WO2023090362A1 - Method for producing cellulose fiber layer-containing multilayer body - Google Patents

Method for producing cellulose fiber layer-containing multilayer body Download PDF

Info

Publication number
WO2023090362A1
WO2023090362A1 PCT/JP2022/042561 JP2022042561W WO2023090362A1 WO 2023090362 A1 WO2023090362 A1 WO 2023090362A1 JP 2022042561 W JP2022042561 W JP 2022042561W WO 2023090362 A1 WO2023090362 A1 WO 2023090362A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
cellulose fiber
acid
cellulose fibers
fiber layer
Prior art date
Application number
PCT/JP2022/042561
Other languages
French (fr)
Japanese (ja)
Inventor
幹夫 福原
俊之 橋田
昌浩 森田
丈史 中谷
啓吾 渡部
達規 伊藤
Original Assignee
国立大学法人東北大学
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 日本製紙株式会社 filed Critical 国立大学法人東北大学
Publication of WO2023090362A1 publication Critical patent/WO2023090362A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/16Organic dielectrics of fibrous material, e.g. paper

Definitions

  • the present invention relates to a method for manufacturing a laminate containing cellulose fiber layers.
  • a capacitor is essentially an electronic component that stores and discharges electric charge (electrical energy) through electrostatic capacitance.
  • Capacitors play roles such as power source stability, backup circuits, coupling elements, and noise filters in mobile electronic devices such as personal computers and mobile phones, and are indispensable components for electronic devices.
  • high-performance IT products such as mobile phones and micro-storage devices and batteries for electric vehicles have rapidly evolved, and the demand for capacitors that are more compact and have high performance such as large-capacity memory is increasing.
  • the market for capacitors in automobiles, IT equipment, energy-saving inverters, etc. is steadily expanding at an average annual rate of about 3.7%, reaching a market of 1 trillion yen.
  • capacitors do not use flammable elements such as lithium or environmental pollutants. That is, there is a demand for materials that are solid rather than liquid, harmless to health, and inexpensive.
  • Capacitors are broadly classified into high-voltage power circuits (heavy electric) and electronic/electrical equipment circuits (light electric) according to their application. Among them, ceramic capacitors are mainly used as capacitors for electronic/electrical equipment circuits in the field of light current, and secondary batteries are also heavily used for storing electricity in mobile phones and the like.
  • Capacitors using conventional electric lumped constant circuits have a wide range of storage capacities from 1 pF to several tens of mF, and are used as main components of electronic and electrical equipment.
  • the inventors of the present invention have found that when the compound particles are 40 nm or less, preferably 10 nm or less, a "quantum size effect" occurs due to electron shielding occurring on the nano-sized solid surface, and amorphous titania,
  • the present inventors have developed nano-sized unevenness on the surface of amorphous alumina, amorphous fluoropolymer, and amorphous cellulose nanofiber (for example, Non-Patent Documents 4, 7 to 9, 11 , see Patent Documents 4 and 5).
  • the work function which is a measure of the magnitude of the electron adsorption capacity, is -5.5 eV for amorphous titania (see Non-Patent Document 7), and -10.3 eV to -13.35 eV for amorphous fluoropolymer (Non-Patent Document 4, Patent Document 4), ⁇ 20.5 eV for amorphous alumina (see Non-Patent Document 9 and Patent Document 3), and ⁇ 22.5 eV for amorphous cellulose nanofiber (see Non-Patent Document 11 and Patent Document 5).
  • Patent Document 5 discloses a power storage material having fibers mainly composed of fibers such as wood and vegetable fibers and having unevenness on the surface. Ultra capacitors are described.
  • Fukuhara, T.; Kuroda, F.; Hasegawa, T.; Hashida, E.; Kwon and K. Konno "Amorphous aluminum-oxide supercapacitors," EuroPhys. Lett. , 2018, 123, 58004 M. Fukuhara, T.; Kuroda, F.; Hasegawa, Y.; Shirai, T.; Suwa, T.; Hashida, and M. Nishijima, "Amorphous titanium-oxide supercapacitors with high capacitance", EuroPhys. Lett. , 2019, 128, 58001 M.
  • Non-Patent Documents 1 to 11 and Patent Documents 1 to 4 are artificial compounds of inorganic compounds or organic compounds.
  • the production of microplastics, which are found in plastics, is being avoided all over the world from the viewpoint of animal and plant protection and global environmental conservation.
  • Patent Document 5 is a material with low environmental impact that uses recycled natural fibers that are environmentally friendly, and is an electricity storage body that can store electricity in direct current and alternating current.
  • Patent Document 5 realizes a biomass capacitor that uses wood and plant fibers (cellulose) obtained from plants that are lightweight, have high elastic performance, and have a small environmental load related to production and disposal. There is a demand for a method that can efficiently produce materials that are environmentally friendly and that can exhibit a high storage capacity.
  • An object of the present invention is to provide a method for efficiently manufacturing a power storage body capable of expressing a higher storage capacity from cellulose fiber, which is a natural material.
  • the present invention provides the following [1] to [15].
  • a method for producing a laminate containing a cellulose fiber layer which comprises applying a cellulose fiber slurry to at least a part of an electrode layer to form a film to obtain a laminate unit comprising a cellulose fiber layer and an electrode layer.
  • the electrode layer is an electrode sheet
  • the cellulose fiber slurry is applied to one or both sides of the electrode sheet to form the film.
  • [13] comprising at least one laminated unit having an electrode layer and a cellulose fiber layer; the cellulose fiber layer comprises cellulose fibers containing an anionic modifying group; A laminate containing a cellulose fiber layer.
  • the cellulose fibers containing an anionic modifying group and metal are carboxylated, carboxymethylated, or esterified cellulose fibers.
  • the present invention also provides the following [1-1] to [1-7].
  • [1-1] A method for producing a cellulose fiber layer-containing power storage body, comprising coating a cellulose fiber slurry on at least one surface of an electrode layer to form a film.
  • [1-2] The production method according to [1-1], wherein the cellulose fiber slurry is applied to both surfaces of the electrode layer to form the film.
  • [1-3] The production method according to [1-1] or [1-2], wherein the cellulose fiber slurry is applied by bar coating, spin coating, or electrophoresis (electrodeposition coating method).
  • [1-4] The production method according to any one of [1-1] to [1-3], wherein the cellulose fiber has a specific surface area of 10 m 2 /g or more.
  • [1-5] The production method according to any one of [1-1] to [1-4], wherein the cellulose fibers are cellulose nanofibers.
  • [1-6] The production method according to any one of [1-1] to [1-5], wherein the cellulose fibers are chemically modified cellulose fibers.
  • [1-7] The manufacturing method according to any one of [1-1] to [1-6], wherein a plurality of the power storage bodies are laminated.
  • the present invention further provides the following [2-1] to [2-11].
  • [2-1] Including applying a cellulose fiber slurry to the electrode to form a film,
  • the cellulose fiber slurry comprises cellulose fibers containing anionic modifying groups and metals, A method for manufacturing a sheet material with electrodes.
  • [2-2] The production method of [2-1], wherein the electrode-attached sheet material is provided with a cellulose fiber layer in contact with one or both sides of the electrodes.
  • the cellulose fiber containing an anionic modifying group and a metal is a carboxylated, carboxymethylated, or esterified cellulose fiber containing a metal as a counterion, [2-1 ] or [2-2].
  • a cellulose fiber layer is provided in contact with one side of the electrode layer, or A cellulose fiber layer is provided on both sides of the electrode layer, The sheet material according to [2-6].
  • the cellulose fiber containing an anionic modifying group and a metal is a carboxylated, carboxymethylated, or esterified cellulose fiber containing a metal as a counterion, [2-6 ] or [2-7].
  • FIG. 1 is a schematic diagram showing the procedure of coating by the bar coating method in the example.
  • FIG. 2 is a schematic diagram showing the application procedure by the spin coating method in the example.
  • FIG. 3 is a schematic diagram showing the procedure of coating by the electrodeposition coating method in the example.
  • the laminate (sheet material with electrodes) in the present invention contains a cellulose fiber layer.
  • a cellulose fiber layer is a layer containing cellulose fibers.
  • Cellulose fibers are usually bio-derived cellulose fibers, for example, plants (for example, wood, bamboo, hemp, jute, kenaf, rice), animals (for example, sea squirts), algae, microorganisms (for example, acetic acid bacteria (Acetobacter )), cellulose fibers derived from microbial products and the like.
  • Cellulose fibers are preferably plant- or microorganism-derived cellulose fibers, more preferably plant-derived cellulose fibers.
  • Cellulose fibers derived from plants or microorganisms include, for example, pulp, powdered cellulose, crystalline cellulose, cellulose nanofibers, cellulose microfibrils, and regenerated cellulose, and the processing method and degree are not particularly limited.
  • pulp include kraft pulp (e.g., softwood kraft pulp such as unbleached softwood kraft pulp (NUKP) and bleached softwood kraft pulp (NBKP); unbleached hardwood kraft pulp (LUKP), bleached hardwood kraft pulp (LBKP), etc.).
  • hardwood kraft pulp sulfite pulp (e.g.
  • Cellulose fibers may be cellulose fibers that have undergone a refining process, such as cellulose nanofibers and cellulose microfibrils. Cellulose fibers obtained by a method of promoting fibrillation by enzymatically treating various pulps may also be used. Additionally, the cellulose fibers may be chemically modified cellulose fibers (eg, pulp, cellulose nanofibers, cellulose microfibrils). As used herein, chemically modified cellulose fibers mean cellulose fibers that have undergone chemical modification treatment. The chemically modified cellulose fiber and the chemical modification treatment will be described later.
  • the size of the cellulose fibers is not particularly limited, but examples are as follows.
  • the number average fiber diameters of softwood kraft pulp and hardwood kraft pulp, which are general pulps, are usually about 30 to 60 ⁇ m and about 10 to 30 ⁇ m, respectively.
  • the number average fiber diameter of other pulps is usually about 50 ⁇ m. In the case of pulp obtained by refining chips and the like having a size of several centimeters, it is preferable to adjust the number average fiber diameter to about 50 ⁇ m by a pulverization treatment described later, if necessary.
  • cellulose microfibrils refer to cellulose fibers that have undergone a micronization treatment and have a micro-order fiber diameter.
  • the average fiber diameter of cellulose microfibrils is usually 500 nm or more, preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the upper limit of the average fiber diameter is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less, 18 ⁇ m or less, or 17 ⁇ m or less, but is not particularly limited.
  • the average fiber length is preferably 10 ⁇ m or more or 20 ⁇ m or more, more preferably 30 ⁇ m or more, 40 ⁇ m or more, or 50 ⁇ m or more.
  • the upper limit of the average fiber length is not particularly limited, but is preferably 1000 ⁇ m or less, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the aspect ratio of cellulose microfibrils is preferably 30 or more or 35 or more, more preferably 40 or more, even more preferably 50 or more, and even more preferably 60 or more.
  • the upper limit of the aspect ratio is not particularly limited, it is preferably 1000 or less, more preferably 100 or less, and even more preferably 80 or less.
  • cellulose nanofibers mean cellulose fibers that have undergone a refining treatment and have a nano-order fiber diameter. By using CNF, the quantum size effect of the laminate can be realized more efficiently.
  • the average fiber diameter (length-weighted average fiber diameter) of CNF is 500 nm or less, preferably 300 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less.
  • the lower limit is not particularly limited, it is usually 1 nm or more, preferably 2 nm or more.
  • the average fiber diameter (length-weighted average fiber diameter) of CNF is usually 1 to 500 nm or 2 to 500 nm, preferably 2 to 300 nm or 2 to 100 nm, more preferably 2 to 50 nm or 3 to 30 nm.
  • the average fiber length (length-weighted average fiber length) is usually 50 to 2000 nm, preferably 100 to 1000 nm.
  • the aspect ratio of CNF is usually 10 or more, preferably 50 or more. Although the upper limit is not particularly limited, it is usually 1000 or less.
  • the average fiber diameter and average fiber length are determined by observing each fiber using an atomic force microscope (AFM) or transmission electron microscope (TEM).
  • the size of the cellulose fibers can be adjusted by adjusting the conditions of the miniaturization process and chemical modification process.
  • Chemically modified cellulose fibers are obtained by chemically modifying unmodified cellulose fibers (eg, unmodified pulp, unmodified powdered cellulose).
  • Examples of the chemical modification treatment include cationization and anionization (carboxylation (oxidation), etherification (eg, carboxymethylation), esterification), with anionization being preferred, and carboxylation and etherification being more preferred.
  • chemical modification treatment for example, oxidation
  • the cellulose fiber becomes a solid electrolyte and an electric double layer is formed, so it can be expected to be used as a supercapacitor.
  • the chemical modification treatment is usually performed before or after the refinement treatment, preferably before the refinement treatment.
  • the cellulose fiber layer preferably contains cellulose fibers containing anion-modifying groups.
  • cellulose fibers containing an anion modifying group include anionization (carboxylation (oxidation, dicarboxylation, ozone oxidation), etherification (e.g., carboxymethylation), esterification (phosphoric acid, phosphorous acid , sulfuric acid)).
  • anion-modifying groups include carboxyl groups, carboxyalkyl groups (e.g., carboxymethyl groups), ester groups (e.g., phosphate groups, phosphite groups, sulfate ester groups). Methyl groups are preferred.
  • Carboxylated cellulose fibers (oxidized cellulose fibers) usually have at least one carbon atom having a primary hydroxyl group contained in the glucopyranose unit constituting the cellulose molecular chain (for example, a carbon atom having a primary hydroxyl group at the C6 position). has a structure in which is oxidized.
  • the carboxyl group content of the carboxylated cellulose fiber is preferably 0.6 to 3.0 mmol/g, more preferably 1.0 to 2.0 mmol/g.
  • the amount of carboxyl groups can be adjusted by controlling the conditions (for example, amount of oxidizing agent to be added, reaction time) in carboxylating the cellulose fibers.
  • Carboxylated cellulose fibers can be produced by carboxylating (oxidizing) unmodified cellulose fibers (cellulose raw material, eg pulp).
  • carboxylating (oxidizing) method a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromides, iodides or mixtures thereof. You can mention how to do it.
  • This oxidation reaction selectively oxidizes the carbon atom having a primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface, resulting in an aldehyde group, a carboxyl group (-COOH) or a carboxylate group ( -COO- ) on the surface. , can be obtained.
  • the concentration of the cellulose raw material during the reaction is not particularly limited, but is preferably 5% by mass or less.
  • N-oxyl compound is a compound that can generate a nitroxy radical.
  • any compound can be used as long as it promotes the desired oxidation reaction. Examples include 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and derivatives thereof (eg, 4-hydroxy TEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
  • derivatives thereof eg, 4-hydroxy TEMPO
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount that can oxidize the cellulose raw material.
  • it is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, even more preferably 0.05 to 0.5 mmol, relative to 1 g of absolute dry cellulose raw material.
  • the concentration is about 0.1 to 4 mmol/L with respect to the reaction system.
  • a bromide is a compound containing bromine, for example, an alkali metal bromide that can be dissociated and ionized in water.
  • iodides are compounds containing iodine, and examples thereof include iodides of alkali metals.
  • the amount of bromide or iodide to be used can be selected within a range capable of promoting the oxidation reaction.
  • the total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, even more preferably 0.5 to 5 mmol, relative to 1 g of absolute dry cellulose raw material.
  • oxidizing agent a known one can be used, for example, halogen, hypohalous acid, halogenous acid, perhalogen acid or salts thereof, halogen oxides, peroxides, and the like can be used.
  • sodium hypochlorite is preferable because it is inexpensive and has less environmental load.
  • An appropriate amount of the oxidizing agent to be used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, even more preferably 1 to 25 mmol, further preferably 3 to 10 mmol, relative to 1 g of absolute dry cellulose raw material. more preferred. Further, for example, 1 to 40 mol is preferable per 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 to 40°C, and may be room temperature of about 15 to 30°C. Since carboxyl groups are generated in the cellulose as the reaction progresses, the pH of the reaction solution decreases. In order to allow the oxidation reaction to proceed efficiently, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution at about 8-12, preferably about 10-11. Water is preferable as the reaction medium because it is easy to handle and less likely to cause side reactions.
  • the reaction time in the oxidation reaction can be appropriately set according to the degree of progress of oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours.
  • the oxidation reaction may be carried out in two steps. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the reaction in the first step, again under the same or different reaction conditions, the reaction can be efficiently It can be oxidized well.
  • the carboxylation (oxidation) method is a method of oxidizing by contacting a cellulose raw material with an ozone-containing gas. This oxidation reaction oxidizes at least the 2-position and 6-position hydroxyl groups of the glucopyranose ring and causes degradation of the cellulose chain.
  • the ozone concentration in the ozone-containing gas is preferably 50-250 g/m 3 , more preferably 50-220 g/m 3 .
  • the amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass.
  • the ozone treatment temperature is preferably 0 to 50°C, more preferably 20 to 50°C.
  • the ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 360 minutes.
  • the cellulose raw material can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
  • additional oxidation treatment may be performed using an oxidizing agent.
  • the oxidizing agent used in the additional oxidation treatment is not particularly limited, but examples include chlorine-based compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
  • the additional oxidation treatment can be performed by dissolving these oxidizing agents in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and immersing the oxidized cellulose in the solution.
  • Salt-type oxidized cellulose usually mainly has salt-type carboxyl groups (--COO--).
  • Examples of the counter cation of the salt-type carboxyl group include alkali metals such as Li, Na and K; alkaline earth metals such as Mg and Ca; metals such as Fe; Al; zinc group elements such as Zn; , Li, Na, Ca, K and Zn are preferred, and Na is more preferred.
  • the counter cation is Na in oxidized cellulose obtained by a conventional oxidation method, and when it is desired to replace Na with a desired metal, an aqueous solution of a compound (LiCl 2 , CaCl 2 , KCl, ZnCl 2 , etc.) having that metal is used. should be immersed in
  • Oxidized cellulose contains carboxyl groups as a result of oxidation, but may contain more acid-type carboxyl groups (-COOH) than salt-type carboxyl groups (-COO-), or salt-type carboxyl groups may be converted to acid-type carboxyl groups. You may contain more than a carboxyl group.
  • the amounts of salt-type carboxyl groups and acid-type carboxyl groups can be adjusted by desalting.
  • the desalting treatment can convert salt-type carboxyl groups to acid-type carboxyl groups.
  • oxidized cellulose (which has undergone desalting) is referred to as acid-type oxidized cellulose, and oxidized cellulose (which has not undergone desalting treatment, which will be described later) is referred to as salt-type oxidized cellulose.
  • Salt-type oxidized cellulose usually mainly has salt-type carboxyl groups (--COO--).
  • acid-type oxidized cellulose has many acid-type carboxyl groups, and the ratio of acid-type carboxyl groups to carboxyl groups is preferably 40% or more, more preferably 60% or more, and even more preferably 85% or more.
  • the proportion of acid-type carboxyl groups can be calculated by the following procedure.
  • Desalting may be performed after oxidation, or before or after defibration (before or after step (2)), but usually after oxidation, preferably before step (2). Desalting is usually carried out by substituting protons for salts (eg, sodium salts) contained in the salt-type oxidized cellulose.
  • Methods of desalting include, for example, a method of adjusting the inside of the system to be acidic, and a method of contacting oxidized cellulose with a cation exchange resin.
  • the pH inside the system is preferably adjusted to 2-6, more preferably 2-5, and still more preferably 2.3-5.
  • Acids eg inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, sulfurous acid, nitrous acid and phosphoric acid; organic acids such as acetic acid, lactic acid, oxalic acid, citric acid and formic acid
  • a washing treatment may be performed as appropriate.
  • the cation exchange resin both strongly acidic ion exchange resins and weakly acidic ion exchange resins can be used as long as the counter ion is H + .
  • the ratio between the oxidized cellulose and the cation exchange resin when the oxidized cellulose is brought into contact with the cation exchange resin is not particularly limited, and can be appropriately set by those skilled in the art from the viewpoint of efficient proton substitution.
  • Recovery of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
  • Etherification includes, for example, etherification by a reaction selected from carboxyalkylation, methylation, ethylation, cyanoethylation, hydroxyethylation, hydroxypropylation, ethylhydroxyethylation, and hydroxypropylmethylation, and carboxy Alkylation is preferred and carboxymethylation is more preferred.
  • Carboxyalkylated cellulose fibers usually have a structure in which at least one of the carbon atoms constituting the cellulose molecular chain (for example, the carbon atom having a primary hydroxyl group at the C6 position constituting the glucopyranose unit) is carboxymethylated. have.
  • the degree of carboxyalkyl substitution (DS, preferably the degree of carboxymethyl substitution) per anhydroglucose unit of the carboxyalkylated cellulose is preferably 0.01 or more, 0.02 or more, or 0.05 or more, more preferably 0.10 or more. , is more preferably 0.15 or more, even more preferably 0.20 or more, and particularly preferably 0.25 or more. Thereby, the degree of substitution for obtaining the effect of chemical modification can be ensured.
  • the upper limit of the degree of substitution is preferably 0.50 or less, more preferably 0.45 or less, 0.40 or less, or 0.35 or less. This makes it difficult for the cellulose fibers to dissolve in water, so that the fiber form can be maintained in water. Therefore, the degree of carboxyalkyl substitution is preferably 0.01-0.50, more preferably 0.01-0.45, 0.02-0.40, 0.10-0.35 or 0.20-0. .30 is more preferred.
  • the degree of substitution such as the degree of carboxymethyl substitution, can be measured by the method described below.
  • About 2.0 g of carboxymethylated cellulose (absolute dry) is precisely weighed and put into a 300 mL conical flask with a common stopper.
  • F' Factor of 0.1N H2SO4
  • F Factor of 0.1N NaOH
  • the degree of carboxyalkyl substitution can be adjusted by controlling the reaction conditions such as the amount of carboxyalkylating agent to be added, the amount of mercerizing agent, and the composition ratio of water and organic solvent.
  • Carboxyalkylation methods include, for example, a method of mercerizing a cellulosic raw material as a starting raw material (raw raw material) and then etherifying it. Carboxymethylation will be described below as an example.
  • unmodified cellulose fiber cellulose raw material: pulp, for example
  • solvents include water, lower alcohols (e.g., methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, tertiary butanol) alone or a mixture of two or more. Solvents may be used. When a lower alcohol is mixed, the mixing ratio of the lower alcohol is preferably 60 to 95% by mass.
  • an alkali metal hydroxide eg, sodium hydroxide, potassium hydroxide
  • an alkali metal hydroxide eg, sodium hydroxide, potassium hydroxide
  • the starting material, solvent, and mercerizing agent are mixed and mercerized at a reaction temperature of 0 to 70°C, preferably 10 to 60°C, for a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • a carboxymethylating agent e.g., sodium monochloroacetate
  • the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C.
  • the reaction Carboxymethylated cellulose can be produced by carrying out the etherification reaction for 30 minutes to 10 hours, preferably 1 hour to 4 hours.
  • the carboxyalkylated cellulose fibers preferably retain at least a portion of their fibrous shape even when dispersed in water.
  • Carboxyalkylated cellulose fibers are distinguished from cellulose powders such as carboxymethylcellulose, which is a type of water-soluble polymer that dissolves in water and imparts viscosity.
  • carboxymethylcellulose which is a type of water-soluble polymer that dissolves in water and imparts viscosity.
  • fibrous substances can be observed.
  • no fibrous substance is observed in an aqueous dispersion of carboxymethyl cellulose, which is a type of water-soluble polymer.
  • the anion-modified cellulose fiber is measured by X-ray diffraction, a peak of cellulose type I crystals can be observed. Cellulose type I crystals are not observed.
  • the carboxyalkylated cellulose may contain more acid-type carboxyl groups than salt-type carboxyl groups, or may contain more salt-type carboxyl groups than acid-type carboxyl groups.
  • the amounts of salt-type carboxyl groups and acid-type carboxyl groups can be adjusted by desalting.
  • the desalting treatment can convert salt-type carboxyl groups to acid-type carboxyl groups.
  • carboxyalkylated cellulose (desalted) is referred to as acid-form carboxyalkylated cellulose
  • carboxyalkylated cellulose (not desalted as described below) is referred to as salt-form carboxyalkylated cellulose.
  • Salt-type carboxyalkylated cellulose usually mainly has salt-type carboxyl groups (--COO--).
  • acid-type carboxyalkylated cellulose has many acid-type carboxyl groups, and the ratio of the amount of acid-type carboxyl groups to the amount of carboxyl groups possessed by acid-type carboxyalkylated cellulose is preferably 40% or more, and 60%. 85% or more is more preferable.
  • the method for calculating the proportion of acid-type carboxyl groups is as described above.
  • Desalting is usually performed after carboxyalkylation, preferably after etherification and before fibrillation.
  • Examples of the desalting method include a method of contacting carboxyalkylated cellulose with a cation exchange resin.
  • the cation exchange resin both strongly acidic ion exchange resins and weakly acidic ion exchange resins can be used as long as the counter ion is H + .
  • the ratio between the carboxyalkylated cellulose and the cation exchange resin when the carboxyalkylated cellulose is brought into contact with the cation exchange resin is not particularly limited, and can be appropriately set by those skilled in the art from the viewpoint of efficient proton substitution.
  • the ratio can be adjusted so that the pH of the aqueous dispersion after addition of the cation exchange resin is preferably 2-6, more preferably 2-5, relative to the carboxyalkylated cellulose aqueous dispersion.
  • Recovery of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
  • a first example of an esterified cellulose fiber includes phosphorylated cellulose.
  • Phosphorylated cellulose usually has a structure in which at least one carbon atom constituting a cellulose molecular chain (for example, a carbon atom having a primary hydroxyl group at the C6 position constituting a glucopyranose unit) is phosphorylated.
  • the amount of ionic substituents introduced into the phosphorylated cellulose fiber may be 0.10 mmol / g or more per 1 g (mass) of phosphorylated CNF. It is preferably 0.20 mmol/g or more, more preferably 0.30 mmol/g or more, still more preferably 0.40 mmol/g or more, and even more preferably 0.50 mmol/g or more. , more preferably 0.60 mmol/g or more, and particularly preferably 0.70 mmol/g or more.
  • the amount of ionic substituents introduced into the phosphorylated CNF may be 1.50 mmol/g or less per 1 g (mass) of cellulose fiber, preferably 1.35 mmol/g or less, and 1.20 mmol. /g or less, more preferably 1.10 mmol/g or less.
  • the amount of the ionic substituent introduced into the phosphorylated cellulose fiber is preferably 1.00 mmol/g or less per 1 g (mass) of the phosphorylated cellulose fiber, and preferably 0.95 mmol/g or less. is more preferred.
  • the denominator in units of mmol/g indicates the mass of the cellulose fiber when the counter ion of the ionic substituent is hydrogen ion (H+).
  • the amount of phosphorus oxo acid substituents can be measured by the following method.
  • the phosphorous acid group content of the fine cellulose fibers is obtained by diluting a fine cellulose fiber dispersion containing the target fine cellulose fibers with ion-exchanged water so that the content is 0.2% by mass. On the other hand, it can be measured by titration with an alkali after treatment with an ion exchange resin.
  • a strongly acidic ion exchange resin (Ambarjet 1024; Organo Co., Ltd., conditioned) was added to the slurry containing cellulose fibers, and after shaking for 1 hour, The slurry was separated from the resin by pouring it over a mesh with an opening of 90 ⁇ m.
  • titration with alkali is performed by adding 10 ⁇ L of 0.1N sodium hydroxide aqueous solution every 5 seconds to the cellulose fiber-containing slurry after treatment with the ion exchange resin, and measuring the change in the pH value of the slurry. I went by. The titration was performed while nitrogen gas was blown into the slurry from 15 minutes before the start of the titration. In this neutralization titration, two points where the increment (the differential value of the pH with respect to the amount of alkali added) are maximized are observed in the curve obtained by plotting the measured pH against the amount of alkali added.
  • the maximum point of the increment obtained first when the alkali is first added is called the first end point, and the maximum point of the increment obtained next is called the second end point.
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration.
  • the amount of alkali required from the start of titration to the second end point is equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated to obtain the amount of phosphate group (mmol/g).
  • the presence or absence of introduction of a phosphate group may also be confirmed by measuring the absorption (around 1230 cm ⁇ 1 ) based on the phosphate group by measuring the infrared absorption spectrum.
  • the amount of phosphate group can be adjusted by controlling the reaction conditions such as the amount of the compound having a phosphate group added and the amount of the basic compound used as necessary.
  • Examples of phosphorylation methods include a method of reacting unmodified cellulose fibers with a compound having a phosphoric acid group (phosphorylation).
  • Examples of the phosphoric acid esterification method include a method of mixing a cellulose-based raw material with a powder or an aqueous solution of a compound having a phosphate group, and a method of adding an aqueous solution of a compound having a phosphate group to an aqueous dispersion of the cellulose-based raw material. with the latter being preferred. Thereby, the uniformity of the reaction can be improved and the esterification efficiency can be improved.
  • Compounds having a phosphate group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, phosphorus tripotassium acid, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate.
  • the compounds having a phosphate group can be used singly or in combination of two or more.
  • the amount of the compound having a phosphate group added to the cellulose raw material is preferably 0.1 to 500 parts by mass, more preferably 1 to 400 parts by mass, in terms of phosphorus element, with respect to 100 parts by mass of the solid content of the cellulose raw material. 2 to 200 parts by mass is more preferable.
  • the reaction temperature is preferably 0 to 95°C, more preferably 30 to 90°C.
  • the reaction time is not particularly limited, it is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are within any of these ranges, excessive esterification of cellulose and its susceptibility to dissolution can be suppressed, and the yield of phosphate esterified cellulose can be improved.
  • a basic compound e.g., urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, etc.
  • compound having an amino group showing may be added to the reaction system.
  • a second example of a method for producing esterified cellulose fibers includes phosphite esterified cellulose fibers.
  • Phosphite cellulose fibers usually have a structure in which at least one of the carbon atoms constituting the cellulose molecular chain (for example, the carbon atom having a primary hydroxyl group at the C6 position constituting the glucopyranose unit) is phosphorylated. .
  • the degree of phosphite group substitution per glucose unit in the phosphite-esterified cellulose fiber (hereinafter simply referred to as "phosphite group substitution degree”) is preferably 0.001 or more and less than 0.40.
  • the degree of phosphite group substitution can be measured by the same method as the method for measuring the degree of phosphate group substitution.
  • the degree of phosphite group substitution can be adjusted by controlling reaction conditions such as the amount of phosphorous acid or a salt thereof added, the amount of an alkali metal ion-containing substance used as necessary, and the amount of urea or a derivative thereof added.
