量は、次のように測定した。得られた微細繊維状セルロース(分散液を加熱乾燥して得られる固形分)を過塩素酸と濃硝酸を用いて湿式灰化した後に、適当な倍率で希釈してICP発光分析により硫黄量を測定した。この硫黄量を、供試した微細繊維状セルロースの絶乾質量で除した値を硫黄オキソ酸基量又はスルホン基量(単位:mmol/g)とした。
[Measurement of Sulfur Oxoacid Group Amount and Sulfone Group Amount]
The amount of sulfur oxoacid groups or the amount of sulfone groups was measured as follows. The obtained fine fibrous cellulose (solid content obtained by heating and drying the dispersion) is wet ashed using perchloric acid and concentrated nitric acid, diluted by an appropriate ratio, and the amount of sulfur is measured by ICP emission analysis. It was measured. The amount of sulfur oxoacid groups or the amount of sulfone groups (unit: mmol/g) was obtained by dividing this amount of sulfur by the absolute dry mass of the fine fibrous cellulose tested.
[カルボキシ基量の測定]
 微細繊維状セルロースのカルボキシ基量は、対象となる(マレイン酸化、TEMPO酸化、次亜塩素酸酸化又はカルボキシエチル化)微細繊維状セルロースを含む微細繊維状セルロース分散液にイオン交換水を添加して、含有量を0.2質量%とし、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、0.2質量%の微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社製、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を加えながら、スラリーが示すpHの値の変化を計測することにより行った。水酸化ナトリウム水溶液を加えながらpHの変化を観察すると、図3に示されるような滴定曲線が得られる。図3に示されるように、この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ観測される。この増分の極大点を第1終点と呼ぶ。ここで、図3における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用したスラリー中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出した。
 なお、上述のカルボキシ基導入量(mmol/g)は、カルボキシ基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量1gあたりの置換基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。
[Measurement of carboxy group content]
The amount of carboxy groups in fine fibrous cellulose can be determined by adding deionized water to a fine fibrous cellulose dispersion containing target (maleated, TEMPO oxidized, hypochlorous acid oxidized or carboxyethylated) fine fibrous cellulose. , the content was set to 0.2% by mass, treated with an ion-exchange resin, and then titrated with an alkali.
The treatment with an ion-exchange resin is carried out by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; manufactured by Organo Co., Ltd., conditioned) to a slurry containing 0.2% by mass of fine fibrous cellulose, followed by shaking for 1 hour. After being treated, the slurry was separated from the resin by pouring it onto a mesh with an opening of 90 μm.
In addition, the titration using an alkali was performed by measuring the change in the pH value of the slurry while adding a 0.1N sodium hydroxide aqueous solution to the fibrous cellulose-containing slurry after treatment with the ion-exchange resin. . Observing the change in pH while adding an aqueous sodium hydroxide solution yields a titration curve as shown in FIG. As shown in FIG. 3, in this neutralization titration, there is one point where the increment (differential value of pH with respect to the amount of alkali added) is maximum in the curve plotting the measured pH against the amount of alkali added. Observed. The maximum point of this increment is called the first end point. Here, the region from the start of titration to the first end point in FIG. 3 is called the first region. The amount of alkali required in the first region is equal to the amount of carboxyl groups in the slurry used for titration. Then, by dividing the alkali amount (mmol) required in the first region of the titration curve by the solid content (g) in the fine fibrous cellulose-containing slurry to be titrated, the introduction amount of the carboxy group (mmol/g ) was calculated.
The amount of carboxyl groups introduced (mmol/g) described above is the amount of substituents per 1 g of mass of fibrous cellulose (hereinafter referred to as the amount of carboxyl groups (acid type)).
[カルバミド基量の測定]
 繊維状セルロース(パルプ)におけるカルバミド基の導入量は、繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料を、微量窒素分析することで算出することができる。繊維状セルロース単位質量あたりのカルバミド基の導入量(mmol/g)は、微量窒素分析で得られた繊維状セルロース単位質量あたりの窒素含有量(g/g)を窒素の原子量で除することで算出できる。
[Measurement of carbamide group content]
The introduction amount of carbamide groups in fibrous cellulose (pulp) can be calculated by freeze-drying a slurry containing fibrous cellulose and further pulverizing the sample, and analyzing a trace amount of nitrogen. The introduction amount (mmol/g) of carbamide groups per unit mass of fibrous cellulose is obtained by dividing the nitrogen content (g/g) per unit mass of fibrous cellulose obtained by trace nitrogen analysis by the atomic weight of nitrogen. can be calculated.
