WO2019203239A1 - Sheet and layered product - Google Patents

Sheet and layered product Download PDF

Info

Publication number
WO2019203239A1
WO2019203239A1 PCT/JP2019/016350 JP2019016350W WO2019203239A1 WO 2019203239 A1 WO2019203239 A1 WO 2019203239A1 JP 2019016350 W JP2019016350 W JP 2019016350W WO 2019203239 A1 WO2019203239 A1 WO 2019203239A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
fibrous cellulose
mass
less
compound
Prior art date
Application number
PCT/JP2019/016350
Other languages
French (fr)
Japanese (ja)
Inventor
一輝 小泉
紅 酒井
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2020514400A priority Critical patent/JPWO2019203239A1/en
Publication of WO2019203239A1 publication Critical patent/WO2019203239A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the present invention relates to a sheet and a laminate.
  • fibrous cellulose having a fiber diameter of 10 to 50 ⁇ m, particularly fibrous cellulose (pulp) derived from wood has been widely used mainly as a paper product so far.
  • fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are diverse. For example, the development of sheets, resin composites, and thickeners containing fine fibrous cellulose is in progress.
  • Patent Document 1 discloses a water-based coating composition containing fine fibrous cellulose, a water-based resin, and a colorant.
  • the coating film in patent document 1 is a film
  • fine fibrous cellulose is stably dispersed in an aqueous solvent. For this reason, when it is going to form the resin composite containing fine fibrous cellulose, in order to improve the uniform dispersibility of resin to be used and fine fibrous cellulose, highly hydrophilic resin may be used. However, the resin composite such as a sheet obtained in this way has a high affinity with water, and its use may be limited.
  • an object of the present invention is to provide a sheet having a low affinity with water among sheets containing fine fibrous cellulose and an aqueous resin.
  • the present inventors in a sheet containing fine fibrous cellulose and a water-based acrylic polymer having a predetermined cross-linked structure, the water absorption rate is a predetermined value or less As a result, it was found that a sheet having low affinity with water can be obtained.
  • the present invention has the following configuration.
  • a sheet containing an acrylic polymer and fibrous cellulose having a fiber width of 1000 nm or less The acrylic polymer is a polymer including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound and an oxazoline compound, and a structure derived from an aqueous acrylic polyol.
  • [4] The sheet according to any one of [1] to [3], wherein the total light transmittance is 89% or more.
  • [5] The sheet according to any one of [1] to [4], wherein the YI value is 0.3 or less.
  • [6] The sheet according to any one of [1] to [5], which has a tensile strength of 15 MPa or more.
  • [7] The sheet according to any one of [1] to [6], which has a tensile modulus of 1.8 GPa or more.
  • [8] The sheet according to any one of [1] to [7], having a thickness of 10 ⁇ m or more.
  • [9] A laminate comprising the sheet according to any one of [1] to [8] on at least one surface side of the base material layer.
  • the laminate according to [9], wherein the base material layer includes at least one selected from fibrous cellulose having a fiber width of 1000 nm or less and a water-soluble polymer.
  • a sheet having a low affinity with water can be obtained.
  • FIG. 1 is a graph showing the relationship between the amount of dropped NaOH and electrical conductivity for a fiber material having a phosphate group.
  • FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and electrical conductivity for a fiber material having a carboxyl group.
  • FIG. 3 is a cross-sectional view illustrating the structure of a laminate having a base material layer and a sheet.
  • the present invention relates to a sheet containing an acrylic polymer and fibrous cellulose having a fiber width of 1000 nm or less.
  • the acrylic polymer is a polymer including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound, and a structure derived from an aqueous acrylic polyol.
  • the water absorption when the sheet is immersed in water for 24 hours is 6% by mass or less.
  • fibrous cellulose having a fiber width of 1000 nm or less may be referred to as fine fibrous cellulose.
  • the affinity with water can be kept low even for a sheet containing fine fibrous cellulose and an aqueous resin. Specifically, it can be determined that the water affinity of the sheet is low due to the large water contact angle on the sheet surface.
  • the water contact angle on the sheet surface is preferably 68.2 ° or more, more preferably 68.5 ° or more, and further preferably 69.0 ° or more.
  • the water contact angle on the sheet surface is preferably 120 ° or less.
  • the water contact angle on the surface of the sheet is a value measured according to JIS R 3257, 4 ⁇ L of distilled water is dropped on the surface of the sheet, and a dynamic water contact angle tester (manufactured by Fibro, 1100DAT). Is a value measured 0.1 seconds after dropping.
  • the sheet of the present invention is a sheet having low water affinity and excellent water resistance.
  • the water contact angle on either surface of the sheet may satisfy the above range, but the water contact angle on both surfaces of the sheet preferably satisfies the above range.
  • the sheet of the present invention can maintain the sheet shape alone (without a substrate), and is distinguished from, for example, a coating covering at least one surface of a substrate.
  • the coating film is a film that covers at least one surface of the substrate, and the coating film cannot peel from the substrate to form a sheet shape by itself.
  • the sheet of the present invention may be laminated on, for example, at least one surface of the base material layer.
  • the sheet of the present invention is laminated on the base material layer as long as the sheet shape can be maintained alone. Is also called a sheet.
  • the thickness of the sheet of the present invention is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more, and further preferably 15 ⁇ m or more.
  • seat is 1000 micrometers or less.
  • seat of this invention has a certain amount of thickness, and can maintain a sheet
  • seat may become thinner than the said range.
  • the thickness of the sheet can be measured with, for example, a stylus type thickness meter (Milltron 1202D, manufactured by Marl).
  • the water absorption when the sheet of the present invention is immersed in water for 24 hours may be 6% by mass or less, preferably 5% by mass or less, more preferably 4% by mass or less, and 3.5% by mass. % Or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less.
  • the water absorption rate of the sheet may be 0% by mass.
  • the water absorption rate of the sheet is calculated by the following equation by measuring the weight before and after immersing the sheet piece in ion exchange water for 24 hours after cutting the sheet into a predetermined size (for example, 5 cm square). It is the value.
  • Water absorption (mass%) 100 ⁇ (W B ⁇ W A ) / W A (Formula a)
  • W A is the weight before dipping the sheet piece in deionized water
  • W B is the after immersion for 24 hours sheet pieces in deionized water, pulling the test piece from the deionized water, Kimwipe etc. It is the weight after wiping off the water adhering to the surface of the test piece.
  • a sheet having a low affinity with water can be obtained by setting the water absorption rate of the sheet within the above range. That is, a sheet having a large water contact angle on the sheet surface can be obtained.
  • the present invention optimizes the content of fine fibrous cellulose, even if the sheet is composed mainly of components having a high affinity for water such as fine fibrous cellulose and water-based resin.
  • the mixing order of the constituent materials By controlling the mixing order of the constituent materials, the water affinity as a sheet was successfully suppressed to a low level.
  • the content of fine fibrous cellulose contained in the sheet is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, with respect to 100 parts by mass of the acrylic polymer. More preferably, it is the above.
  • the content of fine fibrous cellulose is preferably 19 parts by mass or less, more preferably 17 parts by mass or less, and preferably 15 parts by mass or less with respect to 100 parts by mass of the acrylic polymer. Is more preferable. Even if the content of the fine fibrous cellulose with respect to 100 parts by mass of the acrylic polymer is within the above range, the sheet contains a component having a high affinity for water such as fine fibrous cellulose and water-based resin as a main component. , Its water affinity can be kept low.
  • the fine fibrous cellulose is extracted by an appropriate method.
  • the fine fibrous cellulose is extracted by treatment with a solvent that selectively dissolves only the resin, and the resulting solid content becomes the mass of the fine fibrous cellulose.
  • the haze of the sheet is preferably 4.5% or less, more preferably 4.0% or less, still more preferably 3.0% or less, and even more preferably 2.0% or less. It is preferably 1.0% or less.
  • the lower limit of the haze of the sheet is not particularly limited, and may be 0%, for example.
  • the haze of the sheet is a value measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with, for example, JIS K 7136.
  • the total light transmittance of the sheet is preferably 89% or more, more preferably 90% or more, and further preferably 91% or more.
  • the upper limit of the total light transmittance of the sheet is not particularly limited, and may be 100%, for example.
  • the total light transmittance of the sheet is a value measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with, for example, JIS K 7361.
  • the yellowness (YI) of the sheet is preferably 0.3 or less, more preferably 0.25 or less, and further preferably 0.2 or less. In addition, there is no restriction
  • the yellowness (YI) of the sheet is a value measured using Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K 7373.
  • the tensile strength of the sheet is preferably 15 MPa or more, more preferably 20 MPa or more, and further preferably 24 MPa or more.
  • seat is not specifically limited, For example, it can be 240 MPa.
  • the tensile strength (unit: MPa) of the sheet is a value calculated by dividing the tensile strength (unit: N / m) by the thickness of the test piece.
  • the tensile strength of the sheet is a value measured according to JIS P 8113, except that the length of the sheet (test piece) is 80 mm and the distance between chucks is 50 mm.
  • a tester for measuring the tensile strength for example, a tensile tester Tensilon (manufactured by A & D) can be used.
  • a sheet conditioned at 23 ° C. and 50% relative humidity for 24 hours is used as a test piece, and the measurement is performed under the conditions of 23 ° C. and 50% relative humidity.
  • the tensile elastic modulus of the sheet is preferably 1.8 GPa or more, more preferably 2.0 GPa or more, and further preferably 3.0 GPa or more.
  • seat is not specifically limited, For example, it can be 50 GPa.
  • the tensile modulus of the sheet is a value calculated from the maximum positive slope value in the SS curve, measured according to JIS P8113, except that the length of the test piece is 80 mm and the distance between chucks is 50 mm. is there.
  • a tester for measuring the tensile elastic modulus for example, a tensile tester Tensilon (manufactured by A & D) can be used.
  • a sheet conditioned for 24 hours at 23 ° C. and 50% relative humidity is used as a test piece, and measurement is performed under conditions of 23 ° C. and 50% relative humidity.
  • seat of this invention contains the fibrous cellulose (fine fibrous cellulose) whose fiber width is 1000 nm or less.
  • the fiber width of the fibrous cellulose can be measured, for example, by observation with an electron microscope.
  • the average fiber width of fibrous cellulose is, for example, 1000 nm or less.
  • the average fiber width of the fibrous cellulose is, for example, preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and more preferably 2 nm or more and 10 nm or less. Particularly preferred.
  • the fibrous cellulose is, for example, monofilamentous cellulose.
  • the average fiber width of fibrous cellulose is measured as follows using, for example, an electron microscope. First, an aqueous suspension of fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a carbon film-coated grid subjected to a hydrophilization treatment, and a sample for TEM observation. And When a wide fiber is included, an SEM image of the surface cast on glass may be observed. Next, observation with an electron microscope image is performed at a magnification of 1000 times, 5000 times, 10000 times, or 50000 times depending on the width of the fiber to be observed. However, the sample, observation conditions, and magnification are adjusted to satisfy the following conditions.
  • One straight line X is drawn at an arbitrary location in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the width of the fiber that intersects with the straight line X and the straight line Y is visually read from the observation image that satisfies the above conditions. In this way, at least three sets of observation images of surface portions that do not overlap each other are obtained.
  • the fiber length of the fibrous cellulose is not particularly limited, but is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 600 ⁇ m or less. preferable.
  • the fiber length of fibrous cellulose can be calculated
  • the fibrous cellulose preferably has an I-type crystal structure.
  • the proportion of the type I crystal structure in the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. Thereby, further superior performance can be expected in terms of heat resistance and low coefficient of thermal expansion.
  • the degree of crystallinity is obtained by measuring an X-ray diffraction profile and determining the crystallinity by a conventional method (Seagal et al., Textile Research Journal, 29, 786, 1959).
  • the axial ratio (fiber length / fiber width) of fibrous cellulose is not particularly limited, but is preferably 20 or more and 10,000 or less, and more preferably 50 or more and 1,000 or less.
  • the axial ratio is not particularly limited, but is preferably 20 or more and 10,000 or less, and more preferably 50 or more and 1,000 or less.
  • the fibrous cellulose in this embodiment has, for example, both a crystalline region and an amorphous region.
  • a fine fibrous cellulose having both a crystalline region and an amorphous region and having a high axial ratio is realized by a method for producing fine fibrous cellulose described later.
  • the fibrous cellulose in the present embodiment has, for example, at least one of an ionic substituent and a nonionic substituent. From the viewpoint of improving the dispersibility of the fibers in the dispersion medium and increasing the defibrating efficiency in the defibrating treatment, it is more preferable that the fibrous cellulose has an ionic substituent.
  • an ionic substituent any one or both of an anionic group and a cationic group can be included, for example.
  • a nonionic substituent an alkyl group, an acyl group, etc. can be included, for example. In this embodiment, it is particularly preferable to have an anionic group as the ionic substituent.
  • transduces an ionic substituent does not need to be performed to fibrous cellulose.
  • anionic group as the ionic substituent examples include a phosphate group or a substituent derived from a phosphate group (sometimes simply referred to as a phosphate group), a carboxyl group or a substituent derived from a carboxyl group (simply referred to as a carboxyl group). And at least one selected from a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), and at least one selected from a phosphate group and a carboxyl group A seed is more preferable, and a phosphate group is particularly preferable.
  • the phosphoric acid group is a divalent functional group corresponding to, for example, phosphoric acid obtained by removing a hydroxyl group. Specifically, it is a group represented by —PO 3 H 2 .
  • Substituents derived from phosphate groups include substituents such as phosphate group salts and phosphate ester groups.
  • the substituent derived from the phosphate group may be contained in the fibrous cellulose as a group (for example, pyrophosphate group) in which the phosphate group is condensed.
  • the substituent derived from a phosphoric acid group or a phosphoric acid group is, for example, a substituent represented by the following formula (1).
  • R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched hydrocarbon group, respectively.
  • Examples of the saturated-linear hydrocarbon group include, but are not limited to, a methyl group, an ethyl group, an n-propyl group, or an n-butyl group.
  • Examples of the saturated-branched hydrocarbon group include i-propyl group and t-butyl group, but are not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include a cyclopentyl group and a cyclohexyl group, but are not particularly limited.
  • Examples of the unsaturated-linear hydrocarbon group include a vinyl group and an allyl group, but are not particularly limited.
  • Examples of the unsaturated-branched hydrocarbon group include i-propenyl group and 3-butenyl group, but are not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include a cyclopentenyl group and a cyclohexenyl group, but are not particularly limited.
  • Examples of the aromatic group include, but are not limited to, a phenyl group or a naphthyl group.
  • the derivative group in R is a functional group in which at least one of functional groups such as a carboxyl group, a hydroxyl group, or an amino group is added or substituted to the main chain or side chain of the above-mentioned various hydrocarbon groups.
  • group is mentioned, it is not specifically limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • the monovalent or higher cation made of an organic substance include aliphatic ammonium or aromatic ammonium.
  • examples of the monovalent or higher cation made of an inorganic substance include ions of alkali metals such as sodium, potassium, or lithium, Examples include, but are not particularly limited to, a cation of a divalent metal such as calcium or magnesium, or a hydrogen ion. These can be applied alone or in combination of two or more.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably a sodium ion or potassium ion which is not easily yellowed when heated to a fiber raw material containing ⁇ and is industrially useful, but is not particularly limited.
  • the amount of ionic substituent introduced into the fibrous cellulose is, for example, preferably 0.10 mmol / g or more per 1 g (mass) of fibrous cellulose, more preferably 0.20 mmol / g or more, and 0.50 mmol. / G or more is more preferable, and 1.00 mmol / g or more is particularly preferable.
  • the amount of ionic substituents introduced into the fibrous cellulose is, for example, preferably 3.65 mmol / g or less, more preferably 3.50 mmol / g or less per 1 g (mass) of fibrous cellulose. More preferably, it is 0.000 mmol / g or less.
  • unit mmol / g shows the amount of substituents per 1 g of fibrous cellulose when the counter ion of the anionic group is hydrogen ion (H + ).
  • the amount of the anionic group introduced into the fibrous cellulose can be measured by, for example, a conductivity titration method.
  • the introduction amount is measured by obtaining a change in conductivity while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH dropped and electrical conductivity for fibrous cellulose having a phosphate group.
  • the amount of phosphate groups introduced into the fibrous cellulose is measured, for example, as follows. First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. In addition, you may implement the fibrillation process similar to the fibrillation process mentioned later with respect to a measuring object before the process by strong acidic ion exchange resin as needed. Next, a change in electrical conductivity is observed while adding an aqueous sodium hydroxide solution to obtain a titration curve as shown in FIG. As shown in FIG. 1, at first, the electric conductivity suddenly decreases (hereinafter referred to as “first region”).
  • the conductivity starts to increase slightly (hereinafter referred to as “second region”).
  • the conductivity increment increases (hereinafter referred to as “third region”).
  • the boundary point between the second region and the third region is defined as a point at which the amount of change in the twice differential value of conductivity, that is, the increment (inclination) of the conductivity is maximized.
  • three regions appear in the titration curve.
  • the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration
  • the amount of alkali required in the second region is the amount of weakly acidic groups in the slurry used for titration. Will be equal.
  • the phosphate group introduction amount (or phosphate group amount) or the substituent introduction amount (or substituent amount) represents a strongly acidic group amount. Therefore, the value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the titration target slurry is the phosphate group introduction amount (mmol / g).
  • FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the electrical conductivity with respect to fibrous cellulose having a carboxyl group.
  • the amount of carboxyl groups introduced into the fibrous cellulose is measured, for example, as follows. First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. In addition, you may implement the fibrillation process similar to the fibrillation process mentioned later with respect to a measuring object before the process by strong acidic ion exchange resin as needed. Next, a change in electrical conductivity is observed while adding an aqueous sodium hydroxide solution to obtain a titration curve as shown in FIG. As shown in FIG.
  • the value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve by the solid content (g) in the fine fibrous cellulose-containing slurry to be titrated is the amount of carboxyl group introduced ( mmol / g).
  • the amount of carboxyl group introduced is the amount of substituent per 1 g of fibrous cellulose when the counter ion of the carboxyl group is hydrogen ion (H + ) (hereinafter, the amount of carboxyl group (acid Type)).
  • the cation C is substituted with an arbitrary cation C so that the counter ion of the carboxyl group has a charge equivalent, the denominator is converted to the mass of fibrous cellulose when the cation C is the counter ion.
  • the amount of carboxyl groups hereinafter, the amount of carboxyl groups (C type)
  • the carboxyl group introduction amount is calculated by the following formula.
  • Amount of carboxyl group introduced (C type) Amount of carboxyl group (acid type) / ⁇ 1+ (W ⁇ 1) ⁇ (Amount of carboxyl group (acid type)) / 1000 ⁇ W: Formula weight per cation C (for example, Na is 23, Al is 9)
  • the fine fibrous cellulose is produced from a fiber raw material containing cellulose. Although it does not specifically limit as a fiber raw material containing a cellulose, It is preferable to use a pulp from the point of being easy to acquire and cheap. Examples of the pulp include wood pulp, non-wood pulp, and deinked pulp.
  • wood pulp For example, hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolution pulp (DP), soda pulp (AP), unbleached kraft pulp (UKP) ) And oxygen bleached kraft pulp (OKP) and other chemical pulp, semichemical pulp (SCP) and semi-chemical pulp such as Chemigroundwood pulp (CGP), groundwood pulp (GP) and thermomechanical pulp (TMP, BCTMP) and the like Examples thereof include mechanical pulp.
  • the non-wood pulp is not particularly limited, and examples thereof include cotton-based pulp such as cotton linter and cotton lint, and non-wood-based pulp such as hemp, straw and bagasse.
  • the deinking pulp which uses a waste paper as a raw material is mentioned.
  • the pulp of this embodiment may be used alone or in combination of two or more.
  • wood pulp and deinked pulp are preferable from the viewpoint of easy availability.
  • wood pulps it is possible to obtain a fine fiber cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose at the time of defibrating treatment, and a long fiber fine fibrous cellulose having a small degradation of cellulose in the pulp and a large axial ratio.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are more preferable.
  • the fiber raw material containing cellulose for example, cellulose contained in ascidians or bacterial cellulose produced by acetic acid bacteria can be used. Moreover, it can replace with the fiber raw material containing cellulose, and the fiber which linear nitrogen-containing polysaccharide polymer
  • the production process of the fine fibrous cellulose includes a phosphate group introduction step.
  • the phosphoric acid group introduction step at least one compound selected from compounds capable of introducing a phosphate group by reacting with a hydroxyl group of a fiber raw material containing cellulose (hereinafter also referred to as “compound A”) is converted into cellulose. It is the process made to act on the fiber raw material containing. By this step, a phosphate group-introduced fiber is obtained.
  • the reaction between the fiber raw material containing cellulose and compound A is performed in the presence of at least one selected from urea and its derivatives (hereinafter also referred to as “compound B”). May be. On the other hand, in the state where compound B does not exist, the fiber raw material containing cellulose and compound A may be reacted.
  • An example of a method for causing compound A to act on the fiber raw material in the presence of compound B includes a method of mixing compound A and compound B with a dry, wet or slurry fiber raw material.
  • a fiber raw material since the uniformity of the reaction is high, it is preferable to use a fiber raw material in a dry state or a wet state.
  • the form of a fiber raw material is not specifically limited, For example, it is preferable that it is a cotton form or a thin sheet form.
  • the compound A and the compound B may be added to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or heated to a melting point or higher and melted.
  • a solution dissolved in a solvent particularly in the form of an aqueous solution.
  • Compound A and Compound B may be added simultaneously to the fiber raw material, may be added separately, or may be added as a mixture.
  • the method for adding compound A and compound B is not particularly limited, but when compound A and compound B are in solution, they may be taken out after dipping the fiber raw material in the solution and absorbing the fiber raw material. The solution may be added dropwise.
  • a necessary amount of Compound A and Compound B may be added to the fiber raw material, or after adding an excessive amount of Compound A and Compound B to the fiber raw material, respectively, excess compound A and Compound B may be added by pressing or filtration. It may be removed.
  • Examples of the compound A used in this embodiment include phosphoric acid or a salt thereof, dehydrated condensed phosphoric acid or a salt thereof, and anhydrous phosphoric acid (phosphorus pentoxide), but are not particularly limited.
  • phosphoric acid those of various purity can be used, for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used.
  • Dehydrated condensed phosphoric acid is obtained by condensing two or more molecules of phosphoric acid by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • Examples of the phosphate and dehydrated condensed phosphate include phosphoric acid or lithium salt of dehydrated condensed phosphoric acid, sodium salt, potassium salt, ammonium salt, and the like, and these can have various degrees of neutralization.
  • phosphoric acid and phosphoric acid are introduced efficiently from the viewpoint that the introduction efficiency of phosphate groups is high, the fibrillation efficiency is easily improved in the fibrillation process described later, the cost is low, and the industrial application is easy.
  • Sodium salt, potassium salt of phosphoric acid, or ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, or ammonium dihydrogen phosphate is more preferable.
  • the amount of compound A added to the fiber raw material is not particularly limited.
  • the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less.
  • the amount of phosphorus atoms added to the fiber raw material is set to the upper limit value or less, the effect of improving the yield and the cost can be balanced.
  • Compound B used in this embodiment is at least one selected from urea and derivatives thereof as described above.
  • Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, and 1-ethylurea.
  • the compound B is preferably used as an aqueous solution. From the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
  • the amount of compound B added to the fiber raw material is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100 mass% or more and 350 mass% or less.
  • amides or amines may be included in the reaction system.
  • amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Among these, triethylamine is known to work as a good reaction catalyst.
  • the phosphate group introduction step it is preferable to add or mix compound A or the like to the fiber raw material and then heat-treat the fiber raw material.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphate group can be efficiently introduced while suppressing thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • equipment having various heat media can be used for the heat treatment.
  • a stirring and drying apparatus for example, a stirring and drying apparatus, a rotary drying apparatus, a disk drying apparatus, a roll type heating apparatus, a plate type heating apparatus, a fluidized bed drying apparatus, an air flow A drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, or a microwave heating device can be used.
  • compound A is added to a thin sheet-like fiber raw material by a method such as impregnation, and then heated while heating or kneading or stirring the fiber raw material and compound A with a kneader or the like.
  • the method to do can be adopted.
  • the heating device used for the heat treatment for example, always retains the moisture retained by the slurry and the moisture generated in the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the apparatus can be discharged out of the apparatus system.
  • a heating device for example, a blower type oven or the like can be cited.
  • the time for the heat treatment is, for example, preferably from 1 second to 300 minutes after moisture is substantially removed from the fiber raw material, more preferably from 1 second to 1000 seconds, and more preferably from 10 seconds to 800 seconds. More preferably.
  • the introduction amount of phosphate groups can be within a preferable range by setting the heating temperature and the heating time within an appropriate range.
  • the phosphate group introduction step may be performed at least once, but can be repeated twice or more. By performing the phosphate group introduction step twice or more, many phosphate groups can be introduced into the fiber raw material. In this embodiment, the case where a phosphate group introduction
  • the amount of phosphate groups introduced into the fiber raw material is, for example, preferably 0.10 mmol / g or more per 1 g (mass) of fine fibrous cellulose, more preferably 0.20 mmol / g or more, and 0.50 mmol / It is more preferable that it is g or more, and it is especially preferable that it is 1.00 mmol / g or more.
  • the amount of phosphate groups introduced into the fiber raw material is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less per 1 g (mass) of fine fibrous cellulose. More preferably, it is 00 mmol / g or less.
  • the production process of the fine fibrous cellulose includes a carboxyl group introduction step.
  • the carboxyl group introduction step has a compound or derivative thereof having a carboxylic acid-derived group or a carboxylic acid-derived group, or an oxidation treatment such as ozone oxidation, Fenton method oxidation, TEMPO oxidation treatment, or the like, on a fiber raw material containing cellulose. It is carried out by treatment with an acid anhydride of a compound or a derivative thereof.
  • the compound having a carboxylic acid-derived group is not particularly limited, and examples thereof include dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, citric acid, aconitic acid, and the like.
  • a tricarboxylic acid compound is mentioned.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an acid anhydride imidized compound having a carboxyl group and an acid anhydride derivative of a compound having a carboxyl group.
  • the acid anhydride imidized compound of the compound having a carboxyl group is not particularly limited, and examples thereof include imidized compounds of dicarboxylic acid compounds such as maleimide, succinimide, and phthalimide.
  • the acid anhydride of the compound having a carboxylic acid-derived group is not particularly limited.
  • An acid anhydride is mentioned.
  • the acid anhydride derivative of the compound having a carboxylic acid-derived group is not particularly limited, but examples of the compound having a carboxyl group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, and diphenylmaleic acid anhydride
  • An acid anhydride in which at least a part of hydrogen atoms is substituted with a substituent such as an alkyl group or a phenyl group is exemplified.
  • TEMPO oxidation treatment when TEMPO oxidation treatment is performed, for example, the treatment is preferably performed under a condition where the pH is 6 or more and 8 or less. Such treatment is also referred to as neutral TEMPO oxidation treatment.
  • the TEMPO oxidation treatment may be performed under the condition that the pH is 10 or more and 11 or less. Such a treatment is also called an alkali TEMPO oxidation treatment.
  • Alkaline TEMPO oxidation treatment can be performed, for example, by adding nitroxy radicals such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. .
  • the amount of carboxyl group introduced into the fiber raw material varies depending on the type of substituent, but when introducing a carboxyl group by TEMPO oxidation, for example, it is preferably 0.10 mmol / g or more per 1 g (mass) of fine fibrous cellulose. 0.20 mmol / g or more is more preferable, 0.50 mmol / g or more is further preferable, and 0.90 mmol / g or more is particularly preferable. Moreover, it is preferable that it is 2.5 mmol / g or less, It is more preferable that it is 2.20 mmol / g or less, It is further more preferable that it is 2.00 mmol / g or less. In addition, when a substituent is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of fine fibrous cellulose.
  • cleaning process can be performed with respect to a phosphate group introduction
  • the washing step is performed, for example, by washing the phosphate group-introduced fiber with water or an organic solvent.
  • the cleaning process may be performed after each process described later, and the number of times of cleaning performed in each cleaning process is not particularly limited.
  • ⁇ Alkali treatment process> When manufacturing a fine fibrous cellulose, you may perform an alkali treatment with respect to a fiber raw material between an anionic group introduction
  • the alkali compound contained in the alkali solution is not particularly limited, and may be an inorganic alkali compound or an organic alkali compound. In this embodiment, since versatility is high, it is preferable to use sodium hydroxide or potassium hydroxide as an alkali compound, for example.
  • the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • the alkaline solution is preferably a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution because of its high versatility.
  • the temperature of the alkaline solution in the alkali treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, for example, and more preferably 10 ° C. or higher and 60 ° C. or lower.
  • the immersion time of the phosphate group-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, from 5 minutes to 30 minutes, and more preferably from 10 minutes to 20 minutes.
  • the amount of the alkali solution used in the alkali treatment is not particularly limited. For example, it is preferably 100% by mass or more and 100000% by mass or less, and 1000% by mass or more and 10000% by mass or less with respect to the absolute dry mass of the phosphate group-introduced fiber. It is more preferable that
  • the phosphate group introduction fiber may be washed with water or an organic solvent after the phosphate group introduction step and before the alkali treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the phosphate group-introduced fiber subjected to the alkali treatment with water or an organic solvent from the viewpoint of improving the handleability.
  • ⁇ Acid treatment process When manufacturing a fine fibrous cellulose, you may acid-treat with respect to a fiber raw material between the process of introduce
  • the phosphate group introduction step, acid treatment, alkali treatment, and defibration treatment may be performed in this order.
  • the acid treatment method is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acid solution containing acid.