  • an unmodified cellulose fiber is reacted with phosphorous acid or a metal salt thereof (preferably sodium hydrogen phosphite) to introduce an ester group of phosphorous acid. method.
  • Examples of phosphorous acid and metal salts thereof include phosphorous acid, sodium hydrogen phosphite, ammonium hydrogen phosphite, potassium hydrogen phosphite, sodium dihydrogen phosphite, sodium phosphite, and lithium phosphite. , potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, phosphorous acid compounds such as pyrophosphite, and combinations of two or more selected from these.
  • Sodium hydride is preferred. Thereby, alkali metal ions can also be introduced into the cellulose fibers.
  • the amount of phosphorous acid or its metal salt to be added is preferably 1 to 10,000 g, more preferably 100 to 5,000 g, still more preferably 300 to 1,500 g, per 1 kg of unmodified cellulose fibers.
  • alkali metal ion-containing substances e.g., hydroxides, metal sulfates, metal nitrates, metal chlorides, metal phosphates, metal carbonates
  • urea or a derivative thereof may be further added to the reaction system. This can also introduce carbamate groups into the cellulose fibers.
  • Urea and urea derivatives include, for example, urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and combinations of two or more selected from these, with urea being preferred.
  • the amount of urea and urea derivatives to be added is preferably 0.01 to 100 mol, more preferably 0.2 to 20 mol, still more preferably 0.5 to 10 mol, per 1 mol of phosphorous acid or its metal salt.
  • the reaction temperature is preferably 100-200°C, more preferably 100-180°C.
  • the reaction time is usually about 10 to 180 minutes, more preferably 30 to 120 minutes.
  • the phosphite-esterified cellulose fibers are preferably washed prior to defibration.
  • the degree of substitution of the phosphite group per glucose unit is preferably 0.01 or more and less than 0.23.
  • a third example of a method for producing an esterified cellulose fiber includes a sulfate esterified cellulose fiber.
  • Sulfated cellulose usually has a structure in which at least one carbon atom constituting a cellulose molecular chain (for example, a carbon atom having a primary hydroxyl group at the C6 position constituting a glucopyranose unit) is phosphorylated.
  • the amount of sulfate-based groups per glucose unit in the sulfate-esterified cellulose fiber is preferably 0.1 to 3.0 mmol/g.
  • the amount of sulfate groups per glucose unit can be measured by the following method.
  • the aqueous dispersion of sulfated CNF is subjected to solvent substitution in the order of ethanol and t-butanol, and then freeze-dried.
  • 15 ml of ethanol and 5 ml of water are added to 200 mg of the obtained sample, and the mixture is stirred for 30 minutes.
  • 10 ml of 0.5N sodium hydroxide aqueous solution is added, and the mixture is stirred at 70° C. for 30 minutes and further stirred at 30° C. for 24 hours.
  • the amount of sulfate groups can be adjusted by controlling the reaction conditions such as the amount of sulfuric acid compound to be reacted.
  • Examples of the method of sulfate esterification include a method of reacting unmodified cellulose fibers with a sulfuric acid compound to introduce a sulfuric acid group derived from the sulfuric acid compound into cellulose to obtain sulfated cellulose.
  • sulfuric acid compounds include sulfuric acid, sulfamic acid, chlorosulfonic acid, sulfur trioxide, and esters or salts thereof. Among these, sulfamic acid is preferably used because cellulose has low solubility and low acidity.
  • the amount of sulfamic acid used can be appropriately adjusted in consideration of the amount of anionic groups to be introduced into the cellulose chain. For example, it is preferably 0.01 to 50 mol, more preferably 0.1 to 3.0 mol, per 1 mol of glucose units in the cellulose molecule.
  • the esterified cellulose may contain more acid-type carboxyl groups than salt-type carboxyl groups, or may contain more salt-type carboxyl groups than acid-type carboxyl groups.
  • esterified cellulose those that have not undergone desalting treatment and those that have undergone desalting treatment are referred to as salt-esterified cellulose and acid-esterified cellulose, respectively.
  • Salt-type esterified cellulose mainly has salt-type carboxyl groups.
  • the counter cation of the salt-type carboxyl group and the preparation method thereof are as described in the description of the oxidized cellulose.
  • Cationized cellulose usually has a structure in which at least one carbon atom constituting a cellulose molecular chain (for example, a carbon atom having a primary hydroxyl group at the C6 position constituting a glucopyranose unit) is cationized.
  • the degree of cation substitution per glucose unit in the cationized cellulose is preferably 0.02 to 0.50.
  • the degree of cation substitution can be adjusted by adjusting reaction conditions such as the amount of cationizing agent to be reacted and the composition ratio of water or alcohol having 1 to 4 carbon atoms.
  • unmodified cellulose fibers are treated with a cationizing agent (eg, glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrate or its halohydrin type) and an alkali catalyst.
  • a cationizing agent eg, glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrate or its halohydrin type
  • an alkali catalyst eg, glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrate or its halohydrin type
  • a metal hydroxide eg, sodium hydroxide, potassium hydroxide
  • the cationized cellulose fibers after cationization are preferably converted into base-type cationized cellulose or base-type cationized cellulose nanofibers by desalting. Desalting can convert the salts in the cationized cellulose to bases.
  • the cationized cellulose (nanofibers) that has undergone desalting is referred to as base-type cationized cellulose (nanofibers) or cationized cellulose (nanofibers) (base type).
  • cationized cellulose and cationized cellulose nanofibers that have not undergone desalting are referred to as salt-type cationized cellulose (nanofibers) or cationized cellulose (nanofibers) (salt form).
  • Desalting may be performed at any time before defibration (cationized cellulose) or after defibration (cationized cellulose nanofibers), which will be described later.
  • Desalting means substituting a salt (for example, Cl ⁇ ) contained in cationized cellulose (salt form) and cationized cellulose nanofibers (salt form) with a base to obtain a base form.
  • Examples of the desalting method after cationization include a method of contacting cationized cellulose or cationized cellulose nanofibers with an anion exchange resin. Both strongly basic ion exchange resins and weakly basic ion exchange resins can be used as the anion exchange resin, as long as the counterion is OH - .
  • the ratio between the modified cellulose and the anion exchange resin is not particularly limited, and a person skilled in the art can appropriately set the ratio from the viewpoint of efficient cation substitution.
  • the pH of the water dispersion after addition of the anion exchange resin is preferably 8 to 13, more preferably 9 to 13, with respect to the cationized cellulose nanofiber water dispersion. be able to. Recovery of the anion exchange resin after contact may be performed by a conventional method such as suction filtration.
  • the cellulose fiber layer further contains a metal.
  • the metal is preferably included as a counterion (eg, —COO ⁇ M, —CH 2 COO ⁇ M; M represents a metal) of a chemical modifying group (eg, anion modifying group).
  • metals examples include alkali metals such as lithium (Li), sodium (Na) and potassium (K); alkaline earth metals such as magnesium (Mg), calcium (Ca) and barium (Ba); iron (Fe); , manganese (Mn), cobalt (Co), nickel (Ni) and other transition metals; aluminum (Al); zinc group elements such as zinc (Zn), etc., forming monovalent ions and divalent or higher ions Na, Mg, Li, Ca, Al, K, Zn and Fe are preferred, Li, Na, Ca, K and Zn are more preferred, and Na is even more preferred.
  • the metal contained in the cellulose fiber layer may be of one type or a combination of two or more types.
  • the cellulose fibers may have either acid-type/salt-type cellulose fibers or both. Usually have both. Acid-type cellulose fibers are cellulose fibers having acid-type modifying groups (eg, —COOH, —CH 3 COOH).
  • the chemically modified cellulose fibers obtained by each modification method described above contain salt-type (usually sodium salt) cellulose fibers, but usually also contain acid-type cellulose fibers. The acid-type/salt-type ratio can be adjusted by the presence or absence of desalting treatment.
  • Refinement (defibration, fibrillation) Refinement is usually performed by mechanical processing.
  • Mechanical treatment preferably beating or defibration treatment
  • wet ie in the form of an aqueous dispersion of cellulose fibers.
  • Devices used for mechanical treatment include, for example, refiners (refiners; e.g., disk type, conical type, cylinder type), high-speed fibrillation machines, shearing stirrers, colloid mills, high-pressure jet dispersers, beaters, PFI mills, Kneader, disperser, high-speed disaggregator (topfiner), high-pressure or ultra-high-pressure homogenizer, grinder (stone mill type crusher), ball mill, vibration mill, bead mill, single-screw, twin-screw or multi-screw kneader/extruder high speed Homogenizers under rotation, refiners, defibrators, friction grinders, high-share defibrators, dispergers, homogenizers (e.g.
  • microfluidizers A device capable of imparting a mechanical defibration force such as a microfluidizer is preferred, and a device capable of imparting a fibrillation force in a wet manner is preferred, and a high-speed defibrator and a refining device are more preferred, but are not particularly limited.
  • an aqueous dispersion of cellulose fibers is usually prepared.
  • the solid content concentration of the modified cellulose in the aqueous dispersion is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, and even more preferably 1.5% by mass or more. preferable.
  • the upper limit of the concentration is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 8% by mass or less.
  • pH adjustment eg, 7 or less, 6 or less, 5 or less
  • pretreatment such as dry pulverization (eg, pulverization after drying) may be performed prior to the preparation of the aqueous dispersion.
  • dry pulverization eg, pulverization after drying
  • devices used for dry pulverization include, but are not limited to, impact mills such as hammer mills and pin mills, medium mills such as ball mills and tower mills, and jet mills.
  • post-treatment may be performed after fibrillation.
  • drying e.g., freeze drying, spray drying, tray drying, drum drying, belt drying, drying by spreading thinly on a glass plate, etc.
  • fluidized bed drying e.g., micro wave drying method, heat-generating fan type vacuum drying method, vacuum (degassing) drying
  • redispersion in water e.g., pulverization (e.g. equipment such as cutter mill, hammer mill, pin mill, jet mill, etc.) pulverization using, but not particularly limited to.
  • the cellulose fiber preferably has a specific surface area of 10 m 2 /g or more, more preferably 100 m 2 /g or more, and even more preferably 300 m 2 /g or more. As a result, it is possible to store electricity in a shorter time, and to store electricity in a large amount.
  • the specific surface area can be measured by the following procedures (1) to (9) with reference to the nitrogen gas adsorption method (JIS Z8830).
  • An approximately 3% slurry of cellulose fibers (dispersion medium: water) is divided so that the solid content becomes approximately 0.1 g, placed in a centrifugal container, and 100 ml of ethanol is added.
  • the cellulose fibers are sedimented under the conditions of 7000 G, 30 minutes, and 30° C. using a centrifuge. (4) Remove the supernatant while removing as little of the settled cellulose fibers as possible.
  • Cellulose fibers preferably have a crystalline portion, and more preferably have a crystalline portion inside the fiber layer. As a result, uniform irregularities can be formed on the surface of the cellulose fiber layer, and the amount of electricity stored can be increased.
  • the crystal portion may be either single crystal or polycrystal, and the ratio of the polycrystal portion is preferably 10 vol % or less of the cellulose fiber layer.
  • Cellulose fibers preferably have an amorphous portion, and more preferably have an amorphous surface (for example, the surface in contact with the electrode). Thereby, electric storage property can be produced.
  • an anion group at the C6 position (for example, C6 Carbosyl group) can be rotated, resulting in high chargeability.
  • the presence or absence of an amorphous portion can be confirmed by whether or not a broad peak is generated by X-ray analysis or whether or not a halo pattern is generated by electron beam analysis.
  • Atomic vacancies are an inherent feature of amorphousness. The size and amount of atomic vacancies can be confirmed by the positron annihilation method.
  • the cellulose fibers contained in the cellulose fiber layer may be of one type alone, or may be a combination of two or more types.
  • the cellulose fiber layer may contain components other than cellulose fibers.
  • the cellulose fiber layer is usually sheet-like, and its thickness is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less. This makes it possible to reduce the weight of the device.
  • the power density and energy density can be increased by forming a thin film where static electricity attaches and detaches from the surface.
  • the laminate sheet material with electrodes
  • Electrode material A laminate (sheet material with electrodes) usually contains an electrode layer containing an electrode material. Electrode materials include, for example, carbon (C), aluminum (Al), copper (Cu), gold (Au), silver (Ag), molybdenum (Mo), chromium (Cr), iron (Fe), and zinc (Zn). , titanium (Ti), nickel (Ni), lead (Pb), platinum (Pt), tungsten (W), bismuth (Bi), silicon wafer (SiO 2 ), Ag alloy, Al alloy, Mo alloy, Fe alloy ( For example, it is composed of a metal such as stainless steel, a metal oxide such as ZnO, or a conductive resin such as polyacetylene or polythiophene.
  • a metal such as stainless steel, a metal oxide such as ZnO, or a conductive resin such as polyacetylene or polythiophene.
  • the electrode materials of each electrode layer may be different.
  • the electrode layer is usually in the form of a sheet and has a thickness of usually 0.01 ⁇ m to 500 ⁇ m, preferably 1 ⁇ m to 100 ⁇ m or 0.5 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • the laminate may normally contain layers other than the cellulose fiber layer and the electrode layer.
  • Other layers include, for example, a substrate.
  • the substrate is usually provided in contact with the electrode layer (the outermost electrode layer when two or more electrode layers are used).
  • Materials for the substrate include, for example, organic materials such as plastics, and inorganic materials such as silicon and glass.
  • the laminated body can be used as a power storage body as it is or in combination (for example, laminated or arranged in parallel).
  • the electric resistance of the storage battery is preferably 0.01 M ⁇ to 500 M ⁇ .
  • the electric capacity is preferably 100 mJ/m 2 or more. It is preferable that the power storage unit can be discharged for a long time of one day or more by instantaneous or short-time power storage for 1 ms to 1 minute and large-capacity power storage. Also, it is preferable that rapid response charge/discharge of 1 mHz to 100 kHz, preferably 0.1 to 100 Hz is possible.
  • a power storage unit with the above electrical characteristics can store current from a generator every 50/1000 to 60/1000 seconds by converting 50 Hz and 60 Hz alternating current into direct current using an AC/DC converter. be done.
  • the operating temperature is preferably -100 to 100°C.
  • Voltage resistance is preferably 1 GV/m or more.
  • the laminate can be used as a power storage unit.
  • Specific uses of the capacitor include, for example, AC capacitors in microelectronic circuits and capacitors on the backside of solar panels.
  • various backup power supply modules for lightning arresters, welding, overdischarge prevention, etc., coupling elements, noise filters, high-sensitivity acceleration sensors, high-output transformer cutoff prevention devices, and emergency power supply devices for automobiles and ships.
  • Applications such as electronic and electric boards such as
  • the laminate can be produced by applying a cellulose fiber slurry to at least part of the electrode to form a film.
  • Cellulose fiber slurry is prepared by dispersing cellulose fibers in a solvent. Examples of cellulose fibers are described above.
  • the solvent is usually water, and the dispersion obtained during preparation of the cellulose fibers may be used as it is.
  • the solid content concentration of cellulose fibers in the cellulose fiber slurry is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, and even more preferably 1.5% by mass or more. preferable. Thereby, a power storage body can be manufactured efficiently.
  • the upper limit of the concentration is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 8% by mass or less or 5% by mass or less. As a result, the slurry can be adjusted to have an appropriate viscosity, and a decrease in film-forming properties can be suppressed.
  • Electrode materials are as described above.
  • a method for applying the cellulose fiber slurry to the electrode material and forming a film for example, a bar coating method, a spin coating method, and an electrophoresis method (electrodeposition coating method) are preferable.
  • the bar coating method the surface can be leveled with a bar
  • the spin coating method the slurry can be uniformly formed into a film by centrifugal force
  • the electrodeposition coating method the entire electrode can be electrophoretically applied. can be done. Therefore, according to these methods, compared to methods such as slip casting, the surface and thickness of the coating film can be made more uniform.
  • a surface having uniform unevenness can be presented, and defects are less likely to occur, and the amount of electricity stored can be improved. That is, since the amount of stored electricity is calculated by the following formula (1), the contact surface between the metal electrode and the convex surface is increased by arranging the convex portions substantially uniformly on the two-dimensional plane in the area of the contact surface. can increase the amount of electricity stored.
  • the fine (nano-sized) unevenness itself becomes a solid electrolyte composed of an electric double layer, and can be represented by a parallel equivalent circuit of C and R.
  • the electrophoresis method can form a thinner cellulose fiber layer.
  • the diameter of the unevenness is preferably 1 nm to 500 nm.
  • the thickness of the film is preferably thin from the viewpoint of improving the storage performance, but on the other hand, the thickness of the film can suppress the effects of defects such as pinholes and cracks, and the possibility of short circuits. can be appropriately determined within a range that can reduce the
  • the thickness of the film is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and more preferably 1.0 ⁇ m or more.
  • the upper limit is not particularly limited, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and still more preferably 30 ⁇ m or less. Therefore, it is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, even more preferably 1 to 30 ⁇ m.
  • the bar coating method is a method in which a slurry is poured onto an electrode and combed with a bar to apply the slurry.
  • the direction of combing the bar is preferably unidirectional (eg FIG. 1).
  • the gap distance between the bar and the electrode thin film can be appropriately adjusted according to the desired film thickness (eg, 800 ⁇ m or less, preferably 700 ⁇ m or less, more preferably 600 ⁇ m or less).
  • Drying after coating can be performed by a drying treatment such as heating (for example, 80° C. or higher or 90° C. or higher), and may be performed using a drying device such as a hot plate.
  • the spin coating method is a method in which a slurry is poured onto an electrode, the electrode is rotated horizontally, and the slurry is made into a thin film using centrifugal force.
  • a device such as a spin coater (eg, FIG. 2) can be used for rotating the electrode.
  • the thickness of the cellulose fiber layer and the unevenness of the surface can be controlled by the rotation speed, rotation time, etc., and these can be adjusted by setting the spin coater.
  • the rotational speed (peripheral speed) is usually 200 to 2,000 rpm, preferably 300 to 1,500 rpm, more preferably 500 to 1,000 rpm. Coating by spin coating may be performed once, or may be repeated two or more times.
  • the heat treatment By performing the heat treatment two times or more, preferably three times or more, or four times or more, it is possible to suppress the occurrence of defective portions and improve the efficiency of energization and power storage.
  • a drying device such as a hot plate (for example, at 40° C. to 60° C.).
  • Electrophoresis method In the electrophoresis method (electrodeposition coating method), an electrode material to be coated and a counter electrode are immersed in a slurry, the electrode material is used as a cathode or an anode, and an electric current is passed between the electrode material and the counter electrode. This is a method of depositing a coating film on a material.
  • the electrode material When electrifying, the electrode material may be either an anode (anion electrodeposition) or a cathode (cation electrodeposition).
  • the counter electrode can be selected from commonly used electrodes suitable for the electrode material, and examples thereof include metal electrodes such as Pt.
  • the condition of energization can be appropriately adjusted according to the thickness of the cellulose fiber layer, etc., and an example is as follows.
  • the voltage is usually 0.1 V or higher, preferably 5 V or higher or 10 V or higher, more preferably 50 V or higher, still more preferably 100 V or higher.
  • the upper limit is usually 1000 V or less, preferably 10 to 500 V or less.
  • Current density is usually 0.00001 to 10000 mA/cm 2 , preferably 0.00001 to 100 mA/cm 2 , more preferably 0.1 to 10000 mA/cm 2 , still more preferably 1 to 10000 mA/cm 2 . be.
  • the energization time is usually 0.1 minute or longer, preferably 1 minute or longer, and more preferably 2 minutes or longer.
  • the upper limit is usually 100 minutes or less, preferably 60 minutes or less.
  • the voltage higher eg, 50 V or higher, preferably 100 V or higher
  • shorten the energization time eg, 10 minutes or less, preferably 5 minutes or less.
  • the thickness of the cellulose fiber layer can be controlled by energizing conditions (for example, voltage, current, migration time).
  • the temperature of the CNF slurry may be adjusted to room temperature or lower (for example, 20° C. or lower, 15° C. or lower, 10° C. or lower, or 8° C. or lower).
  • Electricity can be energized using a container (electrolytic bath) that can accommodate the electrode material, the counter electrode, and the cellulose fiber slurry. Electrodes and electrode materials in the electrolytic bath are connected to a power supply for energization (see, for example, FIG. 3).
  • energization After energization, it may be washed (for example, washed with water) as necessary. Moreover, you may electrify in the case of washing
  • An example of energization conditions during cleaning is as follows.
  • the voltage is 0.1 to 1000 V, more preferably 10 to 500 V, and the energization time is preferably 1 to 100 minutes, more preferably 5 to 60 minutes.
  • drying treatment eg, heating at 40° C. to 60° C.
  • drying treatment eg, heating at 40° C. to 60° C.
  • the surface to be coated may be at least a part of the electrode (usually in the form of a sheet), but both surfaces are preferable.
  • a laminate comprising two layers, an electrode layer and a cellulose fiber layer, by applying a cellulose fiber slurry to at least a portion of the electrode (for example, at least one surface of the electrode layer in the form of a sheet) to form a film, or A laminate comprising three layers of two cellulose fiber layers sandwiching an electrode layer is formed.
  • laminated units basic units
  • other laminated units can be laminated, and lamination can be repeated as necessary.
  • Lamination may be performed using NEMS (Nano Electro Mechanical Systems).
  • the cellulose fibers (samples 1 to 3) used in the examples were produced as follows.
  • Sample 1 (TEMPO-oxidized CNF)> 500 g (absolute dry) of bleached unbeaten kraft pulp (85% whiteness) derived from softwood is added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide are dissolved, and the pulp is uniformly dispersed. Stir until done. An aqueous sodium hypochlorite solution was added to the reaction system so as to have a concentration of 6.0 mmol/g to initiate an oxidation reaction. The pH in the system decreased during the reaction, but was adjusted to pH 10 by successively adding 3M sodium hydroxide aqueous solution.
  • TEMPO-oxidized CNF 500 g (absolute dry) of bleached unbeaten kraft pulp (85% whiteness) derived from softwood is added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide are dissolved, and
  • the reaction was terminated when the sodium hypochlorite was consumed and the pH in the system stopped changing. After the reaction, 10% hydrochloric acid was added to the mixture to adjust the pH to 3, the mixture was filtered through a glass filter to separate the pulp, and the pulp was thoroughly washed with water to obtain TEMPO oxidized pulp. The pulp yield at this time was 90%, and the time required for the oxidation reaction was 90 minutes.
  • the TEMPO oxidized pulp obtained in the above steps was adjusted to 3.0% (w/v) with water, adjusted to pH 7 with a 12% aqueous sodium hydroxide solution, and homogenized 5 times with an ultrahigh pressure homogenizer (20°C, 150 MPa).
  • a fibrillation treatment was performed to obtain a TEMPO-oxidized fine cellulose fiber dispersion (Sample 1: hereinafter referred to as "TEMPO-oxidized CNF").
  • the resulting TEMPO-oxidized CNF had an average fiber diameter of 4 nm and an aspect ratio of 150.
  • the amount of carboxyl groups in the obtained TEMPO-oxidized CNF was 1.42 mmol/g.
  • the specific surface area of the obtained TEMPO-oxidized CNF was 386 m 2 /g.
  • CM-CNF Preparation of Sample 2
  • 20 parts of sodium hydroxide dissolved in a mixed solvent of 10 parts of water and 90 parts of isopropanol (IPA) are added to a twin-screw kneader whose rotation speed is adjusted to 150 rpm, and hardwood pulp (Nippon Paper Industries LBKP (manufactured by Co., Ltd.) was charged at 100° C. for 60 minutes with a dry mass of 100 parts.
  • the mixture was stirred and mixed at 35° C. for 80 minutes and mercerized.
  • a mixed solvent of 23 parts of water and 207 parts of IPA and 40 parts of sodium monochloroacetate were added, stirred for 30 minutes, then heated to 70° C. and etherified for 90 minutes. After completion of the reaction, the mixture was neutralized with acetic acid until the pH reached 7, washed with water-containing methanol, deliquored, and side water was added to obtain a sodium salt aqueous solution of CM pulp. The degree of carboxymethyl ether substitution in the obtained CM pulp was 0.30.
  • CM-CNF CM fine cellulose fiber
  • Ion-exchanged water was added to the obtained CM-CNF 3.0% (w / v) dispersion, stirred at 3000 rpm for 10 minutes with a homogenizer, diluted to a concentration of 0.5% (w / v), and CM-CNF ( Sample 2)
  • Sample 2 A water dispersion was obtained.
  • the resulting CM-oxidized CNF had a degree of carboxymethyl substitution of 0.30, an average fiber diameter of 4 nm, and an aspect ratio of 52.
  • Example 1 ⁇ Sample 1, bar coating method> As shown in FIG. 1, an Al thin film (thickness 25 ⁇ m) as an electrode material is laid under it, the slurry of sample 1 (solid content 1.0%) is poured over it, and a bar is used with a gap of 500 ⁇ m from the top surface of the Al thin film. It was applied horizontally in one direction. After that, it was dried on a hot plate at 100° C. to prepare a sheet having a thickness of 5 ⁇ m.
  • Example 2 ⁇ Sample 1, spin coating method> Using the spin coater shown in FIG. 2, droplets of the slurry of Sample 1 (solid content: 1.5%) were dropped onto the Al thin film to uniformly coat the Al thin film at a peripheral speed of 200 rpm for 5 seconds. This was dried on a hot plate at 50°C. Next, the dry sheet-coated Al thin film was again placed on the rotating disk of the spin coater, and droplets of the slurry of Sample 2 were dropped to uniformly coat it at a peripheral speed of 500 to 1,000 rpm for 10 to 20 seconds. The operation of further coating the cellulose fiber layer was repeated five times to produce a cellulose fiber sheet with a thickness of 27 ⁇ m. The diameter of the unevenness on the surface of the cellulose fiber layer was 5.7 ⁇ m.
  • Example 3 ⁇ Sample 1, electrophoresis method> In a water tank (water temperature 5 ° C) containing 500 ml of CNF slurry (sample 1: solid content 0.5%) as shown in FIG. gone. Electrodeposition conditions were DC 8 V for 2 minutes. After electrodeposition, it was washed with distilled water and dried at 50° C. for a whole day and night to prepare a cellulose fiber sheet with a thickness of 5 ⁇ m.
  • Example 4 ⁇ Sample 2, electrophoresis method (electrodeposition coating method)> A cellulose fiber sheet having a thickness of 5 ⁇ m was produced in the same manner as in Example 3, except that Sample 2 was used instead of Sample 1.
  • Example 5 ⁇ Sample 1, bar coating method> The procedure of Example 1 was repeated except that the thickness of the cellulose fiber sheet was adjusted to 1 ⁇ m.
  • Example 6 ⁇ Sample 1, spin coating method> The procedure of Example 2 was repeated except that the thickness of the cellulose fiber sheet was adjusted to 1 ⁇ m.
  • Example 7 ⁇ Sample 1, electrophoresis method (electrodeposition coating method)> The procedure of Example 3 was repeated except that the thickness of the cellulose fiber sheet was adjusted to 1 ⁇ m.
  • Example 8 ⁇ Sample 1, slip casting method> The slurry (solid content: 1.0%) of sample 1 was poured into a mold having a silicone rubber frame placed on an Al thin film, and allowed to stand at 50°C for 2 days. After confirming that the water contained in the slurry was evaporated and dried, the slurry was removed from the mold to prepare a cellulose fiber sheet with a thickness of 1 ⁇ m.
  • Example 9 slip casting method> A cellulose fiber sheet having a thickness of 1 ⁇ m was produced in the same manner as in Comparative Example 1 except that the sample was used instead of the sample 1.
  • Table 1 shows the electrical resistance (M ⁇ ) and storage capacity (mJ/m 2 ) of the sheets obtained in Examples 1 to 9.
  • the electrical resistance was obtained by sandwiching the obtained sheet of 5 cm square between two stainless steel plates and measuring the electrical resistance in the thickness direction using a DC resistance meter.
  • the amount of stored electricity is a voltage drop curve (horizontal axis: time, vertical axis: voltage).
  • each of the power storage bodies of Samples 1 to 2 of Examples 1 to 9 has an electrical resistance of 63 M ⁇ to 465 M ⁇ and a storage amount of 146 mJ/m 2 to 1,705 mJ/m 2 . confirmed.
  • the CNF fiber diameter of the sheet of each example is too small, 3 nm on average, so even a high-precision atomic force microscope cannot observe pores of 1 nm or less in size, but the sheet structure of each sample is dense. is presumed.
  • the samples of Examples 5-9 were confirmed to operate at 100V.
  • the specific surface areas of the cellulose fibers of Samples 1 and 2 were 386 m 2 /g and 325 m 2 /g, respectively, as a result of measuring according to the measurement method described in the previous paragraph by the BET adsorption method.
  • Example 10 Electrophoresis> A sheet was produced in the same manner as in Example 3, except that Sample 3 (0.5% solid content) was used instead of Sample 1. The thickness of the cellulose fiber layer was 4 ⁇ m.
  • Example 11 Electrophoresis> A sheet was produced in the same manner as in Example 3, except that Sample 4 (0.5% solid content) was used instead of Sample 1. The thickness of the cellulose fiber layer was 4 ⁇ m.
  • Example 12 ⁇ Preparation of Ca salt type sheet of TEMPO-oxidized CNF>
  • the sheet produced in Example 1 was immersed in a 1 mol/L calcium chloride aqueous solution for 2 hours to produce a sheet.
  • the thickness of the cellulose fiber layer was 5 ⁇ m.
  • Example 13 ⁇ Preparation of Mg salt type sheet of TEMPO-oxidized CNF>
  • the sheet produced in Example 3 was immersed in a 1 mol/L aqueous solution of magnesium chloride for 2 hours to produce a sheet.
  • the thickness of the cellulose fiber layer was 5 ⁇ m.
  • Example 14 ⁇ Preparation of Cu salt type sheet of TEMPO oxidized CNF>
  • the sheet produced in Example 3 was immersed in a 1 mol/L copper chloride aqueous solution for 2 hours to produce a sheet.
  • the thickness of the cellulose fiber layer was 5 ⁇ m.
  • Example 15 Preparation of Al salt type sheet of TEMPO-oxidized CNF>
  • the sheet produced in Example 3 was immersed in a 1 mol/L aluminum chloride aqueous solution for 2 hours to produce a sheet.
  • the thickness of the cellulose fiber layer was 5 ⁇ m.
  • Table 2 shows the electric resistance (M ⁇ ) and storage capacity (mJ/cm 2 ) of the sheets obtained in Examples 10 to 15.
  • the electrical resistance was obtained by sandwiching the obtained sheet of 5 cm square between two stainless steel plates and measuring the electrical resistance in the thickness direction using a DC resistance meter.
  • the amount of stored electricity is a voltage drop curve (horizontal axis: time, vertical axis: voltage).
  • each electricity storage material of each example had an electrical resistance of 59 M ⁇ to 497 M ⁇ and an electricity storage amount of 102 mJ/m 2 to 535 mJ/m 2 .
  • the sheet of each example has an average CNF fiber diameter of 3 nm, which is too small, so even a high-precision atomic force microscope cannot observe pore sizes of 1 nm or less, but the sheet structure is dense. Presumed.
  • the specific surface areas of the cellulose fibers of Samples 1 to 4 used for each sheet were 386 m 2 /g, 325 m 2 /g, 379 m 2 /g and 331 m 2 /g, respectively, as a result of measurement by the BET adsorption method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The present invention addresses the problem of providing a production method which is capable of efficiently producing a multilayer body that comprises a cellulose fiber layer and is capable of achieving a high amount of power storage. The present invention provides a method for producing a cellulose fiber layer-containing multilayer body, the method comprising a process for obtaining a multilayer unit, which comprises a cellulose fiber layer and an electrode layer, by applying a slurry of cellulose fibers such as pulp and cellulose nanofibers to at least a part of the electrode layer so as to form a film thereon by means of a bar coating method, a spin coating method, an electrophoresis method or the like.

