JP2016069618A - Aqueous coating composition - Google Patents

Aqueous coating composition Download PDF

Info

Publication number
JP2016069618A
JP2016069618A JP2014242770A JP2014242770A JP2016069618A JP 2016069618 A JP2016069618 A JP 2016069618A JP 2014242770 A JP2014242770 A JP 2014242770A JP 2014242770 A JP2014242770 A JP 2014242770A JP 2016069618 A JP2016069618 A JP 2016069618A
Authority
JP
Japan
Prior art keywords
water
resin
cellulose
coating composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014242770A
Other languages
Japanese (ja)
Inventor
祐輔 花木
Yusuke Hanaki
祐輔 花木
太一 後藤
Taichi Goto
太一 後藤
橋本 賀之
Yoshiyuki Hashimoto
賀之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Publication of JP2016069618A publication Critical patent/JP2016069618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aqueous coating composition excellent in water resistance of a coated film by using a rheology control agent exhibiting effects with small amount.SOLUTION: There is provided an aqueous coating composition containing: a cellulose fiber having a number average fiber diameter of 2 nm or more and 500 nm or less, having a substituent introduced into a hydroxyl group in a cellulose molecule, a substitution degree of 0.01 or more and 0.5 or less, a I type and/or II type crystal structures, and an aspect ratio of 50 or more; an aqueous resin; and a coloring agent.SELECTED DRAWING: None

Description

本発明は、水系塗料組成物に関するものである。  The present invention relates to a water-based coating composition.

従来、水系塗料のレオロジーコントロール剤としては、合成系および天然系の高分子が使用されてきた。安全性や環境に対する配慮から、天然系の高分子が好まれる傾向にある。天然系の高分子としては、セルロースおよびセルロースの誘導体が使用されている。従来の水系塗料組成物としては、レオロジーコントロール剤として水溶性セルロースエーテルを用いる水系塗料組成物が開示されている(特許文献1)。さらに、繊維径が10μm以下の微細セルロースを用いる水系塗料組成物が開示されている(特許文献2)。   Conventionally, synthetic and natural polymers have been used as rheology control agents for water-based paints. Natural polymers tend to be preferred for safety and environmental considerations. Cellulose and cellulose derivatives are used as natural polymers. As a conventional water-based coating composition, a water-based coating composition using a water-soluble cellulose ether as a rheology control agent is disclosed (Patent Document 1). Furthermore, an aqueous coating composition using fine cellulose having a fiber diameter of 10 μm or less is disclosed (Patent Document 2).

特開2004−67719号公報JP 2004-67719 A 特開2006−111699号公報JP 2006-111699 A

しかし、水溶性セルロースエーテルは水溶性であるため、水系塗料組成物から得られる塗膜の耐水性を低下させるという問題があった(特許文献1)。一方、特許文献2に開示された微細セルロースは水溶性ではないため、水溶性セルロースエーテルのような問題は解消される。しかし、セルロースを微細化するには、多大なエネルギーとコストが必要である。セルロースは、ミクロフィブリルと呼ばれるナノファイバーが繊維方向に集束してより大きな単位の繊維を形成しており、セルロース分子間およびナノファイバー表面間で主に水素結合によって強く集束しているからである。   However, since water-soluble cellulose ether is water-soluble, there has been a problem that the water resistance of a coating film obtained from an aqueous coating composition is lowered (Patent Document 1). On the other hand, since the fine cellulose disclosed in Patent Document 2 is not water-soluble, problems such as water-soluble cellulose ether are solved. However, enormous energy and cost are required to refine cellulose. This is because, in cellulose, nanofibers called microfibrils are focused in the fiber direction to form larger units of fibers, and are strongly focused mainly by hydrogen bonds between cellulose molecules and between nanofiber surfaces.

このような理由から、従来の微細セルロースは、ミクロフィブリルと呼ばれるナノファイバーにまで完全に微細化されていないため、レオロジーコントロール剤としての粘度発現が不十分であり、添加量を多くしなければならないという問題があった。このことから、水系塗料組成物のレオロジーコントロール剤として、塗膜の耐水性を低下させることがなく、少量の添加で効果を発現するセルロース系のレオロジーコントロール剤が求められていた。   For these reasons, the conventional fine cellulose has not been completely refined to nanofibers called microfibrils, so that the viscosity expression as a rheology control agent is insufficient and the addition amount must be increased. There was a problem. For this reason, there has been a demand for a cellulose-based rheology control agent that does not lower the water resistance of the coating film and exhibits an effect when added in a small amount, as a rheology control agent for water-based coating compositions.

本発明は、このような事情に鑑みてなされたもので、少量で効果を発現するレオロジーコントロール剤により塗膜の耐水性に優れた水系塗料組成物を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the water-based coating composition excellent in the water resistance of the coating film with the rheology control agent which expresses an effect in a small quantity.

すなわち、本発明は下記に掲げる発明に関する。
〔1〕数平均繊維径が2nm以上500nm以下のセルロース繊維であって、セルロース分子中の水酸基に置換基が導入されており、置換度が0.01以上0.5以下であり、I型及び/又はII型の結晶構造を有し、アスペクト比が50以上であるセルロース繊維、水系樹脂、及び着色剤を含有する水系塗料組成物。
〔2〕好ましい実施形態として上記水系樹脂が、アクリル系樹脂、アルキド系樹脂、ポリエステル系樹脂、ポリウレタン樹脂、アクリルウレタン樹脂、ブロックイソシアネート含有化合物、フッ素樹脂、エポキシ樹脂、エポキシアクリレート樹脂、フェノール樹脂、メラミン樹脂、ビニル系樹脂、ポリアミド樹脂、及びセルロース系樹脂から選択される、1種又は2種以上である水系塗料組成物。
〔3〕好ましい実施形態として、上記セルロース繊維の含有量が0.01質量%以上3質量%以下、上記水系樹脂の含有量が樹脂固形部として0質量%以上80質量%以下、上記着色料の含有量が0質量%以上80質量%以下である水系塗料組成物。
That is, this invention relates to the invention hung up below.
[1] Cellulose fibers having a number average fiber diameter of 2 nm or more and 500 nm or less, wherein a substituent is introduced into the hydroxyl group in the cellulose molecule, the degree of substitution is 0.01 or more and 0.5 or less, A water-based paint composition containing cellulose fibers having a crystal structure of // type II and an aspect ratio of 50 or more, a water-based resin, and a colorant.
[2] As a preferred embodiment, the water-based resin is an acrylic resin, an alkyd resin, a polyester resin, a polyurethane resin, an acrylic urethane resin, a blocked isocyanate-containing compound, a fluorine resin, an epoxy resin, an epoxy acrylate resin, a phenol resin, or a melamine. A water-based coating composition that is one or more selected from resins, vinyl resins, polyamide resins, and cellulose resins.
[3] As a preferred embodiment, the content of the cellulose fiber is 0.01% by mass or more and 3% by mass or less, and the content of the aqueous resin is 0% by mass or more and 80% by mass or less as a resin solid part. A water-based paint composition having a content of 0 to 80% by mass.

本発明の水系塗料組成物は、上記セルロース繊維が低濃度であっても高い粘性とチキソトロピーインデックスを示すため、従来の微細セルロースより少量でレオロジーコントロール効果を発揮する。さらに、塗料製造時の顔料分散性、塗料保管時の沈降・分離防止効果、沈降した顔料の再分散性、塗料のタレ防止効果に優れている。
また、上記セルロース繊維の分散物は水に溶解しないため、塗料塗膜の耐水性を低下させる恐れがない。
Since the water-based coating composition of the present invention exhibits a high viscosity and a thixotropy index even when the cellulose fiber is in a low concentration, it exhibits a rheology control effect in a smaller amount than conventional fine cellulose. Furthermore, it is excellent in pigment dispersibility during coating production, sedimentation / separation preventing effect during coating storage, redispersibility of precipitated pigment, and sagging preventing effect of the coating.
Further, since the cellulose fiber dispersion does not dissolve in water, there is no risk of reducing the water resistance of the paint film.