  • concentration of the acidic liquid to be used is not specifically limited, For example, it is preferable that it is 10 mass% or less, and it is more preferable that it is 5 mass% or less.
  • the pH of the acidic liquid to be used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • the acid contained in the acidic liquid for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used.
  • Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, and tartaric acid. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower.
  • the immersion time in the acid solution in acid treatment is not specifically limited, For example, 5 minutes or more and 120 minutes or less are preferable, and 10 minutes or more and 60 minutes or less are more preferable.
  • the usage-amount of the acid solution in an acid treatment is not specifically limited, For example, it is preferable that it is 100 mass% or more and 100,000 mass% or less with respect to the absolute dry mass of a fiber raw material, and it is 1000 mass% or more and 10000 mass% or less. Is more preferable.
  • Fine fibrous cellulose is obtained by defibrating the anionic group-introduced fiber in the defibrating process.
  • a defibrating apparatus can be used.
  • the defibrating apparatus is not particularly limited, but, for example, a high-speed defibrator, a grinder (stone mill type pulverizer), a high-pressure homogenizer or an ultrahigh-pressure homogenizer, a high-pressure collision type pulverizer, a ball mill, a bead mill, a disk type refiner, a conical refiner, biaxial A kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, or a beater can be used.
  • a high-speed defibrator a grinder (stone mill type pulverizer), a high-pressure homogenizer or an ultrahigh-pressure homogenizer, a high-pressure collision type pulverizer, a ball mill, a bead mill, a disk type refiner, a conical refiner, biaxial A kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser
  • a high-speed defibrator a high-pressure homogenizer, or an ultrahigh-pressure homogenizer that is less affected by the pulverizing media and has less risk of contamination.
  • a dispersion medium 1 type, or 2 or more types selected from water and organic solvents, such as a polar organic solvent, can be used.
  • the polar organic solvent is not particularly limited, but alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents, and the like are preferable. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, and isobutyl alcohol. Examples of the polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones include acetone and methyl ethyl ketone (MEK).
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, propylene glycol monomethyl ether and the like.
  • esters include ethyl acetate and butyl acetate.
  • the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of fine fibrous cellulose at the time of defibrating treatment can be set as appropriate.
  • the slurry obtained by dispersing the phosphate group-introduced fibers in the dispersion medium may contain solids other than phosphate group-introduced fibers such as urea having hydrogen bonding properties.
  • the sheet of the present invention contains an acrylic polymer as a water-based resin.
  • the acrylic polymer is a polymer including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound, and a structure derived from an aqueous acrylic polyol.
  • the acrylic polymer is a crosslinked acrylic polymer in which the aqueous acrylic polyol is crosslinked with a structure (unit) derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound.
  • the aqueous acrylic polyol is a polymer having a hydroxyl group-containing (meth) acrylate and a vinyl compound as a copolymerization component.
  • (meth) acrylate means a general term for acrylate and methacrylate.
  • the aqueous acrylic polyol may contain a structure derived from (meth) acrylate other than hydroxyl group-containing (meth) acrylate.
  • Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxy (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and the like.
  • Examples of (meth) acrylates other than hydroxyl group-containing (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, cyclohexyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Is mentioned.
  • a vinyl compound is a compound having a polymerizable vinyl group.
  • the vinyl compound include vinyl acetate, vinylidene chloride, 2-chloroethyl acrylate, 2-chloroethyl methacrylate, ethylene, propylene, styrene, vinyl toluene, ⁇ -methyl styrene, acrylonitrile, acrylamide, and the like. .
  • the acrylic polymer includes a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound.
  • the compound is a curing agent or a crosslinking agent.
  • an acrylic polymer contains the structure derived from an isocyanate compound, and the polyisocyanate which has two or more isocyanate groups is also contained in an isocyanate compound.
  • an isocyanate group reacts with a hydroxyl group of an aqueous acrylic polyol to form a crosslinked structure.
  • the sheet of the present invention may contain a water-soluble polymer in addition to the above-described acrylic polymer and fine fibrous cellulose.
  • water-soluble polymers include carboxyvinyl polymer, polyvinyl alcohol, alkyl methacrylate / acrylic acid copolymer, polyvinyl pyrrolidone, sodium polyacrylate, polyethylene glycol, diethylene glycol, triethylene glycol, polyethylene oxide, propylene glycol, dipropylene glycol, Synthetic water-soluble polymers exemplified by polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, and polyacrylamide; xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, pullulan , Carrageenan, and thickening polysaccharides exemplified by pectin; carboxymethylcellulose Cellulose derivatives exemplified by pect
  • the sheet of the present invention may further contain a resin such as a thermoplastic resin, a thermosetting resin, or a photocurable resin, in addition to the acrylic polymer and fine fibrous cellulose described above.
  • a resin such as a thermoplastic resin, a thermosetting resin, or a photocurable resin
  • the resin include styrene resin, aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic polyester resin, aliphatic polyester resin, aliphatic polyolefin resin, cyclic olefin resin, polyamide resin, and polyphenylene.
  • resins such as a thermoplastic resin, a thermosetting resin, or a photocurable resin, in addition to the acrylic polymer and fine fibrous cellulose described above.
  • the sheet of the present invention includes, as optional components, for example, surfactants, organic ions, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, preservatives, antifoaming agents, organic particles, lubricants, charging agents.
  • An inhibitor, an ultraviolet protection agent, a dye, a pigment, a stabilizer, a magnetic powder, an alignment accelerator, a plasticizer, a dispersant, a crosslinking agent, and the like may be included.
  • the sheet of the present invention may contain one or more of the above components.
  • the content of the optional component contained in the sheet is preferably 50% by mass or less, more preferably 40% by mass or less, and preferably 30% by mass or less with respect to the total mass of the sheet. Further preferred.
  • the sheet of the present invention may contain a solvent as an optional component.
  • the solvent include one or both of water and an organic solvent, and the solvent is preferably water.
  • the organic solvent include alcohols, polyhydric alcohols, ketones, ethers, esters, hydrocarbons, halogens, aprotic polar solvents, and the like.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, and isobutyl alcohol.
  • Examples of the polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones include acetone and methyl ethyl ketone (MEK).
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, propylene glycol monomethyl ether and the like.
  • esters include ethyl acetate and butyl acetate.
  • hydrocarbons include n-hexane, toluene, xylene and the like.
  • halogens include methylene chloride, trichloroethylene, chloroform and the like.
  • the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the content of the solvent contained in the sheet is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less with respect to the total mass of the sheet. Is more preferable.
  • a dispersion containing fibrous cellulose having a fiber width of 1000 nm or less is diluted as necessary.
  • this step is preferably included as the first step.
  • the content of the fine fibrous cellulose contained in the diluted dispersion is preferably 2% by mass or less, preferably 1% by mass or less, based on the total mass of the diluted dispersion. Is more preferable.
  • content of the fine fibrous cellulose contained in the diluted dispersion is 0.001% by mass or more with respect to the total mass of the diluted dispersion.
  • the step of mixing the aqueous acrylic polyol with the dispersion containing the fibrous cellulose whose concentration is adjusted is included as the second step.
  • the aqueous acrylic polyol added at this time is preferably a polymer emulsion containing a hydroxyl group-containing (meth) acrylate and a vinyl compound as a copolymerization component.
  • the second step it is preferable to add the aqueous acrylic polyol emulsion in a plurality of times and to stir each time.
  • aqueous acrylic polyol little by little to a dispersion containing fibrous cellulose whose concentration has been adjusted, and this makes it easy to obtain a sheet having a low water absorption rate.
  • At least one compound selected from an isocyanate compound, a carbodiimide compound and an oxazoline compound is mixed.
  • At least one compound selected from the isocyanate compound, carbodiimide compound and oxazoline compound added in the third step is a curing agent or a crosslinking agent.
  • stirrer When adding each raw material in the second step and the third step, it is preferable to perform stirring using a stirrer.
  • the stirrer include T.I. K. A homodisper (made by Tokushu Kika Kogyo Co., Ltd.) can be used, and the stirring speed is preferably 500 to 5000 rpm.
  • the stirring time is preferably 1 to 100 minutes.
  • the step of obtaining the sheet-forming composition preferably includes the first to third steps in this order, but the content of fine fibrous cellulose in the dispersion containing fine fibrous cellulose is low.
  • the first step may be omitted, and the third step may be included after the second step.
  • another process may be included between the first process and the second process, and another process may be included between the second process and the third process.
  • other steps may be included before the first step and / or after the third step.
  • after the third step it is preferable to provide a defoaming treatment step in order to eliminate foaming due to stirring.
  • the sheet-forming composition includes an acrylic system including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound, and a structure derived from an aqueous acrylic polyol.
  • a polymer will be included.
  • the content of the acrylic polymer in the sheet forming composition is preferably 83.5% by mass or more, and more preferably 85% by mass or more, based on the total solid content in the composition. 87.5% by mass or more is more preferable. Further, the content of the acrylic polymer is preferably 99.95% by mass or less, more preferably 99.9% by mass or less, based on the total solid content in the composition. More preferably, it is 5 mass% or less.
  • the content of the fine fibrous cellulose in the sheet forming composition is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more with respect to the total solid mass in the composition. It is more preferable that the content is 0.5% by mass or more. Further, the content of the fine fibrous cellulose is preferably 16.5% by mass or less, more preferably 15% by mass or less, and more preferably 12.5% by mass with respect to the total solid mass in the composition. More preferably, it is% or less.
  • a sheet in the coating step, for example, can be obtained by coating a sheet-forming composition (slurry) containing fibrous cellulose on a substrate, and drying the formed sheet from the substrate. it can.
  • seat can be continuously produced by using a coating device and a elongate base material.
  • the material of the base material used in the coating process is not particularly limited, but the one having higher wettability with respect to the composition for forming the sheet (slurry) may be able to suppress the shrinkage of the sheet at the time of drying. It is preferable to select a sheet that can be easily peeled off later. Among them, a resin film or plate or a metal film or plate is preferable, but is not particularly limited.
  • a film or plate of a resin such as polypropylene, acrylic, polyethylene terephthalate, vinyl chloride, polystyrene, polycarbonate, or polyvinylidene chloride, a metal film or plate of aluminum, zinc, copper, or iron plate, and the surface thereof oxidized Stainless steel films and plates, brass films and plates, and the like can be used.
  • a damming frame is fixed on the base material to obtain a sheet having a predetermined thickness and basis weight. May be.
  • the damming frame is not particularly limited, but for example, it is preferable to select one that can easily peel off the edge of the sheet attached after drying. From such a viewpoint, a molded resin plate or metal plate is more preferable.
  • a resin plate such as a polypropylene plate, an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polycarbonate plate, or a polyvinylidene chloride plate, or a metal plate such as an aluminum plate, a zinc plate, a copper plate, or an iron plate And those obtained by oxidizing these surfaces, stainless steel plates, brass plates and the like can be used.
  • a coating machine which coats a slurry on a base material For example, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater etc. can be used.
  • a die coater, a curtain coater, and a spray coater are particularly preferable because the thickness of the sheet can be made more uniform.
  • the slurry temperature and the atmospheric temperature when applying the slurry to the substrate are not particularly limited, but are preferably 5 ° C. or more and 80 ° C. or less, more preferably 10 ° C. or more and 60 ° C. or less, and more preferably 15 ° C.
  • the temperature is more preferably 50 ° C. or lower and particularly preferably 20 ° C. or higher and 40 ° C. or lower. If the coating temperature is equal to or higher than the lower limit, the slurry can be applied more easily. If coating temperature is below the said upper limit, volatilization of the dispersion medium during coating can be suppressed.
  • the slurry is used so that the finished basis weight of the sheet is preferably 10 g / m 2 or more and 100 g / m 2 or less, more preferably 20 g / m 2 or more and 60 g / m 2 or less. It is preferable to apply to the material. By coating so that the basis weight is within the above range, a sheet having higher strength can be obtained.
  • the coating step includes a step of drying the slurry coated on the substrate as described above.
  • the step of drying the slurry is not particularly limited, and is performed by, for example, a non-contact drying method, a method of drying while restraining the sheet, or a combination thereof.
  • the non-contact drying method is not particularly limited. For example, a method of drying by heating with hot air, infrared rays, far infrared rays or near infrared rays (heating drying method) or a method of drying in vacuum (vacuum drying method) is applied. can do. Although the heat drying method and the vacuum drying method may be combined, the heat drying method is usually applied. Although drying by infrared rays, far-infrared rays, or near-infrared rays is not specifically limited, For example, it can carry out using an infrared device, a far-infrared device, or a near-infrared device.
  • the heating temperature in the heat drying method is not particularly limited, for example, it is preferably 20 ° C. or higher and 150 ° C. or lower, and more preferably 25 ° C. or higher and 105 ° C. or lower. If the heating temperature is at least the above lower limit, the dispersion medium can be volatilized quickly. Moreover, if heating temperature is below the said upper limit, the suppression of the cost required for a heating and the discoloration by the heat
  • the papermaking process is performed by making a slurry with a papermaking machine.
  • the paper machine used in the paper making process is not particularly limited, and examples thereof include a continuous paper machine such as a long net type, a circular net type, and an inclined type, or a multi-layered paper machine combining these.
  • a known paper making method such as hand making may be employed.
  • the paper making process is performed by filtering and dewatering the slurry with a wire to obtain a wet paper sheet, and then pressing and drying the sheet.
  • the filter cloth used when the slurry is filtered and dehydrated is not particularly limited, but it is more preferable that, for example, fibrous cellulose does not pass through and the filtration rate does not become too slow.
  • Such a filter cloth is not particularly limited, but for example, a sheet made of an organic polymer, a woven fabric, and a porous film are preferable.
  • the organic polymer is not particularly limited, but non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE) and the like are preferable.
  • a porous film of polytetrafluoroethylene having a pore diameter of 0.1 ⁇ m or more and 20 ⁇ m or less, a polyethylene terephthalate or polyethylene fabric having a pore diameter of 0.1 ⁇ m or more and 20 ⁇ m or less, and the like can be mentioned.
  • a method for producing a sheet from the slurry includes, for example, a squeezing section that discharges a slurry containing fibrous cellulose onto the upper surface of the endless belt and squeezes the dispersion medium from the discharged slurry to generate a web. And a drying section that dries the web to produce a sheet.
  • An endless belt is disposed from the squeezing section to the drying section, and the web generated in the squeezing section is conveyed to the drying section while being placed on the endless belt.
  • the dehydration method used in the papermaking process is not particularly limited, and examples thereof include a dehydration method usually used in paper production. Among these, the method of dehydrating with a roll press after dehydrating with a long net, a circular net, an inclined wire or the like is preferable.
  • the drying method used in the paper making process is not particularly limited, and examples thereof include a method used in paper production. Among these, a drying method using a cylinder dryer, a Yankee dryer, hot air drying, a near infrared heater, an infrared heater or the like is more preferable.
  • FIG. 3 is a cross-sectional view illustrating the structure of the stacked body 100.
  • the laminate 100 has a sheet 10 laminated on a base material layer 20.
  • the sheet 10 is preferably laminated so as to be in direct contact with the base material layer 20.
  • FIG. 3 illustrates a laminate 100 in which the sheet 10 is formed on one side of the base material layer 20, but the laminate of the present invention has a sheet formed on both sides of the base material layer.
  • a laminated body may be sufficient, the laminated body provided with a base material layer on both surfaces of a sheet
  • the base material layer examples include a resin layer and an inorganic layer.
  • the base material layer is also preferably a layer containing at least one selected from fine fibrous cellulose and a water-soluble polymer.
  • the content of fine fibrous cellulose is preferably 0.5% by mass or more and 95% by mass or less.
  • An adhesive layer may be provided between the above-described sheet and the base material layer, or no adhesive layer may be provided, and the sheet and the base material layer may be in direct contact with each other.
  • an acrylic resin can be used as an adhesive constituting the adhesive layer.
  • adhesives other than acrylic resins include vinyl chloride resin, (meth) acrylate resin, styrene / acrylate copolymer resin, vinyl acetate resin, vinyl acetate / (meth) acrylate ester.
  • Examples include polymer resins, urethane resins, silicone resins, epoxy resins, ethylene / vinyl acetate copolymer resins, polyester resins, polyvinyl alcohol resins, ethylene vinyl alcohol copolymer resins, and rubber emulsions such as SBR and NBR. It is done.
  • the thickness of the base material layer is not particularly limited, but is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more. Moreover, it is preferable that the thickness of a base material layer is 10,000 micrometers or less, and it is more preferable that it is 1000 micrometers or less.
  • a base material layer is a resin layer or an inorganic layer
  • the layer mentioned below may be sufficient, for example.
  • the resin layer is a layer mainly composed of natural resin or synthetic resin.
  • a main component refers to the component contained 50 mass% or more with respect to the total mass of a resin layer.
  • the content of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass with respect to the total mass of the resin layer. The above is particularly preferable.
  • content of resin can also be 100 mass%, and may be 95 mass% or less.
  • Examples of natural resins include rosin resins such as rosin, rosin ester, and hydrogenated rosin ester.
  • the synthetic resin is preferably at least one selected from, for example, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, polyurethane resin, and acrylic resin.
  • the synthetic resin is preferably at least one selected from polycarbonate resin and acrylic resin, and more preferably polycarbonate resin.
  • the acrylic resin is preferably at least one selected from polyacrylonitrile and poly (meth) acrylate.
  • polycarbonate resin constituting the resin layer examples include an aromatic polycarbonate resin and an aliphatic polycarbonate resin. These specific polycarbonate resins are known and include, for example, the polycarbonate resins described in JP 2010-023275 A.
  • the resin constituting the resin layer one kind may be used alone, or a copolymer obtained by copolymerization or graft polymerization of a plurality of resin components may be used. Moreover, you may use as a blend material which mixed the some resin component with the physical process.
  • the adhesive layer may be provided between the sheet and the resin layer, or the adhesive layer may not be provided, and the sheet and the resin layer may be in direct contact with each other.
  • an acrylic resin can be exemplified as an adhesive constituting the adhesive layer.
  • adhesives other than acrylic resin include vinyl chloride resin, (meth) acrylic ester resin, styrene / acrylic ester copolymer resin, vinyl acetate resin, vinyl acetate / (meth) acrylic ester copolymer
  • examples include coalesced resins, urethane resins, silicone resins, epoxy resins, ethylene / vinyl acetate copolymer resins, polyester resins, polyvinyl alcohol resins, ethylene vinyl alcohol copolymer resins, and rubber emulsions such as SBR and NBR.
  • the resin layer may have an adhesion assistant, and surface treatment such as hydrophilic treatment may be performed on the surface of the resin layer.
  • the adhesion assistant include a compound containing at least one selected from an isocyanate group, a carbodiimide group, an epoxy group, an oxazoline group, an amino group, and a silanol group, and an organosilicon compound.
  • the adhesion assistant is preferably at least one selected from a compound containing an isocyanate group (isocyanate compound) and an organosilicon compound.
  • organosilicon compounds include silane coupling agent condensates and silane coupling agents.
  • surface treatment methods other than hydrophilization treatment include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, and flame treatment.
  • the material constituting the inorganic layer is not particularly limited, but for example, aluminum, silicon, magnesium, zinc, tin, nickel, titanium; these oxides, carbides, nitrides, oxycarbides, oxynitrides, or oxycarbonitrides Or a mixture thereof. From the viewpoint that high moisture resistance can be stably maintained, silicon oxide, silicon nitride, silicon oxide carbide, silicon oxynitride, silicon oxycarbonitride, aluminum oxide, aluminum nitride, aluminum oxide carbide, aluminum oxynitride, or these Mixtures are preferred.
  • the method for forming the inorganic layer is not particularly limited.
  • a method of forming a thin film is roughly classified into a chemical vapor deposition method (Chemical Vapor Deposition, CVD) and a physical film formation method (Physical Vapor Deposition, PVD), and either method may be adopted.
  • CVD method include plasma CVD using plasma, and catalytic chemical vapor deposition (Cat-CVD) in which a material gas is contact pyrolyzed using a heating catalyst.
  • Cat-CVD catalytic chemical vapor deposition
  • PVD method include vacuum deposition, ion plating, and sputtering.
  • an atomic layer deposition method can also be employed.
  • the ALD method is a method of forming a thin film in units of atomic layers by alternately supplying source gases of respective elements constituting a film to be formed to a surface on which a layer is formed.
  • the film forming speed is slow, there is an advantage that it is possible to form a thin film with few defects because it can cleanly cover even a complicated surface more than the plasma CVD method.
  • the ALD method has an advantage that the film thickness can be controlled on the nano order and it is relatively easy to cover a wide surface.
  • the ALD method can be expected to improve the reaction rate, lower the temperature, and reduce the unreacted gas by using plasma.
  • the sheet of the present invention is not particularly limited.
  • the sheet is suitable for the use of a light transmissive substrate such as an optical film, various display devices, and various solar cells. It is also suitable for applications such as substrates for electronic devices, members of household appliances, various vehicles and building windows, interior materials, exterior materials, packaging materials, and the like. Furthermore, it is also suitable for applications in which the sheet itself is used as a reinforcing material in addition to threads, filters, fabrics, cushioning materials, sponges, abrasives, and the like.
  • the washing treatment is performed by repeating the operation of filtering and dewatering after stirring the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g of phosphorylated pulp (absolute dry mass) so that the pulp is uniformly dispersed. went.
  • the electrical conductivity of the filtrate reached 100 ⁇ S / cm or less, the end point of washing was determined.
  • the washed phosphorylated pulp was neutralized as follows. First, after the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, a 1N sodium hydroxide aqueous solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. . Subsequently, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp subjected to neutralization treatment.
  • the washing treatment was performed on the phosphorylated pulp after the neutralization treatment.
  • the infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR.
  • absorption based on phosphate groups was observed in the vicinity of 1230 cm ⁇ 1 , confirming that phosphate groups were added to the pulp.
  • Ion exchange water was added to the resulting phosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass.
  • This slurry was treated twice with a wet atomizer (Sugino Machine, Starburst) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (1) containing fine fibrous cellulose.
  • X-ray diffraction confirmed that the fine fibrous cellulose maintained the cellulose I-type crystals.
  • the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm.
  • the phosphate group amount (strongly acidic group amount) measured by the measurement method described later was 1.45 mmol / g.
  • the fiber width of the fine fibrous cellulose was measured by the following method.
  • the fine fibrous cellulose has a concentration of 0.01% by mass to 0.1% by mass. Diluted with water and dropped onto a hydrophilic carbon grid membrane. This was dried, stained with uranyl acetate, and observed with a transmission electron microscope (JEOL-2000EX, manufactured by JEOL Ltd.).
  • the amount of phosphoric acid group of the fine fibrous cellulose is prepared by diluting the fine fibrous cellulose dispersion (1) containing the target fine fibrous cellulose with ion-exchanged water so that the content becomes 0.2% by mass. It measured by performing the titration using an alkali, after processing with the ion exchange resin with respect to the fibrous cellulose containing slurry. In the treatment with the ion exchange resin, 1/10 by volume of the strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) is added to the fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour.
  • the strongly acidic ion exchange resin Amberjet 1024; Organo Corporation, conditioned
  • the mixture was poured onto a mesh having an opening of 90 ⁇ m to separate the resin and the slurry.
  • titration using an alkali is performed by adding 50 ⁇ L of a 0.1 N aqueous sodium hydroxide solution to a fibrous cellulose-containing slurry after treatment with an ion exchange resin once every 30 seconds. This was done by measuring the change in the value of.
  • the phosphate group amount (mmol / g) is obtained by dividing the alkali amount (mmol) required in the region corresponding to the first region shown in FIG. 1 by the solid content (g) in the slurry to be titrated. Calculated.
  • Example 1 Ion exchange water was added to the fine fibrous cellulose dispersion (1) having a solid content concentration of 2.0% by mass to obtain a fine fibrous cellulose dispersion (A) having a solid content concentration of 0.2% by mass. 49.8 g of the obtained fine fibrous cellulose dispersion (A) is weighed in a beaker, and there are 10.3 g of ion-exchanged water, an aqueous acrylic polyol (manufactured by DIC, product name: Burnock WD-551, solid content concentration 45.
  • the solid content ratio (mass ratio) of the aqueous acrylic polyol, the curing agent, and the fine fibrous cellulose is 78: 22: 0.5 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid A coating solution having a concentration of 20% by mass was obtained.
  • Example 2 Weigh 69.3 g of fine fibrous cellulose dispersion (A) having a solid content concentration of 0.2% by weight in a beaker, and in that order 2.8 g of ion-exchanged water, 24.0 g of aqueous acrylic polyol, and 3.8 g of curing agent in this order.
  • a coating solution was obtained in the same manner as in Example 1 except that it was added.
  • the solid content ratio (mass ratio) in the obtained coating liquid was 78: 22: 1 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the concentration of the total solid content was 14% by mass.
  • Example 3 Ion exchange water was added to the fine fibrous cellulose dispersion (1) having a solid content concentration of 2.0% by mass to obtain a fine fibrous cellulose dispersion (B) having a solid content concentration of 0.5% by mass. Except that 38.1 g of the fine fibrous cellulose dispersion (B) was weighed into a beaker, and 54.3 g of ion-exchanged water, 6.6 g of an aqueous acrylic polyol, and 1.1 g of a curing agent were sequentially added thereto. A coating solution was obtained in the same manner. The solid content ratio (mass ratio) in the obtained coating liquid was 78: 22: 5 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content was 4% by mass.
  • Example 4 Ion exchange water was added to the fine fibrous cellulose dispersion (1) having a solid content concentration of 2.0% by mass to obtain a fine fibrous cellulose dispersion (C) having a solid content concentration of 1.0% by mass. Except that 54.6 g of the fine fibrous cellulose dispersion (C) was weighed into a beaker and 34.5 g of ion-exchanged water, 9.5 g of an aqueous acrylic polyol, and 1.5 g of a curing agent were added thereto in that order. A coating solution was obtained in the same manner. The solid content ratio (mass ratio) in the obtained coating liquid was 78:22:10 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content was 6% by mass.
  • Example 5 78.3 g of fine fibrous cellulose dispersion (C) having a solid content concentration of 1.0% by mass is weighed in a beaker, and 11.3 g of ion-exchanged water, 9.0 g of an aqueous acrylic polyol, and 1.4 g of a curing agent are sequentially added thereto.
  • a coating solution was obtained in the same manner as in Example 1 except that it was added.
  • the solid content ratio (mass ratio) in the obtained coating liquid was 78:22:15 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the concentration of the total solid content was 6% by mass.
  • Example 1 A coating solution was prepared in the same manner as in Example 1 except that 34.7 g of an aqueous acrylic polyol, 59.8 g of ion-exchanged water, and 5.5 g of a curing agent were sequentially added to a beaker without adding the fine fibrous cellulose dispersion. Obtained.
  • the solid content ratio (mass ratio) in the obtained coating liquid was 78:22 (aqueous acrylic polyol: curing agent), and the total solid content was 20% by mass.
  • a coating solution was obtained in the same manner as in Example 3 except that the coating material was prepared by the following procedure. First, 24.0 g of an aqueous acrylic polyol was weighed in a beaker, and 2.8 g of ion exchange water, 69.3 g of a fine fibrous cellulose dispersion (A) having a solid content concentration of 0.2% by mass, and 3.8 g of a curing agent. Were added in order. When adding each raw material, T.W. K. Stirring was performed at 1500 rpm with a homodisper (manufactured by Tokushu Kika Kogyo Co., Ltd.), and stirring was further performed for 5 minutes after all the raw materials were added.
  • a homodisper manufactured by Tokushu Kika Kogyo Co., Ltd.
  • the solid content ratio (mass ratio) of the aqueous acrylic polyol, the curing agent, and the fine fibrous cellulose is 78: 22: 5 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content is A coating solution having a concentration of 14% by mass was obtained.
  • Example 5 A coating solution was obtained in the same manner as in Example 4 except that the coating material was prepared by the following procedure. First, 6.6 g of an aqueous acrylic polyol was weighed in a beaker, and 54.3 g of ion-exchanged water, 38.1 g of a fine fibrous cellulose dispersion (B) having a solid content concentration of 0.5% by mass, and 1.1 g of a curing agent. Were added in order. When adding each raw material, T.W. K. Stirring was performed at 1500 rpm with a homodisper (manufactured by Tokushu Kika Kogyo Co., Ltd.), and stirring was further performed for 5 minutes after all the raw materials were added.
  • a homodisper manufactured by Tokushu Kika Kogyo Co., Ltd.
  • the solid content ratio (mass ratio) of the aqueous acrylic polyol, the curing agent, and the fine fibrous cellulose is 78:22:10 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content is A coating solution having a concentration of 4% by mass was obtained.
  • PP polypropylene film
  • Treffan BO thickness 60 ⁇ m
  • the coating thickness obtained in Examples and Comparative Examples is 10 ⁇ m or more after drying using an applicator. It coated on the base material so that it might become.
  • the laminate was heated for 30 minutes with a drier at a temperature of 80 ° C. to obtain a laminate comprising a sheet on the base material layer of the PP film.
  • the thickness of the sheet was measured with a constant pressure thickness measuring instrument (PG-02J, manufactured by Teflock). Thereafter, the dried sheet was peeled from the PP film, and used for various evaluations as a fine fibrous cellulose-containing sheet.
  • haze was measured using a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd., HM-150). Further, based on JIS K 7361, the total light transmittance was measured using a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd., HM-150).
  • Tensile strength (unit: N / m) using a tensile tester Tensilon (manufactured by A & D) according to JIS P 8113, except that the length of the test piece is 80 mm and the distance between chucks is 50 mm. was measured. The tensile strength was divided by the thickness of the test piece, and the tensile strength (unit: MPa) was calculated. In addition, when measuring tensile strength, what was conditioned for 24 hours at 23 degreeC and 50% of relative humidity was used as a test piece.
  • the tensile modulus was measured using a tensile tester Tensilon (manufactured by A & D Co.) according to JIS P 8113 except that the length of the test piece was 80 mm and the distance between chucks was 50 mm.
  • the elastic modulus is a value calculated from the maximum positive slope value in the SS curve.
  • the sheet obtained in the comparative example has a high affinity with water, and there is a concern about practical problems from the viewpoint of water resistance. From the results of Comparative Examples 1 to 3, it was suggested that the water absorption rate of the obtained sheet could be controlled by adjusting the content of fine fibrous cellulose. Further, the results of Comparative Examples 4 and 5 suggest the possibility that the water absorption rate of the obtained sheet can be controlled by the procedure for adjusting the coating solution, and further the uniformity of coating solution dispersion by the procedure for preparing the coating solution. It was suggested that the transparency of the sheet can be improved.