Description

セルロース繊維層含有積層体の製造方法Method for producing laminate containing cellulose fiber layer
 本発明は、セルロース繊維層含有積層体の製造方法に関する。 The present invention relates to a method for manufacturing a laminate containing cellulose fiber layers.
 コンデンサ(キャパシタ)は本来、静電容量により電荷(電気エネルギー)を蓄えたり、放電したりする電子部品である。コンデンサは、パソコン、携帯電話等のモバイル電子機器において、電源の安定性、バックアップ回路、カップリング素子、ノイズフィルター等の役割を担い、電子機器にとって不可欠の部品である。近年、携帯電話、超小型記憶装置等の高機能IT製品及び電気自動車用バッテリが急速に進化し、より一層小型で、大容量メモリ等の高機能を有するコンデンサの需要が高まっている。中でも、地球温暖化防止のためのグリーンイノベーション(低炭素化)に合致したスマートグリッド(次世代送電網)社会に適合した製品が求められている。例えば、自動車、IT機器、省エネ用インバータ等、コンデンサの市場の拡大は、平均年率約3.7%で堅調に推移し、1兆円市場になっている。 A capacitor is essentially an electronic component that stores and discharges electric charge (electrical energy) through electrostatic capacitance. BACKGROUND ART Capacitors play roles such as power source stability, backup circuits, coupling elements, and noise filters in mobile electronic devices such as personal computers and mobile phones, and are indispensable components for electronic devices. In recent years, high-performance IT products such as mobile phones and micro-storage devices and batteries for electric vehicles have rapidly evolved, and the demand for capacitors that are more compact and have high performance such as large-capacity memory is increasing. In particular, there is a demand for products suitable for a smart grid (next-generation power grid) society that is compatible with green innovation (low carbonization) to prevent global warming. For example, the market for capacitors in automobiles, IT equipment, energy-saving inverters, etc. is steadily expanding at an average annual rate of about 3.7%, reaching a market of 1 trillion yen.
 このようなコンデンサとしては、リチウム等の発火性元素や環境汚染物質を使用していないものが好ましい。すなわち、液体よりも固体であり、健康に無害で安価な材料が求められている。 It is preferable that such capacitors do not use flammable elements such as lithium or environmental pollutants. That is, there is a demand for materials that are solid rather than liquid, harmless to health, and inexpensive.
 コンデンサは、用途により、高電圧電力回路(重電)用と電子・電気機器回路(弱電)用に大別される。このうち、弱電分野の電子・電気機器回路用のコンデンサとしては、主にセラミックコンデンサが用いられており、二次電池も携帯電話等の電気貯蔵用として重用されている。 Capacitors are broadly classified into high-voltage power circuits (heavy electric) and electronic/electrical equipment circuits (light electric) according to their application. Among them, ceramic capacitors are mainly used as capacitors for electronic/electrical equipment circuits in the field of light current, and secondary batteries are also heavily used for storing electricity in mobile phones and the like.
 従来の電気集中定数回路を用いたコンデンサは、蓄電容量が1pFから数十mFのものまで広範囲であり、電子・電気機器の主要構成部品として利用されている。蓄電容量C(F)は、以下の式:
   C=Q/V=ε×(A/d)
   (ここで、Q:電荷、V:電圧、ε:誘電率、A:電極面積、d:電極間距離)
で与えられるため、電極面積が大きく、電極間距離が小さいほど高電荷容量が得られる。しかしながら、電子・電気機器の軽薄短小化や、要求される蓄電容量の観点から、電極面積Aを大きくし、電極間距離dを小さくして極大容量にすることや、電極面積Aを小さくし、電極間距離dを大きくして極小容量にすることは困難である。また、現在の電気集中定数回路による誘電体仕様のコンデンサは、静電容量が既に飽和している。
Capacitors using conventional electric lumped constant circuits have a wide range of storage capacities from 1 pF to several tens of mF, and are used as main components of electronic and electrical equipment. The storage capacity C(F) is given by the following formula:
C=Q/V=ε×(A/d)
(Here, Q: electric charge, V: voltage, ε: permittivity, A: electrode area, d: distance between electrodes)
Therefore, the larger the electrode area and the smaller the distance between the electrodes, the higher the charge capacity obtained. However, from the viewpoint of lightness, thinness, shortness and miniaturization of electronic and electrical equipment and the required storage capacity, it is necessary to increase the electrode area A and reduce the distance d between the electrodes to achieve a maximum capacity, reduce the electrode area A, It is difficult to increase the inter-electrode distance d to make the capacitance extremely small. In addition, current capacitors with dielectric specifications based on electric lumped constant circuits are already saturated in capacitance.
 従来の電気容量を凌駕する蓄電方式として、電気分布定数回路による方法がある。例えば、最近では、活性炭中に電界溶液を湿潤させた電気二重層キャパシタが実用化されている。しかしながら、固体による電気二重層キャパシタは、まだ実用化されていない。 As a storage method that surpasses conventional electric capacity, there is a method using an electric distributed constant circuit. For example, recently, an electric double layer capacitor made by moistening an electrolytic solution in activated carbon has been put to practical use. However, a solid-state electric double layer capacitor has not yet been put to practical use.
 固体の蓄電材料に関し、本発明者等は、Al,Ti,Vを表面抽出除去させたSi-(Al,Ti,V)合金や、TiO被覆Ti-Ni-Si系及びAl被覆Al-Y系非晶質合金において、電荷が直流、交流にかかわらず蓄積できることを発見している(例えば、非特許文献1乃至7、特許文献1乃至4参照)。 With respect to solid storage materials, the present inventors have proposed Si--(Al, Ti, V) alloys from which Al, Ti, and V have been extracted and removed from the surface, Ti--Ni--Si systems coated with TiO.sub.2 , and Ti--Ni--Si systems coated with Al.sub.2O.sub.3 It has been discovered that an electric charge can be accumulated in an Al--Y system amorphous alloy regardless of direct current or alternating current (for example, see Non-Patent Documents 1 to 7 and Patent Documents 1 to 4).
 また、本発明者等により、化合物粒子が40nm以下、望ましくは10nm以下になると、ナノサイズ固体表面に起こる電子遮蔽により「量子サイズ効果」が起こり、この現象を利用した蓄電材料として、アモルファスチタニア、アモルファスアルミナやアモルファスフッ素ポリマー、更にはアモルファスセルロースナノファイバーの表面に、ナノサイズの凹凸が形成されたものが、本発明者等により開発されている(例えば、非特許文献4、7乃至9、11,特許文献4、5参照)。これらの蓄電材料では、量子ナノサイズ効果により、凸部の径がナノサイズで小さくなればなるほど、凸部の径のマイナス6乗でファンデルーワールス静電力が働き、凸部への電子吸着能が増大する(例えば、非特許文献7参照)。電子吸着能の大きさの目安である仕事関数は、アモルファスチタニアで、-5.5eV(非特許文献7参照)、アモルファスフッ素ポリマーで、-10.3eV~-13.35eV(非特許文献4、特許文献4参照)、アモルファスアルミナで-20.5eV(非特許文献9、特許文献3参照)、アモルファスセルロースナノファイバーで-22.5eV(非特許文献11、特許文献5参照)である。 In addition, the inventors of the present invention have found that when the compound particles are 40 nm or less, preferably 10 nm or less, a "quantum size effect" occurs due to electron shielding occurring on the nano-sized solid surface, and amorphous titania, The present inventors have developed nano-sized unevenness on the surface of amorphous alumina, amorphous fluoropolymer, and amorphous cellulose nanofiber (for example, Non-Patent Documents 4, 7 to 9, 11 , see Patent Documents 4 and 5). In these storage materials, due to the quantum nano-size effect, the smaller the diameter of the projections is, the more the Van der Waals electrostatic force acts on the diameter of the projections to the power of minus 6, and the more electrons can be attracted to the projections. increase (see, for example, Non-Patent Document 7). The work function, which is a measure of the magnitude of the electron adsorption capacity, is -5.5 eV for amorphous titania (see Non-Patent Document 7), and -10.3 eV to -13.35 eV for amorphous fluoropolymer (Non-Patent Document 4, Patent Document 4), −20.5 eV for amorphous alumina (see Non-Patent Document 9 and Patent Document 3), and −22.5 eV for amorphous cellulose nanofiber (see Non-Patent Document 11 and Patent Document 5).
 特許文献5には、地球環境にやさしい再生利用可能な植物繊維の利用に着目し、木材、植物繊維等の繊維を主成分とするファイバーを有し、表面に凹凸を有する蓄電材料及びこれを含むウルトラ蓄電体が記載されている。 Focusing on the use of recyclable vegetable fibers that are friendly to the global environment, Patent Document 5 discloses a power storage material having fibers mainly composed of fibers such as wood and vegetable fibers and having unevenness on the surface. Ultra capacitors are described.
特許第6498945号公報Japanese Patent No. 6498945 特許第6628241号公報Japanese Patent No. 6628241 特開2016-134934号公報JP 2016-134934 A 特開2017-41578号公報JP 2017-41578 A 国際公開第2021/166813号WO2021/166813
 非特許文献1~11及び特許文献1~4に記載されたコンデンサは全て、無機化合物又は有機化合物の人工化合物であるところ、現在、炭酸ガス増加をもたらす人工化合物製造や海洋汚染の原因となっているマイクロプラスチックの製造は、動植物保護、地球環境保全の観点から世界中で敬遠されつつある。 All the capacitors described in Non-Patent Documents 1 to 11 and Patent Documents 1 to 4 are artificial compounds of inorganic compounds or organic compounds. The production of microplastics, which are found in plastics, is being avoided all over the world from the viewpoint of animal and plant protection and global environmental conservation.
 一方、特許文献5に記載された蓄電材料は、地球環境へ配慮した再生利用な天然繊維を利用した環境負荷の低い材料であり、直流及び交流における蓄電が可能な蓄電体である。特許文献5は、生産・廃棄に関する環境負荷が小さく、軽量である高弾性能を有する植物から得られる木材・植物繊維(セルロース)を利用したバイオマスコンデンサを実現するものであり、時節にマッチした地球環境保全の方向に沿っており、さらに高蓄電量を発揮できる材料を、効率よく製造できる方法が求められている。 On the other hand, the electricity storage material described in Patent Document 5 is a material with low environmental impact that uses recycled natural fibers that are environmentally friendly, and is an electricity storage body that can store electricity in direct current and alternating current. Patent Document 5 realizes a biomass capacitor that uses wood and plant fibers (cellulose) obtained from plants that are lightweight, have high elastic performance, and have a small environmental load related to production and disposal. There is a demand for a method that can efficiently produce materials that are environmentally friendly and that can exhibit a high storage capacity.
 本発明の課題は、天然素材であるセルロース繊維から、より高い蓄電量を発現できる蓄電体を効率よく製造するための方法を提供することにある。 An object of the present invention is to provide a method for efficiently manufacturing a power storage body capable of expressing a higher storage capacity from cellulose fiber, which is a natural material.
 本発明は、以下の〔1〕~〔15〕を提供する。
〔1〕電極層の少なくとも一部にセルロース繊維スラリーを塗布して製膜しセルロース繊維層と電極層を備える積層ユニットを得ることを含む、セルロース繊維層含有積層体の製造方法。
〔2〕電極層が電極シートであり、電極シートの片面又は両面にセルロース繊維スラリーを塗布して製膜する、〔1〕に記載の製造方法。
〔3〕セルロース繊維スラリーの塗布を、バーコート法、スピンコート法、又は電気泳動法により行う、〔1〕又は〔2〕に記載の製造方法。
〔4〕セルロース繊維の比表面積が、10m2/g以上である、〔1〕~〔3〕のいずれか1項に記載の製造方法。
〔5〕セルロース繊維が、セルロースナノファイバーである、〔1〕~〔4〕のいずれか1項に記載の製造方法。
〔6〕セルロース繊維が、化学変性セルロース繊維である、〔1〕~〔5〕のいずれか1項に記載の製造方法。
〔7〕化学変性セルロース繊維は、カルボキシル化、カルボキシメチル化、又はエステル化セルロース繊維である、〔6〕に記載の製造方法。
〔8〕セルロース繊維は、金属をさらに、〔1〕~〔7〕のいずれか1項に記載の製造方法。
〔9〕化学変性セルロース繊維は、カウンターイオンとしての金属を含むセルロース繊維である、〔7〕に記載の製造方法。
〔10〕金属は、Na、Mg、Li、Ca、Al、K、Zn及びFeから選ばれる1種以上である、〔8〕又は〔9〕に記載の製造方法。
〔11〕積層体が蓄電材料である、〔1〕~〔10〕のいずれか1項に記載の製造方法。
〔12〕複数の積層ユニットを積層することをさらに含む〔1〕~〔10〕のいずれか1項に記載の製造方法。
〔13〕電極層とセルロース繊維層を有する少なくとも1つの積層ユニットを含み、
 セルロース繊維層は、アニオン性変性基を含有するセルロース繊維を含む、
セルロース繊維層含有積層体。
〔14〕アニオン性変性基と金属を含有するセルロース繊維は、カルボキシル化、カルボキシメチル化、又はエステル化セルロース繊維である、〔13〕に記載の積層体。
〔15〕蓄電体である、〔13〕又は〔14〕に記載の積層体。
The present invention provides the following [1] to [15].
[1] A method for producing a laminate containing a cellulose fiber layer, which comprises applying a cellulose fiber slurry to at least a part of an electrode layer to form a film to obtain a laminate unit comprising a cellulose fiber layer and an electrode layer.
[2] The manufacturing method according to [1], wherein the electrode layer is an electrode sheet, and the cellulose fiber slurry is applied to one or both sides of the electrode sheet to form the film.
[3] The production method according to [1] or [2], wherein the cellulose fiber slurry is applied by bar coating, spin coating, or electrophoresis.
[4] The production method according to any one of [1] to [3], wherein the cellulose fiber has a specific surface area of 10 m 2 /g or more.
[5] The production method according to any one of [1] to [4], wherein the cellulose fibers are cellulose nanofibers.
[6] The production method according to any one of [1] to [5], wherein the cellulose fibers are chemically modified cellulose fibers.
[7] The production method of [6], wherein the chemically modified cellulose fibers are carboxylated, carboxymethylated, or esterified cellulose fibers.
[8] The production method according to any one of [1] to [7], wherein the cellulose fiber further comprises a metal.
[9] The production method of [7], wherein the chemically modified cellulose fiber is a cellulose fiber containing a metal as a counterion.
[10] The production method according to [8] or [9], wherein the metal is one or more selected from Na, Mg, Li, Ca, Al, K, Zn and Fe.
[11] The production method according to any one of [1] to [10], wherein the laminate is an electricity storage material.
[12] The manufacturing method according to any one of [1] to [10], further comprising laminating a plurality of lamination units.
[13] comprising at least one laminated unit having an electrode layer and a cellulose fiber layer;
the cellulose fiber layer comprises cellulose fibers containing an anionic modifying group;
A laminate containing a cellulose fiber layer.
[14] The laminate according to [13], wherein the cellulose fibers containing an anionic modifying group and metal are carboxylated, carboxymethylated, or esterified cellulose fibers.
[15] The laminate according to [13] or [14], which is a power storage body.
 本発明は、また、以下の〔1-1〕~〔1-7〕を提供する。
〔1-1〕電極層の少なくとも一面にセルロース繊維スラリーを塗布して製膜することを含む、セルロース繊維層含有蓄電体の製造方法。
〔1-2〕電極層の両面にセルロース繊維スラリーを塗布して製膜する、〔1-1〕に記載の製造方法。
〔1-3〕セルロース繊維スラリーの塗布を、バーコート法、スピンコート法、又は電気泳動法(電着塗工法)により行う、〔1-1〕又は〔1-2〕に記載の製造方法。
〔1-4〕セルロース繊維の比表面積が、10m2/g以上である、〔1-1〕~〔1-3〕のいずれか1項に記載の製造方法。
〔1-5〕セルロース繊維が、セルロースナノファイバーである、〔1-1〕~〔1-4〕のいずれか1項に記載の製造方法。
〔1-6〕セルロース繊維が、化学変性セルロース繊維である、〔1-1〕~〔1-5〕のいずれか1項に記載の製造方法。
〔1-7〕前記蓄電体を複数積層することを特徴とする〔1-1〕~〔1-6〕のいずれか1項に記載の製造方法。
The present invention also provides the following [1-1] to [1-7].
[1-1] A method for producing a cellulose fiber layer-containing power storage body, comprising coating a cellulose fiber slurry on at least one surface of an electrode layer to form a film.
[1-2] The production method according to [1-1], wherein the cellulose fiber slurry is applied to both surfaces of the electrode layer to form the film.
[1-3] The production method according to [1-1] or [1-2], wherein the cellulose fiber slurry is applied by bar coating, spin coating, or electrophoresis (electrodeposition coating method).
[1-4] The production method according to any one of [1-1] to [1-3], wherein the cellulose fiber has a specific surface area of 10 m 2 /g or more.
[1-5] The production method according to any one of [1-1] to [1-4], wherein the cellulose fibers are cellulose nanofibers.
[1-6] The production method according to any one of [1-1] to [1-5], wherein the cellulose fibers are chemically modified cellulose fibers.
[1-7] The manufacturing method according to any one of [1-1] to [1-6], wherein a plurality of the power storage bodies are laminated.
 本発明は、さらに以下の〔2-1〕~〔2-11〕を提供する。
〔2-1〕電極にセルロース繊維スラリーを塗布し製膜することを含み、
 セルロース繊維スラリーは、アニオン性変性基と金属を含有するセルロース繊維を含む、
電極付きシート材料の製造方法。
〔2-2〕電極付きシート材料は、電極の片面又は両面に接してセルロース繊維層が設けられている、〔2-1〕に記載の製造方法。
〔2-3〕アニオン性変性基と金属を含有するセルロース繊維は、カルボキシル化、カルボキシメチル化、又はエステル化セルロース繊維であって、カウンターイオンとしての金属を含むセルロース繊維である、〔2-1〕又は〔2-2〕に記載の製造方法。
〔2-4〕金属は、Na、Mg、Li、Ca、Al、K、Zn及びFeから選ばれる1種以上である、〔2-1〕~〔2-3〕のいずれか1項に記載の製造方法。
〔2-5〕セルロース繊維の比表面積が、10m/g以上である、〔2-1〕~〔2-4〕のいずれか1項に記載の製造方法。
〔2-6〕電極層とセルロース繊維層を有し、
 セルロース繊維層は、アニオン性変性基と金属を含有するセルロース繊維を含む、
電極付きシート材料。
〔2-7〕電極層の片面にセルロース繊維層が接して設けられているか、又は、
 電極層の両面にセルロース繊維層が接して設けられている、
〔2-6〕に記載のシート材料。
〔2-8〕アニオン性変性基と金属を含有するセルロース繊維は、カルボキシル化、カルボキシメチル化、又はエステル化セルロース繊維であって、カウンターイオンとしての金属を含むセルロース繊維である、〔2-6〕又は〔2-7〕に記載のシート材料。
〔2-9〕金属は、Na、Mg、Li、Ca、Al、K、Zn及びFeから選ばれる1種以上である、〔2-6〕~〔2-8〕のいずれか1項に記載のシート材料。
〔2-10〕セルロース繊維の比表面積が、10m/g以上である、〔2-6〕~〔2-9〕のいずれか1項に記載のシート材料。
〔2-11〕蓄電材料である、〔2-6〕~〔2-10〕のいずれか1項に記載のシート材料。
The present invention further provides the following [2-1] to [2-11].
[2-1] Including applying a cellulose fiber slurry to the electrode to form a film,
The cellulose fiber slurry comprises cellulose fibers containing anionic modifying groups and metals,
A method for manufacturing a sheet material with electrodes.
[2-2] The production method of [2-1], wherein the electrode-attached sheet material is provided with a cellulose fiber layer in contact with one or both sides of the electrodes.
[2-3] The cellulose fiber containing an anionic modifying group and a metal is a carboxylated, carboxymethylated, or esterified cellulose fiber containing a metal as a counterion, [2-1 ] or [2-2].
[2-4] Any one of [2-1] to [2-3], wherein the metal is one or more selected from Na, Mg, Li, Ca, Al, K, Zn and Fe. manufacturing method.
[2-5] The production method according to any one of [2-1] to [2-4], wherein the cellulose fiber has a specific surface area of 10 m 2 /g or more.
[2-6] having an electrode layer and a cellulose fiber layer,
The cellulose fiber layer comprises cellulose fibers containing anionic modifying groups and metals,
Sheet material with electrodes.
[2-7] A cellulose fiber layer is provided in contact with one side of the electrode layer, or
A cellulose fiber layer is provided on both sides of the electrode layer,
The sheet material according to [2-6].
[2-8] The cellulose fiber containing an anionic modifying group and a metal is a carboxylated, carboxymethylated, or esterified cellulose fiber containing a metal as a counterion, [2-6 ] or [2-7].
[2-9] Any one of [2-6] to [2-8], wherein the metal is one or more selected from Na, Mg, Li, Ca, Al, K, Zn and Fe. sheet material.
[2-10] The sheet material of any one of [2-6] to [2-9], wherein the cellulose fibers have a specific surface area of 10 m 2 /g or more.
[2-11] The sheet material according to any one of [2-6] to [2-10], which is an electricity storage material.
 本発明によれば、セルロース繊維層を含み、高い蓄電量を発揮し得る積層体を効率よく製造できる。 According to the present invention, it is possible to efficiently manufacture a laminate that includes a cellulose fiber layer and is capable of exhibiting a high storage capacity.
図1は、実施例におけるバー塗工法による塗布の手順を示す模式図である。FIG. 1 is a schematic diagram showing the procedure of coating by the bar coating method in the example. 図2は、実施例におけるスピンコート法による塗布の手順を示す模式図である。FIG. 2 is a schematic diagram showing the application procedure by the spin coating method in the example. 図3は、実施例における電着塗工法による塗布の手順を示す模式図である。FIG. 3 is a schematic diagram showing the procedure of coating by the electrodeposition coating method in the example.
[1.積層体]
 本発明における積層体(電極付きシート材料)は、セルロース繊維層を含有する。
[1.1 セルロース繊維層]
 セルロース繊維層は、セルロース繊維を含む層である。
[1. Laminate]
The laminate (sheet material with electrodes) in the present invention contains a cellulose fiber layer.
[1.1 Cellulose fiber layer]
A cellulose fiber layer is a layer containing cellulose fibers.
[セルロース繊維]
 セルロース繊維は、通常、生物由来のセルロース繊維であり、例えば、植物(例えば、木材、竹、麻、ジュート、ケナフ、イネ)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等由来のセルロース繊維が挙げられる。セルロース繊維は、好ましくは、植物又は微生物由来のセルロース繊維、より好ましくは、植物由来のセルロース繊維である。植物又は微生物由来のセルロース繊維としては、例えば、パルプ、粉末セルロース、結晶セルロース、セルロースナノファイバー、セルロースマイクロフィブリル、再生セルロースが挙げられ、加工の方法、程度は特に限定されない。パルプとしては、例えば、クラフトパルプ(例、針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)等の針葉樹クラフトパルプ;広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)等の広葉樹クラフトパルプ)、サルファイトパルプ(例、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)等の針葉樹サルファイトパルプ)等の化学パルプ、サーモメカニカルパルプ(TMP)等のメカニカルパルプ、再生パルプが挙げられ、化学パルプが好ましい。セルロース繊維は、微細化処理を経たセルロース繊維、例えば、セルロースナノファイバー、セルロースマイクロフィブリルでもよい。また、各種パルプを酵素処理してフィブリル化を促進する方法で得られるセルロース繊維でもよい。さらに、セルロース繊維は、化学変性セルロース繊維(例、パルプ、セルロースナノファイバー、セルロースマイクロフィブリル)でもよい。本明細書において、化学変性セルロース繊維とは、化学変性処理が施されたセルロース繊維を意味する。化学変性セルロース繊維、化学変性処理については、後述する。
[Cellulose fiber]
Cellulose fibers are usually bio-derived cellulose fibers, for example, plants (for example, wood, bamboo, hemp, jute, kenaf, rice), animals (for example, sea squirts), algae, microorganisms (for example, acetic acid bacteria (Acetobacter )), cellulose fibers derived from microbial products and the like. Cellulose fibers are preferably plant- or microorganism-derived cellulose fibers, more preferably plant-derived cellulose fibers. Cellulose fibers derived from plants or microorganisms include, for example, pulp, powdered cellulose, crystalline cellulose, cellulose nanofibers, cellulose microfibrils, and regenerated cellulose, and the processing method and degree are not particularly limited. Examples of pulp include kraft pulp (e.g., softwood kraft pulp such as unbleached softwood kraft pulp (NUKP) and bleached softwood kraft pulp (NBKP); unbleached hardwood kraft pulp (LUKP), bleached hardwood kraft pulp (LBKP), etc.). hardwood kraft pulp), sulfite pulp (e.g. softwood sulfite pulp such as softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP)), chemical pulp such as thermomechanical pulp (TMP) Mechanical pulp and recycled pulp are mentioned, and chemical pulp is preferred. Cellulose fibers may be cellulose fibers that have undergone a refining process, such as cellulose nanofibers and cellulose microfibrils. Cellulose fibers obtained by a method of promoting fibrillation by enzymatically treating various pulps may also be used. Additionally, the cellulose fibers may be chemically modified cellulose fibers (eg, pulp, cellulose nanofibers, cellulose microfibrils). As used herein, chemically modified cellulose fibers mean cellulose fibers that have undergone chemical modification treatment. The chemically modified cellulose fiber and the chemical modification treatment will be described later.
[セルロース繊維のサイズ]
 セルロース繊維のサイズ(例えば、平均繊維径、平均繊維長、アスペクト比)は、特に制限されないが、一例をあげると以下のとおりである。
[Cellulose fiber size]
The size of the cellulose fibers (eg, average fiber diameter, average fiber length, aspect ratio) is not particularly limited, but examples are as follows.
(パルプ)
 一般的なパルプである針葉樹クラフトパルプ及び広葉樹クラフトパルプの数平均繊維径は、それぞれ、通常、30~60μm程度、10~30μm程度である。その他のパルプ(一般的な精製を経たもの)の数平均繊維径は、通常、50μm程度である。チップ等の数cm大のものを精製したパルプの場合、必要に応じて、後述の微細化処理により、数平均繊維径を50μm程度に調整することが好ましい。
(pulp)
The number average fiber diameters of softwood kraft pulp and hardwood kraft pulp, which are general pulps, are usually about 30 to 60 μm and about 10 to 30 μm, respectively. The number average fiber diameter of other pulps (those that have undergone general refining) is usually about 50 μm. In the case of pulp obtained by refining chips and the like having a size of several centimeters, it is preferable to adjust the number average fiber diameter to about 50 μm by a pulverization treatment described later, if necessary.
(セルロースマイクロフィブリルのサイズ)
 本明細書において、セルロースマイクロフィブリルは、微細化処理を経て、マイクロオーダーの繊維径を有するセルロース繊維を意味する。セルロースマイクロフィブリルの平均繊維径は、通常500nm以上、1μm以上が好ましく、10μm以上がより好ましい。これにより、未解繊のセルロース繊維(例えばパルプ)に比べて高い保水性を呈することができ、微細に解繊されたセルロースナノファイバーと比較して少量でも高い強度付与効果や歩留まり向上効果が得られる。平均繊維径の上限は40μm以下が好ましく、30μm以下がより好ましく、20μm以下、18μm以下又は17μm以下がさらに好ましいが、特に制限はない。 
(size of cellulose microfibrils)
As used herein, cellulose microfibrils refer to cellulose fibers that have undergone a micronization treatment and have a micro-order fiber diameter. The average fiber diameter of cellulose microfibrils is usually 500 nm or more, preferably 1 μm or more, more preferably 10 μm or more. As a result, it is possible to exhibit higher water retention than undissolved cellulose fibers (e.g. pulp), and it is possible to obtain a high strength imparting effect and a yield improvement effect even in a small amount compared to finely disintegrated cellulose nanofibers. be done. The upper limit of the average fiber diameter is preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less, 18 μm or less, or 17 μm or less, but is not particularly limited.
 平均繊維長は、10μm以上又は20μm以上が好ましく、30μm以上、40μm以上、50μm以上がより好ましい。平均繊維長の上限は、特に限定されないが、1000μm以下が好ましく、500μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。 The average fiber length is preferably 10 μm or more or 20 μm or more, more preferably 30 μm or more, 40 μm or more, or 50 μm or more. The upper limit of the average fiber length is not particularly limited, but is preferably 1000 µm or less, preferably 500 µm or less, more preferably 300 µm or less, and even more preferably 200 µm or less.
 セルロースマイクロフィブリルのアスペクト比は、30以上又は35以上が好ましく、40以上がより好ましく、50以上がさらに好ましく、60以上がさらにより好ましい。アスペクト比の上限は特に限定されないが、1000以下が好ましく、100以下がより好ましく、80以下がさらに好ましい。 The aspect ratio of cellulose microfibrils is preferably 30 or more or 35 or more, more preferably 40 or more, even more preferably 50 or more, and even more preferably 60 or more. Although the upper limit of the aspect ratio is not particularly limited, it is preferably 1000 or less, more preferably 100 or less, and even more preferably 80 or less.
(セルロースナノファイバーのサイズ)
 本明細書において、セルロースナノファイバー(CNF)とは、微細化処理を経て、ナノオーダーの繊維径を有するセルロース繊維を意味する。CNFを用いることにより、積層体の量子サイズ効果をより効率的に具現化できる。CNFの平均繊維径(長さ加重平均繊維径)は、500nm以下、好ましくは300nm以下、より好ましくは100nm以下、更に好ましくは50nm以下である。下限は特に限定されないが、通常は1nm以上、好ましくは2nm以上である。したがって、CNFの平均繊維径(長さ加重平均繊維径)は、通常1~500nm又は2~500nm、好ましくは2~300nm又は2~100nm、より好ましくは2~50nm又は3~30nmである。平均繊維長(長さ加重平均繊維長)は、通常、50~2000nm、好ましくは100~1000nmである。CNFのアスペクト比は、通常10以上、好ましくは50以上である。上限は特に限定されないが、通常は1000以下である。
(Cellulose nanofiber size)