[繊維層又は接着層の厚み]
 ウルトラミクロトームUC-7(日本電子株式会社製、UC-7)によって、積層体の断面を切り出し、当該断面の繊維層又は接着層を電子顕微鏡、拡大鏡または目視で観察して、それぞれ測定される値を繊維層又は接着層の厚みとした。
[Thickness of fiber layer or adhesive layer]
A cross-section of the laminate is cut out with an ultramicrotome UC-7 (manufactured by JEOL Ltd., UC-7), and the fiber layer or adhesive layer of the cross-section is observed with an electron microscope, a magnifying glass, or visually, and measured. The value was taken as the thickness of the fiber layer or adhesive layer.
[表面保護層の厚み]
 表面保護層が変性アクリレートのような樹脂層の場合は、(繊維層又は接着層の厚み)の測定方法に従って測定される値を表面保護層の厚みとした。
 表面保護層がシリカのような無機層の場合は、触針式段差膜厚計(KLA Tencor社製、P-6)を用いて、無機層成膜処理面と非処理面の膜厚の差を測定し、その差分を表面保護層の厚みとした。
[Thickness of surface protective layer]
When the surface protective layer is a resin layer such as modified acrylate, the value measured according to the method for measuring (thickness of fiber layer or adhesive layer) was used as the thickness of the surface protective layer.
When the surface protective layer is an inorganic layer such as silica, a stylus type step thickness meter (P-6, manufactured by KLA Tencor) is used to measure the difference in film thickness between the inorganic layer film formation treated surface and the non-treated surface. was measured, and the difference was taken as the thickness of the surface protective layer.
[ヘーズ]
 JIS K 7136:2000に準拠し、ヘーズメーター(株式会社村上色彩技術研究所製、HM-150)を用いて、積層体のヘーズを測定した。
[Haze]
According to JIS K 7136:2000, the haze of the laminate was measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory Co., Ltd.).
[外観]
 基材上に直接表面保護層を形成した積層体(コントロール積層体)の外観を基準として、下記の評価方法に従い、外観を評価した。
A:基準と比較して、黄色度の増加(ΔYI)が2未満である
B:基準と比較して、黄色度の増加(ΔYI)が2以上である
 なお、黄色度(YI)は、JIS K 7373:2006に準拠し、Colour Cute i(スガ試験機株式会社製)を用いて測定し、下記式により黄色度の増加(ΔYI値)を算出した。
 ΔYI=(実施例及び比較例で作製した積層体のYI)-(コントロール積層体のYI)
[exterior]
Based on the appearance of a laminate having a surface protective layer formed directly on a substrate (control laminate), the appearance was evaluated according to the following evaluation method.
A: Compared to the standard, the increase in yellowness (ΔYI) is less than 2. B: Compared to the standard, the increase in yellowness (ΔYI) is 2 or more. Based on K 7373:2006, it was measured using Color Cute i (manufactured by Suga Test Instruments Co., Ltd.), and the increase in yellowness (ΔYI value) was calculated by the following formula.
ΔYI = (YI of laminates prepared in Examples and Comparative Examples) - (YI of control laminate)
[鉛筆硬度]
 繊維層及び表面保護層の鉛筆硬度は、JIS K 5600-5-4:1999に準拠し、測定した。測定には、三菱鉛筆株式会社製、鉛筆引っかき値試験用鉛筆を使用した。なお、繊維層の鉛筆硬度の測定は、実施例における(基材との積層)後に実施した。
[Pencil hardness]
The pencil hardness of the fiber layer and surface protective layer was measured according to JIS K 5600-5-4:1999. For the measurement, a pencil for pencil scratch value test manufactured by Mitsubishi Pencil Co., Ltd. was used. The measurement of the pencil hardness of the fiber layer was performed after (lamination with the base material) in the examples.
[表面保護層の鉛筆硬度上昇度]
 表面保護層の鉛筆硬度上昇度は、鉛筆硬度について6B=1、5B=2、4B=3、3B=4、2B=5、B=6、HB=7、F=8、H=9、2H=10、3H=11、4H=12、5H=13、6H=14、7H=15、8H=16、9H=17として数値を割り振り、各実施例・比較例での表面保護層における鉛筆硬度の数値をP、基材上に直接表面保護層を形成した積層体(コントロール積層体)の表面保護層における鉛筆硬度の数値をQとして、P-Qの数値により評価した。
A:P-Q≧1である
B:P-Q≦0である 
[Increase in Pencil Hardness of Surface Protective Layer]
The degree of increase in pencil hardness of the surface protective layer is 6B = 1, 5B = 2, 4B = 3, 3B = 4, 2B = 5, B = 6, HB = 7, F = 8, H = 9, 2H with respect to pencil hardness. = 10, 3H = 11, 4H = 12, 5H = 13, 6H = 14, 7H = 15, 8H = 16, 9H = 17, and the pencil hardness of the surface protective layer in each example / comparative example P is the value, and Q is the value of the pencil hardness of the surface protective layer of the layered product (control layered product) in which the surface protective layer was formed directly on the base material.
A: PQ≧1 B: PQ≦0
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例においては、基材上に直接表面保護層を設けた積層体と比較して表面保護層の鉛筆硬度が上昇していた。一方、比較例においては、表面保護層の鉛筆硬度が上昇は見られなかった。 In the examples, the pencil hardness of the surface protective layer was increased compared to the laminate in which the surface protective layer was provided directly on the base material. On the other hand, no increase in the pencil hardness of the surface protective layer was observed in the comparative examples.
2     基材
6     繊維層
8     表面保護層
10   積層体
2 base material 6 fiber layer 8 surface protective layer 10 laminate