次に、本発明の実施の形態を詳しく説明する。   Next, embodiments of the present invention will be described in detail.

本発明の水系塗料組成物は上記特定のセルロース繊維、水系樹脂、着色剤及び水を用いて得ることができる。   The water-based coating composition of the present invention can be obtained using the specific cellulose fiber, water-based resin, colorant and water.

本発明のセルロース繊維は、数平均繊維径が2nm以上500nm以下であって、セルロース分子中の水酸基に置換基が導入されており、置換度が0.01以上0.5以下であり、I型及び/又はII型の結晶構造を有し、アスペクト比50以上である
上記数平均繊維径は2nm以上500nm以下、より好ましくは2nm以上150nm以下である。数平均繊維径が2nm未満であると、本質的に分散媒体に溶解してしまい、逆に数平均繊維径が500nmを超えると、セルロース繊維そのものの分散安定性が低下するため、機能を発現しない。
The cellulose fiber of the present invention has a number average fiber diameter of 2 nm or more and 500 nm or less, a substituent is introduced into the hydroxyl group in the cellulose molecule, the degree of substitution is 0.01 or more and 0.5 or less, type I The number average fiber diameter having an II type crystal structure and an aspect ratio of 50 or more is 2 nm or more and 500 nm or less, more preferably 2 nm or more and 150 nm or less. If the number average fiber diameter is less than 2 nm, it is essentially dissolved in the dispersion medium. Conversely, if the number average fiber diameter exceeds 500 nm, the dispersion stability of the cellulose fiber itself is lowered, so that no function is exhibited. .

ここで、上記数平均繊維径の解析は、例えば、次のようにして行うことができる。すなわち、固形分率で0.05〜0.1質量%のセルロース繊維の水分散体を調製し、その分散体を、親水化処理済みのカーボン膜被覆グリッド上にキャストして、透過型電子顕微鏡(TEM)の観察用試料とする。なお、本発明外の大きな繊維径の繊維を含む場合には、ガラス上へキャストした表面の走査型電子顕微鏡(SEM)像を観察してもよい。そして、構成する繊維の大きさに応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。その際に、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、試料および観察条件(倍率等)を調節する。そして、この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交錯する繊維の繊維径を目視で読み取っていく。このようにして、最低3枚の重複しない表面部分の画像を、電子顕微鏡で撮影し、各々2つの軸に交錯する繊維の繊維径の値を読み取る(したがって、最低20本×2×3=120本の繊維径の情報が得られる)。このようにして得られた繊維径のデータにより、数平均繊維径を算出する。   Here, the analysis of the said number average fiber diameter can be performed as follows, for example. Specifically, an aqueous dispersion of cellulose fibers having a solid content of 0.05 to 0.1% by mass was prepared, and the dispersion was cast on a carbon film-coated grid that had been subjected to a hydrophilic treatment, and a transmission electron microscope. (TEM) observation sample. In addition, when the fiber of the big fiber diameter outside this invention is included, you may observe the scanning electron microscope (SEM) image of the surface cast on glass. Then, observation with an electron microscope image is performed at a magnification of 5000 times, 10000 times, or 50000 times depending on the size of the constituent fibers. At that time, an axis having an arbitrary vertical and horizontal image width is assumed in the obtained image, and the sample and observation conditions (magnification, etc.) are adjusted so that 20 or more fibers intersect the axis. Then, after obtaining an observation image that satisfies this condition, two random axes, vertical and horizontal, per image are drawn on this image, and the fiber diameter of the fiber that intersects the axis is visually read. In this way, images of at least three non-overlapping surface portions are taken with an electron microscope, and the fiber diameter values of the fibers intersecting with each of the two axes are read (thus, at least 20 × 2 × 3 = 120). Information on the fiber diameter of the book is obtained). The number average fiber diameter is calculated from the fiber diameter data thus obtained.

上記置換基としては、セルロース分子中の水酸基との間にエーテル結合が生じる置換基であれば特に制限されない。具体的には、カルボキシメチル基、メチル基、エチル基、シアノエチル基、ヒドロキシエチル基、ヒドロキシプロピル基、エチルヒドロキシエチル基、ヒドロキシプロピルメチル基等があげられる。これらのうち、カルボキシメチル基が好ましい。   The substituent is not particularly limited as long as it is a substituent that generates an ether bond with a hydroxyl group in the cellulose molecule. Specific examples include carboxymethyl group, methyl group, ethyl group, cyanoethyl group, hydroxyethyl group, hydroxypropyl group, ethylhydroxyethyl group, hydroxypropylmethyl group and the like. Of these, a carboxymethyl group is preferred.

上記置換度は、無水グルコース単位1モル当たりの置換基のモル数の平均値を表している。   The degree of substitution represents the average value of the number of moles of substituents per mole of anhydroglucose unit.

本発明のセルロース繊維の置換度は0.01以上0.5以下、より好ましくは0.01以上0.25以下である。置換度が0.01未満ではセルロース繊維の解繊が困難であり、0.5超ではセルロース繊維が水に溶解してしまうため増粘・分散安定効果を発現することが困難である。   The degree of substitution of the cellulose fiber of the present invention is 0.01 or more and 0.5 or less, more preferably 0.01 or more and 0.25 or less. If the degree of substitution is less than 0.01, it is difficult to defibrate the cellulose fiber, and if it exceeds 0.5, the cellulose fiber is dissolved in water, so that it is difficult to exhibit a thickening / dispersion stabilizing effect.

本発明のセルロース繊維はI型及び/又はII型の結晶構造を有する。結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、セルロースI型またはII型に典型的なX線回折パターン(I型:回折角2θ=14.8°、16.8°、22.6°、II型:回折角2θ=12.1°、19.8°、22.0°)をもつことから確認できる。   The cellulose fiber of the present invention has a crystal structure of type I and / or type II. Having a crystal structure is, for example, an X-ray diffraction pattern typical of cellulose type I or type II (type I: diffraction angle 2θ = 14.8 °, 16 in a diffraction profile obtained by wide-angle X-ray diffraction image measurement. .8 °, 22.6 °, type II: diffraction angle 2θ = 12.1 °, 19.8 °, 22.0 °).

本発明のセルロース繊維は、アスペクト比が50以上である。より好ましくは100以上である。アスペクト比が50未満の場合、ゲル状組成物がゲル状の性状を保持することが困難となる不具合が生じる。   The cellulose fiber of the present invention has an aspect ratio of 50 or more. More preferably, it is 100 or more. When the aspect ratio is less than 50, there is a problem that it is difficult for the gel-like composition to maintain the gel-like properties.

上記セルロースのアスペクト比は、例えば以下の方法で測定することが出来る。すなわ
ち、セルロースを親水化処理済みのカーボン膜被覆グリッド上にキャストした後、2%ウ
ラニルアセテートでネガティブ染色したTEM像(倍率:10000倍)から、セルロー
スの短幅の方の数平均幅、および長幅の方の数平均幅を観察した。すなわち、各先に述べ
た方法に従い、短幅の方の数平均幅、および長幅の方の数平均幅を算出し、これらの値を
用いてアスペクト比を下記の式(1)に従い算出した。
The aspect ratio of the cellulose can be measured, for example, by the following method. That is, from a TEM image (magnification: 10000 times) negatively stained with 2% uranyl acetate after cellulose was cast on a hydrophilic membrane-coated carbon film-coated grid, the number average width and length of the short side of cellulose The number average width of the width was observed. That is, the number average width of the shorter width and the number average width of the longer width are calculated according to the methods described above, and the aspect ratio is calculated according to the following formula (1) using these values. .