As used herein, cellulose nanofibers (CNF) mean cellulose fibers that have undergone a refining treatment and have a nano-order fiber diameter. By using CNF, the quantum size effect of the laminate can be realized more efficiently. The average fiber diameter (length-weighted average fiber diameter) of CNF is 500 nm or less, preferably 300 nm or less, more preferably 100 nm or less, still more preferably 50 nm or less. Although the lower limit is not particularly limited, it is usually 1 nm or more, preferably 2 nm or more. Therefore, the average fiber diameter (length-weighted average fiber diameter) of CNF is usually 1 to 500 nm or 2 to 500 nm, preferably 2 to 300 nm or 2 to 100 nm, more preferably 2 to 50 nm or 3 to 30 nm. The average fiber length (length-weighted average fiber length) is usually 50 to 2000 nm, preferably 100 to 1000 nm. The aspect ratio of CNF is usually 10 or more, preferably 50 or more. Although the upper limit is not particularly limited, it is usually 1000 or less.
 本明細書において、平均繊維径、平均繊維長は、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察して求められる。平均アスペクト比は、式:平均アスペクト比=平均繊維長/平均繊維径により算出できる。 In this specification, the average fiber diameter and average fiber length are determined by observing each fiber using an atomic force microscope (AFM) or transmission electron microscope (TEM). The average aspect ratio can be calculated according to the formula: average aspect ratio=average fiber length/average fiber diameter.
 セルロース繊維のサイズは、微細化処理、化学変性処理の条件等により調整できる。  The size of the cellulose fibers can be adjusted by adjusting the conditions of the miniaturization process and chemical modification process.
[化学変性セルロース繊維]
 化学変性セルロース繊維は、未変性のセルロース繊維(例えば、未変性のパルプ、未変性の粉末セルロース)を化学変性処理して得られる。化学変性処理としては、例えば、カチオン化、アニオン化(カルボキシル化(酸化)、エーテル化(例、カルボキシメチル化)、エステル化)が挙げられ、アニオン化が好ましく、カルボキシル化、エーテル化がより好ましい。化学変性処理(例えば、酸化)により、セルロース繊維が固体電解質となり電気二重層が形成されるので、スーパーキャパシタとしての利用が期待できる。化学変性処理は、通常、微細化処理の前又は後に行い、好ましくは前に行う。
[Chemically modified cellulose fiber]
Chemically modified cellulose fibers are obtained by chemically modifying unmodified cellulose fibers (eg, unmodified pulp, unmodified powdered cellulose). Examples of the chemical modification treatment include cationization and anionization (carboxylation (oxidation), etherification (eg, carboxymethylation), esterification), with anionization being preferred, and carboxylation and etherification being more preferred. . By chemical modification treatment (for example, oxidation), the cellulose fiber becomes a solid electrolyte and an electric double layer is formed, so it can be expected to be used as a supercapacitor. The chemical modification treatment is usually performed before or after the refinement treatment, preferably before the refinement treatment.
[アニオン変性基を含むセルロース繊維]
 セルロース繊維層は、アニオン変性基を含むセルロース繊維を含むことが好ましい。本明細書において、アニオン変性基を含むセルロース繊維とは、アニオン化(カルボキシル化(酸化、ジカルボキシル化、オゾン酸化)、エーテル化(例、カルボキシメチル化)、エステル化(リン酸、亜リン酸、硫酸))を経たセルロース繊維を意味する。アニオン変性基としては、例えば、カルボキシル基、カルボキシアルキル基(例、カルボキシメチル基)、エステル基(例、リン酸エステル基、亜リン酸エステル基、硫酸エステル基)が挙げられ、カルボキシル基、カルボキシメチル基が好ましい。
[Cellulose fiber containing anion-modified group]
The cellulose fiber layer preferably contains cellulose fibers containing anion-modifying groups. As used herein, cellulose fibers containing an anion modifying group include anionization (carboxylation (oxidation, dicarboxylation, ozone oxidation), etherification (e.g., carboxymethylation), esterification (phosphoric acid, phosphorous acid , sulfuric acid)). Examples of anion-modifying groups include carboxyl groups, carboxyalkyl groups (e.g., carboxymethyl groups), ester groups (e.g., phosphate groups, phosphite groups, sulfate ester groups). Methyl groups are preferred.
(カルボキシル化(酸化))
 カルボキシル化セルロース繊維(酸化セルロース繊維)は、通常、セルロース分子鎖を構成するグルコピラノース単位に含まれる1級水酸基を有する炭素原子の少なくとも1つ(例えば、C6位の1級水酸基を有する炭素原子)が酸化されている構造を有する。カルボキシル化セルロース繊維のカルボキシル基量は、0.6~3.0mmol/gが好ましく、1.0~2.0mmol/gがより好ましい。カルボキシル基量は、セルロース繊維をカルボキシル化する際の条件(例えば、酸化剤の添加量、反応時間)をコントロールして調整できる。
(carboxylation (oxidation))
Carboxylated cellulose fibers (oxidized cellulose fibers) usually have at least one carbon atom having a primary hydroxyl group contained in the glucopyranose unit constituting the cellulose molecular chain (for example, a carbon atom having a primary hydroxyl group at the C6 position). has a structure in which is oxidized. The carboxyl group content of the carboxylated cellulose fiber is preferably 0.6 to 3.0 mmol/g, more preferably 1.0 to 2.0 mmol/g. The amount of carboxyl groups can be adjusted by controlling the conditions (for example, amount of oxidizing agent to be added, reaction time) in carboxylating the cellulose fibers.
 カルボキシ基量は、以下の手順で算出できる。酸化セルロースの0.5質量%スラリー(水分散液)60mlを調製する。調製したスラリーに0.1M塩酸水溶液を加えてpH2.5に調整する。次いで0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いてカルボキシ基量を算出する:
 カルボキシ基量〔mmol/g酸化セルロース〕=a〔ml〕×0.05/酸化セルロース質量〔g〕
The carboxy group content can be calculated by the following procedure. 60 ml of a 0.5% by weight slurry (aqueous dispersion) of oxidized cellulose is prepared. A 0.1 M hydrochloric acid aqueous solution is added to the prepared slurry to adjust the pH to 2.5. Then, 0.05N sodium hydroxide aqueous solution is added dropwise and the electrical conductivity is measured until the pH reaches 11. From the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid, whose electrical conductivity changes slowly, the amount of carboxyl groups is calculated using the following formula:
Carboxy group amount [mmol/g oxidized cellulose] = a [ml] x 0.05/oxidized cellulose mass [g]
 カルボキシル化セルロース繊維は、未変性のセルロース繊維(セルロース原料:例えば、パルプ)をカルボキシル化(酸化)して製造できる。カルボキシル化(酸化)方法の一例として、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物と、の存在下で酸化剤を用いて水中で酸化する方法を挙げることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基を有する炭素原子が選択的に酸化され、表面にアルデヒド基と、カルボキシル基(-COOH)又はカルボキシレート基(-COO)と、を有する化学変性セルロースを得ることができる。反応時のセルロース原料の濃度は、特に限定されないが、5質量%以下が好ましい。  Carboxylated cellulose fibers can be produced by carboxylating (oxidizing) unmodified cellulose fibers (cellulose raw material, eg pulp). As an example of a carboxylation (oxidation) method, a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromides, iodides or mixtures thereof. You can mention how to do it. This oxidation reaction selectively oxidizes the carbon atom having a primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface, resulting in an aldehyde group, a carboxyl group (-COOH) or a carboxylate group ( -COO- ) on the surface. , can be obtained. The concentration of the cellulose raw material during the reaction is not particularly limited, but is preferably 5% by mass or less.
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)及びその誘導体(例えば、4-ヒドロキシTEMPO)が挙げられる。  An N-oxyl compound is a compound that can generate a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it promotes the desired oxidation reaction. Examples include 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and derivatives thereof (eg, 4-hydroxy TEMPO). 
 N-オキシル化合物の使用量は、セルロース原料を酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロース原料に対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。また、反応系に対し0.1~4mmol/L程度がよい。  The amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount that can oxidize the cellulose raw material. For example, it is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, even more preferably 0.05 to 0.5 mmol, relative to 1 g of absolute dry cellulose raw material. Further, it is preferable that the concentration is about 0.1 to 4 mmol/L with respect to the reaction system. 
 臭化物とは、臭素を含む化合物であり、例えば、水中で解離してイオン化可能なアルカリ金属の臭化物が挙げられる。また、ヨウ化物とは、ヨウ素を含む化合物であり、例えば、アルカリ金属のヨウ化物が挙げられる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロース原料に対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。  A bromide is a compound containing bromine, for example, an alkali metal bromide that can be dissociated and ionized in water. Also, iodides are compounds containing iodine, and examples thereof include iodides of alkali metals. The amount of bromide or iodide to be used can be selected within a range capable of promoting the oxidation reaction. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, even more preferably 0.5 to 5 mmol, relative to 1 g of absolute dry cellulose raw material. 
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の適切な使用量は、例えば、絶乾1gのセルロース原料に対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolがさらにより好ましい。また、例えば、N-オキシル化合物1molに対して1~40molが好ましい。  As the oxidizing agent, a known one can be used, for example, halogen, hypohalous acid, halogenous acid, perhalogen acid or salts thereof, halogen oxides, peroxides, and the like can be used. Among them, sodium hypochlorite is preferable because it is inexpensive and has less environmental load. An appropriate amount of the oxidizing agent to be used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, even more preferably 1 to 25 mmol, further preferably 3 to 10 mmol, relative to 1 g of absolute dry cellulose raw material. more preferred. Further, for example, 1 to 40 mol is preferable per 1 mol of the N-oxyl compound. 
 セルロース原料の酸化工程は、比較的温和な条件であっても反応は効率よく進行する。よって、反応温度は、4~40℃が好ましく、また15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。  In the oxidation process of cellulose raw materials, the reaction proceeds efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 to 40°C, and may be room temperature of about 15 to 30°C. Since carboxyl groups are generated in the cellulose as the reaction progresses, the pH of the reaction solution decreases. In order to allow the oxidation reaction to proceed efficiently, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution at about 8-12, preferably about 10-11. Water is preferable as the reaction medium because it is easy to handle and less likely to cause side reactions. 
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば、0.5~4時間程度である。  The reaction time in the oxidation reaction can be appropriately set according to the degree of progress of oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours. 
 酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。  The oxidation reaction may be carried out in two steps. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the reaction in the first step, again under the same or different reaction conditions, the reaction can be efficiently It can be oxidized well. 
 カルボキシル化(酸化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位及び6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50~250g/mが好ましく、50~220g/mがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1~30質量部が好ましく、5~30質量部がより好ましい。オゾン処理温度は、0~50℃が好ましく、20~50℃がより好ましい。オゾン処理時間は、特に限定されないが、1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロース原料が過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。 Another example of the carboxylation (oxidation) method is a method of oxidizing by contacting a cellulose raw material with an ozone-containing gas. This oxidation reaction oxidizes at least the 2-position and 6-position hydroxyl groups of the glucopyranose ring and causes degradation of the cellulose chain. The ozone concentration in the ozone-containing gas is preferably 50-250 g/m 3 , more preferably 50-220 g/m 3 . The amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass. The ozone treatment temperature is preferably 0 to 50°C, more preferably 20 to 50°C. The ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 360 minutes. When the ozone treatment conditions are within these ranges, the cellulose raw material can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
 オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作製し、溶液中に酸化セルロースを浸漬させることにより追酸化処理を行うことができる。  After the ozone treatment, additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used in the additional oxidation treatment is not particularly limited, but examples include chlorine-based compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, the additional oxidation treatment can be performed by dissolving these oxidizing agents in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and immersing the oxidized cellulose in the solution. 
(塩型酸化セルロース)
 塩型酸化セルロースは、通常、塩型カルボキシル基(-COO-)を主に有する。塩型カルボキシル基のカウンターカチオンとしては、例えば、Li、Na、K等のアルカリ金属;Mg、Ca等のアルカリ土類金属;Fe;Al;Zn等の亜鉛族元素等の金属;のが挙げられ、Li、Na、Ca、K、Znが好ましく、Naがより好ましい。カウンターカチオンは、通常の酸化方法で得られる酸化セルロースではNaであり、Naを所望の金属に置換したい場合には、その金属を有する化合物(LiCl、CaCl2、KCl、ZnCl2など)の水溶液に浸漬すればよい。
(Salt-type oxidized cellulose)
Salt-type oxidized cellulose usually mainly has salt-type carboxyl groups (--COO--). Examples of the counter cation of the salt-type carboxyl group include alkali metals such as Li, Na and K; alkaline earth metals such as Mg and Ca; metals such as Fe; Al; zinc group elements such as Zn; , Li, Na, Ca, K and Zn are preferred, and Na is more preferred. The counter cation is Na in oxidized cellulose obtained by a conventional oxidation method, and when it is desired to replace Na with a desired metal, an aqueous solution of a compound (LiCl 2 , CaCl 2 , KCl, ZnCl 2 , etc.) having that metal is used. should be immersed in
(酸型酸化セルロース及び脱塩)
 酸化セルロースは、酸化を経た結果カルボキシル基を含有するが、酸型カルボキシル基(-COOH)を塩型カルボキシル基(-COO-)よりも多く含有してもよいし、塩型カルボキシル基を酸型カルボキシル基よりも多く含有してもよい。塩型カルボキシル基、酸型カルボキシル基の量は、脱塩処理により調整できる。脱塩処理により、塩型カルボキシル基を酸型カルボキシル基に変換できる。本明細書において、酸化セルロース(脱塩を経たもの)を酸型酸化セルロース、酸化セルロース(後述の脱塩処理を経ていないもの)を、塩型酸化セルロースという。塩型酸化セルロースは、通常、塩型カルボキシル基(-COO-)を主に有する。一方、酸型酸化セルロースは、酸型カルボキシル基を多く有し、カルボキシル基に占める酸型カルボキシル基の割合は、40%以上が好ましく、60%以上がより好ましく、85%以上がさらに好ましい。酸型カルボキシル基の割合は以下の手順で算出できる。
 1)先ず、脱塩処理前の酸型酸化セルロースの固形分濃度0.1質量%水分散体を250mL調製する。調製した水分散体に、0.1M塩酸水溶液を加えてpH2.5とした後、0.1Nの水酸化ナトリウム水溶液を添加してpHが11になるまで電気電導度を測定する。電気電導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて、酸型カルボキシル基量および塩型カルボキシル基量、つまりトータルのカルボキシル基量を算出する:
 トータルのカルボキシル基量(mmol/g酸化セルロース(塩型))=a(ml)×0.1/酸化セルロース(塩型)の質量(g)
 2)脱塩処理した酸型酸化セルロースの固形分濃度0.1質量%水分散体を250mL調製する。調製した水分散体に、0.1Nの水酸化ナトリウム水溶液を添加してpHが11になるまで電気電導度を測定する。電気電導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(b)から、下式を用いて、酸型カルボキシル基量を算出する:
 酸型カルボキシル基量(mmol/g酸型酸化セルロース)=b(ml)×0.1/酸型酸化セルロースの質量(g)
 3)算出したトータルのカルボキシル基量と酸型カルボキシル基量から、下式を用いて、酸型カルボキシル基の割合を算出する。
 酸型カルボキシル基の割合(%)=(酸型カルボキシル基量/トータルのカルボキシル基量)×100
(Acid-type oxidized cellulose and desalting)
Oxidized cellulose contains carboxyl groups as a result of oxidation, but may contain more acid-type carboxyl groups (-COOH) than salt-type carboxyl groups (-COO-), or salt-type carboxyl groups may be converted to acid-type carboxyl groups. You may contain more than a carboxyl group. The amounts of salt-type carboxyl groups and acid-type carboxyl groups can be adjusted by desalting. The desalting treatment can convert salt-type carboxyl groups to acid-type carboxyl groups. In the present specification, oxidized cellulose (which has undergone desalting) is referred to as acid-type oxidized cellulose, and oxidized cellulose (which has not undergone desalting treatment, which will be described later) is referred to as salt-type oxidized cellulose. Salt-type oxidized cellulose usually mainly has salt-type carboxyl groups (--COO--). On the other hand, acid-type oxidized cellulose has many acid-type carboxyl groups, and the ratio of acid-type carboxyl groups to carboxyl groups is preferably 40% or more, more preferably 60% or more, and even more preferably 85% or more. The proportion of acid-type carboxyl groups can be calculated by the following procedure.
1) First, 250 mL of an aqueous dispersion of acid-type oxidized cellulose with a solid content concentration of 0.1% by mass before desalting treatment is prepared. A 0.1 M hydrochloric acid aqueous solution is added to the prepared aqueous dispersion to adjust the pH to 2.5, and then a 0.1 N sodium hydroxide aqueous solution is added to measure the electrical conductivity until the pH reaches 11. From the amount of sodium hydroxide (a) consumed in the neutralization step of a weak acid whose electrical conductivity changes slowly, using the following formula, the amount of acid-type carboxyl groups and the amount of salt-type carboxyl groups, that is, the total amount of carboxyl groups Compute :
Total amount of carboxyl groups (mmol/g oxidized cellulose (salt form)) = a (ml) x 0.1/mass (g) of oxidized cellulose (salt form)
2) 250 mL of an aqueous dispersion of desalted acid-type oxidized cellulose having a solid content concentration of 0.1% by mass is prepared. A 0.1 N sodium hydroxide aqueous solution is added to the prepared water dispersion, and the electrical conductivity is measured until the pH reaches 11. From the amount (b) of sodium hydroxide consumed in the neutralization step of the weak acid whose electrical conductivity changes slowly, the amount of acid-type carboxyl groups is calculated using the following formula:
Acid-form carboxyl group amount (mmol/g acid-form oxidized cellulose) = b (ml) x 0.1/mass (g) of acid-form oxidized cellulose
3) From the calculated total amount of carboxyl groups and the amount of acid-type carboxyl groups, the ratio of acid-type carboxyl groups is calculated using the following formula.
Proportion of acid-type carboxyl groups (%) = (amount of acid-type carboxyl groups/total amount of carboxyl groups) x 100
 脱塩を行う時期は、酸化後であればよく、解繊前後(工程(2)の前後)のいずれでもよいが、通常は酸化後であり、好ましくは工程(2)の前である。脱塩は、通常、塩型酸化セルロースに含まれる塩(例、ナトリウム塩)をプロトンに置換することにより実施される。脱塩の方法としては例えば、系内を酸性に調整する方法、及び、酸化セルロースを陽イオン交換樹脂と接触させる方法が挙げられる。系内を酸性に調整する方法の場合、系内のpHは、好ましくは2~6、より好ましくは2~5、さらに好ましくは2.3~5に調整される。酸性に調整するには、通常は酸(例えば、硫酸、塩酸、硝酸、亜硫酸、亜硝酸、リン酸等の無機酸;酢酸、乳酸、蓚酸、クエン酸、蟻酸等の有機酸)が用いられる。酸の添加後には、適宜洗浄処理を行ってもよい。前記の陽イオン交換樹脂は、対イオンがH+である限り、強酸性イオン交換樹脂および弱酸性イオン交換樹脂のいずれも用いることができる。酸化セルロースを陽イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。接触後の陽イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。 Desalting may be performed after oxidation, or before or after defibration (before or after step (2)), but usually after oxidation, preferably before step (2). Desalting is usually carried out by substituting protons for salts (eg, sodium salts) contained in the salt-type oxidized cellulose. Methods of desalting include, for example, a method of adjusting the inside of the system to be acidic, and a method of contacting oxidized cellulose with a cation exchange resin. In the case of the method of adjusting the inside of the system to be acidic, the pH inside the system is preferably adjusted to 2-6, more preferably 2-5, and still more preferably 2.3-5. Acids (eg inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, sulfurous acid, nitrous acid and phosphoric acid; organic acids such as acetic acid, lactic acid, oxalic acid, citric acid and formic acid) are usually used to adjust to acidity. After addition of the acid, a washing treatment may be performed as appropriate. As the cation exchange resin, both strongly acidic ion exchange resins and weakly acidic ion exchange resins can be used as long as the counter ion is H + . The ratio between the oxidized cellulose and the cation exchange resin when the oxidized cellulose is brought into contact with the cation exchange resin is not particularly limited, and can be appropriately set by those skilled in the art from the viewpoint of efficient proton substitution. Recovery of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
(エーテル化)
 エーテル化としては、例えば、カルボキシアルキル化、メチル化、エチル化、シアノエチル化、ヒドロキシエチル化、ヒドロキシプロピル化、エチルヒドロキシエチル化、及びヒドロキシプロピルメチル化から選ばれる反応によるエーテル化が挙げられ、カルボキシアルキル化が好ましく、カルボキシメチル化がより好ましい。
(Etherification)
Etherification includes, for example, etherification by a reaction selected from carboxyalkylation, methylation, ethylation, cyanoethylation, hydroxyethylation, hydroxypropylation, ethylhydroxyethylation, and hydroxypropylmethylation, and carboxy Alkylation is preferred and carboxymethylation is more preferred.
 カルボキシアルキル化セルロース繊維は、通常、セルロース分子鎖を構成する炭素原子の少なくとも1つ(例えば、グルコピラノース単位を構成するC6位の1級水酸基を有する炭素原子)がカルボキシメチル化されている構造を有する。 Carboxyalkylated cellulose fibers usually have a structure in which at least one of the carbon atoms constituting the cellulose molecular chain (for example, the carbon atom having a primary hydroxyl group at the C6 position constituting the glucopyranose unit) is carboxymethylated. have.
 カルボキシアルキル化セルロースの無水グルコース単位当たりのカルボキシアルキル置換度(DS、好ましくはカルボキシメチル置換度)は、0.01以上、0.02以上又は0.05以上が好ましく、0.10以上がより好ましく、0.15以上がさらに好ましく、0.20以上がさらにより好ましく、0.25以上がとりわけ好ましい。これにより、化学変性による効果を得るための置換度を確保できる。当該置換度の上限は、0.50以下が好ましく、0.45以下、0.40以下又は0.35以下がより好ましい。これにより、セルロース繊維の水への溶解が起こりにくくなり、水中で繊維形態を維持できる。従って、カルボキシアルキル置換度は、0.01~0.50が好ましく、0.01~0.45がより好ましく、0.02~0.40、0.10~0.35又は0.20~0.30がさらに好ましい。 The degree of carboxyalkyl substitution (DS, preferably the degree of carboxymethyl substitution) per anhydroglucose unit of the carboxyalkylated cellulose is preferably 0.01 or more, 0.02 or more, or 0.05 or more, more preferably 0.10 or more. , is more preferably 0.15 or more, even more preferably 0.20 or more, and particularly preferably 0.25 or more. Thereby, the degree of substitution for obtaining the effect of chemical modification can be ensured. The upper limit of the degree of substitution is preferably 0.50 or less, more preferably 0.45 or less, 0.40 or less, or 0.35 or less. This makes it difficult for the cellulose fibers to dissolve in water, so that the fiber form can be maintained in water. Therefore, the degree of carboxyalkyl substitution is preferably 0.01-0.50, more preferably 0.01-0.45, 0.02-0.40, 0.10-0.35 or 0.20-0. .30 is more preferred.
 置換度、例えば、カルボキシメチル置換度は、下記の方法で測定し得る。カルボキシメチル化セルロース(絶乾)約2.0gを精秤して、300mL共栓付き三角フラスコに入れる。メタノール1,000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、塩型のカルボキシメチル化セルロース(以下、「塩型CM化セルロース」ともいう)を酸型のカルボキシメチル化セルロース(以下、「酸型CM化セルロース」ともいう)に変換する。酸型CM化セルロース(絶乾)を1.5~2.0g精秤し、300mL共栓付き三角フラスコに入れる。80%メタノール15mLで酸型CM化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。指示薬として、フェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定し、次式によってカルボキシメチル置換度(DS)を算出し得る:
A=[(100×F-(0.1NのH2SO4(mL))×F’)×0.1]/(酸型CM化セルロースの絶乾質量(g))
DS=0.162×A/(1-0.058×A)
A:酸型CM化セルロースを1g中和するのに要する1NのNaOH量(mL)
F’:0.1NのH2SO4のファクター
F:0.1NのNaOHのファクター
The degree of substitution, such as the degree of carboxymethyl substitution, can be measured by the method described below. About 2.0 g of carboxymethylated cellulose (absolute dry) is precisely weighed and put into a 300 mL conical flask with a common stopper. Add 100 mL of a liquid obtained by adding 100 mL of special grade concentrated nitric acid to 1,000 mL of methanol and shake for 3 hours to convert salt-type carboxymethylated cellulose (hereinafter also referred to as "salt-type CM-modified cellulose") to acid-type carboxymethyl It is converted into cellulose (hereinafter also referred to as "acid-type CM-modified cellulose"). Accurately weigh 1.5 to 2.0 g of acid-type CM-modified cellulose (absolute dry) and put it in a 300-mL conical flask with a common stopper. Wet the acid-type CM-modified cellulose with 15 mL of 80% methanol, add 100 mL of 0.1N NaOH, and shake at room temperature for 3 hours. Using phenolphthalein as an indicator, the excess NaOH can be back-titrated with 0.1 N H2SO4 and the degree of carboxymethyl substitution (DS) can be calculated by the formula:
A=[(100×F−(0.1N H 2 SO 4 (mL))×F′)×0.1]/(absolute dry weight of acid-type CM-cellulose (g))
DS = 0.162 x A/(1 - 0.058 x A)
A: Amount of 1N NaOH (mL) required to neutralize 1 g of acid-type CM-cellulose
F': Factor of 0.1N H2SO4 F: Factor of 0.1N NaOH
 カルボキシアルキル置換度は、反応させるカルボキシアルキル化剤の添加量、マーセル化剤の量、水と有機溶媒の組成比率等の反応条件をコントロールすることにより調整できる。 The degree of carboxyalkyl substitution can be adjusted by controlling the reaction conditions such as the amount of carboxyalkylating agent to be added, the amount of mercerizing agent, and the composition ratio of water and organic solvent.
 カルボキシアルキル化の方法としては例えば、出発原料(発底原料)としてのセルロース系原料をマーセル化し、その後エーテル化する方法が挙げられる。カルボキシメチル化を例に取り以下説明する。 Carboxyalkylation methods include, for example, a method of mercerizing a cellulosic raw material as a starting raw material (raw raw material) and then etherifying it. Carboxymethylation will be described below as an example.
 未変性のセルロース繊維(セルロース原料:例えばパルプ)を出発原料にし、3~20質量倍の溶媒の存在下でマーセル化処理を行った後、エーテル化反応を行うことでカルボキシメチル化したセルロースを製造し得る。溶媒としては、例えば、水、低級アルコール(例、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、第3級ブタノール)を1種単独で、又は2種以上の混合溶媒を使用し得る。なお、低級アルコールを混合する場合、低級アルコールの混合割合は、好ましくは60~95質量%である。 Using unmodified cellulose fiber (cellulose raw material: pulp, for example) as a starting material, mercerizing in the presence of 3 to 20 times by mass of solvent, followed by etherification to produce carboxymethylated cellulose. can. Examples of solvents include water, lower alcohols (e.g., methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, tertiary butanol) alone or a mixture of two or more. Solvents may be used. When a lower alcohol is mixed, the mixing ratio of the lower alcohol is preferably 60 to 95% by mass.