Abstract

The present invention addresses the problem of providing a sheet which comprises finely fibrous cellulose and a water-compatible resin and which has a low affinity for water. The present invention relates to a sheet which comprises an acrylic polymer and fibrous cellulose having a fiber width of 1,000 nm or less, wherein the acrylic polymer comprises a structure derived from at least one compound selected from among isocyanate compounds, carbodiimide compounds, and oxazoline compounds and a structure derived from an aqueous acrylic polyol. The sheet has a water absorption through 24-hr immersion in water of 6 mass% or less.

Description

シート及び積層体Sheet and laminate
 本発明は、シート及び積層体に関する。 The present invention relates to a sheet and a laminate.
 近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10~50μmの繊維状セルロース、特に木材由来の繊維状セルロース(パルプ)は、主に紙製品としてこれまで幅広く使用されてきた。 In recent years, materials that use reproducible natural fibers have attracted attention due to the substitution of petroleum resources and the growing environmental awareness. Among natural fibers, fibrous cellulose having a fiber diameter of 10 to 50 μm, particularly fibrous cellulose (pulp) derived from wood has been widely used mainly as a paper product so far.
 繊維状セルロースとしては、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体、増粘剤の開発が進められている。 As the fibrous cellulose, fine fibrous cellulose having a fiber diameter of 1 μm or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are diverse. For example, the development of sheets, resin composites, and thickeners containing fine fibrous cellulose is in progress.
 例えば、特許文献1には、微細繊維状セルロース、水系樹脂及び着色剤を含有する水系塗料組成物が開示されている。ここでは、水系塗料組成物から耐水性に優れた塗膜を形成することが検討されている。なお、特許文献1における塗膜とは、基材の表面を覆う膜であり、基材に密着した膜である。 For example, Patent Document 1 discloses a water-based coating composition containing fine fibrous cellulose, a water-based resin, and a colorant. Here, formation of a coating film excellent in water resistance from a water-based coating composition has been studied. In addition, the coating film in patent document 1 is a film | membrane which covers the surface of a base material, and is a film | membrane which contact | adhered to the base material.
特開2016-69618号公報JP 2016-69618 A
 一般的に、微細繊維状セルロースは水系溶媒中に安定して分散している。このため、微細繊維状セルロースを含む樹脂複合体を形成しようとした場合、使用する樹脂と微細繊維状セルロースの均一分散性を高めるために、親水性の高い樹脂が用いられる場合がある。しかしながら、このようにして得られるシート等の樹脂複合体は水との親和性が高く、その用途が制限される場合があった。 Generally, fine fibrous cellulose is stably dispersed in an aqueous solvent. For this reason, when it is going to form the resin composite containing fine fibrous cellulose, in order to improve the uniform dispersibility of resin to be used and fine fibrous cellulose, highly hydrophilic resin may be used. However, the resin composite such as a sheet obtained in this way has a high affinity with water, and its use may be limited.
 そこで本発明は、微細繊維状セルロースと水系樹脂を含むシートにおいて、水との親和性が低いシートを提供することを目的とする。 Therefore, an object of the present invention is to provide a sheet having a low affinity with water among sheets containing fine fibrous cellulose and an aqueous resin.
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、微細繊維状セルロースと、所定の架橋構造を有する水性アクリル重合体とを含むシートにおいて、吸水率を所定値以下とすることにより、水との親和性が低いシートが得られることを見出した。
 具体的に、本発明は、以下の構成を有する。
As a result of intensive studies to solve the above problems, the present inventors, in a sheet containing fine fibrous cellulose and a water-based acrylic polymer having a predetermined cross-linked structure, the water absorption rate is a predetermined value or less As a result, it was found that a sheet having low affinity with water can be obtained.
Specifically, the present invention has the following configuration.
[1] アクリル系重合体と、繊維幅が1000nm以下の繊維状セルロースと、を含有するシートであって、
 アクリル系重合体は、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物に由来する構造と、水性アクリルポリオールに由来する構造と、を含む重合体であり、
 シートを水に24時間浸漬した場合の吸水率が6質量%以下であるシート。
[2] 繊維状セルロースの含有量は、アクリル系重合体100質量部に対して0.5質量部以上19質量部以下である[1]に記載のシート。
[3] ヘーズが4.5%以下である[1]又は[2]に記載のシート。
[4] 全光線透過率が89%以上である[1]~[3]のいずれかに記載のシート。
[5] YI値が0.3以下である[1]~[4]のいずれかに記載のシート。
[6] 引張強度が15MPa以上である[1]~[5]のいずれかに記載のシート。
[7] 引張弾性率が1.8GPa以上である[1]~[6]のいずれかに記載のシート。
[8] 厚みが10μm以上である[1]~[7]のいずれかに記載のシート。
[9] 基材層の少なくとも一方の面側に、[1]~[8]のいずれかに記載のシートを備える積層体。
[10] 基材層は、繊維幅が1000nm以下である繊維状セルロース及び水溶性高分子から選択される少なくとも1種を含む[9]に記載の積層体。
[1] A sheet containing an acrylic polymer and fibrous cellulose having a fiber width of 1000 nm or less,
The acrylic polymer is a polymer including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound and an oxazoline compound, and a structure derived from an aqueous acrylic polyol.
A sheet having a water absorption of 6% by mass or less when the sheet is immersed in water for 24 hours.
[2] The sheet according to [1], wherein the content of fibrous cellulose is 0.5 parts by mass or more and 19 parts by mass or less with respect to 100 parts by mass of the acrylic polymer.
[3] The sheet according to [1] or [2], wherein the haze is 4.5% or less.
[4] The sheet according to any one of [1] to [3], wherein the total light transmittance is 89% or more.
[5] The sheet according to any one of [1] to [4], wherein the YI value is 0.3 or less.
[6] The sheet according to any one of [1] to [5], which has a tensile strength of 15 MPa or more.
[7] The sheet according to any one of [1] to [6], which has a tensile modulus of 1.8 GPa or more.
[8] The sheet according to any one of [1] to [7], having a thickness of 10 μm or more.
[9] A laminate comprising the sheet according to any one of [1] to [8] on at least one surface side of the base material layer.
[10] The laminate according to [9], wherein the base material layer includes at least one selected from fibrous cellulose having a fiber width of 1000 nm or less and a water-soluble polymer.
 本発明によれば、水との親和性の低いシートが得られる。 According to the present invention, a sheet having a low affinity with water can be obtained.
図1は、リン酸基を有する繊維原料に対するNaOH滴下量と電気伝導度の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of dropped NaOH and electrical conductivity for a fiber material having a phosphate group. 図2は、カルボキシル基を有する繊維原料に対するNaOH滴下量と電気伝導度の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and electrical conductivity for a fiber material having a carboxyl group. 図3は、基材層とシートを有する積層体の構造を説明する断面図である。FIG. 3 is a cross-sectional view illustrating the structure of a laminate having a base material layer and a sheet.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments.
(シート)
 本発明は、アクリル系重合体と、繊維幅が1000nm以下の繊維状セルロースと、を含有するシートに関する。ここで、アクリル系重合体は、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物に由来する構造と、水性アクリルポリオールに由来する構造と、を含む重合体である。また、シートを水に24時間浸漬した場合の吸水率は6質量%以下である。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースと呼ぶこともある。
(Sheet)
The present invention relates to a sheet containing an acrylic polymer and fibrous cellulose having a fiber width of 1000 nm or less. Here, the acrylic polymer is a polymer including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound, and a structure derived from an aqueous acrylic polyol. The water absorption when the sheet is immersed in water for 24 hours is 6% by mass or less. In the present specification, fibrous cellulose having a fiber width of 1000 nm or less may be referred to as fine fibrous cellulose.
 本発明のシートは、上記構成を有するものであるため、微細繊維状セルロースと水系樹脂を含むシートであっても、水との親和性を低く抑えることができる。具体的には、シート表面の水接触角が大きいことをもって、シートの水親和性が低いと判定することができる。シート表面の水接触角は、68.2°以上であることが好ましく、68.5°以上であることがより好ましく、69.0°以上であることがさらに好ましい。また、シート表面の水接触角は、120°以下であることが好ましい。ここで、シート表面の水接触角は、JIS R 3257に準拠して測定される値であり、シートの表面に蒸留水を4μL滴下し、動的水接触角試験機(Fibro社製、1100DAT)を用いて滴下0.1秒後に測定される値である。このように、本発明のシートは水との親和性が低く、耐水性に優れたシートであると言える。なお、本発明においては、シートのいずれか一方の面の水接触角が上記範囲を満たすことでもよいが、シートの両方の面の水接触角が上記範囲を満たすものであることが好ましい。 Since the sheet of the present invention has the above-described configuration, the affinity with water can be kept low even for a sheet containing fine fibrous cellulose and an aqueous resin. Specifically, it can be determined that the water affinity of the sheet is low due to the large water contact angle on the sheet surface. The water contact angle on the sheet surface is preferably 68.2 ° or more, more preferably 68.5 ° or more, and further preferably 69.0 ° or more. The water contact angle on the sheet surface is preferably 120 ° or less. Here, the water contact angle on the surface of the sheet is a value measured according to JIS R 3257, 4 μL of distilled water is dropped on the surface of the sheet, and a dynamic water contact angle tester (manufactured by Fibro, 1100DAT). Is a value measured 0.1 seconds after dropping. Thus, it can be said that the sheet of the present invention is a sheet having low water affinity and excellent water resistance. In the present invention, the water contact angle on either surface of the sheet may satisfy the above range, but the water contact angle on both surfaces of the sheet preferably satisfies the above range.
 本発明のシートは、単独(基材レス)でシート形状を保持できるものであり、例えば、基材の少なくとも一方の表面を覆う被膜とは区別される。ここで、被膜とは、基材の少なくとも一方の表面を覆う膜であり、被膜は基材から剥離してそれ単独でシート形状を形成し得ないものである。なお、本発明のシートは、例えば基材層の少なくとも一方の面上に積層されることがあるが、シート形状を単独で保持できるものであれば、基材層に積層されたものであってもシートと呼ばれる。 The sheet of the present invention can maintain the sheet shape alone (without a substrate), and is distinguished from, for example, a coating covering at least one surface of a substrate. Here, the coating film is a film that covers at least one surface of the substrate, and the coating film cannot peel from the substrate to form a sheet shape by itself. The sheet of the present invention may be laminated on, for example, at least one surface of the base material layer. However, the sheet of the present invention is laminated on the base material layer as long as the sheet shape can be maintained alone. Is also called a sheet.
 本発明のシートの厚みは10μm以上であることが好ましく、12μm以上であることがより好ましく、15μm以上であることがさらに好ましい。なお、シートの厚みは、1000μm以下であることが好ましい。このように、本発明のシートはある程度の厚みを有しており、これにより、単独でシート形状を保持することができる。なお、本発明のシートが後述するような積層体を構成するシートである場合、シートの厚みは上記範囲よりも薄くなる場合もある。ここで、シートの厚みは、たとえば触針式厚さ計(マール社製、ミリトロン1202D)で測定することができる。 The thickness of the sheet of the present invention is preferably 10 μm or more, more preferably 12 μm or more, and further preferably 15 μm or more. In addition, it is preferable that the thickness of a sheet | seat is 1000 micrometers or less. Thus, the sheet | seat of this invention has a certain amount of thickness, and can maintain a sheet | seat shape independently by this. In addition, when the sheet | seat of this invention is a sheet | seat which comprises a laminated body which is mentioned later, the thickness of a sheet | seat may become thinner than the said range. Here, the thickness of the sheet can be measured with, for example, a stylus type thickness meter (Milltron 1202D, manufactured by Marl).
 本発明のシートを水に24時間浸漬した場合の吸水率は6質量%以下であればよく、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3.5質量%以下であることがさらに好ましく、3質量%以下であることが一層好ましく、2質量%以下であることが特に好ましい。なお、シートの吸水率は0質量%であってもよい。ここで、シートの吸水率は、シートを所定の大きさ(例えば、5cm角)に切り出した後、このシート片をイオン交換水に24時間浸漬させる前後の重量を測定し、以下の式で算出した値である。
 吸水率(質量%)=100×(WB-WA)/WA・・・(式a)
 上記式において、WAはシート片をイオン交換水に浸漬させる前の重量であり、WBはシート片をイオン交換水に24時間浸漬させた後に、試験片をイオン交換水から引き上げ、キムワイプ等で試験片表面に付着した水分を拭き取った後の重量である。
The water absorption when the sheet of the present invention is immersed in water for 24 hours may be 6% by mass or less, preferably 5% by mass or less, more preferably 4% by mass or less, and 3.5% by mass. % Or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. The water absorption rate of the sheet may be 0% by mass. Here, the water absorption rate of the sheet is calculated by the following equation by measuring the weight before and after immersing the sheet piece in ion exchange water for 24 hours after cutting the sheet into a predetermined size (for example, 5 cm square). It is the value.
Water absorption (mass%) = 100 × (W B −W A ) / W A (Formula a)
In the above formula, W A is the weight before dipping the sheet piece in deionized water, W B is the after immersion for 24 hours sheet pieces in deionized water, pulling the test piece from the deionized water, Kimwipe etc. It is the weight after wiping off the water adhering to the surface of the test piece.
 シートの吸水率を上記範囲内とすることで、水との親和性の低いシートが得られる。すなわち、シート表面の水接触角が大きなシートが得られる。ここで、シートの吸水率を上記範囲内とするためには、例えば、シート中に含まれる微細繊維状セルロースの含有量を調整したり、シートを構成する原料の混合方法をコントロールすることなどが挙げられる。つまり、本発明は、微細繊維状セルロースと水系樹脂といった水との親和性の高い成分を主成分として構成されるシートであっても、微細繊維状セルロースの含有量を最適化し、さらに、シートを構成する原料の混合順序などをコントロールすることにより、シートとしての水親和性を低く抑制することに成功したものである。なお、シートを構成する原料の混合順序などをコントロールする場合は、後述する(シートの製造方法)の項目において説明した混合順序とすることが好ましい。 A sheet having a low affinity with water can be obtained by setting the water absorption rate of the sheet within the above range. That is, a sheet having a large water contact angle on the sheet surface can be obtained. Here, in order to make the water absorption rate of the sheet within the above range, for example, adjusting the content of fine fibrous cellulose contained in the sheet, or controlling the mixing method of the raw materials constituting the sheet, etc. Can be mentioned. That is, the present invention optimizes the content of fine fibrous cellulose, even if the sheet is composed mainly of components having a high affinity for water such as fine fibrous cellulose and water-based resin. By controlling the mixing order of the constituent materials, the water affinity as a sheet was successfully suppressed to a low level. In addition, when controlling the mixing order of the raw materials which comprise a sheet | seat, it is preferable to set it as the mixing order demonstrated in the item of the (sheet manufacturing method) mentioned later.
 シート中に含まれる微細繊維状セルロースの含有量は、アクリル系重合体100質量部に対して0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることがさらに好ましい。また、微細繊維状セルロースの含有量は、アクリル系重合体100質量部に対して19質量部以下であることが好ましく、17質量部以下であることがよリ好ましく、15質量部以下であることがさらに好ましい。アクリル系重合体100質量部に対する微細繊維状セルロースの含有量を上記範囲内とすることにより、微細繊維状セルロースと水系樹脂といった水との親和性の高い成分を主成分として含むシートであっても、その水親和性を低く抑えることができる。これにより、シートの耐水性を高めることができる。
 なお、シート中における微細繊維状セルロースの含有量を測定する際には、まず、微細繊維状セルロースを適切な方法で抽出する。例えば、樹脂のみを選択的に溶解させるような溶媒で処理することで微細繊維状セルロースを抽出し、得られる固形分が微細繊維状セルロースの質量となる。
The content of fine fibrous cellulose contained in the sheet is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, with respect to 100 parts by mass of the acrylic polymer. More preferably, it is the above. The content of fine fibrous cellulose is preferably 19 parts by mass or less, more preferably 17 parts by mass or less, and preferably 15 parts by mass or less with respect to 100 parts by mass of the acrylic polymer. Is more preferable. Even if the content of the fine fibrous cellulose with respect to 100 parts by mass of the acrylic polymer is within the above range, the sheet contains a component having a high affinity for water such as fine fibrous cellulose and water-based resin as a main component. , Its water affinity can be kept low. Thereby, the water resistance of a sheet | seat can be improved.
When measuring the content of fine fibrous cellulose in the sheet, first, the fine fibrous cellulose is extracted by an appropriate method. For example, the fine fibrous cellulose is extracted by treatment with a solvent that selectively dissolves only the resin, and the resulting solid content becomes the mass of the fine fibrous cellulose.
 シートのヘーズは、4.5%以下であることが好ましく、4.0%以下であることがより好ましく、3.0%以下であることがさらに好ましく、2.0%以下であることが一層好ましく、1.0%以下であることが特に好ましい。一方で、シートのヘーズの下限値は、とくに限定されず、たとえば0%であってもよい。ここで、シートのヘーズは、たとえばJIS K 7136に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて測定される値である。 The haze of the sheet is preferably 4.5% or less, more preferably 4.0% or less, still more preferably 3.0% or less, and even more preferably 2.0% or less. It is preferably 1.0% or less. On the other hand, the lower limit of the haze of the sheet is not particularly limited, and may be 0%, for example. Here, the haze of the sheet is a value measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with, for example, JIS K 7136.
 シートの全光線透過率は、89%以上であることが好ましく、90%以上であることがより好ましく、91%以上であることがさらに好ましい。一方で、シートの全光線透過率の上限値は、とくに限定されず、たとえば100%であってもよい。ここで、シートの全光線透過率は、たとえばJIS K 7361に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて測定される値である。 The total light transmittance of the sheet is preferably 89% or more, more preferably 90% or more, and further preferably 91% or more. On the other hand, the upper limit of the total light transmittance of the sheet is not particularly limited, and may be 100%, for example. Here, the total light transmittance of the sheet is a value measured using a haze meter (HM-150, manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with, for example, JIS K 7361.
 シートの黄色度(YI)は、0.3以下であることが好ましく、0.25以下であることがより好ましく、0.2以下であることがさらに好ましい。なお、黄色度(YI)の下限値に特に制限はなく、0.0であってもよい。なお、シートの黄色度(YI)は、JIS K 7373に準拠し、たとえばColour Cute i(スガ試験機株式会社製)を用いて測定される値である。 The yellowness (YI) of the sheet is preferably 0.3 or less, more preferably 0.25 or less, and further preferably 0.2 or less. In addition, there is no restriction | limiting in particular in the lower limit of yellowness (YI), and 0.0 may be sufficient. The yellowness (YI) of the sheet is a value measured using Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K 7373.
 シートの引張強度は、15MPa以上であることが好ましく、20MPa以上であることがより好ましく、24MPa以上であることがさらに好ましい。なお、シートの引張強度の上限は特に限定されるものではないが、例えば240MPaとすることができる。なお、シートの引張強度(単位はMPa)は、引張強さ(単位はN/m)を試験片の厚みで除すことで算出される値である。ここで、シートの引張強さは、シート(試験片)の長さを80mm、チャック間距離を50mmとした以外はJIS P 8113に準拠して測定した値である。引張強さを測定する試験機としては、例えば、引張試験機テンシロン(エー・アンド・デイ社製)を用いることができる。また、引張強さを測定する際には、23℃、相対湿度50%で24時間調湿したシートを試験片として用い、23℃、相対湿度50%の条件下で測定を行う。 The tensile strength of the sheet is preferably 15 MPa or more, more preferably 20 MPa or more, and further preferably 24 MPa or more. In addition, although the upper limit of the tensile strength of a sheet | seat is not specifically limited, For example, it can be 240 MPa. The tensile strength (unit: MPa) of the sheet is a value calculated by dividing the tensile strength (unit: N / m) by the thickness of the test piece. Here, the tensile strength of the sheet is a value measured according to JIS P 8113, except that the length of the sheet (test piece) is 80 mm and the distance between chucks is 50 mm. As a tester for measuring the tensile strength, for example, a tensile tester Tensilon (manufactured by A & D) can be used. When measuring the tensile strength, a sheet conditioned at 23 ° C. and 50% relative humidity for 24 hours is used as a test piece, and the measurement is performed under the conditions of 23 ° C. and 50% relative humidity.
 シートの引張弾性率は、1.8GPa以上であることが好ましく、2.0GPa以上であることがより好ましく、3.0GPa以上であることがさらに好ましい。なお、シートの引張弾性率の上限は特に限定されるものではないが、例えば50GPaとすることができる。なお、シートの引張弾性率は、試験片の長さを80mm、チャック間距離を50mmとした以外はJIS P 8113に準拠して測定し、SSカーブにおける正の最大の傾き値から計算した値である。引張弾性率を測定する試験機としては、例えば、引張試験機テンシロン(エー・アンド・デイ社製)を用いることができる。また、引張弾性率を測定する際には、23℃、相対湿度50%で24時間調湿したシートを試験片として用い、23℃、相対湿度50%の条件下で測定を行う。 The tensile elastic modulus of the sheet is preferably 1.8 GPa or more, more preferably 2.0 GPa or more, and further preferably 3.0 GPa or more. In addition, although the upper limit of the tensile elasticity modulus of a sheet | seat is not specifically limited, For example, it can be 50 GPa. The tensile modulus of the sheet is a value calculated from the maximum positive slope value in the SS curve, measured according to JIS P8113, except that the length of the test piece is 80 mm and the distance between chucks is 50 mm. is there. As a tester for measuring the tensile elastic modulus, for example, a tensile tester Tensilon (manufactured by A & D) can be used. When measuring the tensile modulus, a sheet conditioned for 24 hours at 23 ° C. and 50% relative humidity is used as a test piece, and measurement is performed under conditions of 23 ° C. and 50% relative humidity.
(微細繊維状セルロース)
 本発明のシートは、繊維幅が1000nm以下の繊維状セルロース(微細繊維状セルロース)を含む。繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。
(Fine fibrous cellulose)
The sheet | seat of this invention contains the fibrous cellulose (fine fibrous cellulose) whose fiber width is 1000 nm or less. The fiber width of the fibrous cellulose can be measured, for example, by observation with an electron microscope.
 繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることがとくに好ましい。繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、繊維状セルロースは、たとえば単繊維状のセルロースである。 The average fiber width of fibrous cellulose is, for example, 1000 nm or less. The average fiber width of the fibrous cellulose is, for example, preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and more preferably 2 nm or more and 10 nm or less. Particularly preferred. By making the average fiber width of fibrous cellulose 2 nm or more, it is possible to suppress dissolution in water as cellulose molecules, and to more easily express the effects of improving strength, rigidity, and dimensional stability due to fibrous cellulose. it can. The fibrous cellulose is, for example, monofilamentous cellulose.
 繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
The average fiber width of fibrous cellulose is measured as follows using, for example, an electron microscope. First, an aqueous suspension of fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a carbon film-coated grid subjected to a hydrophilization treatment, and a sample for TEM observation. And When a wide fiber is included, an SEM image of the surface cast on glass may be observed. Next, observation with an electron microscope image is performed at a magnification of 1000 times, 5000 times, 10000 times, or 50000 times depending on the width of the fiber to be observed. However, the sample, observation conditions, and magnification are adjusted to satisfy the following conditions.
(1) One straight line X is drawn at an arbitrary location in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
The width of the fiber that intersects with the straight line X and the straight line Y is visually read from the observation image that satisfies the above conditions. In this way, at least three sets of observation images of surface portions that do not overlap each other are obtained. Next, for each image, the width of the fiber intersecting the straight line X and the straight line Y is read. Thereby, at least 20 fibers × 2 × 3 = 120 fiber widths are read. And let the average value of the read fiber width be an average fiber width of fibrous cellulose.
 繊維状セルロースの繊維長は、とくに限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。 The fiber length of the fibrous cellulose is not particularly limited, but is preferably 0.1 μm or more and 1000 μm or less, more preferably 0.1 μm or more and 800 μm or less, and further preferably 0.1 μm or more and 600 μm or less. preferable. By setting the fiber length within the above range, the destruction of the crystalline region of fibrous cellulose can be suppressed. Moreover, it becomes possible to make the slurry viscosity of fibrous cellulose into an appropriate range. In addition, the fiber length of fibrous cellulose can be calculated | required by the image analysis by TEM, SEM, and AFM, for example.
 繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。 The fibrous cellulose preferably has an I-type crystal structure. Here, it can be identified in a diffraction profile obtained from a wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418Å) monochromatized with graphite that the fibrous cellulose has an I-type crystal structure. Specifically, it can be identified by having typical peaks at two positions of 2θ = 14 ° to 17 ° and 2θ = 22 ° to 23 °.
 微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。 The proportion of the type I crystal structure in the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. Thereby, further superior performance can be expected in terms of heat resistance and low coefficient of thermal expansion. The degree of crystallinity is obtained by measuring an X-ray diffraction profile and determining the crystallinity by a conventional method (Seagal et al., Textile Research Journal, 29, 786, 1959).
 繊維状セルロースの軸比(繊維長/繊維幅)は、とくに限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。 The axial ratio (fiber length / fiber width) of fibrous cellulose is not particularly limited, but is preferably 20 or more and 10,000 or less, and more preferably 50 or more and 1,000 or less. By setting the axial ratio to be equal to or more than the above lower limit value, it is easy to form a sheet containing fine fibrous cellulose. By setting the axial ratio to be equal to or less than the above upper limit value, for example, when handling fibrous cellulose as an aqueous dispersion, it is preferable in terms of easy handling such as dilution.
 本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。とくに、結晶領域と非結晶領域をともに有し、かつ軸比が高い微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。 The fibrous cellulose in this embodiment has, for example, both a crystalline region and an amorphous region. In particular, a fine fibrous cellulose having both a crystalline region and an amorphous region and having a high axial ratio is realized by a method for producing fine fibrous cellulose described later.
 本実施形態における繊維状セルロースは、たとえばイオン性置換基および非イオン性置換基のうちの少なくとも一種を有する。分散媒中における繊維の分散性を向上させ、解繊処理における解繊効率を高める観点からは、繊維状セルロースがイオン性置換基を有することがより好ましい。イオン性置換基としては、たとえばアニオン基およびカチオン基のいずれか一方または双方を含むことができる。また、非イオン性置換基としては、たとえばアルキル基およびアシル基などを含むことができる。本実施形態においては、イオン性置換基としてアニオン基を有することがとくに好ましい。なお、繊維状セルロースには、イオン性置換基を導入する処理が行われていなくてもよい。 The fibrous cellulose in the present embodiment has, for example, at least one of an ionic substituent and a nonionic substituent. From the viewpoint of improving the dispersibility of the fibers in the dispersion medium and increasing the defibrating efficiency in the defibrating treatment, it is more preferable that the fibrous cellulose has an ionic substituent. As an ionic substituent, any one or both of an anionic group and a cationic group can be included, for example. Moreover, as a nonionic substituent, an alkyl group, an acyl group, etc. can be included, for example. In this embodiment, it is particularly preferable to have an anionic group as the ionic substituent. In addition, the process which introduce | transduces an ionic substituent does not need to be performed to fibrous cellulose.
 イオン性置換基としてのアニオン基としては、たとえばリン酸基またはリン酸基に由来する置換基(単にリン酸基ということもある)、カルボキシル基またはカルボキシル基に由来する置換基(単にカルボキシル基ということもある)、およびスルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リン酸基およびカルボキシル基から選択される少なくとも1種であることがより好ましく、リン酸基であることがとくに好ましい。 Examples of the anionic group as the ionic substituent include a phosphate group or a substituent derived from a phosphate group (sometimes simply referred to as a phosphate group), a carboxyl group or a substituent derived from a carboxyl group (simply referred to as a carboxyl group). And at least one selected from a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), and at least one selected from a phosphate group and a carboxyl group A seed is more preferable, and a phosphate group is particularly preferable.
 リン酸基は、たとえばリン酸からヒドロキシル基を取り除いたものにあたる、2価の官能基である。具体的には-PO32で表される基である。リン酸基に由来する置換基には、リン酸基の塩、リン酸エステル基などの置換基が含まれる。なお、リン酸基に由来する置換基は、リン酸基が縮合した基(たとえばピロリン酸基)として繊維状セルロースに含まれていてもよい。
 リン酸基又はリン酸基に由来する置換基は、たとえば下記式(1)で表される置換基である。
The phosphoric acid group is a divalent functional group corresponding to, for example, phosphoric acid obtained by removing a hydroxyl group. Specifically, it is a group represented by —PO 3 H 2 . Substituents derived from phosphate groups include substituents such as phosphate group salts and phosphate ester groups. In addition, the substituent derived from the phosphate group may be contained in the fibrous cellulose as a group (for example, pyrophosphate group) in which the phosphate group is condensed.
The substituent derived from a phosphoric acid group or a phosphoric acid group is, for example, a substituent represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、b及びnは自然数である(ただし、a=b×mである)。α1,α2,・・・,αn及びα’のうちa個がO-であり、残りはR,ORのいずれかである。なお、各αn及びα’の全てがO-であっても構わない。Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。 In the formula (1), a, b and n are natural numbers (where a = b × m). Of α 1 , α 2 ,..., α n and α ′, a is O and the rest is either R or OR. Note that all αn and α ′ may be O . R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched hydrocarbon group, respectively. A hydrogen group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or a derivative thereof.
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。 Examples of the saturated-linear hydrocarbon group include, but are not limited to, a methyl group, an ethyl group, an n-propyl group, or an n-butyl group. Examples of the saturated-branched hydrocarbon group include i-propyl group and t-butyl group, but are not particularly limited. Examples of the saturated-cyclic hydrocarbon group include a cyclopentyl group and a cyclohexyl group, but are not particularly limited. Examples of the unsaturated-linear hydrocarbon group include a vinyl group and an allyl group, but are not particularly limited. Examples of the unsaturated-branched hydrocarbon group include i-propenyl group and 3-butenyl group, but are not particularly limited. Examples of the unsaturated-cyclic hydrocarbon group include a cyclopentenyl group and a cyclohexenyl group, but are not particularly limited. Examples of the aromatic group include, but are not limited to, a phenyl group or a naphthyl group.
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシル基、ヒドロキシル基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リン酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。 In addition, the derivative group in R is a functional group in which at least one of functional groups such as a carboxyl group, a hydroxyl group, or an amino group is added or substituted to the main chain or side chain of the above-mentioned various hydrocarbon groups. Although group is mentioned, it is not specifically limited. Further, the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R in the above range, the molecular weight of the phosphate group can be set in an appropriate range, and the penetration into the fiber raw material is facilitated, and the yield of fine cellulose fibers is increased. You can also
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of the monovalent or higher cation made of an organic substance include aliphatic ammonium or aromatic ammonium. Examples of the monovalent or higher cation made of an inorganic substance include ions of alkali metals such as sodium, potassium, or lithium, Examples include, but are not particularly limited to, a cation of a divalent metal such as calcium or magnesium, or a hydrogen ion. These can be applied alone or in combination of two or more. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably a sodium ion or potassium ion which is not easily yellowed when heated to a fiber raw material containing β and is industrially useful, but is not particularly limited.
 繊維状セルロースに対するイオン性置換基の導入量は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維状セルロースに対するイオン性置換基の導入量は、たとえば繊維状セルロース1g(質量)あたり3.65mmol/g以下であることが好ましく、3.50mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。イオン性置換基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、繊維状セルロースの安定性を高めることが可能となる。
 ここで、単位mmol/gは、アニオン性基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量を示す。
The amount of ionic substituent introduced into the fibrous cellulose is, for example, preferably 0.10 mmol / g or more per 1 g (mass) of fibrous cellulose, more preferably 0.20 mmol / g or more, and 0.50 mmol. / G or more is more preferable, and 1.00 mmol / g or more is particularly preferable. The amount of ionic substituents introduced into the fibrous cellulose is, for example, preferably 3.65 mmol / g or less, more preferably 3.50 mmol / g or less per 1 g (mass) of fibrous cellulose. More preferably, it is 0.000 mmol / g or less. By making the introduction amount of the ionic substituent within the above range, the fiber raw material can be easily refined and the stability of the fibrous cellulose can be enhanced.
Here, unit mmol / g shows the amount of substituents per 1 g of fibrous cellulose when the counter ion of the anionic group is hydrogen ion (H + ).
 繊維状セルロースに対するアニオン性基の導入量は、たとえば伝導度滴定法により測定することができる。伝導度滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながら伝導度の変化を求めることにより、導入量を測定する。 The amount of the anionic group introduced into the fibrous cellulose can be measured by, for example, a conductivity titration method. In the measurement by the conductivity titration method, the introduction amount is measured by obtaining a change in conductivity while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.
 図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するリン酸基の導入量は、たとえば次のように測定される。まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図1に示すような滴定曲線を得る。図1に示すように、最初は急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。さらにその後、伝導度の増分が増加する(以下、「第3領域」という)。なお、第2領域と第3領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。このように、滴定曲線には、3つの領域が現れる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致する。このため、単にリン酸基導入量(またはリン酸基量)または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。したがって、上記で得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象スラリー中の固形分(g)で除して得られる値が、リン酸基導入量(mmol/g)となる。 FIG. 1 is a graph showing the relationship between the amount of NaOH dropped and electrical conductivity for fibrous cellulose having a phosphate group. The amount of phosphate groups introduced into the fibrous cellulose is measured, for example, as follows. First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. In addition, you may implement the fibrillation process similar to the fibrillation process mentioned later with respect to a measuring object before the process by strong acidic ion exchange resin as needed. Next, a change in electrical conductivity is observed while adding an aqueous sodium hydroxide solution to obtain a titration curve as shown in FIG. As shown in FIG. 1, at first, the electric conductivity suddenly decreases (hereinafter referred to as “first region”). Thereafter, the conductivity starts to increase slightly (hereinafter referred to as “second region”). Thereafter, the conductivity increment increases (hereinafter referred to as “third region”). Note that the boundary point between the second region and the third region is defined as a point at which the amount of change in the twice differential value of conductivity, that is, the increment (inclination) of the conductivity is maximized. Thus, three regions appear in the titration curve. Of these, the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration, and the amount of alkali required in the second region is the amount of weakly acidic groups in the slurry used for titration. Will be equal. When the phosphoric acid group undergoes condensation, apparently weakly acidic groups are lost, and the amount of alkali required in the second region is reduced compared to the amount of alkali required in the first region. On the other hand, the amount of strongly acidic groups coincides with the amount of phosphorus atoms regardless of the presence or absence of condensation. Therefore, simply referring to the phosphate group introduction amount (or phosphate group amount) or the substituent introduction amount (or substituent amount) represents a strongly acidic group amount. Therefore, the value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the titration target slurry is the phosphate group introduction amount (mmol / g).
 図2は、カルボキシル基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するカルボキシル基の導入量は、たとえば次のように測定される。まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図2に示すような滴定曲線を得る。滴定曲線は、図2に示すように、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでの第1領域と、その後に伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除して得られる値が、カルボキシル基の導入量(mmol/g)となる。 FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the electrical conductivity with respect to fibrous cellulose having a carboxyl group. The amount of carboxyl groups introduced into the fibrous cellulose is measured, for example, as follows. First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. In addition, you may implement the fibrillation process similar to the fibrillation process mentioned later with respect to a measuring object before the process by strong acidic ion exchange resin as needed. Next, a change in electrical conductivity is observed while adding an aqueous sodium hydroxide solution to obtain a titration curve as shown in FIG. As shown in FIG. 2, in the titration curve, after the electrical conductivity decreases, the first region until the conductivity increment (slope) becomes substantially constant, and then the conductivity increment (slope) increases. Divided into second regions. Note that the boundary point between the first region and the second region is defined as the point at which the amount of change in conductivity twice, that is, the increase (inclination) in conductivity is maximized. The value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve by the solid content (g) in the fine fibrous cellulose-containing slurry to be titrated is the amount of carboxyl group introduced ( mmol / g).
 なお、上述のカルボキシル基導入量(mmol/g)は、カルボキシル基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量(以降、カルボキシル基量(酸型)と呼ぶ)を示している。一方で、カルボキシル基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシル基量(以降、カルボキシル基量(C型))を求めることができる。
すなわち、下記計算式によってカルボキシル基導入量を算出する。
カルボキシル基導入量(C型)=カルボキシル基量(酸型)/{1+(W-1)×(カルボキシル基量(酸型))/1000}
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
The amount of carboxyl group introduced (mmol / g) is the amount of substituent per 1 g of fibrous cellulose when the counter ion of the carboxyl group is hydrogen ion (H + ) (hereinafter, the amount of carboxyl group (acid Type)). On the other hand, when the cation C is substituted with an arbitrary cation C so that the counter ion of the carboxyl group has a charge equivalent, the denominator is converted to the mass of fibrous cellulose when the cation C is the counter ion. Thus, the amount of carboxyl groups (hereinafter, the amount of carboxyl groups (C type)) possessed by the fibrous cellulose whose cation C is a counter ion can be determined.
That is, the carboxyl group introduction amount is calculated by the following formula.
Amount of carboxyl group introduced (C type) = Amount of carboxyl group (acid type) / {1+ (W−1) × (Amount of carboxyl group (acid type)) / 1000}
W: Formula weight per cation C (for example, Na is 23, Al is 9)
<微細繊維状セルロースの製造工程>
<繊維原料>
 微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
 上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。
<Production process of fine fibrous cellulose>
<Fiber raw material>
The fine fibrous cellulose is produced from a fiber raw material containing cellulose. Although it does not specifically limit as a fiber raw material containing a cellulose, It is preferable to use a pulp from the point of being easy to acquire and cheap. Examples of the pulp include wood pulp, non-wood pulp, and deinked pulp. Although it does not specifically limit as wood pulp, For example, hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolution pulp (DP), soda pulp (AP), unbleached kraft pulp (UKP) ) And oxygen bleached kraft pulp (OKP) and other chemical pulp, semichemical pulp (SCP) and semi-chemical pulp such as Chemigroundwood pulp (CGP), groundwood pulp (GP) and thermomechanical pulp (TMP, BCTMP) and the like Examples thereof include mechanical pulp. The non-wood pulp is not particularly limited, and examples thereof include cotton-based pulp such as cotton linter and cotton lint, and non-wood-based pulp such as hemp, straw and bagasse. Although it does not specifically limit as a deinking pulp, For example, the deinking pulp which uses a waste paper as a raw material is mentioned. The pulp of this embodiment may be used alone or in combination of two or more.
Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of easy availability. In addition, among wood pulps, it is possible to obtain a fine fiber cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose at the time of defibrating treatment, and a long fiber fine fibrous cellulose having a small degradation of cellulose in the pulp and a large axial ratio. From the viewpoint, for example, chemical pulp is more preferable, and kraft pulp and sulfite pulp are more preferable.
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。 As the fiber raw material containing cellulose, for example, cellulose contained in ascidians or bacterial cellulose produced by acetic acid bacteria can be used. Moreover, it can replace with the fiber raw material containing cellulose, and the fiber which linear nitrogen-containing polysaccharide polymer | macromolecules, such as chitin and chitosan form, can also be used.
<リン酸基導入工程>
 微細繊維状セルロースがリン酸基を有する場合、微細繊維状セルロースの製造工程は、リン酸基導入工程を含む。リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リン酸基導入繊維が得られることとなる。
<Phosphate group introduction process>
When the fine fibrous cellulose has a phosphate group, the production process of the fine fibrous cellulose includes a phosphate group introduction step. In the phosphoric acid group introduction step, at least one compound selected from compounds capable of introducing a phosphate group by reacting with a hydroxyl group of a fiber raw material containing cellulose (hereinafter also referred to as “compound A”) is converted into cellulose. It is the process made to act on the fiber raw material containing. By this step, a phosphate group-introduced fiber is obtained.
 本実施形態に係るリン酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。 In the phosphate group introduction step according to this embodiment, the reaction between the fiber raw material containing cellulose and compound A is performed in the presence of at least one selected from urea and its derivatives (hereinafter also referred to as “compound B”). May be. On the other hand, in the state where compound B does not exist, the fiber raw material containing cellulose and compound A may be reacted.
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、とくに限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、とくに限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。 An example of a method for causing compound A to act on the fiber raw material in the presence of compound B includes a method of mixing compound A and compound B with a dry, wet or slurry fiber raw material. Among these, since the uniformity of the reaction is high, it is preferable to use a fiber raw material in a dry state or a wet state. Although the form of a fiber raw material is not specifically limited, For example, it is preferable that it is a cotton form or a thin sheet form. The compound A and the compound B may be added to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or heated to a melting point or higher and melted. Among these, since the uniformity of the reaction is high, it is preferable to add in the form of a solution dissolved in a solvent, particularly in the form of an aqueous solution. Compound A and Compound B may be added simultaneously to the fiber raw material, may be added separately, or may be added as a mixture. The method for adding compound A and compound B is not particularly limited, but when compound A and compound B are in solution, they may be taken out after dipping the fiber raw material in the solution and absorbing the fiber raw material. The solution may be added dropwise. In addition, a necessary amount of Compound A and Compound B may be added to the fiber raw material, or after adding an excessive amount of Compound A and Compound B to the fiber raw material, respectively, excess compound A and Compound B may be added by pressing or filtration. It may be removed.
 本実施態様で使用する化合物Aとしては、リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが、特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、脱水縮合リン酸塩としては、リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、またはリン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、またはリン酸二水素アンモニウムがより好ましい。 Examples of the compound A used in this embodiment include phosphoric acid or a salt thereof, dehydrated condensed phosphoric acid or a salt thereof, and anhydrous phosphoric acid (phosphorus pentoxide), but are not particularly limited. As phosphoric acid, those of various purity can be used, for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used. Dehydrated condensed phosphoric acid is obtained by condensing two or more molecules of phosphoric acid by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid. Examples of the phosphate and dehydrated condensed phosphate include phosphoric acid or lithium salt of dehydrated condensed phosphoric acid, sodium salt, potassium salt, ammonium salt, and the like, and these can have various degrees of neutralization. Among these, phosphoric acid and phosphoric acid are introduced efficiently from the viewpoint that the introduction efficiency of phosphate groups is high, the fibrillation efficiency is easily improved in the fibrillation process described later, the cost is low, and the industrial application is easy. Sodium salt, potassium salt of phosphoric acid, or ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, or ammonium dihydrogen phosphate is more preferable.
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。 The amount of compound A added to the fiber raw material is not particularly limited. For example, when the amount of compound A added is converted to phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less. By making the addition amount of the phosphorus atom with respect to the fiber raw material within the above range, the yield of the fine fibrous cellulose can be further improved. On the other hand, when the amount of phosphorus atoms added to the fiber raw material is set to the upper limit value or less, the effect of improving the yield and the cost can be balanced.
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
Compound B used in this embodiment is at least one selected from urea and derivatives thereof as described above. Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, and 1-ethylurea.
From the viewpoint of improving the uniformity of the reaction, the compound B is preferably used as an aqueous solution. From the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
 繊維原料(絶乾質量)に対する化合物Bの添加量は、とくに限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。 The amount of compound B added to the fiber raw material (absolute dry mass) is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100 mass% or more and 350 mass% or less.
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 In the reaction of the fiber raw material containing cellulose and Compound A, in addition to Compound B, for example, amides or amines may be included in the reaction system. Examples of amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Among these, triethylamine is known to work as a good reaction catalyst.
 リン酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リン酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば攪拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置を用いることができる。 In the phosphate group introduction step, it is preferable to add or mix compound A or the like to the fiber raw material and then heat-treat the fiber raw material. As the heat treatment temperature, it is preferable to select a temperature at which a phosphate group can be efficiently introduced while suppressing thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower. In addition, equipment having various heat media can be used for the heat treatment. For example, a stirring and drying apparatus, a rotary drying apparatus, a disk drying apparatus, a roll type heating apparatus, a plate type heating apparatus, a fluidized bed drying apparatus, an air flow A drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, or a microwave heating device can be used.
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は攪拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。 In the heat treatment according to this embodiment, for example, compound A is added to a thin sheet-like fiber raw material by a method such as impregnation, and then heated while heating or kneading or stirring the fiber raw material and compound A with a kneader or the like. The method to do can be adopted. Thereby, it becomes possible to suppress the concentration unevenness of the compound A in the fiber raw material and introduce the phosphate group more uniformly onto the surface of the cellulose fiber contained in the fiber raw material. This is because when the water molecules move to the fiber raw material surface with drying, the dissolved compound A is attracted to the water molecules by the surface tension and similarly moves to the fiber raw material surface (that is, the concentration unevenness of the compound A is reduced). This can be attributed to the fact that it can be suppressed.
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。 In addition, the heating device used for the heat treatment, for example, always retains the moisture retained by the slurry and the moisture generated in the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the apparatus can be discharged out of the apparatus system. As such a heating device, for example, a blower type oven or the like can be cited. In addition to being able to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of phosphate esterification, by constantly discharging the water in the apparatus system, it is also possible to suppress the acid hydrolysis of sugar chains in the fiber. it can. For this reason, it becomes possible to obtain fine fibrous cellulose having a high axial ratio.
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リン酸基の導入量を好ましい範囲内とすることができる。 The time for the heat treatment is, for example, preferably from 1 second to 300 minutes after moisture is substantially removed from the fiber raw material, more preferably from 1 second to 1000 seconds, and more preferably from 10 seconds to 800 seconds. More preferably. In the present embodiment, the introduction amount of phosphate groups can be within a preferable range by setting the heating temperature and the heating time within an appropriate range.