Figure 2016069618
本発明のセルロース繊維を得るためには、下記に例示するセルロースを公知の方法を用いてアニオン変性させることが必要である。その一例として次のような製造方法をあげることができる。セルロースを原料とし、溶媒に質量で3〜20倍の低級アルコール、具体的にはメタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、t−ブチルアルコール等の単独、又は2種以上の混合物と水の混合媒体を使用する。なお、低級アルコールの混合割合は、60〜95質量%である。マーセル化剤としては、セルロースのグルコース残基当たり0.5〜20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。セルロースと溶媒、マーセル化剤を混合してマーセル化処理を行う。このときの反応温度は0〜70℃、好ましくは10〜60℃であり、反応時間は15分〜8時間、好ましくは30分〜7時間である。その後、カルボキシメチル化剤をグルコース残基当たり0.05〜10倍モル添加してエーテル化反応を行う。このときの反応温度は30〜90℃、好ましくは40〜80℃であり、反応時間は30分〜10時間、好ましくは1時間〜4時間である。
Figure 2016069618
In order to obtain the cellulose fiber of the present invention, it is necessary to anion-modify the cellulose exemplified below using a known method. The following manufacturing method can be mention | raise | lifted as the example. Cellulose is used as a raw material, and the solvent is 3 to 20 times lower alcohol, specifically methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, etc. alone, or Use a mixture of two or more mixtures and water. In addition, the mixing ratio of a lower alcohol is 60-95 mass%. As the mercerizing agent, 0.5 to 20 times moles of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide is used per glucose residue of cellulose. Cellulose is formed by mixing cellulose, a solvent, and a mercerizing agent. The reaction temperature at this time is 0 to 70 ° C., preferably 10 to 60 ° C., and the reaction time is 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Thereafter, the etherification reaction is carried out by adding 0.05 to 10-fold mol of carboxymethylating agent per glucose residue. The reaction temperature at this time is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is 30 minutes to 10 hours, preferably 1 to 4 hours.

本発明のセルロース原料は、晒又は未晒木材パルプ、精製リンター、酢酸菌等の微生物によって生産されるセルロース等の天然セルロースや、セルロースを銅アンモニア溶液、モルホリン誘導体等、何らかの溶媒に溶解し、改めて紡糸された再生セルロース、及び上記セルロース系素材の加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル処理等によって解重合処理した微細セルロース又は機械的に処理した微細セルロースが例示される。   The cellulose raw material of the present invention is a natural cellulose such as cellulose produced by microorganisms such as bleached or unbleached wood pulp, refined linter, and acetic acid bacteria, and cellulose is dissolved in some solvent such as a copper ammonia solution and a morpholine derivative. Examples include spun regenerated cellulose and fine cellulose that has been depolymerized by hydrolysis, alkali hydrolysis, enzymatic decomposition, explosion treatment, vibration ball mill treatment, or the like, or mechanically processed fine cellulose.

本発明のセルロース繊維は、アニオン変性したセルロースを高圧ホモジナイザー等によって解繊処理することで得ることができる。高圧ホモジナイザーとは、ポンプによって流体に加圧し、流路に設けた非常に繊細な間隙より噴出させる装置である。粒子間の衝突、圧力差による剪断力等の総合エネルギーによって乳化・分散・解繊・粉砕・超微細化を行うことができる。   The cellulose fiber of the present invention can be obtained by fibrillating an anion-modified cellulose with a high-pressure homogenizer or the like. A high-pressure homogenizer is a device that pressurizes a fluid with a pump and ejects it from a very delicate gap provided in a flow path. It is possible to emulsify, disperse, defibrate, grind, and make ultrafine particles by using total energy such as collision between particles and shear force due to pressure difference.

本発明のホモジナイザーによる処理条件としては、特に限定されるものではないが、圧力条件としては、30MPa以上、好ましくは100MPa以上、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、攪拌、乳化、分散装置を用いて、アニオン変性されたセルロースに予備処理を施すことも可能である。   The treatment conditions with the homogenizer of the present invention are not particularly limited, but the pressure conditions are 30 MPa or more, preferably 100 MPa or more, more preferably 140 MPa or more. In addition, prior to defibration / dispersion treatment with a high-pressure homogenizer, if necessary, pretreatment of anion-modified cellulose is performed using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. Is also possible.

本発明の水系塗料組成物は、上記セルロース繊維と共に水系樹脂が用いられる。本発明
の水系塗料組成物に使用する水系樹脂としては、何ら制約はなく、例えば、水溶性の樹脂、ディスパージョン、エマルション、ミクロゲル等の形態を有する樹脂が使用できる。さらに具体的に上記水系樹脂を例示すると、アクリル系樹脂、アルキド系樹脂、ポリエステル系樹脂、ポリウレタン樹脂、アクリルウレタン樹脂、ブロックイソシアネート含有化合物、フッ素樹脂、エポキシ樹脂、エポキシアクリレート樹脂、フェノール樹脂、メラミン樹脂、ビニル系樹脂、ポリアミド樹脂、セルロース系樹脂等が挙げられる。さらに、本発明の水系塗料組成物に使用する水系樹脂には、重合または架橋により樹脂を潜在的に形成しうる化合物、いわゆる、モノマーやオリゴマーも含む。本特許において、ブロックイソシアネート含有化合物とは、ブロックイソシアネート樹脂、ブロックイソシアネートプレポリマー、ブロックイソシアネート含有オリゴマー、ブロックポリイソシアネート化合物などを指す。なお、プレポリマーとはモノマーの重合または縮合反応を適当な所で止めた中間生成物を指し、ブロックイソシアネートはブロック化イソシアネート、ブロックドイソシアネートと同義語として取り扱う。
In the aqueous coating composition of the present invention, an aqueous resin is used together with the cellulose fibers. There is no restriction | limiting as an aqueous resin used for the aqueous coating composition of this invention, For example, resin which has forms, such as a water-soluble resin, a dispersion, an emulsion, a microgel, can be used. More specifically, the above water-based resins are exemplified by acrylic resins, alkyd resins, polyester resins, polyurethane resins, acrylic urethane resins, blocked isocyanate-containing compounds, fluorine resins, epoxy resins, epoxy acrylate resins, phenol resins, melamine resins. Vinyl resin, polyamide resin, cellulose resin and the like. Furthermore, the water-based resin used in the water-based coating composition of the present invention includes compounds that can potentially form a resin by polymerization or crosslinking, so-called monomers and oligomers. In this patent, the blocked isocyanate-containing compound refers to a blocked isocyanate resin, a blocked isocyanate prepolymer, a blocked isocyanate-containing oligomer, a blocked polyisocyanate compound, and the like. The prepolymer refers to an intermediate product obtained by stopping the polymerization or condensation reaction of the monomer at an appropriate place, and the blocked isocyanate is treated as a synonym for the blocked isocyanate and the blocked isocyanate.

本発明の水系塗料組成物は、上記セルロース繊維及び水系樹脂と共に着色剤が用いられ
る。
In the water-based coating composition of the present invention, a colorant is used together with the cellulose fiber and the water-based resin.