 マーセル化剤としては、出発原料の無水グルコース残基当たり、モル換算で、0.5~20倍のアルカリ金属の水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)を使用する。 As the mercerizing agent, an alkali metal hydroxide (eg, sodium hydroxide, potassium hydroxide) is used in an amount of 0.5 to 20 times the mole of the anhydroglucose residue of the starting material.
 出発原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理を行う。その後、カルボキシメチル化剤(例えば、モノクロロ酢酸ナトリウム)をグルコース残基当たり、モル換算で、0.05~10.0倍添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行うことでカルボキシメチル化したセルロースを製造し得る。 The starting material, solvent, and mercerizing agent are mixed and mercerized at a reaction temperature of 0 to 70°C, preferably 10 to 60°C, for a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Thereafter, a carboxymethylating agent (e.g., sodium monochloroacetate) is added per glucose residue in terms of 0.05 to 10.0 times in terms of moles, the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction Carboxymethylated cellulose can be produced by carrying out the etherification reaction for 30 minutes to 10 hours, preferably 1 hour to 4 hours.
(カルボキシメチルセルロースとの相違)
 カルボキシアルキル化セルロース繊維は、水に分散した際にも繊維状の形状の少なくとも一部が維持されることが好ましい。カルボキシアルキル化セルロース繊維は、水に溶解し粘性を付与する水溶性高分子の一種であるカルボキシメチルセルロース等のセルロース粉末とは区別される。カルボキシアルキル化セルロース繊維の水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。一方、水溶性高分子の一種であるカルボキシメチルセルロースの水分散液を観察しても、繊維状の物質は観察されない。また、アニオン変性セルロース繊維をX線回折で測定した際に、セルロースI型結晶のピークを観測することができるが、水溶性高分子であるカルボキシメチルセルロース粉末を同様に測定した際には、通常、セルロースI型結晶はみられない。
(Difference from carboxymethyl cellulose)
The carboxyalkylated cellulose fibers preferably retain at least a portion of their fibrous shape even when dispersed in water. Carboxyalkylated cellulose fibers are distinguished from cellulose powders such as carboxymethylcellulose, which is a type of water-soluble polymer that dissolves in water and imparts viscosity. When an aqueous dispersion of carboxyalkylated cellulose fibers is observed with an electron microscope, fibrous substances can be observed. On the other hand, no fibrous substance is observed in an aqueous dispersion of carboxymethyl cellulose, which is a type of water-soluble polymer. In addition, when the anion-modified cellulose fiber is measured by X-ray diffraction, a peak of cellulose type I crystals can be observed. Cellulose type I crystals are not observed.
(酸型カルボキシアルキル化セルロース)
 カルボキシアルキル化セルロースは、酸型カルボキシル基を塩型カルボキシル基よりも多く含有してもよいし、塩型カルボキシル基を酸型カルボキシル基よりも多く含有してもよい。塩型カルボキシル基、酸型カルボキシル基の量は、脱塩処理により調整できる。脱塩処理により、塩型カルボキシル基を酸型カルボキシル基に変換できる。本明細書において、カルボキシアルキル化セルロース(脱塩を経たもの)を酸型カルボキシアルキル化セルロース、カルボキシアルキル化セルロース(後述の脱塩処理を経ていないもの)を、塩型カルボキシアルキル化セルロースという。塩型カルボキシアルキル化セルロースは、通常、塩型カルボキシル基(-COO-)を主に有する。一方、酸型カルボキシアルキル化セルロースは、酸型カルボキシル基を多く有し、酸型カルボキシアルキル化セルロースが有するカルボキシル基の量に対する酸型カルボキシル基の量の割合は、40%以上が好ましく、60%以上がより好ましく、85%以上がさらに好ましい。酸型カルボキシル基の割合の算出方法は前述のとおりである。
(acid-type carboxyalkylated cellulose)
The carboxyalkylated cellulose may contain more acid-type carboxyl groups than salt-type carboxyl groups, or may contain more salt-type carboxyl groups than acid-type carboxyl groups. The amounts of salt-type carboxyl groups and acid-type carboxyl groups can be adjusted by desalting. The desalting treatment can convert salt-type carboxyl groups to acid-type carboxyl groups. In the present specification, carboxyalkylated cellulose (desalted) is referred to as acid-form carboxyalkylated cellulose, and carboxyalkylated cellulose (not desalted as described below) is referred to as salt-form carboxyalkylated cellulose. Salt-type carboxyalkylated cellulose usually mainly has salt-type carboxyl groups (--COO--). On the other hand, acid-type carboxyalkylated cellulose has many acid-type carboxyl groups, and the ratio of the amount of acid-type carboxyl groups to the amount of carboxyl groups possessed by acid-type carboxyalkylated cellulose is preferably 40% or more, and 60%. 85% or more is more preferable. The method for calculating the proportion of acid-type carboxyl groups is as described above.
 脱塩を行う時期は、通常はカルボキシアルキル化後であり、好ましくはエーテル化後フィブリル化前である。脱塩の方法としては例えば、カルボキシアルキル化セルロースを陽イオン交換樹脂と接触させる方法が挙げられる。陽イオン交換樹脂は、対イオンがH+である限り、強酸性イオン交換樹脂および弱酸性イオン交換樹脂のいずれも用いることができる。カルボキシアルキル化セルロースを陽イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。一例を挙げると、カルボキシアルキル化セルロース水分散体に対し、陽イオン交換樹脂添加後の水分散体のpHが好ましくは2~6、より好ましくは2~5となるように、比率を調整できる。接触後の陽イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。 Desalting is usually performed after carboxyalkylation, preferably after etherification and before fibrillation. Examples of the desalting method include a method of contacting carboxyalkylated cellulose with a cation exchange resin. As the cation exchange resin, both strongly acidic ion exchange resins and weakly acidic ion exchange resins can be used as long as the counter ion is H + . The ratio between the carboxyalkylated cellulose and the cation exchange resin when the carboxyalkylated cellulose is brought into contact with the cation exchange resin is not particularly limited, and can be appropriately set by those skilled in the art from the viewpoint of efficient proton substitution. For example, the ratio can be adjusted so that the pH of the aqueous dispersion after addition of the cation exchange resin is preferably 2-6, more preferably 2-5, relative to the carboxyalkylated cellulose aqueous dispersion. Recovery of the cation exchange resin after contact may be performed by a conventional method such as suction filtration.
(エステル化(リン酸エステル化))
 エステル化セルロース繊維の第1の例としては、リン酸化セルロースが挙げられる。リン酸化セルロースは通常、セルロース分子鎖を構成する炭素原子の少なくとも1つ(例えば、グルコピラノース単位を構成するC6位の1級水酸基を有する炭素原子)がリン酸化されている構造を有する。
(Esterification (Phosphate esterification))
A first example of an esterified cellulose fiber includes phosphorylated cellulose. Phosphorylated cellulose usually has a structure in which at least one carbon atom constituting a cellulose molecular chain (for example, a carbon atom having a primary hydroxyl group at the C6 position constituting a glucopyranose unit) is phosphorylated.
 リン酸エステル化セルロース繊維に対するイオン性置換基の導入量(イオン性置換基量、リンオキソ酸置換基量)は、リン酸エステル化CNF1g(質量)あたり0.10mmol/g以上であればよく、0.20mmol/g以上であることが好ましく、0.30mmol/g以上であることがより好ましく、0.40mmol/g以上であることがさらに好ましく、0.50mmol/g以上であることがよりさらに好ましく、0.60mmol/g以上であることがよりさらに好ましく、0.70mmol/g以上であることが特に好ましい。また、リン酸エステル化CNFに対するイオン性置換基の導入量は、セルロース繊維1g(質量)あたり1.50mmol/g以下であればよく、1.35mmol/g以下であることが好ましく、1.20mmol/g以下であることがより好ましく、1.10mmol/g以下であることがさらに好ましい。また、リン酸エステル化セルロース繊維に対するイオン性置換基の導入量は、リン酸エステル化セルロース繊維1g(質量)あたり1.00mmol/g以下であることも好ましく、0.95mmol/g以下であることがより好ましい。ここで、単位mmol/gにおける分母は、イオン性置換基の対イオンが水素イオン(H+)であるときのセルロース繊維の質量を示す。リンオキソ酸置換基量は、以下の方法で測定し得る。  The amount of ionic substituents introduced into the phosphorylated cellulose fiber (the amount of ionic substituents, the amount of phosphorous acid substituents) may be 0.10 mmol / g or more per 1 g (mass) of phosphorylated CNF. It is preferably 0.20 mmol/g or more, more preferably 0.30 mmol/g or more, still more preferably 0.40 mmol/g or more, and even more preferably 0.50 mmol/g or more. , more preferably 0.60 mmol/g or more, and particularly preferably 0.70 mmol/g or more. In addition, the amount of ionic substituents introduced into the phosphorylated CNF may be 1.50 mmol/g or less per 1 g (mass) of cellulose fiber, preferably 1.35 mmol/g or less, and 1.20 mmol. /g or less, more preferably 1.10 mmol/g or less. In addition, the amount of the ionic substituent introduced into the phosphorylated cellulose fiber is preferably 1.00 mmol/g or less per 1 g (mass) of the phosphorylated cellulose fiber, and preferably 0.95 mmol/g or less. is more preferred. Here, the denominator in units of mmol/g indicates the mass of the cellulose fiber when the counter ion of the ionic substituent is hydrogen ion (H+). The amount of phosphorus oxo acid substituents can be measured by the following method. 
〔リンオキソ酸基量の測定〕
 微細セルロース繊維のリンオキソ酸基量は、対象となる微細セルロース繊維を含む微細セルロース繊維分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製したセルロース繊維含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定できる。
[Measurement of Phosphorus Acid Group Amount]
The phosphorous acid group content of the fine cellulose fibers is obtained by diluting a fine cellulose fiber dispersion containing the target fine cellulose fibers with ion-exchanged water so that the content is 0.2% by mass. On the other hand, it can be measured by titration with an alkali after treatment with an ion exchange resin.
 イオン交換樹脂による処理は、上記セルロース繊維含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。  In the treatment with an ion exchange resin, 1/10 by volume of a strongly acidic ion exchange resin (Ambarjet 1024; Organo Co., Ltd., conditioned) was added to the slurry containing cellulose fibers, and after shaking for 1 hour, The slurry was separated from the resin by pouring it over a mesh with an opening of 90 μm. 
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後のセルロース繊維含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。また、リン酸基の導入の有無の確認は、赤外線吸収スペクトルの測定により、リン酸基に基づく吸収(1230cm-1付近)を確認することによって行ってもよい。 In addition, titration with alkali is performed by adding 10 μL of 0.1N sodium hydroxide aqueous solution every 5 seconds to the cellulose fiber-containing slurry after treatment with the ion exchange resin, and measuring the change in the pH value of the slurry. I went by. The titration was performed while nitrogen gas was blown into the slurry from 15 minutes before the start of the titration. In this neutralization titration, two points where the increment (the differential value of the pH with respect to the amount of alkali added) are maximized are observed in the curve obtained by plotting the measured pH against the amount of alkali added. Among these, the maximum point of the increment obtained first when the alkali is first added is called the first end point, and the maximum point of the increment obtained next is called the second end point. The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Also, the amount of alkali required from the start of titration to the second end point is equal to the total amount of dissociated acid in the slurry used for titration. The amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated to obtain the amount of phosphate group (mmol/g). The presence or absence of introduction of a phosphate group may also be confirmed by measuring the absorption (around 1230 cm −1 ) based on the phosphate group by measuring the infrared absorption spectrum.
 リン酸基量は、リン酸基を有する化合物の添加量、必要に応じて用いる塩基性化合物の添加量等の反応条件をコントロールすることにより調整できる。 The amount of phosphate group can be adjusted by controlling the reaction conditions such as the amount of the compound having a phosphate group added and the amount of the basic compound used as necessary.
 リン酸化の方法としては、例えば、未変性のセルロース繊維に対しリン酸基を有する化合物を反応させる方法(リン酸エステル化)が挙げられる。リン酸エステル化方法としては、例えば、セルロース系原料にリン酸基を有する化合物の粉末または水溶液を混合する方法、セルロース系原料の水分散体にリン酸基を有する化合物の水溶液を添加する方法が挙げられ、後者が好ましい。これにより、反応の均一性を高め、且つエステル化効率を高めることができる。 Examples of phosphorylation methods include a method of reacting unmodified cellulose fibers with a compound having a phosphoric acid group (phosphorylation). Examples of the phosphoric acid esterification method include a method of mixing a cellulose-based raw material with a powder or an aqueous solution of a compound having a phosphate group, and a method of adding an aqueous solution of a compound having a phosphate group to an aqueous dispersion of the cellulose-based raw material. with the latter being preferred. Thereby, the uniformity of the reaction can be improved and the esterification efficiency can be improved.
 リン酸基を有する化合物としては、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウムが挙げられる。リン酸基を有する化合物は1種、あるいは2種以上を併用することができる。セルロース原料に対するリン酸基を有する化合物の添加量は、セルロース原料の固形分100質量部に対して、リン元素換算で、0.1~500質量部が好ましく、1~400質量部がより好ましく、2~200質量部がさらに好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、通常1~600分程度であり、30~480分が好ましい。エステル化反応の条件がこれらのいずれかの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを抑制でき、リン酸エステル化セルロースの収率を向上できる。リン酸基を有する化合物を反応させる際、さらに塩基性化合物(例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミン等の塩基性を示すアミノ基を有する化合物)を反応系に加えてもよい。 Compounds having a phosphate group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, phosphorus tripotassium acid, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, and ammonium metaphosphate. The compounds having a phosphate group can be used singly or in combination of two or more. The amount of the compound having a phosphate group added to the cellulose raw material is preferably 0.1 to 500 parts by mass, more preferably 1 to 400 parts by mass, in terms of phosphorus element, with respect to 100 parts by mass of the solid content of the cellulose raw material. 2 to 200 parts by mass is more preferable. The reaction temperature is preferably 0 to 95°C, more preferably 30 to 90°C. Although the reaction time is not particularly limited, it is usually about 1 to 600 minutes, preferably 30 to 480 minutes. If the conditions for the esterification reaction are within any of these ranges, excessive esterification of cellulose and its susceptibility to dissolution can be suppressed, and the yield of phosphate esterified cellulose can be improved. When reacting a compound having a phosphate group, a basic compound (e.g., urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, etc.) (compound having an amino group showing) may be added to the reaction system.
(エステル化(亜リン酸エステル化))
 エステル化セルロース繊維の製造方法の第2の例としては、亜リン酸エステル化セルロース繊維が挙げられる。亜リン酸化セルロース繊維は通常、セルロース分子鎖を構成する炭素原子の少なくとも1つ(例えば、グルコピラノース単位を構成するC6位の1級水酸基を有する炭素原子)が亜リン酸化されている構造を有する。
 亜リン酸エステル化セルロース繊維におけるグルコース単位当たりの亜リン酸基の置換度(以下、単に「亜リン酸基置換度」と呼ぶ。)は、0.001以上0.40未満が好ましい。亜リン酸基の置換度の測定は、リン酸基置換度の測定方法と同じ方法で測定できる。亜リン酸基置換度は、亜リン酸又はその塩の添加量、必要に応じて用いるアルカリ金属イオン含有物、尿素又はその誘導体の添加量等の反応条件をコントロールすることにより調整できる。
(Esterification (phosphite esterification))
A second example of a method for producing esterified cellulose fibers includes phosphite esterified cellulose fibers. Phosphite cellulose fibers usually have a structure in which at least one of the carbon atoms constituting the cellulose molecular chain (for example, the carbon atom having a primary hydroxyl group at the C6 position constituting the glucopyranose unit) is phosphorylated. .
The degree of phosphite group substitution per glucose unit in the phosphite-esterified cellulose fiber (hereinafter simply referred to as "phosphite group substitution degree") is preferably 0.001 or more and less than 0.40. The degree of phosphite group substitution can be measured by the same method as the method for measuring the degree of phosphate group substitution. The degree of phosphite group substitution can be adjusted by controlling reaction conditions such as the amount of phosphorous acid or a salt thereof added, the amount of an alkali metal ion-containing substance used as necessary, and the amount of urea or a derivative thereof added.
 亜リン酸エステル化の方法としては、例えば、未変性のセルロース繊維に対し、亜リン酸又はその金属塩(好ましくは、亜リン酸水素ナトリウム)を反応させ、亜リン酸のエステル基を導入する方法が挙げられる。 As a method of phosphite esterification, for example, an unmodified cellulose fiber is reacted with phosphorous acid or a metal salt thereof (preferably sodium hydrogen phosphite) to introduce an ester group of phosphorous acid. method.
 亜リン酸及びその金属塩としては、例えば、亜リン酸、亜リン酸水素ナトリウム、亜リン酸水素アンモニウム、亜リン酸水素カリウム、亜リン酸二水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物、これらから選ばれる2以上の組み合わせが挙げられ、亜リン酸水素ナトリウムが好ましい。これにより、セルロース繊維にアルカリ金属イオンも導入できる。亜リン酸又はその金属塩の添加量は、未変性のセルロース繊維1kgに対し、好ましくは1~10,000g、より好ましくは100~5,000g、さらに好ましくは300~1,500gである。亜リン酸及びその金属塩とは別に、アルカリ金属イオン含有物(例えば、水酸化物、硫酸金属塩、硝酸金属塩、塩化金属塩、リン酸金属塩、炭酸金属塩)を反応系にさらに添加してもよい。 Examples of phosphorous acid and metal salts thereof include phosphorous acid, sodium hydrogen phosphite, ammonium hydrogen phosphite, potassium hydrogen phosphite, sodium dihydrogen phosphite, sodium phosphite, and lithium phosphite. , potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, phosphorous acid compounds such as pyrophosphite, and combinations of two or more selected from these. Sodium hydride is preferred. Thereby, alkali metal ions can also be introduced into the cellulose fibers. The amount of phosphorous acid or its metal salt to be added is preferably 1 to 10,000 g, more preferably 100 to 5,000 g, still more preferably 300 to 1,500 g, per 1 kg of unmodified cellulose fibers. Apart from phosphorous acid and its metal salts, alkali metal ion-containing substances (e.g., hydroxides, metal sulfates, metal nitrates, metal chlorides, metal phosphates, metal carbonates) are further added to the reaction system. You may
 また、尿素又はその誘導体を反応系にさらに添加してもよい。これにより、カルバメート基もセルロース繊維に導入できる。尿素及び尿素誘導体としては、例えば、尿素、チオ尿素、ビウレット、フェニル尿素、ベンジル尿素、ジメチル尿素、ジエチル尿素、テトラメチル尿素、これらから選択される2以上の組み合わせが挙げられ、尿素が好ましい。尿素及び尿素誘導体の添加量は、亜リン酸又はその金属塩1molに対し、好ましくは0.01~100mol、より好ましくは0.2~20mol、さらに好ましくは0.5~10molである。 Also, urea or a derivative thereof may be further added to the reaction system. This can also introduce carbamate groups into the cellulose fibers. Urea and urea derivatives include, for example, urea, thiourea, biuret, phenylurea, benzylurea, dimethylurea, diethylurea, tetramethylurea, and combinations of two or more selected from these, with urea being preferred. The amount of urea and urea derivatives to be added is preferably 0.01 to 100 mol, more preferably 0.2 to 20 mol, still more preferably 0.5 to 10 mol, per 1 mol of phosphorous acid or its metal salt.
 反応温度は、100~200℃が好ましく、100~180℃がより好ましい。反応時間は、通常、10~180分程度であり、30~120分がより好ましい。亜リン酸エステル化セルロース繊維は、解繊するに先立って、洗浄することが好ましい。グルコース単位当たりの亜リン酸基の置換度は、0.01以上0.23未満が好ましい。 The reaction temperature is preferably 100-200°C, more preferably 100-180°C. The reaction time is usually about 10 to 180 minutes, more preferably 30 to 120 minutes. The phosphite-esterified cellulose fibers are preferably washed prior to defibration. The degree of substitution of the phosphite group per glucose unit is preferably 0.01 or more and less than 0.23.
(エステル化(硫酸エステル化))
 エステル化セルロース繊維の製造方法の第3の例としては、硫酸エステル化セルロース繊維が挙げられる。硫酸エステル化セルロースは通常、セルロース分子鎖を構成する炭素原子の少なくとも1つ(例えば、グルコピラノース単位を構成するC6位の1級水酸基を有する炭素原子)がリン酸化されている構造を有する。
(Esterification (sulfate esterification))
A third example of a method for producing an esterified cellulose fiber includes a sulfate esterified cellulose fiber. Sulfated cellulose usually has a structure in which at least one carbon atom constituting a cellulose molecular chain (for example, a carbon atom having a primary hydroxyl group at the C6 position constituting a glucopyranose unit) is phosphorylated.
 硫酸エステル化セルロース繊維におけるグルコース単位当たりの硫酸系の基の量(以下、単に「硫酸基量」と呼ぶ。)は、0.1~3.0mmol/gが好ましい。セルロース原料にカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したカチオン化セルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのカチオン置換度が0.02以上であると、セルロース同士の電気的な反発により、十分にナノ解繊し得る。一方、グルコース単位当たりのカチオン置換度が0.50以下であると、膨潤あるいは溶解を抑制でき、ナノファイバーとして得られなくなる事態を防止し得る。解繊を効率よく行なうために、上記で得たカチオン化セルロースを洗浄することが好ましい。 The amount of sulfate-based groups per glucose unit in the sulfate-esterified cellulose fiber (hereinafter simply referred to as "amount of sulfate groups") is preferably 0.1 to 3.0 mmol/g. By introducing a cationic substituent into the cellulose raw material, the celluloses electrically repel each other. Therefore, cationized cellulose into which cationic substituents have been introduced can be easily nanofiberized. In addition, when the degree of cation substitution per glucose unit is 0.02 or more, the electrical repulsion between the celluloses enables sufficient nano-fibrillation. On the other hand, when the degree of cation substitution per glucose unit is 0.50 or less, swelling or dissolution can be suppressed, and a situation in which nanofibers cannot be obtained can be prevented. In order to defibrate efficiently, it is preferable to wash the cationized cellulose obtained above.
 グルコース単位当たりの硫酸基量は、以下の方法で測定することができる。硫酸エステル化CNFの水分散液をエタノール、t-ブタノールの順に溶媒置換した後、凍結乾燥する。得られた試料200mgにエタノール15ml及び水5mlを加え、30分間撹拌する。その後、0.5Nの水酸化ナトリウム水溶液を10ml加え、70℃で30分間撹拌し、さらに30℃で24時間撹拌する。次いで、指示薬としてフェノールフタレインを加え、塩酸で滴定を行い、下式を用いて算出する:
 硫酸基量[mmol/g試料]=(5-(0.1×塩酸滴定量[ml]×2))/0.2。
The amount of sulfate groups per glucose unit can be measured by the following method. The aqueous dispersion of sulfated CNF is subjected to solvent substitution in the order of ethanol and t-butanol, and then freeze-dried. 15 ml of ethanol and 5 ml of water are added to 200 mg of the obtained sample, and the mixture is stirred for 30 minutes. After that, 10 ml of 0.5N sodium hydroxide aqueous solution is added, and the mixture is stirred at 70° C. for 30 minutes and further stirred at 30° C. for 24 hours. Then, add phenolphthalein as an indicator, titrate with hydrochloric acid, and calculate using the following formula:
Sulfate group amount [mmol/g sample]=(5−(0.1×hydrochloric acid titration amount [ml]×2))/0.2.
 硫酸基量は、反応させる硫酸系化合物の添加量等の反応条件をコントロールすることにより調整できる。 The amount of sulfate groups can be adjusted by controlling the reaction conditions such as the amount of sulfuric acid compound to be reacted.
 硫酸エステル化の方法としては、例えば、未変性のセルロース繊維に硫酸系化合物を反応させることにより、硫酸系化合物由来の硫酸系の基をセルロースに導入して硫酸エステル化セルロースとする方法が挙げられる。硫酸系化合物としては、例えば、硫酸、スルファミン酸、クロロスルホン酸、三酸化硫黄、あるいはこれらのエステル又は塩が挙げられる。これらの中では、セルロースの溶解性が小さく、また、酸性度が低いことから、スルファミン酸を用いることが好ましい。 Examples of the method of sulfate esterification include a method of reacting unmodified cellulose fibers with a sulfuric acid compound to introduce a sulfuric acid group derived from the sulfuric acid compound into cellulose to obtain sulfated cellulose. . Examples of sulfuric acid compounds include sulfuric acid, sulfamic acid, chlorosulfonic acid, sulfur trioxide, and esters or salts thereof. Among these, sulfamic acid is preferably used because cellulose has low solubility and low acidity.
 例えば、硫酸系化合物としてスルファミン酸を用いる場合、スルファミン酸の使用量は、セルロース鎖へのアニオン基の導入量を考慮して適宜調整することができる。例えば、セルロース分子中のグルコース単位1mol当たり、好ましくは0.01~50mol、より好ましくは0.1~3.0molである。 For example, when sulfamic acid is used as the sulfuric acid compound, the amount of sulfamic acid used can be appropriately adjusted in consideration of the amount of anionic groups to be introduced into the cellulose chain. For example, it is preferably 0.01 to 50 mol, more preferably 0.1 to 3.0 mol, per 1 mol of glucose units in the cellulose molecule.
(塩型/酸型)
 エステル化セルロースは、酸型カルボキシル基を塩型カルボキシル基よりも多く含有してもよいし、塩型カルボキシル基を酸型カルボキシル基よりも多く含有してもよい。エステル化セルロースのいうち、脱塩処理を経ていないもの、経ているものを、それぞれ塩型エステル化セルロース、酸型エステル化セルロースという。塩型エステル化セルロースは、塩型カルボキシル基を主に有する。塩型カルボキシル基のカウンターカチオン、及びその調製方法としては、酸化セルロースの説明において説明したとおりである。
(salt form/acid form)
The esterified cellulose may contain more acid-type carboxyl groups than salt-type carboxyl groups, or may contain more salt-type carboxyl groups than acid-type carboxyl groups. Among the esterified cellulose, those that have not undergone desalting treatment and those that have undergone desalting treatment are referred to as salt-esterified cellulose and acid-esterified cellulose, respectively. Salt-type esterified cellulose mainly has salt-type carboxyl groups. The counter cation of the salt-type carboxyl group and the preparation method thereof are as described in the description of the oxidized cellulose.
(カチオン化)
 カチオン化セルロースは、通常、セルロース分子鎖を構成する炭素原子の少なくとも1つ(例えば、グルコピラノース単位を構成するC6位の1級水酸基を有する炭素原子)がカチオン化されている構造を有する。カチオン化セルロースにおけるグルコース単位当たりのカチオン置換度は、0.02~0.50が好ましい。グルコース単位当たりのカチオン置換度は、以下の方法で測定することができる。カチオン化セルロース繊維を乾燥させた後、全窒素分析計(三菱化学社製TN-10)を用いて窒素含有量を測定し、次式によりカチオン置換度(無水グルコース単位1モル当たりの置換基のモル数の平均値)を算出する:
 カチオン置換度=(162×N)/(1-151.6×N)
 N:窒素含有量。
(cationization)
Cationized cellulose usually has a structure in which at least one carbon atom constituting a cellulose molecular chain (for example, a carbon atom having a primary hydroxyl group at the C6 position constituting a glucopyranose unit) is cationized. The degree of cation substitution per glucose unit in the cationized cellulose is preferably 0.02 to 0.50. The degree of cation substitution per glucose unit can be measured by the following method. After drying the cationized cellulose fibers, the nitrogen content was measured using a total nitrogen analyzer (TN-10 manufactured by Mitsubishi Chemical Corporation), and the degree of cation substitution (the number of substituents per mole of anhydroglucose unit) was calculated by the following formula. Calculate the mean number of moles):