 リン酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリン酸基導入工程を行うことにより、繊維原料に対して多くのリン酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リン酸基導入工程を2回行う場合が挙げられる。 The phosphate group introduction step may be performed at least once, but can be repeated twice or more. By performing the phosphate group introduction step twice or more, many phosphate groups can be introduced into the fiber raw material. In this embodiment, the case where a phosphate group introduction | transduction process is performed twice as an example of a preferable aspect is mentioned.
 繊維原料に対するリン酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維原料に対するリン酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。 The amount of phosphate groups introduced into the fiber raw material is, for example, preferably 0.10 mmol / g or more per 1 g (mass) of fine fibrous cellulose, more preferably 0.20 mmol / g or more, and 0.50 mmol / It is more preferable that it is g or more, and it is especially preferable that it is 1.00 mmol / g or more. The amount of phosphate groups introduced into the fiber raw material is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less per 1 g (mass) of fine fibrous cellulose. More preferably, it is 00 mmol / g or less. By making the introduction amount of the phosphoric acid group within the above range, the fiber raw material can be easily refined, and the stability of the fine fibrous cellulose can be enhanced.
<カルボキシル基導入工程>
 微細繊維状セルロースがカルボキシル基を有する場合、微細繊維状セルロースの製造工程は、カルボキシル基導入工程を含む。カルボキシル基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
<Carboxyl group introduction step>
When the fine fibrous cellulose has a carboxyl group, the production process of the fine fibrous cellulose includes a carboxyl group introduction step. The carboxyl group introduction step has a compound or derivative thereof having a carboxylic acid-derived group or a carboxylic acid-derived group, or an oxidation treatment such as ozone oxidation, Fenton method oxidation, TEMPO oxidation treatment, or the like, on a fiber raw material containing cellulose. It is carried out by treatment with an acid anhydride of a compound or a derivative thereof.
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシル基を有する化合物の酸無水物のイミド化物、カルボキシル基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシル基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。 The compound having a carboxylic acid-derived group is not particularly limited, and examples thereof include dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, citric acid, aconitic acid, and the like. A tricarboxylic acid compound is mentioned. The derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an acid anhydride imidized compound having a carboxyl group and an acid anhydride derivative of a compound having a carboxyl group. The acid anhydride imidized compound of the compound having a carboxyl group is not particularly limited, and examples thereof include imidized compounds of dicarboxylic acid compounds such as maleimide, succinimide, and phthalimide.
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシル基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。 The acid anhydride of the compound having a carboxylic acid-derived group is not particularly limited. An acid anhydride is mentioned. In addition, the acid anhydride derivative of the compound having a carboxylic acid-derived group is not particularly limited, but examples of the compound having a carboxyl group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, and diphenylmaleic acid anhydride An acid anhydride in which at least a part of hydrogen atoms is substituted with a substituent such as an alkyl group or a phenyl group is exemplified.
 カルボキシル基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシル基まで酸化することができる。 In the carboxyl group introduction step, when TEMPO oxidation treatment is performed, for example, the treatment is preferably performed under a condition where the pH is 6 or more and 8 or less. Such treatment is also referred to as neutral TEMPO oxidation treatment. Neutral TEMPO oxidation treatment includes, for example, sodium phosphate buffer (pH = 6.8), pulp as a fiber raw material, and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a catalyst. This can be done by adding a nitroxy radical and sodium hypochlorite as a sacrificial reagent. Furthermore, by allowing sodium chlorite to coexist, the aldehyde generated during the oxidation process can be efficiently oxidized to the carboxyl group.
 また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。 Further, the TEMPO oxidation treatment may be performed under the condition that the pH is 10 or more and 11 or less. Such a treatment is also called an alkali TEMPO oxidation treatment. Alkaline TEMPO oxidation treatment can be performed, for example, by adding nitroxy radicals such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. .
 繊維原料に対するカルボキシル基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシル基を導入する場合、微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、0.90mmol/g以上であることがとくに好ましい。また、2.5mmol/g以下であることが好ましく、2.20mmol/g以下であることがより好ましく、2.00mmol/g以下であることがさらに好ましい。その他、置換基がカルボキシメチル基である場合、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。 The amount of carboxyl group introduced into the fiber raw material varies depending on the type of substituent, but when introducing a carboxyl group by TEMPO oxidation, for example, it is preferably 0.10 mmol / g or more per 1 g (mass) of fine fibrous cellulose. 0.20 mmol / g or more is more preferable, 0.50 mmol / g or more is further preferable, and 0.90 mmol / g or more is particularly preferable. Moreover, it is preferable that it is 2.5 mmol / g or less, It is more preferable that it is 2.20 mmol / g or less, It is further more preferable that it is 2.00 mmol / g or less. In addition, when a substituent is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of fine fibrous cellulose.
<洗浄工程>
 本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてリン酸基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶剤によりリン酸基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。
<Washing process>
In the manufacturing method of the fine fibrous cellulose in this embodiment, a washing | cleaning process can be performed with respect to a phosphate group introduction | transduction fiber as needed. The washing step is performed, for example, by washing the phosphate group-introduced fiber with water or an organic solvent. In addition, the cleaning process may be performed after each process described later, and the number of times of cleaning performed in each cleaning process is not particularly limited.
<アルカリ処理工程>
 微細繊維状セルロースを製造する場合、アニオン性基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、リン酸基導入繊維を浸漬する方法が挙げられる。
<Alkali treatment process>
When manufacturing a fine fibrous cellulose, you may perform an alkali treatment with respect to a fiber raw material between an anionic group introduction | transduction process and the fibrillation process mentioned later. Although it does not specifically limit as a method of an alkali treatment, For example, the method of immersing a phosphate group introduction | transduction fiber in an alkaline solution is mentioned.
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶剤のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶剤などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。 The alkali compound contained in the alkali solution is not particularly limited, and may be an inorganic alkali compound or an organic alkali compound. In this embodiment, since versatility is high, it is preferable to use sodium hydroxide or potassium hydroxide as an alkali compound, for example. Moreover, the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water. The alkaline solution is preferably a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution because of its high versatility.
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるリン酸基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばリン酸基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the alkaline solution in the alkali treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, for example, and more preferably 10 ° C. or higher and 60 ° C. or lower. The immersion time of the phosphate group-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, from 5 minutes to 30 minutes, and more preferably from 10 minutes to 20 minutes. The amount of the alkali solution used in the alkali treatment is not particularly limited. For example, it is preferably 100% by mass or more and 100000% by mass or less, and 1000% by mass or more and 10000% by mass or less with respect to the absolute dry mass of the phosphate group-introduced fiber. It is more preferable that
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、リン酸基導入工程の後であってアルカリ処理工程の前に、リン酸基導入繊維を水や有機溶剤により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったリン酸基導入繊維を水や有機溶剤により洗浄することが好ましい。 In order to reduce the amount of the alkaline solution used in the alkali treatment step, the phosphate group introduction fiber may be washed with water or an organic solvent after the phosphate group introduction step and before the alkali treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the phosphate group-introduced fiber subjected to the alkali treatment with water or an organic solvent from the viewpoint of improving the handleability.
<酸処理工程>
 微細繊維状セルロースを製造する場合、アニオン性基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、リン酸基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
<Acid treatment process>
When manufacturing a fine fibrous cellulose, you may acid-treat with respect to a fiber raw material between the process of introduce | transducing an anionic group, and the fibrillation process mentioned later. For example, the phosphate group introduction step, acid treatment, alkali treatment, and defibration treatment may be performed in this order.
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。 The acid treatment method is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acid solution containing acid. Although the density | concentration of the acidic liquid to be used is not specifically limited, For example, it is preferable that it is 10 mass% or less, and it is more preferable that it is 5 mass% or less. Further, the pH of the acidic liquid to be used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less. As the acid contained in the acidic liquid, for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like. Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, and tartaric acid. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower. Although the immersion time in the acid solution in acid treatment is not specifically limited, For example, 5 minutes or more and 120 minutes or less are preferable, and 10 minutes or more and 60 minutes or less are more preferable. Although the usage-amount of the acid solution in an acid treatment is not specifically limited, For example, it is preferable that it is 100 mass% or more and 100,000 mass% or less with respect to the absolute dry mass of a fiber raw material, and it is 1000 mass% or more and 10000 mass% or less. Is more preferable.
<解繊処理>
 アニオン性基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
<Defibration processing>
Fine fibrous cellulose is obtained by defibrating the anionic group-introduced fiber in the defibrating process. In the defibrating process, for example, a defibrating apparatus can be used. The defibrating apparatus is not particularly limited, but, for example, a high-speed defibrator, a grinder (stone mill type pulverizer), a high-pressure homogenizer or an ultrahigh-pressure homogenizer, a high-pressure collision type pulverizer, a ball mill, a bead mill, a disk type refiner, a conical refiner, biaxial A kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, or a beater can be used. Among the above-described defibrating apparatuses, it is more preferable to use a high-speed defibrator, a high-pressure homogenizer, or an ultrahigh-pressure homogenizer that is less affected by the pulverizing media and has less risk of contamination.
 解繊処理工程においては、たとえばリン酸基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶剤などの有機溶剤から選択される1種または2種以上を使用することができる。極性有機溶剤としては、とくに限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。 In the defibrating process, for example, it is preferable to dilute the phosphate group-introduced fiber with a dispersion medium to form a slurry. As a dispersion medium, 1 type, or 2 or more types selected from water and organic solvents, such as a polar organic solvent, can be used. The polar organic solvent is not particularly limited, but alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents, and the like are preferable. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, and isobutyl alcohol. Examples of the polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like. Examples of ketones include acetone and methyl ethyl ketone (MEK). Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, propylene glycol monomethyl ether and the like. Examples of the esters include ethyl acetate and butyl acetate. Examples of the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
 解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、リン酸基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのリン酸基導入繊維以外の固形分が含まれていてもよい。 The solid content concentration of fine fibrous cellulose at the time of defibrating treatment can be set as appropriate. The slurry obtained by dispersing the phosphate group-introduced fibers in the dispersion medium may contain solids other than phosphate group-introduced fibers such as urea having hydrogen bonding properties.
(アクリル系重合体)
 本発明のシートは、水系樹脂としてアクリル系重合体を含む。ここで、アクリル系重合体は、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物に由来する構造と、水性アクリルポリオールに由来する構造と、を含む重合体である。言い換えれば、アクリル系重合体は、水性アクリルポリオールが、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物に由来する構造(単位)で架橋された架橋アクリル系重合体である。
(Acrylic polymer)
The sheet of the present invention contains an acrylic polymer as a water-based resin. Here, the acrylic polymer is a polymer including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound, and a structure derived from an aqueous acrylic polyol. In other words, the acrylic polymer is a crosslinked acrylic polymer in which the aqueous acrylic polyol is crosslinked with a structure (unit) derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound.
 水性アクリルポリオールは、ヒドロキシル基含有(メタ)アクリレートと、ビニル化合物を共重合成分とする重合体である。なお、本明細書において、(メタ)アクリレートというときには、アクリレートとメタクリレートの総称を意味する。また、水性アクリルポリオールは、ヒドロキシル基含有(メタ)アクリレート以外の(メタ)アクリレートに由来する構造を含んでいてもよい。ヒドロキシル基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。ヒドロキシル基含有(メタ)アクリレート以外の(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が挙げられる。 The aqueous acrylic polyol is a polymer having a hydroxyl group-containing (meth) acrylate and a vinyl compound as a copolymerization component. In the present specification, the term “(meth) acrylate” means a general term for acrylate and methacrylate. The aqueous acrylic polyol may contain a structure derived from (meth) acrylate other than hydroxyl group-containing (meth) acrylate. Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxy (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and the like. Examples of (meth) acrylates other than hydroxyl group-containing (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, cyclohexyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Is mentioned.
 ビニル化合物は、重合性のビニル基を有する化合物である。ビニル化合物としては、例えば、酢酸ビニル、塩化ビニリデン、アクリル酸-2-クロロエチル、メタクリル酸-2-クロロエチル、エチレン、プロピレン、スチレン、ビニルトルエン、α-メチルスチレン、アクリロニトリル、アクリルアミドなどを挙げることができる。 A vinyl compound is a compound having a polymerizable vinyl group. Examples of the vinyl compound include vinyl acetate, vinylidene chloride, 2-chloroethyl acrylate, 2-chloroethyl methacrylate, ethylene, propylene, styrene, vinyl toluene, α-methyl styrene, acrylonitrile, acrylamide, and the like. .
 アクリル系重合体は、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物に由来する構造を含む。ここで、上記化合物は硬化剤もしくは架橋剤である。中でも、アクリル系重合体は、イソシアネート化合物に由来する構造を含むことが好ましく、イソシアネート化合物には、イソシアネート基を2つ以上有するポリイソシアネートも含まれる。例えば、イソシアネート基は、水性アクリルポリオールのヒドロキシル基と反応することで架橋構造を形成する。 The acrylic polymer includes a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound. Here, the compound is a curing agent or a crosslinking agent. Especially, it is preferable that an acrylic polymer contains the structure derived from an isocyanate compound, and the polyisocyanate which has two or more isocyanate groups is also contained in an isocyanate compound. For example, an isocyanate group reacts with a hydroxyl group of an aqueous acrylic polyol to form a crosslinked structure.
(任意成分)
 本発明のシートは、上述したアクリル系重合体及び微細繊維状セルロースに加えて、水溶性高分子を含んでいてもよい。水溶性高分子としては、たとえばカルボキシビニルポリマー、ポリビニルアルコール、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレンオキサイド、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、およびポリアクリルアミドなどに例示される合成水溶性高分子;キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、およびペクチンなどに例示される増粘多糖類;カルボキシメチルセルロース、メチルセルロース、およびヒロドキシエチルセルロースなどに例示されるセルロース誘導体;カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、およびアミロースなどに例示されるデンプン類;グリセリン、ジグリセリン、およびポリグリセリンなどに例示されるグリセリン類;ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。
(Optional component)
The sheet of the present invention may contain a water-soluble polymer in addition to the above-described acrylic polymer and fine fibrous cellulose. Examples of water-soluble polymers include carboxyvinyl polymer, polyvinyl alcohol, alkyl methacrylate / acrylic acid copolymer, polyvinyl pyrrolidone, sodium polyacrylate, polyethylene glycol, diethylene glycol, triethylene glycol, polyethylene oxide, propylene glycol, dipropylene glycol, Synthetic water-soluble polymers exemplified by polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, and polyacrylamide; xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, pullulan , Carrageenan, and thickening polysaccharides exemplified by pectin; carboxymethylcellulose Cellulose derivatives exemplified by methyl cellulose and hydroxyethyl cellulose; starches exemplified by cationized starch, raw starch, oxidized starch, etherified starch, esterified starch and amylose; glycerin, diglycerin, and poly Examples include glycerins exemplified by glycerin and the like; hyaluronic acid, hyaluronic acid metal salts, and the like.
 また、本発明のシートは、上述したアクリル系重合体及び微細繊維状セルロースに加えて、熱可塑性樹脂、熱硬化性樹脂、又は光硬化性樹脂などの樹脂をさらに含んでもよい。樹脂としては、例えば、スチレン系樹脂、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、脂肪族ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂、非晶性フッ素系樹脂、ロジン系樹脂、ニトロセルロース、塩化ビニル系樹脂、塩化ゴム系樹脂、酢酸ビニル樹脂、フェノール樹脂、エポキシ樹脂等を挙げることができる。 The sheet of the present invention may further contain a resin such as a thermoplastic resin, a thermosetting resin, or a photocurable resin, in addition to the acrylic polymer and fine fibrous cellulose described above. Examples of the resin include styrene resin, aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic polyester resin, aliphatic polyester resin, aliphatic polyolefin resin, cyclic olefin resin, polyamide resin, and polyphenylene. Ether resin, thermoplastic polyimide resin, polyacetal resin, polysulfone resin, amorphous fluorine resin, rosin resin, nitrocellulose, vinyl chloride resin, chlorinated rubber resin, vinyl acetate resin, phenol resin, epoxy Examples thereof include resins.
 さらに、本発明のシートは、任意成分として、例えば、界面活性剤、有機イオン、カップリング剤、無機層状化合物、無機化合物、レベリング剤、防腐剤、消泡剤、有機系粒子、潤滑剤、帯電防止剤、紫外線防御剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、分散剤、架橋剤等を含んでいてもよい。本発明のシートは上記成分の一種または二種以上を含んでいてもよい。 Furthermore, the sheet of the present invention includes, as optional components, for example, surfactants, organic ions, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, preservatives, antifoaming agents, organic particles, lubricants, charging agents. An inhibitor, an ultraviolet protection agent, a dye, a pigment, a stabilizer, a magnetic powder, an alignment accelerator, a plasticizer, a dispersant, a crosslinking agent, and the like may be included. The sheet of the present invention may contain one or more of the above components.
 シート中に含まれる上記任意成分の含有量は、シートの全質量に対して、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。 The content of the optional component contained in the sheet is preferably 50% by mass or less, more preferably 40% by mass or less, and preferably 30% by mass or less with respect to the total mass of the sheet. Further preferred.
 また、本発明のシートは、任意成分として溶媒を含んでいてもよい。溶媒としては、たとえば水および有機溶媒のうちの一方または双方を挙げることができるが、溶媒は水であることが好ましい。なお、有機溶媒としては、アルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、炭化水素類、ハロゲン類、非プロトン性極性溶媒等を挙げることができる。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。炭化水素類としては、たとえばn-ヘキサン、トルエン、キシレン等が挙げられる。ハロゲン類としては、塩化メチレン、トリクロロエチレン、クロロホルム等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。 The sheet of the present invention may contain a solvent as an optional component. Examples of the solvent include one or both of water and an organic solvent, and the solvent is preferably water. Examples of the organic solvent include alcohols, polyhydric alcohols, ketones, ethers, esters, hydrocarbons, halogens, aprotic polar solvents, and the like. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, and isobutyl alcohol. Examples of the polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like. Examples of ketones include acetone and methyl ethyl ketone (MEK). Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, propylene glycol monomethyl ether and the like. Examples of the esters include ethyl acetate and butyl acetate. Examples of hydrocarbons include n-hexane, toluene, xylene and the like. Examples of halogens include methylene chloride, trichloroethylene, chloroform and the like. Examples of the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
 この場合、シート中に含まれる溶媒の含有量は、シートの全質量に対して、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。 In this case, the content of the solvent contained in the sheet is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass or less with respect to the total mass of the sheet. Is more preferable.
(シートの製造方法)
 本発明のシートの製造方法は、繊維幅が1000nm以下の繊維状セルロースと、水性アクリルポリオールと、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物と、を混合し、シート形成用組成物(以下、スラリーもしくは塗工液ともいう)を得る工程と、該シート形成用組成物を基材上に塗工する塗工工程、または該シート形成用組成物を抄紙する抄紙工程を含む。これにより、上述したシートが得られることとなる。
(Sheet manufacturing method)
In the sheet manufacturing method of the present invention, fibrous cellulose having a fiber width of 1000 nm or less, an aqueous acrylic polyol, and at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound are mixed to form a sheet. A process for obtaining a composition for a sheet (hereinafter also referred to as a slurry or a coating liquid), a coating process for coating the sheet-forming composition on a substrate, or a paper-making process for making the sheet-forming composition. Including. Thereby, the sheet | seat mentioned above will be obtained.
<シート形成用組成物を得る工程>
 シート形成用組成物を得る工程では、繊維幅が1000nm以下の繊維状セルロースを含む分散液を、必要に応じて希釈する。シート形成用組成物を得る工程では、この工程を第1工程として含むことが好ましい。この際、希釈後の分散液中に含まれる微細繊維状セルロースの含有量は、希釈後の分散液の全質量に対して、2質量%以下であることが好ましく、1質量%以下であることがより好ましい。また、希釈後の分散液中に含まれる微細繊維状セルロースの含有量は、希釈後の分散液の全質量に対して、0.001質量%以上であることが好ましい。このように、第1工程では、微細繊維状セルロースの含有量を低く抑えた分散液を作製することが好ましく、これにより、吸水率の低いシートが得られる。
<The process of obtaining the composition for sheet formation>
In the step of obtaining the sheet-forming composition, a dispersion containing fibrous cellulose having a fiber width of 1000 nm or less is diluted as necessary. In the step of obtaining the composition for forming a sheet, this step is preferably included as the first step. At this time, the content of the fine fibrous cellulose contained in the diluted dispersion is preferably 2% by mass or less, preferably 1% by mass or less, based on the total mass of the diluted dispersion. Is more preferable. Moreover, it is preferable that content of the fine fibrous cellulose contained in the diluted dispersion is 0.001% by mass or more with respect to the total mass of the diluted dispersion. Thus, in the first step, it is preferable to prepare a dispersion liquid in which the content of fine fibrous cellulose is kept low, thereby obtaining a sheet having a low water absorption rate.
 次いで、濃度調整がなされた繊維状セルロースを含む分散液に水性アクリルポリオールを混合する工程を第2工程として含むことが好ましい。この際に添加する水性アクリルポリオールは、ヒドロキシル基含有(メタ)アクリレートと、ビニル化合物を共重合成分とする重合体のエマルジョンであることが好ましい。また、第2工程では、水性アクリルポリオールのエマルジョンを複数回に分けて添加し、その都度攪拌を行うことが好ましい。本発明のシートの製造方法においては、濃度調整がなされた繊維状セルロースを含む分散液に水性アクリルポリオールを少量ずつ添加することが好ましく、これにより、吸水率の低いシートが得られやすくなる。 Next, it is preferable that the step of mixing the aqueous acrylic polyol with the dispersion containing the fibrous cellulose whose concentration is adjusted is included as the second step. The aqueous acrylic polyol added at this time is preferably a polymer emulsion containing a hydroxyl group-containing (meth) acrylate and a vinyl compound as a copolymerization component. Further, in the second step, it is preferable to add the aqueous acrylic polyol emulsion in a plurality of times and to stir each time. In the sheet manufacturing method of the present invention, it is preferable to add aqueous acrylic polyol little by little to a dispersion containing fibrous cellulose whose concentration has been adjusted, and this makes it easy to obtain a sheet having a low water absorption rate.
 第3工程として、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物を混合する。第3工程で添加するイソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物は、硬化剤もしくは架橋剤である。 In the third step, at least one compound selected from an isocyanate compound, a carbodiimide compound and an oxazoline compound is mixed. At least one compound selected from the isocyanate compound, carbodiimide compound and oxazoline compound added in the third step is a curing agent or a crosslinking agent.
 第2工程及び第3工程において各原料を添加する際には、撹拌機を用いて攪拌を行うことが好ましい。撹拌機としては、例えば、T.K.ホモディスパー(特殊機化工業製)を用いることができ、攪拌速度は、500~5000rpmとすることが好ましい。また、攪拌時間は1分~100分とすることが好ましい。 When adding each raw material in the second step and the third step, it is preferable to perform stirring using a stirrer. Examples of the stirrer include T.I. K. A homodisper (made by Tokushu Kika Kogyo Co., Ltd.) can be used, and the stirring speed is preferably 500 to 5000 rpm. The stirring time is preferably 1 to 100 minutes.
 上述したように、シート形成用組成物を得る工程では、第1工程~第3工程をこの順に含むことが好ましいが、微細繊維状セルロースを含む分散液中の微細繊維状セルロースの含有量が低い場合は、第1工程を省略して、第2工程の後に第3工程を含む態様であってもよい。なお、第1工程と第2工程の間に他の工程が含まれていてもよく、第2工程と第3工程の間に他の工程が含まれていてもよい。また、第1工程の前、及び/又は、第3工程の後に他の工程が含まれていてもよい。特に、第3工程の後には、攪拌による泡立ちを解消するために、脱泡処理工程を設けることが好ましい。 As described above, the step of obtaining the sheet-forming composition preferably includes the first to third steps in this order, but the content of fine fibrous cellulose in the dispersion containing fine fibrous cellulose is low. In some cases, the first step may be omitted, and the third step may be included after the second step. In addition, another process may be included between the first process and the second process, and another process may be included between the second process and the third process. In addition, other steps may be included before the first step and / or after the third step. In particular, after the third step, it is preferable to provide a defoaming treatment step in order to eliminate foaming due to stirring.
 上記工程を経ることでシート形成用組成物には、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物に由来する構造と、水性アクリルポリオールに由来する構造と、を含むアクリル系重合体が含まれることになる。シート形成用組成物中のアクリル系重合体の含有量は、組成物中の全固形分質量に対して、83.5質量%以上であることが好ましく、85質量%以上であることがより好ましく、87.5質量%以上であることがさらに好ましい。また、アクリル系重合体の含有量は、組成物中の全固形分質量に対して、99.95質量%以下であることが好ましく、99.9質量%以下であることがより好ましく、99.5質量%以下であることがさらに好ましい。 By passing through the above steps, the sheet-forming composition includes an acrylic system including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound, and an oxazoline compound, and a structure derived from an aqueous acrylic polyol. A polymer will be included. The content of the acrylic polymer in the sheet forming composition is preferably 83.5% by mass or more, and more preferably 85% by mass or more, based on the total solid content in the composition. 87.5% by mass or more is more preferable. Further, the content of the acrylic polymer is preferably 99.95% by mass or less, more preferably 99.9% by mass or less, based on the total solid content in the composition. More preferably, it is 5 mass% or less.
 また、シート形成用組成物中の微細繊維状セルロースの含有量は、組成物中の全固形分質量に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。また、微細繊維状セルロースの含有量は、組成物中の全固形分質量に対して、16.5質量%以下であることが好ましく、15質量%以下であることがより好ましく、12.5質量%以下であることがさらに好ましい。 Further, the content of the fine fibrous cellulose in the sheet forming composition is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more with respect to the total solid mass in the composition. It is more preferable that the content is 0.5% by mass or more. Further, the content of the fine fibrous cellulose is preferably 16.5% by mass or less, more preferably 15% by mass or less, and more preferably 12.5% by mass with respect to the total solid mass in the composition. More preferably, it is% or less.
<塗工工程>
 塗工工程では、たとえば繊維状セルロースを含むシート形成用組成物(スラリー)を基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得ることができる。また、塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。
<Coating process>
In the coating step, for example, a sheet can be obtained by coating a sheet-forming composition (slurry) containing fibrous cellulose on a substrate, and drying the formed sheet from the substrate. it can. Moreover, a sheet | seat can be continuously produced by using a coating device and a elongate base material.
 塗工工程で用いる基材の材質は、とくに限定されないが、シート形成用組成物(スラリー)に対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができて良いが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、とくに限定されない。たとえばポリプロピレン、アクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリカーボネート、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。 The material of the base material used in the coating process is not particularly limited, but the one having higher wettability with respect to the composition for forming the sheet (slurry) may be able to suppress the shrinkage of the sheet at the time of drying. It is preferable to select a sheet that can be easily peeled off later. Among them, a resin film or plate or a metal film or plate is preferable, but is not particularly limited. For example, a film or plate of a resin such as polypropylene, acrylic, polyethylene terephthalate, vinyl chloride, polystyrene, polycarbonate, or polyvinylidene chloride, a metal film or plate of aluminum, zinc, copper, or iron plate, and the surface thereof oxidized Stainless steel films and plates, brass films and plates, and the like can be used.
 塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合には、所定の厚みおよび坪量のシートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠としては、とくに限定されないが、たとえば乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板を成形したものがより好ましい。本実施形態においては、たとえばポリプロピレン板、アクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリカーボネート板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板、およびこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。
スラリーを基材に塗工する塗工機としては、とくに限定されないが、たとえばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。シートの厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターがとくに好ましい。
In the coating process, when the slurry has a low viscosity and spreads on the base material, a damming frame is fixed on the base material to obtain a sheet having a predetermined thickness and basis weight. May be. The damming frame is not particularly limited, but for example, it is preferable to select one that can easily peel off the edge of the sheet attached after drying. From such a viewpoint, a molded resin plate or metal plate is more preferable. In the present embodiment, for example, a resin plate such as a polypropylene plate, an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polycarbonate plate, or a polyvinylidene chloride plate, or a metal plate such as an aluminum plate, a zinc plate, a copper plate, or an iron plate And those obtained by oxidizing these surfaces, stainless steel plates, brass plates and the like can be used.
Although it does not specifically limit as a coating machine which coats a slurry on a base material, For example, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater etc. can be used. A die coater, a curtain coater, and a spray coater are particularly preferable because the thickness of the sheet can be made more uniform.
 スラリーを基材へ塗工する際のスラリー温度および雰囲気温度は、とくに限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることがとくに好ましい。塗工温度が上記下限値以上であれば、スラリーをより容易に塗工できる。塗工温度が上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。 The slurry temperature and the atmospheric temperature when applying the slurry to the substrate are not particularly limited, but are preferably 5 ° C. or more and 80 ° C. or less, more preferably 10 ° C. or more and 60 ° C. or less, and more preferably 15 ° C. The temperature is more preferably 50 ° C. or lower and particularly preferably 20 ° C. or higher and 40 ° C. or lower. If the coating temperature is equal to or higher than the lower limit, the slurry can be applied more easily. If coating temperature is below the said upper limit, volatilization of the dispersion medium during coating can be suppressed.
 塗工工程においては、シートの仕上がり坪量が好ましくは10g/m2以上100g/m2以下となるように、より好ましくは20g/m2以上60g/m2以下となるように、スラリーを基材に塗工することが好ましい。坪量が上記範囲内となるように塗工することで、より強度に優れたシートが得られる。 In the coating step, the slurry is used so that the finished basis weight of the sheet is preferably 10 g / m 2 or more and 100 g / m 2 or less, more preferably 20 g / m 2 or more and 60 g / m 2 or less. It is preferable to apply to the material. By coating so that the basis weight is within the above range, a sheet having higher strength can be obtained.
 塗工工程は、上述のとおり、基材上に塗工したスラリーを乾燥させる工程を含む。スラリーを乾燥させる工程は、とくに限定されないが、たとえば非接触の乾燥方法、もしくはシートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。 The coating step includes a step of drying the slurry coated on the substrate as described above. The step of drying the slurry is not particularly limited, and is performed by, for example, a non-contact drying method, a method of drying while restraining the sheet, or a combination thereof.
 非接触の乾燥方法としては、とくに限定されないが、たとえば熱風、赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、とくに限定されないが、たとえば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。 The non-contact drying method is not particularly limited. For example, a method of drying by heating with hot air, infrared rays, far infrared rays or near infrared rays (heating drying method) or a method of drying in vacuum (vacuum drying method) is applied. can do. Although the heat drying method and the vacuum drying method may be combined, the heat drying method is usually applied. Although drying by infrared rays, far-infrared rays, or near-infrared rays is not specifically limited, For example, it can carry out using an infrared device, a far-infrared device, or a near-infrared device.
 加熱乾燥法における加熱温度は、とくに限定されないが、たとえば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制および繊維状セルロースの熱による変色の抑制を実現できる。 Although the heating temperature in the heat drying method is not particularly limited, for example, it is preferably 20 ° C. or higher and 150 ° C. or lower, and more preferably 25 ° C. or higher and 105 ° C. or lower. If the heating temperature is at least the above lower limit, the dispersion medium can be volatilized quickly. Moreover, if heating temperature is below the said upper limit, the suppression of the cost required for a heating and the discoloration by the heat | fever of a fibrous cellulose are realizable.
<抄紙工程>
 抄紙工程は、抄紙機によりスラリーを抄紙することにより行われる。抄紙工程で用いられる抄紙機としては、とくに限定されないが、たとえば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。
<Paper making process>
The papermaking process is performed by making a slurry with a papermaking machine. The paper machine used in the paper making process is not particularly limited, and examples thereof include a continuous paper machine such as a long net type, a circular net type, and an inclined type, or a multi-layered paper machine combining these. In the paper making process, a known paper making method such as hand making may be employed.
 抄紙工程は、スラリーをワイヤーにより濾過、脱水して湿紙状態のシートを得た後、このシートをプレス、乾燥することにより行われる。スラリーを濾過、脱水する際に用いられる濾布としては、とくに限定されないが、たとえば繊維状セルロースは通過せず、かつ濾過速度が遅くなりすぎないものであることがより好ましい。このような濾布としては、とくに限定されないが、たとえば有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしてはとくに限定されないが、たとえばポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。本実施形態においては、たとえば孔径0.1μm以上20μm以下であるポリテトラフルオロエチレンの多孔膜や、孔径0.1μm以上20μm以下であるポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。 The paper making process is performed by filtering and dewatering the slurry with a wire to obtain a wet paper sheet, and then pressing and drying the sheet. The filter cloth used when the slurry is filtered and dehydrated is not particularly limited, but it is more preferable that, for example, fibrous cellulose does not pass through and the filtration rate does not become too slow. Such a filter cloth is not particularly limited, but for example, a sheet made of an organic polymer, a woven fabric, and a porous film are preferable. The organic polymer is not particularly limited, but non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene (PTFE) and the like are preferable. In this embodiment, for example, a porous film of polytetrafluoroethylene having a pore diameter of 0.1 μm or more and 20 μm or less, a polyethylene terephthalate or polyethylene fabric having a pore diameter of 0.1 μm or more and 20 μm or less, and the like can be mentioned.
 シート化工程において、スラリーからシートを製造する方法は、たとえば繊維状セルロースを含むスラリーを無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させてシートを生成する乾燥セクションとを備える製造装置を用いて行うことができる。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。 In the sheeting step, a method for producing a sheet from the slurry includes, for example, a squeezing section that discharges a slurry containing fibrous cellulose onto the upper surface of the endless belt and squeezes the dispersion medium from the discharged slurry to generate a web. And a drying section that dries the web to produce a sheet. An endless belt is disposed from the squeezing section to the drying section, and the web generated in the squeezing section is conveyed to the drying section while being placed on the endless belt.
 抄紙工程において用いられる脱水方法としては、とくに限定されないが、たとえば紙の製造で通常に使用している脱水方法が挙げられる。これらの中でも、長網、円網、傾斜ワイヤーなどで脱水した後、さらにロールプレスで脱水する方法が好ましい。また、抄紙工程において用いられる乾燥方法としては、とくに限定されないが、たとえば紙の製造で用いられている方法が挙げられる。これらの中でも、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどを用いた乾燥方法がより好ましい。 The dehydration method used in the papermaking process is not particularly limited, and examples thereof include a dehydration method usually used in paper production. Among these, the method of dehydrating with a roll press after dehydrating with a long net, a circular net, an inclined wire or the like is preferable. The drying method used in the paper making process is not particularly limited, and examples thereof include a method used in paper production. Among these, a drying method using a cylinder dryer, a Yankee dryer, hot air drying, a near infrared heater, an infrared heater or the like is more preferable.
(積層体)
 本発明は、基材層の少なくとも一方の面側に上述したシートを備える積層体に関するものでもある。図3は、積層体100の構造を説明する断面図である。図3に示されるように、積層体100は基材層20上に積層されたシート10を有する。ここで、基材層20とシート10の間には他の層が設けられていてもよいが、シート10は基材層20上に直接接するように積層されていることが好ましい。なお、図3には、基材層20の片面にシート10が形成されてなる積層体100を図示しているが、本発明の積層体は、基材層の両面にシートが形成されてなる積層体であってもよく、シートの両面に基材層を備える積層体であってもよく、基材層とシートをそれぞれ2層以上含む積層体であってもよい。
(Laminate)
The present invention also relates to a laminate including the above-described sheet on at least one surface side of the base material layer. FIG. 3 is a cross-sectional view illustrating the structure of the stacked body 100. As shown in FIG. 3, the laminate 100 has a sheet 10 laminated on a base material layer 20. Here, although other layers may be provided between the base material layer 20 and the sheet 10, the sheet 10 is preferably laminated so as to be in direct contact with the base material layer 20. FIG. 3 illustrates a laminate 100 in which the sheet 10 is formed on one side of the base material layer 20, but the laminate of the present invention has a sheet formed on both sides of the base material layer. A laminated body may be sufficient, the laminated body provided with a base material layer on both surfaces of a sheet | seat may be sufficient, and the laminated body which contains two or more layers of a base material layer and a sheet | seat respectively may be sufficient.
 基材層としては、樹脂層や無機層を挙げることができる。また、基材層は微細繊維状セルロース及び水溶性高分子から選択される少なくとも1種を含む層であることも好ましい。基材層が微細繊維状セルロースを含む層である場合は、微細繊維状セルロースの含有量は0.5質量%以上95質量%以下であることが好ましい。 Examples of the base material layer include a resin layer and an inorganic layer. The base material layer is also preferably a layer containing at least one selected from fine fibrous cellulose and a water-soluble polymer. When the base material layer is a layer containing fine fibrous cellulose, the content of fine fibrous cellulose is preferably 0.5% by mass or more and 95% by mass or less.
 上述したシートと基材層の間には、接着層が設けられていてもよく、また接着層が設けられておらず、シートと基材層が直接密着をしていてもよい。シートと基材層の間に接着層が設けられる場合は、接着層を構成する接着剤として、例えば、アクリル系樹脂を挙げることができる。また、アクリル系樹脂以外の接着剤としては、例えば、塩化ビニル樹脂、(メタ)アクリル酸エステル樹脂、スチレン/アクリル酸エステル共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル/(メタ)アクリル酸エステル共重合体樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、エチレン/酢酸ビニル共重合体樹脂、ポリエステル系樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合体樹脂や、SBR、NBR等のゴム系エマルジョンなどが挙げられる。 An adhesive layer may be provided between the above-described sheet and the base material layer, or no adhesive layer may be provided, and the sheet and the base material layer may be in direct contact with each other. In the case where an adhesive layer is provided between the sheet and the base material layer, for example, an acrylic resin can be used as an adhesive constituting the adhesive layer. Examples of adhesives other than acrylic resins include vinyl chloride resin, (meth) acrylate resin, styrene / acrylate copolymer resin, vinyl acetate resin, vinyl acetate / (meth) acrylate ester. Examples include polymer resins, urethane resins, silicone resins, epoxy resins, ethylene / vinyl acetate copolymer resins, polyester resins, polyvinyl alcohol resins, ethylene vinyl alcohol copolymer resins, and rubber emulsions such as SBR and NBR. It is done.
 基材層の厚みは、特に限定されるものではないが、5μm以上であることが好ましく、10μm以上であることがより好ましい。また、基材層の厚みは10000μm以下であることが好ましく、1000μm以下であることがより好ましい。 The thickness of the base material layer is not particularly limited, but is preferably 5 μm or more, and more preferably 10 μm or more. Moreover, it is preferable that the thickness of a base material layer is 10,000 micrometers or less, and it is more preferable that it is 1000 micrometers or less.
 なお、基材層が、樹脂層や無機層である場合、樹脂層や無機層としては、例えば、以下に挙げる層であってもよい。 In addition, when a base material layer is a resin layer or an inorganic layer, as a resin layer or an inorganic layer, the layer mentioned below may be sufficient, for example.
<樹脂層>
 樹脂層は、天然樹脂や合成樹脂を主成分とする層である。ここで、主成分とは、樹脂層の全質量に対して、50質量%以上含まれている成分を指す。樹脂の含有量は、樹脂層の全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。なお、樹脂の含有量は、100質量%とすることもでき、95質量%以下であってもよい。
<Resin layer>
The resin layer is a layer mainly composed of natural resin or synthetic resin. Here, a main component refers to the component contained 50 mass% or more with respect to the total mass of a resin layer. The content of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass with respect to the total mass of the resin layer. The above is particularly preferable. In addition, content of resin can also be 100 mass%, and may be 95 mass% or less.
 天然樹脂としては、例えば、ロジン、ロジンエステル、水添ロジンエステル等のロジン系樹脂を挙げることができる。 Examples of natural resins include rosin resins such as rosin, rosin ester, and hydrogenated rosin ester.
 合成樹脂としては、例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリウレタン樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましい。中でも、合成樹脂はポリカーボネート樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましく、ポリカーボネート樹脂であることがより好ましい。なお、アクリル樹脂は、ポリアクリロニトリル及びポリ(メタ)アクリレートから選択される少なくともいずれか1種であることが好ましい。 The synthetic resin is preferably at least one selected from, for example, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, polyurethane resin, and acrylic resin. Among these, the synthetic resin is preferably at least one selected from polycarbonate resin and acrylic resin, and more preferably polycarbonate resin. The acrylic resin is preferably at least one selected from polyacrylonitrile and poly (meth) acrylate.
 樹脂層を構成するポリカーボネート樹脂としては、例えば、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂が挙げられる。これらの具体的なポリカーボネート系樹脂は公知であり、例えば特開2010-023275号公報に記載されたポリカーボネート系樹脂が挙げられる。 Examples of the polycarbonate resin constituting the resin layer include an aromatic polycarbonate resin and an aliphatic polycarbonate resin. These specific polycarbonate resins are known and include, for example, the polycarbonate resins described in JP 2010-023275 A.
 樹脂層を構成する樹脂は1種を単独で用いてもよく、複数の樹脂成分が共重合又は、グラフト重合してなる共重合体を用いてもよい。また、複数の樹脂成分を物理的なプロセスで混合したブレンド材料として用いてもよい。 As the resin constituting the resin layer, one kind may be used alone, or a copolymer obtained by copolymerization or graft polymerization of a plurality of resin components may be used. Moreover, you may use as a blend material which mixed the some resin component with the physical process.
 シートと樹脂層の間には、接着層が設けられていてもよく、また接着層が設けられておらず、シートと樹脂層が直接密着をしていてもよい。シートと樹脂層の間に接着層が設けられる場合は、接着層を構成する接着剤として、例えば、アクリル樹脂を挙げることができる。また、アクリル樹脂以外の接着剤としては、例えば、塩化ビニル樹脂、(メタ)アクリル酸エステル樹脂、スチレン/アクリル酸エステル共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル/(メタ)アクリル酸エステル共重合体樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、エチレン/酢酸ビニル共重合体樹脂、ポリエステル系樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合体樹脂や、SBR、NBR等のゴム系エマルジョンなどが挙げられる。 The adhesive layer may be provided between the sheet and the resin layer, or the adhesive layer may not be provided, and the sheet and the resin layer may be in direct contact with each other. In the case where an adhesive layer is provided between the sheet and the resin layer, an acrylic resin can be exemplified as an adhesive constituting the adhesive layer. Examples of adhesives other than acrylic resin include vinyl chloride resin, (meth) acrylic ester resin, styrene / acrylic ester copolymer resin, vinyl acetate resin, vinyl acetate / (meth) acrylic ester copolymer Examples include coalesced resins, urethane resins, silicone resins, epoxy resins, ethylene / vinyl acetate copolymer resins, polyester resins, polyvinyl alcohol resins, ethylene vinyl alcohol copolymer resins, and rubber emulsions such as SBR and NBR. .
 シートと樹脂層の間に接着層が設けられていない場合は、樹脂層が密着助剤を有してもよく、また、樹脂層の表面に親水化処理等の表面処理を行ってもよい。
 密着助剤としては、例えば、イソシアネート基、カルボジイミド基、エポキシ基、オキサゾリン基、アミノ基及びシラノール基から選択される少なくとも1種を含む化合物や、有機ケイ素化合物が挙げられる。中でも、密着助剤はイソシアネート基を含む化合物(イソシアネート化合物)及び有機ケイ素化合物から選択される少なくとも1種であることが好ましい。有機ケイ素化合物としては、例えば、シランカップリング剤縮合物や、シランカップリング剤を挙げることができる。
 なお、親水化処理以外の表面処理の方法としては、コロナ処理、プラズマ放電処理、UV照射処理、電子線照射処理、火炎処理等を挙げることができる。
When the adhesive layer is not provided between the sheet and the resin layer, the resin layer may have an adhesion assistant, and surface treatment such as hydrophilic treatment may be performed on the surface of the resin layer.
Examples of the adhesion assistant include a compound containing at least one selected from an isocyanate group, a carbodiimide group, an epoxy group, an oxazoline group, an amino group, and a silanol group, and an organosilicon compound. Among these, the adhesion assistant is preferably at least one selected from a compound containing an isocyanate group (isocyanate compound) and an organosilicon compound. Examples of organosilicon compounds include silane coupling agent condensates and silane coupling agents.
Examples of surface treatment methods other than hydrophilization treatment include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, and flame treatment.
<無機層>
 無機層を構成する物質としては、特に限定されないが、例えばアルミニウム、ケイ素、マグネシウム、亜鉛、錫、ニッケル、チタン;これらの酸化物、炭化物、窒化物、酸化炭化物、酸化窒化物、もしくは酸化炭化窒化物;又はこれらの混合物が挙げられる。高い防湿性が安定に維持できるとの観点からは、酸化ケイ素、窒化ケイ素、酸化炭化ケイ素、酸化窒化ケイ素、酸化炭化窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化炭化アルミニウム、酸化窒化アルミニウム、又はこれらの混合物が好ましい。
<Inorganic layer>
The material constituting the inorganic layer is not particularly limited, but for example, aluminum, silicon, magnesium, zinc, tin, nickel, titanium; these oxides, carbides, nitrides, oxycarbides, oxynitrides, or oxycarbonitrides Or a mixture thereof. From the viewpoint that high moisture resistance can be stably maintained, silicon oxide, silicon nitride, silicon oxide carbide, silicon oxynitride, silicon oxycarbonitride, aluminum oxide, aluminum nitride, aluminum oxide carbide, aluminum oxynitride, or these Mixtures are preferred.
 無機層の形成方法は、特に限定されない。一般に、薄膜を形成する方法は大別して、化学的気相成長法(Chemical Vapor Deposition、CVD)と物理成膜法(Physical Vapor Deposition、PVD)とがあるが、いずれの方法を採用してもよい。CVD法としては、具体的には、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。PVD法としては、具体的には、真空蒸着、イオンプレーティング、スパッタリング等が挙げられる。 The method for forming the inorganic layer is not particularly limited. In general, a method of forming a thin film is roughly classified into a chemical vapor deposition method (Chemical Vapor Deposition, CVD) and a physical film formation method (Physical Vapor Deposition, PVD), and either method may be adopted. . Specific examples of the CVD method include plasma CVD using plasma, and catalytic chemical vapor deposition (Cat-CVD) in which a material gas is contact pyrolyzed using a heating catalyst. Specific examples of the PVD method include vacuum deposition, ion plating, and sputtering.
 また、無機層の形成方法としては、原子層堆積法(Atomic Layer Deposition、ALD)を採用することもできる。ALD法は、形成しようとする膜を構成する各元素の原料ガスを、層を形成する面に交互に供給することにより、原子層単位で薄膜を形成する方法である。成膜速度が遅いという欠点はあるが、プラズマCVD法以上に、複雑な形状の面でもきれいに覆うことができ、欠陥の少ない薄膜を成膜することが可能であるという利点がある。また、ALD法には、膜厚をナノオーダーで制御することができ、広い面を覆うことが比較的容易である等の利点がある。さらにALD法は、プラズマを用いることにより、反応速度の向上、低温プロセス化、未反応ガスの減少が期待できる。 Further, as a method for forming the inorganic layer, an atomic layer deposition method (ALD) can also be employed. The ALD method is a method of forming a thin film in units of atomic layers by alternately supplying source gases of respective elements constituting a film to be formed to a surface on which a layer is formed. Although there is a drawback that the film forming speed is slow, there is an advantage that it is possible to form a thin film with few defects because it can cleanly cover even a complicated surface more than the plasma CVD method. In addition, the ALD method has an advantage that the film thickness can be controlled on the nano order and it is relatively easy to cover a wide surface. Furthermore, the ALD method can be expected to improve the reaction rate, lower the temperature, and reduce the unreacted gas by using plasma.
(用途)
 本発明のシートの用途は特に限定されない。例えば、シートは、光学フィルム、各種のディスプレイ装置、各種の太陽電池等の光透過性基板の用途に適している。また、電子機器の基板、家電の部材、各種の乗り物や建物の窓材、内装材、外装材、包装用資材等の用途にも適している。さらに、糸、フィルタ、織物、緩衝材、スポンジ、研磨材などの他、シートそのものを補強材として使う用途にも適している。
(Use)
The use of the sheet of the present invention is not particularly limited. For example, the sheet is suitable for the use of a light transmissive substrate such as an optical film, various display devices, and various solar cells. It is also suitable for applications such as substrates for electronic devices, members of household appliances, various vehicles and building windows, interior materials, exterior materials, packaging materials, and the like. Furthermore, it is also suitable for applications in which the sheet itself is used as a reinforcing material in addition to threads, filters, fabrics, cushioning materials, sponges, abrasives, and the like.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 なお、以下の実施例では説明の便宜を考慮し、微細繊維状セルロースを処理したスラリーを微細繊維状セルロース分散液と称する。そして、微細繊維状セルロース分散液と樹脂と硬化剤等を配合したものを塗工液と称する。しかしながら、これにより本発明の範囲が限定して解釈されるものではない。例えば、塗工液などにおいて微細繊維状セルロースと特定成分とその他の成分とを含有するものも、本発明の塗工液の範囲に包含される。
The features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
In the following examples, for the convenience of explanation, a slurry obtained by treating fine fibrous cellulose is referred to as a fine fibrous cellulose dispersion. And what mix | blended the fine fibrous cellulose dispersion liquid, resin, the hardening | curing agent, etc. is called coating liquid. However, this does not limit the scope of the present invention. For example, a coating liquid containing fine fibrous cellulose, a specific component, and other components is also included in the scope of the coating liquid of the present invention.
<微細繊維状セルロース分散液の製造>
[パルプのリン酸化工程]
 原料パルプとして、王子製紙社製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調製し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
<Production of fine fibrous cellulose dispersion>
[Pulp phosphorylation process]
As a raw material pulp, conifer kraft pulp manufactured by Oji Paper Co., Ltd. (solid content 93 mass%, basis weight 208 g / m 2 sheet, disaggregated and measured in accordance with JIS P 811-2: 2012, Canadian standard freeness ( CSF) used 700 ml). The raw material pulp was phosphorylated as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolutely dry mass) of the above raw pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. Thus, a chemical solution impregnated pulp was obtained. Next, the obtained chemical solution-impregnated pulp was heated with a hot air dryer at 165 ° C. for 200 seconds to introduce phosphate groups into cellulose in the pulp to obtain phosphorylated pulp.
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained phosphorylated pulp was washed. The washing treatment is performed by repeating the operation of filtering and dewatering after stirring the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g of phosphorylated pulp (absolute dry mass) so that the pulp is uniformly dispersed. went. When the electrical conductivity of the filtrate reached 100 μS / cm or less, the end point of washing was determined.
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。 Next, the washed phosphorylated pulp was neutralized as follows. First, after the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, a 1N sodium hydroxide aqueous solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. . Subsequently, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp subjected to neutralization treatment.
 次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
 これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
 また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
Next, the washing treatment was performed on the phosphorylated pulp after the neutralization treatment.
The infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR. As a result, absorption based on phosphate groups was observed in the vicinity of 1230 cm −1 , confirming that phosphate groups were added to the pulp.
Moreover, when the obtained phosphorylated pulp was tested and analyzed with an X-ray diffractometer, it was found at two positions of 2θ = 14 ° to 17 ° and 2θ = 22 ° to 23 °. A typical peak was confirmed and confirmed to have cellulose type I crystals.
[解繊処理]
 得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて2回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(1)を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は、1.45mmol/gだった。
[Defibration processing]
Ion exchange water was added to the resulting phosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated twice with a wet atomizer (Sugino Machine, Starburst) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion (1) containing fine fibrous cellulose. X-ray diffraction confirmed that the fine fibrous cellulose maintained the cellulose I-type crystals. Further, the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm. In addition, the phosphate group amount (strongly acidic group amount) measured by the measurement method described later was 1.45 mmol / g.
<繊維幅の測定>
 微細繊維状セルロースの繊維幅は下記の方法で測定した。
 湿式微粒化装置にて処理をして得られた微細繊維状セルロース分散液(1)の上澄み液を、微細繊維状セルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボングリッド膜に滴下した。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子社製、JEOL-2000EX)により観察した。
<Measurement of fiber width>
The fiber width of the fine fibrous cellulose was measured by the following method.
In the supernatant of the fine fibrous cellulose dispersion (1) obtained by the treatment with the wet atomizer, the fine fibrous cellulose has a concentration of 0.01% by mass to 0.1% by mass. Diluted with water and dropped onto a hydrophilic carbon grid membrane. This was dried, stained with uranyl acetate, and observed with a transmission electron microscope (JEOL-2000EX, manufactured by JEOL Ltd.).
<リン酸基量の測定>
 微細繊維状セルロースのリン酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液(1)をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。リン酸基量(mmol/g)は、計測結果のうち図1に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
<Measurement of phosphate group amount>
The amount of phosphoric acid group of the fine fibrous cellulose is prepared by diluting the fine fibrous cellulose dispersion (1) containing the target fine fibrous cellulose with ion-exchanged water so that the content becomes 0.2% by mass. It measured by performing the titration using an alkali, after processing with the ion exchange resin with respect to the fibrous cellulose containing slurry.
In the treatment with the ion exchange resin, 1/10 by volume of the strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) is added to the fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour. The mixture was poured onto a mesh having an opening of 90 μm to separate the resin and the slurry.
In addition, titration using an alkali is performed by adding 50 μL of a 0.1 N aqueous sodium hydroxide solution to a fibrous cellulose-containing slurry after treatment with an ion exchange resin once every 30 seconds. This was done by measuring the change in the value of. The phosphate group amount (mmol / g) is obtained by dividing the alkali amount (mmol) required in the region corresponding to the first region shown in FIG. 1 by the solid content (g) in the slurry to be titrated. Calculated.
[微細繊維状セルロース含有シートの作製]
<実施例1>
 固形分濃度が2.0質量%の微細繊維状セルロース分散液(1)にイオン交換水を加え、固形分濃度0.2質量%の微細繊維状セルロース分散液(A)とした。
 得られた微細繊維状セルロース分散液(A)49.8gをビーカーにはかりとり、そこにイオン交換水10.3g、水性アクリルポリオール(DIC社製、品名:バーノック WD‐551、固形分濃度45.0質量%)34.5g、硬化剤(DIC社製、品名:バーノック DNW‐5500、ポリイソシアネート、固形分濃度79.8質量%)5.5gを順に添加した。各原料を添加する際にはT.K.ホモディスパー(特殊機化工業製)で1500rpmにて撹拌を行い、全ての原料を添加した後にさらに5分間撹拌を行なった。その後、脱泡装置(シンキー社製、自転・公転ミキサーAR-250)にて脱泡処理を行なった。このようにして、水性アクリルポリオール、硬化剤及び微細繊維状セルロースの固形分比(質量比)が78:22:0.5(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度が20質量%である塗工液を得た。
[Preparation of sheet containing fine fibrous cellulose]
<Example 1>
Ion exchange water was added to the fine fibrous cellulose dispersion (1) having a solid content concentration of 2.0% by mass to obtain a fine fibrous cellulose dispersion (A) having a solid content concentration of 0.2% by mass.
49.8 g of the obtained fine fibrous cellulose dispersion (A) is weighed in a beaker, and there are 10.3 g of ion-exchanged water, an aqueous acrylic polyol (manufactured by DIC, product name: Burnock WD-551, solid content concentration 45. (0% by mass) 34.5 g, and a curing agent (manufactured by DIC, product name: Vernock DNW-5500, polyisocyanate, solid content concentration 79.8% by mass) 5.5 g were sequentially added. When adding each raw material, T.W. K. Stirring was performed at 1500 rpm with a homodisper (manufactured by Tokushu Kika Kogyo Co., Ltd.), and stirring was further performed for 5 minutes after all the raw materials were added. Thereafter, defoaming was performed using a defoaming device (Sinky Corp., rotation / revolution mixer AR-250). Thus, the solid content ratio (mass ratio) of the aqueous acrylic polyol, the curing agent, and the fine fibrous cellulose is 78: 22: 0.5 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid A coating solution having a concentration of 20% by mass was obtained.
<実施例2>
 固形分濃度0.2質量%の微細繊維状セルロース分散液(A)69.3gをビーカーにはかりとり、そこにイオン交換水2.8g、水性アクリルポリオール24.0g、硬化剤3.8gを順に添加した以外は、実施例1と同様にして塗工液を得た。得られた塗工液中の固形分比(質量比)は78:22:1(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度は14質量%であった。
<Example 2>
Weigh 69.3 g of fine fibrous cellulose dispersion (A) having a solid content concentration of 0.2% by weight in a beaker, and in that order 2.8 g of ion-exchanged water, 24.0 g of aqueous acrylic polyol, and 3.8 g of curing agent in this order. A coating solution was obtained in the same manner as in Example 1 except that it was added. The solid content ratio (mass ratio) in the obtained coating liquid was 78: 22: 1 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the concentration of the total solid content was 14% by mass.
<実施例3>
 固形分濃度が2.0質量%の微細繊維状セルロース分散液(1)にイオン交換水を加え、固形分濃度0.5質量%の微細繊維状セルロース分散液(B)とした。微細繊維状セルロース分散液(B)38.1gをビーカーにはかりとり、そこにイオン交換水54.3g、水性アクリルポリオール6.6g、硬化剤1.1gを順に添加した以外は、実施例1と同様にして塗工液を得た。得られた塗工液中の固形分比(質量比)は78:22:5(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度は4質量%であった。
<Example 3>
Ion exchange water was added to the fine fibrous cellulose dispersion (1) having a solid content concentration of 2.0% by mass to obtain a fine fibrous cellulose dispersion (B) having a solid content concentration of 0.5% by mass. Except that 38.1 g of the fine fibrous cellulose dispersion (B) was weighed into a beaker, and 54.3 g of ion-exchanged water, 6.6 g of an aqueous acrylic polyol, and 1.1 g of a curing agent were sequentially added thereto. A coating solution was obtained in the same manner. The solid content ratio (mass ratio) in the obtained coating liquid was 78: 22: 5 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content was 4% by mass.
<実施例4>
 固形分濃度が2.0質量%の微細繊維状セルロース分散液(1)にイオン交換水を加え、固形分濃度1.0質量%の微細繊維状セルロース分散液(C)とした。微細繊維状セルロース分散液(C)54.6gをビーカーにはかりとり、そこにイオン交換水34.5g、水性アクリルポリオール9.5g、硬化剤1.5gを順に添加した以外は、実施例1と同様にして塗工液を得た。得られた塗工液中の固形分比(質量比)は78:22:10(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度は6質量%であった。
<Example 4>
Ion exchange water was added to the fine fibrous cellulose dispersion (1) having a solid content concentration of 2.0% by mass to obtain a fine fibrous cellulose dispersion (C) having a solid content concentration of 1.0% by mass. Except that 54.6 g of the fine fibrous cellulose dispersion (C) was weighed into a beaker and 34.5 g of ion-exchanged water, 9.5 g of an aqueous acrylic polyol, and 1.5 g of a curing agent were added thereto in that order. A coating solution was obtained in the same manner. The solid content ratio (mass ratio) in the obtained coating liquid was 78:22:10 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content was 6% by mass.
<実施例5>
 固形分濃度1.0質量%の微細繊維状セルロース分散液(C)78.3gをビーカーにはかりとり、そこにイオン交換水11.3g、水性アクリルポリオール9.0g、硬化剤1.4gを順に添加した以外は、実施例1と同様にして塗工液を得た。得られた塗工液中の固形分比(質量比)は78:22:15(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度は6質量%であった。
<Example 5>
78.3 g of fine fibrous cellulose dispersion (C) having a solid content concentration of 1.0% by mass is weighed in a beaker, and 11.3 g of ion-exchanged water, 9.0 g of an aqueous acrylic polyol, and 1.4 g of a curing agent are sequentially added thereto. A coating solution was obtained in the same manner as in Example 1 except that it was added. The solid content ratio (mass ratio) in the obtained coating liquid was 78:22:15 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the concentration of the total solid content was 6% by mass.
<比較例1>
 微細繊維状セルロース分散液を添加せず、ビーカーに水性アクリルポリオール34.7g、イオン交換水59.8g、硬化剤5.5gを順に添加した以外は実施例1と同様にして、塗工液を得た。得られた塗工液中の固形分比(質量比)78:22(水性アクリルポリオール:硬化剤)であり、全固形分の濃度は20質量%であった。
<Comparative Example 1>
A coating solution was prepared in the same manner as in Example 1 except that 34.7 g of an aqueous acrylic polyol, 59.8 g of ion-exchanged water, and 5.5 g of a curing agent were sequentially added to a beaker without adding the fine fibrous cellulose dispersion. Obtained. The solid content ratio (mass ratio) in the obtained coating liquid was 78:22 (aqueous acrylic polyol: curing agent), and the total solid content was 20% by mass.
<比較例2>
 固形分濃度0.2質量%の微細繊維状セルロース分散液(A)10.0gをビーカーにはかりとり、そこにイオン交換水49.9g、水性アクリルポリオール34.6g、硬化剤5.5gを順に添加した以外は、実施例1と同様にして塗工液を得た。得られた塗工液中の固形分比(質量比)は78:22:0.1(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度は20質量%であった。
<Comparative Example 2>
10.0 g of fine fibrous cellulose dispersion (A) having a solid content concentration of 0.2% by mass is weighed in a beaker, and 49.9 g of ion-exchanged water, 34.6 g of an aqueous acrylic polyol, and 5.5 g of a curing agent are sequentially added thereto. A coating solution was obtained in the same manner as in Example 1 except that it was added. The solid content ratio (mass ratio) in the obtained coating liquid was 78: 22: 0.1 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the concentration of the total solid content was 20% by mass. It was.
<比較例3>
 固形分濃度1.0質量%の微細繊維状セルロース分散液(C)66.7gをビーカーにはかりとり、そこにイオン交換水26.6g、水性アクリルポリオール5.8g、硬化剤0.9gを順に添加した以外は、実施例1と同様にして塗工液を得た。得られた塗工液中の固形分比(質量比)は78:22:20(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度は4質量%であった。
<Comparative Example 3>
66.7 g of a fine fibrous cellulose dispersion (C) having a solid content concentration of 1.0 mass% is weighed in a beaker, and 26.6 g of ion-exchanged water, 5.8 g of an aqueous acrylic polyol, and 0.9 g of a curing agent are sequentially added thereto. A coating solution was obtained in the same manner as in Example 1 except that it was added. The solid content ratio (mass ratio) in the obtained coating liquid was 78:22:20 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content was 4% by mass.
<比較例4>
 次のような手順で塗料を調製した以外は実施例3と同様にして塗工液を得た。
 まず、水性アクリルポリオール24.0gをビーカーにはかりとり、そこにイオン交換水2.8g、固形分濃度0.2質量%の微細繊維状セルロース分散液(A)69.3g、硬化剤3.8gを順に添加した。各原料を添加する際にはT.K.ホモディスパー(特殊機化工業製)で1500rpmにて撹拌を行い、全ての原料を添加した後にさらに5分間撹拌を行なった。その後、脱泡装置(シンキー社製、自転・公転ミキサーAR-250)にて脱泡処理を行なった。このようにして、水性アクリルポリオール、硬化剤及び微細繊維状セルロースの固形分比(質量比)が78:22:5(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度が14質量%である塗工液を得た。
<Comparative example 4>
A coating solution was obtained in the same manner as in Example 3 except that the coating material was prepared by the following procedure.
First, 24.0 g of an aqueous acrylic polyol was weighed in a beaker, and 2.8 g of ion exchange water, 69.3 g of a fine fibrous cellulose dispersion (A) having a solid content concentration of 0.2% by mass, and 3.8 g of a curing agent. Were added in order. When adding each raw material, T.W. K. Stirring was performed at 1500 rpm with a homodisper (manufactured by Tokushu Kika Kogyo Co., Ltd.), and stirring was further performed for 5 minutes after all the raw materials were added. Thereafter, defoaming was performed using a defoaming device (Sinky Corp., rotation / revolution mixer AR-250). Thus, the solid content ratio (mass ratio) of the aqueous acrylic polyol, the curing agent, and the fine fibrous cellulose is 78: 22: 5 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content is A coating solution having a concentration of 14% by mass was obtained.
<比較例5>
 次のような手順で塗料を調製した以外は実施例4と同様にして塗工液を得た。
 まず、水性アクリルポリオール6.6gをビーカーにはかりとり、そこにイオン交換水54.3g、固形分濃度0.5質量%の微細繊維状セルロース分散液(B)38.1g、硬化剤1.1gを順に添加した。各原料を添加する際にはT.K.ホモディスパー(特殊機化工業製)で1500rpmにて撹拌を行い、全ての原料を添加した後にさらに5分間撹拌を行なった。その後、脱泡装置(シンキー社製、自転・公転ミキサーAR-250)にて脱泡処理を行なった。このようにして、水性アクリルポリオール、硬化剤及び微細繊維状セルロースの固形分比(質量比)が78:22:10(水性アクリルポリオール:硬化剤:微細繊維状セルロース)であり、全固形分の濃度が4質量%である塗工液を得た。
<Comparative Example 5>
A coating solution was obtained in the same manner as in Example 4 except that the coating material was prepared by the following procedure.
First, 6.6 g of an aqueous acrylic polyol was weighed in a beaker, and 54.3 g of ion-exchanged water, 38.1 g of a fine fibrous cellulose dispersion (B) having a solid content concentration of 0.5% by mass, and 1.1 g of a curing agent. Were added in order. When adding each raw material, T.W. K. Stirring was performed at 1500 rpm with a homodisper (manufactured by Tokushu Kika Kogyo Co., Ltd.), and stirring was further performed for 5 minutes after all the raw materials were added. Thereafter, defoaming was performed using a defoaming device (Sinky Corp., rotation / revolution mixer AR-250). Thus, the solid content ratio (mass ratio) of the aqueous acrylic polyol, the curing agent, and the fine fibrous cellulose is 78:22:10 (aqueous acrylic polyol: curing agent: fine fibrous cellulose), and the total solid content is A coating solution having a concentration of 4% by mass was obtained.
[評価用シートの作製]
 PP(ポリプロピレン)フィルム(東レ社製、品名:トレファンBO、厚み60μm)を基材とし、実施例及び比較例で得られた塗工液を、アプリケーターを用いて乾燥後のシート厚みが10μm以上となるよう基材上に塗工した。塗工後すぐに温度80℃の乾燥機で30分間加熱して、PPフィルムの基材層上にシートを備える積層体を得た。なお、シートの厚みは、定圧厚さ測定器(テフロック社製、PG‐02J)で測定した。その後、上記PPフィルムから乾燥後のシートを剥離し、微細繊維状セルロース含有シートとして各種評価に用いた。
[Production of evaluation sheet]
PP (polypropylene) film (product of Toray Industries, Inc., product name: Treffan BO, thickness 60 μm) is used as a base material, and the coating thickness obtained in Examples and Comparative Examples is 10 μm or more after drying using an applicator. It coated on the base material so that it might become. Immediately after coating, the laminate was heated for 30 minutes with a drier at a temperature of 80 ° C. to obtain a laminate comprising a sheet on the base material layer of the PP film. In addition, the thickness of the sheet was measured with a constant pressure thickness measuring instrument (PG-02J, manufactured by Teflock). Thereafter, the dried sheet was peeled from the PP film, and used for various evaluations as a fine fibrous cellulose-containing sheet.
[測定]
 上記のようにして作製した各シートについて、吸水率、水接触角、ヘーズ、全光線透過率、黄色度(YI)、引張強度及び引張弾性率を、それぞれ以下の方法で測定した。
[Measurement]
About each sheet | seat produced as mentioned above, the water absorptivity, water contact angle, haze, total light transmittance, yellowness (YI), tensile strength, and tensile elasticity modulus were measured with the following method, respectively.
[吸水率]
 実施例及び比較例の塗工液から得られたシートを5cm角の試験片となるように切り出した。次いで、この試験片の重量WAを測定した。その後、この試験片をイオン交換水に浸漬させて24時間保持した。試験片をイオン交換水から引き上げ、キムワイプ(日本製紙クレシア社製)で試験片表面に付着した水分を拭き取った後、試験片の重量WBを測定した。重量WA、WBより、シートの吸水率を下記の式aに従って算出した。
 吸水率(質量%)=100×(WB-WA)/WA・・・(式a)
[Water absorption rate]
The sheet | seat obtained from the coating liquid of the Example and the comparative example was cut out so that it might become a 5-cm square test piece. It was then weighed W A of the test piece. Then, this test piece was immersed in ion-exchange water and kept for 24 hours. Pulling the test piece from the deionized water, after wiping off the water attached to the test piece surface with Kimwipe (manufactured by Nippon Paper Crecia Co., Ltd.) to measure the weight W B of the test piece. From the weights W A and W B , the water absorption of the sheet was calculated according to the following formula a.
Water absorption (mass%) = 100 × (W B −W A ) / W A (Formula a)
[水接触角]
 JIS R 3257に準拠し、動的水接触角試験機(Fibro社製、1100DAT)を用い、シート表面に蒸留水を4μL滴下し、滴下後0.1秒後の水接触角を測定した。
[Water contact angle]
In accordance with JIS R 3257, 4 μL of distilled water was dropped on the sheet surface using a dynamic water contact angle tester (Fibro, 1100DAT), and the water contact angle 0.1 seconds after dropping was measured.
[ヘーズ及び全光線透過率]
 JIS K 7136に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150)を用いてヘーズを測定した。また、JIS K 7361に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて全光線透過率を測定した。
[Haze and total light transmittance]
According to JIS K 7136, haze was measured using a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd., HM-150). Further, based on JIS K 7361, the total light transmittance was measured using a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd., HM-150).
[シートの黄色度]
 JIS K 7373に準拠し、Colour Cute i(スガ試験機株式会社製)を用いてシートの黄色度(YI)を測定した。
[Yellowness of sheet]
In accordance with JIS K 7373, the yellowness (YI) of the sheet was measured using Color Cute i (manufactured by Suga Test Instruments Co., Ltd.).
[引張強度]
 試験片の長さを80mm、チャック間距離を50mmとした以外はJIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて引張強さ(単位はN/m)を測定した。この引張強さを試験片の厚みで除し、引張強度(単位はMPa)を算出した。なお、引張強さを測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いた。
[Tensile strength]
Tensile strength (unit: N / m) using a tensile tester Tensilon (manufactured by A & D) according to JIS P 8113, except that the length of the test piece is 80 mm and the distance between chucks is 50 mm. Was measured. The tensile strength was divided by the thickness of the test piece, and the tensile strength (unit: MPa) was calculated. In addition, when measuring tensile strength, what was conditioned for 24 hours at 23 degreeC and 50% of relative humidity was used as a test piece.
[引張弾性率]
 試験片の長さを80mm、チャック間距離を50mmとした以外はJIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて引張弾性率を測定した。なお、弾性率は、SSカーブにおける正の最大の傾き値から計算した値である。なお、引張弾性率を測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として用いた。
[Tensile modulus]
The tensile modulus was measured using a tensile tester Tensilon (manufactured by A & D Co.) according to JIS P 8113 except that the length of the test piece was 80 mm and the distance between chucks was 50 mm. The elastic modulus is a value calculated from the maximum positive slope value in the SS curve. When measuring the tensile modulus, a specimen conditioned at 23 ° C. and 50% relative humidity for 24 hours was used as a test piece.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表1において、塗工液の調製手順のA~Cとは、以下の表2に記載したとおりの手順である。 In Table 1, “A” to “C” in the preparation procedure of the coating liquid are procedures as described in Table 2 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から明らかなように、水性アクリルポリオール及び、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物に由来する構造を含む重合体を含有する実施例の塗工液からは、吸水率の低いシートが得られ、このシートに水滴を滴下した場合、大きな水接触角が示された。このように、実施例で得られたシートは、水との親和性が低く、耐水性に優れていた。さらに、実施例で得られたシートは、透明性が高く、シート強度も高いものであった。
 一方、比較例においては、吸水率の高いシートが得られ、このシートに水滴を滴下した場合、小さな水接触角が示された。このように、比較例で得られるシートは、水との親和性が高く、耐水性の観点から実用上の問題が懸念された。なお、比較例1~3の結果より微細繊維状セルロースの含有量を調整することで、得られるシートの吸水率をコントロールできる可能性が示唆された。また、比較例4及び5の結果より塗工液の調整手順により、得られるシートの吸水率をコントロールできる可能性が示唆され、さらに、塗工液の調製手順により塗工液の分散の均一性をコントロールでき、シートの透明性を高め得ることが示唆された。
As is apparent from the results in Table 1, from the coating liquid of the Examples containing an aqueous acrylic polyol and a polymer containing a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound and an oxazoline compound. Obtained a sheet having a low water absorption, and when a water droplet was dropped on this sheet, a large water contact angle was shown. Thus, the sheet | seat obtained in the Example was low in affinity with water, and was excellent in water resistance. Furthermore, the sheets obtained in the examples had high transparency and high sheet strength.
On the other hand, in the comparative example, a sheet having a high water absorption rate was obtained, and when a water droplet was dropped on this sheet, a small water contact angle was shown. Thus, the sheet obtained in the comparative example has a high affinity with water, and there is a concern about practical problems from the viewpoint of water resistance. From the results of Comparative Examples 1 to 3, it was suggested that the water absorption rate of the obtained sheet could be controlled by adjusting the content of fine fibrous cellulose. Further, the results of Comparative Examples 4 and 5 suggest the possibility that the water absorption rate of the obtained sheet can be controlled by the procedure for adjusting the coating solution, and further the uniformity of coating solution dispersion by the procedure for preparing the coating solution. It was suggested that the transparency of the sheet can be improved.
10   シート
20   基材層
100 積層体
10 Sheet 20 Base material layer 100 Laminate