本発明の水系塗料組成物に使用する着色剤としては、何ら制約はなく、例えば、有機および無機の顔料、体質顔料、蛍光顔料、染料、蛍光染料等が挙げられる。さらに具体的に例示すると、亜鉛華、亜酸化銅、一酸化鉛、ウォッチングレッド、マイカ、酸化チタン、オイルファーネスブラック、黄鉛、黄色酸化鉄、オキシサルファイド蛍光体、カオリンクレー、滑石、石筆石、石鹸石、カドミウムイエロー、カドミウムレッド、燐酸カルシウム、アルミナ、群青、蛍光顔料、軽質炭酸カルシウム、合成マイカ、黒鉛、黒色酸化鉄、コバルト青、コバルト緑、コバルト紫、胡粉、紺青、サーマルブラック、酸化クロム、酸化チタン(アタナース)、酸化チタン(ルチル)、ジスアゾイエロー、重質炭酸カルシウム、焼成クレー、赤色酸化鉄、カーボンブラック、茶色酸化鉄、チャンネルブラック、超微粒子状酸化亜鉛、超微粒子状酸化チタン、硫酸バリウム、鉄黒、天然黒鉛粉末、天然土状黒鉛、銅フタロシアニンブルー、銅フタロシアニングリーン、パーマネントレッド、バナデート蛍光体、表面処理硫酸バリウム、微粒子硫酸バリウム、微粒子水酸化アルミニウム、ファストイエロー10G、ベンガラ、ホワイトカーボン、モリブデンレッド等が挙げられる。これら着色剤は表面処理されたものを使用してもよく、また、あらかじめ樹脂または媒質中に分散処理されたものを使用してもよい。   There is no restriction | limiting as a coloring agent used for the water-based coating composition of this invention, For example, an organic and inorganic pigment, extender pigment, fluorescent pigment, dye, fluorescent dye etc. are mentioned. More specifically, zinc white, cuprous oxide, lead monoxide, watching red, mica, titanium oxide, oil furnace black, chrome lead, yellow iron oxide, oxysulfide phosphor, kaolin clay, talc, calcite, Soapstone, cadmium yellow, cadmium red, calcium phosphate, alumina, ultramarine, fluorescent pigment, light calcium carbonate, synthetic mica, graphite, black iron oxide, cobalt blue, cobalt green, cobalt purple, turquoise, bituminous, thermal black, chromium oxide , Titanium oxide (Atanus), titanium oxide (rutile), disazo yellow, heavy calcium carbonate, calcined clay, red iron oxide, carbon black, brown iron oxide, channel black, ultrafine zinc oxide, ultrafine titanium oxide, Barium sulfate, iron black, natural graphite powder, natural earth graphite, copper lid Cyanine blue, copper phthalocyanine green, permanent red, vanadate phosphor, surface treatment barium sulfate, particulate barium sulfate, aluminum particles hydroxide, Fast Yellow 10G, red iron oxide, white carbon, molybdenum red, and the like. These colorants may be surface-treated, or those previously dispersed in a resin or medium may be used.

本発明の水系塗料組成物には、上記セルロース繊維、水系樹脂及び着色剤に加えて、水
が用いられる。
In the water-based coating composition of the present invention, water is used in addition to the cellulose fiber, the water-based resin and the colorant.

さらに、本発明の水系塗料組成物には必要に応じて、本発明の効果を妨げない範囲で任意成分を含むことができる。   Furthermore, the water-based coating composition of the present invention can contain an optional component as long as it does not interfere with the effects of the present invention.

上記任意成分としては、ラメ剤、パール剤、防腐剤、香料、可塑剤、消泡剤、充填剤、
酸化防止剤、紫外線吸収剤、硬化剤、触媒、溶剤、界面活性剤、水溶性高分子、難燃剤、
帯電防止剤、熱安定剤、pH調整剤、凍結防止剤、湿潤剤、顔料分散剤、乳化剤、皮張り防止剤、レベリング剤、乾燥促進剤等の添加剤が挙げられる。
As the above optional components, lame, pearl, preservative, fragrance, plasticizer, antifoaming agent, filler,
Antioxidants, UV absorbers, curing agents, catalysts, solvents, surfactants, water-soluble polymers, flame retardants,
Examples thereof include additives such as antistatic agents, heat stabilizers, pH adjusting agents, antifreezing agents, wetting agents, pigment dispersants, emulsifiers, antiskinning agents, leveling agents, and drying accelerators.

本発明の水系塗料組成物は、上記セルロース繊維、水系樹脂、着色剤、水、および、必要であればその他の任意の添加物を混合・分散することにより製造される。その混合方法と混合順序に制約はない。   The water-based coating composition of the present invention is produced by mixing and dispersing the cellulose fiber, water-based resin, colorant, water, and, if necessary, any other additive. There is no restriction on the mixing method and mixing order.

本発明の水系塗料組成物の製造方法は具体的には下記の通りである。すなわち、上記セ
ルロース繊維を、あらかじめ水中で混合・分散処理して、平均繊維径を2nm以上500nm以下にした水分散体を調製しておき、本発明の水系塗料組成物に配合してもよく、また、本発明の水系塗料組成物を製造する際に実施される、混合・分散処理と同時に、上記セルロース繊維の分散を行い、平均繊維径を2nm以上500nm以下にした上記セルロース繊維としてもよい。本発明の水系塗料組成物を製造する際の合理性からすれば、後者の方法が好ましい。
The method for producing the water-based coating composition of the present invention is specifically as follows. That is, the cellulose fiber is previously mixed and dispersed in water to prepare an aqueous dispersion having an average fiber diameter of 2 nm or more and 500 nm or less, and may be blended in the aqueous coating composition of the present invention. Moreover, it is good also as the said cellulose fiber which disperse | distributed the said cellulose fiber simultaneously with the mixing and dispersion | distribution process implemented when manufacturing the water-based coating composition of this invention, and made the average fiber diameter 2 nm or more and 500 nm or less. The latter method is preferable from the viewpoint of rationality in producing the water-based coating composition of the present invention.

上記混合・分散を行う装置としては、プロペラ型、パドル型、アンカー型等の混合機、ホモミキサー、ホモディスパー、ホモジナイザー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波ホモジナイザー、振動ミル、ボールミル、遊星ボールミル、サンドミル、真空乳化装置、ペイントシェーカー等が挙げられる。   The mixing / dispersing apparatus includes a propeller type, paddle type, anchor type mixer, homomixer, homodisper, homogenizer, high pressure homogenizer, ultrahigh pressure homogenizer, ultrasonic homogenizer, vibration mill, ball mill, planetary ball mill, A sand mill, a vacuum emulsifier, a paint shaker, etc. are mentioned.

本発明の水系塗料組成物における、上記セルロース繊維の配合量は、通常0.01質量
%以上3質量%以下、好ましくは0.05質量%以上2質量%以下の範囲内である。0.01質量%以下では水系塗料組成物への粘性付与が困難となり、増粘安定効果が不十分となるので好ましくない。3質量%以上では水系塗料組成物の粘度が高過ぎて、塗料製造時のハンドリングが難しく、塗料使用時の塗工性、塗膜性が悪化するので好ましくない。
The blending amount of the cellulose fiber in the water-based coating composition of the present invention is usually 0.01% by mass to 3% by mass, preferably 0.05% by mass to 2% by mass. If it is 0.01% by mass or less, it is difficult to impart viscosity to the water-based coating composition, and the thickening and stabilizing effect becomes insufficient, which is not preferable. If it is 3% by mass or more, the viscosity of the water-based coating composition is too high, it is difficult to handle at the time of coating production, and the coating properties and coating properties at the time of using the coating are deteriorated.

本発明の水系塗料組成物の粘度は、上記特定のセルロース繊維の配合量により調整することができる。すなわち、上記特定のセルロース繊維の配合量を増やすと粘度は増加する傾向にあり、上記特定のセルロース繊維の配合量を減らすと粘度は低下する傾向にある。   The viscosity of the water-based coating composition of the present invention can be adjusted by the blending amount of the specific cellulose fiber. That is, when the amount of the specific cellulose fiber is increased, the viscosity tends to increase, and when the amount of the specific cellulose fiber is decreased, the viscosity tends to decrease.