Cation substitution degree = (162 × N) / (1-151.6 × N)
N: nitrogen content.
 カチオン置換度は、反応させるカチオン化剤の添加量、水または炭素数1~4のアルコールの組成比率等の反応条件により調整できる。 The degree of cation substitution can be adjusted by adjusting reaction conditions such as the amount of cationizing agent to be reacted and the composition ratio of water or alcohol having 1 to 4 carbon atoms.
 カチオン化の方法としては、例えば、未変性のセルロース繊維にカチオン化剤(例、グリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリアルキルアンモニウムハイドライト又はそのハロヒドリン型)と、触媒であるアルカリ金属の水酸化物(例、水酸化ナトリウム、水酸化カリウム)を、水及び/又は炭素原子数1~4のアルコールの存在下で反応させる方法が挙げられる。 As a method of cationization, for example, unmodified cellulose fibers are treated with a cationizing agent (eg, glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrate or its halohydrin type) and an alkali catalyst. A method of reacting a metal hydroxide (eg, sodium hydroxide, potassium hydroxide) in the presence of water and/or an alcohol having 1 to 4 carbon atoms can be mentioned.
(塩基型カチオン化セルロース繊維)
 カチオン化後のカチオン化セルロース繊維は、脱塩により塩基型カチオン化セルロースまたは塩基型カチオン化セルロースナノファイバーに変換することが好ましい。脱塩により、カチオン化セルロース中の塩を塩基に変換できる。本明細書において、脱塩を経たカチオン化セルロース(ナノファイバー)を、塩基型カチオン化セルロース(ナノファイバー)、またはカチオン化セルロース(ナノファイバー)(塩基型)と言う。また、脱塩を経ていないカチオン化セルロースおよびカチオン化セルロースナノファイバーを、塩型カチオン化セルロース(ナノファイバー)、またはカチオン化セルロース(ナノファイバー)(塩型)と言う。脱塩は、後述の解繊前(カチオン化セルロース)および解繊後(カチオン化セルロースナノファイバー)のいずれの時点で行ってもよい。脱塩は、カチオン化セルロース(塩型)、およびカチオン化セルロースナノファイバー(塩型)に含まれる塩(例えばCl-)を塩基に置換し塩基型とすることを意味する。カチオン化後の脱塩方法としては例えば、カチオン化セルロースまたはカチオン化セルロースナノファイバーを陰イオン交換樹脂と接触させる方法が挙げられる。陰イオン交換樹脂は、対イオンがOHである限り、強塩基性イオン交換樹脂および弱塩基性イオン交換樹脂のいずれも用いることができる。変性セルロースを陰イオン交換樹脂と接触させる際の両者の比率は、特に限定されず、当業者であれば、カチオン置換を効率的に行うとの観点から適宜設定し得る。一例を挙げると、カチオン化セルロースナノファイバー水分散液に対し、陰イオン交換樹脂添加後の水分散液のpHが好ましくは8~13、より好ましくは9~13となるように、比率を調整することができる。接触後の陰イオン交換樹脂の回収は、吸引ろ過等の常法により行えばよい。
(Base type cationized cellulose fiber)
The cationized cellulose fibers after cationization are preferably converted into base-type cationized cellulose or base-type cationized cellulose nanofibers by desalting. Desalting can convert the salts in the cationized cellulose to bases. In this specification, the cationized cellulose (nanofibers) that has undergone desalting is referred to as base-type cationized cellulose (nanofibers) or cationized cellulose (nanofibers) (base type). In addition, cationized cellulose and cationized cellulose nanofibers that have not undergone desalting are referred to as salt-type cationized cellulose (nanofibers) or cationized cellulose (nanofibers) (salt form). Desalting may be performed at any time before defibration (cationized cellulose) or after defibration (cationized cellulose nanofibers), which will be described later. Desalting means substituting a salt (for example, Cl ) contained in cationized cellulose (salt form) and cationized cellulose nanofibers (salt form) with a base to obtain a base form. Examples of the desalting method after cationization include a method of contacting cationized cellulose or cationized cellulose nanofibers with an anion exchange resin. Both strongly basic ion exchange resins and weakly basic ion exchange resins can be used as the anion exchange resin, as long as the counterion is OH - . The ratio between the modified cellulose and the anion exchange resin is not particularly limited, and a person skilled in the art can appropriately set the ratio from the viewpoint of efficient cation substitution. For example, the pH of the water dispersion after addition of the anion exchange resin is preferably 8 to 13, more preferably 9 to 13, with respect to the cationized cellulose nanofiber water dispersion. be able to. Recovery of the anion exchange resin after contact may be performed by a conventional method such as suction filtration.
[セルロース繊維層に含まれる金属]
 セルロース繊維層は、金属をさらに含むことが好ましい。金属は、化学変性基(例えば、アニオン変性基)のカウンターイオン(例、-COOM、-CHCOOM;Mは金属を表す)として含まれることが好ましい。金属としては、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)等のアルカリ金属;マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)等のアルカリ土類金属;鉄(Fe)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)等の遷移金属;アルミニウム(Al);亜鉛(Zn)等の亜鉛族元素、等の、1価のイオン、2価以上のイオンを形成する金属が挙げられ、Na、Mg、Li、Ca、Al、K、Zn及びFeが好ましく、Li、Na、Ca、K、Znがより好ましく、Naが更に好ましい。セルロース繊維層に含まれる金属は、1種でもよいし、2種以上の組み合わせでもよい。
[Metal contained in cellulose fiber layer]
Preferably, the cellulose fiber layer further contains a metal. The metal is preferably included as a counterion (eg, —COO M, —CH 2 COO M; M represents a metal) of a chemical modifying group (eg, anion modifying group). Examples of metals include alkali metals such as lithium (Li), sodium (Na) and potassium (K); alkaline earth metals such as magnesium (Mg), calcium (Ca) and barium (Ba); iron (Fe); , manganese (Mn), cobalt (Co), nickel (Ni) and other transition metals; aluminum (Al); zinc group elements such as zinc (Zn), etc., forming monovalent ions and divalent or higher ions Na, Mg, Li, Ca, Al, K, Zn and Fe are preferred, Li, Na, Ca, K and Zn are more preferred, and Na is even more preferred. The metal contained in the cellulose fiber layer may be of one type or a combination of two or more types.
(酸型変性セルロース繊維)
 セルロース繊維は、酸型/塩型のいずれのセルロース繊維を有していてもよく、両方を有してもよい。通常、両方を有している。酸型セルロース繊維は、酸型の変性基(例えば、-COOH、-CHCOOH)を有するセルロース繊維である。上述の各変性方法により得られる化学変性セルロース繊維は、塩型(通常、ナトリウム塩)のセルロース繊維を含むが、通常、酸型セルロース繊維も含む。酸型、塩型の比率は、脱塩処理の有無等により調整できる。
(Acid modified cellulose fiber)
The cellulose fibers may have either acid-type/salt-type cellulose fibers or both. Usually have both. Acid-type cellulose fibers are cellulose fibers having acid-type modifying groups (eg, —COOH, —CH 3 COOH). The chemically modified cellulose fibers obtained by each modification method described above contain salt-type (usually sodium salt) cellulose fibers, but usually also contain acid-type cellulose fibers. The acid-type/salt-type ratio can be adjusted by the presence or absence of desalting treatment.
(微細化(解繊、フィブリル化))
 微細化は、通常は機械的処理によって行う。機械的処理(好ましくは叩解または離解処理)は、通常は湿式で(すなわち、セルロース繊維の水分散体の形態で)行う。機械的処理に用いる装置としては、例えば、精製装置(リファイナー;例、ディスク型、コニカル型、シリンダー型)、高速解繊機、せん断型撹拌機、コロイドミル、高圧噴射分散機、ビーター、PFIミル、ニーダー、ディスパーザー、高速離解機(トップファイナー)、高圧または超高圧ホモジナイザー、グラインダー(石臼型粉砕機)、ボールミル、振動ミル、ビーズミル、1軸、2軸又は多軸の混錬機・押出機高速回転下でのホモミキサー、精製装置(refiner)、デフィブレーター(defibrator)、摩擦グラインダー、高せん断デフィブレーター(high-share defibrator)、ディスパージャー(disperger)、ホモゲナイザー(例、微細流動化機(microfluidizer))等の機械的な解繊力を付与できる装置が挙げられ、湿式にて解繊力を付与できる装置が好ましく、高速離解機、精製装置がより好ましいが、特に限定されない。
(refinement (defibration, fibrillation))
Refinement is usually performed by mechanical processing. Mechanical treatment (preferably beating or defibration treatment) is usually carried out wet (ie in the form of an aqueous dispersion of cellulose fibers). Devices used for mechanical treatment include, for example, refiners (refiners; e.g., disk type, conical type, cylinder type), high-speed fibrillation machines, shearing stirrers, colloid mills, high-pressure jet dispersers, beaters, PFI mills, Kneader, disperser, high-speed disaggregator (topfiner), high-pressure or ultra-high-pressure homogenizer, grinder (stone mill type crusher), ball mill, vibration mill, bead mill, single-screw, twin-screw or multi-screw kneader/extruder high speed Homogenizers under rotation, refiners, defibrators, friction grinders, high-share defibrators, dispergers, homogenizers (e.g. microfluidizers ( A device capable of imparting a mechanical defibration force such as a microfluidizer) is preferred, and a device capable of imparting a fibrillation force in a wet manner is preferred, and a high-speed defibrator and a refining device are more preferred, but are not particularly limited.
 湿式で解繊を行う場合、通常は、セルロース繊維の水分散体を調製する。水分散体における変性セルロースの固形分濃度は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましく、1.5質量%以上がさらにより好ましい。濃度の上限としては、15質量%以下が好ましく、10質量%以下がより好ましく、8質量%以下がさらに好ましい。機械的処理の際、必要に応じてpH調整(例えば、7以下、6以下、5以下)を行ってもよい。 When defibrating in a wet process, an aqueous dispersion of cellulose fibers is usually prepared. The solid content concentration of the modified cellulose in the aqueous dispersion is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, and even more preferably 1.5% by mass or more. preferable. The upper limit of the concentration is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 8% by mass or less. During the mechanical treatment, pH adjustment (eg, 7 or less, 6 or less, 5 or less) may be performed as necessary.
 水分散体の調製に先立ち、乾式粉砕(例、乾燥後に粉砕)等の前処理を行ってもよい。乾式粉砕に用いる装置としては、例えば、ハンマーミル、ピンミル等の衝撃式ミル、ボールミル、タワーミル等の媒体ミル、ジェットミルが挙げられるが、特に限定されない。また、解繊後に後処理を行ってもよい。後処理としては、例えば、乾燥(例、凍結乾燥法、噴霧乾燥法、棚段式乾燥法、ドラム乾燥法、ベルト乾燥法、ガラス板等に薄く伸展し乾燥する方法、流動床乾燥法、マイクロウェーブ乾燥法、起熱ファン式減圧乾燥法、減圧(脱気)乾燥)、水への再分散(分散装置は限定されない)、粉砕(例えば、カッターミル、ハンマーミル、ピンミル、ジェットミル等の機器を使用した粉砕)が挙げられるが、特に限定されない。 Prior to the preparation of the aqueous dispersion, pretreatment such as dry pulverization (eg, pulverization after drying) may be performed. Examples of devices used for dry pulverization include, but are not limited to, impact mills such as hammer mills and pin mills, medium mills such as ball mills and tower mills, and jet mills. In addition, post-treatment may be performed after fibrillation. As the post-treatment, for example, drying (e.g., freeze drying, spray drying, tray drying, drum drying, belt drying, drying by spreading thinly on a glass plate, etc., fluidized bed drying, micro wave drying method, heat-generating fan type vacuum drying method, vacuum (degassing) drying), redispersion in water (dispersion device is not limited), pulverization (e.g. equipment such as cutter mill, hammer mill, pin mill, jet mill, etc.) pulverization using, but not particularly limited to.
[セルロース繊維の物性]
(比表面積)
 セルロール繊維は、比表面積が10m/g以上が好ましく、100m/g以上がより好ましく、300m/g以上がさらに好ましい。これにより、より短時間の蓄電が可能であり、大容量の蓄電が可能である。
[Physical properties of cellulose fiber]
(Specific surface area)
The cellulose fiber preferably has a specific surface area of 10 m 2 /g or more, more preferably 100 m 2 /g or more, and even more preferably 300 m 2 /g or more. As a result, it is possible to store electricity in a shorter time, and to store electricity in a large amount.
 比表面積の測定は、窒素ガス吸着法(JIS Z8830)を参考に、以下の(1)~(9)の手順により測定できる。
(1)セルロース繊維の約3%スラリー(分散媒:水)を、固形分が約0.1gとなるように取り分けて遠心分離の容器に入れ、100mlのエタノールを加える。
(2)その容器内で、ホモディスパー2.5型(プライミクス社製)を用いて、3000rpmで30分間攪拌する。
(3)攪拌後、遠心分離機で、7000G、30分、30℃の条件でセルロース繊維を沈降させる。
(4)沈降したセルロース繊維をできるだけ除去しないように、上澄みを除去する。
(5)上澄みを除去後、100mlエタノールを加え、さらに(2)の条件での攪拌、(3)の条件での遠心分離、(4)の条件での上澄み除去を、3回繰り返す。
(6) (5)の溶媒をエタノールからt-ブタノールに変え、t-ブタノールの融点以上の室温下で、(5)と同様にして撹拌、遠心分離、上澄み除去を3回繰り返す。
(7)最後の上澄み除去後、t-ブタノールを30ml加えて軽く混ぜた後、コニカルチューブに移し、液体窒素を用いて凍結させる。
(8)そのコニカルチューブを凍結乾燥機に取り付け、3日間凍結乾燥させる。
(9)その後、BET測定を行う(前処理条件:窒素気流下105℃ 2時間、相対圧0.01~0.30、サンプル量30mg程度)。
The specific surface area can be measured by the following procedures (1) to (9) with reference to the nitrogen gas adsorption method (JIS Z8830).
(1) An approximately 3% slurry of cellulose fibers (dispersion medium: water) is divided so that the solid content becomes approximately 0.1 g, placed in a centrifugal container, and 100 ml of ethanol is added.
(2) Stir in the container at 3000 rpm for 30 minutes using Homo Disper Model 2.5 (manufactured by Primix).
(3) After stirring, the cellulose fibers are sedimented under the conditions of 7000 G, 30 minutes, and 30° C. using a centrifuge.
(4) Remove the supernatant while removing as little of the settled cellulose fibers as possible.
(5) After removing the supernatant, 100 ml of ethanol is added, and the stirring under the conditions of (2), the centrifugation under the conditions of (3), and the removal of the supernatant under the conditions of (4) are repeated three times.
(6) The solvent in (5) is changed from ethanol to t-butanol, and at room temperature above the melting point of t-butanol, stirring, centrifugation and supernatant removal are repeated three times in the same manner as in (5).
(7) After removing the final supernatant, add 30 ml of t-butanol, mix gently, transfer to a conical tube, and freeze using liquid nitrogen.
(8) Attach the conical tube to the lyophilizer and lyophilize for 3 days.
(9) After that, BET measurement is performed (pretreatment conditions: 105° C. for 2 hours under nitrogen stream, relative pressure 0.01 to 0.30, sample amount about 30 mg).
(結晶化)
 セルロース繊維は、結晶部分を有することが好ましく、繊維層内部に結晶部分を有することがより好ましい。これにより、セルロース繊維層表面に均一な凹凸部を形成でき、蓄電量を高めることができる。結晶部分は、単結晶でも多結晶(ポリクリスタル)でもよく、多結晶部分の比率は、セルロース繊維層の10vol%以下が好ましい。
(crystallization)
Cellulose fibers preferably have a crystalline portion, and more preferably have a crystalline portion inside the fiber layer. As a result, uniform irregularities can be formed on the surface of the cellulose fiber layer, and the amount of electricity stored can be increased. The crystal portion may be either single crystal or polycrystal, and the ratio of the polycrystal portion is preferably 10 vol % or less of the cellulose fiber layer.
(無定形)
 セルロース繊維は、無定形部分を有することが好ましく、表面(例えば、電極と接する面)が無定形であることがより好ましい。これにより、蓄電性を生じさせることができる。例えば、アニオン変性セルロース繊維の場合、セルロース繊維を構成するグルコピラノース単位のC5位の炭素原子とC6位の炭素原子の結合(C5-C6ボンド)の柔軟性によりC6位のアニオン基(例えば、C6カルボシル基)の回転が可能となり、高い蓄電性を生じ得る。無定形部分の有無は、X線解析によりブロードなピークが生じるか否か、又は電子線解析によりハローパターンが生じるか否かにより確認できる。
(amorphous)
Cellulose fibers preferably have an amorphous portion, and more preferably have an amorphous surface (for example, the surface in contact with the electrode). Thereby, electric storage property can be produced. For example, in the case of anion-modified cellulose fibers, due to the flexibility of the bond (C5-C6 bond) between the carbon atom at the C5 position and the carbon atom at the C6 position of the glucopyranose unit constituting the cellulose fiber, an anion group at the C6 position (for example, C6 Carbosyl group) can be rotated, resulting in high chargeability. The presence or absence of an amorphous portion can be confirmed by whether or not a broad peak is generated by X-ray analysis or whether or not a halo pattern is generated by electron beam analysis.
(原子空孔)
 セルロース繊維は、原子空孔を有することが好ましい。原子空孔の存在によりプロトン電動が可能となり電気二重層が形成でき、積層体は蓄電体となりうる。原子空孔は無定形性に内在する特徴である。原子空孔のサイズ及び量は、陽電子消滅法により確認できる。
(atomic vacancy)
Cellulose fibers preferably have atomic vacancies. Due to the presence of atomic vacancies, proton electric conduction is possible, an electric double layer can be formed, and the laminate can be used as a power storage body. Atomic vacancies are an inherent feature of amorphousness. The size and amount of atomic vacancies can be confirmed by the positron annihilation method.
 セルロース繊維層に含まれるセルロース繊維は、1種単独でもよいし、2種以上の組み合わせでもよい。セルロース繊維層は、セルロース繊維以外の他の成分を含んでいてもよい。 The cellulose fibers contained in the cellulose fiber layer may be of one type alone, or may be a combination of two or more types. The cellulose fiber layer may contain components other than cellulose fibers.
 セルロース繊維層は、通常、シート状であり、その厚みは、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましい。これにより、装置を軽量化できる。また、静電気が表面において着離脱するところ、薄膜状にすることにより、パワー密度やエネルギー密度を増加できる。
 積層体(電極付きシート材料)は、セルロース繊維層を1層備えればよく、2層以上を備えていてもよい。
The cellulose fiber layer is usually sheet-like, and its thickness is preferably 100 µm or less, more preferably 50 µm or less, and even more preferably 30 µm or less. This makes it possible to reduce the weight of the device. In addition, the power density and energy density can be increased by forming a thin film where static electricity attaches and detaches from the surface.
The laminate (sheet material with electrodes) may have one cellulose fiber layer, or may have two or more layers.
[1.2 電極材料]
 積層体(電極付きシート材料)は、通常、電極材料を含む電極層を含有する。電極材料は、例えば、炭素(C)、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)、モリブデン(Mo)、クロム(Cr)、鉄(Fe)、亜鉛(Zn)、チタン(Ti)、ニッケル(Ni)、鉛(Pb)、白金(Pt)、タングステン(W)、ビスマス(Bi)、シリコンウエハ(SiO)、Ag合金、Al合金、Mo合金、Fe合金(例、ステンレス)等の金属、ZnO等の金属酸化物、ポリアセチレン、ポリチオフェン等の導電性樹脂で構成される。2以上の電極層を有する場合には、各電極層の電極材料が異なっていてもよい。
 電極層は、通常、シート状であり、その厚さは、通常、0.01μm~500μm、好ましくは1μm~100μm又は0.5μm~50μm、より好ましくは、1μm~5μmである。
[1.2 Electrode material]
A laminate (sheet material with electrodes) usually contains an electrode layer containing an electrode material. Electrode materials include, for example, carbon (C), aluminum (Al), copper (Cu), gold (Au), silver (Ag), molybdenum (Mo), chromium (Cr), iron (Fe), and zinc (Zn). , titanium (Ti), nickel (Ni), lead (Pb), platinum (Pt), tungsten (W), bismuth (Bi), silicon wafer (SiO 2 ), Ag alloy, Al alloy, Mo alloy, Fe alloy ( For example, it is composed of a metal such as stainless steel, a metal oxide such as ZnO, or a conductive resin such as polyacetylene or polythiophene. When having two or more electrode layers, the electrode materials of each electrode layer may be different.
The electrode layer is usually in the form of a sheet and has a thickness of usually 0.01 μm to 500 μm, preferably 1 μm to 100 μm or 0.5 μm to 50 μm, more preferably 1 μm to 5 μm.
[1.3 他の層(基材)]
 積層体は、通常、セルロース繊維層、電極層以外の他の層を含有していてもよい。他の層としては、例えば、基材が挙げられる。
[1.3 Other layers (substrate)]
The laminate may normally contain layers other than the cellulose fiber layer and the electrode layer. Other layers include, for example, a substrate.
 基材は、電極層(2以上の電極層を用いる場合には最外側の電極層)に接して通常設けられる。基材の材料としては、例えば、プラスチック等の有機材料、シリコン、ガラス等の無機材料が挙げられる。 The substrate is usually provided in contact with the electrode layer (the outermost electrode layer when two or more electrode layers are used). Materials for the substrate include, for example, organic materials such as plastics, and inorganic materials such as silicon and glass.
[1.4 積層体の用途・電気特性]
 積層体は、そのまま、または複数組み合わせて(例えば、積層、並列する)、蓄電体として利用することができる。蓄電体の電気抵抗は、0.01MΩ~500MΩが好ましい。また、電気容量が100mJ/m以上が好ましい。蓄電体は、1ms~1分間の瞬時もしくは短時間蓄電、及び大容量蓄電により、1日以上の長時間放電が可能であることが好ましい。また、1mHz~100kHz、好ましくは0.1~100Hzの急速応答充放電が可能であることが好ましい。上記の電気特性を有する蓄電体は、AC/DCコンバーターを用いて50Hz、60Hzの交流を直流に変換することにより、50/1000~60/1000秒ごとに発電機からの電流を蓄電できると考えられる。作動温度は、-100~100℃であることが好ましい。耐電圧性は、1GV/m以上であることが好ましい。上記の電気特性の少なくとも1つ(好ましくは複数)を満たすことにより、送電線の廃止による固体蓄電体の運搬が可能となり、自動車のみならず、船舶、飛行機等により国内外に自由に運搬できるものと期待される。
[1.4 Applications and electrical properties of laminate]
The laminated body can be used as a power storage body as it is or in combination (for example, laminated or arranged in parallel). The electric resistance of the storage battery is preferably 0.01 MΩ to 500 MΩ. Moreover, the electric capacity is preferably 100 mJ/m 2 or more. It is preferable that the power storage unit can be discharged for a long time of one day or more by instantaneous or short-time power storage for 1 ms to 1 minute and large-capacity power storage. Also, it is preferable that rapid response charge/discharge of 1 mHz to 100 kHz, preferably 0.1 to 100 Hz is possible. It is thought that a power storage unit with the above electrical characteristics can store current from a generator every 50/1000 to 60/1000 seconds by converting 50 Hz and 60 Hz alternating current into direct current using an AC/DC converter. be done. The operating temperature is preferably -100 to 100°C. Voltage resistance is preferably 1 GV/m or more. By satisfying at least one (preferably more than one) of the above electrical characteristics, it becomes possible to transport the solid power storage by abolition of power transmission lines, and it can be freely transported domestically and internationally not only by automobile, but also by ship, airplane, etc. is expected.
 積層体は、蓄電体として利用できる。蓄電体の具体的な用途としては、例えば、マイクロ電子回路の交流用コンデンサや、太陽電池パネルの裏面の蓄電体が挙げられる。また、例えば、避雷器用、溶接用、過放電防止用など各種のバックアップ電源モジュールや、カップリング素子、ノイズフィルター、高感度加速度センサー、高出力トランス遮断防止装置、自動車用又は船舶用緊急電源供給装置等の電子・電気基盤などの用途も挙げられる。 The laminate can be used as a power storage unit. Specific uses of the capacitor include, for example, AC capacitors in microelectronic circuits and capacitors on the backside of solar panels. In addition, for example, various backup power supply modules for lightning arresters, welding, overdischarge prevention, etc., coupling elements, noise filters, high-sensitivity acceleration sensors, high-output transformer cutoff prevention devices, and emergency power supply devices for automobiles and ships. Applications such as electronic and electric boards such as
[2.積層体の製造方法]
 積層体は、電極の少なくとも一部にセルロース繊維スラリーを塗布して製膜することにより製造できる。
[2. Laminate manufacturing method]
The laminate can be produced by applying a cellulose fiber slurry to at least part of the electrode to form a film.
[2.1 セルロース繊維スラリー]
 セルロース繊維スラリーは、セルロース繊維を溶剤に分散させて調製される。セルロース繊維の例は、前述したとおりである。溶剤は、通常は水であり、セルロース繊維の調製時に得られた分散体をそのまま使用してもよい。セルロース繊維スラリーにおけるセルロース繊維の固形分濃度は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましく、1.5質量%以上がさらにより好ましい。これにより、効率的に蓄電体を製造できる。濃度の上限としては、15質量%以下が好ましく、10質量%以下がより好ましく、8質量%以下又は5質量%以下がさらに好ましい。これにより、スラリーが適度な粘度に調整でき、成膜性の低下を抑制できる。
[2.1 Cellulose fiber slurry]
Cellulose fiber slurry is prepared by dispersing cellulose fibers in a solvent. Examples of cellulose fibers are described above. The solvent is usually water, and the dispersion obtained during preparation of the cellulose fibers may be used as it is. The solid content concentration of cellulose fibers in the cellulose fiber slurry is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, and even more preferably 1.5% by mass or more. preferable. Thereby, a power storage body can be manufactured efficiently. The upper limit of the concentration is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 8% by mass or less or 5% by mass or less. As a result, the slurry can be adjusted to have an appropriate viscosity, and a decrease in film-forming properties can be suppressed.
[塗布・製膜]
 電極材料の例は、前述したとおりである。電極材料へのセルロース繊維スラリーの塗布・製膜方法としては、例えば、バーコート法、スピンコート法、電気泳動法(電着塗工法)が好ましい。バーコート法の場合、バーで表面を均すことができ、スピンコート法の場合、スラリーを遠心力で均一に製膜でき、電着塗工法の場合、電極全体に均一に電気泳動にすることができる。そのため、これらの方法によれば、スリップキャスト法等の方法と比較して、塗膜の表面及び厚さをより均一にできるため、薄く製膜した時に極端に薄い箇所がなく、セルロース繊維層が均一な凹凸を有する表面を呈することができ、欠点が発生しにくくなり蓄電量が向上し得る。すなわち、蓄電量は下記式(1)により算出されることから、接触面の面積に凸部が二次元平面上に略均一に配置されることにより、金属電極と凸面の接触面をより増加して、蓄電量を高められる。凹凸を有することにより、その数に対応した、各金属電極に垂直な複数の微小コンデンサを有する分布定数型コンデンサと等価となる。すなわち、微小な(ナノサイズの)凹凸部そのものが電気二重層から成る固体電解質となり、CとRとの並列等価回路で表すことができる。これらの方法の中でも、電気泳動法によれば、より薄いセルロース繊維層を形成できる。凹凸の直径は、1nm~500nmが好ましい。膜の厚さは、蓄電性能が向上するという観点では薄い方が好ましいが、一方で、膜の厚さは、ピンホールやクラックなどの欠点が発生した場合の影響を抑制でき、ショートする可能性を低下させることのできる範囲で適宜定めることができる。例えば、膜の厚さは、0.1μm以上が好ましく、0.5μm以上がより好ましく、1.0μ以上がより好ましい。上限は特に限定されないが、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは30μm以下である。従って、0.1~100μmであることが好ましく、0.5~50μmであることがより好ましく、1~30μmであることが更に好ましい。
[Coating/film formation]
Examples of electrode materials are as described above. As a method for applying the cellulose fiber slurry to the electrode material and forming a film, for example, a bar coating method, a spin coating method, and an electrophoresis method (electrodeposition coating method) are preferable. In the case of the bar coating method, the surface can be leveled with a bar, in the case of the spin coating method, the slurry can be uniformly formed into a film by centrifugal force, and in the case of the electrodeposition coating method, the entire electrode can be electrophoretically applied. can be done. Therefore, according to these methods, compared to methods such as slip casting, the surface and thickness of the coating film can be made more uniform. A surface having uniform unevenness can be presented, and defects are less likely to occur, and the amount of electricity stored can be improved. That is, since the amount of stored electricity is calculated by the following formula (1), the contact surface between the metal electrode and the convex surface is increased by arranging the convex portions substantially uniformly on the two-dimensional plane in the area of the contact surface. can increase the amount of electricity stored. By having unevenness, it becomes equivalent to a distributed constant type capacitor having a plurality of minute capacitors perpendicular to each metal electrode corresponding to the number. That is, the fine (nano-sized) unevenness itself becomes a solid electrolyte composed of an electric double layer, and can be represented by a parallel equivalent circuit of C and R. Among these methods, the electrophoresis method can form a thinner cellulose fiber layer. The diameter of the unevenness is preferably 1 nm to 500 nm. The thickness of the film is preferably thin from the viewpoint of improving the storage performance, but on the other hand, the thickness of the film can suppress the effects of defects such as pinholes and cracks, and the possibility of short circuits. can be appropriately determined within a range that can reduce the For example, the thickness of the film is preferably 0.1 µm or more, more preferably 0.5 µm or more, and more preferably 1.0 µm or more. Although the upper limit is not particularly limited, it is preferably 100 μm or less, more preferably 50 μm or less, and still more preferably 30 μm or less. Therefore, it is preferably 0.1 to 100 μm, more preferably 0.5 to 50 μm, even more preferably 1 to 30 μm.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(バーコート法)