Claims (10)

  1.  アクリル系重合体と、繊維幅が1000nm以下の繊維状セルロースと、を含有するシートであって、
     前記アクリル系重合体は、イソシアネート化合物、カルボジイミド化合物及びオキサゾリン化合物から選択される少なくとも1種の化合物に由来する構造と、水性アクリルポリオールに由来する構造と、を含む重合体であり、
     前記シートを水に24時間浸漬した場合の吸水率が6質量%以下であるシート。
    A sheet containing an acrylic polymer and fibrous cellulose having a fiber width of 1000 nm or less,
    The acrylic polymer is a polymer including a structure derived from at least one compound selected from an isocyanate compound, a carbodiimide compound and an oxazoline compound, and a structure derived from an aqueous acrylic polyol,
    A sheet having a water absorption of 6% by mass or less when the sheet is immersed in water for 24 hours.
  2.  前記繊維状セルロースの含有量は、前記アクリル系重合体100質量部に対して0.5質量部以上19質量部以下である請求項1に記載のシート。 The sheet according to claim 1, wherein a content of the fibrous cellulose is 0.5 parts by mass or more and 19 parts by mass or less with respect to 100 parts by mass of the acrylic polymer.
  3.  ヘーズが4.5%以下である請求項1又は2に記載のシート。 The sheet according to claim 1 or 2, wherein the haze is 4.5% or less.
  4.  全光線透過率が89%以上である請求項1~3のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 3, wherein the total light transmittance is 89% or more.
  5.  YI値が0.3以下である請求項1~4のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 4, wherein the YI value is 0.3 or less.
  6.  引張強度が15MPa以上である請求項1~5のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 5, wherein the tensile strength is 15 MPa or more.
  7.  引張弾性率が1.8GPa以上である請求項1~6のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 6, wherein the tensile elastic modulus is 1.8 GPa or more.
  8.  厚みが10μm以上である請求項1~7のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 7, wherein the sheet has a thickness of 10 µm or more.
  9.  基材層の少なくとも一方の面側に、請求項1~8のいずれか1項に記載のシートを備える積層体。 A laminate comprising the sheet according to any one of claims 1 to 8 on at least one surface side of the base material layer.
  10.  前記基材層は、繊維幅が1000nm以下である繊維状セルロース及び水溶性高分子から選択される少なくとも1種を含む請求項9に記載の積層体。 The laminate according to claim 9, wherein the base material layer includes at least one selected from fibrous cellulose having a fiber width of 1000 nm or less and a water-soluble polymer.
PCT/JP2019/016350 2018-04-17 2019-04-16 Sheet and layered product WO2019203239A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514400A JPWO2019203239A1 (en) 2018-04-17 2019-04-16 Sheets and laminates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018078886 2018-04-17
JP2018-078886 2018-04-17

Publications (1)

Publication Number Publication Date
WO2019203239A1 true WO2019203239A1 (en) 2019-10-24

Family

ID=68240130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016350 WO2019203239A1 (en) 2018-04-17 2019-04-16 Sheet and layered product

Country Status (3)

Country Link
JP (1) JPWO2019203239A1 (en)
TW (1) TW201943770A (en)
WO (1) WO2019203239A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135170A1 (en) * 2008-12-16 2012-05-31 Carlsberg A/S Cellulose based polymer material
JP2015160870A (en) * 2014-02-26 2015-09-07 国立大学法人名古屋大学 Composition, laminate obtained by laminating the composition, and hard coating agent for forming the composition
JP2016069618A (en) * 2014-09-28 2016-05-09 第一工業製薬株式会社 Aqueous coating composition
WO2018012643A1 (en) * 2016-07-15 2018-01-18 スターライト工業株式会社 Resin composition and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135170A1 (en) * 2008-12-16 2012-05-31 Carlsberg A/S Cellulose based polymer material
JP2015160870A (en) * 2014-02-26 2015-09-07 国立大学法人名古屋大学 Composition, laminate obtained by laminating the composition, and hard coating agent for forming the composition
JP2016069618A (en) * 2014-09-28 2016-05-09 第一工業製薬株式会社 Aqueous coating composition
WO2018012643A1 (en) * 2016-07-15 2018-01-18 スターライト工業株式会社 Resin composition and method for producing same

Also Published As

Publication number Publication date
JPWO2019203239A1 (en) 2021-05-13
TW201943770A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
JP7283606B2 (en) LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED BODY
JP7006278B2 (en) Seat
WO2017135413A1 (en) Resin composite and method for manufacturing resin composite
WO2018008735A1 (en) Sheet
JP6540925B1 (en) Fibrous cellulose-containing composition and paint
WO2018008736A1 (en) Sheet
JP6733627B2 (en) Fibrous cellulose-containing composition and paint
JP6686989B2 (en) Fibrous cellulose-containing composition and paint
JP7334773B2 (en) Fibrous cellulose-containing composition and paint
JP2018009116A (en) Sheet
WO2019124364A1 (en) Sheet
JP6641912B2 (en) Laminate and method of manufacturing laminate
WO2020230513A1 (en) Pattern formation substrate
WO2019203239A1 (en) Sheet and layered product
JP6828759B2 (en) Sheets and laminates
JP6540924B1 (en) Fibrous cellulose-containing composition and paint
JP6680382B1 (en) Composition
JP6705532B1 (en) Sheet
JP7126982B2 (en) sheet
JP6696600B1 (en) Fibrous cellulose-containing composition and paint
JP6965912B2 (en) Laminated body and manufacturing method of laminated body
WO2021079850A1 (en) Laminated sheet, and laminate
JP7047369B2 (en) Composition
JP2022164312A (en) sheet
JP2021066171A (en) Laminated sheet, and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789150

Country of ref document: EP

Kind code of ref document: A1