上記特定のセルロース繊維の配合量により、本発明の水系塗料組成物の粘度は100mPa・sから100000mPa・sの範囲に調整することが可能であり、流動状態の水系塗料組成物から、必要に応じて、ペースト状またはゲル状の水系塗料組成物とすることができる。   The viscosity of the aqueous coating composition of the present invention can be adjusted in the range of 100 mPa · s to 100000 mPa · s depending on the blending amount of the specific cellulose fiber. Thus, a water-based paint composition in the form of a paste or gel can be obtained.

また、本発明の水系塗料組成物の粘度は、上記特定のセルロース繊維の配合量以外に、水系樹脂成分や着色剤の種類と配合量、および任意成分の種類と配合量の影響を受けるので、個別の水系塗料組成物ごとに粘度の調整を行うことが好ましい。   In addition, the viscosity of the water-based coating composition of the present invention is affected by the types and amounts of water-based resin components and colorants, as well as the types and amounts of optional components, in addition to the specific cellulose fiber content. It is preferable to adjust the viscosity for each water-based coating composition.

本発明の水系塗料組成物における上記水系樹脂の配合量は、樹脂固形分として、通常、0質量%以上80質量%以下、好ましくは0.1質量%以上60質量%以下の範囲である。上記配合量が樹脂固形分80質量%超では水系塗料組成物の流動性が保たれず、ハンドリングが難しくなるため好ましくない。   The blending amount of the water-based resin in the water-based coating composition of the present invention is usually in the range of 0 to 80% by mass, preferably 0.1 to 60% by mass as the resin solid content. If the blending amount exceeds 80% by mass of the resin solid content, the fluidity of the water-based coating composition is not maintained, and handling becomes difficult.

本発明の水系塗料組成物における上記着色剤の配合量は、通常、0質量%以上80質量%、以下好ましくは0質量%以上60質量%以下の範囲である。本発明の水系塗料組成物がクリヤー塗料の場合には配合量は0質量%となる。80質量%以上では水系塗料組成物の流動性が保たれず、ハンドリングが難しくなるため好ましくない。   The blending amount of the colorant in the water-based coating composition of the present invention is usually in the range of 0 to 80% by mass, preferably 0 to 60% by mass. When the water-based paint composition of the present invention is a clear paint, the blending amount is 0% by mass. If it is 80% by mass or more, the fluidity of the water-based coating composition is not maintained, and handling becomes difficult.

本発明の水系塗料組成物の塗工方法にはなんら制約はなく、例えば刷毛、バーコーター、ロールコーター、スプレー、浸漬、電着、焼付、筆記、印刷、インクジェット印刷等により塗工できる。
本発明の水系塗料組成物に配合される上記特定のセルロース繊維は、チキソトロピーイ
ンデックスが大きいため、水系塗料組成物の粘度が高い場合であっても、スプレー塗工が
可能である。
There is no restriction | limiting in the coating method of the water-system coating composition of this invention, For example, it can apply by brush, a bar coater, a roll coater, spray, immersion, electrodeposition, baking, writing, printing, inkjet printing etc.
Since the specific cellulose fiber blended in the aqueous coating composition of the present invention has a large thixotropic index, spray coating is possible even when the aqueous coating composition has a high viscosity.

本発明の水系塗料組成物を塗工する基材、としては、何ら制約はなく、例えば、紙、木
材、樹脂、金属、ガラス、セメント、アスファルト、皮革等が挙げられる。
本発明の水系塗料組成物の用途としては、何ら制約はなく、例えば、建築、建材、自動車、船舶、鉄道、航空機、機械、構造物、自動車補修、家電、繊維、皮革、文房具、木工、家具、雑貨、鋼板、缶、電子基板、電子部品、印刷等の用途に水系塗料または水系インクとして利用することができる。
There is no restriction | limiting as a base material which applies the water-system coating composition of this invention, For example, paper, wood, resin, a metal, glass, cement, asphalt, leather etc. are mentioned.
There are no restrictions on the use of the water-based paint composition of the present invention, for example, construction, building materials, automobiles, ships, railways, aircraft, machines, structures, automobile repairs, home appliances, textiles, leather, stationery, woodworking, furniture. It can be used as a water-based paint or water-based ink for applications such as miscellaneous goods, steel plates, cans, electronic substrates, electronic parts, and printing.

つぎに、実施例について比較例と併せて説明する。ただし、本発明はこれら実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.

<セルロース繊維各項目の測定方法>
[グルコース単位当たりの置換度の測定方法]
セルロース繊維を0.6質量%スラリーに調製し、0.1M塩酸水溶液を加えてpH2.4とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量からカルボキシル基量を測定し、下式を用いて算出した。ここで言う置換度とは、無水グルコース単位1モル当たりの置換基のモル数の平均値を表している。
<Measurement method of each item of cellulose fiber>
[Measurement method of substitution degree per glucose unit]
Cellulose fiber is prepared in a slurry of 0.6% by mass, 0.1M hydrochloric acid aqueous solution is added to adjust the pH to 2.4, and 0.05N sodium hydroxide aqueous solution is added dropwise until the pH reaches 11. The amount of carboxyl groups was measured from the amount of sodium hydroxide consumed in the neutralization step of a weak acid with a gradual change in electrical conductivity, and calculated using the following formula. The degree of substitution referred to here represents the average value of the number of moles of substituents per mole of anhydroglucose unit.

Figure 2016069618
[数平均繊維径の測定方法]
セルロース繊維に水を加えて2質量%のスラリーとして、ディスパー型ミキサーを用いて回転数8,000rpmで10分間微細化処理を行った。各セルロース繊維の最大繊維径および数平均繊維径を、透過型電子顕微鏡(TEM)(日本電子社製、JEM−1400)を用いて観察した。すなわち、各セルロース繊維を親水化処理済みのカーボン膜被覆グリッド上にキャストした後、2%ウラニルアセテートでネガティブ染色したTEM像(倍率:10000倍)から、先に述べた方法に従い、数平均繊維径を算出した。
Figure 2016069618
[Measurement method of number average fiber diameter]
Water was added to the cellulose fiber to make a slurry of 2 mass%, and a finer treatment was performed for 10 minutes at a rotation speed of 8,000 rpm using a disper type mixer. The maximum fiber diameter and the number average fiber diameter of each cellulose fiber were observed using a transmission electron microscope (TEM) (JEM-1400, manufactured by JEOL Ltd.). That is, after each cellulose fiber was cast on a hydrophilized carbon film-coated grid and negatively stained with 2% uranyl acetate, the number average fiber diameter was determined according to the method described above. Was calculated.

<結晶構造の確認方法>
X線回折装置(リガク社製、RINT−Ultima3)を用いて広角X線回折像を測定し、各セルロース繊維の回折プロファイルにセルロースI型またはII型に典型的なX線回折パターン(I型:回折角2θ=14.8°、16.8°、22.6°、II型:回折角2θ=12.1°、19.8°、22.0°)がみられる場合は結晶構造を有すると判断した。
<Confirmation method of crystal structure>
A wide-angle X-ray diffraction image was measured using an X-ray diffractometer (RINT-Ultima 3 manufactured by Rigaku Corporation), and an X-ray diffraction pattern typical of cellulose type I or type II (type I: (Diffraction angle 2θ = 14.8 °, 16.8 °, 22.6 °, type II: diffraction angle 2θ = 12.1 °, 19.8 °, 22.0 °) I decided.