Claims (24)

  1.  基材、繊維層及び表面保護層をこの順に有し、
     前記繊維層は繊維幅が1000nm以下の繊維状セルロースを含有し、
     前記繊維状セルロースの含有量は前記繊維層の全固形分質量に対して15質量%以上である、積層体。
    Having a base material, a fiber layer and a surface protective layer in this order,
    The fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less,
    The laminate, wherein the content of the fibrous cellulose is 15% by mass or more with respect to the total solid mass of the fiber layer.
  2.  前記繊維層と前記表面保護層は直接積層されてなる、請求項1に記載の積層体。 The laminate according to claim 1, wherein the fiber layer and the surface protective layer are directly laminated.
  3.  前記繊維層の厚みが50μm以下である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the fiber layer has a thickness of 50 µm or less.
  4.  前記繊維層の厚みが0.1μm~25μmである、請求項1に記載の積層体。 The laminate according to claim 1, wherein the fiber layer has a thickness of 0.1 μm to 25 μm.
  5.  ヘーズが10%以下である、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, which has a haze of 10% or less.
  6.  前記繊維層は密着助剤及び/又は密着助剤に由来する構造を含む、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the fiber layer includes an adhesion aid and/or a structure derived from the adhesion aid.
  7.  前記密着助剤は、シランカップリング剤及びイソシアネート化合物から選択される少なくとも1種である、請求項6に記載の積層体。 The laminate according to claim 6, wherein the adhesion aid is at least one selected from silane coupling agents and isocyanate compounds.
  8.  前記表面保護層は密着助剤及び/又は密着助剤に由来する構造を含む、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the surface protective layer includes an adhesion aid and/or a structure derived from the adhesion aid.
  9.  前記密着助剤は、シランカップリング剤及びイソシアネート化合物から選択される少なくとも1種である、請求項8に記載の積層体。 The laminate according to claim 8, wherein the adhesion aid is at least one selected from silane coupling agents and isocyanate compounds.
  10.  前記積層体における前記表面保護層側の表面の鉛筆硬度が2H以上である、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the surface of the laminate on the side of the surface protective layer has a pencil hardness of 2H or more.
  11.  鉛筆硬度について6B=1、5B=2、4B=3、3B=4、2B=5、B=6、HB=7、F=8、H=9、2H=10、3H=11、4H=12、5H=13、6H=14、7H=15、8H=16、9H=17として数値を割り振り、前記積層体における前記表面保護層側の表面の鉛筆硬度の数値をPとし、前記基材に前記表面保護層を直接積層してなるコントロール積層体における前記表面保護層側の表面の鉛筆硬度の数値をQとした場合、
     P-Q≧1となる、請求項1~4のいずれか1項に記載の積層体。
    6B=1, 5B=2, 4B=3, 3B=4, 2B=5, B=6, HB=7, F=8, H=9, 2H=10, 3H=11, 4H=12 for pencil hardness , 5H = 13, 6H = 14, 7H = 15, 8H = 16, and 9H = 17, and the numerical value of the pencil hardness of the surface on the surface protective layer side in the laminate is P, and the base material has the above When Q is the numerical value of the pencil hardness of the surface on the side of the surface protective layer in the control laminate obtained by directly laminating the surface protective layer,