 バーコート法は、スラリーを電極上に流しバーで梳いて塗布する方法である。バーを梳く方向は一方向であることが好ましい(例えば、図1)。バーと電極薄膜のギャップの距離は、所望の膜厚に応じて適宜調整できる(一例をあげると、800μm以下、このましくは700μm以下、より好ましくは600μm以下)。塗布後の乾燥は、加熱等の乾燥処理によることができ(例えば、80℃以上又は90℃以上)、ホットプレート等の乾燥機器を用いて行えばよい。
(Bar coat method)
The bar coating method is a method in which a slurry is poured onto an electrode and combed with a bar to apply the slurry. The direction of combing the bar is preferably unidirectional (eg FIG. 1). The gap distance between the bar and the electrode thin film can be appropriately adjusted according to the desired film thickness (eg, 800 μm or less, preferably 700 μm or less, more preferably 600 μm or less). Drying after coating can be performed by a drying treatment such as heating (for example, 80° C. or higher or 90° C. or higher), and may be performed using a drying device such as a hot plate.
(スピンコート法)
 スピンコート法は、スラリーを電極上に流し、電極を水平方向に回転させ、遠心力を利用してスラリーを薄膜化する方法である。電極の回転には、スピンコーター(例えば、図2)等の装置を用いることができる。回転速度、回転時間等により、セルロース繊維層の厚さ、表面の凹凸形状をコントロールでき、これらはスピンコーターの設定により調整できる。回転速度(周速度)は、通常、200~2,000rpm、好ましくは300~1,500rpm、より好ましくは500~1,000rpmである。スピンコートによるコートは、1回でもよいし、2回以上繰り返して重層してもよい。2回以上、好ましくは3回以上又は4回以上行うことにより、欠点部の発生を抑制し、通電及び蓄電効率を向上させることができる。コートを複数回行う場合、コート処理後、ホットプレート等の乾燥機器で乾燥してから(例えば、40℃~60℃)、次のコート処理を行うことが好ましい。
(Spin coating method)
The spin coating method is a method in which a slurry is poured onto an electrode, the electrode is rotated horizontally, and the slurry is made into a thin film using centrifugal force. A device such as a spin coater (eg, FIG. 2) can be used for rotating the electrode. The thickness of the cellulose fiber layer and the unevenness of the surface can be controlled by the rotation speed, rotation time, etc., and these can be adjusted by setting the spin coater. The rotational speed (peripheral speed) is usually 200 to 2,000 rpm, preferably 300 to 1,500 rpm, more preferably 500 to 1,000 rpm. Coating by spin coating may be performed once, or may be repeated two or more times. By performing the heat treatment two times or more, preferably three times or more, or four times or more, it is possible to suppress the occurrence of defective portions and improve the efficiency of energization and power storage. When coating is carried out multiple times, it is preferable that the next coating treatment is carried out after drying with a drying device such as a hot plate (for example, at 40° C. to 60° C.).
(電気泳動法)
 電気泳動法(電着塗工法)は、被塗布対象である電極材料と対抗電極をスラリーに浸漬し、電極材料を陰極又は陽極とし、電極材料と対抗電極との間に通電することにより、電極材料に塗膜を析出させる方法である。通電の際、電極材料は、陽極(アニオン電着)及び陰極(カチオン電着)のいずれでもよい。対抗電極は、通常用いられる電極の中から、電極材料に適したものを選択でき、例えば、Pt等の金属電極が挙げられる。
(Electrophoresis method)
In the electrophoresis method (electrodeposition coating method), an electrode material to be coated and a counter electrode are immersed in a slurry, the electrode material is used as a cathode or an anode, and an electric current is passed between the electrode material and the counter electrode. This is a method of depositing a coating film on a material. When electrifying, the electrode material may be either an anode (anion electrodeposition) or a cathode (cation electrodeposition). The counter electrode can be selected from commonly used electrodes suitable for the electrode material, and examples thereof include metal electrodes such as Pt.
 通電の条件は、セルロース繊維層の厚さなどに応じて適宜調整できるが、一例をあげると以下のとおりである。電圧は、通常、0.1V以上、好ましくは5V以上又は10V以上、より好ましくは50V以上、更に好ましくは100V以上である。これにより、セルロース繊維層中のセルロース繊維の密度を高めることができる。上限は、通常、1000V以下、好ましくは10~500V以下である。電流密度は、通常、0.00001~10000mA/cm2、好ましくは、0.00001~100mA/cm2、より好ましくは0.1~10000mA/cm2、さらに好ましくは、1~10000mA/cm2である。通電時間は、通常、0.1分以上、好ましくは1分以上、より好ましくは2分以上である。上限は、通常、100分以下、好ましくは60分以下である。セルロース繊維の密度を高める場合には、電圧を高めに設定し(例えば、50V以上、好ましくは100V以上)、通電時間を短めにする(例えば、10分以下、好ましくは5分以下)ことが好ましい。セルロース繊維層の厚さは、通電の条件(例えば、電圧、電流、泳動時間)によりコントロールできる。通電の際、CNFスラリーの温度は、室温以下(例えば、20℃以下、15℃以下、10℃以下又は8℃以下)に調整してもよい。 The condition of energization can be appropriately adjusted according to the thickness of the cellulose fiber layer, etc., and an example is as follows. The voltage is usually 0.1 V or higher, preferably 5 V or higher or 10 V or higher, more preferably 50 V or higher, still more preferably 100 V or higher. Thereby, the density of the cellulose fibers in the cellulose fiber layer can be increased. The upper limit is usually 1000 V or less, preferably 10 to 500 V or less. Current density is usually 0.00001 to 10000 mA/cm 2 , preferably 0.00001 to 100 mA/cm 2 , more preferably 0.1 to 10000 mA/cm 2 , still more preferably 1 to 10000 mA/cm 2 . be. The energization time is usually 0.1 minute or longer, preferably 1 minute or longer, and more preferably 2 minutes or longer. The upper limit is usually 100 minutes or less, preferably 60 minutes or less. When increasing the density of cellulose fibers, it is preferable to set the voltage higher (eg, 50 V or higher, preferably 100 V or higher) and shorten the energization time (eg, 10 minutes or less, preferably 5 minutes or less). . The thickness of the cellulose fiber layer can be controlled by energizing conditions (for example, voltage, current, migration time). During energization, the temperature of the CNF slurry may be adjusted to room temperature or lower (for example, 20° C. or lower, 15° C. or lower, 10° C. or lower, or 8° C. or lower).
 通電は、電極材料、対抗電極、セルロース繊維スラリーを収容できる容器(電解槽)を用いて行うことができる。電解槽内の電極、電極材料は、通電のための電源に接続されている(例えば、図3参照)。 Electricity can be energized using a container (electrolytic bath) that can accommodate the electrode material, the counter electrode, and the cellulose fiber slurry. Electrodes and electrode materials in the electrolytic bath are connected to a power supply for energization (see, for example, FIG. 3).
 通電後、必要に応じて洗浄(例えば、水洗)してもよい。また、洗浄の際、通電を行ってもよい。洗浄の際の通電の条件は、一例をあげると以下のとおりである。電圧は、0.1~1000Vであり、より好ましくは10~500Vであり、通電時間は、好ましくは1~100分、より好ましくは5~60分である。通電、洗浄後は、通常、乾燥処理(例、40℃~60℃で加熱)を行ってもよい(例えば、16時間以上、10時間以上、または12時間以上)。 After energization, it may be washed (for example, washed with water) as necessary. Moreover, you may electrify in the case of washing|cleaning. An example of energization conditions during cleaning is as follows. The voltage is 0.1 to 1000 V, more preferably 10 to 500 V, and the energization time is preferably 1 to 100 minutes, more preferably 5 to 60 minutes. After energization and washing, drying treatment (eg, heating at 40° C. to 60° C.) may be performed (eg, 16 hours or longer, 10 hours or longer, or 12 hours or longer).
[2.2 塗布面]
 セルロース繊維スラリーを電極に塗布する際の塗布面は、電極(通常はシート状)の少なくとも一部の面であればよいが、両面が好ましい。
[2.2 Coated surface]
When the cellulose fiber slurry is applied to the electrode, the surface to be coated may be at least a part of the electrode (usually in the form of a sheet), but both surfaces are preferable.
[2.3 積層]
 電極の少なくとも一部(例えば、電極層がシート状である場合、少なくともその一面)にセルロース繊維スラリーを塗布して製膜することにより、電極層とセルロース繊維層の2層を備える積層体、又は電極層を挟み2層のセルロース繊維層の3層を備える積層体が形成される。これらを積層ユニット(基本ユニット)として、他の積層ユニットを積層し、必要に応じて積層を繰り返すこともできる。積層は、NEMS(Nano Electro Mechanical Systems、微小電気機械システム)を利用して行えばよい。
[2.3 Lamination]
A laminate comprising two layers, an electrode layer and a cellulose fiber layer, by applying a cellulose fiber slurry to at least a portion of the electrode (for example, at least one surface of the electrode layer in the form of a sheet) to form a film, or A laminate comprising three layers of two cellulose fiber layers sandwiching an electrode layer is formed. Using these as laminated units (basic units), other laminated units can be laminated, and lamination can be repeated as necessary. Lamination may be performed using NEMS (Nano Electro Mechanical Systems).
 以下、図面及び実施例に基づいて、本発明について説明する。なお、以下の実施例は、単に本発明の説明のため、その具体的な態様の参考のために提供しているものであり、本願で開示する発明の範囲を限定したり、制限したりするものではない。 The present invention will be described below based on the drawings and examples. It should be noted that the following examples are provided merely to illustrate the present invention and for reference to specific embodiments thereof, and are not intended to limit or limit the scope of the invention disclosed herein. not a thing
 実施例で用いるセルロース繊維(試料1~3)は、それぞれ以下のようにして製造した。 The cellulose fibers (samples 1 to 3) used in the examples were produced as follows.
製造例1<試料1(TEMPO酸化CNF)の調製>
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)500g(絶乾)を、TEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gとを溶解した水溶液500mlに加え、パルプが均一に分散されるまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物に10%塩酸を加えpH3に調整し、ガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗することで、TEMPO酸化パルプを得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分であった。
Production Example 1 <Preparation of Sample 1 (TEMPO-oxidized CNF)>
500 g (absolute dry) of bleached unbeaten kraft pulp (85% whiteness) derived from softwood is added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide are dissolved, and the pulp is uniformly dispersed. Stir until done. An aqueous sodium hypochlorite solution was added to the reaction system so as to have a concentration of 6.0 mmol/g to initiate an oxidation reaction. The pH in the system decreased during the reaction, but was adjusted to pH 10 by successively adding 3M sodium hydroxide aqueous solution. The reaction was terminated when the sodium hypochlorite was consumed and the pH in the system stopped changing. After the reaction, 10% hydrochloric acid was added to the mixture to adjust the pH to 3, the mixture was filtered through a glass filter to separate the pulp, and the pulp was thoroughly washed with water to obtain TEMPO oxidized pulp. The pulp yield at this time was 90%, and the time required for the oxidation reaction was 90 minutes.
 上記の工程で得られたTEMPO酸化パルプを、水で3.0%(w/v)に調整し、12%水酸化ナトリウム水溶液でpH7に調整し、超高圧ホモジナイザー(20℃、150MPa)で5回解繊処理を行い、TEMPO酸化微細セルロース繊維分散液を得た(試料1:以下「TEMPO酸化CNF」という)。得られたTEMPO酸化CNFは、平均繊維径が4nm、アスペクト比が150であった。得られたTEMPO酸化CNFのカルボキシル基量は、1.42mmol/gであった。また、得られたTEMPO酸化CNFの比表面積は、386m/gであった。 The TEMPO oxidized pulp obtained in the above steps was adjusted to 3.0% (w/v) with water, adjusted to pH 7 with a 12% aqueous sodium hydroxide solution, and homogenized 5 times with an ultrahigh pressure homogenizer (20°C, 150 MPa). A fibrillation treatment was performed to obtain a TEMPO-oxidized fine cellulose fiber dispersion (Sample 1: hereinafter referred to as "TEMPO-oxidized CNF"). The resulting TEMPO-oxidized CNF had an average fiber diameter of 4 nm and an aspect ratio of 150. The amount of carboxyl groups in the obtained TEMPO-oxidized CNF was 1.42 mmol/g. Moreover, the specific surface area of the obtained TEMPO-oxidized CNF was 386 m 2 /g.
製造例2<試料2(CM化CNF)の調製>
 回転数を150rpmに調節した二軸ニーダーに、水130部と、水酸化ナトリウム20部を水10部とイソプロパノール(IPA)90部との混合溶媒に溶解したものとを加え、広葉樹パルプ(日本製紙(株)製、LBKP)を100℃、60分間乾燥した際の乾燥質量で100部仕込んだ。35℃で80分間撹拌、混合し、マーセル化処理を行った。さらに撹拌しつつ、水23部とIPA207部との混合溶媒と、モノクロロ酢酸ナトリウム40部とを添加し、30分間撹拌した後、70℃に昇温して90分間エーテル化処理を行った。反応終了後、pH7になるまで酢酸で中和し、含水メタノールで洗浄した後、脱液し、サイド水を加えCM化パルプのナトリウム塩水溶液を得た。得られたCM化パルプにおけるカルボキシメチルエーテル置換度は、0.30であった。
Production Example 2 <Preparation of Sample 2 (CM-CNF)>
130 parts of water and 20 parts of sodium hydroxide dissolved in a mixed solvent of 10 parts of water and 90 parts of isopropanol (IPA) are added to a twin-screw kneader whose rotation speed is adjusted to 150 rpm, and hardwood pulp (Nippon Paper Industries LBKP (manufactured by Co., Ltd.) was charged at 100° C. for 60 minutes with a dry mass of 100 parts. The mixture was stirred and mixed at 35° C. for 80 minutes and mercerized. With further stirring, a mixed solvent of 23 parts of water and 207 parts of IPA and 40 parts of sodium monochloroacetate were added, stirred for 30 minutes, then heated to 70° C. and etherified for 90 minutes. After completion of the reaction, the mixture was neutralized with acetic acid until the pH reached 7, washed with water-containing methanol, deliquored, and side water was added to obtain a sodium salt aqueous solution of CM pulp. The degree of carboxymethyl ether substitution in the obtained CM pulp was 0.30.
 上記の工程で得られたCM化パルプを、水で3.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150MPa)で5回解繊処理を行い、CM化微細セルロース繊維分散液を得た(以下「CM化CNF」という)。得られたCM化CNF3.0%(w/v)分散液にイオン交換水を加え、ホモジナイザーで3000rpm、10分間撹拌し、濃度0.5%(w/v)に希釈し、CM化CNF(試料2)水分散液を得た。得られたCM酸化CNFのカルボキシメチル置換度は、0.30、平均繊維径は4nm、アスペクト比は52であった。 The CM pulp obtained in the above step was adjusted to 3.0% (w/v) with water, and defibrated five times with an ultra-high pressure homogenizer (20°C, 150 MPa) to obtain a CM fine cellulose fiber. A dispersion was obtained (hereinafter referred to as "CM-CNF"). Ion-exchanged water was added to the obtained CM-CNF 3.0% (w / v) dispersion, stirred at 3000 rpm for 10 minutes with a homogenizer, diluted to a concentration of 0.5% (w / v), and CM-CNF ( Sample 2) A water dispersion was obtained. The resulting CM-oxidized CNF had a degree of carboxymethyl substitution of 0.30, an average fiber diameter of 4 nm, and an aspect ratio of 52.
製造例3<試料3(TEMPO酸化CNFのLi塩型)の調製>
 TEMPO酸化パルプを5%水酸化リチウム水溶液でpH7に調整した以外は試料1と同様の方法で行い、TOCN-COOLi水分散液(試料3)を得た。
Production Example 3 <Preparation of Sample 3 (Li salt type of TEMPO-oxidized CNF)>
A TOCN-COOLi aqueous dispersion (Sample 3) was obtained in the same manner as in Sample 1, except that the TEMPO oxidized pulp was adjusted to pH 7 with a 5% lithium hydroxide aqueous solution.
製造例4<試料4(TEMPO酸化CNFのK塩型)の調製>
 TEMPO酸化パルプを10%カリウム水溶液でpH7に調整した以外は試料1と同様の方法で行い、TOCN-COOK水分散液(試料4)を得た。
Production Example 4 <Preparation of Sample 4 (K salt form of TEMPO-oxidized CNF)>
A TOCN-COOK aqueous dispersion (Sample 4) was obtained in the same manner as in Sample 1, except that the TEMPO oxidized pulp was adjusted to pH 7 with a 10% potassium aqueous solution.
 以下に、本発明の実施の形態のセルローススラリーを用いたシート材の製造方法について実施例を示す。 Examples of the method for manufacturing a sheet material using the cellulose slurry according to the embodiment of the present invention are shown below.
実施例1<試料1、バー塗工法>
 図1のごとく、電極材料としてのAl薄膜(厚み25μm)を下に敷き、試料1のスラリー(固形分1.0%)をその上に流し、Al薄膜上面から500μmのギャップでバーを用いて一方向に水平に塗工した。その後100℃のホットプレート上で乾燥させ、厚さ5μmのシートを作製した。
Example 1 <Sample 1, bar coating method>
As shown in FIG. 1, an Al thin film (thickness 25 μm) as an electrode material is laid under it, the slurry of sample 1 (solid content 1.0%) is poured over it, and a bar is used with a gap of 500 μm from the top surface of the Al thin film. It was applied horizontally in one direction. After that, it was dried on a hot plate at 100° C. to prepare a sheet having a thickness of 5 μm.
実施例2<試料1、スピンコート法>
 図2に示すスピンコータを用いて、Al薄膜上に試料1のスラリー(固形分1.5%)を液滴落下させ周速度200rpmで5秒均一にコートした。これを50℃のホットプレート上で乾燥させた。次に再度乾燥シート塗布のAl薄膜をスピンコータの回転盤上に置き、試料2のスラリーを液滴落下させ周速度500~1,000rpmで10~20秒間均一にコートした。セルロース繊維層にさらにコートする操作を5回繰り返して、厚さ27μmのセルロース繊維シートを作製した。セルロース繊維層表面の凹凸の直径は、5.7μmであった。
Example 2 <Sample 1, spin coating method>
Using the spin coater shown in FIG. 2, droplets of the slurry of Sample 1 (solid content: 1.5%) were dropped onto the Al thin film to uniformly coat the Al thin film at a peripheral speed of 200 rpm for 5 seconds. This was dried on a hot plate at 50°C. Next, the dry sheet-coated Al thin film was again placed on the rotating disk of the spin coater, and droplets of the slurry of Sample 2 were dropped to uniformly coat it at a peripheral speed of 500 to 1,000 rpm for 10 to 20 seconds. The operation of further coating the cellulose fiber layer was repeated five times to produce a cellulose fiber sheet with a thickness of 27 μm. The diameter of the unevenness on the surface of the cellulose fiber layer was 5.7 μm.
実施例3<試料1、電気泳動法>
 図3のような500mlのCNFスラリー(試料1:固形分0.5%)が入った水槽中(水温5℃)にてAl薄膜を正極に、白金電極を負極として電気泳動による電着実験を行った。電着条件は直流8V,2分間とした。電着後蒸留水で洗浄し50℃で一昼夜乾燥させ、厚さ5μmのセルロース繊維シートを作製した。
Example 3 <Sample 1, electrophoresis method>
In a water tank (water temperature 5 ° C) containing 500 ml of CNF slurry (sample 1: solid content 0.5%) as shown in FIG. gone. Electrodeposition conditions were DC 8 V for 2 minutes. After electrodeposition, it was washed with distilled water and dried at 50° C. for a whole day and night to prepare a cellulose fiber sheet with a thickness of 5 μm.
実施例4<試料2、電気泳動法(電着塗工法)>
 試料1の代わりに試料2を用いたほかは、実施例3と同様に行い、厚さ5μmのセルロース繊維シートを作製した。
Example 4 <Sample 2, electrophoresis method (electrodeposition coating method)>
A cellulose fiber sheet having a thickness of 5 μm was produced in the same manner as in Example 3, except that Sample 2 was used instead of Sample 1.
実施例5<試料1、バー塗工法>
 セルロース繊維シートの厚さを1μmに調整したほかは、実施例1と同様に行った。
Example 5 <Sample 1, bar coating method>
The procedure of Example 1 was repeated except that the thickness of the cellulose fiber sheet was adjusted to 1 μm.
実施例6<試料1、スピンコート法>
 セルロース繊維シートの厚さを1μmに調整したほかは、実施例2と同様に行った。
Example 6 <Sample 1, spin coating method>
The procedure of Example 2 was repeated except that the thickness of the cellulose fiber sheet was adjusted to 1 μm.
実施例7<試料1、電気泳動法(電着塗工法)>
 セルロース繊維シートの厚さを1μmに調整したほかは、実施例3と同様に行った。
Example 7 <Sample 1, electrophoresis method (electrodeposition coating method)>
The procedure of Example 3 was repeated except that the thickness of the cellulose fiber sheet was adjusted to 1 μm.
実施例8<試料1、スリップキャスト法>
 試料1のスラリー(固形分1.0%)Al薄膜にシリコンゴム製の枠を置いた鋳型に流し込み、2日間50℃で静置した。スラリーに含まれる水が蒸発して乾燥したことを確認後、型から外すことにより、厚さ1μmのセルロース繊維シートを作製した。
Example 8 <Sample 1, slip casting method>
The slurry (solid content: 1.0%) of sample 1 was poured into a mold having a silicone rubber frame placed on an Al thin film, and allowed to stand at 50°C for 2 days. After confirming that the water contained in the slurry was evaporated and dried, the slurry was removed from the mold to prepare a cellulose fiber sheet with a thickness of 1 μm.
実施例9<試料2、スリップキャスト法>
 試料1の代わりに試料を用いたほかは、比較例1と同様に行い、厚さ1μmのセルロース繊維シートを作製した。
Example 9 <Sample 2, slip casting method>
A cellulose fiber sheet having a thickness of 1 μm was produced in the same manner as in Comparative Example 1 except that the sample was used instead of the sample 1.
 表1に、実施例1~9で得られたシートの電気抵抗(MΩ)、蓄電量(mJ/m2)を示す。電気抵抗は得られた5cm角のシートを2枚のステンレス板に挟み、直流抵抗計を用いて厚み方向の電気抵抗を求めた。蓄電量は、定電流定電圧充電(CC-CV充電)、設定電流2mA、上限電圧500Vにて5秒間保持した後、1μA一定電流とした際の電圧降下曲線(横軸:時間、縦軸:電圧)の面積から求めた。 Table 1 shows the electrical resistance (MΩ) and storage capacity (mJ/m 2 ) of the sheets obtained in Examples 1 to 9. The electrical resistance was obtained by sandwiching the obtained sheet of 5 cm square between two stainless steel plates and measuring the electrical resistance in the thickness direction using a DC resistance meter. The amount of stored electricity is a voltage drop curve (horizontal axis: time, vertical axis: voltage).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~9の試料1~2の各蓄電体は、電気抵抗が63MΩ~465MΩであり、蓄電量が146mJ/m~1,705mJ/mであることが確認された。各実施例のシートのCNFの繊維径は、平均すると3nmと余りにも小さいため、高精度の原子間力顕微鏡でも1nm以下の巣孔のサイズまで観察できないが、各試料のシート組織が緻密であることが推定される。実施例5~9の試料は、100Vでの動作を確認した。 As shown in Table 1, each of the power storage bodies of Samples 1 to 2 of Examples 1 to 9 has an electrical resistance of 63 MΩ to 465 MΩ and a storage amount of 146 mJ/m 2 to 1,705 mJ/m 2 . confirmed. The CNF fiber diameter of the sheet of each example is too small, 3 nm on average, so even a high-precision atomic force microscope cannot observe pores of 1 nm or less in size, but the sheet structure of each sample is dense. is presumed. The samples of Examples 5-9 were confirmed to operate at 100V.
 試料1,2のセルロース繊維の比表面積は、BET吸着法により前段に記載した測定方法に沿って測定した結果、それぞれ386m/g、325m/gであった。 The specific surface areas of the cellulose fibers of Samples 1 and 2 were 386 m 2 /g and 325 m 2 /g, respectively, as a result of measuring according to the measurement method described in the previous paragraph by the BET adsorption method.
 これらの結果は、本発明により、セルロース繊維層を含み、高い蓄電量を発揮できる蓄電体を効率よく製造できることを示している。 These results show that, according to the present invention, it is possible to efficiently manufacture a power storage body that includes a cellulose fiber layer and is capable of exhibiting a high storage capacity.
実施例10<試料3、電気泳動法>
 試料1の代わりに試料3(固形分0.5%)を用いたほかは、実施例3と同様に行い、シートを作製した。セルロース繊維層の厚さは4μmであった。
Example 10 <Sample 3, Electrophoresis>
A sheet was produced in the same manner as in Example 3, except that Sample 3 (0.5% solid content) was used instead of Sample 1. The thickness of the cellulose fiber layer was 4 μm.
実施例11<試料4、電気泳動法>
 試料1の代わりに試料4(固形分0.5%)を用いたほかは、実施例3と同様に行い、シートを作製した。セルロース繊維層の厚さは4μmであ11った。
Example 11 <Sample 4, Electrophoresis>
A sheet was produced in the same manner as in Example 3, except that Sample 4 (0.5% solid content) was used instead of Sample 1. The thickness of the cellulose fiber layer was 4 μm.
実施例12<TEMPO酸化CNFのCa塩型シートの調製>
 実施例1で作製したシートを1mol/Lの塩化カルシウム水溶液に2時間浸漬し、シートを作製した。セルロース繊維層の厚さは5μmであった。
Example 12 <Preparation of Ca salt type sheet of TEMPO-oxidized CNF>
The sheet produced in Example 1 was immersed in a 1 mol/L calcium chloride aqueous solution for 2 hours to produce a sheet. The thickness of the cellulose fiber layer was 5 μm.
実施例13<TEMPO酸化CNFのMg塩型シートの調製>
 実施例3で作製したシートを1mol/Lの塩化マグネシウム水溶液に2時間浸漬し、シートを作製した。セルロース繊維層の厚さは5μmであった。
Example 13 <Preparation of Mg salt type sheet of TEMPO-oxidized CNF>
The sheet produced in Example 3 was immersed in a 1 mol/L aqueous solution of magnesium chloride for 2 hours to produce a sheet. The thickness of the cellulose fiber layer was 5 μm.
実施例14<TEMPO酸化CNFのCu塩型シートの調製>
 実施例3で作製したシートを1mol/Lの塩化銅水溶液に2時間浸漬し、シートを作製した。セルロース繊維層の厚さは5μmであった。
Example 14 <Preparation of Cu salt type sheet of TEMPO oxidized CNF>
The sheet produced in Example 3 was immersed in a 1 mol/L copper chloride aqueous solution for 2 hours to produce a sheet. The thickness of the cellulose fiber layer was 5 μm.
実施例15<TEMPO酸化CNFのAl塩型シートの調製>
 実施例3で作製したシートを1mol/Lの塩化アルミニウム水溶液に2時間浸漬し、シートを作製した。セルロース繊維層の厚さは5μmであった。
Example 15 <Preparation of Al salt type sheet of TEMPO-oxidized CNF>
The sheet produced in Example 3 was immersed in a 1 mol/L aluminum chloride aqueous solution for 2 hours to produce a sheet. The thickness of the cellulose fiber layer was 5 μm.
 表2に、実施例10~15で得られたシートの電気抵抗(MΩ)、蓄電容量(mJ/cm2)を示す。電気抵抗は得られた5cm角のシートを2枚のステンレス板に挟み、直流抵抗計を用いて厚み方向の電気抵抗を求めた。蓄電量は、定電流定電圧充電(CC-CV充電)、設定電流2mA、上限電圧500Vにて5秒間保持した後、1μA一定電流とした際の電圧降下曲線(横軸:時間、縦軸:電圧)の面積から求めた。 Table 2 shows the electric resistance (MΩ) and storage capacity (mJ/cm 2 ) of the sheets obtained in Examples 10 to 15. The electrical resistance was obtained by sandwiching the obtained sheet of 5 cm square between two stainless steel plates and measuring the electrical resistance in the thickness direction using a DC resistance meter. The amount of stored electricity is a voltage drop curve (horizontal axis: time, vertical axis: voltage).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、各実施例の各蓄電材料は、電気抵抗が59MΩ~497MΩであり、蓄電量が102mJ/m~535mJ/mであることが確認された。各実施例のシートはCNFの繊維径が平均すると3nmと余りにも小さいため、高精度の原子間力顕微鏡でも1nm以下の巣孔のサイズまで観察できないが、シート組織が緻密になっていることが推定される。 As shown in Table 2, it was confirmed that each electricity storage material of each example had an electrical resistance of 59 MΩ to 497 MΩ and an electricity storage amount of 102 mJ/m 2 to 535 mJ/m 2 . The sheet of each example has an average CNF fiber diameter of 3 nm, which is too small, so even a high-precision atomic force microscope cannot observe pore sizes of 1 nm or less, but the sheet structure is dense. Presumed.
 各シートに用いた試料1~4の「セルロース繊維の比表面積は、BET吸着法により測定した結果、それぞれ386m/g、325m/g、379m/g、331m/gであった。 The specific surface areas of the cellulose fibers of Samples 1 to 4 used for each sheet were 386 m 2 /g, 325 m 2 /g, 379 m 2 /g and 331 m 2 /g, respectively, as a result of measurement by the BET adsorption method.
 これらの結果は、セルロース繊維層を含む電極付きシート材料が高い蓄電量を発揮できることを示している。 These results show that the electrode-attached sheet material containing the cellulose fiber layer can exhibit a high amount of electricity storage.

Claims (15)

  1.  電極層の少なくとも一部にセルロース繊維スラリーを塗布して製膜しセルロース繊維層と電極層を備える積層ユニットを得ることを含む、セルロース繊維層含有積層体の製造方法。 A method for producing a laminate containing a cellulose fiber layer, comprising applying a cellulose fiber slurry to at least a part of an electrode layer to form a film to obtain a laminate unit comprising a cellulose fiber layer and an electrode layer.
  2.  電極層が電極シートであり、電極シートの片面又は両面にセルロース繊維スラリーを塗布して製膜する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the electrode layer is an electrode sheet, and the cellulose fiber slurry is applied to one or both sides of the electrode sheet to form the film.
  3.  セルロース繊維スラリーの塗布を、バーコート法、スピンコート法、又は電気泳動法により行う、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the cellulose fiber slurry is applied by bar coating, spin coating, or electrophoresis.
  4.  セルロース繊維の比表面積が、10m2/g以上である、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the cellulose fiber has a specific surface area of 10 m 2 /g or more.
  5.  セルロース繊維が、セルロースナノファイバーである、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the cellulose fibers are cellulose nanofibers.
  6.  セルロース繊維が、化学変性セルロース繊維である、請求項1~5のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the cellulose fibers are chemically modified cellulose fibers.
  7.  化学変性セルロース繊維は、カルボキシル化、カルボキシメチル化、又はエステル化セルロース繊維である、請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein the chemically modified cellulose fibers are carboxylated, carboxymethylated, or esterified cellulose fibers.
  8.  セルロース繊維は、金属をさらに、請求項1~7のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, wherein the cellulose fiber further contains a metal.
  9.  化学変性セルロース繊維は、カウンターイオンとしての金属を含むセルロース繊維である、請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the chemically modified cellulose fibers are cellulose fibers containing metals as counterions.
  10.  金属は、Na、Mg、Li、Ca、Al、K、Zn及びFeから選ばれる1種以上である、請求項8又は9に記載の製造方法。 The manufacturing method according to claim 8 or 9, wherein the metal is one or more selected from Na, Mg, Li, Ca, Al, K, Zn and Fe.
  11.  積層体が蓄電材料である、請求項1~10のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, wherein the laminate is an electricity storage material.
  12.  複数の積層ユニットを積層することをさらに含む請求項1~10のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, further comprising laminating a plurality of laminated units.
  13.  電極層とセルロース繊維層を有する少なくとも1つの積層ユニットを含み、
     セルロース繊維層は、アニオン性変性基を含有するセルロース繊維を含む、
    セルロース繊維層含有積層体。
    comprising at least one laminate unit having an electrode layer and a cellulose fiber layer;
    the cellulose fiber layer comprises cellulose fibers containing an anionic modifying group;
    A laminate containing a cellulose fiber layer.
  14.  アニオン性変性基と金属を含有するセルロース繊維は、カルボキシル化、カルボキシメチル化、又はエステル化セルロース繊維である、請求項13に記載の積層体。 The laminate according to claim 13, wherein the cellulose fibers containing anionic modifying groups and metals are carboxylated, carboxymethylated, or esterified cellulose fibers.
  15.  蓄電体である、請求項13又は14に記載の積層体。 The laminate according to claim 13 or 14, which is a power storage body.
PCT/JP2022/042561 2021-11-17 2022-11-16 Method for producing cellulose fiber layer-containing multilayer body WO2023090362A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-187335 2021-11-17
JP2021187335 2021-11-17
JP2021187254 2021-11-17
JP2021-187254 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023090362A1 true WO2023090362A1 (en) 2023-05-25

Family

ID=86397056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042561 WO2023090362A1 (en) 2021-11-17 2022-11-16 Method for producing cellulose fiber layer-containing multilayer body

Country Status (1)

Country Link
WO (1) WO2023090362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070450A1 (en) * 2022-09-27 2024-04-04 パナソニックIpマネジメント株式会社 Solid-electrolyte material, nonaqueous-electrolyte secondary battery, and method for producing solid-electrolyte material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238808A (en) * 2009-03-30 2010-10-21 Mitsubishi Paper Mills Ltd Separator electrode integrated element for capacitor and capacitor made thereby
JP2015018696A (en) * 2013-07-11 2015-01-29 日本メクトロン株式会社 Insulation material, passive element, circuit board and method of producing insulation sheet
JP2015191871A (en) * 2014-03-28 2015-11-02 特種東海製紙株式会社 Membrane electrode composite and method for manufacturing the same, and electrochemical element
JP2016076302A (en) * 2014-10-02 2016-05-12 第一工業製薬株式会社 Thickening/stabilizing agent for power storage device electrode coating liquid, coating liquid prepared by use thereof, electrode manufactured with such coating liquid, and power storage device using such electrode
CN110098327A (en) * 2019-03-25 2019-08-06 同济大学 A kind of all-solid-state flexible low pressure organic field effect tube and preparation method thereof
WO2021166813A1 (en) * 2020-02-18 2021-08-26 国立大学法人東北大学 Power storage material and ultra power storage body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238808A (en) * 2009-03-30 2010-10-21 Mitsubishi Paper Mills Ltd Separator electrode integrated element for capacitor and capacitor made thereby
JP2015018696A (en) * 2013-07-11 2015-01-29 日本メクトロン株式会社 Insulation material, passive element, circuit board and method of producing insulation sheet
JP2015191871A (en) * 2014-03-28 2015-11-02 特種東海製紙株式会社 Membrane electrode composite and method for manufacturing the same, and electrochemical element
JP2016076302A (en) * 2014-10-02 2016-05-12 第一工業製薬株式会社 Thickening/stabilizing agent for power storage device electrode coating liquid, coating liquid prepared by use thereof, electrode manufactured with such coating liquid, and power storage device using such electrode
CN110098327A (en) * 2019-03-25 2019-08-06 同济大学 A kind of all-solid-state flexible low pressure organic field effect tube and preparation method thereof
WO2021166813A1 (en) * 2020-02-18 2021-08-26 国立大学法人東北大学 Power storage material and ultra power storage body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070450A1 (en) * 2022-09-27 2024-04-04 パナソニックIpマネジメント株式会社 Solid-electrolyte material, nonaqueous-electrolyte secondary battery, and method for producing solid-electrolyte material

Similar Documents

Publication Publication Date Title
JP6613771B2 (en) Fine fibrous cellulose content
TWI451616B (en) Water-based carbon filler, a conductive coating material, an electrode plate for a power storage device, a method for manufacturing an electrode plate for a power storage device, a power storage device, and a current collector
JP6446834B2 (en) Method for producing composite and dispersion of fine cellulose fiber
WO2023090362A1 (en) Method for producing cellulose fiber layer-containing multilayer body
JP6988086B2 (en) Battery separator coating liquid and battery separator
JP7060917B2 (en) Battery separator coating liquid and battery separator
JP5859383B2 (en) Electrochemical element separator and method for producing the same
JP6127446B2 (en) Battery electrode composition and method for producing the same, battery electrode and method for producing the same
JP6390815B2 (en) Thickener for battery separator coating liquid, battery separator coating liquid and battery separator
Chen et al. Structure and properties of thermomechanically processed chitosan/carboxymethyl cellulose/graphene oxide polyelectrolyte complexed bionanocomposites
WO2016125497A1 (en) Metal-containing oxidized cellulose nanofiber dispersion and method for preparing same
KR102154790B1 (en) High carbon nanotube content fluids
Dacrory et al. Cyanoethyl cellulose/BaTiO3/GO flexible films with electroconductive properties
JP6515801B2 (en) Thickener for battery separator coating solution, battery separator coating solution and battery separator
JP2018106865A (en) Cell separator coating liquid, cell separator, and cell
WO2021153590A1 (en) Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material
WO2021166813A1 (en) Power storage material and ultra power storage body
JP2023013443A (en) Method for producing chemically modified microfibril cellulose fiber
JPWO2018216474A1 (en) Oxidized cellulose nanofiber, oxidized cellulose nanofiber dispersion, and method for producing oxidized cellulose nanofiber dispersion
JP6728964B2 (en) Thickener for battery electrode composition, battery electrode composition, battery electrode and battery
JP2020033476A (en) Solid-like body and fibrous cellulose-containing resin composition
JP2019172499A (en) Gel and hydrogen-generating pack
JP6916676B2 (en) Derivative functional group desorbed cellulose fine fiber-containing sheet
JP6390814B2 (en) Thickener for battery separator coating liquid, battery separator coating liquid and battery separator
JP2019006893A (en) Cation aggregate of cellulose xanthate fine fiber and dispersion thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023562378

Country of ref document: JP