<アスペクト比の測定方法>
セルロースを親水化処理済みのカーボン膜被覆グリッド上にキャストした後、2%ウラニルアセテートでネガティブ染色したTEM像(倍率:10000倍)から、セルロースの短幅の方の数平均幅、長幅の方の数平均幅を観察した。すなわち、各先に述べた方法に従い、短幅の方の数平均幅、および長幅の方の数平均幅を算出し、これらの値を用いてアスペクト比を前述の式(1)に従い算出した。
<Aspect ratio measurement method>
From the TEM image (magnification: 10000 times) that was negatively stained with 2% uranyl acetate after the cellulose was cast on a hydrophilic membrane-coated carbon film grid, the number average width and the long width of the short width of cellulose The number average width of was observed. That is, the number average width of the shorter width and the number average width of the longer width are calculated according to the methods described above, and the aspect ratio is calculated according to the above-described formula (1) using these values. .

〔製造例1〕
撹拌機に、パルプ(LBKP、日本製紙(株)製)を乾燥質量で200g、水酸化ナトリウムを乾燥質量で18g加え、パルプ固形分濃度が15%になるように水を加えた。その後、30℃で30分攪拌した後に70℃まで昇温し、モノクロロ酢酸ナトリウムを23g(有効成分換算)添加した。1時間反応した後に、反応物を取り出して中和、洗浄して、グルコース単位当たりの置換度0.01のアニオン変性されたセルロースを得た。その後、アニオン変性したパルプに水を添加して固形分濃度5%とし、高圧ホモジナイザーにより20℃、140MPaの圧力で5回処理し、数平均繊維径74nm、アスペクト比67で、結晶構造を有するセルロース繊維1の分散液を得た。
[Production Example 1]
To the stirrer, 200 g of pulp (LBKP, Nippon Paper Industries Co., Ltd.) in dry mass and 18 g of sodium hydroxide in dry mass were added, and water was added so that the pulp solid content concentration was 15%. Then, after stirring for 30 minutes at 30 ° C., the temperature was raised to 70 ° C., and 23 g (in terms of active ingredient) of sodium monochloroacetate was added. After reacting for 1 hour, the reaction product was taken out, neutralized and washed to obtain anion-modified cellulose having a substitution degree of 0.01 per glucose unit. Thereafter, water was added to the anion-modified pulp to a solid content concentration of 5%, and it was treated 5 times with a high-pressure homogenizer at 20 ° C. and a pressure of 140 MPa, and the number-average fiber diameter was 74 nm, the aspect ratio was 67, and the cellulose having a crystal structure A dispersion of fiber 1 was obtained.

〔製造例2〕
水酸化ナトリウムを176g、モノクロロ酢酸ナトリウムを234g(有効成分換算)に変更した以外、製造例1と同様にしてセルロース繊維2の分散液を得た。なお、得られたセルロース繊維のグルコース単位当たりの置換度は0.10であり、数平均繊維径は10nm、アスペクト比140で、結晶構造を有していた。
[Production Example 2]
A dispersion of cellulose fiber 2 was obtained in the same manner as in Production Example 1 except that 176 g of sodium hydroxide and 234 g of sodium monochloroacetate (active ingredient conversion) were changed. In addition, the substitution degree per glucose unit of the obtained cellulose fiber was 0.10, the number average fiber diameter was 10 nm, the aspect ratio was 140, and it had a crystal structure.

〔製造例3〕
水酸化ナトリウムを308g、モノクロロ酢酸ナトリウムを410g(有効成分換算)に変更した以外、製造例1と同様にしてセルロース繊維3の分散液を得た。なお、得られたセルロース繊維のグルコース単位当たりの置換度は0.25であり、数平均繊維径は6nm、アスペクト比160で、結晶構造を有していた。
[Production Example 3]
A dispersion of cellulose fiber 3 was obtained in the same manner as in Production Example 1, except that sodium hydroxide was changed to 308 g and sodium monochloroacetate was changed to 410 g (in terms of active ingredient). In addition, the substitution degree per glucose unit of the obtained cellulose fiber was 0.25, the number average fiber diameter was 6 nm, the aspect ratio was 160, and it had a crystal structure.

〔製造例4〕
水酸化ナトリウムを9g、モノクロロ酢酸ナトリウムを12g(有効成分換算)に変更した以外、製造例1と同様にしてセルロース繊維4の分散液を得た。なお、得られたセルロース繊維のグルコース単位当たりの置換度は0.005であり、数平均繊維径は620nm、アスペクト比18で、結晶構造を有していた。
[Production Example 4]
A dispersion of cellulose fiber 4 was obtained in the same manner as in Production Example 1, except that the sodium hydroxide was changed to 9 g and the sodium monochloroacetate was changed to 12 g (converted to the active ingredient). In addition, the substitution degree per glucose unit of the obtained cellulose fiber was 0.005, the number average fiber diameter was 620 nm, the aspect ratio was 18, and it had a crystal structure.

〔製造例5〕
水酸化ナトリウムを476g、モノクロロ酢酸ナトリウムを632g(有効成分換算)に変更した以外、製造例1と同様にしてセルロース繊維5の分散液を得た。なお、得られたセルロースのグルコース単位当たりの置換度は0.6であり、数平均繊維径は測定できず、結晶構造はみられなかった。
[Production Example 5]
A dispersion of cellulose fiber 5 was obtained in the same manner as in Production Example 1, except that sodium hydroxide was changed to 476 g and sodium monochloroacetate was changed to 632 g (in terms of active ingredient). In addition, the substitution degree per glucose unit of the obtained cellulose was 0.6, the number average fiber diameter could not be measured, and no crystal structure was observed.

〔製造例6〕
水酸化ナトリウムを308g、モノクロロ酢酸ナトリウムを410g(有効成分換算)、高圧ホモジナイザーによる処理を20回に変更した以外、製造例1と同様にしてセルロース繊維6の分散液を得た。なお、得られたセルロース繊維のグルコース単位当たりの置換度は0.25であり、数平均繊維径は測定できず、結晶構造はみられなかった。
[Production Example 6]
A dispersion of cellulose fiber 6 was obtained in the same manner as in Production Example 1, except that 308 g of sodium hydroxide, 410 g of sodium monochloroacetate (converted to active ingredients), and the treatment with the high-pressure homogenizer were changed to 20 times. In addition, the substitution degree per glucose unit of the obtained cellulose fiber was 0.25, the number average fiber diameter could not be measured, and no crystal structure was observed.

〔製造例7〕
撹拌機に、パルプ(LBKP、日本製紙(株)製)を乾燥質量で200g、水酸化ナトリウムを乾燥質量で308g加え、パルプ固形分濃度が15%になるように水を加えた。その後、70℃で9時間攪拌した後に、モノクロロ酢酸ナトリウムを410g(有効成分換算)添加した。1時間反応した後に、反応物を取り出して中和、洗浄して、グルコース単位当たりの置換度0.28のアニオン変性されたセルロースを得た。その後、アニオン変性したパルプに水を添加して固形分濃度5%とし、高圧ホモジナイザーにより20℃、140MPaの圧力で5回処理し、セルロース繊維7の分散液を得た。数平均繊維径は測定できず、結晶構造はみられなかった。
[Production Example 7]
To a stirrer, 200 g of pulp (LBKP, manufactured by Nippon Paper Industries Co., Ltd.) in dry mass and 308 g of sodium hydroxide in dry mass were added, and water was added so that the pulp solid content concentration was 15%. Then, after stirring for 9 hours at 70 ° C., 410 g of sodium monochloroacetate (in terms of active ingredient) was added. After reacting for 1 hour, the reaction product was taken out, neutralized and washed to obtain anion-modified cellulose having a substitution degree of 0.28 per glucose unit. Thereafter, water was added to the anion-modified pulp to a solid content concentration of 5%, and it was treated 5 times with a high-pressure homogenizer at 20 ° C. and a pressure of 140 MPa to obtain a dispersion of cellulose fibers 7. The number average fiber diameter could not be measured, and no crystal structure was observed.

〔セルロース微粒子〕
繊維表面が酸化されていない、セルロース微粒子分散体を調製した。すなわち、セルロース(木材パルプから製造したサルファイトパルプ)を、固形分濃度1質量%となるように水に分散させ、石臼型グラインダーで15回処理を行い、繊維表面が酸化されていないセルロース微粒子分散体を調製した。下記の方法でセルロース繊維の数平均繊維径を測定したところ、4μmであった。
[Cellulose fine particles]
A cellulose fine particle dispersion in which the fiber surface was not oxidized was prepared. That is, cellulose (sulfite pulp produced from wood pulp) is dispersed in water so as to have a solid content concentration of 1% by mass, treated with a stone mill grinder 15 times, and cellulose fine particles whose fiber surface is not oxidized are dispersed. The body was prepared. It was 4 micrometers when the number average fiber diameter of the cellulose fiber was measured by the following method.

<水性塗料組成物の評価>
〔実施例1〕
着色剤である酸化チタン15質量部並びに炭酸カルシウム7質量部、界面活性剤であるポリオキシエチレンポリオキシプロピレンブロック重合体(製品名:エパン710、第一工業製薬株式会社製)0.6質量部、及び水(顔料分散用)20質量部を計量し、ビーズミルで分散処理をして、顔料分散液を調製した。得られた顔料分散液、セルロース繊維1を固形分換算値で0.2質量部、及び水系ウレタン樹脂エマルションを固形分換算値で18質量部を計量し水を加えて100質量部とした。次に、ホモミキサーを用いて、12000rpmで15分間混合して、水系塗料組成物を得た。
<Evaluation of aqueous coating composition>
[Example 1]
15 parts by mass of titanium oxide as a colorant and 7 parts by mass of calcium carbonate, 0.6 parts by mass of polyoxyethylene polyoxypropylene block polymer as a surfactant (product name: Epan 710, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) And 20 parts by mass of water (for pigment dispersion) were weighed and dispersed with a bead mill to prepare a pigment dispersion. 0.2 parts by mass of the obtained pigment dispersion and cellulose fiber 1 in terms of solid content, and 18 parts by mass of the water-based urethane resin emulsion in terms of solid content were weighed and water was added to make 100 parts by mass. Next, it mixed for 15 minutes at 12000 rpm using the homomixer, and obtained the water-system coating composition.

〔実施例2、3、比較例1〜5〕
セルロース繊維1をセルロース繊維2ないし5、及びセルロース粒子に変更する以外は、実施例1に準じて水系塗料組成物を得た。
[Examples 2 and 3, Comparative Examples 1 to 5]
A water-based coating composition was obtained according to Example 1 except that the cellulose fiber 1 was changed to cellulose fibers 2 to 5 and cellulose particles.

このようにして得られた各水系塗料組成物を用い、下記の基準に従って、各特性の評価
を行った。
[分散性]
水系塗料組成物を目視観察し、顔料の分散状態を下記の判定基準に従い判定した。
○:顔料が均一に分散している。
△:一部に分離がみられる。
×:完全に分離している。
Each characteristic was evaluated according to the following reference | standard using each water-based coating composition obtained in this way.
[Dispersibility]
The water-based paint composition was visually observed, and the dispersion state of the pigment was determined according to the following criteria.
○: The pigment is uniformly dispersed.
Δ: Partial separation is observed.
X: Completely separated.

[保存性]
水系塗料組成物を、共栓付メスシリンダーに移し、40℃で1週間放置した後、下記の判定基準に従い組成物の分離状態を目視で判定した。
○:顔料が均一に分散している。
△:一部に分離がみられる。
×:完全に分離している。
[Preservation]
The aqueous coating composition was transferred to a measuring cylinder with a stopper and allowed to stand at 40 ° C. for 1 week, and then the separation state of the composition was visually determined according to the following criteria.
○: The pigment is uniformly dispersed.
Δ: Partial separation is observed.
X: Completely separated.

[タレ性]
得られた水系塗料組成物を、バーコーター(K−ハンドコーター、RK PrInt−Coat Instrument社製)を用いて、垂直に保持した亜鉛メッキ鋼板に塗工し、塗料のタレ状態を下記の判定基準に従い目視で判定した。
○:塗工後10分以上タレがみられない。
△:塗工後10分以内にタレがみられる。
×:塗工直後からタレがみられる。
[Sag]
The obtained water-based paint composition was applied to a galvanized steel sheet held vertically using a bar coater (K-hand coater, manufactured by RK PrInt-Coat Instrument), and the sagging state of the paint was determined according to the following criteria. And judged visually.
○: Sagging is not observed for 10 minutes or more after coating.
Δ: Sagging is observed within 10 minutes after coating.
X: Sagging is observed immediately after coating.

[耐水性]
水系塗料組成物を、バーコーター(K−ハンドコーター、RK PrInt−Coat Instrument社製)を用いて、亜鉛メッキ鋼板に塗工した後、40℃で24時間乾燥し、さらに、25℃の水中に10日間浸漬した後、塗膜の状態を下記の判定基準に従い目視で判定した。
○:塗膜の剥がれや膨れがみとめられない。
△:一部に塗膜の剥がれや膨れがみとめられる。
×:全体に塗膜の剥がれや膨れがみとめられる。
[water resistant]
The water-based coating composition was applied to a galvanized steel sheet using a bar coater (K-hand coater, manufactured by RK PrInt-Coat Instrument), dried at 40 ° C. for 24 hours, and further immersed in 25 ° C. water. After immersion for 10 days, the state of the coating film was visually determined according to the following criteria.
○: No peeling or swelling of the coating film is observed.
Δ: Peeling or swelling of the coating film is partially observed.
X: Peeling and swelling of the coating film are observed throughout.

Figure 2016069618
表1の結果から、セルロース繊維1ないし3を使用した水系塗料組成物は各評価項目において優れており、水系塗料として十分な性能を有していることがわかった。これに対し、セルロース繊維4ならびにセルロース微粒子は分散性、保存性が悪く、成膜が困難であった。また、セルロース繊維5ないし7は保存性、タレ性、耐水性においてセルロース繊維1ないし3に劣っていた。
Figure 2016069618
From the results in Table 1, it was found that the water-based paint composition using cellulose fibers 1 to 3 was excellent in each evaluation item and had sufficient performance as a water-based paint. On the other hand, the cellulose fiber 4 and the cellulose fine particles had poor dispersibility and storage stability, and film formation was difficult. Cellulose fibers 5 to 7 were inferior to cellulose fibers 1 to 3 in terms of storage stability, sagging properties, and water resistance.

本発明の活用例として、建築、建材、自動車、船舶、鉄道、航空機、機械、構造物、自
動車補修、家電、繊維、皮革、文房具、木工、家具、雑貨、鋼板、缶、電子基板、電子部
品、印刷、等の用途に水系塗料または水系インクとして利用することができる。





Examples of use of the present invention include construction, building materials, automobiles, ships, railways, aircraft, machinery, structures, automobile repairs, home appliances, textiles, leather, stationery, woodwork, furniture, sundries, steel plates, cans, electronic boards, electronic components It can be used as a water-based paint or water-based ink for applications such as printing.