    5. The laminate according to any one of claims 1 to 4, wherein PQ≧1.
  12.  前記繊維層の表面の鉛筆硬度がF以上である、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the surface of the fiber layer has a pencil hardness of F or higher.
  13.  前記繊維状セルロースはイオン性置換基を有する、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the fibrous cellulose has an ionic substituent.
  14.  繊維幅が1000nm以下の繊維状セルロースを含む、表面保護層用アンカー剤。 An anchoring agent for a surface protective layer containing fibrous cellulose with a fiber width of 1000 nm or less.
  15.  繊維幅が1000nm以下の繊維状セルロースを含み、前記繊維状セルロースの含有量は前記アンカーシートの全固形分質量に対して15質量%以上である、表面保護層積層用アンカーシート。 An anchor sheet for surface protective layer lamination, containing fibrous cellulose having a fiber width of 1000 nm or less, and having a content of the fibrous cellulose of 15% by mass or more relative to the total solid mass of the anchor sheet.
  16.  厚みが50μm以下である、請求項15に記載のアンカーシート。 The anchor sheet according to claim 15, which has a thickness of 50 µm or less.
  17.  厚みが0.1μm~25μmである、請求項15に記載のアンカーシート。 The anchor sheet according to claim 15, which has a thickness of 0.1 μm to 25 μm.
  18.  表面の鉛筆硬度がF以上である、請求項15~17のいずれか1項に記載のアンカーシート。 The anchor sheet according to any one of claims 15 to 17, wherein the surface has a pencil hardness of F or higher.
  19.  基材と繊維層を含み、
     前記繊維層は繊維幅が1000nm以下の繊維状セルロースを含有し、
     前記繊維状セルロースの含有量は前記繊維層の全固形分質量に対して15質量%以上である、積層シート。
    including a substrate and a fiber layer,
    The fiber layer contains fibrous cellulose with a fiber width of 1000 nm or less,
    The laminated sheet, wherein the content of the fibrous cellulose is 15% by mass or more with respect to the total solid mass of the fiber layer.
  20.  前記繊維層の厚みが50μm以下である、請求項19に記載の積層シート。 The laminated sheet according to claim 19, wherein the fiber layer has a thickness of 50 µm or less.
  21.  前記繊維層の厚みが0.1~25μmである、請求項19に記載の積層シート。 The laminated sheet according to claim 19, wherein the fiber layer has a thickness of 0.1 to 25 µm.
  22.  前記繊維層の表面の鉛筆硬度がF以上である、請求項19~21のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 19 to 21, wherein the surface of the fiber layer has a pencil hardness of F or higher.
  23.  積層体の表面を保護するための繊維幅が1000nm以下の繊維状セルロースを含むアンカーシートの使用。 Use of an anchor sheet containing fibrous cellulose with a fiber width of 1000 nm or less to protect the surface of the laminate.
  24.  表面保護層下に繊維幅が1000nm以下の繊維状セルロースを含むアンカーシートを積層することを含む、積層体の表面保護方法。
     