Claims (3)

数平均繊維径が2nm以上500nm以下のセルロース繊維であって、セルロース分子中の水酸基に置換基が導入されており、置換度が0.01以上0.5以下であり、I型及び/又はII型の結晶構造を有し、アスペクト比が50以上であるセルロース繊維、水系樹脂、及び着色剤を含有することを特徴とする水系塗料組成物。   Cellulose fibers having a number average fiber diameter of 2 nm or more and 500 nm or less, wherein a substituent is introduced into a hydroxyl group in the cellulose molecule, the degree of substitution is 0.01 or more and 0.5 or less, type I and / or II A water-based paint composition comprising a cellulose fiber having a mold crystal structure and an aspect ratio of 50 or more, a water-based resin, and a colorant. 上記水系樹脂が、アクリル系樹脂、アルキド系樹脂、ポリエステル系樹脂、ポリウレタ
ン樹脂、アクリルウレタン樹脂、ブロックイソシアネート含有化合物、フッ素樹脂、エポキシ樹脂、エポキシアクリレート樹脂、フェノール樹脂、メラミン樹脂、ビニル系樹脂、ポリアミド樹脂及びセルロース系樹脂から選択される1種又は2種以上であることを特徴とする請求項1に記載の水系塗料組成物。
The water-based resin is an acrylic resin, alkyd resin, polyester resin, polyurethane resin, acrylic urethane resin, block isocyanate-containing compound, fluororesin, epoxy resin, epoxy acrylate resin, phenol resin, melamine resin, vinyl resin, polyamide The water-based coating composition according to claim 1, wherein the water-based coating composition is one or more selected from a resin and a cellulose-based resin.
上記セルロース繊維の含有量が0.01質量%以上3質量%以下、上記水系樹脂の含有量が樹脂固形部として0質量%以上80質量%以下、上記着色料の含有量が0質量%以上80質量%以下であることを特徴とする請求項1又は2に記載の水系塗料組成物。
The content of the cellulose fiber is 0.01% by mass to 3% by mass, the content of the aqueous resin is 0% by mass to 80% by mass as the resin solid part, and the content of the colorant is 0% by mass to 80%. The water-based coating composition according to claim 1 or 2, wherein the water-based coating composition is not more than mass%.
JP2014242770A 2014-09-28 2014-12-01 Aqueous coating composition Pending JP2016069618A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197684 2014-09-28
JP2014197684 2014-09-28

Publications (1)

Publication Number Publication Date
JP2016069618A true JP2016069618A (en) 2016-05-09

Family

ID=55866125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242770A Pending JP2016069618A (en) 2014-09-28 2014-12-01 Aqueous coating composition

Country Status (1)

Country Link
JP (1) JP2016069618A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065030A (en) * 2014-09-19 2016-04-28 第一工業製薬株式会社 Composition for spraying and spraying device using the same
JP2018035341A (en) * 2016-08-25 2018-03-08 アトミクス株式会社 Aqueous road-marking coating
JP6352507B1 (en) * 2017-07-27 2018-07-04 第一工業製薬株式会社 Hydrogen gas barrier film composition and hydrogen gas barrier film using the same
JP2018203860A (en) * 2017-06-02 2018-12-27 アトミクス株式会社 Paint for forming marking sheet and marking sheet
WO2019043782A1 (en) 2017-08-29 2019-03-07 王子ホールディングス株式会社 Fibrous-cellulose-containing composition and coating
JP2019156863A (en) * 2018-03-07 2019-09-19 第一工業製薬株式会社 Coating composition and method for producing the same
WO2019203239A1 (en) * 2018-04-17 2019-10-24 王子ホールディングス株式会社 Sheet and layered product
JP2020026466A (en) * 2018-08-10 2020-02-20 東洋インキScホールディングス株式会社 Coating agent for decorative material
JP2020055898A (en) * 2018-09-28 2020-04-09 桜宮化学株式会社 Coating composition for metal coating and method for producing the same, coated metal product, coated metal can and inner surface coated metal can
WO2023112914A1 (en) * 2021-12-14 2023-06-22 Henkel Ag & Co. Kgaa Coating Agent for Paper Base Material
JP7334915B2 (en) 2022-02-04 2023-08-29 熊本県 Aqueous coating composition and coating film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065030A (en) * 2014-09-19 2016-04-28 第一工業製薬株式会社 Composition for spraying and spraying device using the same
JP2018035341A (en) * 2016-08-25 2018-03-08 アトミクス株式会社 Aqueous road-marking coating
JP7079461B2 (en) 2017-06-02 2022-06-02 アトミクス株式会社 Road marking sheet
JP2018203860A (en) * 2017-06-02 2018-12-27 アトミクス株式会社 Paint for forming marking sheet and marking sheet
JP6352507B1 (en) * 2017-07-27 2018-07-04 第一工業製薬株式会社 Hydrogen gas barrier film composition and hydrogen gas barrier film using the same
WO2019021657A1 (en) * 2017-07-27 2019-01-31 第一工業製薬株式会社 Composition for hydrogen-gas barrier film and hydrogen-gas barrier film obtained therefrom
JP2019026695A (en) * 2017-07-27 2019-02-21 第一工業製薬株式会社 Composition for hydrogen-gas barrier film and hydrogen-gas barrier film based on the same
WO2019043782A1 (en) 2017-08-29 2019-03-07 王子ホールディングス株式会社 Fibrous-cellulose-containing composition and coating
JP2019156863A (en) * 2018-03-07 2019-09-19 第一工業製薬株式会社 Coating composition and method for producing the same
WO2019203239A1 (en) * 2018-04-17 2019-10-24 王子ホールディングス株式会社 Sheet and layered product
JP2020026466A (en) * 2018-08-10 2020-02-20 東洋インキScホールディングス株式会社 Coating agent for decorative material
JP7119741B2 (en) 2018-08-10 2022-08-17 東洋インキScホールディングス株式会社 Coating agent for cosmetic materials
JP2020055898A (en) * 2018-09-28 2020-04-09 桜宮化学株式会社 Coating composition for metal coating and method for producing the same, coated metal product, coated metal can and inner surface coated metal can
JP7197116B2 (en) 2018-09-28 2022-12-27 桜宮化学株式会社 Coating composition for metal coating, manufacturing method thereof, coated metal product, coated metal can, and inner coated metal can
WO2023112914A1 (en) * 2021-12-14 2023-06-22 Henkel Ag & Co. Kgaa Coating Agent for Paper Base Material
JP7334915B2 (en) 2022-02-04 2023-08-29 熊本県 Aqueous coating composition and coating film

Similar Documents

Publication Publication Date Title
JP2016069618A (en) Aqueous coating composition
CN108395485B (en) Modified nanocellulose, filler and water-based coating containing same
JP2011057749A (en) Water-based coating composition
JP2014132091A (en) Aqueous coating composition
JP6082081B2 (en) Coating composition comprising submicron calcium carbonate
JP2009067910A (en) Additive for water-based coating, and water-based coating composition
KR20100014938A (en) Improved paint formulations comprising cellulose ether/network building polymer fluid gel thickeners
EP2569483A1 (en) A process for the production of a composition comprising fibrillated cellulose and a composition
JP6771821B2 (en) Paint composition
MX2007006615A (en) Printing ink and coating compositions containing starch.
KR102393590B1 (en) Large particle organic extender
WO2021123127A1 (en) Printing ink containing undried, coated titanium dioxide
JP2016069617A (en) Aqueous ink composition and writing instrument using the same
JP2019104833A (en) Water-based coating composition, film and method for producing film
DE60001554T2 (en) AQUEOUS PAINT COMPOSITION
US20140373753A1 (en) System and method for a financial transaction system having a secure biometric verification system
JP2015071703A (en) Water-based coating composition
US9951196B2 (en) Cationic polyoxometalate-coated alumina trihydrate dispersants
EP1706460B1 (en) Aqueous coating substances comprising increased volumetric concentrations of pigment
JP6560778B1 (en) Coating composition and method for producing the same
US20210189161A1 (en) Printing ink containing undried, coated titanium dioxide
JP2008231587A (en) Composition for coating paper and coated paper
CN113692431B (en) Amine dispersants
JP2019184349A (en) Evaluation method of mixture liquid of rubber constituent and cellulose nanofibers
US20220243075A1 (en) Composition, film, kit, coated substrate, and related methods thereof