    A method for protecting the surface of a laminate, comprising laminating an anchor sheet containing fibrous cellulose having a fiber width of 1000 nm or less under a surface protective layer.
PCT/JP2022/029635 2021-08-02 2022-08-02 Laminate, anchoring agent for surface protective layer, anchor sheet, layered sheet, and application thereof WO2023013632A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021126972 2021-08-02
JP2021-126972 2021-08-02
JP2021182314 2021-11-09
JP2021-182314 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023013632A1 true WO2023013632A1 (en) 2023-02-09

Family

ID=85155725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029635 WO2023013632A1 (en) 2021-08-02 2022-08-02 Laminate, anchoring agent for surface protective layer, anchor sheet, layered sheet, and application thereof

Country Status (2)

Country Link
JP (1) JP2023021952A (en)
WO (1) WO2023013632A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023275A (en) * 2008-07-16 2010-02-04 Mitsubishi Chemicals Corp Polycarbonate resin/cellulose fiber laminate and method for producing the same
WO2011118360A1 (en) * 2010-03-26 2011-09-29 凸版印刷株式会社 Film-forming composition and sheet
WO2017073555A1 (en) * 2015-10-27 2017-05-04 王子ホールディングス株式会社 Laminated sheet and laminate
WO2017094595A1 (en) * 2015-11-30 2017-06-08 王子ホールディングス株式会社 Sheet and sheet manufacturing method
JP2020075514A (en) * 2016-01-29 2020-05-21 王子ホールディングス株式会社 Gas barrier laminate
WO2021131380A1 (en) * 2019-12-24 2021-07-01 王子ホールディングス株式会社 Sheet and method for producing sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023275A (en) * 2008-07-16 2010-02-04 Mitsubishi Chemicals Corp Polycarbonate resin/cellulose fiber laminate and method for producing the same
WO2011118360A1 (en) * 2010-03-26 2011-09-29 凸版印刷株式会社 Film-forming composition and sheet
WO2017073555A1 (en) * 2015-10-27 2017-05-04 王子ホールディングス株式会社 Laminated sheet and laminate
WO2017094595A1 (en) * 2015-11-30 2017-06-08 王子ホールディングス株式会社 Sheet and sheet manufacturing method
JP2020075514A (en) * 2016-01-29 2020-05-21 王子ホールディングス株式会社 Gas barrier laminate
WO2021131380A1 (en) * 2019-12-24 2021-07-01 王子ホールディングス株式会社 Sheet and method for producing sheet

Also Published As

Publication number Publication date
JP2023021952A (en) 2023-02-14

Similar Documents

Publication Publication Date Title
JP6958712B2 (en) Sheets and sheet manufacturing methods
JP7283606B2 (en) LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED BODY
EP3415553B1 (en) Sheet
EP3483207B1 (en) Sheet
EP3521510A1 (en) Pulp, slurry, sheet, laminate, and method for manufacturing pulp
WO2021235501A1 (en) Microfilament-like cellulose, dispersion liquid, sheet, layered sheet, laminate, and method for producing microfilament-like cellulose
US20210009771A1 (en) Sheet
WO2023013632A1 (en) Laminate, anchoring agent for surface protective layer, anchor sheet, layered sheet, and application thereof
JP2020105473A (en) Fibrous cellulose, fibrous cellulose-containing material, formed body, and method for producing fibrous cellulose
WO2021131380A1 (en) Sheet and method for producing sheet
WO2022172832A1 (en) Sheet and layered body
JP2022175939A (en) sheet
US20240141591A1 (en) Sheet and layered body
WO2022145389A1 (en) Laminate and method of manufacturing laminate
JP2022115099A (en) Multi-layered resin glass and vehicle window unit
JP2022157193A (en) Fibrous cellulose, dispersion and sheet
JP2022157194A (en) Fibrous cellulose, dispersion and sheet
WO2019203239A1 (en) Sheet and layered product
JP2022042509A (en) Sheet
JP2023007000A (en) dispersion and sheet
JP2023006999A (en) dispersion and sheet
JP2022164312A (en) sheet
JP2021175800A (en) Sheet and laminate
JP2021144220A (en) Lens, optical member, and optical member laminate
JP2022104299A (en) Sheet, and method of manufacturing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE