WO2021153590A1 - Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material - Google Patents

Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material Download PDF

Info

Publication number
WO2021153590A1
WO2021153590A1 PCT/JP2021/002766 JP2021002766W WO2021153590A1 WO 2021153590 A1 WO2021153590 A1 WO 2021153590A1 JP 2021002766 W JP2021002766 W JP 2021002766W WO 2021153590 A1 WO2021153590 A1 WO 2021153590A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon
fine fibrous
fibrous cellulose
cellulose
mass
Prior art date
Application number
PCT/JP2021/002766
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 野口
優作 今村
真人 齊藤
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2021153590A1 publication Critical patent/WO2021153590A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/42Ethers, e.g. polyglycol ethers of alcohols or phenols
    • C09K23/48Cellulose ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a fine fibrous cellulose / nanocarbon-containing material and a fine fibrous cellulose / nanocarbon-containing material.
  • cellulose fibers have been widely used in clothing, absorbent articles, paper products, and the like.
  • the cellulose fibers in addition to fibrous cellulose having a fiber diameter of 10 ⁇ m or more and 50 ⁇ m or less, fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is also known.
  • Fine fibrous cellulose is attracting attention as a new material, and its uses are wide-ranging. For example, the use of fine fibrous cellulose as a thickener or an additive to various compositions has been studied.
  • Patent Documents 1 and 2 disclose a dispersion liquid to which cellulose nanofibers are added for the purpose of enhancing the dispersibility of nanocarbon materials such as carbon nanotubes and graphene. Here, it is studied to suppress the aggregation of the nanocarbon material and improve the dispersion stability in water.
  • Patent Documents 3 to 6 disclose a conductive composition obtained by mixing nanocarbon materials such as carbon nanotubes and graphene with cellulose nanofibers.
  • Patent Document 3 discloses a conductive composition containing cellulose nanofibers and at least one kind of inorganic powder selected from graphene, graphene oxide and derivatives thereof
  • Patent Document 4 Discloses a conductive composite comprising carboxy group-modified cellulose nanofibers and carboxy group-modified carbon nanotubes.
  • Patent Document 5 discloses a conductive non-woven fabric containing fine fibers having an average fiber diameter of 500 nm or less, an average fiber length of 500 ⁇ m or less, and a crystallinity of 60% or more, and carbon nanotubes.
  • Patent Document 6 discloses a nanomaterial composition containing a dispersion medium and cellulose nanofibers and carbon nanotubes dispersed in the dispersion medium, and surface hardness when formed into a molded product. Is being considered to improve.
  • a mixture of cellulose nanofibers and nanocarbon materials is known, but in the prior art, nanonization of cellulose fibers and nanonization of carbon materials are performed in separate steps, and each of them is performed in separate steps. After being nanonized, mixing was done. In addition, a large amount of energy was required for mixing the cellulose nanofibers and the nanocarbon materials after nano-ization. Therefore, the manufacturing process of the mixture of the cellulose nanofibers and the nanocarbon materials is complicated and expensive, and as a result, the manufacturing cost tends to be high.
  • the present inventors have poor dispersibility of the fine particles when the fine particles are dispersed in a mixture of the cellulose nanofibers and the nanocarbon material obtained by the conventional manufacturing method. I found that it might be enough.
  • the present inventors have proceeded with studies for the purpose of providing a fine fibrous cellulose / nanocarbon-containing material having excellent particle dispersibility.
  • the present invention has the following configuration.
  • a step of performing a miniaturization treatment on a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent is included.
  • a method for producing a fine fibrous cellulose / nanocarbon-containing material in which bubbling is suppressed in the step of performing the miniaturization treatment is included.
  • [3] The method for producing a fine fibrous cellulose / nanocarbon-containing material according to [1] or [2], wherein in the step of performing the micronization treatment, the miniaturization treatment is performed using a high-pressure homogenizer.
  • [4] The method for producing a fine fibrous cellulose / nanocarbon-containing material according to any one of [1] to [3], wherein bubbling is suppressed by cooling in the step of performing the micronization treatment.
  • [5] The method for producing a fine fibrous cellulose / nanocarbon-containing material according to any one of [1] to [4], wherein the ionic substituent is an anionic group.
  • the viscosity ( ⁇ ) of the dispersion measured at a rotation speed of 60 rpm is measured, and a value of 1000 / ⁇ is defined as a thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material.
  • TI value thixotropic index value
  • An electrochemical device containing the fine fibrous cellulose / nanocarbon-containing material according to any one of [7] to [11].
  • a fine fibrous cellulose / nanocarbon-containing material having excellent particle dispersibility can be obtained.
  • FIG. 1 is a schematic view illustrating an example of the configuration of a miniaturization processing device.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise to the fine fibrous cellulose dispersion having a phosphorus oxo acid group and the pH.
  • FIG. 3 is a graph showing the relationship between the amount of NaOH added dropwise to the fine fibrous cellulose dispersion having a carboxy group and the pH.
  • the present embodiment is a method for producing a fine fibrous cellulose / nanocarbon-containing product containing fine fibrous cellulose and nanocarbon.
  • the method for producing a fine fibrous cellulose / nanocarbon-containing material of the present embodiment includes a step of performing a micronization treatment on a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent. Then, bubbling is suppressed in the step of performing the miniaturization process.
  • the fine fibrous cellulose refers to fibrous cellulose having a fiber width of 1000 nm or less.
  • nanocarbon may be referred to as a nanocarbon material or carbon nanoparticles.
  • the nanocarbon precursor is a carbon material before miniaturization (nano-miniaturization).
  • a mixed solution obtained by mixing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent is subjected to a micronization treatment.
  • a micronization treatment In the step of performing this miniaturization treatment, bubbling is suppressed.
  • the fine fibrous cellulose / nanocarbon-containing material produced by the manufacturing method of the present embodiment exhibits excellent particle dispersibility.
  • the particle dispersibility in the fine fibrous cellulose / nanocarbon-containing material for example, the fine fibrous cellulose / nanocarbon-containing material is used as a dispersion liquid having a total dry solid content concentration of 0.2% by mass, and glass beads are prepared therein.
  • the fine fibrous cellulose / nanocarbon-containing material of the present embodiment is produced by the above-mentioned production method, it is exhibited without impairing the characteristics of each material.
  • the characteristics of each material in the fine fibrous cellulose / nanocarbon-containing material can be evaluated by, for example, calculating the TI value of the fine fibrous cellulose / nanocarbon-containing material.
  • the content of the solvent in the mixed solution to be subjected to the miniaturization treatment step is preferably 99% by mass or less, more preferably 98% by mass or less, based on the total mass of the mixed solution.
  • the content of the solvent in the mixed solution to be subjected to the miniaturization treatment step may be 95% by mass or less, or 90% by mass or less, based on the total mass of the mixed solution.
  • the fine fibrous cellulose / nanocarbon-containing material produced by the production method of the present embodiment can exhibit excellent particle dispersibility. Further, by lowering the solvent content of the mixed solution used in the miniaturization treatment step and increasing the solid content content, the production efficiency of the fine fibrous cellulose / nanocarbon-containing product can be increased.
  • the lower limit of the solvent content in the mixed solution to be subjected to the miniaturization treatment step is not particularly limited, but is, for example, 70% by mass or more with respect to the total mass of the mixed solution.
  • the step of performing the miniaturization treatment (hereinafter, also referred to as the miniaturization treatment step) is performed after mixing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent. It is said. That is, the miniaturization treatment is performed on a mixed solution (dispersion solution) containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent.
  • the miniaturization treatment in the present specification is synonymous with the nano-processing.
  • the cellulose fibers are miniaturized (nano-sized) and the carbon material is miniaturized (nano-sized) in separate steps, and then each step is performed.
  • the fine fibrous cellulose obtained in 1 and nanocarbon were mixed. That is, all the materials were mixed after being nano-sized.
  • the dispersion stability may not be maintained until the nano-sized materials are mixed, and there is a problem in the uniform dispersibility of each material.
  • high energy is required when mixing each nano-sized material, and further, very high energy is required in the process of obtaining fine fibrous cellulose and nanocarbon, respectively, so that fine fibrous material is required.
  • the energy required to obtain the cellulose / nanocarbon-containing material was enormous.
  • the micronization treatment step is performed after mixing the cellulose fiber having an ionic substituent and the nanocarbon precursor, the number of miniaturization treatment steps requiring high energy is significantly increased. It is possible to reduce the amount. As a result, the production efficiency of the fine fibrous cellulose / nanocarbon-containing material can be significantly improved. Further, in the present embodiment, since the micronization treatment step is performed after mixing the cellulose fiber having an ionic substituent and the nanocarbon precursor, the dispersibility of each nano-sized material is high, and the fine fiber. The cellulose / nanocarbon-containing material exhibits excellent particle dispersibility. Further, by omitting the step of mixing the nano-sized materials, damage to each nano-sized material can be suppressed, and as a result, the characteristics of each material can be fully exhibited.
  • a step of mixing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent is provided.
  • a nanocarbon precursor or a dispersion of the nanocarbon precursor is added to a mixed solution (dispersion solution) containing a cellulose fiber having an ionic substituent and a solvent, and the mixture is mixed.
  • the mixing ratio (mass ratio) of the cellulose fiber having an ionic substituent and the nanocarbon precursor in the mixing step is preferably 1:99 to 99: 1, and is preferably 5:95 to 95: 5. Is more preferable, and 10:90 to 90:10 is even more preferable.
  • a miniaturization processing apparatus can be used.
  • the micronization processing device is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, and a twin shaft.
  • a kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, or a beater can be used.
  • the miniaturization processing devices it is preferable to use at least one selected from the group consisting of a high-speed defibrator, a high-pressure homogenizer, and an ultra-high-pressure homogenizer, which are less affected by crushed media and less likely to cause contamination. It is more preferable to use it. Above all, it is preferable to use a high-pressure homogenizer (Beryu-Mini) manufactured by Bitsubu Co., Ltd.
  • the cellulose fiber having an ionic substituent and the nanocarbon precursor are diluted with a dispersion medium to form a slurry.
  • a dispersion medium one or more selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones examples include acetone, methyl ethyl ketone (MEK) and the like.
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like.
  • esters include ethyl acetate, butyl acetate and the like.
  • aprotonic polar solvent examples include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration (total concentration of cellulose fibers and nanocarbon precursors) during the miniaturization treatment can be set as appropriate. Further, in the dispersion liquid during the miniaturization treatment, various solids used for obtaining ionic substituent-introduced cellulose fibers such as urea having hydrogen bonding properties and various solids contained in the carbon precursor are contained in the dispersion. It may be included.
  • the miniaturization treatment step of the present embodiment bubbling is suppressed, and by suppressing the bubbling, the miniaturization (nano-sized) of the cellulose fiber and the miniaturization (nano-sized) of the carbon material are simultaneously performed and energy efficient. Will be done. Further, by suppressing bubbling in the miniaturization treatment step, it is possible to more effectively suppress damage to each nano-sized material, and as a result, the dispersibility of each material is high and the particle dispersibility is improved. A fine fibrous cellulose / nanocarbon-containing material that is excellent and can fully exhibit the characteristics of each material can be obtained.
  • bubbling means, for example, residual in air dissolved in a solvent or in a solvent due to the existence of a local pressure difference or velocity difference in a place where a shearing force acts in a miniaturization processing step. This is a phenomenon in which the air is generated as bubbles. The occurrence of bubbling may require more energy in the micronization process, may result in inadequate or non-uniform miniaturization of the cellulose fibers and nanocarbon precursors. This is because the solvent does not touch the cellulose fibers or nanocarbon precursors where bubbling occurs, and "wetting", which is essential for miniaturization (particularly defibration / peeling), does not occur. Is considered to be.
  • the bubbling portion shows compression resistance against pushing of a high-pressure pump or the like, it may lead to damage to the machine.
  • each material may be unintentionally oxidized due to air bubbles generated by bubbling.
  • the energy required in the miniaturization treatment step can be suppressed, and further, the cellulose fibers and the nanocarbon precursor can be miniaturized. It can be performed more efficiently and with high accuracy. Further, by suppressing bubbling, it is possible to suppress the oxidation of fine fibrous cellulose and nanocarbon.
  • the bubbling suppression mechanism is preferably a cooling mechanism
  • the miniaturization processing device is preferably provided with a cooling device or a cooling mechanism.
  • the production method of the present embodiment includes a step of performing a miniaturization treatment on a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent, and in the step of performing the miniaturization treatment, It is preferable that cooling is performed. Further, the cooling may be performed after the pressure is released in the micronization treatment, but the back pressure is applied, that is, the cellulose fibers having ionic substituents and the nanocarbon precursor are miniaturized. It is preferably done in the middle.
  • Examples of the cooling mechanism include a shell or an outer tube through which a heat transfer medium circulates on the outer periphery of the miniaturization processing device.
  • the dispersion liquid of the cellulose fiber and the nanocarbon precursor is circulated on the inner peripheral side (inner tube) of the miniaturization treatment device, and when the miniaturization treatment is performed, the heat transfer medium is applied to the outer shell or the outer tube.
  • the dispersion can be cooled by circulating it.
  • the inner tube through which the dispersion liquid of the cellulose fiber and the nanocarbon precursor is circulated is preferably a heat transfer tube. As a result, the dispersion liquid can be efficiently cooled.
  • the bubbling suppression mechanism is provided on the downstream side of the jet flow generating portion provided in the miniaturization processing device. It is preferable that the jet flow generating portion is provided with a jet flow generating mechanism, and the jet flow generating portion is provided with, for example, a diamond nozzle or a slit as a jet flow generating mechanism so that the flow path diameter is changed in the flow direction. A mechanism for rapidly or gradually thinning may be provided. As shown in FIG. 1, the miniaturization processing device 100 includes a jet flow generating unit 10 and a bubbling suppressing unit 20 provided on the downstream side of the jet flow generating unit 10.
  • the bubbling suppressing unit 20 is preferably provided with a coolable pipe (cloak), and such a pipe (cloak) is arranged so as to cover an inner pipe through which the dispersion liquid flows. Then, by introducing, for example, cooling water or the like into the pipe (cloak), the dispersion liquid flowing in the inner pipe can be cooled.
  • the length L (L in FIG. 1) of the coolable pipe provided in the bubbling suppressing portion 20 is preferably 1 mm or more and 1000 mm or less, more preferably 10 mm or more and 750 mm or less, and 100 mm or more and 500 mm or less. Is even more preferable.
  • a predetermined distance is provided between the upstream end of the bubbling suppressing unit 20 and the downstream end of the jet flow generating unit 10.
  • the jet flow generation unit 10 and the bubbling suppression unit 20 are not connected, and a predetermined distance (D) is between the downstream end of the jet flow generation unit 10 and the upstream end of the bubbling suppression unit 20.
  • the predetermined distance (D) is preferably 1 mm or more and 500 mm or less, more preferably 10 mm or more and 300 mm or less, and further preferably 20 mm or more and 200 mm or less.
  • the temperature of the cooling water is preferably 40 ° C. or lower, more preferably 30 ° C. or lower, and further preferably 20 ° C. or lower. preferable.
  • the flow rate of the cooling water is preferably 1 L / min or more, more preferably 5 L / min or more, and further preferably 10 L / min or more.
  • the temperature of the dispersion liquid after cooling after passing through the bubbling suppressing unit 20 is preferably 60 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 20 ° C. or lower.
  • a pressure (back pressure) of at least 5% or more (0.05P or more) is applied to the pressure (P) applied to the dispersion liquid at the jet flow generating portion, and 10% or more (0. It is more preferable that a pressure of 1 P or more is applied, and it is further preferable that a pressure of 20% or more (0.2 P or more) is applied. Further, since bubbling is more likely to occur when the treatment is performed at an ultra-high pressure, controlling the pressure of the jet flow generating portion from low pressure to high pressure is also effective in suppressing bubbling.
  • the processing pressure of the jet flow generating portion is preferably 1 MPa or more and 200 MPa or less, more preferably 10 MPa or more and 170 MPa or less, and further preferably 20 MPa or more and 150 MPa or less.
  • the bubbling suppression mechanism it is preferable to refer to the mechanism described in Japanese Patent No. 5791142 and appropriately adopt it. Further, as the miniaturization processing device, the emulsification dispersion device, the multi-stage pressure control device, and the like described in Japanese Patent No. 5791142 can be adopted.
  • a fine fibrous cellulose / nanocarbon dispersion liquid containing fine fibrous cellulose and nanocarbon can be obtained. ..
  • the fine fibrous cellulose / nanocarbon dispersion obtained through the micronization treatment step is also included in the fine fibrous cellulose / nanocarbon-containing material.
  • the fine fibrous cellulose / nanocarbon-containing material also includes a concentrate or a solid product obtained by concentrating the fine fibrous cellulose / nanocarbon dispersion.
  • Cellulose fiber The cellulose fiber used in the above-mentioned miniaturization treatment step is a fiber raw material before the miniaturization treatment.
  • Cellulose fibers are coarse fibers, and the fiber width is larger than 1000 nm.
  • the average fiber width of the cellulose fibers is larger than 1000 nm.
  • Cellulose fibers having an ionic substituent are obtained from a fiber raw material containing cellulose.
  • the fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of pulp include wood pulp, non-wood pulp, and deinked pulp.
  • the wood pulp is not particularly limited, but is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • the non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • the deinking pulp is not particularly limited, and examples thereof include deinking pulp made from recycled paper.
  • one of the above types may be used alone, or two or more types may be mixed and used.
  • wood pulp and deinked pulp are preferable from the viewpoint of availability.
  • wood pulps it is possible to obtain long-fiber fine fibrous cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose during the micronization treatment, and having a small decomposition of cellulose in the pulp and a large axial ratio.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable.
  • the fiber raw material containing cellulose for example, cellulose contained in ascidians and bacterial cellulose produced by acetic acid bacteria can be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
  • Cellulose fiber has an ionic substituent.
  • the ionic substituent can include, for example, either one or both of an anionic group and a cationic group. In this embodiment, it is particularly preferable to have an anionic group as the ionic substituent.
  • anionic group examples include a phosphoric acid group or a substituent derived from a phosphoric acid group (sometimes simply referred to as a phosphoric acid group), a carboxy group or a substituent derived from a carboxy group (sometimes simply referred to as a carboxy group), and the like.
  • examples thereof include a sulfone group or a substituent derived from the sulfone group (sometimes referred to simply as a sulfon group), a zantate group, a phosphone group, a phosphine group, a carboxyalkyl group (including a carboxymethyl group) and the like.
  • the substituent is referred to as a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (simply referred to as a sulfur oxo acid group).
  • the anionic group is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a carboxymethyl group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group.
  • It is preferably a species, and is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group. Is more preferable, and a phosphorusoxo acid group is particularly preferable.
  • the cationic group as the ionic substituent include an ammonium group, a phosphonium group, a sulfonium group and the like. Of these, the cationic group is preferably an ammonium group.
  • the phosphate group or the substituent derived from the phosphorusoxo acid group is, for example, a substituent represented by the following formula (1).
  • a plurality of types of substituents represented by the following formula (1) may be introduced into each cellulose fiber. In this case, the substituents represented by the following formula (1) to be introduced may be the same or different.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively.
  • n is preferably 1.
  • Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited.
  • Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the unsaturated-linear hydrocarbon group include a vinyl group, an allyl group and the like, but are not particularly limited.
  • Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like.
  • Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.
  • a carboxy group, a carboxylate group (-COO -), hydroxy group selected from the functional groups such as an amino group and an ammonium group
  • the functional group is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include organic onium ions.
  • Examples of the organic onium ion include an organic ammonium ion and an organic phosphonium ion.
  • examples of the organic ammonium ion include an aliphatic ammonium ion and an aromatic ammonium ion, and examples of the organic phosphonium ion include an aliphatic phosphonium ion and an aromatic phosphonium ion.
  • Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions.
  • alkali metal ions such as sodium, potassium, and lithium
  • divalent metal ions such as calcium and magnesium
  • hydrogen ions such as sodium and magnesium
  • ammonium ions such as sodium, potassium, and lithium
  • the plurality of ⁇ b + present are the same. It may be different.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ b + is heated and is easily industrially used, but is not particularly limited. ..
  • the phosphorous acid group or the substituent derived from the phosphorous acid group include a phosphoric acid group (-PO 3 H 2 ), a salt of a phosphorous acid group, and a phosphorous acid group (phosphonic acid group) (-PO). 2 H 2), and salts of phosphorous acid (phosphonic acid group).
  • the phosphoric acid group or the substituent derived from the phosphoric acid group includes a group in which a phosphoric acid group is condensed (for example, a pyrophosphate group), a group in which a phosphonic acid is condensed (for example, a polyphosphonic acid group), and a phosphoric acid ester group (for example, a phosphoric acid ester group).
  • it may be a monomethylphosphoric acid group, a polyoxyethylene alkylphosphoric acid group), an alkylphosphonic acid group (for example, a methylphosphonic acid group) or the like.
  • the sulfone group (sulfo group or substituent derived from the sulfone group) is, for example, a substituent represented by the following formula (2).
  • a plurality of types of substituents represented by the following formula (2) may be introduced into each cellulose fiber. In this case, the substituents represented by the following formula (2) to be introduced may be the same or different.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include organic onium ions.
  • organic onium ion examples include an organic ammonium ion and an organic phosphonium ion.
  • Examples of the organic ammonium ion include an aliphatic ammonium ion and an aromatic ammonium ion
  • examples of the organic phosphonium ion include an aliphatic phosphonium ion and an aromatic phosphonium ion.
  • Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions.
  • the plurality of ⁇ b + existing may be the same or different.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ b + is heated and is easily industrially used, but is not particularly limited. ..
  • the amount of the ionic substituent introduced into the cellulose fiber is, for example, preferably 0.05 mmol / g or more, more preferably 0.10 mmol / g or more, and 0.20 mmol / g per 1 g (mass) of the cellulose fiber.
  • the above is more preferable, 0.40 mmol / g or more is more preferable, and 0.60 mmol / g or more is particularly preferable.
  • the amount of the ionic substituent introduced into the cellulose fiber is, for example, 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol / g per 1 g (mass) of the cellulose fiber.
  • the denominator in the unit mmol / g indicates the mass of the cellulose fiber when the counter ion of the ionic substituent is a hydrogen ion (H +).
  • the amount of the ionic substituent introduced into the cellulose fiber can be measured by, for example, the neutralization titration method after the cellulose fiber is subjected to the micronization treatment.
  • the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous solution of sodium hydroxide to the obtained slurry containing the cellulose fibers.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise to the fine fibrous cellulose dispersion having a phosphorus oxo acid group and the pH.
  • the amount of phosphorus oxo acid group introduced into the cellulose fiber is measured as follows, for example. First, ion-exchanged water is added to the target cellulose fibers to prepare a slurry having a solid content concentration of 0.2% by mass. This slurry is treated four times at a pressure of 200 MPa with a wet atomizing device (Sugino Machine Limited, Starburst) to obtain a fine fibrous cellulose dispersion (slurry) containing fine fibrous cellulose.
  • a wet atomizing device Sugino Machine Limited, Starburst
  • the fine fibrous cellulose dispersion is treated with a strongly acidic ion exchange resin.
  • the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 2 is obtained.
  • the titration curve shown in the upper part of FIG. 2 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 2 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point
  • the maximum point of the increment obtained next is called the second end point.
  • the amount of alkali required from the start of titration to the first end point became equal to the amount of first dissociated acid of the fine fibrous cellulose contained in the slurry used for titration, and was required from the first end point to the second end point.
  • the amount of alkali is equal to the amount of second dissociating acid of the fine fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the start to the second end point of titration is contained in the slurry used for titration. Equal to the total dissociated acid content of the fibrous cellulose. Then, the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g).
  • the amount of phosphorus oxo acid group introduced simply means the amount of the first dissociated acid.
  • the region from the start of titration to the first end point is referred to as a first region
  • the region from the first end point to the second end point is referred to as a second region.
  • the amount of weakly acidic groups in the phosphoric acid group also referred to as the second dissociated acid amount in the present specification
  • the amount of alkali required for the second region is smaller than the amount of alkali required for the first region.
  • the amount of strongly acidic groups in the phosphorus oxo acid group (also referred to as the first dissociated acid amount in the present specification) is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation.
  • the phosphorous acid group is a phosphorous acid group
  • the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximized.
  • the denominator of the above-mentioned phosphorus oxo acid group introduction amount indicates the mass of the acid-type fine fibrous cellulose
  • the phosphorus oxo acid group amount (hereinafter, phosphorus oxo acid) possessed by the acid-type fine fibrous cellulose It is called the base amount (acid type)).
  • the base amount (acid type)
  • the denominator is converted to the mass of the fine fibrous cellulose when the cation C is the counterion.
  • the amount of phosphorus oxo acid groups (hereinafter, the amount of phosphorus oxo acid groups (C type)) possessed by the fine fibrous cellulose in which the cation C is a counterion can be obtained. That is, it is calculated by the following formula.
  • Phosphoric acid group amount (C type) Phosphoric acid group amount (acid type) / ⁇ 1+ (W-1) x A / 1000 ⁇ A [mmol / g]: Total anion amount derived from phosphoric acid group of fine fibrous cellulose (total dissociated acid amount of phosphoric acid group) W: Formula amount per valence of cation C (for example, Na is 23, Al is 9)
  • FIG. 3 is a graph showing the relationship between the amount of NaOH added dropwise to the fine fibrous cellulose dispersion having a carboxy group as an ionic substituent and the pH.
  • the amount of the carboxy group introduced into the cellulose fiber is measured, for example, as follows. First, ion-exchanged water is added to the target cellulose fibers to prepare a slurry having a solid content concentration of 0.2% by mass. This slurry is treated four times at a pressure of 200 MPa with a wet atomizing device (Sugino Machine Limited, Starburst) to obtain a fine fibrous cellulose dispersion (slurry) containing fine fibrous cellulose.
  • a wet atomizing device Sugino Machine Limited, Starburst
  • the fine fibrous cellulose dispersion is treated with a strongly acidic ion exchange resin.
  • the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 3 is obtained.
  • the titration curve shown in the upper part of FIG. 3 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 3 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the dispersion containing the fine fibrous cellulose to be titrated, so that the amount of carboxy group introduced (the amount of carboxy group introduced (mmol) mmol / g) is calculated.
  • the denominator of the above-mentioned carboxy group introduction amount (mmol / g) is the mass of the acid-type fine fibrous cellulose
  • the carboxy group amount of the acid-type fine fibrous cellulose (hereinafter, carboxy group amount) It is called (acid type)).
  • the counterion of the carboxy group is replaced with an arbitrary cation C so as to have a charge equivalent
  • the denominator is converted into the mass of fine fibrous cellulose when the cation C is a counterion.
  • Carboxylic acid group amount (C type) Carboxylic acid group amount (acid type) / ⁇ 1+ (W-1) x (carboxyl group amount (acid type)) / 1000 ⁇ W: Formula amount per valence of cation C (for example, Na is 23, Al is 9)
  • the amount of ionic substituents In the measurement of the amount of ionic substituents by the titration method, if the amount of one drop of sodium hydroxide aqueous solution is too large, or if the titration interval is too short, the amount of ionic substituents will be lower than it should be. It may not be obtained.
  • As an appropriate dropping amount and titration interval for example, it is desirable to titrate 10 to 50 ⁇ L of a 0.1 N sodium hydroxide aqueous solution every 5 to 30 seconds.
  • the amount of sulfone groups introduced into the cellulose fibers can be calculated by freeze-drying the slurry containing the cellulose fibers and then measuring the amount of sulfur in the crushed sample. Specifically, a slurry containing cellulose fibers is freeze-dried, and the crushed sample is decomposed by heating under pressure using nitric acid in a closed container, diluted appropriately, and the amount of sulfur is measured by ICP-OES. The value calculated by dividing by the absolute dry mass of the fibrous cellulose tested is taken as the amount of sulfone groups (unit: mmol / g) of the fibrous cellulose fiber.
  • the ionic substituent introduction step includes a phosphorus oxo acid group introduction step, a carboxy group introduction step, a sulfur oxo acid group introduction step, a zantate group introduction step, a phosphone group or phosphine group introduction step, a sulfone group introduction step, and a cation group introduction step. Is exemplified. Each will be described below.
  • ⁇ Linoxo acid group introduction process> When obtaining a cellulose fiber having an ionic substituent, it is preferable to provide an ionic substituent introduction step before the micronization treatment step.
  • the ionic substituent introduction step include a phosphorus oxo acid group introduction step.
  • the phosphorus oxo acid group introduction step at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is introduced into cellulose. It is a step of acting on a fiber raw material containing. By this step, a cellulose fiber having a phosphorus oxo acid group can be obtained.
  • the reaction between the fiber raw material containing cellulose and Compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “Compound B”). You may.
  • the reaction of the fiber raw material containing cellulose with the compound A may be carried out in the absence of the compound B.
  • the method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state.
  • a fiber raw material in a dry state or a wet state since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state.
  • the form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example.
  • Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or in a state of being heated to a melting point or higher and melted. Of these, since the reaction uniformity is high, it is preferable to add the solution in the form of a solution dissolved in a solvent, particularly in the state of an aqueous solution. Further, the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture.
  • the method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, the required amounts of compound A and compound B may be added to the fiber raw material, or after the excess amounts of compound A and compound B are added to the fiber raw material, respectively, the surplus compound A and compound B are added by pressing or filtering. It may be removed.
  • the compound A used in this embodiment may be a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration-condensed phosphoric acid or a salt thereof.
  • Examples thereof include salts and anhydrous phosphoric acid (diphosphorus pentoxide), but the present invention is not particularly limited.
  • the phosphoric acid those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used.
  • Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • Phosphates, phosphorous acids, dehydration-condensed phosphates include phosphoric acid, phosphorous acid or dehydration-condensed phosphoric acid lithium salts, sodium salts, potassium salts, ammonium salts, etc. It can be a sum.
  • sodium phosphate and sodium phosphate Salt potassium salt of phosphoric acid, ammonium or phosphite of phosphoric acid, sodium salt of phosphite, potassium salt of phosphite, ammonium salt of phosphite are preferred, phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphoric acid and sodium phosphite are more preferred.
  • the amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less.
  • the amount of phosphorus atoms added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved.
  • the addition amount of the phosphorus atom to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.
  • Compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
  • the amount of compound B added to the fiber raw material is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
  • amides or amines may be contained in the reaction system in addition to compound B.
  • amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like.
  • triethylamine in particular is known to act as a good reaction catalyst.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band.
  • a mold drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
  • compound A is added to a thin sheet-shaped fiber raw material by a method such as impregnation and then heated, or the fiber raw material and compound A are heated while kneading or stirring with a kneader or the like.
  • a method such as impregnation and then heated, or the fiber raw material and compound A are heated while kneading or stirring with a kneader or the like.
  • This makes it possible to suppress uneven concentration of the compound A in the fiber raw material and more uniformly introduce the phosphorus oxo acid group onto the surface of the cellulose fiber contained in the fiber raw material. This is because when the water molecules move to the surface of the fiber raw material due to drying, the dissolved compound A is attracted to the water molecules by the surface tension and also moves to the surface of the fiber raw material (that is, the concentration unevenness of the compound A is caused. It is considered that this is due to the fact that it can be suppressed.
  • the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphoric acid esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like. By constantly discharging the water in the apparatus system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, and also to suppress the acid hydrolysis of the sugar chain in the fiber. can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
  • the heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable.
  • the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within an appropriate range.
  • the phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material.
  • the amount of the phosphorus oxo acid group introduced into the fiber raw material is, for example, preferably 0.05 mmol / g or more, more preferably 0.10 mmol / g or more, and 0.20 mmol / g or more per 1 g (mass) of the cellulose fiber. It is even more preferably 0.40 mmol / g or more, even more preferably 0.50 mmol / g or more, and even more preferably 0.60 mmol / g or more. It is particularly preferably 00 mmol / g or more.
  • the amount of the phosphorus oxo acid group introduced into the fiber raw material is, for example, 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol / g / g per 1 g (mass) of the cellulose fiber. It is more preferably g or less.
  • the ionic substituent introduction step may include a carboxy group introduction step.
  • the carboxy group introduction step has an oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a group derived from carboxylic acid or a derivative thereof, or a group derived from carboxylic acid with respect to the fiber raw material containing cellulose. This is done by treating with an acid anhydride of the compound or a derivative thereof.
  • the compound having a group derived from a carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, itaconic acid, citric acid, aconitic acid and the like.
  • Examples include tricarboxylic acid compounds.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imide of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group.
  • the imide of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinateimide, and phthalateimide.
  • the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, itaconic anhydride and the like. Acid anhydride can be mentioned.
  • the derivative of the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a compound having a carboxy group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, diphenylmaleic acid anhydride and the like. Examples thereof include those in which at least a part of the hydrogen atom of the acid anhydride is substituted with a substituent such as an alkyl group or a phenyl group.
  • the aldehyde generated in the oxidation process can be efficiently oxidized to the carboxy group.
  • the TEMPO oxidation treatment may be carried out under the condition that the pH is 10 or more and 11 or less. Such a treatment is also referred to as an alkaline TEMPO oxidation treatment.
  • the alkaline TEMPO oxidation treatment can be carried out, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a co-catalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. ..
  • the amount of the carboxy group introduced into the cellulose fiber varies depending on the type of the substituent, but when the carboxy group is introduced by TEMPO oxidation, for example, it is preferably 0.05 mmol / g or more per 1 g (mass) of the cellulose fiber, and is 0. .10 mmol / g or more is more preferable, 0.20 mmol / g or more is further preferable, 0.40 mmol / g or more is further preferable, and 0.60 mmol / g or more is particularly preferable. ..
  • the amount of the carboxy group introduced into the cellulose fiber is preferably 3.65 mmol / g or less, and more preferably 3.00 mmol / g or less.
  • the amount of the carboxy group introduced may be 5.8 mmol / g or less per 1 g (mass) of the cellulose fiber.
  • the ionic substituent introduction step may include a sulfone group introduction step.
  • cellulose fibers having a sulfone group (sulfone group-introduced fiber) can be obtained by reacting the hydroxyl group of the fiber raw material containing cellulose with sulfur oxoacid.
  • the sulfone group introduction step at least one selected from compounds capable of introducing a sulfone group by reacting with the hydroxyl group of the fiber raw material containing cellulose instead of the compound A in the above-mentioned ⁇ phosphoric acid group introduction step>.
  • a compound (hereinafter, also referred to as “Compound C”) is used.
  • the compound C may be any compound having a sulfur atom and capable of forming an ester bond with cellulose, and examples thereof include sulfuric acid or a salt thereof, sulfite or a salt thereof, sulfuric acid amide, and the like, but the compound C is not particularly limited.
  • sulfuric acid those having various puritys can be used, and for example, 96% sulfuric acid (concentrated sulfuric acid) can be used.
  • sulfurous acid examples include 5% sulfurous acid water.
  • the sulfate or sulfite examples include lithium salts, sodium salts, potassium salts and ammonium salts of sulfates or sulfites, and these can have various neutralization degrees.
  • the sulfate amide, sulfamic acid or the like can be used.
  • the compound B in the above-mentioned ⁇ phosphoric acid group introduction step> in the same manner.
  • the sulfone group introduction step it is preferable to mix the cellulose raw material with an aqueous solution containing sulfur oxoacid and urea and / or a urea derivative, and then heat-treat the cellulose raw material.
  • the heat treatment temperature it is preferable to select a temperature at which the sulfone group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher.
  • the heat treatment temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
  • the heat treatment time varies depending on the amount of water contained in the cellulose raw material and the amount of the aqueous solution containing sulfur oxoacid and urea and / or a urea derivative, but is, for example, 10 seconds or more and 10000 seconds or less. It is preferable to do so.
  • Equipment having various heat media can be used for the heat treatment, for example, a hot air drying device, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, and a fluidized layer drying device.
  • Band type drying device, filtration drying device, vibration flow drying device, air flow drying device, vacuum drying device, infrared heating device, far infrared heating device, microwave heating device, high frequency drying device can be used.
  • the amount of the sulfone group introduced into the cellulose raw material is preferably 0.05 mmol / g or more, more preferably 0.10 mmol / g or more, further preferably 0.20 mmol / g or more, and 0. It is more preferably 40 mmol / g or more, further preferably 0.50 mmol / g or more, and particularly preferably 0.60 mmol / g or more.
  • the amount of the sulfone group introduced into the cellulose raw material is preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less.
  • the ionic substituent introduction step may include an oxidation step with a chlorine-based oxidizing agent.
  • a carboxy group is introduced into the fiber raw material by adding the chlorine-based oxidant to a wet or dry fiber raw material having a hydroxyl group and carrying out a reaction.
  • chlorine-based oxidants examples include hypochlorous acid, hypochlorite, chloric acid, chlorate, chloric acid, chlorate, perchloric acid, perchlorate, and chlorine dioxide.
  • the chlorine-based oxidizing agent is preferably sodium hypochlorite, sodium chlorite, or chlorine dioxide.
  • the chlorine-based oxidizing agent may be added as it is as a reagent (solid or liquid) to the fiber raw material, or it may be added by dissolving it in an appropriate solvent.
  • the concentration of the chlorine-based oxidant in the solution in the oxidation step using the chlorine-based oxidant is preferably 1% by mass or more and 1,000% by mass or less in terms of effective chlorine concentration, and is 5% by mass or more and 500% by mass or less. It is more preferably 10% by mass or more and 100% by mass or less.
  • the amount of the chlorine-based oxidizing agent added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 10 parts by mass or more and 10,000 parts by mass or less, and 100 parts by mass. It is more preferable that the amount is 5,000 parts by mass or more.
  • the reaction time with the chlorine-based oxidizing agent in the oxidation step using the chlorine-based oxidizing agent may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, and is preferably 10 minutes or more and 500 minutes or less. More preferably, it is more preferably 20 minutes or more and 400 minutes or less.
  • the pH at the time of reaction is preferably 5 or more and 15 or less, more preferably 7 or more and 14 or less, and further preferably 9 or more and 13 or less. Further, at the start of the reaction, it is preferable that the pH during the reaction is kept constant (for example, pH 11) while appropriately adding hydrochloric acid or sodium hydroxide. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
  • the ionic substituent introduction step may include, for example, a zantate group introduction step (hereinafter, also referred to as a zantate conversion step).
  • a zantate group introduction step (hereinafter, also referred to as a zantate conversion step).
  • a zantate group is introduced into the fiber raw material by adding carbon disulfide and an alkaline compound to a wet or dry fiber raw material having a hydroxyl group and carrying out a reaction. Specifically, carbon disulfide is added to the alkali-cellulose-ized fiber raw material by the method described later, and the reaction is carried out.
  • Alkaline Cellulose When introducing an ionic substituent into a fiber raw material, it is preferable to allow an alkaline solution to act on the cellulose contained in the fiber raw material to convert the cellulose into alkaline cellulose. By this treatment, a part of the hydroxyl groups of cellulose is ion-dissociated, and the nucleophilicity (reactivity) can be enhanced.
  • the alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. For example, sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide are preferably used because of their high versatility. Alkali celluloseization may be carried out at the same time as the introduction of the ionic substituent, may be carried out as a pre-stage thereof, or may be carried out at both timings.
  • the solution temperature at the start of alkaline cellulose formation is preferably 0 ° C. or higher and 50 ° C. or lower, more preferably 5 ° C. or higher and 40 ° C. or lower, and further preferably 10 ° C. or higher and 30 ° C. or lower.
  • the alkali concentration in the alkaline solution is preferably 0.01 mol / L or more and 4 mol / L or less, more preferably 0.1 mol / L or more and 3 mol / L or less, and 1 mol / L or more 2 It is more preferably 5.5 mol / L or less.
  • the alkali concentration is preferably 1 mol / L or more and 2 mol / L or less.
  • the treatment time for alkali celluloseization is preferably 1 minute or longer, more preferably 10 minutes or longer, and even more preferably 30 minutes or longer.
  • the alkali treatment time is preferably 6 hours or less, more preferably 5 hours or less, and even more preferably 4 hours or less.
  • the permeation of the alkaline solution into the crystal region of cellulose can be suppressed, the crystal structure of cellulose type I can be easily maintained, and the cellulose is in the form of fine fibers.
  • the yield of cellulose can be increased.
  • the alkali celluloseization is performed before the introduction of the ionic substituent.
  • the alkali cellulose obtained by the alkali celluloseization treatment is solid-liquid separated to remove water by a general deliquidation method such as centrifugation or filtration. This improves the reaction efficiency in the subsequent ionic substituent introduction step.
  • the cellulose fiber concentration after solid-liquid separation is preferably 5% or more and 50% or less, more preferably 10% or more and 40% or less, and further preferably 15% or more and 35% or less.
  • the ionic substituent introduction step may include a phosphon group or phosphine group introduction step (phosphoalkylation step).
  • a compound having a reactive group and a phospho group or a phosphine group (Compound E A ) as an essential component, an alkaline compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives are wetted.
  • a phosphone group or a phosphine group is introduced into the fiber raw material by carrying out the reaction in addition to the fiber raw material having a hydroxyl group in a dry state.
  • the reactive group examples include an alkyl halide group, a vinyl group, an epoxy group (glycidyl group) and the like.
  • the compound E A e.g. vinyl phosphoric acid, phenyl vinyl phosphonic acid, and phenyl vinyl phosphinic acid.
  • Introduction efficiency of substituents, and thus solution ⁇ rate, cost, compounds from the viewpoint of easy handling E A is preferably a vinyl phosphoric acid.
  • the compound B in the above-mentioned ⁇ phosphoric acid group introduction step> is also preferably used in the same manner, and the addition amount is preferably as described above.
  • the fiber raw material is made into alkali cellulose in advance or is made into alkali cellulose at the same time as the reaction.
  • the method of alkali celluloseization is as described above.
  • the temperature during the reaction is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • Amount for fiber material 100 parts by weight of Compound E A is preferably not more than 100,000 parts by 1 part by mass or more, more preferably at most 10,000 parts by mass or more, 2 parts by mass 5 parts by weight It is more preferably 1,000 parts by mass or less.
  • the reaction time may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. Is even more preferable. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
  • the ionic substituent introduction step may include a sulfone group introduction step (sulfoalkylation step).
  • a compound having a reactive group and a sulfonic group Compound E B
  • an alkaline compound as an optional component a compound B which is selected from urea and its derivatives mentioned above, wet or dry
  • a sulfone group is introduced into the fiber raw material.
  • the reactive group examples include an alkyl halide group, a vinyl group, an epoxy group (glycidyl group) and the like.
  • the compound E B 2-sodium chloroethane sulfonate, sodium vinyl sulfonate, p- sodium styrenesulfonate, 2-acrylamido-2-methylpropane sulfonic acid.
  • the introduction efficiency of the substituents, and thus solution ⁇ rate, cost, vinyl compounds from the viewpoint of easy handling E B is preferably a sodium sulfonate.
  • the compound B in the above-mentioned ⁇ phosphoric acid group introduction step> is also preferably used in the same manner, and the addition amount is preferably as described above.
  • the compound E B When adding the compound E B may be added directly to the fiber material as a reagent (solid or liquid), it may be added dissolved in a suitable solvent. It is preferable that the fiber raw material is made into alkali cellulose in advance or is made into alkali cellulose at the same time as the reaction. The method of alkali celluloseization is as described above.
  • the temperature during the reaction is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • Amount for fiber material 100 parts by weight of compound E B is preferably not more than 100,000 parts by 1 part by mass or more, more preferably at most 10,000 parts by mass or more, 2 parts by mass 5 parts by weight It is more preferably 1,000 parts by mass or less.
  • the reaction time may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. Is even more preferable. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
  • the ionic substituent introduction step may include a carboxyalkylation step.
  • a compound having a reactive group and a carboxy group (Compound E C)
  • alkaline compound as an optional component
  • a compound B which is selected from urea and its derivatives mentioned above
  • the fiber having a hydroxyl group
  • the reactive group examples include an alkyl halide group, a vinyl group, an epoxy group (glycidyl group) and the like.
  • the compound E C, introduction efficiency of the substituents, and thus solution ⁇ rate, cost, ease of handling monochloroacetic acid in terms of sodium monochloroacetate, 2-chloropropionic acid, sodium 2-chloropropionic acid is preferred.
  • the compound B in the above-mentioned ⁇ phosphoric acid group introduction step> is also preferably used in the same manner, and the addition amount is preferably as described above.
  • the compound E C When adding the compound E C may be added directly to the fiber material as a reagent (solid or liquid), it may be added dissolved in a suitable solvent. It is preferable that the fiber raw material is made into alkali cellulose in advance or is made into alkali cellulose at the same time as the reaction. The method of alkali celluloseization is as described above.
  • the temperature during the reaction is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • Amount for fiber material 100 parts by weight of compound E C is preferably not more than 100,000 parts by 1 part by mass or more, more preferably at most 10,000 parts by mass or more, 2 parts by mass 5 parts by weight It is more preferably 1,000 parts by mass or less.
  • the reaction time may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. Is even more preferable. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
  • ⁇ Cationic group introduction step (cationization step)> A compound having a reactive group and a cationic group (Compound ED ) as an essential component, an alkaline compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives have a hydroxyl group in a wet or dry state.
  • a cationic group is introduced into the fiber raw material.
  • Examples of the reactive group include an alkyl halide group, a vinyl group, an epoxy group (glycidyl group) and the like.
  • Examples of the cationic group include an ammonium group, a phosphonium group, a sulfonium group and the like. Of these, the cationic group is preferably an ammonium group.
  • the compound E D, introduction efficiency of the substituents, and thus solution ⁇ rate, cost, ease of handling glycidyl trimethyl ammonium chloride from the viewpoint of 3-chloro-2-hydroxypropyl trimethyl ammonium chloride are preferred.
  • the amount of addition is also preferably as described above.
  • the compound E D When adding the compound E D may be added directly to the fiber material as a reagent (solid or liquid), it may be added dissolved in a suitable solvent. It is preferable that the fiber raw material is made into alkali cellulose in advance or is made into alkali cellulose at the same time as the reaction. The method of alkali celluloseization is as described above.
  • the temperature during the reaction is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • Amount for fiber material 100 parts by weight of Compound E D is preferably not more than 100,000 parts by 1 part by mass or more, more preferably at most 10,000 parts by mass or more, 2 parts by mass 5 parts by weight It is more preferably 1,000 parts by mass or less.
  • the reaction time may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. Is even more preferable. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
  • a washing step can be performed on the ionic substituent-introduced fiber, if necessary.
  • the washing step is performed by washing the ionic substituent-introduced fiber with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleanings performed in each cleaning step is not particularly limited.
  • an alkali treatment step may be provided between the ionic substituent introduction step and the miniaturization treatment step.
  • the alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the ionic substituent-introduced fiber in an alkaline solution.
  • the alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound.
  • sodium hydroxide or potassium hydroxide is preferably used as the alkaline compound because of its high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent.
  • the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
  • the temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower.
  • the immersion time of the ionic substituent-introduced fiber in the alkaline solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10000% by mass or less, based on the absolute dry mass of the ionic substituent-introduced fiber. The following is more preferable.
  • the ionic substituent introduction fiber may be washed with water or an organic solvent after the ionic substituent introduction step and before the alkali treatment step. After the alkali treatment step and before the miniaturization treatment step, it is preferable to wash the alkali-treated ionic substituent-introduced fiber with water or an organic solvent from the viewpoint of improving handleability.
  • an acid treatment step may be provided between the ionic substituent introduction step and the miniaturization treatment step.
  • the ionic substituent introduction step, the acid treatment, the alkali treatment, and the micronization treatment may be performed in this order.
  • the method of acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acidic solution containing an acid.
  • the concentration of the acidic liquid used is not particularly limited, but is preferably 10% by mass or less, and more preferably 5% by mass or less, for example.
  • the pH of the acidic solution used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used.
  • Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. Is more preferable.
  • Nanocarbon precursor is a precursor that becomes carbon nanotubes or graphene by miniaturization treatment. It can be said that the nanocarbon precursor is a bulk structure of carbon nanotubes and graphene. That is, the nanocarbon precursor is a structure in which carbon nanotubes and graphene are aggregated.
  • the nanocarbon precursor has cationic properties. Therefore, when the cellulose fiber has an anionic group as an ionic substituent, the nanocarbon precursor and the cellulose fiber are bonded by the electric charge of each material. Then, while maintaining such a bonded state, a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent is subjected to a micronization treatment step, whereby fine fibrous cellulose It becomes easy to obtain fine fibrous cellulose / nanocarbon-containing material in which nanocarbon and nanocarbon are compounded. If the nanocarbon precursor and the cellulose fiber are mixed in a nano-sized state, strong aggregation is formed due to the electric charge of each material, and it is considered that the dispersibility is deteriorated.
  • the particle size of the nanocarbon precursor is more than 1 ⁇ m and 1000 ⁇ m or less.
  • the length, width, and thickness of the nanocarbon precursor are all more than 1 ⁇ m and 1000 ⁇ m or less.
  • Such a nanocarbon precursor may be in the form of pellets compacted by a method such as pressing.
  • Nanocarbon precursors can also be used for the nanocarbon precursor.
  • examples of commercially available products include MWCNT (LUCAN CP1001M) manufactured by LG Chem and phosphonic graphite (Z-5F) manufactured by Ito Graphite.
  • MWCNT LUCAN CP1001M
  • Z-5F phosphonic graphite
  • a commercially available product as described above may be combined and used as a nanocarbon precursor.
  • the mixed solution containing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent used in the micronization treatment step may contain an arbitrary component in addition to the cellulose fiber and the nanocarbon precursor. good.
  • the optional component include vegetable oil, animal oil, mineral oil, resin, resin emulsion, inorganic particles, layered inorganic compound and the like. Among them, vegetable oils, animal oils, and mineral oils are preferably used because they have good compatibility with nanocarbon precursors.
  • the content of the surfactant in the mixture containing the cellulose fiber having an ionic substituent, the nanocarbon precursor and the solvent is preferably 1% by mass or less, preferably 0.1% by mass or less. Is more preferable. That is, it is preferable that the mixture containing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent does not substantially contain a surfactant.
  • the present embodiment is also a fine fibrous cellulose / nanocarbon-containing product having a fiber width of 1000 nm or less and containing fine fibrous cellulose having an ionic substituent and nanocarbon.
  • the thixotropic index value (TI value) calculated under the following condition a of the fine fibrous cellulose / nanocarbon-containing material of the present embodiment is 2 or more.
  • the fine fibrous cellulose / nanocarbon-containing material is dispersed in water to obtain a dispersion having a viscosity of 1000 cps measured at 23 ° C. with a B-type viscometer at a rotation speed of 3 rpm; 23 ° C.
  • thixotropic index value
  • the initial viscosity (1000 cps) used for calculating the thixotropic index value (TI value) is a value measured by a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD).
  • the measurement condition is a rotation speed of 3 rpm, and the viscosity value 3 minutes after the start of measurement is measured.
  • the fine fibrous cellulose / nanocarbon dispersion is appropriately diluted with ion-exchanged water so that the viscosity value at this time is 1000 cps, but the viscosity (initial viscosity) after dilution has an error of about ⁇ 10%. You may.
  • the initial viscosity can be adjusted to about 1000 cps by adjusting the content of the fine fibrous cellulose / nanocarbon to the total mass of the dispersion liquid to 0.3 to 3.0% by mass.
  • the mixture is stirred with a disperser at 1500 rpm for 5 minutes and allowed to stand in an environment of 23 ° C. and 50% relative humidity for 24 hours before measurement. After that, the viscosity is measured.
  • the liquid temperature of the dispersion used for the viscosity measurement is 23 ° C.
  • the viscosity ( ⁇ ) of the dispersion measured at 23 ° C. and 60 rpm with a B-type viscometer. To measure. Then, the value of 1000 / ⁇ is taken as the thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material.
  • TI value thixotropic index value
  • the thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material is preferably 2 or more, more preferably 5 or more, and further preferably 10 or more.
  • the thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material is preferably 1000 or less, more preferably 500 or less, and further preferably 300 or less.
  • a fine fibrous cellulose / nanocarbon-containing product having high thixotropy can be obtained.
  • the content of the solvent in the fine fibrous cellulose / nanocarbon-containing material is preferably 99% by mass or less, more preferably 98% by mass or less, based on the total mass of the fine fibrous cellulose / nanocarbon-containing material. preferable.
  • the content of the solvent in the fine fibrous cellulose / nanocarbon-containing material may be 95% by mass or less, or 90% by mass or less, based on the total mass of the mixture.
  • the lower limit of the solvent content in the fine fibrous cellulose / nanocarbon-containing material is not particularly limited, but is, for example, 70% by mass or more with respect to the total mass of the fine fibrous cellulose / nanocarbon-containing material.
  • the fine fibrous cellulose and nanocarbon are uniformly dispersed in the fine fibrous cellulose / nanocarbon-containing material.
  • the state in which the fine fibrous cellulose and the nanocarbon are uniformly dispersed is one liquid in which the fine fibrous cellulose / nanocarbon dispersion liquid is continuous, and the fine fibrous cellulose / nanocarbon dispersion liquid is visually observed. In this case, it means a state in which only the fine fibrous cellulose dispersion is present and there is no portion in which only the nanocarbon dispersion is present.
  • the dispersion liquids are separated into a plurality of parts, or if the parts where only the fine fibrous cellulose dispersion liquid is present and the parts where only the nanocarbon dispersion liquid is present are sparsely present, it can be determined that the dispersion is not uniformly dispersed. ..
  • the value (CV value) obtained by dividing the standard deviation of the post-combustion mass ratio of the fine fibrous cellulose / nanocarbon-containing material by the average value of the post-combustion mass ratio of the fine fibrous cellulose / nanocarbon-containing material is less than 10%. It is preferably less than 5% (lower limit: 0%).
  • the standard deviation of the mass ratio of the fine fibrous cellulose / nanocarbon-containing material after combustion is determined by using a differential thermogravimetric simultaneous measuring device (TG / DTA6300 manufactured by Seiko Instruments Co., Ltd. (currently Hitachi High-Tech Science Co., Ltd.)). Is measured.
  • the mass ratio of the fine fibrous cellulose / nanocarbon-containing material after combustion is the value obtained by dividing the following ⁇ by ⁇ (value of ⁇ / ⁇ ), and the CV value is measured to calculate the value of ⁇ / ⁇ . Is performed 10 times, and the standard deviation of the ⁇ / ⁇ values is divided by the average value of the ⁇ / ⁇ values.
  • Mass after combustion of fine fibrous cellulose / nanocarbon-containing material (mass when reaching 600 ° C)
  • Absolute dry mass of fine fibrous cellulose / nanocarbon-containing material (mass when reaching 110 ° C)
  • the fine fibrous cellulose / nanocarbon-containing material at least a part of the fine fibrous cellulose and nanocarbon are compounded.
  • the compounding means a state in which at least a part of the fine fibrous cellulose and the nanocarbon are in contact with each other.
  • the fine fibrous cellulose contained in the fine fibrous cellulose / nanocarbon-containing material is a fine fibrous cellulose having a fiber width of 1000 nm or less.
  • the fiber width of the fine fibrous cellulose is more preferably 100 nm or less, and further preferably 8 nm or less.
  • fibrous cellulose having a fiber width of 1000 nm or less is referred to as fine fibrous cellulose.
  • the fiber width of fine fibrous cellulose can be measured by, for example, observation with an electron microscope.
  • the average fiber width of the fine fibrous cellulose is, for example, 1000 nm or less.
  • the average fiber width of the fine fibrous cellulose is, for example, preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and 2 nm or more and 10 nm or less. Is particularly preferable.
  • the fine fibrous cellulose is, for example, monofibrous cellulose.
  • the average fiber width of fine fibrous cellulose is measured as follows, for example, using an electron microscope. First, an aqueous suspension of fine fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a hydrophilized carbon film-coated grid for TEM observation. Use as a sample. If it contains wide fibers, an SEM image of the surface cast on the glass may be observed. Next, observation is performed using an electron microscope image at a magnification of 1000 times, 5000 times, 10000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification should be adjusted so as to satisfy the following conditions.
  • a straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and 0.1 ⁇ m or more and 600 ⁇ m or less. More preferred. By setting the fiber length within the above range, destruction of the crystal region of the fine fibrous cellulose can be suppressed. It is also possible to set the slurry viscosity of the fine fibrous cellulose in an appropriate range.
  • the fiber length of the fine fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.
  • the fine fibrous cellulose preferably has an I-type crystal structure.
  • the ratio of the type I crystal structure to the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. As a result, even better performance can be expected in terms of heat resistance and low coefficient of linear thermal expansion.
  • the crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of the fine fibrous cellulose is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less.
  • the axial ratio is set to the above lower limit value or more, it is easy to form a sheet containing fine fibrous cellulose. In addition, sufficient viscosity can be easily obtained when the solvent dispersion is produced.
  • By setting the axial ratio to the above upper limit value or less for example, when treating fine fibrous cellulose as an aqueous dispersion, it is preferable in that handling such as dilution becomes easy.
  • the fine fibrous cellulose in the present embodiment has, for example, both a crystalline region and a non-crystalline region.
  • the fine fibrous cellulose having both a crystalline region and an amorphous region and having an axial ratio within the above range is realized by a method for producing fine fibrous cellulose described later.
  • the fine fibrous cellulose of the present embodiment has an ionic substituent.
  • the ionic substituent can include, for example, either one or both of an anionic group and a cationic group. In this embodiment, it is particularly preferable to have an anionic group as the ionic substituent.
  • anionic group examples include a phosphoric acid group or a substituent derived from a phosphoric acid group (sometimes simply referred to as a phosphoric acid group), a carboxy group or a substituent derived from a carboxy group (sometimes simply referred to as a carboxy group), and the like.
  • examples thereof include a sulfone group or a substituent derived from the sulfone group (sometimes referred to simply as a sulfon group), a zantate group, a phosphone group, a phosphine group, a carboxyalkyl group (including a carboxymethyl group) and the like.
  • the substituent is referred to as a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (simply referred to as a sulfur oxo acid group).
  • the anionic group is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a carboxymethyl group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group.
  • It is preferably a species, and is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group. Is more preferable, and a phosphorusoxo acid group is particularly preferable.
  • the phosphate group or the substituent derived from the phosphorusoxo acid group the substituent represented by the above-mentioned formula (1) can be similarly exemplified.
  • the cationic group as the ionic substituent include an ammonium group, a phosphonium group, a sulfonium group and the like. Of these, the cationic group is preferably an ammonium group.
  • the amount of the ionic substituent introduced into the fine fibrous cellulose is preferably, for example, 0.05 mmol / g or more, more preferably 0.10 mmol / g or more, and 0, per 1 g (mass) of the fine fibrous cellulose. It is more preferably 20 mmol / g or more, further preferably 0.40 mmol / g or more, and particularly preferably 0.60 mmol / g or more.
  • the amount of the ionic substituent introduced into the fine fibrous cellulose is preferably 5.20 mmol / g or less per 1 g (mass) of the fine fibrous cellulose, and more preferably 3.65 mmol / g or less.
  • the denominator in the unit mmol / g indicates the mass of the fine fibrous cellulose when the counter ion of the ionic substituent is a hydrogen ion (H +).
  • Nanocarbon examples of the nanocarbon contained in the fine fibrous cellulose / nanocarbon-containing material include carbon nanotubes (CNT), graphene, and fullerenes. Above all, the nanocarbon is preferably at least one selected from the group consisting of carbon nanotubes and graphene.
  • the carbon nanotube (CNT) may be a single-walled carbon nanotube (CNT) or a multi-walled carbon nanotube (CNT).
  • graphene may be single-layer graphene or multi-layer graphene.
  • the nanocarbon means nanocarbon particles having a particle size of 1000 nm or less.
  • nanocarbon is nanocarbon particles in which at least one of length, width, and thickness is 1000 nm or less.
  • the length of one side of the nanocarbon particles is a value measured by observing the observation sample obtained after casting the dispersion liquid of nanocarbon with an electron microscope after appropriately dyeing the sample as necessary. Is.
  • Applications of the fine fibrous cellulose / nanocarbon-containing material of the present embodiment include paints, resin compositions, concrete materials, filamentous or plate-like structures, electromagnetic wave shields, electrochemical devices and the like.
  • the electrochemical device includes a battery, a capacitor (capacitor), and an electric double layer capacitor.
  • the thread-like or plate-like structure includes a sheet, a film, a film, and a non-woven fabric. That is, another embodiment of the present invention is the above-mentioned fine fibrous cellulose / nanocarbon-containing material in the production of paints, resin compositions, concrete materials, filamentous or plate-like structures, electromagnetic wave shields or electrochemical devices. Is used.
  • the fine fibrous cellulose / nanocarbon-containing material of the present embodiment may be included as an additive of the resin composition, and the resin component is fine. It may be included as an additive of the fibrous cellulose / nanocarbon-containing material.
  • the resin component contained in the resin composition include rubber-based resin, polyolefin resin, acrylic resin, urethane resin, polycarbonate resin and the like.
  • the present embodiment may be a paint containing the above-mentioned fine fibrous cellulose / nanocarbon-containing material, may be a concrete material containing the fine fibrous cellulose / nanocarbon-containing material, and may be a fine fibrous cellulose / nano. It may be a filamentous or plate-like structure containing carbon-containing material, an electromagnetic wave shield containing fine fibrous cellulose / nanocarbon-containing material, and electrochemical containing fine fibrous cellulose / nanocarbon-containing material. It may be a device. Known components of paints, concrete materials, electromagnetic wave shields and electrochemical devices can be mentioned.
  • the raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphoric acid group into the cellulose in the pulp to obtain a phosphorylated pulp.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated and washed to obtain a phosphorylated pulp that had been neutralized. Then, ion-exchanged water was added to the obtained phosphorylated pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
  • the amount of phosphate groups (first dissociated acid amount, strongly acidic group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.45 mmol / g.
  • the total amount of dissociated acid was 2.45 mol / g.
  • ⁇ Manufacturing example A2> The 0.5% by mass dispersion of phosphorylated pulp obtained in Production Example A1 was treated once with a high-pressure homogenizer (Beryu-Mini, manufactured by Bigrain Co., Ltd.) at a pressure of 100 MPa.
  • This device is equipped with a bubbling suppression mechanism.
  • the high-pressure homogenizer includes a jet flow generator provided with a diamond nozzle and a bubbling suppression mechanism located downstream of the jet flow generator.
  • a coolable pipe (cloak) was adopted as a bubbling suppression mechanism, and such a pipe (cloak) was arranged so as to cover the inner pipe through which the dispersion liquid flows.
  • the length of the coolable pipe was 350 mm, and the coolable pipe was installed on the downstream side of the diamond nozzle 100 mm of the jet flow generating portion.
  • this bubbling suppression mechanism while applying back pressure to the jet flow generated by the diamond nozzle, cooling water at 15 ° C. was flowed through the mantle at a flow rate of 27 L / min. In this way, a pretreated 0.5% by mass concentration cellulose fiber dispersion was obtained. When the obtained cellulose fiber dispersion was observed with an optical microscope, many cellulose fibers having a width of 20 ⁇ m or more were observed.
  • the infrared absorption spectrum of the obtained subphosphorylated pulp was measured using FT-IR.
  • absorption based on P O of the phosphonic acid group, which is a tautomer of the phosphite group, was observed around 1210 cm -1, and the phosphite group (phosphonic acid group) was added to the pulp.
  • P O of the phosphonic acid group
  • the phosphite group phosphonic acid group
  • the amount of phosphite group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.51 mmol / g.
  • the total amount of dissociated acid was 1.54 mmol / g.
  • the infrared absorption spectrum of the obtained sulfated pulp was measured using FT-IR.
  • the amount of sulfate ester groups (first dissociated acid amount) measured by the measuring method described in [Measurement of sulfate ester group amount] described later was 1.12 mmol / g.
  • the raw material pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), and 10 parts by mass of sodium bromide are added to 10000 parts by mass of water. It was dispersed in the parts. Then, a 13 mass% sodium hypochlorite aqueous solution was added to 1.0 g of pulp so as to be 10 mmol, and the reaction was started. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
  • the washing treatment is carried out by dehydrating the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtration and dehydration. rice field.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the dehydrated sheet was subjected to additional oxidation treatment of the remaining aldehyde groups as follows.
  • the dehydrated sheet corresponding to 100 parts by mass of dry mass was dispersed in 10000 parts by mass of 0.1 mol / L acetate buffer (pH 4.8).
  • 113 parts by mass of 80% by mass sodium chlorite was added, and the mixture was immediately sealed and then reacted at room temperature for 48 hours with stirring at 500 rpm using a magnetic stirrer to obtain a pulp slurry.
  • the obtained top-oxidized TEMPO oxide pulp was washed.
  • the washing treatment is carried out by dehydrating the pulp slurry after the additional oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtering and dehydrating. rice field.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • ion-exchanged water was added to the obtained TEMPO oxidized pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • a sheet (solid content concentration 90% by mass) made from softwood bleached kraft pulp (NBKP) is treated with a hand mixer (Osaka Chemical Co., Ltd., Lab Miller PLUS) at a rotation speed of 20000 rpm for 15 seconds to form a cotton-like fluffing. It was made into pulp (solid content concentration 90% by mass).
  • the autoclave was filled with 100 parts by mass of cotton-like fluffing pulp and 50 parts by mass of maleic anhydride, and treated at 150 ° C. for 2 hours to obtain a carboxy group-introduced pulp.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the infrared absorption spectrum of the obtained carboxy group-introduced pulp was measured using FT-IR. As a result, absorption based on the carboxy group was observed near 1580 and 1720 cm- 1 , and it was confirmed that the maleic acid was esterified.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the carboxy group-introduced pulp after washing was neutralized as follows. First, the washed carboxy group-introduced pulp is diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution is added little by little with stirring to obtain a carboxy group-introduced pulp slurry having a pH of 12 or more and 13 or less. Obtained. Next, the carboxy group-introduced pulp slurry was dehydrated and washed to obtain a neutralized carboxy group-introduced pulp. Then, ion-exchanged water was added to the obtained carboxy group-introduced pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained sulfoethyl group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained cation-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the washed cation group-introduced pulp was neutralized as follows. First, the washed cation-introduced pulp was diluted with 10 L of ion-exchanged water, and then 1N hydrochloric acid was added little by little with stirring to obtain a cation-introduced pulp slurry having a pH of 1 or more and 2 or less. Next, the cation-introduced pulp slurry was dehydrated and washed to obtain a cation-introduced pulp that had been neutralized. Then, ion-exchanged water was added to the obtained cation group-introduced pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
  • the obtained cation group-introduced pulp was subjected to trace nitrogen analysis, and the amount of cation group was calculated by the following formula. As a result, it was 1.45 mmol / g.
  • Example 1-1 As the nanocarbon precursor, MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated and granulated) was used. By directly adding the nanocarbon precursor to the 0.5% by mass of the cellulose fiber dispersion obtained in Production Example A1, the concentration of the cellulose fiber becomes 0.5% by mass and the concentration of the nanocarbon precursor becomes 1% by mass. Prepared to be. The obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa. The bubbling suppression mechanism described above was installed in this device.
  • a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa.
  • a dispersion containing fine fibrous cellulose / nanocarbon was obtained.
  • the obtained dispersion was in the form of a glossy gel.
  • the dispersibility and TI value of this dispersion were evaluated by the method described later.
  • Example 1-2 A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-1 except that the cellulose fiber dispersion obtained in Production Example A2 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-3 A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-1, except that the flake graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor. The obtained dispersion was in the form of a glossy gel.
  • Example 1-4 As the nanocarbon precursor, both MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated to be granular) and phosphocyclic graphite Z-5F manufactured by Ito Graphite Co., Ltd. are used, and their respective concentrations are used.
  • a fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-1, except that the amount was adjusted to 0.5% by mass (total concentration was 1% by mass). The obtained dispersion was in the form of a glossy gel.
  • Example 1-5 A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example A3 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-6 A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example B1 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-7 A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example C1 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-8> A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example D1 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-9 A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example E1 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-10 As the cellulose fiber dispersion liquid, a fine fibrous cellulose / nanocarbon dispersion liquid was obtained in the same manner as in Example 1-3 except that the one obtained in Production Example F1 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-11> A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example G1 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-12> A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example H1 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 1-13> As the cellulose fiber dispersion liquid, a fine fibrous cellulose / nanocarbon dispersion liquid was obtained in the same manner as in Example 1-3 except that the one obtained in Production Example J1 was used. The obtained dispersion was in the form of a glossy gel.
  • LG Chem's MWCNT (LUCAN CP1001M, MWCNT aggregated and granulated) is 2% by mass as a nanocarbon precursor in ion-exchanged water, and a dispersant (thickener) for promoting suspension.
  • Carboxymethyl cellulose manufactured by Kanto Chemical Co., Inc., degree of polymerization of about 1050 was suspended so as to be 1% by mass.
  • the treatment was carried out 6 times at a pressure of 240 MPa with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.). The processing was performed without providing a bubbling suppression mechanism in this device. In this way, a nanocarbon dispersion having a concentration of 2% by mass (not including the solid content of the dispersant) was obtained.
  • MWCNT manufactured by LG Chem LG Chem (LUCAN CP1001M and MWCNT are aggregated and granulated) was used.
  • the nanocarbon precursor was directly added to the 1% by mass cellulose fiber dispersion obtained in Production Example A4, and then ion-exchanged water was further added to bring the cellulose fiber concentration to 0.5% by mass and the nanocarbon precursor. It was adjusted so that the body concentration was 1% by mass.
  • the obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa.
  • the bubbling suppression mechanism described above was installed in this device. After the high-pressure homogenizer treatment, a fine fibrous cellulose / nanocarbon dispersion was obtained. As a result of visually observing the obtained dispersion liquid, the dispersion state was somewhat sparse.
  • Example 20 As the cellulose fiber, the same as in Example 1-1 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 0.5% by mass was used. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
  • the cellulose fiber the same as in Example 1-3 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 0.5% by mass was used. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
  • ⁇ Comparative Example 22> As the cellulose fiber, the same as in Example 1-4 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 0.5% by mass was used. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
  • the raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphoric acid group into the cellulose in the pulp to obtain a phosphorylated pulp.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated and washed to obtain a phosphorylated pulp (cellulose fiber) subjected to a neutralization treatment.
  • the amount of phosphate groups (first dissociated acid amount, strongly acidic group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.45 mmol / g.
  • the total amount of dissociated acid was 2.45 mol / g.
  • the dispersion having a concentration of C [mass%] in each production example was treated once with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) at a pressure of 100 MPa.
  • a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) at a pressure of 100 MPa.
  • the high-pressure homogenizer includes a jet flow generator provided with a diamond nozzle and a bubbling suppression mechanism located downstream of the jet flow generator.
  • a coolable pipe (cloak) was adopted as a bubbling suppression mechanism, and such a pipe (cloak) was arranged so as to cover the inner pipe through which the dispersion liquid flows.
  • the length of the coolable pipe was 350 mm, and the coolable pipe was installed on the downstream side of the diamond nozzle 100 mm of the jet flow generating portion.
  • this bubbling suppression mechanism while applying back pressure to the jet flow generated by the diamond nozzle, cooling water at 15 ° C. was flowed through the mantle at a flow rate of 27 L / min. In this way, a pretreated cellulose fiber dispersion having a concentration of C [mass%] was obtained.
  • the cellulose fiber dispersions obtained in Production Examples A12 to A17 were observed with an optical microscope, a large number of cellulose fibers having a width of 20 ⁇ m or more were observed in all of the production examples.
  • the infrared absorption spectrum of the obtained subphosphorylated pulp was measured using FT-IR.
  • absorption based on P O of the phosphonic acid group, which is a tautomer of the phosphite group, was observed around 1210 cm -1, and the phosphite group (phosphonic acid group) was added to the pulp.
  • P O of the phosphonic acid group
  • the phosphite group phosphonic acid group
  • the amount of phosphite group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.51 mmol / g.
  • the total amount of dissociated acid was 1.54 mmol / g.
  • the infrared absorption spectrum of the obtained sulfated pulp was measured using FT-IR.
  • the amount of sulfate ester groups (first dissociated acid amount) measured by the measuring method described in [Measurement of sulfate ester group amount] described later was 1.12 mmol / g.
  • the raw material pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), and 10 parts by mass of sodium bromide are added to 10000 parts by mass of water. It was dispersed in the parts. Then, a 13 mass% sodium hypochlorite aqueous solution was added to 1.0 g of pulp so as to be 10 mmol, and the reaction was started. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
  • the washing treatment is carried out by dehydrating the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtration and dehydration. rice field.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the dehydrated sheet was subjected to additional oxidation treatment of the remaining aldehyde groups as follows.
  • the dehydrated sheet corresponding to 100 parts by mass of dry mass was dispersed in 10000 parts by mass of 0.1 mol / L acetate buffer (pH 4.8).
  • 113 parts by mass of 80% by mass sodium chlorite was added, and the mixture was immediately sealed and then reacted at room temperature for 48 hours with stirring at 500 rpm using a magnetic stirrer to obtain a pulp slurry.
  • the washing treatment is carried out by dehydrating the pulp slurry after the additional oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtering and dehydrating. rice field.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set. In this way, TEMPO oxidized pulp (cellulose fiber) was obtained.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • a sheet (solid content concentration 90% by mass) made from softwood bleached kraft pulp (NBKP) is treated with a hand mixer (Osaka Chemical Co., Ltd., Lab Miller PLUS) at a rotation speed of 20000 rpm for 15 seconds to form a cotton-like fluffing. It was made into pulp (solid content concentration 90% by mass).
  • the autoclave was filled with 100 parts by mass of cotton-like fluffing pulp and 50 parts by mass of maleic anhydride, and treated at 150 ° C. for 2 hours to obtain a carboxy group-introduced pulp.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the infrared absorption spectrum of the obtained pulp was measured using FT-IR. As a result, absorption based on the carboxy group was observed near 1580 and 1720 cm- 1 , and it was confirmed that the maleic acid was esterified.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the carboxy group-introduced pulp after washing was neutralized as follows. First, the washed carboxy group-introduced pulp is diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution is added little by little with stirring to obtain a carboxy group-introduced pulp slurry having a pH of 12 or more and 13 or less. Obtained. Next, the carboxy group-introduced pulp slurry was dehydrated and washed to obtain a neutralized carboxy group-introduced pulp. Then, ion-exchanged water was added to the obtained carboxy group-introduced pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained sulfoethyl group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained cation-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the washed cation group-introduced pulp was neutralized as follows. First, the washed cation-introduced pulp was diluted with 10 L of ion-exchanged water, and then 1N of hydrochloric acid was added little by little with stirring to obtain a cation-introduced pulp slurry having a pH of 1 or more and 2 or less. Next, the cation-introduced pulp slurry was dehydrated and washed to obtain a cation-introduced pulp that had been neutralized. Then, ion-exchanged water was added to the obtained cation group-introduced pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
  • the obtained cation group-introduced pulp was subjected to trace nitrogen analysis, and the amount of cation group was calculated by the following formula. As a result, it was 1.45 mmol / g.
  • Example 101-1 As the nanocarbon precursor, MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated and granulated) was used. Ion-exchanged water and a nanocarbon precursor were directly added to the cellulose fibers obtained in Production Example A11 to prepare the cellulose fibers so that the concentration of the cellulose fibers was 1% by mass and the concentration of the nanocarbon precursors was 1% by mass. The obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa. The bubbling suppression mechanism described above in Production Example A12 was provided in this device.
  • a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa.
  • a dispersion containing fine fibrous cellulose / nanocarbon was obtained.
  • the obtained dispersion was in the form of a glossy gel.
  • the particle dispersibility of this dispersion, the standard deviation of the mass after combustion, and the uniform dispersibility were evaluated by the method described later.
  • Example 101-2 A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was 1.5% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-3 A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was set to 2% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-4 A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was set to 4% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-5 A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was 6% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-6 A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was set to 10% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-7 The cellulose fiber dispersion obtained in Production Example A12 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-1 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
  • Example 101-8> The cellulose fiber dispersion obtained in Production Example A13 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-2 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
  • Example 101-9> The cellulose fiber dispersion obtained in Production Example A14 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-3 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
  • Example 101-10> The cellulose fiber dispersion obtained in Production Example A15 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-4 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
  • Example 101-11> The cellulose fiber dispersion obtained in Production Example A16 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-5, except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
  • Example 101-12> The cellulose fiber dispersion obtained in Production Example A17 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-6 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
  • Example 101-13> A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-9, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 2% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-14> A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-9, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 4% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-15 A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-9, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 6% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-16> A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-9, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 10% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-17> A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-11, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 6% by mass. The obtained dispersion was in the form of a glossy gel.
  • Example 101-19> A mixed dispersion using both LG Chem's MWCNT (LUCAN CP1001M and MWCNT aggregated to form granules) and Ito Graphite's Phosphorus Graphite Z-5F as nanocarbon precursors.
  • a dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Examples 101-18, except that the respective concentrations in the medium were adjusted to 1% by mass (total concentration was 2% by mass). .. The obtained dispersion was in the form of a glossy gel.
  • Example 101-20> The cellulose fiber obtained in Production Example A18 was used, and the flake graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor, and the concentration of the nanocarbon precursor in the mixed dispersion was reduced to 2% by mass.
  • a dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-3. The obtained dispersion was in the form of a glossy gel.
  • Example 101-21 A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fiber obtained in Production Example B11 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 101-22> A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fiber obtained in Production Example C11 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 101-23 A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fiber obtained in Production Example D11 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 101-24> A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fibers obtained in Production Example E11 were used. The obtained dispersion was in the form of a glossy gel.
  • Example 101-25> A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fiber obtained in Production Example F11 was used. The obtained dispersion was in the form of a glossy gel.
  • Example 101-26> A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fibers obtained in Production Example G11 were used. The obtained dispersion was in the form of a glossy gel.
  • Example 101-27 A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fibers obtained in Production Example H11 were used. The obtained dispersion was in the form of a glossy gel.
  • Example 101-28> A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fibers obtained in Production Example J11 were used. The obtained dispersion was in the form of a glossy gel.
  • LG Chem's MWCNT (LUCAN CP1001M, MWCNT aggregated and granulated) is 2% by mass as a nanocarbon precursor in ion-exchanged water, and a dispersant (thickener) for promoting suspension.
  • Carboxymethyl cellulose manufactured by Kanto Chemical Co., Inc., degree of polymerization of about 1050 was suspended so as to be 2% by mass.
  • the obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa.
  • the bubbling suppression mechanism described above in Production Example A12 was provided in this device. After the high-pressure homogenizer treatment, a dispersion containing carboxymethyl cellulose / nanocarbon was obtained. The obtained dispersion was easy to flow, and no strong luster was observed.
  • ⁇ Comparative Example 102> A dispersion containing carboxymethyl cellulose / nanocarbon was obtained in the same manner as in Comparative Example 101 except that phosphotic graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor. The obtained dispersion was easy to flow, and no strong luster was observed.
  • ⁇ Comparative Example 103> A mixed dispersion using both LG Chem's MWCNT (LUCAN CP1001M and MWCNT aggregated to form granules) and Ito Graphite's Phosphorus Graphite Z-5F as nanocarbon precursors.
  • a dispersion containing carboxymethyl cellulose / nanocarbon was obtained in the same manner as in Comparative Example 101 except that the respective concentrations in the medium were adjusted to 1% by mass (total concentration was 2% by mass). The obtained dispersion was easy to flow, and no strong luster was observed.
  • LG Chem's MWCNT (LUCAN CP1001M, MWCNT aggregated and granulated) was 4% by mass as a nanocarbon precursor, and a dispersant (thickener) for promoting suspension.
  • Carboxymethyl cellulose manufactured by Kanto Chemical Co., Inc., degree of polymerization of about 1050 was suspended so as to be 1% by mass.
  • the treatment was carried out 6 times at a pressure of 240 MPa with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.). The processing was performed without providing a bubbling suppression mechanism in this device. In this way, a nanocarbon dispersion having a concentration of 4% by mass (not including the solid content of the dispersant) was obtained.
  • a softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 2% by mass, and the same as in Comparative Example 101. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
  • ⁇ Comparative Example 111> As the cellulose fiber, the same as in Comparative Example 102 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 2% by mass. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
  • Example 1-1 to 1-13 and Comparative Examples 1 to 19 the obtained dispersion was cast-dried and the obtained sample was observed with an electron microscope to obtain fine fibers having a fiber width of 20 nm or less. The presence of fibrous cellulose and nanocarbon having at least one of the length, width, and thickness of 1000 nm or less was confirmed.
  • Example 101-1 to 101-28 and Comparative Examples 101 to 109 the obtained dispersion was cast-dried and the obtained sample was observed with an electron microscope to obtain fine fibers having a fiber width of 20 nm or less. The presence of fibrous cellulose and nanocarbon having at least one of the length, width, and thickness of 1000 nm or less was confirmed.
  • a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) having a volume of 1/10 was added to the fine fibrous cellulose dispersion, and the mixture was shaken for 1 hour. After that, it was poured on a mesh having a mesh size of 90 ⁇ m to separate the resin and the slurry.
  • the pH value indicated by the slurry is changed while adding 10 ⁇ L of 0.1 N sodium hydroxide aqueous solution to the fine fibrous cellulose dispersion treated with the ion exchange resin every 5 seconds. was performed by measuring.
  • the titration was performed while blowing nitrogen gas into the slurry from 15 minutes before the start of the titration.
  • the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 2).
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration.
  • the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point divided by the solid content (g) in the slurry to be titrated was defined as the amount of phosphorus oxo acid groups (mmol / g).
  • a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) having a volume of 1/10 was added to the fine fibrous cellulose dispersion, and the mixture was shaken for 1 hour. After that, it was poured on a mesh having a mesh size of 90 ⁇ m to separate the resin and the slurry.
  • a 0.1 N sodium hydroxide aqueous solution is added to the fine fibrous cellulose dispersion treated with an ion exchange resin once every 30 seconds by 50 ⁇ L, and the pH indicated by the dispersion is adjusted. This was done by measuring the change in value.
  • the amount of carboxy group (mmol / g) is obtained by dividing the amount of alkali (mmol) required in the region corresponding to the first region shown in FIG. 3 of the measurement results by the solid content (g) in the slurry to be titrated. Calculated.
  • the amount of sulfate ester group and the amount of sulfone group of the cellulose fiber were measured as follows.
  • the cellulose fibers obtained in Production Examples C1, H1, C11 and H11 were frozen in a freezer and then dried in a freeze-dryer (FreeZone manufactured by Loveconco) for 3 days.
  • the obtained freeze-dried product was pulverized using a hand mixer (manufactured by Osaka Chemical Co., Ltd., Lab Miller PLUS) at a rotation speed of 20,000 rpm for 60 seconds to obtain a powder.
  • the sample after freeze-drying and pulverization was decomposed by heating under pressure using nitric acid in a closed container. Then, it was diluted appropriately and the amount of sulfur was measured by ICP-OES. The values calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested were taken as the amount of sulfate ester groups and the amount of sulfone groups (unit: mmol / g) of the fine fibrous cellulose.
  • the yield of the supernatant after centrifuging the cellulose fiber or the fine fibrous cellulose dispersion was measured by the method described below.
  • the supernatant yield after centrifugation is an index of the yield of fine fibrous cellulose, and if the supernatant yield exceeds 90%, substantially all of the cellulose fibers become fine fibrous cellulose having a width of 1000 nm or less. ing.
  • the supernatant yield is less than 70%, it contains a considerable amount of cellulose fibers that have not been refined yet.
  • a cellulose fiber or fine fibrous cellulose dispersion was prepared to have a solid content concentration of 0.2% by mass, and a cooling high-speed centrifuge (Kokusan Co., Ltd., H-2000B) was used to prepare 12000 G. Centrifugation was performed under the condition of 10 minutes. The obtained supernatant was collected, and the solid content concentration of the supernatant was measured. The supernatant yield was determined based on the following formula.
  • Supernatant yield (%) Solid content concentration of supernatant liquid (mass%) /0.2 ⁇ 100
  • ⁇ Particle dispersibility of fine fibrous cellulose / nanocarbon dispersion The particle dispersibility of the fine fibrous cellulose / nanocarbon dispersions obtained in Examples and Comparative Examples was evaluated according to the following criteria. The higher the particle dispersibility, the more highly the cellulose fibers and carbon particles are nano-sized and uniformly dispersed. Specifically, 1 volume% of glass beads (BZ-1 manufactured by AS ONE) are added to a fine fibrous cellulose / nanocarbon dispersion having a total dry solid content concentration of 0.2% by mass, and visually observed. The results were evaluated as follows. A: No settling of glass beads B: A small amount of glass beads settles C: The entire amount of glass beads settles
  • TI value thixotropy of fine fibrous cellulose / nanocarbon dispersion
  • the thixotropy (TI value) of the fine fibrous cellulose / nanocarbon dispersions obtained in Examples and Comparative Examples was evaluated. The higher the TI value and the higher the thixotropy, the higher the degree of nano-sized cellulose fibers and carbon particles, and the more uniformly dispersed, and the less damage the obtained fine fibrous cellulose and nanocarbon particles are. become.
  • the concentration of the fine fibrous cellulose / nanocarbon dispersion is appropriately diluted with ion-exchanged water to obtain the viscosity measured under the conditions described below.
  • TI value 1000 / ⁇
  • the viscosity of the fine fibrous cellulose / nanocarbon dispersion was measured as follows. First, the fine fibrous cellulose / nanocarbon dispersion was diluted so that the B-type viscosity of the fine fibrous cellulose / nanocarbon dispersion was 1000 cps. After dilution, the mixture was stirred with a disperser at 1500 rpm for 5 minutes. Next, the viscosity of the obtained slurry was measured using a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD).
  • the measurement conditions were a rotation speed of 3 rpm, and the viscosity value 3 minutes after the start of measurement was defined as the viscosity (initial viscosity) of the slurry.
  • the slurry to be measured was allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement.
  • the liquid temperature of the slurry at the time of measurement was 23 ° C.
  • B The value obtained by dividing the standard deviation by the average value (CV value) is 10% or more and less than 20%
  • C The standard deviation The value divided by the average value (CV value) is 20% or more.
  • the mass ratio of the fine fibrous cellulose / nanocarbon-containing material after combustion is the value obtained by dividing the following ⁇ by ⁇ (value of ⁇ / ⁇ ).
  • the CV value is a value obtained by performing measurement 10 times to calculate the value of ⁇ / ⁇ and dividing the standard deviation of the value of ⁇ / ⁇ by the average value of the values of ⁇ / ⁇ .
  • Mass after combustion of fine fibrous cellulose / nanocarbon-containing material (mass when reaching 600 ° C)
  • Absolute dry mass of fine fibrous cellulose / nanocarbon-containing material (mass when reaching 110 ° C)
  • a fine fibrous cellulose / nanocarbon-containing material having excellent particle dispersibility was obtained. Further, when the fine fibrous cellulose / nanocarbon-containing material (dispersion liquid) obtained in the examples was applied to a base material and dried, the dispersion liquid was dried in a short time to obtain a sheet with less segregation.
  • Example 2-1> The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 was packed in a 10 mL syringe, and the injection speed from the syringe was 1 mL per second, 20 mm per second. It was extruded linearly onto the polypropylene substrate at the moving speed of. After extrusion, the straight line formed by the dispersion liquid tilted the base material at 45 ° while maintaining a horizontal state with the floor surface. The dispersion liquid adhered to the substrate without dripping.
  • the dispersion liquid when the dispersion liquid was dried, it adhered to the substrate as it was. Therefore, the dispersion can be used as an ink. In addition, it was confirmed that the line from which the ink was dried has conductivity. Therefore, the dispersion can also be used as a conductive ink.
  • Example 2-2> Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13.
  • the suitability as an ink was confirmed in the same manner as in Example 2-1 except that the fiber) / nanocarbon (grafene) dispersion was used.
  • the dispersion liquid adhered to the base material without dripping.
  • the dispersion liquid was dried, it adhered to the substrate as it was. Therefore, the dispersion can be used as an ink.
  • the line from which the ink was dried has conductivity. Therefore, the dispersion can also be used as a conductive ink.
  • the obtained rubber sheet was a sheet in which fine fibrous cellulose and nanocarbon were uniformly dispersed in the rubber, or those in which fine fibrous cellulose and nanocarbon were bonded to each other were uniformly dispersed in the rubber.
  • Example 3-2> Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13.
  • the suitability as a rubber composite material was confirmed in the same manner as in Example 3-1 except that the fiber) / nanocarbon (grafene) dispersion was used.
  • the obtained rubber sheet was a sheet in which fine fibrous cellulose and nanocarbon were uniformly dispersed in the rubber, or those in which fine fibrous cellulose and nanocarbon were bonded to each other were uniformly dispersed in the rubber.
  • Example 1-1 or Example 101-18 A polyvinyl alcohol solution is added to the fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 to obtain fine fibrous cellulose and nanocarbon.
  • the amount of polyvinyl alcohol was adjusted to 100 parts by mass with respect to 100 parts by mass of the total mass.
  • the concentration was adjusted so that the total solid content concentration was 0.6% by mass.
  • the suspension was weighed so that the finished basis weight of the sheet was 45 g / m 2 , developed on a commercially available acrylic plate, and dried in a dryer at 70 ° C. for 24 hours. A dammed plate was placed on the acrylic plate so as to have a predetermined basis weight.
  • a sheet was obtained by the above procedure, and its thickness was 30 ⁇ m.
  • the obtained sheet was a sheet in which fine fibrous cellulose and nanocarbon were uniformly dispersed in the resin, respectively, or those in which fine fibrous cellulose and nanocarbon were bonded to each other without unevenness.
  • Example 4-2> Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13.
  • the suitability as a resin composite material was confirmed in the same manner as in Example 4-1 except that a fiber) / nanocarbon (grafene) dispersion was used.
  • the obtained sheet was a sheet in which fine fibrous cellulose and nanocarbon were uniformly dispersed in the resin, respectively, or those in which fine fibrous cellulose and nanocarbon were bonded to each other without unevenness.
  • Example 5-1 Ion-exchanged water is added to the fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18, and the total solid content concentration is 0.5. The concentration was adjusted to be mass%. The suspension was weighed so that the finished basis weight of the sheet was 45 g / m 2 , developed on a commercially available acrylic plate, and dried in a dryer at 70 ° C. for 24 hours. A dammed plate was placed on the acrylic plate so as to have a predetermined basis weight. A sheet was obtained by the above procedure, and its thickness was 30 ⁇ m. The obtained sheet showed no unevenness, and fibers and particles did not come off even when squeezed by hand, and the sheet was stable.
  • Example 5-2> instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13.
  • a fine fibrous cellulose / nanocarbon-containing sheet was prepared in the same manner as in Example 5-1 except that the fiber) / nanocarbon (graphene) dispersion was used. By this procedure, a sheet was obtained, the thickness of which was 30 ⁇ m. The obtained sheet showed no unevenness, and fibers and particles did not come off even when squeezed by hand, and the sheet was stable.
  • Example 6-1 Papermaking pulp (Oji Paper, coniferous kraft pulp) was added to the fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18.
  • the pulp for papermaking was prepared to be 400 parts by mass with respect to the total mass of 100 parts by mass of the fine fibrous cellulose and nanocarbon.
  • 100 parts by mass of a 1% mass aluminum sulfate aqueous solution was added to the obtained mixed dispersion, and filtration was performed with a papermaking wire to obtain a pulp cake.
  • the obtained cake was mechanically squeezed and then dried with a cylinder dryer set at 120 ° C. to obtain a plate-like body having a thickness of 1 mm.
  • the obtained plate-like body was resistant to water and was suitable as a structure. Moreover, the obtained plate-like body showed conductivity.
  • Example 6-2> Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13.
  • the fiber) / nanocarbon (graphene) dispersion was used, a fine fibrous cellulose / nanocarbon-containing plate-like body was obtained.
  • the obtained plate-like body was resistant to water and was suitable as a structure. Moreover, the obtained plate-like body showed conductivity.
  • Example 7-1 The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 was injected into ethanol containing 10% by mass of aluminum chloride using a syringe. However, a linear gel-like body was obtained. This linear gel was pulled up from the solvent, dried in a dryer at 70 ° C. for 24 hours, washed with ion-exchanged water, further immersed in acetone, pulled up and air-dried. As a result, a yarn having a fiber diameter of 1 to 3 mm and not torn even when pulled by hand was obtained.
  • Example 7-2> Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. As a result of the same procedure as in Example 7-1 except that the fiber) / nanocarbon (grafene) dispersion was used, a thread having a fiber diameter of 1 to 3 mm and not torn even when pulled by hand was obtained.
  • Example 8-1 The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 was centrifuged at a gravitational acceleration of 12000 G for 15 minutes. The supernatant of the obtained dispersion was cast to obtain a translucent fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) film.
  • a smartphone communication with 4G radio waves
  • the smartphone showed out of service area. From the above, it was confirmed that the obtained fine fibrous cellulose / nanocarbon-containing film was an electromagnetic wave blocking sheet.
  • Example 8-2> Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13.
  • the fiber) / nanocarbon (graphene) dispersion was used, a translucent fine fibrous cellulose (cellulose nanofiber) / nanocarbon (graphene) film was obtained.
  • a smartphone communication with 4G radio waves
  • the smartphone showed out of service area. From the above, it was confirmed that the obtained fine fibrous cellulose / nanocarbon-containing film was an electromagnetic wave blocking sheet.
  • Example 9-1> The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 was applied so that the thickness of the coating film after drying was 30 ⁇ m. ..
  • Two sheets of this aluminum foil with a coating film were prepared, and a thin filter paper impregnated with a saturated saline solution containing 10% by mass of polyvinyl alcohol was prepared.
  • a simple element was obtained by stacking aluminum foil, coating film, impregnated filter paper, coating film, and aluminum foil in this order without short-circuiting. The electrical resistance of this simple element was 10 ⁇ or less. We also confirmed that it can be charged by connecting it to a power source.
  • the obtained simple element forms an electric double layer capacitor. It was also confirmed that this simple element can be easily wound up and becomes a winding type electric double layer capacitor. From the above, it was confirmed that the metal foil or the like coated with the fine fibrous cellulose / nanocarbon dispersion liquid of the present embodiment can be used as an electrode of a battery or a capacitor.
  • Example 9-2> Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13.
  • the electric resistance of the obtained simple element was 10 ⁇ or less.
  • the obtained simple element forms an electric double layer capacitor.
  • this simple element can be easily wound up and becomes a winding type electric double layer capacitor. From the above, it was confirmed that the metal foil or the like coated with the fine fibrous cellulose / nanocarbon dispersion liquid of the present embodiment can be used as an electrode of a battery or a capacitor.
  • Example 10-1 The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 for curing instant cement (manufactured by Toyo Materan Co., Ltd.). Used in place of water. Specifically, 100 parts by mass of instant cement was mixed so that the amount of water contained in the dispersion of fine fibrous cellulose and nanocarbon was 15 parts by mass. After mixing, mortar was obtained by kneading, and the mortar was placed in a mold having a thickness of 2 cm and a length and width of 10 cm, and allowed to stand for 1 day to be cured. As a result, a concrete containing fine fibrous cellulose / nanocarbon was obtained. The obtained concrete was sufficiently hardened and had excellent strength. Moreover, the obtained concrete showed conductivity.
  • Example 10-2> Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13.
  • the fiber) / nanocarbon (graphene) dispersion was used, a fine fibrous cellulose / nanocarbon-containing concrete was obtained.
  • the obtained concrete was sufficiently hardened and had excellent strength. Moreover, the obtained concrete showed conductivity.

Abstract

The present invention addresses the problem of providing a microfibrous cellulose/nanocarbon-containing material having excellent particle dispersion properties. The present invention relates to a method for producing a microfibrous cellulose/nanocarbon-containing material, the method comprising a step for mixing an ionic substituent-containing cellulose fiber and a nanocarbon precursor, and then performing a refining treatment, wherein bubbling is suppressed in the step for performing the refining treatment. In addition, the present invention also relates to a microfibrous cellulose/nanocarbon-containing material produced by said production method.

Description

微細繊維状セルロース・ナノカーボン含有物の製造方法及び微細繊維状セルロース・ナノカーボン含有物Manufacturing method of fine fibrous cellulose / nanocarbon-containing material and fine fibrous cellulose / nanocarbon-containing material
 本発明は、微細繊維状セルロース・ナノカーボン含有物の製造方法及び微細繊維状セルロース・ナノカーボン含有物に関する。 The present invention relates to a method for producing a fine fibrous cellulose / nanocarbon-containing material and a fine fibrous cellulose / nanocarbon-containing material.
 従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、増粘剤や各種組成物への添加剤として微細繊維状セルロースを用いることが検討されている。 Conventionally, cellulose fibers have been widely used in clothing, absorbent articles, paper products, and the like. As the cellulose fibers, in addition to fibrous cellulose having a fiber diameter of 10 μm or more and 50 μm or less, fine fibrous cellulose having a fiber diameter of 1 μm or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are wide-ranging. For example, the use of fine fibrous cellulose as a thickener or an additive to various compositions has been studied.
 例えば、特許文献1及び2には、カーボンナノチューブやグラフェン等のナノカーボン材料の分散性を高める目的で、セルロースナノファイバーを添加した分散液が開示されている。ここでは、ナノカーボン材料の凝集を抑制し、水への分散安定性を向上させることが検討されている。 For example, Patent Documents 1 and 2 disclose a dispersion liquid to which cellulose nanofibers are added for the purpose of enhancing the dispersibility of nanocarbon materials such as carbon nanotubes and graphene. Here, it is studied to suppress the aggregation of the nanocarbon material and improve the dispersion stability in water.
 また、カーボンナノチューブやグラフェン等のナノカーボン材料とセルロースナノファイバーを混合した導電性組成物も知られている(特許文献3~6)。特許文献3には、セルロースナノファイバー、及び、グラフェン、酸化グラフェン及びそれらの誘導体から選ばれる少なくとも一種類の無機粉体を含むことを特徴とする導電性組成物が開示されており、特許文献4には、カルボキシ基で修飾されたセルロースナノファイバーと、カルボキシ基で修飾されたカーボンナノチューブとを含有することを特徴とする導電性複合体が開示されている。また、特許文献5には、平均繊維径500nm以下、平均繊維長500μm以下、結晶化度60%以上の微小繊維とカーボンナノチューブを含有する導電性不織布が開示されている。さらに、特許文献6には、分散媒と、分散媒に分散されたセルロースナノファイバー及びカーボンナノチューブとを含むことを特徴とするナノ材料組成物が開示されており、成形体としたときの表面硬度を向上させることが検討されている。 Further, a conductive composition obtained by mixing nanocarbon materials such as carbon nanotubes and graphene with cellulose nanofibers is also known (Patent Documents 3 to 6). Patent Document 3 discloses a conductive composition containing cellulose nanofibers and at least one kind of inorganic powder selected from graphene, graphene oxide and derivatives thereof, and Patent Document 4 Discloses a conductive composite comprising carboxy group-modified cellulose nanofibers and carboxy group-modified carbon nanotubes. Further, Patent Document 5 discloses a conductive non-woven fabric containing fine fibers having an average fiber diameter of 500 nm or less, an average fiber length of 500 μm or less, and a crystallinity of 60% or more, and carbon nanotubes. Further, Patent Document 6 discloses a nanomaterial composition containing a dispersion medium and cellulose nanofibers and carbon nanotubes dispersed in the dispersion medium, and surface hardness when formed into a molded product. Is being considered to improve.
特開2016-117639号公報Japanese Unexamined Patent Publication No. 2016-11763639 国際公開第2014/115560号International Publication No. 2014/115560 国際公開第2016/043145号International Publication No. 2016/043145 特開2013-211108号公報Japanese Unexamined Patent Publication No. 2013-21108 特開2014-189932号公報Japanese Unexamined Patent Publication No. 2014-189923 特開2018-12763号公報Japanese Unexamined Patent Publication No. 2018-12763
 上述したように、セルロースナノファイバーとナノカーボン材料の混合物が知られているが、従来技術においては、セルロース繊維のナノ化と、カーボン材料のナノ化は別々の工程で行われており、各々がナノ化された後に、混合することが行われていた。また、ナノ化した後のセルロースナノファイバーとナノカーボン材料の混合にも多大なエネルギーが必要とされていた。このため、セルロースナノファイバーとナノカーボン材料の混合物の製造工程は、煩雑かつ高コストであり、結果として製造コストが高くなる傾向があった。 As described above, a mixture of cellulose nanofibers and nanocarbon materials is known, but in the prior art, nanonization of cellulose fibers and nanonization of carbon materials are performed in separate steps, and each of them is performed in separate steps. After being nanonized, mixing was done. In addition, a large amount of energy was required for mixing the cellulose nanofibers and the nanocarbon materials after nano-ization. Therefore, the manufacturing process of the mixture of the cellulose nanofibers and the nanocarbon materials is complicated and expensive, and as a result, the manufacturing cost tends to be high.
 そして、本発明者らは、このような従来技術の課題を検討する中で、従来製法で得られるセルロースナノファイバーとナノカーボン材料の混合物に微粒子を分散させた場合に、微粒子の分散性が不十分な場合があることを突き止めた。 Then, while examining the problems of the prior art, the present inventors have poor dispersibility of the fine particles when the fine particles are dispersed in a mixture of the cellulose nanofibers and the nanocarbon material obtained by the conventional manufacturing method. I found that it might be enough.
 そこで本発明者らは、このような従来技術の課題を解決するために、粒子分散性に優れた微細繊維状セルロース・ナノカーボン含有物を提供することを目的として検討を進めた。 Therefore, in order to solve the problems of the prior art, the present inventors have proceeded with studies for the purpose of providing a fine fibrous cellulose / nanocarbon-containing material having excellent particle dispersibility.
 具体的に、本発明は、以下の構成を有する。 Specifically, the present invention has the following configuration.
[1] イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液に微細化処理を行う工程を含み、
 微細化処理を行う工程では、バブリングが抑制される、微細繊維状セルロース・ナノカーボン含有物の製造方法。
[2] 混合液における溶媒の含有量は、混合液の全質量に対して99質量%以下である、[1]に記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。
[3] 微細化処理を行う工程では、高圧ホモジナイザーを用いて微細化処理を行う、[1]又は[2]に記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。
[4] 微細化処理を行う工程では、冷却によりバブリングが抑制される、[1]~[3]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。
[5] イオン性置換基は、アニオン性基である、[1]~[4]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。
[6] イオン性置換基は、リンオキソ酸基又はリンオキソ酸基に由来する置換基である、[1]~[5]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。
[7] 繊維幅が1000nm以下であり、かつイオン性置換基を有する微細繊維状セルロースと、ナノカーボンとを含有し、
 下記条件aで算出されたチキソトロピックインデックス値(TI値)が2以上である、微細繊維状セルロース・ナノカーボン含有物;
(条件a)
 微細繊維状セルロース・ナノカーボン含有物を水に分散させて、B型粘度計にて23℃、3rpmの回転数で測定した粘度が1000cpsの分散液を得る;B型粘度計にて23℃、60rpmの回転数で測定した該分散液の粘度(η)を測定し、1000/ηの値を微細繊維状セルロース・ナノカーボン含有物のチキソトロピックインデックス値(TI値)とする。
[8] 微細繊維状セルロース・ナノカーボン含有物における溶媒の含有量は、微細繊維状セルロース・ナノカーボン含有物の全質量に対して99質量%以下であり、
 微細繊維状セルロース・ナノカーボン含有物中において、微細繊維状セルロースとナノカーボンは、均一分散している、[7]に記載の微細繊維状セルロース・ナノカーボン含有物。
[9] イオン性置換基は、アニオン性基である、[7]又は[8]に記載の微細繊維状セルロース・ナノカーボン含有物。
[10] イオン性置換基は、リンオキソ酸基又はリンオキソ酸基に由来する置換基である、[7]~[9]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物。
[11] ナノカーボンは、カーボンナノチューブ及びグラフェンからなる群から選択される少なくとも1種である、[7]~[10]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物。
[12] 塗料用である、[7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物。
[13] 樹脂組成物用である、[7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物。
[14] コンクリート材料用である、[7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物。
[15] 糸状もしくは板状の構造体用である、[7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物。
[16] 電磁波シールド用である、[7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物。
[17] 電気化学デバイス用である、[7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物。
[18] [7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物を含む、塗料。
[19] [7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物を含む、樹脂組成物。
[20] 請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物を含む、コンクリート材料。
[21] [7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物を含む、糸状もしくは板状の構造体。
[22] [7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物を含む、電磁波シールド。
[23] [7]~[11]のいずれかに記載の微細繊維状セルロース・ナノカーボン含有物を含む、電気化学デバイス。
[1] A step of performing a miniaturization treatment on a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent is included.
A method for producing a fine fibrous cellulose / nanocarbon-containing material in which bubbling is suppressed in the step of performing the miniaturization treatment.
[2] The method for producing a fine fibrous cellulose / nanocarbon-containing material according to [1], wherein the content of the solvent in the mixed solution is 99% by mass or less with respect to the total mass of the mixed solution.
[3] The method for producing a fine fibrous cellulose / nanocarbon-containing material according to [1] or [2], wherein in the step of performing the micronization treatment, the miniaturization treatment is performed using a high-pressure homogenizer.
[4] The method for producing a fine fibrous cellulose / nanocarbon-containing material according to any one of [1] to [3], wherein bubbling is suppressed by cooling in the step of performing the micronization treatment.
[5] The method for producing a fine fibrous cellulose / nanocarbon-containing material according to any one of [1] to [4], wherein the ionic substituent is an anionic group.
[6] The method for producing a fine fibrous cellulose / nanocarbon-containing material according to any one of [1] to [5], wherein the ionic substituent is a phospholic acid group or a substituent derived from a phosphoxoic acid group.
[7] It contains fine fibrous cellulose having a fiber width of 1000 nm or less and having an ionic substituent, and nanocarbon.
Fine fibrous cellulose / nanocarbon-containing material having a thixotropic index value (TI value) of 2 or more calculated under the following condition a;
(Condition a)
The fine fibrous cellulose / nanocarbon-containing material is dispersed in water to obtain a dispersion having a viscosity of 1000 cps measured at 23 ° C. with a B-type viscometer at a rotation speed of 3 rpm; 23 ° C. with a B-type viscometer. The viscosity (η) of the dispersion measured at a rotation speed of 60 rpm is measured, and a value of 1000 / η is defined as a thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material.
[8] The content of the solvent in the fine fibrous cellulose / nanocarbon-containing material is 99% by mass or less with respect to the total mass of the fine fibrous cellulose / nanocarbon-containing material.
The fine fibrous cellulose / nanocarbon-containing material according to [7], wherein the fine fibrous cellulose and nanocarbon are uniformly dispersed in the fine fibrous cellulose / nanocarbon-containing material.
[9] The fine fibrous cellulose / nanocarbon-containing product according to [7] or [8], wherein the ionic substituent is an anionic group.
[10] The fine fibrous cellulose / nanocarbon-containing product according to any one of [7] to [9], wherein the ionic substituent is a phospholic acid group or a substituent derived from a phosphoxoic acid group.
[11] The fine fibrous cellulose / nanocarbon-containing product according to any one of [7] to [10], wherein the nanocarbon is at least one selected from the group consisting of carbon nanotubes and graphene.
[12] The fine fibrous cellulose / nanocarbon-containing product according to any one of [7] to [11], which is used for paints.
[13] The fine fibrous cellulose / nanocarbon-containing product according to any one of [7] to [11], which is used for a resin composition.
[14] The fine fibrous cellulose / nanocarbon-containing material according to any one of [7] to [11], which is used for concrete materials.
[15] The fine fibrous cellulose / nanocarbon-containing product according to any one of [7] to [11], which is used for a filamentous or plate-like structure.
[16] The fine fibrous cellulose / nanocarbon-containing material according to any one of [7] to [11], which is used for electromagnetic wave shielding.
[17] The fine fibrous cellulose / nanocarbon-containing product according to any one of [7] to [11], which is used for an electrochemical device.
[18] A coating material containing the fine fibrous cellulose / nanocarbon-containing material according to any one of [7] to [11].
[19] A resin composition containing the fine fibrous cellulose / nanocarbon-containing material according to any one of [7] to [11].
[20] A concrete material containing the fine fibrous cellulose / nanocarbon-containing material according to any one of claims 7 to 11.
[21] A filamentous or plate-like structure containing the fine fibrous cellulose / nanocarbon-containing material according to any one of [7] to [11].
[22] An electromagnetic wave shield containing the fine fibrous cellulose / nanocarbon-containing material according to any one of [7] to [11].
[23] An electrochemical device containing the fine fibrous cellulose / nanocarbon-containing material according to any one of [7] to [11].
 本発明の製造方法によれば、粒子分散性に優れた微細繊維状セルロース・ナノカーボン含有物を得ることができる。 According to the production method of the present invention, a fine fibrous cellulose / nanocarbon-containing material having excellent particle dispersibility can be obtained.
図1は、微細化処理装置の構成の一例を説明する概略図である。FIG. 1 is a schematic view illustrating an example of the configuration of a miniaturization processing device. 図2は、リンオキソ酸基を有する微細繊維状セルロース分散液に対するNaOH滴下量とpHの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise to the fine fibrous cellulose dispersion having a phosphorus oxo acid group and the pH. 図3は、カルボキシ基を有する微細繊維状セルロース分散液に対するNaOH滴下量とpHの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the amount of NaOH added dropwise to the fine fibrous cellulose dispersion having a carboxy group and the pH.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments or specific examples, but the present invention is not limited to such embodiments.
(微細繊維状セルロース・ナノカーボン含有物の製造方法)
 本実施形態は、微細繊維状セルロースとナノカーボンを含む微細繊維状セルロース・ナノカーボン含有物の製造方法である。本実施形態の微細繊維状セルロース・ナノカーボン含有物の製造方法は、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液に微細化処理を行う工程を含む。そして、微細化処理を行う工程では、バブリングが抑制されている。なお、本明細書において、微細繊維状セルロースは、繊維幅が1000nm以下の繊維状セルロースを言う。また、本明細書において、ナノカーボンは、ナノカーボン材料やカーボンナノ粒子と呼ぶこともある。本明細書において、ナノカーボン前駆体とは、微細化(ナノ化)する前のカーボン材料である。
(Manufacturing method of fine fibrous cellulose / nanocarbon-containing material)
The present embodiment is a method for producing a fine fibrous cellulose / nanocarbon-containing product containing fine fibrous cellulose and nanocarbon. The method for producing a fine fibrous cellulose / nanocarbon-containing material of the present embodiment includes a step of performing a micronization treatment on a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent. Then, bubbling is suppressed in the step of performing the miniaturization process. In the present specification, the fine fibrous cellulose refers to fibrous cellulose having a fiber width of 1000 nm or less. Further, in the present specification, nanocarbon may be referred to as a nanocarbon material or carbon nanoparticles. In the present specification, the nanocarbon precursor is a carbon material before miniaturization (nano-miniaturization).
 本実施形態の微細繊維状セルロース・ナノカーボン含有物の製造方法においては、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを混合して得られる混合液に、微細化処理を行う工程を含んでおり、この微細化処理を行う工程では、バブリングが抑制されている。このような製造工程を経ることにより、本実施形態の製造方法で製造された微細繊維状セルロース・ナノカーボン含有物は優れた粒子分散性を発揮する。なお、微細繊維状セルロース・ナノカーボン含有物における粒子分散性は、例えば、微細繊維状セルロース・ナノカーボン含有物を全乾燥固形分濃度が0.2質量%の分散液とし、そこに、ガラスビーズ等を添加した際のガラスビーズの沈降の有無により評価できる。ガラスビーズの沈降がわずかであるか、又はガラスビーズの沈降が全く見られない場合に、微細繊維状セルロースとナノカーボン材料の分散性が良好であると判定できる。 In the method for producing a fine fibrous cellulose / nanocarbon-containing material of the present embodiment, a mixed solution obtained by mixing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent is subjected to a micronization treatment. In the step of performing this miniaturization treatment, bubbling is suppressed. By going through such a manufacturing process, the fine fibrous cellulose / nanocarbon-containing material produced by the manufacturing method of the present embodiment exhibits excellent particle dispersibility. Regarding the particle dispersibility in the fine fibrous cellulose / nanocarbon-containing material, for example, the fine fibrous cellulose / nanocarbon-containing material is used as a dispersion liquid having a total dry solid content concentration of 0.2% by mass, and glass beads are prepared therein. It can be evaluated by the presence or absence of sedimentation of the glass beads when the above is added. When the settling of the glass beads is slight or no settling of the glass beads is observed, it can be determined that the dispersibility of the fine fibrous cellulose and the nanocarbon material is good.
 また、本実施形態の微細繊維状セルロース・ナノカーボン含有物は上記製造方法で製造されるものであるため、各材料の特性が損なわれることなく発揮される。微細繊維状セルロース・ナノカーボン含有物における各材料の特性は、例えば、微細繊維状セルロース・ナノカーボン含有物のTI値を算出すること等で評価できる。 Further, since the fine fibrous cellulose / nanocarbon-containing material of the present embodiment is produced by the above-mentioned production method, it is exhibited without impairing the characteristics of each material. The characteristics of each material in the fine fibrous cellulose / nanocarbon-containing material can be evaluated by, for example, calculating the TI value of the fine fibrous cellulose / nanocarbon-containing material.
 微細化処理工程に供される混合液における溶媒の含有量は、混合液の全質量に対して99質量%以下であることが好ましく、98質量%以下であることがより好ましい。なお、微細化処理工程に供される混合液における溶媒の含有量は、混合液の全質量に対して95質量%以下であってもよく、90質量%以下であってもよい。このように、微細化処理工程に供される混合液の溶媒含有率を低くし、固形分含有率を高くすることで、微細繊維状セルロースとナノカーボンがより均一に分散した微細繊維状セルロース・ナノカーボン含有物が得られる。その結果、本実施形態の製造方法で製造された微細繊維状セルロース・ナノカーボン含有物は優れた粒子分散性を発揮することができる。また、微細化処理工程に供される混合液の溶媒含有率を低くし、固形分含有率を高くすることで、微細繊維状セルロース・ナノカーボン含有物の生産効率も高めることができる。微細化処理工程に供される混合液における溶媒の含有量の下限は、特に限定されないが、例えば、混合液の全質量に対して70質量%以上である。 The content of the solvent in the mixed solution to be subjected to the miniaturization treatment step is preferably 99% by mass or less, more preferably 98% by mass or less, based on the total mass of the mixed solution. The content of the solvent in the mixed solution to be subjected to the miniaturization treatment step may be 95% by mass or less, or 90% by mass or less, based on the total mass of the mixed solution. In this way, by lowering the solvent content of the mixed solution used in the micronization treatment step and increasing the solid content content, fine fibrous cellulose in which fine fibrous cellulose and nanocarbon are more uniformly dispersed. A nanocarbon-containing material is obtained. As a result, the fine fibrous cellulose / nanocarbon-containing material produced by the production method of the present embodiment can exhibit excellent particle dispersibility. Further, by lowering the solvent content of the mixed solution used in the miniaturization treatment step and increasing the solid content content, the production efficiency of the fine fibrous cellulose / nanocarbon-containing product can be increased. The lower limit of the solvent content in the mixed solution to be subjected to the miniaturization treatment step is not particularly limited, but is, for example, 70% by mass or more with respect to the total mass of the mixed solution.
 本実施形態の製造方法においては、微細化処理を行う工程(以下、微細化処理工程とも言う)は、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを混合した後に行われる。すなわち、微細化処理は、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液(分散液)に対して行われる。なお、本明細書における微細化処理は、ナノ化処理と同義である。 In the production method of the present embodiment, the step of performing the miniaturization treatment (hereinafter, also referred to as the miniaturization treatment step) is performed after mixing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent. It is said. That is, the miniaturization treatment is performed on a mixed solution (dispersion solution) containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent. The miniaturization treatment in the present specification is synonymous with the nano-processing.
 従来、微細繊維状セルロース・ナノカーボン含有物の製造方法においては、まず、セルロース繊維の微細化(ナノ化)と、カーボン材料の微細化(ナノ化)を別工程にて行った後、各工程で得られた微細繊維状セルロースとナノカーボンを混合していた。すなわち、いずれの材料もナノ化された後に混合されていた。ここで、各材料をナノ化した場合、ナノ化したそれぞれの材料を混合するまでに分散安定性が維持されない場合もあり、各材料の均一分散性には問題があった。また、ナノ化した各材料を混合する際にも高エネルギーが必要とされ、さらには、微細繊維状セルロースとナノカーボンをそれぞれ得る工程においても非常に高いエネルギーが必要とされるため、微細繊維状セルロース・ナノカーボン含有物を得るために要するエネルギーは多大なものであった。 Conventionally, in the method for producing a fine fibrous cellulose / nanocarbon-containing material, first, the cellulose fibers are miniaturized (nano-sized) and the carbon material is miniaturized (nano-sized) in separate steps, and then each step is performed. The fine fibrous cellulose obtained in 1 and nanocarbon were mixed. That is, all the materials were mixed after being nano-sized. Here, when each material is nano-sized, the dispersion stability may not be maintained until the nano-sized materials are mixed, and there is a problem in the uniform dispersibility of each material. In addition, high energy is required when mixing each nano-sized material, and further, very high energy is required in the process of obtaining fine fibrous cellulose and nanocarbon, respectively, so that fine fibrous material is required. The energy required to obtain the cellulose / nanocarbon-containing material was enormous.
 しかしながら、本実施形態においては、微細化処理工程はイオン性置換基を有するセルロース繊維と、ナノカーボン前駆体とを混合した後に行われるため、高エネルギーが要求される微細化処理工程の回数を大幅に少なくすることが可能となる。これにより、微細繊維状セルロース・ナノカーボン含有物の製造効率を格段に高めることができる。また、本実施形態においては、微細化処理工程がイオン性置換基を有するセルロース繊維と、ナノカーボン前駆体とを混合した後に行われるため、ナノ化された各材料の分散性が高く、微細繊維状セルロース・ナノカーボン含有物は優れた粒子分散性を発揮する。また、ナノ化した各材料を混合する工程が省かれることにより、ナノ化した各材料の損傷が抑制され、結果として、各材料の特性が十分に発揮され得る。 However, in the present embodiment, since the micronization treatment step is performed after mixing the cellulose fiber having an ionic substituent and the nanocarbon precursor, the number of miniaturization treatment steps requiring high energy is significantly increased. It is possible to reduce the amount. As a result, the production efficiency of the fine fibrous cellulose / nanocarbon-containing material can be significantly improved. Further, in the present embodiment, since the micronization treatment step is performed after mixing the cellulose fiber having an ionic substituent and the nanocarbon precursor, the dispersibility of each nano-sized material is high, and the fine fiber. The cellulose / nanocarbon-containing material exhibits excellent particle dispersibility. Further, by omitting the step of mixing the nano-sized materials, damage to each nano-sized material can be suppressed, and as a result, the characteristics of each material can be fully exhibited.
 微細化処理工程の前には、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを混合する工程が設けられる。ここでは、イオン性置換基を有するセルロース繊維と溶媒を含む混合液(分散液)に、ナノカーボン前駆体もしくはナノカーボン前駆体の分散液を添加し、混合される。混合工程における、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体の混合比率(質量比)は、1:99~99:1であることが好ましく、5:95~95:5であることがより好ましく、10:90~90:10であることがさらに好ましい。 Before the miniaturization treatment step, a step of mixing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent is provided. Here, a nanocarbon precursor or a dispersion of the nanocarbon precursor is added to a mixed solution (dispersion solution) containing a cellulose fiber having an ionic substituent and a solvent, and the mixture is mixed. The mixing ratio (mass ratio) of the cellulose fiber having an ionic substituent and the nanocarbon precursor in the mixing step is preferably 1:99 to 99: 1, and is preferably 5:95 to 95: 5. Is more preferable, and 10:90 to 90:10 is even more preferable.
 微細化処理工程においては、たとえば微細化処理装置を用いることができる。微細化処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記微細化処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー及び超高圧ホモジナイザーからなる群から選択される少なくとも1種を用いることが好ましく、高圧ホモジナイザーを用いることがより好ましい。中でも、株式会社美粒製の高圧ホモジナイザー(Beryu-Mini)を用いることが好ましい。 In the miniaturization processing step, for example, a miniaturization processing apparatus can be used. The micronization processing device is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, and a twin shaft. A kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, or a beater can be used. Among the above-mentioned miniaturization processing devices, it is preferable to use at least one selected from the group consisting of a high-speed defibrator, a high-pressure homogenizer, and an ultra-high-pressure homogenizer, which are less affected by crushed media and less likely to cause contamination. It is more preferable to use it. Above all, it is preferable to use a high-pressure homogenizer (Beryu-Mini) manufactured by Bitsubu Co., Ltd.
 微細化処理工程においては、イオン性置換基を有するセルロース繊維とナノカーボン前駆体を、分散媒により希釈してスラリー状にする。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。 In the miniaturization treatment step, the cellulose fiber having an ionic substituent and the nanocarbon precursor are diluted with a dispersion medium to form a slurry. As the dispersion medium, one or more selected from water and an organic solvent such as a polar organic solvent can be used. The polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like. Examples of the ketones include acetone, methyl ethyl ketone (MEK) and the like. Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like. Examples of the esters include ethyl acetate, butyl acetate and the like. Examples of the aprotonic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
 微細化処理時の固形分濃度(セルロース繊維とナノカーボン前駆体の合計濃度)は適宜設定できる。また、微細化処理時の分散液中には、例えば水素結合性のある尿素などのイオン性置換基導入セルロース繊維を得る際に用いられる各種固形分や、カーボン前駆体に含まれる各種固形分が含まれていてもよい。 The solid content concentration (total concentration of cellulose fibers and nanocarbon precursors) during the miniaturization treatment can be set as appropriate. Further, in the dispersion liquid during the miniaturization treatment, various solids used for obtaining ionic substituent-introduced cellulose fibers such as urea having hydrogen bonding properties and various solids contained in the carbon precursor are contained in the dispersion. It may be included.
 本実施形態における微細化処理工程では、バブリングが抑制されており、このバブリングの抑制により、セルロース繊維の微細化(ナノ化)と、カーボン材料の微細化(ナノ化)が同時に、かつエネルギー効率よく行われる。また、微細化処理工程においてバブリングが抑制されることにより、ナノ化した各材料の損傷をより効果的に抑制することが可能となり、結果として、各材料の分散性が高く、かつ粒子分散性に優れ、加えて各材料の特性が十分に発揮され得る微細繊維状セルロース・ナノカーボン含有物が得られる。 In the miniaturization treatment step of the present embodiment, bubbling is suppressed, and by suppressing the bubbling, the miniaturization (nano-sized) of the cellulose fiber and the miniaturization (nano-sized) of the carbon material are simultaneously performed and energy efficient. Will be done. Further, by suppressing bubbling in the miniaturization treatment step, it is possible to more effectively suppress damage to each nano-sized material, and as a result, the dispersibility of each material is high and the particle dispersibility is improved. A fine fibrous cellulose / nanocarbon-containing material that is excellent and can fully exhibit the characteristics of each material can be obtained.
 本明細書において、バブリングとは、例えば、微細化処理工程において剪断力が作用する場に局所的な圧力差や速度差が存在することにより、溶媒中に溶解している空気や溶媒中に残留している空気が気泡となって発生する現象である。バブリングの発生により、微細化処理工程ではより多大なエネルギーが必要となったり、セルロース繊維とナノカーボン前駆体の微細化が不十分となるか、もしくは不均一となる恐れが生じる。これは、バブリングが起こっている箇所では、溶媒がセルロース繊維やナノカーボン前駆体に触れておらず、微細化(特に、解繊・剥離)を起こすために必須な、“濡れ”が起こらないためであるものと考えられる。さらに、バブリング箇所は高圧ポンプ等の押し込みに対して圧縮抵抗を示すため、機械の破損に繋がる恐れもある。また、バブリングにより発生した気泡により、各材料が意図せずに酸化する恐れもある。本実施形態においては、微細化処理工程におけるバブリングを積極的に抑制することで、微細化処理工程で要されるエネルギーを抑制することができ、さらに、セルロース繊維とナノカーボン前駆体の微細化をより効率的、かつ精度高く行うことができる。また、バブリングを抑制することで、微細繊維状セルロースとナノカーボンの酸化を抑制することもできる。 In the present specification, bubbling means, for example, residual in air dissolved in a solvent or in a solvent due to the existence of a local pressure difference or velocity difference in a place where a shearing force acts in a miniaturization processing step. This is a phenomenon in which the air is generated as bubbles. The occurrence of bubbling may require more energy in the micronization process, may result in inadequate or non-uniform miniaturization of the cellulose fibers and nanocarbon precursors. This is because the solvent does not touch the cellulose fibers or nanocarbon precursors where bubbling occurs, and "wetting", which is essential for miniaturization (particularly defibration / peeling), does not occur. Is considered to be. Further, since the bubbling portion shows compression resistance against pushing of a high-pressure pump or the like, it may lead to damage to the machine. In addition, each material may be unintentionally oxidized due to air bubbles generated by bubbling. In the present embodiment, by positively suppressing bubbling in the miniaturization treatment step, the energy required in the miniaturization treatment step can be suppressed, and further, the cellulose fibers and the nanocarbon precursor can be miniaturized. It can be performed more efficiently and with high accuracy. Further, by suppressing bubbling, it is possible to suppress the oxidation of fine fibrous cellulose and nanocarbon.
 微細化処理を行う工程では、冷却によりバブリングを抑制することが好ましい。すなわち、バブリング抑制機構が冷却機構であることが好ましく、微細化処理装置は冷却装置もしくは冷却機構を備えることが好ましい。すなわち、本実施形態の製造方法は、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液に微細化処理を行う工程を含み、微細化処理を行う工程では、冷却が行われることが好ましい。また、冷却は、微細化処理における圧力開放が起こった後になされても良いが、背圧が掛かった状態、すなわちイオン性置換基を有するセルロース繊維と、ナノカーボン前駆体の微細化が起こっている最中に行われることが好ましい。 In the process of performing the miniaturization process, it is preferable to suppress bubbling by cooling. That is, the bubbling suppression mechanism is preferably a cooling mechanism, and the miniaturization processing device is preferably provided with a cooling device or a cooling mechanism. That is, the production method of the present embodiment includes a step of performing a miniaturization treatment on a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent, and in the step of performing the miniaturization treatment, It is preferable that cooling is performed. Further, the cooling may be performed after the pressure is released in the micronization treatment, but the back pressure is applied, that is, the cellulose fibers having ionic substituents and the nanocarbon precursor are miniaturized. It is preferably done in the middle.
 冷却機構としては、例えば、微細化処理装置の外周に伝熱媒体が流通する外套(シェル)もしくは外管が挙げられる。この場合、微細化処理装置の内周側(内管)にセルロース繊維とナノカーボン前駆体の分散液を流通させ、微細化処理を施す際に、外套(シェル)もしくは外管に伝熱媒体を流通させることで分散液を冷却できる。なお、セルロース繊維とナノカーボン前駆体の分散液を流通させる内管は、伝熱管であることが好ましい。これにより、効率よく分散液の冷却を行うことができる。 Examples of the cooling mechanism include a shell or an outer tube through which a heat transfer medium circulates on the outer periphery of the miniaturization processing device. In this case, the dispersion liquid of the cellulose fiber and the nanocarbon precursor is circulated on the inner peripheral side (inner tube) of the miniaturization treatment device, and when the miniaturization treatment is performed, the heat transfer medium is applied to the outer shell or the outer tube. The dispersion can be cooled by circulating it. The inner tube through which the dispersion liquid of the cellulose fiber and the nanocarbon precursor is circulated is preferably a heat transfer tube. As a result, the dispersion liquid can be efficiently cooled.
 バブリング抑制機構は、微細化処理装置に備えられるジェット流発生部の下流側に備えられることが好ましい。ジェット流発生部には、ジェット流発生機構が備えられていることが好ましく、ジェット流発生部にはジェット流発生機構として、例えば、ダイヤモンドノズルやスリットなどを設けることで、流路径を流れ方向に急激あるいは漸次的に細くする機構が設けられていてもよい。図1に示されるように、微細化処理装置100は、ジェット流発生部10と、このジェット流発生部10の下流側に設けられるバブリング抑制部20とを備える。バブリング抑制部20は、冷却可能な配管(外套)を備えていることが好ましく、このような配管(外套)が分散液が流通する内管を覆うように配備されている。そして、配管(外套)に例えば冷却水等を導入することで、内管内を流通する分散液を冷却することができる。 It is preferable that the bubbling suppression mechanism is provided on the downstream side of the jet flow generating portion provided in the miniaturization processing device. It is preferable that the jet flow generating portion is provided with a jet flow generating mechanism, and the jet flow generating portion is provided with, for example, a diamond nozzle or a slit as a jet flow generating mechanism so that the flow path diameter is changed in the flow direction. A mechanism for rapidly or gradually thinning may be provided. As shown in FIG. 1, the miniaturization processing device 100 includes a jet flow generating unit 10 and a bubbling suppressing unit 20 provided on the downstream side of the jet flow generating unit 10. The bubbling suppressing unit 20 is preferably provided with a coolable pipe (cloak), and such a pipe (cloak) is arranged so as to cover an inner pipe through which the dispersion liquid flows. Then, by introducing, for example, cooling water or the like into the pipe (cloak), the dispersion liquid flowing in the inner pipe can be cooled.
 バブリング抑制部20に設けられる冷却可能な配管の長さL(図1におけるL)は、1mm以上1000mm以下であることが好ましく、10mm以上750mm以下であることがより好ましく、100mm以上500mm以下であることがさらに好ましい。冷却可能な配管の長さ(L)を上記範囲内とすることにより、内管内を流通する分散液を十分に冷却することが容易となり、より効果的にバブリングの発生を抑制することができる。 The length L (L in FIG. 1) of the coolable pipe provided in the bubbling suppressing portion 20 is preferably 1 mm or more and 1000 mm or less, more preferably 10 mm or more and 750 mm or less, and 100 mm or more and 500 mm or less. Is even more preferable. By setting the length (L) of the pipe that can be cooled within the above range, it becomes easy to sufficiently cool the dispersion liquid flowing in the inner pipe, and the occurrence of bubbling can be suppressed more effectively.
 また、微細化処理装置100において、バブリング抑制部20の上流末端と、ジェット流発生部10の下流末端の間には所定距離が設けられていることが好ましい。図1に示されるように、ジェット流発生部10とバブリング抑制部20は連結しておらず、ジェット流発生部10の下流末端と、バブリング抑制部20の上流末端の間には所定距離(D)が設けられることが好ましい。この所定距離(D)は、1mm以上500mm以下であることが好ましく、10mm以上300mm以下であることがより好ましく、20mm以上200mm以下であることがさらに好ましい。所定距離(D)を設けることにより、より効果的にバブリングの発生を抑制することができる。 Further, in the miniaturization processing apparatus 100, it is preferable that a predetermined distance is provided between the upstream end of the bubbling suppressing unit 20 and the downstream end of the jet flow generating unit 10. As shown in FIG. 1, the jet flow generation unit 10 and the bubbling suppression unit 20 are not connected, and a predetermined distance (D) is between the downstream end of the jet flow generation unit 10 and the upstream end of the bubbling suppression unit 20. ) Is preferably provided. The predetermined distance (D) is preferably 1 mm or more and 500 mm or less, more preferably 10 mm or more and 300 mm or less, and further preferably 20 mm or more and 200 mm or less. By providing the predetermined distance (D), the occurrence of bubbling can be suppressed more effectively.
 バブリング抑制部20の配管(外套)に冷却水を導入する場合、冷却水の温度は、40℃以下であることが好ましく、30℃以下であることがより好ましく、20℃以下であることがさらに好ましい。冷却水の流量は1L/min以上であることが好ましく、5L/min以上であることがより好ましく、10L/min以上であることがさらに好ましい。なお、バブリング抑制部20を通過した後の、冷却後の分散液の温度は、60℃以下であることが好ましく、40℃以下であることがより好ましく、20℃以下であることがさらに好ましい。 When the cooling water is introduced into the pipe (cloak) of the bubbling suppression unit 20, the temperature of the cooling water is preferably 40 ° C. or lower, more preferably 30 ° C. or lower, and further preferably 20 ° C. or lower. preferable. The flow rate of the cooling water is preferably 1 L / min or more, more preferably 5 L / min or more, and further preferably 10 L / min or more. The temperature of the dispersion liquid after cooling after passing through the bubbling suppressing unit 20 is preferably 60 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 20 ° C. or lower.
 バブリング抑制機構では、ジェット流発生部で分散液にかかる圧力(P)に対して、少なくとも5%以上(0.05P以上)の圧力(背圧)がかかることが好ましく、10%以上(0.1P以上)の圧力がかかることがより好ましく、20%以上(0.2P以上)の圧力がかかることがさらに好ましい。また、バブリングは超高圧で処理するほど起こりやすいため、ジェット流発生部の圧力を低圧~高圧に制御することもまたバブリング抑制に効果的である。ジェット流発生部の処理圧力は、1MPa以上200MPa以下が好ましく、10MPa以上170MPa以下がより好ましく、20MPa以上150MPa以下がさらに好ましい。 In the bubbling suppression mechanism, it is preferable that a pressure (back pressure) of at least 5% or more (0.05P or more) is applied to the pressure (P) applied to the dispersion liquid at the jet flow generating portion, and 10% or more (0. It is more preferable that a pressure of 1 P or more is applied, and it is further preferable that a pressure of 20% or more (0.2 P or more) is applied. Further, since bubbling is more likely to occur when the treatment is performed at an ultra-high pressure, controlling the pressure of the jet flow generating portion from low pressure to high pressure is also effective in suppressing bubbling. The processing pressure of the jet flow generating portion is preferably 1 MPa or more and 200 MPa or less, more preferably 10 MPa or more and 170 MPa or less, and further preferably 20 MPa or more and 150 MPa or less.
 なお、バブリング抑制機構としては、特許第5791142号公報に記載の機構を参考にし、適宜採用することが好ましい。また、微細化処理装置についても、特許第5791142号公報に記載の乳化分散装置や多段圧力制御装置等を採用することができる。 As the bubbling suppression mechanism, it is preferable to refer to the mechanism described in Japanese Patent No. 5791142 and appropriately adopt it. Further, as the miniaturization processing device, the emulsification dispersion device, the multi-stage pressure control device, and the like described in Japanese Patent No. 5791142 can be adopted.
 以上のように、バブリングが抑制された微細化処理工程でセルロース繊維とカーボン材料の微細化を同時に行うことにより、微細繊維状セルロースとナノカーボンを含む微細繊維状セルロース・ナノカーボン分散液が得られる。本明細書では、微細化処理工程を経て得られる微細繊維状セルロース・ナノカーボン分散液も微細繊維状セルロース・ナノカーボン含有物に包含されている。また、微細繊維状セルロース・ナノカーボン含有物には微細繊維状セルロース・ナノカーボン分散液を濃縮した濃縮物や固形物も含まれる。 As described above, by simultaneously refining the cellulose fiber and the carbon material in the micronization treatment step in which bubbling is suppressed, a fine fibrous cellulose / nanocarbon dispersion liquid containing fine fibrous cellulose and nanocarbon can be obtained. .. In the present specification, the fine fibrous cellulose / nanocarbon dispersion obtained through the micronization treatment step is also included in the fine fibrous cellulose / nanocarbon-containing material. The fine fibrous cellulose / nanocarbon-containing material also includes a concentrate or a solid product obtained by concentrating the fine fibrous cellulose / nanocarbon dispersion.
(セルロース繊維)
 上述した微細化処理工程に供されるセルロース繊維は微細化処理前の繊維原料である。セルロース繊維は粗大繊維であり、繊維幅は1000nmより大きい。また、セルロース繊維の平均繊維幅は、1000nmより大きい。
(Cellulose fiber)
The cellulose fiber used in the above-mentioned miniaturization treatment step is a fiber raw material before the miniaturization treatment. Cellulose fibers are coarse fibers, and the fiber width is larger than 1000 nm. The average fiber width of the cellulose fibers is larger than 1000 nm.
 イオン性置換基を有するセルロース繊維は、セルロースを含む繊維原料から得られる。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく微細化処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。 Cellulose fibers having an ionic substituent are obtained from a fiber raw material containing cellulose. The fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of pulp include wood pulp, non-wood pulp, and deinked pulp. The wood pulp is not particularly limited, but is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP). ) And chemical pulp such as oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP) and chemiground wood pulp (CGP), crushed wood pulp (GP) and thermomechanical pulp (TMP, BCTMP), etc. Examples include mechanical pulp. The non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse. The deinking pulp is not particularly limited, and examples thereof include deinking pulp made from recycled paper. As the pulp of the present embodiment, one of the above types may be used alone, or two or more types may be mixed and used. Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability. Further, among wood pulps, it is possible to obtain long-fiber fine fibrous cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose during the micronization treatment, and having a small decomposition of cellulose in the pulp and a large axial ratio. From the viewpoint, for example, chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable.
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。 As the fiber raw material containing cellulose, for example, cellulose contained in ascidians and bacterial cellulose produced by acetic acid bacteria can be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
 セルロース繊維は、イオン性置換基を有する。イオン性置換基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。本実施形態においては、イオン性置換基としてアニオン性基を有することが特に好ましい。 Cellulose fiber has an ionic substituent. The ionic substituent can include, for example, either one or both of an anionic group and a cationic group. In this embodiment, it is particularly preferable to have an anionic group as the ionic substituent.
 アニオン性基としては、たとえばリンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、スルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)、ザンテート基、ホスホン基、ホスフィン基、カルボキシアルキル基(カルボキシメチル基を含む)等を挙げることができる。スルホン基またはスルホン基に由来する置換基が、エステル結合を介して導入されている場合、同置換基を、硫黄オキソ酸基または硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)ということもある。中でも、アニオン性基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、カルボキシ基、カルボキシメチル基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種であることが好ましく、リンオキソ酸基、リンオキソ酸基に由来する置換基、カルボキシ基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種であることがより好ましく、リンオキソ酸基であることが特に好ましい。イオン性置換基としてのカチオン性基としては、たとえばアンモニウム基、ホスホニウム基、スルホニウム基等を挙げることができる。中でもカチオン性基はアンモニウム基であることが好ましい。 Examples of the anionic group include a phosphoric acid group or a substituent derived from a phosphoric acid group (sometimes simply referred to as a phosphoric acid group), a carboxy group or a substituent derived from a carboxy group (sometimes simply referred to as a carboxy group), and the like. Examples thereof include a sulfone group or a substituent derived from the sulfone group (sometimes referred to simply as a sulfon group), a zantate group, a phosphone group, a phosphine group, a carboxyalkyl group (including a carboxymethyl group) and the like. When a sulfone group or a substituent derived from a sulfone group is introduced via an ester bond, the substituent is referred to as a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (simply referred to as a sulfur oxo acid group). There is also). Among them, the anionic group is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a carboxymethyl group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group. It is preferably a species, and is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group. Is more preferable, and a phosphorusoxo acid group is particularly preferable. Examples of the cationic group as the ionic substituent include an ammonium group, a phosphonium group, a sulfonium group and the like. Of these, the cationic group is preferably an ammonium group.
 リンオキソ酸基又はリンオキソ酸基に由来する置換基は、例えば下記式(1)で表される置換基である。各セルロース繊維には、下記式(1)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(1)で表される置換基はそれぞれ同一であっても異なっていてもよい。 The phosphate group or the substituent derived from the phosphorusoxo acid group is, for example, a substituent represented by the following formula (1). A plurality of types of substituents represented by the following formula (1) may be introduced into each cellulose fiber. In this case, the substituents represented by the following formula (1) to be introduced may be the same or different.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。n個あるαおよびα’のうち少なくとも1つはOであり、残りはR又はORである。なお、各αおよびα’の全てがOであっても構わない。n個あるαは全て同じでも、それぞれ異なっていてもよい。βb+は有機物又は無機物からなる1価以上の陽イオンである。 In the formula (1), a, b and n are natural numbers, and m is an arbitrary number (where a = b × m). At least one of the n α and α'is O and the rest are R or OR. It is also possible that all of each α and α'are O −. The n αs may all be the same or different. β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
 Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、式(1)においては、nは1であることが好ましい。 R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively. A hydrogen group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or an inducing group thereof. Further, in the formula (1), n is preferably 1.
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。 Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited. Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited. Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like. Examples of the unsaturated-linear hydrocarbon group include a vinyl group, an allyl group and the like, but are not particularly limited. Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited. Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like. Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、カルボキシレート基(-COO)、ヒドロキシ基、アミノ基及びアンモニウム基などの官能基から選択される少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、セルロース繊維の収率を高めることもできる。なお、式(1)中にRが複数個存在する場合やセルロース繊維に上記式(1)で表される複数種の置換基が導入される場合には、複数存在するRはそれぞれ同一であっても異なっていてもよい。 As the derivative groups in R, to the main chain or side chain of the various hydrocarbon group, a carboxy group, a carboxylate group (-COO -), hydroxy group, selected from the functional groups such as an amino group and an ammonium group Examples thereof include functional groups in which at least one type is added or substituted, but the functional group is not particularly limited. The number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R to the above range, the molecular weight of the phosphorus oxo acid group can be set to an appropriate range, permeation into the fiber raw material is facilitated, and the yield of cellulose fiber is increased. You can also. When a plurality of Rs are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the cellulose fiber, the plurality of Rs present are the same. May be different.
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、式(1)中にβb+が複数個存在する場合やセルロース繊維に上記式(1)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or higher cations composed of organic substances include organic onium ions. Examples of the organic onium ion include an organic ammonium ion and an organic phosphonium ion. Examples of the organic ammonium ion include an aliphatic ammonium ion and an aromatic ammonium ion, and examples of the organic phosphonium ion include an aliphatic phosphonium ion and an aromatic phosphonium ion. Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions. When a plurality of β b + are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the cellulose fiber, the plurality of β b + present are the same. It may be different. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing β b + is heated and is easily industrially used, but is not particularly limited. ..
 リンオキソ酸基又はリンオキソ酸基に由来する置換基としては、より具体的には、リン酸基(-PO)、リン酸基の塩、亜リン酸基(ホスホン酸基)(-PO)、亜リン酸基(ホスホン酸基)の塩が挙げられる。また、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、リン酸基が縮合した基(例えば、ピロリン酸基)、ホスホン酸が縮合した基(例えば、ポリホスホン酸基)、リン酸エステル基(例えば、モノメチルリン酸基、ポリオキシエチレンアルキルリン酸基)、アルキルホスホン酸基(例えば、メチルホスホン酸基)などであってもよい。 Specific examples of the phosphorous acid group or the substituent derived from the phosphorous acid group include a phosphoric acid group (-PO 3 H 2 ), a salt of a phosphorous acid group, and a phosphorous acid group (phosphonic acid group) (-PO). 2 H 2), and salts of phosphorous acid (phosphonic acid group). Further, the phosphoric acid group or the substituent derived from the phosphoric acid group includes a group in which a phosphoric acid group is condensed (for example, a pyrophosphate group), a group in which a phosphonic acid is condensed (for example, a polyphosphonic acid group), and a phosphoric acid ester group (for example, a phosphoric acid ester group). For example, it may be a monomethylphosphoric acid group, a polyoxyethylene alkylphosphoric acid group), an alkylphosphonic acid group (for example, a methylphosphonic acid group) or the like.
 また、スルホン基(スルホン基又はスルホン基に由来する置換基)は、例えば下記式(2)で表される置換基である。各セルロース繊維には、下記式(2)で表される置換基が複数種導入されていてもよい。この場合、複数導入される下記式(2)で表される置換基はそれぞれ同一であっても異なっていてもよい。 Further, the sulfone group (sulfo group or substituent derived from the sulfone group) is, for example, a substituent represented by the following formula (2). A plurality of types of substituents represented by the following formula (2) may be introduced into each cellulose fiber. In this case, the substituents represented by the following formula (2) to be introduced may be the same or different.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記構造式中、bおよびnは自然数であり、pは0または1であり、mは任意の数である(ただし、1=b×mである)。なお、nが2以上である場合、複数あるpは同一の数であってもよく、異なる数であってもよい。上記構造式中、βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機ホスホニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機ホスホニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、セルロース繊維に上記式(2)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 In the above structural formula, b and n are natural numbers, p is 0 or 1, and m is an arbitrary number (where 1 = b × m). When n is 2 or more, a plurality of ps may be the same number or different numbers. In the above structural formula, β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or higher cations composed of organic substances include organic onium ions. Examples of the organic onium ion include an organic ammonium ion and an organic phosphonium ion. Examples of the organic ammonium ion include an aliphatic ammonium ion and an aromatic ammonium ion, and examples of the organic phosphonium ion include an aliphatic phosphonium ion and an aromatic phosphonium ion. Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions. When a plurality of types of substituents represented by the above formula (2) are introduced into the cellulose fiber, the plurality of β b + existing may be the same or different. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing β b + is heated and is easily industrially used, but is not particularly limited. ..
 セルロース繊維に対するイオン性置換基の導入量は、たとえばセルロース繊維1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、セルロース繊維に対するイオン性置換基の導入量は、たとえばセルロース繊維1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gにおける分母は、イオン性置換基の対イオンが水素イオン(H)であるときのセルロース繊維の質量を示す。イオン性置換基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、セルロース繊維の安定性を高めることが可能となる。 The amount of the ionic substituent introduced into the cellulose fiber is, for example, preferably 0.05 mmol / g or more, more preferably 0.10 mmol / g or more, and 0.20 mmol / g per 1 g (mass) of the cellulose fiber. The above is more preferable, 0.40 mmol / g or more is more preferable, and 0.60 mmol / g or more is particularly preferable. The amount of the ionic substituent introduced into the cellulose fiber is, for example, 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol / g per 1 g (mass) of the cellulose fiber. It is more preferably / g or less. Here, the denominator in the unit mmol / g indicates the mass of the cellulose fiber when the counter ion of the ionic substituent is a hydrogen ion (H +). By setting the amount of the ionic substituent introduced within the above range, it is possible to facilitate the miniaturization of the fiber raw material and enhance the stability of the cellulose fiber.
 セルロース繊維に対するイオン性置換基の導入量は、セルロース繊維に微細化処理を施した後に、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られたセルロース繊維を含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。 The amount of the ionic substituent introduced into the cellulose fiber can be measured by, for example, the neutralization titration method after the cellulose fiber is subjected to the micronization treatment. In the measurement by the neutralization titration method, the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous solution of sodium hydroxide to the obtained slurry containing the cellulose fibers.
 図2は、リンオキソ酸基を有する微細繊維状セルロース分散液に対するNaOH滴下量とpHの関係を示すグラフである。セルロース繊維に対するリンオキソ酸基の導入量は、たとえば次のように測定される。
 まず、対象となるセルロース繊維にイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製する。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて4回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(スラリー)を得る。そして、微細繊維状セルロース分散液を強酸性イオン交換樹脂で処理する。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2の上側部に示すような滴定曲線を得る。図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる微細繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる微細繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる微細繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
 なお、図2において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise to the fine fibrous cellulose dispersion having a phosphorus oxo acid group and the pH. The amount of phosphorus oxo acid group introduced into the cellulose fiber is measured as follows, for example.
First, ion-exchanged water is added to the target cellulose fibers to prepare a slurry having a solid content concentration of 0.2% by mass. This slurry is treated four times at a pressure of 200 MPa with a wet atomizing device (Sugino Machine Limited, Starburst) to obtain a fine fibrous cellulose dispersion (slurry) containing fine fibrous cellulose. Then, the fine fibrous cellulose dispersion is treated with a strongly acidic ion exchange resin.
Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 2 is obtained. The titration curve shown in the upper part of FIG. 2 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 2 plots the pH with respect to the amount of alkali added. The increment (differential value) (1 / mmol) is plotted. In this neutralization titration, two points are confirmed in which the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point. The amount of alkali required from the start of titration to the first end point became equal to the amount of first dissociated acid of the fine fibrous cellulose contained in the slurry used for titration, and was required from the first end point to the second end point. The amount of alkali is equal to the amount of second dissociating acid of the fine fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the start to the second end point of titration is contained in the slurry used for titration. Equal to the total dissociated acid content of the fibrous cellulose. Then, the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g). The amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
In FIG. 2, the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region. For example, when the phosphoric acid group is a phosphoric acid group and this phosphoric acid group causes condensation, the amount of weakly acidic groups in the phosphoric acid group (also referred to as the second dissociated acid amount in the present specification) is apparently It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region. On the other hand, the amount of strongly acidic groups in the phosphorus oxo acid group (also referred to as the first dissociated acid amount in the present specification) is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation. When the phosphorous acid group is a phosphorous acid group, the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximized.
 なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の微細繊維状セルロースの質量を示すことから、酸型の微細繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの微細繊維状セルロースの質量に変換することで、陽イオンCが対イオンである微細繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:微細繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
Since the denominator of the above-mentioned phosphorus oxo acid group introduction amount (mmol / g) indicates the mass of the acid-type fine fibrous cellulose, the phosphorus oxo acid group amount (hereinafter, phosphorus oxo acid) possessed by the acid-type fine fibrous cellulose It is called the base amount (acid type)). On the other hand, when the counterion of the phosphorus oxo acid group is replaced with an arbitrary cation C so as to have a charge equivalent, the denominator is converted to the mass of the fine fibrous cellulose when the cation C is the counterion. By doing so, the amount of phosphorus oxo acid groups (hereinafter, the amount of phosphorus oxo acid groups (C type)) possessed by the fine fibrous cellulose in which the cation C is a counterion can be obtained.
That is, it is calculated by the following formula.
Phosphoric acid group amount (C type) = Phosphoric acid group amount (acid type) / {1+ (W-1) x A / 1000}
A [mmol / g]: Total anion amount derived from phosphoric acid group of fine fibrous cellulose (total dissociated acid amount of phosphoric acid group)
W: Formula amount per valence of cation C (for example, Na is 23, Al is 9)
 図3は、イオン性置換基としてカルボキシ基を有する微細繊維状セルロース分散液に対するNaOH滴下量とpHの関係を示すグラフである。セルロース繊維に対するカルボキシ基の導入量は、たとえば次のように測定される。
 まず、対象となるセルロース繊維にイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製する。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて4回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液(スラリー)を得る。そして、微細繊維状セルロース分散液を強酸性イオン交換樹脂で処理する。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図3の上側部に示すような滴定曲線を得る。図3の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図3の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ確認され、この極大点を第1終点と呼ぶ。ここで、図3における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用した分散液中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロースを含有する分散液中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出する。
FIG. 3 is a graph showing the relationship between the amount of NaOH added dropwise to the fine fibrous cellulose dispersion having a carboxy group as an ionic substituent and the pH. The amount of the carboxy group introduced into the cellulose fiber is measured, for example, as follows.
First, ion-exchanged water is added to the target cellulose fibers to prepare a slurry having a solid content concentration of 0.2% by mass. This slurry is treated four times at a pressure of 200 MPa with a wet atomizing device (Sugino Machine Limited, Starburst) to obtain a fine fibrous cellulose dispersion (slurry) containing fine fibrous cellulose. Then, the fine fibrous cellulose dispersion is treated with a strongly acidic ion exchange resin.
Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 3 is obtained. The titration curve shown in the upper part of FIG. 3 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 3 plots the pH with respect to the amount of alkali added. The increment (differential value) (1 / mmol) is plotted. In this neutralization titration, in the curve plotting the measured pH with respect to the amount of alkali added, one point was confirmed where the increment (differential value of pH with respect to the amount of alkali dropped) became maximum, and this maximum point was the first. Called one end point. Here, the region from the start of titration to the first end point in FIG. 3 is referred to as a first region. The amount of alkali required in the first region is equal to the amount of carboxy groups in the dispersion used for titration. Then, the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the dispersion containing the fine fibrous cellulose to be titrated, so that the amount of carboxy group introduced (the amount of carboxy group introduced (mmol) mmol / g) is calculated.
 なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の微細繊維状セルロースの質量であることから、酸型の微細繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの微細繊維状セルロースの質量に変換することで、陽イオンCが対イオンである微細繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。すなわち、下記計算式によって算出する。
 カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
 W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
Since the denominator of the above-mentioned carboxy group introduction amount (mmol / g) is the mass of the acid-type fine fibrous cellulose, the carboxy group amount of the acid-type fine fibrous cellulose (hereinafter, the carboxy group amount (hereinafter, carboxy group amount) It is called (acid type)). On the other hand, when the counterion of the carboxy group is replaced with an arbitrary cation C so as to have a charge equivalent, the denominator is converted into the mass of fine fibrous cellulose when the cation C is a counterion. This makes it possible to determine the amount of carboxy group (hereinafter, carboxy group amount (C type)) possessed by the fine fibrous cellulose in which the cation C is a counter ion. That is, it is calculated by the following formula.
Carboxylic acid group amount (C type) = Carboxylic acid group amount (acid type) / {1+ (W-1) x (carboxyl group amount (acid type)) / 1000}
W: Formula amount per valence of cation C (for example, Na is 23, Al is 9)
 滴定法によるイオン性置換基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いイオン性置換基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、微細繊維状セルロース分散液に溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。 In the measurement of the amount of ionic substituents by the titration method, if the amount of one drop of sodium hydroxide aqueous solution is too large, or if the titration interval is too short, the amount of ionic substituents will be lower than it should be. It may not be obtained. As an appropriate dropping amount and titration interval, for example, it is desirable to titrate 10 to 50 μL of a 0.1 N sodium hydroxide aqueous solution every 5 to 30 seconds. Further, in order to eliminate the influence of carbon dioxide dissolved in the fine fibrous cellulose dispersion, it is desirable to measure, for example, from 15 minutes before the start of titration to the end of titration while blowing an inert gas such as nitrogen gas into the slurry. ..
 また、セルロース繊維に対するスルホン基の導入量は、セルロース繊維を含むスラリーを凍結乾燥し、さらに粉砕した試料の硫黄量を測定することで算出することができる。具体的には、セルロース繊維を含むスラリーを凍結乾燥し、さらに粉砕した試料を、密閉容器中で硝酸を用いて加圧加熱分解した後、適宜希釈してICP-OESで硫黄量を測定する。供試した繊維状セルロースの絶乾質量で割り返して算出した値を繊セルロース繊維のスルホン基量(単位:mmol/g)とする。 The amount of sulfone groups introduced into the cellulose fibers can be calculated by freeze-drying the slurry containing the cellulose fibers and then measuring the amount of sulfur in the crushed sample. Specifically, a slurry containing cellulose fibers is freeze-dried, and the crushed sample is decomposed by heating under pressure using nitric acid in a closed container, diluted appropriately, and the amount of sulfur is measured by ICP-OES. The value calculated by dividing by the absolute dry mass of the fibrous cellulose tested is taken as the amount of sulfone groups (unit: mmol / g) of the fibrous cellulose fiber.
 上述のようなイオン性置換基を導入したセルロース繊維を得るためには、上述したセルロースを含む繊維原料にイオン性置換基を導入するイオン性置換基導入工程、洗浄工程、アルカリ処理工程(中和工程)、解繊処理工程をこの順で有することが好ましく、洗浄工程の代わりに、または洗浄工程に加えて、酸処理工程を有していてもよい。イオン性置換基導入工程としては、リンオキソ酸基導入工程、カルボキシ基導入工程、硫黄オキソ酸基導入工程、ザンテート基導入工程、ホスホン基またはホスフィン基導入工程、およびスルホン基導入工程、カチオン基導入工程が例示される。以下、それぞれについて説明する。 In order to obtain the above-mentioned ionic substituent-introduced cellulose fiber, the above-mentioned ionic substituent introduction step, washing step, and alkali treatment step (neutralization) in which the ionic substituent is introduced into the fiber raw material containing cellulose. Step), it is preferable to have a defibration treatment step in this order, and an acid treatment step may be provided instead of the washing step or in addition to the washing step. The ionic substituent introduction step includes a phosphorus oxo acid group introduction step, a carboxy group introduction step, a sulfur oxo acid group introduction step, a zantate group introduction step, a phosphone group or phosphine group introduction step, a sulfone group introduction step, and a cation group introduction step. Is exemplified. Each will be described below.
<リンオキソ酸基導入工程>
 イオン性置換基を有するセルロース繊維を得る際には、微細化処理工程の前にイオン性置換基導入工程を設けることが好ましい。イオン性置換基導入工程としては、例えば、リンオキソ酸基導入工程が挙げられる。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基を有するセルロース繊維が得られることとなる。
<Linoxo acid group introduction process>
When obtaining a cellulose fiber having an ionic substituent, it is preferable to provide an ionic substituent introduction step before the micronization treatment step. Examples of the ionic substituent introduction step include a phosphorus oxo acid group introduction step. In the phosphorus oxo acid group introduction step, at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is introduced into cellulose. It is a step of acting on a fiber raw material containing. By this step, a cellulose fiber having a phosphorus oxo acid group can be obtained.
 本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。 In the phosphorus oxo acid group introduction step according to the present embodiment, the reaction between the fiber raw material containing cellulose and Compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “Compound B”). You may. On the other hand, the reaction of the fiber raw material containing cellulose with the compound A may be carried out in the absence of the compound B.
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。 As an example of the method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B, there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state. Of these, since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state. The form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example. Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or in a state of being heated to a melting point or higher and melted. Of these, since the reaction uniformity is high, it is preferable to add the solution in the form of a solution dissolved in a solvent, particularly in the state of an aqueous solution. Further, the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture. The method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, the required amounts of compound A and compound B may be added to the fiber raw material, or after the excess amounts of compound A and compound B are added to the fiber raw material, respectively, the surplus compound A and compound B are added by pressing or filtering. It may be removed.
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩または亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、または亜リン酸、亜リン酸ナトリウムがより好ましい。 The compound A used in this embodiment may be a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration-condensed phosphoric acid or a salt thereof. Examples thereof include salts and anhydrous phosphoric acid (diphosphorus pentoxide), but the present invention is not particularly limited. As the phosphoric acid, those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used. Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid). The dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid. Phosphates, phosphorous acids, dehydration-condensed phosphates include phosphoric acid, phosphorous acid or dehydration-condensed phosphoric acid lithium salts, sodium salts, potassium salts, ammonium salts, etc. It can be a sum. Of these, from the viewpoints of high introduction efficiency of phosphoric acid group, easy improvement of defibration efficiency in the defibration step described later, low cost, and easy industrial application, sodium phosphate and sodium phosphate Salt, potassium salt of phosphoric acid, ammonium or phosphite of phosphoric acid, sodium salt of phosphite, potassium salt of phosphite, ammonium salt of phosphite are preferred, phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphoric acid and sodium phosphite are more preferred.
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。 The amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less. By setting the amount of phosphorus atoms added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved. On the other hand, by setting the addition amount of the phosphorus atom to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。 Compound B used in this embodiment is at least one selected from urea and its derivatives as described above. Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like. From the viewpoint of improving the uniformity of the reaction, compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
 繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。 The amount of compound B added to the fiber raw material (absolute dry mass) is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 In the reaction between the fiber raw material containing cellulose and compound A, for example, amides or amines may be contained in the reaction system in addition to compound B. Examples of amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Among these, triethylamine in particular is known to act as a good reaction catalyst.
 リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。 In the phosphorus oxo acid group introduction step, it is preferable to add or mix compound A or the like to the fiber raw material and then heat-treat the fiber raw material. As the heat treatment temperature, it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower. In addition, equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band. A mold drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。 In the heat treatment according to the present embodiment, for example, compound A is added to a thin sheet-shaped fiber raw material by a method such as impregnation and then heated, or the fiber raw material and compound A are heated while kneading or stirring with a kneader or the like. Can be adopted. This makes it possible to suppress uneven concentration of the compound A in the fiber raw material and more uniformly introduce the phosphorus oxo acid group onto the surface of the cellulose fiber contained in the fiber raw material. This is because when the water molecules move to the surface of the fiber raw material due to drying, the dissolved compound A is attracted to the water molecules by the surface tension and also moves to the surface of the fiber raw material (that is, the concentration unevenness of the compound A is caused. It is considered that this is due to the fact that it can be suppressed.
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。 Further, the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphoric acid esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like. By constantly discharging the water in the apparatus system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, and also to suppress the acid hydrolysis of the sugar chain in the fiber. can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。 The heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable. In the present embodiment, the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within an appropriate range.
 リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。 The phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material.
 繊維原料に対するリンオキソ酸基の導入量は、たとえばセルロース繊維1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.50mmol/g以上であることがより一層好ましく、0.60mmol/g以上であることがさらに一層好ましく、1.00mmol/g以上であることが特に好ましい。また、繊維原料に対するリンオキソ酸基の導入量は、たとえばセルロース繊維1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リンオキソ酸基の導入量を上記範囲内とすることにより、微細化処理工程におけるセルロース繊維の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。 The amount of the phosphorus oxo acid group introduced into the fiber raw material is, for example, preferably 0.05 mmol / g or more, more preferably 0.10 mmol / g or more, and 0.20 mmol / g or more per 1 g (mass) of the cellulose fiber. It is even more preferably 0.40 mmol / g or more, even more preferably 0.50 mmol / g or more, and even more preferably 0.60 mmol / g or more. It is particularly preferably 00 mmol / g or more. The amount of the phosphorus oxo acid group introduced into the fiber raw material is, for example, 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol / g / g per 1 g (mass) of the cellulose fiber. It is more preferably g or less. By setting the amount of the phosphorus oxo acid group introduced within the above range, it is possible to facilitate the miniaturization of the cellulose fibers in the miniaturization treatment step and enhance the stability of the fine fibrous cellulose.
<カルボキシ基導入工程>
 イオン性置換基導入工程としては、カルボキシ基導入工程を含んでもよい。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
<Carboxylic acid group introduction process>
The ionic substituent introduction step may include a carboxy group introduction step. The carboxy group introduction step has an oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a group derived from carboxylic acid or a derivative thereof, or a group derived from carboxylic acid with respect to the fiber raw material containing cellulose. This is done by treating with an acid anhydride of the compound or a derivative thereof.
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。 The compound having a group derived from a carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, itaconic acid, citric acid, aconitic acid and the like. Examples include tricarboxylic acid compounds. The derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imide of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group. The imide of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinateimide, and phthalateimide.
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。 The acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, itaconic anhydride and the like. Acid anhydride can be mentioned. The derivative of the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a compound having a carboxy group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, diphenylmaleic acid anhydride and the like. Examples thereof include those in which at least a part of the hydrogen atom of the acid anhydride is substituted with a substituent such as an alkyl group or a phenyl group.
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、たとえばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。 When the TEMPO oxidation treatment is performed in the carboxy group introduction step, it is preferable to perform the treatment under conditions of pH 6 or more and 8 or less, for example. Such a treatment is also referred to as a neutral TEMPO oxidation treatment. Neutral TEMPO oxidation treatment includes, for example, sodium phosphate buffer (pH = 6.8), pulp as a fiber raw material, TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl) as a catalyst, and the like. This can be done by adding a nitroxy radical and sodium hypochlorite as a sacrificial reagent. Further, by coexisting with sodium chlorite, the aldehyde generated in the oxidation process can be efficiently oxidized to the carboxy group. Further, the TEMPO oxidation treatment may be carried out under the condition that the pH is 10 or more and 11 or less. Such a treatment is also referred to as an alkaline TEMPO oxidation treatment. The alkaline TEMPO oxidation treatment can be carried out, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a co-catalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. ..
 セルロース繊維に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、セルロース繊維1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、セルロース繊維に対するカルボキシ基の導入量は、3.65mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。その他、置換基がカルボキシメチル基である場合、カルボキシ基の導入量は、セルロース繊維1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、微細化処理工程におけるセルロース繊維の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。 The amount of the carboxy group introduced into the cellulose fiber varies depending on the type of the substituent, but when the carboxy group is introduced by TEMPO oxidation, for example, it is preferably 0.05 mmol / g or more per 1 g (mass) of the cellulose fiber, and is 0. .10 mmol / g or more is more preferable, 0.20 mmol / g or more is further preferable, 0.40 mmol / g or more is further preferable, and 0.60 mmol / g or more is particularly preferable. .. The amount of the carboxy group introduced into the cellulose fiber is preferably 3.65 mmol / g or less, and more preferably 3.00 mmol / g or less. In addition, when the substituent is a carboxymethyl group, the amount of the carboxy group introduced may be 5.8 mmol / g or less per 1 g (mass) of the cellulose fiber. By setting the amount of the carboxy group introduced within the above range, it is possible to facilitate the miniaturization of the cellulose fibers in the miniaturization treatment step and enhance the stability of the fine fibrous cellulose.
<スルホン基導入工程>
 イオン性置換基導入工程としては、スルホン基導入工程を含んでもよい。スルホン基導入工程は、セルロースを含む繊維原料が有する水酸基と硫黄オキソ酸が反応することで、スルホン基を有するセルロース繊維(スルホン基導入繊維)を得ることができる。
<Sulfone group introduction process>
The ionic substituent introduction step may include a sulfone group introduction step. In the sulfone group introduction step, cellulose fibers having a sulfone group (sulfone group-introduced fiber) can be obtained by reacting the hydroxyl group of the fiber raw material containing cellulose with sulfur oxoacid.
 スルホン基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Aに代えて、セルロースを含む繊維原料が有する水酸基と反応することで、スルホン基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物C」ともいう)を用いる。化合物Cとしては、硫黄原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、硫酸もしくはその塩、亜硫酸もしくはその塩、硫酸アミドなどが挙げられるが特に限定されない。硫酸としては、種々の純度のものを使用することができ、例えば96%硫酸(濃硫酸)を使用することができる。亜硫酸としては、5%亜硫酸水が挙げられる。硫酸塩又は亜硫酸塩としては、硫酸塩又は亜硫酸塩のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。硫酸アミドとしては、スルファミン酸などを使用することができる。スルホン基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることが好ましい。 In the sulfone group introduction step, at least one selected from compounds capable of introducing a sulfone group by reacting with the hydroxyl group of the fiber raw material containing cellulose instead of the compound A in the above-mentioned <phosphoric acid group introduction step>. A compound (hereinafter, also referred to as “Compound C”) is used. The compound C may be any compound having a sulfur atom and capable of forming an ester bond with cellulose, and examples thereof include sulfuric acid or a salt thereof, sulfite or a salt thereof, sulfuric acid amide, and the like, but the compound C is not particularly limited. As the sulfuric acid, those having various puritys can be used, and for example, 96% sulfuric acid (concentrated sulfuric acid) can be used. Examples of sulfurous acid include 5% sulfurous acid water. Examples of the sulfate or sulfite include lithium salts, sodium salts, potassium salts and ammonium salts of sulfates or sulfites, and these can have various neutralization degrees. As the sulfate amide, sulfamic acid or the like can be used. In the sulfone group introduction step, it is preferable to use the compound B in the above-mentioned <phosphoric acid group introduction step> in the same manner.
 スルホン基導入工程においては、セルロース原料に硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液を混合した後、当該セルロース原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、スルホン基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、加熱処理温度は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。 In the sulfone group introduction step, it is preferable to mix the cellulose raw material with an aqueous solution containing sulfur oxoacid and urea and / or a urea derivative, and then heat-treat the cellulose raw material. As the heat treatment temperature, it is preferable to select a temperature at which the sulfone group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher. The heat treatment temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
 加熱処理工程では、実質的に水分がなくなるまで加熱をすることが好ましい。このため、加熱処理時間は、セルロース原料に含まれる水分量や、硫黄オキソ酸、並びに、尿素及び/又は尿素誘導体を含む水溶液の添加量によって、変動するが、例えば、10秒以上10000秒以下とすることが好ましい。加熱処理には、種々の熱媒体を有する機器を利用することができ、例えば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。 In the heat treatment step, it is preferable to heat until the water content is substantially eliminated. Therefore, the heat treatment time varies depending on the amount of water contained in the cellulose raw material and the amount of the aqueous solution containing sulfur oxoacid and urea and / or a urea derivative, but is, for example, 10 seconds or more and 10000 seconds or less. It is preferable to do so. Equipment having various heat media can be used for the heat treatment, for example, a hot air drying device, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, and a fluidized layer drying device. , Band type drying device, filtration drying device, vibration flow drying device, air flow drying device, vacuum drying device, infrared heating device, far infrared heating device, microwave heating device, high frequency drying device can be used.
 セルロース原料に対するスルホン基の導入量は、0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.50mmol/g以上であることがより一層好ましく、0.60mmol/g以上であることが特に好ましい。また、セルロース原料に対するスルホン基の導入量は、5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。スルホン基の導入量を上記範囲内とすることにより、微細化処理工程におけるセルロース繊維の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。 The amount of the sulfone group introduced into the cellulose raw material is preferably 0.05 mmol / g or more, more preferably 0.10 mmol / g or more, further preferably 0.20 mmol / g or more, and 0. It is more preferably 40 mmol / g or more, further preferably 0.50 mmol / g or more, and particularly preferably 0.60 mmol / g or more. The amount of the sulfone group introduced into the cellulose raw material is preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less. By setting the amount of the sulfone group introduced within the above range, it is possible to facilitate the miniaturization of the cellulose fibers in the micronization treatment step and enhance the stability of the fine fibrous cellulose.
<塩素系酸化剤による酸化工程(第二のカルボキシ基導入工程)>
 イオン性置換基導入工程としては、塩素系酸化剤による酸化工程を含んでもよい。塩素系酸化剤による酸化工程では、塩素系酸化剤を湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカルボキシ基が導入される。
<Oxidation step with chlorine-based oxidant (second carboxy group introduction step)>
The ionic substituent introduction step may include an oxidation step with a chlorine-based oxidizing agent. In the oxidation step using a chlorine-based oxidant, a carboxy group is introduced into the fiber raw material by adding the chlorine-based oxidant to a wet or dry fiber raw material having a hydroxyl group and carrying out a reaction.
 塩素系酸化剤としては、次亜塩素酸、次亜塩素酸塩、亜塩素酸、亜塩素酸塩、塩素酸、塩素酸塩、過塩素酸、過塩素酸塩、二酸化塩素などが挙げられる。置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点から、塩素系酸化剤は、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、二酸化塩素であることが好ましい。塩素系酸化剤を添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。 Examples of chlorine-based oxidants include hypochlorous acid, hypochlorite, chloric acid, chlorate, chloric acid, chlorate, perchloric acid, perchlorate, and chlorine dioxide. From the viewpoint of introduction efficiency of substituents, defibration efficiency, cost, and ease of handling, the chlorine-based oxidizing agent is preferably sodium hypochlorite, sodium chlorite, or chlorine dioxide. When the chlorine-based oxidizing agent is added, it may be added as it is as a reagent (solid or liquid) to the fiber raw material, or it may be added by dissolving it in an appropriate solvent.
 塩素系酸化剤による酸化工程における塩素系酸化剤の溶液中濃度は、たとえば有効塩素濃度に換算して、1質量%以上1,000質量%以下であることが好ましく、5質量%以上500質量%以下であることがより好ましく、10質量%以上100質量%以下であることがさらに好ましい。塩素系酸化剤の繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、10質量部以上10,000質量部以下であることがより好ましく、100質量部以上5,000質量部以下であることがさらに好ましい。 The concentration of the chlorine-based oxidant in the solution in the oxidation step using the chlorine-based oxidant is preferably 1% by mass or more and 1,000% by mass or less in terms of effective chlorine concentration, and is 5% by mass or more and 500% by mass or less. It is more preferably 10% by mass or more and 100% by mass or less. The amount of the chlorine-based oxidizing agent added to 100 parts by mass of the fiber raw material is preferably 1 part by mass or more and 100,000 parts by mass or less, more preferably 10 parts by mass or more and 10,000 parts by mass or less, and 100 parts by mass. It is more preferable that the amount is 5,000 parts by mass or more.
 塩素系酸化剤による酸化工程における塩素系酸化剤との反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。反応時のpHは、5以上15以下であることが好ましく、7以上14以下であることがより好ましく、9以上13以下であることがさらに好ましい。また、反応開始時、反応中のpHは塩酸や水酸化ナトリウムを適宜添加しながら一定(たとえば、pH11)を保つことが好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time with the chlorine-based oxidizing agent in the oxidation step using the chlorine-based oxidizing agent may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, and is preferably 10 minutes or more and 500 minutes or less. More preferably, it is more preferably 20 minutes or more and 400 minutes or less. The pH at the time of reaction is preferably 5 or more and 15 or less, more preferably 7 or more and 14 or less, and further preferably 9 or more and 13 or less. Further, at the start of the reaction, it is preferable that the pH during the reaction is kept constant (for example, pH 11) while appropriately adding hydrochloric acid or sodium hydroxide. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
<ザンテート基導入工程(キサントゲン酸エステル化工程)>
 イオン性置換基導入工程としては、たとえばザンテート基導入工程(以下、ザンテート化工程ともいう。)を含んでもよい。ザンテート化工程では、二硫化炭素とアルカリ化合物を、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にザンテート基が導入される。具体的には、二硫化炭素を後述の手法でアルカリセルロース化した繊維原料に対して加え、反応を行う。
<Zantate group introduction step (xanthate esterification step)>
The ionic substituent introduction step may include, for example, a zantate group introduction step (hereinafter, also referred to as a zantate conversion step). In the zantate formation step, a zantate group is introduced into the fiber raw material by adding carbon disulfide and an alkaline compound to a wet or dry fiber raw material having a hydroxyl group and carrying out a reaction. Specifically, carbon disulfide is added to the alkali-cellulose-ized fiber raw material by the method described later, and the reaction is carried out.
<<アルカリセルロース化>>
 繊維原料へのイオン性置換基導入に際しては、繊維原料が含むセルロースにアルカリ溶液を作用させ、セルロースをアルカリセルロース化することが好ましい。この処理により、セルロースの水酸基の一部がイオン解離し、求核性(反応性)を高めることができる。アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。汎用性が高いことから、たとえば水酸化ナトリウム、水酸化カリウム、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドを用いることが好ましい。アルカリセルロース化は、イオン性置換基の導入と同時に行ってもよいし、その前段として行ってもよいし、両方のタイミングで行ってもよい。
<< Alkaline Cellulose >>
When introducing an ionic substituent into a fiber raw material, it is preferable to allow an alkaline solution to act on the cellulose contained in the fiber raw material to convert the cellulose into alkaline cellulose. By this treatment, a part of the hydroxyl groups of cellulose is ion-dissociated, and the nucleophilicity (reactivity) can be enhanced. The alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. For example, sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide are preferably used because of their high versatility. Alkali celluloseization may be carried out at the same time as the introduction of the ionic substituent, may be carried out as a pre-stage thereof, or may be carried out at both timings.
 アルカリセルロース化を始める際の溶液温度は、0℃以上50℃以下であることが好ましく、5℃以上40℃以下であることがより好ましく、10℃以上30℃以下であることがさらに好ましい。 The solution temperature at the start of alkaline cellulose formation is preferably 0 ° C. or higher and 50 ° C. or lower, more preferably 5 ° C. or higher and 40 ° C. or lower, and further preferably 10 ° C. or higher and 30 ° C. or lower.
 アルカリ溶液中のアルカリ濃度としては、モル濃度として0.01mol/L以上4mol/L以下であることが好ましく、0.1mol/L以上3mol/L以下であることがより好ましく、1mol/L以上2.5mol/L以下であることがさらに好ましい。特に、アルカリセルロース化における処理温度が10℃未満である場合は、アルカリ濃度は1mol/L以上2mol/L以下であることが好ましい。 The alkali concentration in the alkaline solution is preferably 0.01 mol / L or more and 4 mol / L or less, more preferably 0.1 mol / L or more and 3 mol / L or less, and 1 mol / L or more 2 It is more preferably 5.5 mol / L or less. In particular, when the treatment temperature for alkali celluloseization is less than 10 ° C., the alkali concentration is preferably 1 mol / L or more and 2 mol / L or less.
 アルカリセルロース化の処理時間は、1分間以上であることが好ましく、10分間以上であることがより好ましく、30分間以上であることがさらに好ましい。また、アルカリ処理の時間は、6時間以下であることが好ましく、5時間以下であることがより好ましく、4時間以下であることがさらに好ましい。 The treatment time for alkali celluloseization is preferably 1 minute or longer, more preferably 10 minutes or longer, and even more preferably 30 minutes or longer. The alkali treatment time is preferably 6 hours or less, more preferably 5 hours or less, and even more preferably 4 hours or less.
 アルカリ溶液の種類、処理温度、濃度、浸漬時間を上述のように調整することで、セルロースの結晶領域へのアルカリ溶液浸透を抑制でき、セルロースI型の結晶構造が維持されやすくなり、微細繊維状セルロースの収率を高めることができる。 By adjusting the type, treatment temperature, concentration, and immersion time of the alkaline solution as described above, the permeation of the alkaline solution into the crystal region of cellulose can be suppressed, the crystal structure of cellulose type I can be easily maintained, and the cellulose is in the form of fine fibers. The yield of cellulose can be increased.
 イオン性置換基導入とアルカリセルロース化を同時に行わない場合、アルカリセルロース化はイオン性置換基導入の前段で行われことが好ましい。この場合、アルカリセルロース化処理で得られたアルカリセルロースは、遠心分離や、濾別などの一般的な脱液方法により、固液分離し、水分を除去しておくことが好ましい。これにより、次いで行われるイオン性置換基導入工程での、反応効率が向上する。固液分離後のセルロース繊維濃度は、5%以上50%以下であることが好ましく、10%以上40%以下であることがより好ましく、15%以上35%以下であることがさらに好ましい。 When the introduction of the ionic substituent and the alkali celluloseization are not performed at the same time, it is preferable that the alkali celluloseization is performed before the introduction of the ionic substituent. In this case, it is preferable that the alkali cellulose obtained by the alkali celluloseization treatment is solid-liquid separated to remove water by a general deliquidation method such as centrifugation or filtration. This improves the reaction efficiency in the subsequent ionic substituent introduction step. The cellulose fiber concentration after solid-liquid separation is preferably 5% or more and 50% or less, more preferably 10% or more and 40% or less, and further preferably 15% or more and 35% or less.
<ホスホン基またはホスフィン基導入工程(ホスホアルキル化工程)>
 イオン性置換基導入工程としては、ホスホン基またはホスフィン基導入工程(ホスホアルキル化工程)を含んでもよい。ホスホアルキル化工程では、必須成分として、反応性基とホスホ基またはホスフィン基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にホスホン基またはホスフィン基が導入される。
<Phosphon group or phosphine group introduction step (phosphoalkylation step)>
The ionic substituent introduction step may include a phosphon group or phosphine group introduction step (phosphoalkylation step). In the phosphoalkylation step, a compound having a reactive group and a phospho group or a phosphine group (Compound E A ) as an essential component, an alkaline compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives are wetted. Alternatively, a phosphone group or a phosphine group is introduced into the fiber raw material by carrying out the reaction in addition to the fiber raw material having a hydroxyl group in a dry state.
 反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
 化合物Eとしては、たとえばビニルリン酸、フェニルビニルホスホン酸、フェニルビニルホスフィン酸等が挙げられる。置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点から化合物Eはビニルリン酸であることが好ましい。
 さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
Examples of the reactive group include an alkyl halide group, a vinyl group, an epoxy group (glycidyl group) and the like.
The compound E A, e.g. vinyl phosphoric acid, phenyl vinyl phosphonic acid, and phenyl vinyl phosphinic acid. Introduction efficiency of substituents, and thus solution繊効rate, cost, compounds from the viewpoint of easy handling E A is preferably a vinyl phosphoric acid.
Further, as an optional component, the compound B in the above-mentioned <phosphoric acid group introduction step> is also preferably used in the same manner, and the addition amount is preferably as described above.
 化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。 When adding a compound E A may be added directly to the fiber material as a reagent (solid or liquid), it may be added dissolved in a suitable solvent. It is preferable that the fiber raw material is made into alkali cellulose in advance or is made into alkali cellulose at the same time as the reaction. The method of alkali celluloseization is as described above.
 反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。 The temperature during the reaction is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
 化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。 Amount for fiber material 100 parts by weight of Compound E A is preferably not more than 100,000 parts by 1 part by mass or more, more preferably at most 10,000 parts by mass or more, 2 parts by mass 5 parts by weight It is more preferably 1,000 parts by mass or less.
 反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. Is even more preferable. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
<スルホン基導入工程(スルホアルキル化工程)(第二のスルホン基導入工程)>
 イオン性置換基導入工程としては、スルホン基導入工程(スルホアルキル化工程)を含んでもよい。スルホアルキル化では、必須成分として、反応性基とスルホン基とを有する化合物(化合物E)と、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にスルホン基が導入される。
<Sulfone group introduction step (sulfoalkylation step) (second sulfone group introduction step)>
The ionic substituent introduction step may include a sulfone group introduction step (sulfoalkylation step). In sulfoalkylated, as essential components, a compound having a reactive group and a sulfonic group (Compound E B), an alkaline compound as an optional component, a compound B which is selected from urea and its derivatives mentioned above, wet or dry By carrying out the reaction in addition to the fiber raw material having a hydroxyl group, a sulfone group is introduced into the fiber raw material.
 反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
 化合物Eとしては、2-クロロエタンスルホン酸ナトリウム、ビニルスルホン酸ナトリウム、p-スチレンスルホン酸ナトリウム、2-アクリルアミド-2-メチルプロパンスルホン酸等が挙げられる。中でも、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点からビニル化合物Eはスルホン酸ナトリウムであることが好ましい。
 さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
Examples of the reactive group include an alkyl halide group, a vinyl group, an epoxy group (glycidyl group) and the like.
The compound E B, 2-sodium chloroethane sulfonate, sodium vinyl sulfonate, p- sodium styrenesulfonate, 2-acrylamido-2-methylpropane sulfonic acid. Of these, the introduction efficiency of the substituents, and thus solution繊効rate, cost, vinyl compounds from the viewpoint of easy handling E B is preferably a sodium sulfonate.
Further, as an optional component, the compound B in the above-mentioned <phosphoric acid group introduction step> is also preferably used in the same manner, and the addition amount is preferably as described above.
 化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。 When adding the compound E B may be added directly to the fiber material as a reagent (solid or liquid), it may be added dissolved in a suitable solvent. It is preferable that the fiber raw material is made into alkali cellulose in advance or is made into alkali cellulose at the same time as the reaction. The method of alkali celluloseization is as described above.
 反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。 The temperature during the reaction is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
 化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。 Amount for fiber material 100 parts by weight of compound E B is preferably not more than 100,000 parts by 1 part by mass or more, more preferably at most 10,000 parts by mass or more, 2 parts by mass 5 parts by weight It is more preferably 1,000 parts by mass or less.
 反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. Is even more preferable. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
<カルボキシアルキル化工程(第三のカルボキシ基導入工程)>
 イオン性置換基導入工程としては、カルボキシアルキル化工程を含んでもよい。必須成分として、反応性基とカルボキシ基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカルボキシ基が導入される。
<Carboxyalkylation step (third carboxy group introduction step)>
The ionic substituent introduction step may include a carboxyalkylation step. As essential components, a compound having a reactive group and a carboxy group (Compound E C), alkaline compound as an optional component, a compound B which is selected from urea and its derivatives mentioned above, the wet or dry state, the fiber having a hydroxyl group By carrying out the reaction in addition to the raw material, a carboxy group is introduced into the fiber raw material.
 反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
 化合物Eとしては、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点からモノクロロ酢酸、モノクロロ酢酸ナトリウム、2-クロロプロピオン酸、2-クロロプロピオン酸ナトリウムが好ましい。
 さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましく、添加量も前述のようにすることが好ましい。
Examples of the reactive group include an alkyl halide group, a vinyl group, an epoxy group (glycidyl group) and the like.
The compound E C, introduction efficiency of the substituents, and thus solution繊効rate, cost, ease of handling monochloroacetic acid in terms of sodium monochloroacetate, 2-chloropropionic acid, sodium 2-chloropropionic acid is preferred.
Further, as an optional component, the compound B in the above-mentioned <phosphoric acid group introduction step> is also preferably used in the same manner, and the addition amount is preferably as described above.
 化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。 When adding the compound E C may be added directly to the fiber material as a reagent (solid or liquid), it may be added dissolved in a suitable solvent. It is preferable that the fiber raw material is made into alkali cellulose in advance or is made into alkali cellulose at the same time as the reaction. The method of alkali celluloseization is as described above.
 反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。 The temperature during the reaction is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
 化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。 Amount for fiber material 100 parts by weight of compound E C is preferably not more than 100,000 parts by 1 part by mass or more, more preferably at most 10,000 parts by mass or more, 2 parts by mass 5 parts by weight It is more preferably 1,000 parts by mass or less.
 反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. Is even more preferable. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
<カチオン性基導入工程(カチオン化工程)>
 必須成分として、反応性基とカチオン性基とを有する化合物(化合物E)、任意成分としてアルカリ化合物、前述した尿素およびその誘導体から選択される化合物Bを、湿潤あるいは乾燥状態の、水酸基を有する繊維原料に加えて反応を行うことで、繊維原料にカチオン基が導入される。
<Cationic group introduction step (cationization step)>
A compound having a reactive group and a cationic group (Compound ED ) as an essential component, an alkaline compound as an optional component, and a compound B selected from the above-mentioned urea and its derivatives have a hydroxyl group in a wet or dry state. By carrying out the reaction in addition to the fiber raw material, a cationic group is introduced into the fiber raw material.
 反応性基としては、ハロゲン化アルキル基、ビニル基、エポキシ基(グリシジル基)などが挙げられる。
 カチオン性基としては、アンモニウム基、ホスホニウム基、スルホニウム基等を挙げることができる。中でもカチオン性基はアンモニウム基であることが好ましい。
 化合物Eとしては、置換基の導入効率、ひいては解繊効率、コスト、取り扱いやすさの点からグリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロリド等が好ましい。
 さらに任意成分として、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることも好ましい。添加量も前述のようにすることが好ましい。
Examples of the reactive group include an alkyl halide group, a vinyl group, an epoxy group (glycidyl group) and the like.
Examples of the cationic group include an ammonium group, a phosphonium group, a sulfonium group and the like. Of these, the cationic group is preferably an ammonium group.
The compound E D, introduction efficiency of the substituents, and thus solution繊効rate, cost, ease of handling glycidyl trimethyl ammonium chloride from the viewpoint of 3-chloro-2-hydroxypropyl trimethyl ammonium chloride are preferred.
Further, as an optional component, it is also preferable to similarly use the compound B in the above-mentioned <phosphoric acid group introduction step>. The amount of addition is also preferably as described above.
 化合物Eを添加する際には、試薬(固形状もしくは液状)としてそのまま繊維原料に加えてもよいし、適当な溶媒に溶かして加えてもよい。繊維原料は事前にアルカリセルロース化するか、反応と同時にアルカリセルロース化されることが好ましい。アルカリセルロース化の方法は、前述のとおりである。 When adding the compound E D may be added directly to the fiber material as a reagent (solid or liquid), it may be added dissolved in a suitable solvent. It is preferable that the fiber raw material is made into alkali cellulose in advance or is made into alkali cellulose at the same time as the reaction. The method of alkali celluloseization is as described above.
 反応時の温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。 The temperature during the reaction is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
 化合物Eの繊維原料100質量部に対する添加量は、1質量部以上100,000質量部以下であることが好ましく、2質量部以上10,000質量部以下であることがより好ましく、5質量部以上1,000質量部以下であることがさらに好ましい。 Amount for fiber material 100 parts by weight of Compound E D is preferably not more than 100,000 parts by 1 part by mass or more, more preferably at most 10,000 parts by mass or more, 2 parts by mass 5 parts by weight It is more preferably 1,000 parts by mass or less.
 反応時間は、反応温度に応じて変わり得るが、たとえば1分間以上1,000分間以下であることが好ましく、10分間以上500分間以下であることがより好ましく、20分間以上400分間以下であることがさらに好ましい。また、反応後は濾過等により、余剰の反応試薬、副生物等を水洗・除去してもよい。 The reaction time may vary depending on the reaction temperature, but is preferably 1 minute or more and 1,000 minutes or less, more preferably 10 minutes or more and 500 minutes or less, and 20 minutes or more and 400 minutes or less. Is even more preferable. Further, after the reaction, excess reaction reagents, by-products and the like may be washed and removed by filtration or the like.
<洗浄工程>
 イオン性置換基を有するセルロース繊維を得る工程では、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりイオン性置換基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<Washing process>
In the step of obtaining the cellulose fiber having an ionic substituent, a washing step can be performed on the ionic substituent-introduced fiber, if necessary. The washing step is performed by washing the ionic substituent-introduced fiber with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleanings performed in each cleaning step is not particularly limited.
<アルカリ処理工程>
 イオン性置換基を有するセルロース繊維を得る工程では、イオン性置換基導入工程と、微細化処理工程との間に、アルカリ処理工程を設けてもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、イオン性置換基導入繊維を浸漬する方法が挙げられる。
<Alkaline treatment process>
In the step of obtaining the cellulose fiber having an ionic substituent, an alkali treatment step may be provided between the ionic substituent introduction step and the miniaturization treatment step. The alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the ionic substituent-introduced fiber in an alkaline solution.
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。 The alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In the present embodiment, for example, sodium hydroxide or potassium hydroxide is preferably used as the alkaline compound because of its high versatility. Further, the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water. As the alkaline solution, for example, an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるイオン性置換基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばイオン性置換基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower. The immersion time of the ionic substituent-introduced fiber in the alkaline solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less. The amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10000% by mass or less, based on the absolute dry mass of the ionic substituent-introduced fiber. The following is more preferable.
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、イオン性置換基導入工程の後であってアルカリ処理工程の前に、イオン性置換基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって微細化処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったイオン性置換基導入繊維を水や有機溶媒により洗浄することが好ましい。 In order to reduce the amount of the alkaline solution used in the alkali treatment step, the ionic substituent introduction fiber may be washed with water or an organic solvent after the ionic substituent introduction step and before the alkali treatment step. After the alkali treatment step and before the miniaturization treatment step, it is preferable to wash the alkali-treated ionic substituent-introduced fiber with water or an organic solvent from the viewpoint of improving handleability.
<酸処理工程>
 イオン性置換基を有するセルロース繊維を得る工程では、イオン性置換基導入工程と、微細化処理工程との間に、酸処理工程を設けてもよい。例えば、イオン性置換基導入工程、酸処理、アルカリ処理及び微細化処理をこの順で行ってもよい。
<Acid treatment process>
In the step of obtaining the cellulose fiber having an ionic substituent, an acid treatment step may be provided between the ionic substituent introduction step and the miniaturization treatment step. For example, the ionic substituent introduction step, the acid treatment, the alkali treatment, and the micronization treatment may be performed in this order.
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることが特に好ましい。 The method of acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acidic solution containing an acid. The concentration of the acidic liquid used is not particularly limited, but is preferably 10% by mass or less, and more preferably 5% by mass or less, for example. The pH of the acidic solution used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less. As the acid contained in the acidic solution, for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like. Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower. The immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less. The amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. Is more preferable.
(ナノカーボン前駆体)
 ナノカーボン前駆体は、微細化処理によりカーボンナノチューブやグラフェンとなる前駆体である。ナノカーボン前駆体は、カーボンナノチューブやグラフェンのバルク構造体であると言える。すなわち、ナノカーボン前駆体は、カーボンナノチューブやグラフェンが集合してなる構造体である。
(Nanocarbon precursor)
The nanocarbon precursor is a precursor that becomes carbon nanotubes or graphene by miniaturization treatment. It can be said that the nanocarbon precursor is a bulk structure of carbon nanotubes and graphene. That is, the nanocarbon precursor is a structure in which carbon nanotubes and graphene are aggregated.
 ナノカーボン前駆体はカチオン性を有している。このため、セルロース繊維がイオン性置換基としてアニオン性基を有する場合、各材料が有する電荷により、ナノカーボン前駆体とセルロース繊維が結合する。そして、このような結合状態を保ったまま、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液が微細化処理工程に供されることより、微細繊維状セルロースとナノカーボンが複合化した微細繊維状セルロース・ナノカーボン含有物が得られやすくなる。なお、ナノカーボン前駆体とセルロース繊維をそれぞれナノ化した状態で混合すると、各材料が有する電荷により強い凝集が形成されてしまうため、分散性が悪くなるものと考えられる。 The nanocarbon precursor has cationic properties. Therefore, when the cellulose fiber has an anionic group as an ionic substituent, the nanocarbon precursor and the cellulose fiber are bonded by the electric charge of each material. Then, while maintaining such a bonded state, a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent is subjected to a micronization treatment step, whereby fine fibrous cellulose It becomes easy to obtain fine fibrous cellulose / nanocarbon-containing material in which nanocarbon and nanocarbon are compounded. If the nanocarbon precursor and the cellulose fiber are mixed in a nano-sized state, strong aggregation is formed due to the electric charge of each material, and it is considered that the dispersibility is deteriorated.
 本明細書において、ナノカーボン前駆体は、その粒子径が1μm超え1000μm以下である。ナノカーボン前駆体の一分子が球状ではない場合、ナノカーボン前駆体は、縦・横・厚みの全てが1μm超え1000μm以下である。このようなナノカーボン前駆体はプレス等の手法で押し固められたペレット状であってもよい。 In the present specification, the particle size of the nanocarbon precursor is more than 1 μm and 1000 μm or less. When one molecule of the nanocarbon precursor is not spherical, the length, width, and thickness of the nanocarbon precursor are all more than 1 μm and 1000 μm or less. Such a nanocarbon precursor may be in the form of pellets compacted by a method such as pressing.
 ナノカーボン前駆体について、市販品を用いることもできる。市販品としては、例えば、LGChem社製のMWCNT(LUCAN CP1001M)、伊藤黒鉛社製の燐片状黒鉛(Z-5F)等を挙げることができる。なお、上述したような市販品を組み合わせてナノカーボン前駆体として用いてもよい。 Commercially available products can also be used for the nanocarbon precursor. Examples of commercially available products include MWCNT (LUCAN CP1001M) manufactured by LG Chem and phosphonic graphite (Z-5F) manufactured by Ito Graphite. In addition, a commercially available product as described above may be combined and used as a nanocarbon precursor.
(任意成分)
 微細化処理工程に供される、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液は、セルロース繊維とナノカーボン前駆体の他に任意成分を含んでいてもよい。任意成分としては、例えば、植物性油、動物性油、鉱物油、樹脂、樹脂エマルション、無機粒子、層状無機化合物などが挙げられる。中でも、植物性油、動物性油、鉱物油はナノカーボン前駆体との相性も良いことから、好ましく用いられる。
(Arbitrary ingredient)
The mixed solution containing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent used in the micronization treatment step may contain an arbitrary component in addition to the cellulose fiber and the nanocarbon precursor. good. Examples of the optional component include vegetable oil, animal oil, mineral oil, resin, resin emulsion, inorganic particles, layered inorganic compound and the like. Among them, vegetable oils, animal oils, and mineral oils are preferably used because they have good compatibility with nanocarbon precursors.
 なお、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液における界面活性剤の含有量は1質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。すなわち、イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液は、界面活性剤を実質的に含有しないものであることが好ましい。イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液における界面活性剤の含有量を上記範囲とすることにより、より効果的にバブリングの発生を抑制することができる。 The content of the surfactant in the mixture containing the cellulose fiber having an ionic substituent, the nanocarbon precursor and the solvent is preferably 1% by mass or less, preferably 0.1% by mass or less. Is more preferable. That is, it is preferable that the mixture containing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent does not substantially contain a surfactant. By setting the content of the surfactant in the mixture containing the cellulose fiber having an ionic substituent, the nanocarbon precursor, and the solvent within the above range, the occurrence of bubbling can be suppressed more effectively. ..
(微細繊維状セルロース・ナノカーボン含有物)
 本実施形態は、繊維幅が1000nm以下であり、かつイオン性置換基を有する微細繊維状セルロースと、ナノカーボンとを含有する微細繊維状セルロース・ナノカーボン含有物でもある。本実施形態の微細繊維状セルロース・ナノカーボン含有物の下記条件aで算出されたチキソトロピックインデックス値(TI値)は、2以上である。
(条件a)
 微細繊維状セルロース・ナノカーボン含有物を水に分散させて、B型粘度計にて23℃、3rpmの回転数で測定した粘度が1000cpsの分散液を得る;B型粘度計にて23℃、60rpmの回転数で測定した該分散液の粘度(η)を測定し、1000/ηの値を微細繊維状セルロース・ナノカーボン含有物のチキソトロピックインデックス値(TI値)とする。
(Fine fibrous cellulose / nanocarbon-containing material)
The present embodiment is also a fine fibrous cellulose / nanocarbon-containing product having a fiber width of 1000 nm or less and containing fine fibrous cellulose having an ionic substituent and nanocarbon. The thixotropic index value (TI value) calculated under the following condition a of the fine fibrous cellulose / nanocarbon-containing material of the present embodiment is 2 or more.
(Condition a)
The fine fibrous cellulose / nanocarbon-containing material is dispersed in water to obtain a dispersion having a viscosity of 1000 cps measured at 23 ° C. with a B-type viscometer at a rotation speed of 3 rpm; 23 ° C. with a B-type viscometer. The viscosity (η) of the dispersion measured at a rotation speed of 60 rpm is measured, and a value of 1000 / η is defined as a thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material.
 本明細書において、チキソトロピックインデックス値(TI値)の算出に用いられる初期粘度(1000cps)は、B型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)により測定される値である。測定条件は、回転速度3rpmとし、測定開始から3分後の粘度値を測定する。この際の粘度値が1000cpsとなるように、微細繊維状セルロース・ナノカーボン分散液を適宜イオン交換水により希釈するが、希釈後の粘度(初期粘度)には±10%程度の誤差が生じていてもよい。例えば、分散液の全質量に対する微細繊維状セルロース・ナノカーボンの含有量を0.3~3.0質量%に調整することで、初期粘度を約1000cpsに調整することができる。なお、微細繊維状セルロース・ナノカーボン分散液をイオン交換水により希釈した後には、ディスパーザーにて1500rpmで5分間撹拌し、測定前に23℃、相対湿度50%の環境下に24時間静置した後に、粘度測定を行う。粘度測定に供される分散液の液温は23℃である・初期粘度を測定した後は、さらにB型粘度計にて23℃、60rpmの回転数で測定した該分散液の粘度(η)を測定する。そして、1000/ηの値を微細繊維状セルロース・ナノカーボン含有物のチキソトロピックインデックス値(TI値)とする。 In the present specification, the initial viscosity (1000 cps) used for calculating the thixotropic index value (TI value) is a value measured by a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD). The measurement condition is a rotation speed of 3 rpm, and the viscosity value 3 minutes after the start of measurement is measured. The fine fibrous cellulose / nanocarbon dispersion is appropriately diluted with ion-exchanged water so that the viscosity value at this time is 1000 cps, but the viscosity (initial viscosity) after dilution has an error of about ± 10%. You may. For example, the initial viscosity can be adjusted to about 1000 cps by adjusting the content of the fine fibrous cellulose / nanocarbon to the total mass of the dispersion liquid to 0.3 to 3.0% by mass. After diluting the fine fibrous cellulose / nanocarbon dispersion with ion-exchanged water, the mixture is stirred with a disperser at 1500 rpm for 5 minutes and allowed to stand in an environment of 23 ° C. and 50% relative humidity for 24 hours before measurement. After that, the viscosity is measured. The liquid temperature of the dispersion used for the viscosity measurement is 23 ° C. ・ After measuring the initial viscosity, the viscosity (η) of the dispersion measured at 23 ° C. and 60 rpm with a B-type viscometer. To measure. Then, the value of 1000 / η is taken as the thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material.
 微細繊維状セルロース・ナノカーボン含有物のチキソトロピックインデックス値(TI値)は、2以上であることが好ましく、5以上であることがより好ましく、10以上であることがさらに好ましい。また、微細繊維状セルロース・ナノカーボン含有物のチキソトロピックインデックス値(TI値)は、1000以下であることが好ましく、500以下であることがより好ましく、300以下であることがさらに好ましい。チキソトロピックインデックス値(TI値)が上記下限値以上であれば、チキソトロピー性の高い微細繊維状セルロース・ナノカーボン含有物が得られる。 The thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material is preferably 2 or more, more preferably 5 or more, and further preferably 10 or more. The thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing material is preferably 1000 or less, more preferably 500 or less, and further preferably 300 or less. When the thixotropic index value (TI value) is at least the above lower limit value, a fine fibrous cellulose / nanocarbon-containing product having high thixotropy can be obtained.
 微細繊維状セルロース・ナノカーボン含有物における溶媒の含有量は、微細繊維状セルロース・ナノカーボン含有物の全質量に対して99質量%以下であることが好ましく、98質量%以下であることがより好ましい。なお、微細繊維状セルロース・ナノカーボン含有物における溶媒の含有量は、混合液の全質量に対して95質量%以下であってもよく、90質量%以下であってもよい。微細繊維状セルロース・ナノカーボン含有物における溶媒の含有量の下限は、特に限定されないが、例えば、微細繊維状セルロース・ナノカーボン含有物の全質量に対して70質量%以上である。 The content of the solvent in the fine fibrous cellulose / nanocarbon-containing material is preferably 99% by mass or less, more preferably 98% by mass or less, based on the total mass of the fine fibrous cellulose / nanocarbon-containing material. preferable. The content of the solvent in the fine fibrous cellulose / nanocarbon-containing material may be 95% by mass or less, or 90% by mass or less, based on the total mass of the mixture. The lower limit of the solvent content in the fine fibrous cellulose / nanocarbon-containing material is not particularly limited, but is, for example, 70% by mass or more with respect to the total mass of the fine fibrous cellulose / nanocarbon-containing material.
 微細繊維状セルロース・ナノカーボン含有物中において、微細繊維状セルロースとナノカーボンは、均一分散している。ここで、微細繊維状セルロースとナノカーボンが均一分散している状態とは、微細繊維状セルロース・ナノカーボン分散液が連続した1つの液状であり、微細繊維状セルロース・ナノカーボン分散液を目視観察した際、微細繊維状セルロース分散液のみ存在する箇所と、ナノカーボン分散液のみ存在する箇所が無い状態を言う。一方で、分散液が複数に分離していたり、微細繊維状セルロース分散液のみ存在する箇所と、ナノカーボン分散液のみ存在する箇所とがまばらに存在する場合は、均一分散していないと判定できる。 The fine fibrous cellulose and nanocarbon are uniformly dispersed in the fine fibrous cellulose / nanocarbon-containing material. Here, the state in which the fine fibrous cellulose and the nanocarbon are uniformly dispersed is one liquid in which the fine fibrous cellulose / nanocarbon dispersion liquid is continuous, and the fine fibrous cellulose / nanocarbon dispersion liquid is visually observed. In this case, it means a state in which only the fine fibrous cellulose dispersion is present and there is no portion in which only the nanocarbon dispersion is present. On the other hand, if the dispersion liquids are separated into a plurality of parts, or if the parts where only the fine fibrous cellulose dispersion liquid is present and the parts where only the nanocarbon dispersion liquid is present are sparsely present, it can be determined that the dispersion is not uniformly dispersed. ..
 微細繊維状セルロース・ナノカーボン含有物の燃焼後質量割合の標準偏差を微細繊維状セルロース・ナノカーボン含有物の燃焼後質量割合の平均値で割った値(CV値)は、10%未満であることが好ましく、5%未満であることがより好ましい(下限値:0%)。ここで、微細繊維状セルロース・ナノカーボン含有物の燃焼後質量割合の標準偏差は、示差熱熱重量同時測定装置(セイコーインスツルメンツ株式会社(現株式会社日立ハイテクサイエンス)製、TG/DTA6300)を用いて測定される。具体的には、得られた微細繊維状セルロース・ナノカーボン含有物(分散液)からランダムに1cc分取した試料を、窒素雰囲気下で下記温度プログラムの通り昇温させ、1秒間に1度、重量を測定する。次いで、110℃での重量に対して、600℃に到達した際の重量の割合(燃焼後質量の割合)を計算し、10回測定することで燃焼後質量割合の標準偏差を求める。
<温度プログラム>
1.50℃で5分間保持
2.50℃→100℃へ昇温(昇温速度:10℃/分)
3.100℃で10分間保持
4.100℃→600℃へ昇温(昇温速度:10℃/分)
 なお、微細繊維状セルロース・ナノカーボン含有物の燃焼後質量割合は下記のαをβで除した値(α/βの値)であり、CV値は、α/βの値を算出するため測定を10回行い、α/βの値の標準偏差をα/βの値の平均値で除した値である。
α:微細繊維状セルロース・ナノカーボン含有物の燃焼後質量(600℃到達時の質量)
β:微細繊維状セルロース・ナノカーボン含有物の絶乾質量(110℃到達時の質量)
The value (CV value) obtained by dividing the standard deviation of the post-combustion mass ratio of the fine fibrous cellulose / nanocarbon-containing material by the average value of the post-combustion mass ratio of the fine fibrous cellulose / nanocarbon-containing material is less than 10%. It is preferably less than 5% (lower limit: 0%). Here, the standard deviation of the mass ratio of the fine fibrous cellulose / nanocarbon-containing material after combustion is determined by using a differential thermogravimetric simultaneous measuring device (TG / DTA6300 manufactured by Seiko Instruments Co., Ltd. (currently Hitachi High-Tech Science Co., Ltd.)). Is measured. Specifically, 1 cc of a sample randomly collected from the obtained fine fibrous cellulose / nanocarbon-containing material (dispersion liquid) was heated in a nitrogen atmosphere according to the following temperature program, and once per second. Weigh. Next, the ratio of the weight when the temperature reaches 600 ° C. (the ratio of the mass after combustion) to the weight at 110 ° C. is calculated, and the standard deviation of the mass ratio after combustion is obtained by measuring 10 times.
<Temperature program>
Hold at 1.50 ° C for 5 minutes Increase temperature from 2.50 ° C to 100 ° C (heating rate: 10 ° C / min)
3. Hold at 100 ° C for 10 minutes 4. Raise the temperature from 100 ° C to 600 ° C (heating rate: 10 ° C / min)
The mass ratio of the fine fibrous cellulose / nanocarbon-containing material after combustion is the value obtained by dividing the following α by β (value of α / β), and the CV value is measured to calculate the value of α / β. Is performed 10 times, and the standard deviation of the α / β values is divided by the average value of the α / β values.
α: Mass after combustion of fine fibrous cellulose / nanocarbon-containing material (mass when reaching 600 ° C)
β: Absolute dry mass of fine fibrous cellulose / nanocarbon-containing material (mass when reaching 110 ° C)
 微細繊維状セルロース・ナノカーボン含有物においては、少なくとも一部の微細繊維状セルロースとナノカーボンが複合化している。ここで、複合化とは、微細繊維状セルロースとナノカーボンの少なくとも一部が接している状態を言う。 In the fine fibrous cellulose / nanocarbon-containing material, at least a part of the fine fibrous cellulose and nanocarbon are compounded. Here, the compounding means a state in which at least a part of the fine fibrous cellulose and the nanocarbon are in contact with each other.
(微細繊維状セルロース)
 微細繊維状セルロース・ナノカーボン含有物に含まれる微細繊維状セルロースは、繊維幅が1000nm以下である微細繊維状セルロースである。微細繊維状セルロースの繊維幅は100nm以下であることがより好ましく、8nm以下であることがさらに好ましい。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロースという。
(Fine fibrous cellulose)
The fine fibrous cellulose contained in the fine fibrous cellulose / nanocarbon-containing material is a fine fibrous cellulose having a fiber width of 1000 nm or less. The fiber width of the fine fibrous cellulose is more preferably 100 nm or less, and further preferably 8 nm or less. In the present specification, fibrous cellulose having a fiber width of 1000 nm or less is referred to as fine fibrous cellulose.
 微細繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。微細繊維状セルロースの平均繊維幅は、たとえば1000nm以下である。微細繊維状セルロースの平均繊維幅は、たとえば2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることが特に好ましい。微細繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、微細繊維状セルロースによる強度や剛性、寸法安定性の向上という効果をより発現しやすくすることができる。なお、微細繊維状セルロースは、たとえば単繊維状のセルロースである。 The fiber width of fine fibrous cellulose can be measured by, for example, observation with an electron microscope. The average fiber width of the fine fibrous cellulose is, for example, 1000 nm or less. The average fiber width of the fine fibrous cellulose is, for example, preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and 2 nm or more and 10 nm or less. Is particularly preferable. By setting the average fiber width of the fine fibrous cellulose to 2 nm or more, it is possible to suppress the dissolution of the fine fibrous cellulose in water as a cellulose molecule, and to more easily exhibit the effects of the fine fibrous cellulose to improve strength, rigidity and dimensional stability. be able to. The fine fibrous cellulose is, for example, monofibrous cellulose.
 微細繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の微細繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。 The average fiber width of fine fibrous cellulose is measured as follows, for example, using an electron microscope. First, an aqueous suspension of fine fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a hydrophilized carbon film-coated grid for TEM observation. Use as a sample. If it contains wide fibers, an SEM image of the surface cast on the glass may be observed. Next, observation is performed using an electron microscope image at a magnification of 1000 times, 5000 times, 10000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification should be adjusted so as to satisfy the following conditions.
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
(1) A straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
 上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、微細繊維状セルロースの平均繊維幅とする。 For an observation image that satisfies the above conditions, visually read the width of the fiber that intersects the straight line X and the straight line Y. In this way, at least three sets of observation images of surface portions that do not overlap each other are obtained. Next, for each image, the width of the fiber intersecting the straight line X and the straight line Y is read. As a result, at least 20 fibers × 2 × 3 = 120 fibers are read. Then, the average value of the read fiber widths is taken as the average fiber width of the fine fibrous cellulose.
 微細繊維状セルロースの繊維長は、特に限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、微細繊維状セルロースの結晶領域の破壊を抑制できる。また、微細繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、微細繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。 The fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 μm or more and 1000 μm or less, more preferably 0.1 μm or more and 800 μm or less, and 0.1 μm or more and 600 μm or less. More preferred. By setting the fiber length within the above range, destruction of the crystal region of the fine fibrous cellulose can be suppressed. It is also possible to set the slurry viscosity of the fine fibrous cellulose in an appropriate range. The fiber length of the fine fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.
 微細繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、微細繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。 The fine fibrous cellulose preferably has an I-type crystal structure. Here, the fact that the fine fibrous cellulose has an I-type crystal structure can be identified in the diffraction profile obtained from a wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418 Å) monochromatic with graphite. Specifically, it can be identified by having typical peaks at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. The ratio of the type I crystal structure to the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. As a result, even better performance can be expected in terms of heat resistance and low coefficient of linear thermal expansion. The crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
 微細繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。また、溶媒分散体を作製した際に十分な増粘性が得られやすい。軸比を上記上限値以下とすることにより、たとえば微細繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。 The axial ratio (fiber length / fiber width) of the fine fibrous cellulose is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less. By setting the axial ratio to the above lower limit value or more, it is easy to form a sheet containing fine fibrous cellulose. In addition, sufficient viscosity can be easily obtained when the solvent dispersion is produced. By setting the axial ratio to the above upper limit value or less, for example, when treating fine fibrous cellulose as an aqueous dispersion, it is preferable in that handling such as dilution becomes easy.
 本実施形態における微細繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。結晶領域と非結晶領域をともに有し、かつ軸比が上記範囲内にある微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。 The fine fibrous cellulose in the present embodiment has, for example, both a crystalline region and a non-crystalline region. The fine fibrous cellulose having both a crystalline region and an amorphous region and having an axial ratio within the above range is realized by a method for producing fine fibrous cellulose described later.
 本実施形態の微細繊維状セルロースは、イオン性置換基を有する。イオン性置換基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。本実施形態においては、イオン性置換基としてアニオン性基を有することが特に好ましい。 The fine fibrous cellulose of the present embodiment has an ionic substituent. The ionic substituent can include, for example, either one or both of an anionic group and a cationic group. In this embodiment, it is particularly preferable to have an anionic group as the ionic substituent.
 アニオン性基としては、たとえばリンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、スルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)、ザンテート基、ホスホン基、ホスフィン基、カルボキシアルキル基(カルボキシメチル基を含む)等を挙げることができる。スルホン基またはスルホン基に由来する置換基が、エステル結合を介して導入されている場合、同置換基を、硫黄オキソ酸基または硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)ということもある。中でも、アニオン性基は、リンオキソ酸基、リンオキソ酸基に由来する置換基、カルボキシ基、カルボキシメチル基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種であることが好ましく、リンオキソ酸基、リンオキソ酸基に由来する置換基、カルボキシ基、硫黄オキソ酸基及び硫黄オキソ酸基に由来する置換基からなる群から選択される少なくとも1種であることがより好ましく、リンオキソ酸基であることが特に好ましい。リンオキソ酸基またはリンオキソ酸基に由来する置換基としては、上述した式(1)で表される置換基を同様に例示できる。イオン性置換基としてのカチオン性基としては、たとえばアンモニウム基、ホスホニウム基、スルホニウム基等を挙げることができる。中でもカチオン性基はアンモニウム基であることが好ましい。 Examples of the anionic group include a phosphoric acid group or a substituent derived from a phosphoric acid group (sometimes simply referred to as a phosphoric acid group), a carboxy group or a substituent derived from a carboxy group (sometimes simply referred to as a carboxy group), and the like. Examples thereof include a sulfone group or a substituent derived from the sulfone group (sometimes referred to simply as a sulfon group), a zantate group, a phosphone group, a phosphine group, a carboxyalkyl group (including a carboxymethyl group) and the like. When a sulfone group or a substituent derived from a sulfone group is introduced via an ester bond, the substituent is referred to as a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (simply referred to as a sulfur oxo acid group). There is also). Among them, the anionic group is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a carboxymethyl group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group. It is preferably a species, and is at least one selected from the group consisting of a phosphorus oxo acid group, a substituent derived from a phosphorus oxo acid group, a carboxy group, a sulfur oxo acid group and a substituent derived from a sulfur oxo acid group. Is more preferable, and a phosphorusoxo acid group is particularly preferable. As the phosphate group or the substituent derived from the phosphorusoxo acid group, the substituent represented by the above-mentioned formula (1) can be similarly exemplified. Examples of the cationic group as the ionic substituent include an ammonium group, a phosphonium group, a sulfonium group and the like. Of these, the cationic group is preferably an ammonium group.
 微細繊維状セルロースに対するイオン性置換基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり0.05mmol/g以上であることが好ましく、0.10mmol/g以上であることがより好ましく、0.20mmol/g以上であることがさらに好ましく、0.40mmol/g以上であることが一層好ましく、0.60mmol/g以上であることが特に好ましい。また、微細繊維状セルロースに対するイオン性置換基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gにおける分母は、イオン性置換基の対イオンが水素イオン(H)であるときの微細繊維状セルロースの質量を示す。イオン性置換基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、微細繊維状セルロースの安定性を高めることが可能となる。 The amount of the ionic substituent introduced into the fine fibrous cellulose is preferably, for example, 0.05 mmol / g or more, more preferably 0.10 mmol / g or more, and 0, per 1 g (mass) of the fine fibrous cellulose. It is more preferably 20 mmol / g or more, further preferably 0.40 mmol / g or more, and particularly preferably 0.60 mmol / g or more. The amount of the ionic substituent introduced into the fine fibrous cellulose is preferably 5.20 mmol / g or less per 1 g (mass) of the fine fibrous cellulose, and more preferably 3.65 mmol / g or less. , 3.00 mmol / g or less, more preferably. Here, the denominator in the unit mmol / g indicates the mass of the fine fibrous cellulose when the counter ion of the ionic substituent is a hydrogen ion (H +). By setting the amount of the ionic substituent introduced within the above range, it is possible to facilitate the miniaturization of the fiber raw material and enhance the stability of the fine fibrous cellulose.
(ナノカーボン)
 微細繊維状セルロース・ナノカーボン含有物に含まれるナノカーボンとしては、カーボンナノチューブ(CNT)、グラフェン、フラーレン等を挙げることができる。中でも、ナノカーボンは、カーボンナノチューブ及びグラフェンからなる群から選択される少なくとも1種であることが好ましい。なお、カーボンナノチューブ(CNT)は、単層カーボンナノチューブ(CNT)であってもよく、多層カーボンナノチューブ(CNT)であってもよい。また、グラフェンも同様に、単層グラフェンであってもよく、多層グラフェンであってもよい。
(Nanocarbon)
Examples of the nanocarbon contained in the fine fibrous cellulose / nanocarbon-containing material include carbon nanotubes (CNT), graphene, and fullerenes. Above all, the nanocarbon is preferably at least one selected from the group consisting of carbon nanotubes and graphene. The carbon nanotube (CNT) may be a single-walled carbon nanotube (CNT) or a multi-walled carbon nanotube (CNT). Similarly, graphene may be single-layer graphene or multi-layer graphene.
 本明細書において、ナノカーボンとは、その粒子径が1000nm以下であるナノカーボン粒子をいう。ナノカーボンの一分子が球状ではない場合、ナノカーボンは、縦・横・厚みのうち少なくとも1つが1000nm以下になっているナノカーボン粒子である。なお、ナノカーボン粒子の一辺の長さはナノカーボンの分散液をキャストした後に得られる観察用試料を、必要に応じて、適宜染色等を行った後に電子顕微鏡で観察することにより測定される値である。 In the present specification, the nanocarbon means nanocarbon particles having a particle size of 1000 nm or less. When one molecule of nanocarbon is not spherical, nanocarbon is nanocarbon particles in which at least one of length, width, and thickness is 1000 nm or less. The length of one side of the nanocarbon particles is a value measured by observing the observation sample obtained after casting the dispersion liquid of nanocarbon with an electron microscope after appropriately dyeing the sample as necessary. Is.
(用途)
 本実施形態の微細繊維状セルロース・ナノカーボン含有物の用途としては、塗料、樹脂組成物、コンクリート材料、糸状もしくは板状の構造体、電磁波シールド、電気化学デバイス等が挙げられる。なお、電気化学デバイスには、電池やキャパシタ(コンデンサー)、電気二重層キャパシタが含まれる。また、糸状もしくは板状の構造体には、シートやフィルム、膜、不織布が含まれる。すなわち、本発明の別の実施形態は、塗料、樹脂組成物、コンクリート材料、糸状もしくは板状の構造体、電磁波シールドまたは電気化学デバイスの製造における、上記の微細繊維状セルロース・ナノカーボン含有物の使用である。
(Use)
Applications of the fine fibrous cellulose / nanocarbon-containing material of the present embodiment include paints, resin compositions, concrete materials, filamentous or plate-like structures, electromagnetic wave shields, electrochemical devices and the like. The electrochemical device includes a battery, a capacitor (capacitor), and an electric double layer capacitor. Further, the thread-like or plate-like structure includes a sheet, a film, a film, and a non-woven fabric. That is, another embodiment of the present invention is the above-mentioned fine fibrous cellulose / nanocarbon-containing material in the production of paints, resin compositions, concrete materials, filamentous or plate-like structures, electromagnetic wave shields or electrochemical devices. Is used.
 本実施形態の微細繊維状セルロース・ナノカーボン含有物が樹脂組成物用として用いられる場合、微細繊維状セルロース・ナノカーボン含有物が樹脂組成物の添加剤として包含されてもよく、樹脂成分が微細繊維状セルロース・ナノカーボン含有物の添加剤として包含されてもよい。なお、樹脂組成物中に含まれる樹脂成分としては、例えば、ゴム系樹脂、ポリオレフィン樹脂、アクリル樹脂、ウレタン樹脂、ポリカーボネート樹脂等が挙げられる。 When the fine fibrous cellulose / nanocarbon-containing material of the present embodiment is used for the resin composition, the fine fibrous cellulose / nanocarbon-containing material may be included as an additive of the resin composition, and the resin component is fine. It may be included as an additive of the fibrous cellulose / nanocarbon-containing material. Examples of the resin component contained in the resin composition include rubber-based resin, polyolefin resin, acrylic resin, urethane resin, polycarbonate resin and the like.
 本実施形態は、上述した微細繊維状セルロース・ナノカーボン含有物を含む塗料であってもよく、微細繊維状セルロース・ナノカーボン含有物を含むコンクリート材料であってもよく、微細繊維状セルロース・ナノカーボン含有物を含む糸状もしくは板状の構造体であってもよく、微細繊維状セルロース・ナノカーボン含有物を含む電磁波シールドであってもよく、微細繊維状セルロース・ナノカーボン含有物を含む電気化学デバイスであってもよい。塗料、コンクリート材料、電磁波シールドおよび電気化学デバイスの構成成分としては、公知のものが挙げられる。 The present embodiment may be a paint containing the above-mentioned fine fibrous cellulose / nanocarbon-containing material, may be a concrete material containing the fine fibrous cellulose / nanocarbon-containing material, and may be a fine fibrous cellulose / nano. It may be a filamentous or plate-like structure containing carbon-containing material, an electromagnetic wave shield containing fine fibrous cellulose / nanocarbon-containing material, and electrochemical containing fine fibrous cellulose / nanocarbon-containing material. It may be a device. Known components of paints, concrete materials, electromagnetic wave shields and electrochemical devices can be mentioned.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described in more detail below with reference to Examples and Comparative Examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed in a limited manner by the specific examples shown below.
<製造例A1>
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Production example A1>
As raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
 この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。 The raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphoric acid group into the cellulose in the pulp to obtain a phosphorylated pulp.
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained phosphorylated pulp was washed. The washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水および洗浄して、中和処理が施されたリン酸化パルプを得た。そして、得られたリン酸化パルプに、イオン交換水を加えて、0.5質量%濃度の分散液として、セルロース繊維の中和処理を完了した。 Next, the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated and washed to obtain a phosphorylated pulp that had been neutralized. Then, ion-exchanged water was added to the obtained phosphorylated pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
 得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量強酸性基量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mol/gであった。 The infrared absorption spectrum of the obtained phosphorylated pulp was measured using FT-IR. As a result, absorption of the phosphate group based on P = O was observed around 1230 cm -1 , and it was confirmed that the phosphate group was added to the pulp. Further, when the obtained phosphorylated pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, and it was confirmed that it had cellulose type I crystals. The amount of phosphate groups (first dissociated acid amount, strongly acidic group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.45 mmol / g. The total amount of dissociated acid was 2.45 mol / g.
<製造例A2>
 製造例A1で得られたリン酸化パルプの0.5質量%分散液に対して、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、100MPaの圧力にて1回処理を行った。なお、本装置には、バブリング抑制の機構を配備した。高圧ホモジナイザーは、ダイヤモンドノズルを備えるジェット流発生部と、このジェット流発生部の下流に位置するバブリング抑制機構を備える。本装置においては、バブリング抑制機構として、冷却可能な配管(外套)を採用し、このような配管(外套)を分散液が流通する内管を覆うように配備した。なお、冷却可能な配管の長さは350mmであり、冷却可能な配管はジェット流発生部のダイヤモンドノズル100mmの下流側に配備した。このバブリング抑制機構では、ダイヤモンドノズルで発生するジェット流に背圧を掛けつつ、外套に15℃の冷却水を27L/minの流量で流した。このようにして、前処理が施された0.5質量%濃度のセルロース繊維分散液を得た。なお、得られたセルロース繊維分散液を光学顕微鏡で観察したところ、幅20μm以上のセルロース繊維が多数観察された。
<Manufacturing example A2>
The 0.5% by mass dispersion of phosphorylated pulp obtained in Production Example A1 was treated once with a high-pressure homogenizer (Beryu-Mini, manufactured by Bigrain Co., Ltd.) at a pressure of 100 MPa. This device is equipped with a bubbling suppression mechanism. The high-pressure homogenizer includes a jet flow generator provided with a diamond nozzle and a bubbling suppression mechanism located downstream of the jet flow generator. In this device, a coolable pipe (cloak) was adopted as a bubbling suppression mechanism, and such a pipe (cloak) was arranged so as to cover the inner pipe through which the dispersion liquid flows. The length of the coolable pipe was 350 mm, and the coolable pipe was installed on the downstream side of the diamond nozzle 100 mm of the jet flow generating portion. In this bubbling suppression mechanism, while applying back pressure to the jet flow generated by the diamond nozzle, cooling water at 15 ° C. was flowed through the mantle at a flow rate of 27 L / min. In this way, a pretreated 0.5% by mass concentration cellulose fiber dispersion was obtained. When the obtained cellulose fiber dispersion was observed with an optical microscope, many cellulose fibers having a width of 20 μm or more were observed.
<製造例A3>
 中和処理において、水酸化ナトリウムの代わりに、40質量%濃度のテトラブチルアンモニウムヒドロキシドを用いた以外は製造例A1と同様に操作を行い、0.5質量%濃度のセルロース繊維分散液を得た。セルロース繊維は対イオンとしてテトラブチルアンモニウムイオン(TBA)を有していた。
<Manufacturing example A3>
In the neutralization treatment, the same operation as in Production Example A1 was carried out except that tetrabutylammonium hydroxide having a concentration of 40% by mass was used instead of sodium hydroxide to obtain a cellulose fiber dispersion having a concentration of 0.5% by mass. rice field. Cellulose fibers had tetrabutylammonium ions (TBA + ) as counterions.
<製造例B1>
 リン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例A1と同様に操作を行い、亜リン酸化パルプを得た。その他は、製造例A1と同様に操作を行い、0.5質量%濃度のセルロース繊維分散液を得た。
<Manufacturing example B1>
The same procedure as in Production Example A1 was carried out except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate to obtain phosphorous oxide pulp. Others were operated in the same manner as in Production Example A1 to obtain a cellulose fiber dispersion having a concentration of 0.5% by mass.
 得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定される亜リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。 The infrared absorption spectrum of the obtained subphosphorylated pulp was measured using FT-IR. As a result, absorption based on P = O of the phosphonic acid group, which is a tautomer of the phosphite group, was observed around 1210 cm -1, and the phosphite group (phosphonic acid group) was added to the pulp. Was confirmed. Further, when the obtained subphosphorylated pulp was tested and analyzed by an X-ray diffractometer, two positions were found: 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed in, and it was confirmed that it had cellulose type I crystals. The amount of phosphite group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.51 mmol / g. The total amount of dissociated acid was 1.54 mmol / g.
<製造例C1>
 リン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用い、加熱時間を19分間に延長した以外は、製造例A1と同様に操作を行い、硫酸化パルプを得た。その他は、製造例A1と同様に操作を行い、0.5質量%濃度のセルロース繊維分散液を得た。
<Manufacturing example C1>
38 parts by mass of amide sulfuric acid (sulfamic acid) was used instead of ammonium dihydrogen phosphate, and the same procedure as in Production Example A1 was carried out except that the heating time was extended to 19 minutes to obtain sulfated pulp. Others were operated in the same manner as in Production Example A1 to obtain a cellulose fiber dispersion having a concentration of 0.5% by mass.
 得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸エステル基のS=Oに基づく吸収が観察され、パルプに硫酸エステル基が付加されていることが確認された。また、得られた硫酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、後述する〔硫酸エステル基量の測定〕に記載の測定方法で測定される硫酸エステル基量(第1解離酸量)は1.12mmol/gだった。 The infrared absorption spectrum of the obtained sulfated pulp was measured using FT-IR. As a result, absorption of the sulfate ester group based on S = O was observed in the vicinity of 1220-1260 cm -1, and it was confirmed that the sulfate ester group was added to the pulp. Further, when the obtained sulfated pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, and it was confirmed that it had cellulose type I crystals. The amount of sulfate ester groups (first dissociated acid amount) measured by the measuring method described in [Measurement of sulfate ester group amount] described later was 1.12 mmol / g.
<製造例D1>
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。
<Manufacturing example D1>
As the raw material pulp, softwood kraft pulp (undried) made by Oji Paper was used. Alkaline TEMPO oxidation treatment was carried out on this raw material pulp as follows.
 まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して10mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。 First, the raw material pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), and 10 parts by mass of sodium bromide are added to 10000 parts by mass of water. It was dispersed in the parts. Then, a 13 mass% sodium hypochlorite aqueous solution was added to 1.0 g of pulp so as to be 10 mmol, and the reaction was started. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained TEMPO oxide pulp was washed. The washing treatment is carried out by dehydrating the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtration and dehydration. rice field. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 この脱水シートに対して、残存するアルデヒド基の追酸化処理を次のようにして行った。乾燥質量100質量部相当の上記脱水シートを、0.1mol/L酢酸緩衝液(pH4.8)10000質量部に分散させた。次いで80質量%亜塩素酸ナトリウム113質量部を加え、直ちに密閉した後、マグネチックスターラーを用いて500rpmで撹拌しながら室温で48時間反応させ、パルプスラリーを得た。 The dehydrated sheet was subjected to additional oxidation treatment of the remaining aldehyde groups as follows. The dehydrated sheet corresponding to 100 parts by mass of dry mass was dispersed in 10000 parts by mass of 0.1 mol / L acetate buffer (pH 4.8). Next, 113 parts by mass of 80% by mass sodium chlorite was added, and the mixture was immediately sealed and then reacted at room temperature for 48 hours with stirring at 500 rpm using a magnetic stirrer to obtain a pulp slurry.
 次いで、得られた追酸化済みTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、追酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。そして、得られたTEMPO酸化パルプに、イオン交換水を加えて、0.5質量%濃度の分散液として、セルロース繊維の中和処理を完了した。 Next, the obtained top-oxidized TEMPO oxide pulp was washed. The washing treatment is carried out by dehydrating the pulp slurry after the additional oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtering and dehydrating. rice field. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set. Then, ion-exchanged water was added to the obtained TEMPO oxidized pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
 得られたTEMPO酸化パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.80mmol/gだった。また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Regarding the obtained TEMPO oxidized pulp, the amount of carboxy group measured by the measuring method described later was 1.80 mmol / g. Further, when the obtained TEMPO oxide pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, confirming that it had cellulose type I crystals.
<製造例E1>
[次亜塩素酸酸化]
 針葉樹晒クラフトパルプ(NBKP)を抄き上げたシート(固形分濃度90質量%)を、ハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20000rpmで15秒処理して綿状のフラッフィングパルプ(固形分濃度90質量%)にした。次いで、次亜塩素酸ナトリウム・5水和物をイオン交換水に加え、次亜塩素酸ナトリウムの固形分濃度を22質量%とした水溶液を準備した。綿状のフラッフィングパルプ100質量部に、22質量%の次亜塩素酸ナトリウム水溶液を9000質量部加え、温浴で30℃に調整しながら2時間反応させ、カルボキシ基導入パルプを得た。反応中は1N水酸化ナトリウム水溶液を適宜加え、pHを11に維持した。
<Manufacturing example E1>
[Oxidation of hypochlorous acid]
A sheet (solid content concentration 90% by mass) made from softwood bleached kraft pulp (NBKP) is treated with a hand mixer (Osaka Chemical Co., Ltd., Lab Miller PLUS) at a rotation speed of 20000 rpm for 15 seconds to form a cotton-like fluffing. It was made into pulp (solid content concentration 90% by mass). Next, sodium hypochlorite pentahydrate was added to ion-exchanged water to prepare an aqueous solution having a solid content concentration of sodium hypochlorite of 22% by mass. To 100 parts by mass of cotton-like fluffing pulp, 9000 parts by mass of a 22% by mass sodium hypochlorite aqueous solution was added and reacted in a warm bath at 30 ° C. for 2 hours to obtain a carboxy group-introduced pulp. During the reaction, a 1N aqueous sodium hydroxide solution was appropriately added to maintain the pH at 11.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 得られたカルボキシ基導入パルプについて、後述する測定方法で測定されるカルボキシ基量は、0.70mmol/gだった。また、得られたカルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Regarding the obtained carboxy group-introduced pulp, the amount of carboxy group measured by the measuring method described later was 0.70 mmol / g. Further, when the obtained carboxy group-introduced pulp was tested and analyzed by an X-ray diffractometer, two positions were found: 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed in, and it was confirmed that it had cellulose type I crystals.
<製造例F1>
[マレイン酸エステル化]
 針葉樹晒クラフトパルプ(NBKP)を抄き上げたシート(固形分濃度90質量%)を、ハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20000rpmで15秒処理して綿状のフラッフィングパルプ(固形分濃度90質量%)にした。オートクレーブに、綿状のフラッフィングパルプ100質量部と無水マレイン酸50質量部とを充填し、150℃で2時間処理して、カルボキシ基導入パルプを得た。
<Manufacturing example F1>
[Maleic acid esterification]
A sheet (solid content concentration 90% by mass) made from softwood bleached kraft pulp (NBKP) is treated with a hand mixer (Osaka Chemical Co., Ltd., Lab Miller PLUS) at a rotation speed of 20000 rpm for 15 seconds to form a cotton-like fluffing. It was made into pulp (solid content concentration 90% by mass). The autoclave was filled with 100 parts by mass of cotton-like fluffing pulp and 50 parts by mass of maleic anhydride, and treated at 150 ° C. for 2 hours to obtain a carboxy group-introduced pulp.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 得られたカルボキシ基導入パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1580および1720cm-1付近にカルボキシ基に基づく吸収が観察され、マレイン酸エステル化されていることを確認した。得られたカルボキシ基導入パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.22mmol/gだった。また、カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 The infrared absorption spectrum of the obtained carboxy group-introduced pulp was measured using FT-IR. As a result, absorption based on the carboxy group was observed near 1580 and 1720 cm- 1 , and it was confirmed that the maleic acid was esterified. Regarding the obtained carboxy group-introduced pulp, the amount of carboxy group measured by the measuring method described later was 1.22 mmol / g. Further, when the carboxy group-introduced pulp was tested and analyzed by an X-ray diffractometer, it was typical at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. Peak was confirmed, and it was confirmed that it had cellulose type I crystals.
<製造例G1>
[カルボキシエチル化]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing example G1>
[Carboxyethylation]
As raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
 この原料パルプ100質量部(絶乾質量)に、12N NaOH水溶液を250質量部と、2-クロロプロピオン酸163質量部、イオン交換水140質量部からなる薬液(合計553質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で10分加熱し、パルプ中のセルロースにカルボキシエチル基(カルボキシ基)を導入し、カルボキシ基導入パルプを得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp, 250 parts by mass of a 12N NaOH aqueous solution, 163 parts by mass of 2-chloropropionic acid, and 140 parts by mass of ion-exchanged water are added to a chemical solution (total 553 parts by mass). Impregnated pulp was obtained. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 10 minutes to introduce a carboxyethyl group (carboxy group) into the cellulose in the pulp to obtain a carboxy group-introduced pulp.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 次いで、洗浄後のカルボキシ基導入パルプに対して中和処理を次のようにして行った。まず、洗浄後のカルボキシ基導入パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のカルボキシ基導入パルプスラリーを得た。次いで、当該カルボキシ基導入パルプスラリーを脱水および洗浄をして、中和処理が施されたカルボキシ基導入パルプを得た。そして、得られたカルボキシ基導入パルプに、イオン交換水を加えて、0.5質量%濃度の分散液として、セルロース繊維の中和処理を完了した。 Next, the carboxy group-introduced pulp after washing was neutralized as follows. First, the washed carboxy group-introduced pulp is diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution is added little by little with stirring to obtain a carboxy group-introduced pulp slurry having a pH of 12 or more and 13 or less. Obtained. Next, the carboxy group-introduced pulp slurry was dehydrated and washed to obtain a neutralized carboxy group-introduced pulp. Then, ion-exchanged water was added to the obtained carboxy group-introduced pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
 得られたカルボキシ基導入パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.41mmol/gだった。また、カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Regarding the obtained carboxy group-introduced pulp, the amount of carboxy group measured by the measuring method described later was 1.41 mmol / g. Further, when the carboxy group-introduced pulp was tested and analyzed by an X-ray diffractometer, it was typical at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. Peak was confirmed, and it was confirmed that it had cellulose type I crystals.
<製造例H1>
[スルホエチル化]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing example H1>
[Sulfothethylation]
As raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
 この原料パルプ100質量部(絶乾質量)に、2N NaOH水溶液を180質量部と25質量%濃度のビニルスルホン酸ナトリウム水溶液780質量部からなる薬液(合計960質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で16分加熱し、パルプ中のセルロースにスルホエチル基(スルホン基)を導入し、スルホエチル基導入パルプ(スルホン基導入パルプ)を得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp, a chemical solution (960 parts by mass in total) consisting of 180 parts by mass of a 2N NaOH aqueous solution and 780 parts by mass of a 25 mass% sodium vinyl sulfonate aqueous solution was added to add a chemical solution-impregnated pulp. Obtained. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 16 minutes to introduce a sulfoethyl group (sulfone group) into the cellulose in the pulp to obtain a sulfoethyl group-introduced pulp (sulfone group-introduced pulp).
 次いで、得られたスルホエチル基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたスルホエチル基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained sulfoethyl group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained sulfoethyl group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 得られたスルホエチル基導入パルプについて、後述する測定方法で測定されるスルホエチル基量(スルホン基量)は、1.48mmol/gだった。また、スルホエチル基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Regarding the obtained sulfoethyl group-introduced pulp, the amount of sulfoethyl group (sulfone group amount) measured by the measuring method described later was 1.48 mmol / g. Further, when the sulfoethyl group-introduced pulp was tested and analyzed by an X-ray diffractometer, it was typical at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. Peak was confirmed, and it was confirmed that it had cellulose type I crystals.
<製造例J1>
 [カチオン化処理]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing example J1>
[Cationation treatment]
As raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
 この原料パルプ100質量部(絶乾質量)に、1N NaOH水溶液を180質量部とカチオン化剤(カチオマスターG、四日市合成株式会社製、グリシジルトリメチルアンモニウムクロリド、純分73.1質量%、含水率20.2質量%)325質量部からなる薬液(合計505質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で12分加熱し、パルプ中のセルロースにカチオン基を導入し、カチオン基導入パルプを得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp, 180 parts by mass of 1N NaOH aqueous solution and a cationizing agent (Catiomaster G, manufactured by Yokkaichi Synthetic Co., Ltd., glycidyltrimethylammonium chloride, pure content 73.1% by mass, water content A chemical solution (total of 505 parts by mass) consisting of 325 parts by mass (20.2% by mass) was added to obtain a chemical solution-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 12 minutes to introduce a cation group into the cellulose in the pulp to obtain a cation group-introduced pulp.
 次いで、得られたカチオン基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカチオン基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained cation group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained cation-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 次いで、洗浄後のカチオン基導入パルプに対して中和処理を次のようにして行った。まず、洗浄後のカチオン基導入パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの塩酸を少しずつ添加することにより、pHが1以上2以下のカチオン基導入パルプスラリーを得た。次いで、当該カチオン基導入パルプスラリーを脱水および洗浄をして、中和処理が施されたカチオン基導入パルプを得た。そして、得られたカチオン基導入パルプに、イオン交換水を加えて、0.5質量%濃度の分散液として、セルロース繊維の中和処理を完了した。 Next, the washed cation group-introduced pulp was neutralized as follows. First, the washed cation-introduced pulp was diluted with 10 L of ion-exchanged water, and then 1N hydrochloric acid was added little by little with stirring to obtain a cation-introduced pulp slurry having a pH of 1 or more and 2 or less. Next, the cation-introduced pulp slurry was dehydrated and washed to obtain a cation-introduced pulp that had been neutralized. Then, ion-exchanged water was added to the obtained cation group-introduced pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
 得られたカチオン基導入パルプについて、微量窒素分析を行い、下記式でカチオン基量を計算したところ、1.45mmol/gだった。また、カチオン基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
(カチオン基量)[mmol/g]=(窒素量)/14×1000/(供試したカチオン基導入パルプ量)
The obtained cation group-introduced pulp was subjected to trace nitrogen analysis, and the amount of cation group was calculated by the following formula. As a result, it was 1.45 mmol / g. In addition, when the cation group-introduced pulp was tested and analyzed by an X-ray diffractometer, it was typical at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. Peak was confirmed, and it was confirmed that it had cellulose type I crystals.
(Amount of cation group) [mmol / g] = (Amount of nitrogen) / 14 × 1000 / (Amount of pulp with cation group introduced)
<製造例A4>
 製造例A1で得られたリン酸化パルプにイオン交換水を加えて、1質量%濃度の分散液として、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、240MPaの圧力にて6回処理を行った。なお、本装置には、前述したバブリング抑制の機構を配備しなかった。このようにして、前処理が施された1質量%濃度の微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液をキャストした後、透過型電子顕微鏡で観察したところ、幅3-4nmの微細繊維状セルロースが観察された。幅1μm以上のセルロース繊維は観察されなかった。
<Manufacturing example A4>
Ion-exchanged water is added to the phosphorylated pulp obtained in Production Example A1 and treated as a 1% by mass dispersion with a high-pressure homogenizer (Beryu-Mini, manufactured by Bigrain Co., Ltd.) 6 times at a pressure of 240 MPa. Was done. The bubbling suppression mechanism described above was not installed in this device. In this way, a pretreated fine fibrous cellulose dispersion having a concentration of 1% by mass was obtained. After casting the obtained fine fibrous cellulose dispersion, when observed with a transmission electron microscope, fine fibrous cellulose having a width of 3-4 nm was observed. No cellulose fibers having a width of 1 μm or more were observed.
<実施例1-1>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)を用いた。製造例A1で得られた0.5質量%のセルロース繊維分散液に、直接ナノカーボン前駆体を加えて、セルロース繊維の濃度が0.5質量%、ナノカーボン前駆体の濃度が1質量%になるよう調製した。得られた混合分散液に対して、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、100MPaの圧力にて3回処理を行った。なお、本装置には、前述したバブリング抑制の機構を配備した。高圧ホモジナイザー処理の後、微細繊維状セルロース・ナノカーボンを含有する分散液が得られた。得られた分散液は、光沢のあるゲル状であった。この分散液の分散性、TI値を後述の方法で評価した。
<Example 1-1>
As the nanocarbon precursor, MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated and granulated) was used. By directly adding the nanocarbon precursor to the 0.5% by mass of the cellulose fiber dispersion obtained in Production Example A1, the concentration of the cellulose fiber becomes 0.5% by mass and the concentration of the nanocarbon precursor becomes 1% by mass. Prepared to be. The obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa. The bubbling suppression mechanism described above was installed in this device. After the high-pressure homogenizer treatment, a dispersion containing fine fibrous cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel. The dispersibility and TI value of this dispersion were evaluated by the method described later.
<実施例1-2>
 セルロース繊維分散液として、製造例A2で得られたものを用いた以外は、実施例1-1と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-2>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-1 except that the cellulose fiber dispersion obtained in Production Example A2 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-3>
 ナノカーボン前駆体として、伊藤黒鉛社製の燐片状黒鉛Z-5Fを用いた以外は、実施例1-1と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-3>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-1, except that the flake graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor. The obtained dispersion was in the form of a glossy gel.
<実施例1-4>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)と、伊藤黒鉛社製の燐片状黒鉛Z-5Fの両方を用いて、それぞれの濃度が0.5質量%となるよう調製(合計の濃度が1質量%)した以外は、実施例1-1と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-4>
As the nanocarbon precursor, both MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated to be granular) and phosphocyclic graphite Z-5F manufactured by Ito Graphite Co., Ltd. are used, and their respective concentrations are used. A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-1, except that the amount was adjusted to 0.5% by mass (total concentration was 1% by mass). The obtained dispersion was in the form of a glossy gel.
<実施例1-5>
 セルロース繊維分散液として、製造例A3で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-5>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example A3 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-6>
 セルロース繊維分散液として、製造例B1で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-6>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example B1 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-7>
 セルロース繊維分散液として、製造例C1で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-7>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example C1 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-8>
 セルロース繊維分散液として、製造例D1で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-8>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example D1 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-9>
 セルロース繊維分散液として、製造例E1で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-9>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example E1 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-10>
 セルロース繊維分散液として、製造例F1で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-10>
As the cellulose fiber dispersion liquid, a fine fibrous cellulose / nanocarbon dispersion liquid was obtained in the same manner as in Example 1-3 except that the one obtained in Production Example F1 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-11>
 セルロース繊維分散液として、製造例G1で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-11>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example G1 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-12>
 セルロース繊維分散液として、製造例H1で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-12>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Example 1-3 except that the cellulose fiber dispersion obtained in Production Example H1 was used. The obtained dispersion was in the form of a glossy gel.
<実施例1-13>
 セルロース繊維分散液として、製造例J1で得られたものを用いた以外は、実施例1-3と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 1-13>
As the cellulose fiber dispersion liquid, a fine fibrous cellulose / nanocarbon dispersion liquid was obtained in the same manner as in Example 1-3 except that the one obtained in Production Example J1 was used. The obtained dispersion was in the form of a glossy gel.
<比較例1~13>
 混合分散液の高圧ホモジナイザーでの分散処理を、下記のように変更した以外は、それぞれ実施例1-1~1-13と同様にして微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、いずれも分散状態がまばらであった。
<Comparative Examples 1 to 13>
Fine fibrous cellulose / nanocarbon dispersions were obtained in the same manner as in Examples 1-1 to 1-13, except that the dispersion treatment of the mixed dispersion with a high-pressure homogenizer was changed as follows. As a result of visually observing the obtained dispersions, the dispersed states were sparse.
(比較例1~13における分散処理方法)
 高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、240MPaの圧力にて2回処理を行った。なお、本装置には、バブリング抑制の機構を配備せずに、処理を行った。
(Distributed processing method in Comparative Examples 1 to 13)
The treatment was performed twice with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) at a pressure of 240 MPa. The processing was performed without providing a bubbling suppression mechanism in this device.
<比較例14>
 製造例A4で得られた微細繊維状セルロース分散液と、後述する製造例a1で得られたナノカーボン分散液とを、超音波ホモジナイザー(ヒールッシャー社製UP400S)用いて混合し、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がまばらであった。
<Comparative Example 14>
The fine fibrous cellulose dispersion obtained in Production Example A4 and the nanocarbon dispersion obtained in Production Example a1 described later were mixed using an ultrasonic homogenizer (UP400S manufactured by Heelscher Co., Ltd.) to obtain fine fibrous cellulose. A nanocarbon dispersion was obtained. As a result of visually observing the obtained dispersion liquid, the dispersion state was sparse.
<製造例a1>
 イオン交換水中に、ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)が2質量%、懸濁を促進するための分散剤(増粘剤)としてカルボキシメチルセルロース(関東化学社製、重合度約1050)が1質量%となるよう懸濁させた。その後、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、240MPaの圧力にて6回処理を行った。なお、本装置には、バブリング抑制の機構を配備せずに、処理を行った。このようにして、2質量%濃度のナノカーボン分散液(分散剤の固形分は含まず)を得た。
<Manufacturing example a1>
LG Chem's MWCNT (LUCAN CP1001M, MWCNT aggregated and granulated) is 2% by mass as a nanocarbon precursor in ion-exchanged water, and a dispersant (thickener) for promoting suspension. ), Carboxymethyl cellulose (manufactured by Kanto Chemical Co., Inc., degree of polymerization of about 1050) was suspended so as to be 1% by mass. Then, the treatment was carried out 6 times at a pressure of 240 MPa with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.). The processing was performed without providing a bubbling suppression mechanism in this device. In this way, a nanocarbon dispersion having a concentration of 2% by mass (not including the solid content of the dispersant) was obtained.
<比較例15>
 製造例a1で得られたナノカーボン分散液の代わりに、後述する製造例a2で得られたナノカーボン分散液を用いた以外は、比較例9と同様にして、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がまばらであった。
<Comparative Example 15>
Fine fibrous cellulose / nanocarbon dispersion in the same manner as in Comparative Example 9, except that the nanocarbon dispersion obtained in Production Example a2, which will be described later, was used instead of the nanocarbon dispersion obtained in Production Example a1. Obtained liquid. As a result of visually observing the obtained dispersion liquid, the dispersion state was sparse.
<製造例a2>
 ナノカーボン前駆体として、伊藤黒鉛社製の燐片状黒鉛Z-5Fを用いた以外は、製造例a1と同様にした。このようにして、2質量%濃度のナノカーボン分散液(分散剤の固形分は含まず)を得た。
<Manufacturing example a2>
The same procedure as in Production Example a1 was carried out except that the flake graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor. In this way, a nanocarbon dispersion having a concentration of 2% by mass (not including the solid content of the dispersant) was obtained.
<比較例16>
 製造例a1で得られたナノカーボン分散液の代わりに、後述する製造例a3で得られたナノカーボン分散液を用いた以外は、比較例9と同様にして、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がまばらであった。
<Comparative Example 16>
Fine fibrous cellulose / nanocarbon dispersion in the same manner as in Comparative Example 9 except that the nanocarbon dispersion obtained in Production Example a3 described later was used instead of the nanocarbon dispersion obtained in Production Example a1. Obtained liquid. As a result of visually observing the obtained dispersion liquid, the dispersion state was sparse.
<製造例a3>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)と、伊藤黒鉛社製の燐片状黒鉛Z-5Fの両方を用いて、それぞれの濃度が1質量%となるよう調製(合計の濃度が2%)したもの用いた以外は製造例a1と同様にした。このようにして、2質量%濃度のナノカーボン分散液(分散剤の固形分は含まず)を得た。
<Manufacturing example a3>
As the nanocarbon precursor, both LG Chem's MWCNT (LUCAN CP1001M and MWCNT are aggregated to form granules) and Ito Graphite's phosphonic graphite Z-5F are used, and their respective concentrations are used. Was prepared to be 1% by mass (total concentration was 2%), and was used in the same manner as in Production Example a1. In this way, a nanocarbon dispersion having a concentration of 2% by mass (not including the solid content of the dispersant) was obtained.
<比較例17>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)を用いた。製造例A4で得られた1質量%濃度のセルロース繊維分散液に、直接ナノカーボン前駆体を加えた後、さらにイオン交換水を加えて、セルロース繊維の濃度が0.5質量%、ナノカーボン前駆体の濃度が1質量%になるよう調製した。得られた混合分散液に対して、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、100MPaの圧力にて3回処理を行った。なお、本装置には、前述したバブリング抑制の機構を配備した。高圧ホモジナイザー処理の後、微細繊維状セルロース・ナノカーボン分散液が得られた。得られた分散液を目視観察した結果、分散状態がややまばらであった。
<Comparative example 17>
As the nanocarbon precursor, MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated and granulated) was used. The nanocarbon precursor was directly added to the 1% by mass cellulose fiber dispersion obtained in Production Example A4, and then ion-exchanged water was further added to bring the cellulose fiber concentration to 0.5% by mass and the nanocarbon precursor. It was adjusted so that the body concentration was 1% by mass. The obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa. The bubbling suppression mechanism described above was installed in this device. After the high-pressure homogenizer treatment, a fine fibrous cellulose / nanocarbon dispersion was obtained. As a result of visually observing the obtained dispersion liquid, the dispersion state was somewhat sparse.
<比較例18>
 ナノカーボン前駆体として、伊藤黒鉛社製の燐片状黒鉛Z-5Fを用いた以外は、比較例17と同様にして、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がややまばらであった。
<Comparative Example 18>
A fine fibrous cellulose nanocarbon dispersion was obtained in the same manner as in Comparative Example 17 except that phosphocyclic graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor. As a result of visually observing the obtained dispersion liquid, the dispersion state was somewhat sparse.
<比較例19>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)と、伊藤黒鉛社製の燐片状黒鉛Z-5Fの両方を用いて、それぞれの濃度が0.5質量%となるよう調製(合計の濃度が1質量%)したものを用いた以外は比較例17と同様にして、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がややまばらであった。
<Comparative Example 19>
As the nanocarbon precursor, both MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated to be granular) and phosphocyclic graphite Z-5F manufactured by Ito Graphite Co., Ltd. are used, and their respective concentrations are used. A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Comparative Example 17 except that the one prepared to have a value of 0.5% by mass (total concentration was 1% by mass) was used. As a result of visually observing the obtained dispersion liquid, the dispersion state was somewhat sparse.
<比較例20>
 セルロース繊維として、王子製紙製の針葉樹クラフトパルプ(未乾燥)をイオン交換水で0.5質量%濃度に希釈したものを用いた以外は、実施例1-1と同様にした。高圧ホモジナイザーの閉塞によって、微細繊維状セルロース・ナノカーボン分散液を得ることは出来なかった。
<Comparative Example 20>
As the cellulose fiber, the same as in Example 1-1 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 0.5% by mass was used. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
<比較例21>
 セルロース繊維として、王子製紙製の針葉樹クラフトパルプ(未乾燥)をイオン交換水で0.5質量%濃度に希釈したものを用いた以外は、実施例1-3と同様にした。高圧ホモジナイザーの閉塞によって、微細繊維状セルロース・ナノカーボン分散液を得ることは出来なかった。
<Comparative Example 21>
As the cellulose fiber, the same as in Example 1-3 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 0.5% by mass was used. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
<比較例22>
 セルロース繊維として、王子製紙製の針葉樹クラフトパルプ(未乾燥)をイオン交換水で0.5質量%濃度に希釈したものを用いた以外は、実施例1-4と同様にした。高圧ホモジナイザーの閉塞によって、微細繊維状セルロース・ナノカーボン分散液を得ることは出来なかった。
<Comparative Example 22>
As the cellulose fiber, the same as in Example 1-4 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 0.5% by mass was used. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
<製造例A11>
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing example A11>
As raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
 この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。 The raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphoric acid group into the cellulose in the pulp to obtain a phosphorylated pulp.
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained phosphorylated pulp was washed. The washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水および洗浄して、中和処理が施されたリン酸化パルプ(セルロース繊維)を得た。 Next, the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated and washed to obtain a phosphorylated pulp (cellulose fiber) subjected to a neutralization treatment.
 得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定されるリン酸基量(第1解離酸量強酸性基量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mol/gであった。 The infrared absorption spectrum of the obtained phosphorylated pulp was measured using FT-IR. As a result, absorption of the phosphate group based on P = O was observed around 1230 cm -1 , and it was confirmed that the phosphate group was added to the pulp. Further, when the obtained phosphorylated pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, and it was confirmed that it had cellulose type I crystals. The amount of phosphate groups (first dissociated acid amount, strongly acidic group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.45 mmol / g. The total amount of dissociated acid was 2.45 mol / g.
<製造例A12~A17>
 製造例A11で得られたリン酸化パルプにイオン交換水を加えて、下記表に記載の濃度(濃度C[質量%])の分散液を得た。製造例の番号と、濃度Cの関係は、下表の通りである。
<Manufacturing examples A12 to A17>
Ion-exchanged water was added to the phosphorylated pulp obtained in Production Example A11 to obtain a dispersion having the concentration (concentration C [mass%]) shown in the table below. The relationship between the production example numbers and the concentration C is as shown in the table below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 各製造例の濃度C[質量%]の分散液に対して、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、100MPaの圧力にて1回処理を行った。なお、本装置には、バブリング抑制の機構を配備した。高圧ホモジナイザーは、ダイヤモンドノズルを備えるジェット流発生部と、このジェット流発生部の下流に位置するバブリング抑制機構を備える。本装置においては、バブリング抑制機構として、冷却可能な配管(外套)を採用し、このような配管(外套)を分散液が流通する内管を覆うように配備した。なお、冷却可能な配管の長さは350mmであり、冷却可能な配管はジェット流発生部のダイヤモンドノズル100mmの下流側に配備した。このバブリング抑制機構では、ダイヤモンドノズルで発生するジェット流に背圧を掛けつつ、外套に15℃の冷却水を27L/minの流量で流した。このようにして、前処理が施された濃度C[質量%]のセルロース繊維分散液を得た。なお、製造例A12~A17で得られたセルロース繊維分散液を光学顕微鏡で観察したところ、いずれの製造例においても、幅20μm以上のセルロース繊維が多数観察された。 The dispersion having a concentration of C [mass%] in each production example was treated once with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) at a pressure of 100 MPa. This device is equipped with a bubbling suppression mechanism. The high-pressure homogenizer includes a jet flow generator provided with a diamond nozzle and a bubbling suppression mechanism located downstream of the jet flow generator. In this device, a coolable pipe (cloak) was adopted as a bubbling suppression mechanism, and such a pipe (cloak) was arranged so as to cover the inner pipe through which the dispersion liquid flows. The length of the coolable pipe was 350 mm, and the coolable pipe was installed on the downstream side of the diamond nozzle 100 mm of the jet flow generating portion. In this bubbling suppression mechanism, while applying back pressure to the jet flow generated by the diamond nozzle, cooling water at 15 ° C. was flowed through the mantle at a flow rate of 27 L / min. In this way, a pretreated cellulose fiber dispersion having a concentration of C [mass%] was obtained. When the cellulose fiber dispersions obtained in Production Examples A12 to A17 were observed with an optical microscope, a large number of cellulose fibers having a width of 20 μm or more were observed in all of the production examples.
<製造例A18>
 中和処理において、水酸化ナトリウムの代わりに、40質量%濃度のテトラブチルアンモニウムヒドロキシドを用いた以外は製造例A11と同様に操作を行い、セルロース繊維を得た。セルロース繊維は対イオンとしてテトラブチルアンモニウムイオン(TBA)を有していた。
<Manufacturing example A18>
In the neutralization treatment, the same procedure as in Production Example A11 was carried out except that tetrabutylammonium hydroxide having a concentration of 40% by mass was used instead of sodium hydroxide to obtain cellulose fibers. Cellulose fibers had tetrabutylammonium ions (TBA + ) as counterions.
<製造例B11>
 リン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例A11と同様に操作を行い、亜リン酸化パルプを得た。その他は、製造例A11と同様に操作を行い、セルロース繊維分散液を得た。
<Manufacturing example B11>
The same procedure as in Production Example A11 was carried out except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate to obtain phosphorous oxide pulp. Others were operated in the same manner as in Production Example A11 to obtain a cellulose fiber dispersion liquid.
 得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、後述する〔リンオキソ酸基量の測定〕に記載の測定方法で測定される亜リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。 The infrared absorption spectrum of the obtained subphosphorylated pulp was measured using FT-IR. As a result, absorption based on P = O of the phosphonic acid group, which is a tautomer of the phosphite group, was observed around 1210 cm -1, and the phosphite group (phosphonic acid group) was added to the pulp. Was confirmed. Further, when the obtained subphosphorylated pulp was tested and analyzed by an X-ray diffractometer, two positions were found: 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed in, and it was confirmed that it had cellulose type I crystals. The amount of phosphite group (first dissociated acid amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.51 mmol / g. The total amount of dissociated acid was 1.54 mmol / g.
<製造例C11>
 リン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用い、加熱時間を19分間に延長した以外は、製造例A11と同様に操作を行い、硫酸化パルプを得た。その他は、製造例A11と同様に操作を行い、セルロース繊維分散液を得た。
<Manufacturing example C11>
38 parts by mass of amide sulfuric acid (sulfamic acid) was used instead of ammonium dihydrogen phosphate, and the same procedure as in Production Example A11 was carried out except that the heating time was extended to 19 minutes to obtain sulfated pulp. Others were operated in the same manner as in Production Example A11 to obtain a cellulose fiber dispersion liquid.
 得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸エステル基のS=Oに基づく吸収が観察され、パルプに硫酸エステル基が付加されていることが確認された。また、得られた硫酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、後述する〔硫酸エステル基量の測定〕に記載の測定方法で測定される硫酸エステル基量(第1解離酸量)は1.12mmol/gだった。 The infrared absorption spectrum of the obtained sulfated pulp was measured using FT-IR. As a result, absorption of the sulfate ester group based on S = O was observed in the vicinity of 1220-1260 cm -1, and it was confirmed that the sulfate ester group was added to the pulp. Further, when the obtained sulfated pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, and it was confirmed that it had cellulose type I crystals. The amount of sulfate ester groups (first dissociated acid amount) measured by the measuring method described in [Measurement of sulfate ester group amount] described later was 1.12 mmol / g.
<製造例D11>
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。
<Manufacturing example D11>
As the raw material pulp, softwood kraft pulp (undried) made by Oji Paper was used. Alkaline TEMPO oxidation treatment was carried out on this raw material pulp as follows.
 まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して10mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。 First, the raw material pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), and 10 parts by mass of sodium bromide are added to 10000 parts by mass of water. It was dispersed in the parts. Then, a 13 mass% sodium hypochlorite aqueous solution was added to 1.0 g of pulp so as to be 10 mmol, and the reaction was started. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained TEMPO oxide pulp was washed. The washing treatment is carried out by dehydrating the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtration and dehydration. rice field. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 この脱水シートに対して、残存するアルデヒド基の追酸化処理を次のようにして行った。乾燥質量100質量部相当の上記脱水シートを、0.1mol/L酢酸緩衝液(pH4.8)10000質量部に分散させた。次いで80質量%亜塩素酸ナトリウム113質量部を加え、直ちに密閉した後、マグネチックスターラーを用いて500rpmで撹拌しながら室温で48時間反応させ、パルプスラリーを得た。 The dehydrated sheet was subjected to additional oxidation treatment of the remaining aldehyde groups as follows. The dehydrated sheet corresponding to 100 parts by mass of dry mass was dispersed in 10000 parts by mass of 0.1 mol / L acetate buffer (pH 4.8). Next, 113 parts by mass of 80% by mass sodium chlorite was added, and the mixture was immediately sealed and then reacted at room temperature for 48 hours with stirring at 500 rpm using a magnetic stirrer to obtain a pulp slurry.
 次いで、得られた追酸化済みTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、追酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。このようにして、TEMPO酸化パルプ(セルロース繊維)を得た。 Next, the obtained top-oxidized TEMPO oxide pulp was washed. The washing treatment is carried out by dehydrating the pulp slurry after the additional oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtering and dehydrating. rice field. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set. In this way, TEMPO oxidized pulp (cellulose fiber) was obtained.
 得られたTEMPO酸化パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.80mmol/gだった。また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Regarding the obtained TEMPO oxidized pulp, the amount of carboxy group measured by the measuring method described later was 1.80 mmol / g. Further, when the obtained TEMPO oxide pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, confirming that it had cellulose type I crystals.
<製造例E11>
[次亜塩素酸酸化]
 針葉樹晒クラフトパルプ(NBKP)を抄き上げたシート(固形分濃度90質量%)を、ハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20000rpmで15秒処理して綿状のフラッフィングパルプ(固形分濃度90質量%)にした。次いで、次亜塩素酸ナトリウム・5水和物をイオン交換水に加え、次亜塩素酸ナトリウムの固形分濃度を22質量%とした水溶液を準備した。綿状のフラッフィングパルプ100質量部に、22質量%の次亜塩素酸ナトリウム水溶液を9000質量部加え、温浴で30℃に調整しながら2時間反応させ、カルボキシ基導入パルプを得た。反応中は1N水酸化ナトリウム水溶液を適宜加え、pHを11に維持した。
<Manufacturing example E11>
[Oxidation of hypochlorous acid]
A sheet (solid content concentration 90% by mass) made from softwood bleached kraft pulp (NBKP) is treated with a hand mixer (Osaka Chemical Co., Ltd., Lab Miller PLUS) at a rotation speed of 20000 rpm for 15 seconds to form a cotton-like fluffing. It was made into pulp (solid content concentration 90% by mass). Next, sodium hypochlorite pentahydrate was added to ion-exchanged water to prepare an aqueous solution having a solid content concentration of sodium hypochlorite of 22% by mass. To 100 parts by mass of cotton-like fluffing pulp, 9000 parts by mass of a 22% by mass sodium hypochlorite aqueous solution was added and reacted in a warm bath at 30 ° C. for 2 hours to obtain a carboxy group-introduced pulp. During the reaction, a 1N aqueous sodium hydroxide solution was appropriately added to maintain the pH at 11.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 得られたカルボキシ基導入パルプについて、後述する測定方法で測定されるカルボキシ基量は、0.70mmol/gだった。また、得られたカルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Regarding the obtained carboxy group-introduced pulp, the amount of carboxy group measured by the measuring method described later was 0.70 mmol / g. Further, when the obtained carboxy group-introduced pulp was tested and analyzed by an X-ray diffractometer, two positions were found: 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed in, and it was confirmed that it had cellulose type I crystals.
<製造例F11>
[マレイン酸エステル化]
 針葉樹晒クラフトパルプ(NBKP)を抄き上げたシート(固形分濃度90質量%)を、ハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20000rpmで15秒処理して綿状のフラッフィングパルプ(固形分濃度90質量%)にした。オートクレーブに、綿状のフラッフィングパルプ100質量部と無水マレイン酸50質量部とを充填し、150℃で2時間処理して、カルボキシ基導入パルプを得た。
<Manufacturing example F11>
[Maleic acid esterification]
A sheet (solid content concentration 90% by mass) made from softwood bleached kraft pulp (NBKP) is treated with a hand mixer (Osaka Chemical Co., Ltd., Lab Miller PLUS) at a rotation speed of 20000 rpm for 15 seconds to form a cotton-like fluffing. It was made into pulp (solid content concentration 90% by mass). The autoclave was filled with 100 parts by mass of cotton-like fluffing pulp and 50 parts by mass of maleic anhydride, and treated at 150 ° C. for 2 hours to obtain a carboxy group-introduced pulp.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
得られたパルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1580および1720cm-1付近にカルボキシ基に基づく吸収が観察され、マレイン酸エステル化されていることを確認した。得られたカルボキシ基導入パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.22mmol/gだった。また、カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 The infrared absorption spectrum of the obtained pulp was measured using FT-IR. As a result, absorption based on the carboxy group was observed near 1580 and 1720 cm- 1 , and it was confirmed that the maleic acid was esterified. Regarding the obtained carboxy group-introduced pulp, the amount of carboxy group measured by the measuring method described later was 1.22 mmol / g. Further, when the carboxy group-introduced pulp was tested and analyzed by an X-ray diffractometer, it was typical at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. Peak was confirmed, and it was confirmed that it had cellulose type I crystals.
<製造例G11>
[カルボキシエチル化]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing example G11>
[Carboxyethylation]
As raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
 この原料パルプ100質量部(絶乾質量)に、12N NaOH水溶液を250質量部と、2-クロロプロピオン酸163質量部、イオン交換水140質量部からなる薬液(合計553質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で10分加熱し、パルプ中のセルロースにカルボキシエチル基(カルボキシ基)を導入し、カルボキシ基導入パルプを得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp, 250 parts by mass of a 12N NaOH aqueous solution, 163 parts by mass of 2-chloropropionic acid, and 140 parts by mass of ion-exchanged water are added to a chemical solution (total 553 parts by mass). Impregnated pulp was obtained. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 10 minutes to introduce a carboxyethyl group (carboxy group) into the cellulose in the pulp to obtain a carboxy group-introduced pulp.
 次いで、得られたカルボキシ基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカルボキシ基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained carboxy group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained carboxy group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 次いで、洗浄後のカルボキシ基導入パルプに対して中和処理を次のようにして行った。まず、洗浄後のカルボキシ基導入パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のカルボキシ基導入パルプスラリーを得た。次いで、当該カルボキシ基導入パルプスラリーを脱水および洗浄をして、中和処理が施されたカルボキシ基導入パルプを得た。そして、得られたカルボキシ基導入パルプに、イオン交換水を加えて、0.5質量%濃度の分散液として、セルロース繊維の中和処理を完了した。 Next, the carboxy group-introduced pulp after washing was neutralized as follows. First, the washed carboxy group-introduced pulp is diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution is added little by little with stirring to obtain a carboxy group-introduced pulp slurry having a pH of 12 or more and 13 or less. Obtained. Next, the carboxy group-introduced pulp slurry was dehydrated and washed to obtain a neutralized carboxy group-introduced pulp. Then, ion-exchanged water was added to the obtained carboxy group-introduced pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
 得られたカルボキシ基導入パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.41mmol/gだった。また、カルボキシ基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 Regarding the obtained carboxy group-introduced pulp, the amount of carboxy group measured by the measuring method described later was 1.41 mmol / g. Further, when the carboxy group-introduced pulp was tested and analyzed by an X-ray diffractometer, it was typical at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. Peak was confirmed, and it was confirmed that it had cellulose type I crystals.
<製造例H11>
[スルホエチル化]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing example H11>
[Sulfothethylation]
As raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
 この原料パルプ100質量部(絶乾質量)に、2N NaOH水溶液を180質量部と25質量%濃度のビニルスルホン酸ナトリウム水溶液780質量部からなる薬液(合計960質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で16分加熱し、パルプ中のセルロースにスルホエチル基(スルホン基)を導入し、スルホエチル基導入パルプ(スルホン基導入パルプ)を得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp, a chemical solution (960 parts by mass in total) consisting of 180 parts by mass of a 2N NaOH aqueous solution and 780 parts by mass of a 25 mass% sodium vinyl sulfonate aqueous solution was added to add a chemical solution-impregnated pulp. Obtained. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 16 minutes to introduce a sulfoethyl group (sulfone group) into the cellulose in the pulp to obtain a sulfoethyl group-introduced pulp (sulfone group-introduced pulp).
 次いで、得られたスルホエチル基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたスルホエチル基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained sulfoethyl group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained sulfoethyl group-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
得られたスルホエチル基導入パルプについて、後述する測定方法で測定されるスルホエチル基量(スルホン基量)は、1.48mmol/gだった。また、スルホエチル基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 With respect to the obtained sulfoethyl group-introduced pulp, the amount of sulfoethyl group (sulfone group amount) measured by the measuring method described later was 1.48 mmol / g. Further, when the sulfoethyl group-introduced pulp was tested and analyzed by an X-ray diffractometer, it was typical at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. Peak was confirmed, and it was confirmed that it had cellulose type I crystals.
<製造例J11>
 [カチオン化処理]
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121-2:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing example J11>
[Cationation treatment]
As raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, disintegrated and measured according to JIS P 811-2: 2012 Canadian standard drainage degree (CSF) ) Used 700 ml).
 この原料パルプ100質量部(絶乾質量)に、1N NaOH水溶液を180質量部とカチオン化剤(カチオマスターG、四日市合成株式会社製、グリシジルトリメチルアンモニウムクロリド、純分73.1質量%、含水率20.2質量%)325質量部からなる薬液(合計505質量部)を加え、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で12分加熱し、パルプ中のセルロースにカチオン基を導入し、カチオン基導入パルプを得た。 To 100 parts by mass (absolute dry mass) of this raw material pulp, 180 parts by mass of 1N NaOH aqueous solution and a cationizing agent (Catiomaster G, manufactured by Yokkaichi Synthetic Co., Ltd., glycidyltrimethylammonium chloride, pure content 73.1% by mass, water content A chemical solution (total of 505 parts by mass) consisting of 325 parts by mass (20.2% by mass) was added to obtain a chemical solution-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 12 minutes to introduce a cation group into the cellulose in the pulp to obtain a cation group-introduced pulp.
 次いで、得られたカチオン基導入パルプに対して洗浄処理を行った。洗浄処理は、得られたカチオン基導入パルプにイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより洗浄を行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Next, the obtained cation group-introduced pulp was washed. The washing treatment was carried out by repeating the operation of pouring ion-exchanged water into the obtained cation-introduced pulp, stirring the pulp dispersion liquid so that the pulp was uniformly dispersed, and then filtering and dehydrating the pulp. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
 次いで、洗浄後のカチオン基導入パルプに対して中和処理を次のようにして行った。まず、洗浄後のカチオン基導入パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの塩酸を少しずつ添加することにより、pHが1以上2以下のカチオン基導入パルプスラリーを得た。次いで、当該カチオン基導入パルプスラリーを脱水および洗浄をして、中和処理が施されたカチオン基導入パルプを得た。そして、得られたカチオン基導入パルプに、イオン交換水を加えて、0.5質量%濃度の分散液として、セルロース繊維の中和処理を完了した。 Next, the washed cation group-introduced pulp was neutralized as follows. First, the washed cation-introduced pulp was diluted with 10 L of ion-exchanged water, and then 1N of hydrochloric acid was added little by little with stirring to obtain a cation-introduced pulp slurry having a pH of 1 or more and 2 or less. Next, the cation-introduced pulp slurry was dehydrated and washed to obtain a cation-introduced pulp that had been neutralized. Then, ion-exchanged water was added to the obtained cation group-introduced pulp to prepare a dispersion liquid having a concentration of 0.5% by mass, and the neutralization treatment of the cellulose fibers was completed.
 得られたカチオン基導入パルプについて、微量窒素分析を行い、下記式でカチオン基量を計算したところ、1.45mmol/gだった。また、カチオン基導入パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
(カチオン基量)[mmol/g]=(窒素量)/14×1000/(供試したカチオン基導入パルプ量)
The obtained cation group-introduced pulp was subjected to trace nitrogen analysis, and the amount of cation group was calculated by the following formula. As a result, it was 1.45 mmol / g. In addition, when the cation group-introduced pulp was tested and analyzed by an X-ray diffractometer, it was typical at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. Peak was confirmed, and it was confirmed that it had cellulose type I crystals.
(Amount of cation group) [mmol / g] = (Amount of nitrogen) / 14 × 1000 / (Amount of pulp with cation group introduced)
<製造例A19>
 製造例A11で得られたリン酸化パルプにイオン交換水を加えて、4質量%濃度の分散液として、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、240MPaの圧力にて6回処理を行った。なお、本装置には、製造例A12に記載したものと同様に、前述したようなバブリング抑制の機構を配備しなかった。このようにして、前処理が施された4質量%濃度の微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液をキャストした後、透過型電子顕微鏡で観察したところ、幅3-4nmの微細繊維状セルロースが観察された。幅1μm以上のセルロース繊維は観察されなかった。
<Manufacturing example A19>
Ion-exchanged water was added to the phosphorylated pulp obtained in Production Example A11, and treated as a dispersion with a concentration of 4% by mass with a high-pressure homogenizer (Beryu-Mini, manufactured by Bigrain Co., Ltd.) 6 times at a pressure of 240 MPa. Was done. As in the case of the device described in Production Example A12, the device was not equipped with the bubbling suppression mechanism as described above. In this way, a pretreated fine fibrous cellulose dispersion having a concentration of 4% by mass was obtained. After casting the obtained fine fibrous cellulose dispersion, when observed with a transmission electron microscope, fine fibrous cellulose having a width of 3-4 nm was observed. No cellulose fibers having a width of 1 μm or more were observed.
<実施例101-1>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)を用いた。製造例A11で得られたセルロース繊維に、直接、イオン交換水とナノカーボン前駆体を加えて、セルロース繊維の濃度が1質量%、ナノカーボン前駆体の濃度が1質量%になるよう調製した。得られた混合分散液に対して、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、100MPaの圧力にて3回処理を行った。なお、本装置には、製造例A12において前述したバブリング抑制の機構を配備した。高圧ホモジナイザー処理の後、微細繊維状セルロース・ナノカーボンを含有する分散液が得られた。得られた分散液は、光沢のあるゲル状であった。この分散液の粒子分散性、燃焼後質量の標準偏差、均一分散性を後述の方法で評価した。
<Example 101-1>
As the nanocarbon precursor, MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated and granulated) was used. Ion-exchanged water and a nanocarbon precursor were directly added to the cellulose fibers obtained in Production Example A11 to prepare the cellulose fibers so that the concentration of the cellulose fibers was 1% by mass and the concentration of the nanocarbon precursors was 1% by mass. The obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa. The bubbling suppression mechanism described above in Production Example A12 was provided in this device. After the high-pressure homogenizer treatment, a dispersion containing fine fibrous cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel. The particle dispersibility of this dispersion, the standard deviation of the mass after combustion, and the uniform dispersibility were evaluated by the method described later.
<実施例101-2>
 混合分散液中におけるセルロース繊維の濃度を1.5質量%にした以外は、実施例101-1と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-2>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was 1.5% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-3>
 混合分散液中におけるセルロース繊維の濃度を2質量%にした以外は、実施例101-1と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-3>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was set to 2% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-4>
 混合分散液中におけるセルロース繊維の濃度を4質量%にした以外は、実施例101-1と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-4>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was set to 4% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-5>
 混合分散液中におけるセルロース繊維の濃度を6質量%にした以外は、実施例101-1と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-5>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was 6% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-6>
 混合分散液中におけるセルロース繊維の濃度を10質量%にした以外は、実施例101-1と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-6>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-1 except that the concentration of cellulose fibers in the mixed dispersion was set to 10% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-7>
 製造例A11で得られたセルロース繊維の代わりに、製造例A12で得られたセルロース繊維分散液を用いて、イオン交換水を加えなかった以外は、実施例101-1と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-7>
The cellulose fiber dispersion obtained in Production Example A12 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-1 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
<実施例101-8>
 製造例A11で得られたセルロース繊維の代わりに、製造例A13で得られたセルロース繊維分散液を用いて、イオン交換水を加えなかった以外は、実施例101-2と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-8>
The cellulose fiber dispersion obtained in Production Example A13 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-2 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
<実施例101-9>
 製造例A11で得られたセルロース繊維の代わりに、製造例A14で得られたセルロース繊維分散液を用いて、イオン交換水を加えなかった以外は、実施例101-3と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-9>
The cellulose fiber dispersion obtained in Production Example A14 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-3 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
<実施例101-10>
 製造例A11で得られたセルロース繊維の代わりに、製造例A15で得られたセルロース繊維分散液を用いて、イオン交換水を加えなかった以外は、実施例101-4と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-10>
The cellulose fiber dispersion obtained in Production Example A15 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-4 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
<実施例101-11>
 製造例A11で得られたセルロース繊維の代わりに、製造例A16で得られたセルロース繊維分散液を用いて、イオン交換水を加えなかった以外は、実施例101-5と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-11>
The cellulose fiber dispersion obtained in Production Example A16 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-5, except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
<実施例101-12>
 製造例A11で得られたセルロース繊維の代わりに、製造例A17で得られたセルロース繊維分散液を用いて、イオン交換水を加えなかった以外は、実施例101-6と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-12>
The cellulose fiber dispersion obtained in Production Example A17 was used instead of the cellulose fiber obtained in Production Example A11, and was in the form of fine fibers in the same manner as in Example 101-6 except that ion-exchanged water was not added. A dispersion containing cellulose / nanocarbon was obtained. The obtained dispersion was in the form of a glossy gel.
<実施例101-13>
 混合分散液中におけるナノカーボン前駆体の濃度が2質量%になるようにした以外は、実施例101-9と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-13>
A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-9, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 2% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-14>
 混合分散液中におけるナノカーボン前駆体の濃度が4質量%になるようにした以外は、実施例101-9と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-14>
A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-9, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 4% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-15>
 混合分散液中におけるナノカーボン前駆体の濃度が6質量%になるようにした以外は、実施例101-9と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-15>
A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-9, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 6% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-16>
 混合分散液中におけるナノカーボン前駆体の濃度が10質量%になるようにした以外は、実施例101-9と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-16>
A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-9, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 10% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-17>
 混合分散液中におけるナノカーボン前駆体の濃度が6質量%になるようにした以外は、実施例101-11と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-17>
A dispersion containing fine fibrous cellulose nanocarbon was obtained in the same manner as in Example 101-11, except that the concentration of the nanocarbon precursor in the mixed dispersion was adjusted to 6% by mass. The obtained dispersion was in the form of a glossy gel.
<実施例101-18>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)を用いて、混合分散液中におけるナノカーボン前駆体の濃度を2質量%にした以外は、実施例101-3と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-18>
As the nanocarbon precursor, MWCNT manufactured by LG Chem (LUCAN CP1001M, MWCNT is aggregated and granulated) was used, except that the concentration of the nanocarbon precursor in the mixed dispersion was set to 2% by mass. , A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-3. The obtained dispersion was in the form of a glossy gel.
<実施例101-19>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)と、伊藤黒鉛社製の燐片状黒鉛Z-5Fの両方を用いて、混合分散液中におけるそれぞれの濃度が1質量%となるよう調製(合計の濃度が2質量%)した以外は、実施例101-18と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-19>
A mixed dispersion using both LG Chem's MWCNT (LUCAN CP1001M and MWCNT aggregated to form granules) and Ito Graphite's Phosphorus Graphite Z-5F as nanocarbon precursors. A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Examples 101-18, except that the respective concentrations in the medium were adjusted to 1% by mass (total concentration was 2% by mass). .. The obtained dispersion was in the form of a glossy gel.
<実施例101-20>
 製造例A18で得られたセルロース繊維を用い、かつ、ナノカーボン前駆体として伊藤黒鉛社製の燐片状黒鉛Z-5Fを用い、混合分散液中におけるナノカーボン前駆体の濃度を2質量%にした以外は、実施例101-3と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-20>
The cellulose fiber obtained in Production Example A18 was used, and the flake graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor, and the concentration of the nanocarbon precursor in the mixed dispersion was reduced to 2% by mass. A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-3. The obtained dispersion was in the form of a glossy gel.
<実施例101-21>
 製造例B11で得られたセルロース繊維を用いた以外は、実施例101-20と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-21>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fiber obtained in Production Example B11 was used. The obtained dispersion was in the form of a glossy gel.
<実施例101-22>
 製造例C11で得られたセルロース繊維を用いた以外は、実施例101-20と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-22>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fiber obtained in Production Example C11 was used. The obtained dispersion was in the form of a glossy gel.
<実施例101-23>
 製造例D11で得られたセルロース繊維を用いた以外は、実施例101-20と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-23>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fiber obtained in Production Example D11 was used. The obtained dispersion was in the form of a glossy gel.
<実施例101-24>
 製造例E11で得られたセルロース繊維を用いた以外は、実施例101-20と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-24>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fibers obtained in Production Example E11 were used. The obtained dispersion was in the form of a glossy gel.
<実施例101-25>
 製造例F11で得られたセルロース繊維を用いた以外は、実施例101-20と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-25>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fiber obtained in Production Example F11 was used. The obtained dispersion was in the form of a glossy gel.
<実施例101-26>
 製造例G11で得られたセルロース繊維を用いた以外は、実施例101-20と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-26>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fibers obtained in Production Example G11 were used. The obtained dispersion was in the form of a glossy gel.
<実施例101-27>
 製造例H11で得られたセルロース繊維を用いた以外は、実施例101-20と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-27>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fibers obtained in Production Example H11 were used. The obtained dispersion was in the form of a glossy gel.
<実施例101-28>
 製造例J11で得られたセルロース繊維を用いた以外は、実施例101-20と同様にして微細繊維状セルロース・ナノカーボンを含有する分散液を得た。得られた分散液は、光沢のあるゲル状であった。
<Example 101-28>
A dispersion containing fine fibrous cellulose / nanocarbon was obtained in the same manner as in Example 101-20, except that the cellulose fibers obtained in Production Example J11 were used. The obtained dispersion was in the form of a glossy gel.
<比較例101>
 イオン交換水中に、ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)が2質量%、懸濁を促進するための分散剤(増粘剤)としてカルボキシメチルセルロース(関東化学社製、重合度約1050)が2質量%となるよう懸濁させた。得られた混合分散液に対して、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、100MPaの圧力にて3回処理を行った。なお、本装置には、製造例A12において前述したバブリング抑制の機構を配備した。高圧ホモジナイザー処理の後、カルボキシメチルセルロース・ナノカーボンを含有する分散液が得られた。得られた分散液は流動しやすく、強い光沢は見られなかった。
<Comparative Example 101>
LG Chem's MWCNT (LUCAN CP1001M, MWCNT aggregated and granulated) is 2% by mass as a nanocarbon precursor in ion-exchanged water, and a dispersant (thickener) for promoting suspension. ), Carboxymethyl cellulose (manufactured by Kanto Chemical Co., Inc., degree of polymerization of about 1050) was suspended so as to be 2% by mass. The obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa. The bubbling suppression mechanism described above in Production Example A12 was provided in this device. After the high-pressure homogenizer treatment, a dispersion containing carboxymethyl cellulose / nanocarbon was obtained. The obtained dispersion was easy to flow, and no strong luster was observed.
<比較例102>
 ナノカーボン前駆体として、伊藤黒鉛社製の燐片状黒鉛Z-5Fを用いた以外は比較例101と同様にして、カルボキシメチルセルロース・ナノカーボンを含有する分散液を得た。得られた分散液は流動しやすく、強い光沢は見られなかった。
<Comparative Example 102>
A dispersion containing carboxymethyl cellulose / nanocarbon was obtained in the same manner as in Comparative Example 101 except that phosphotic graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor. The obtained dispersion was easy to flow, and no strong luster was observed.
<比較例103>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)と、伊藤黒鉛社製の燐片状黒鉛Z-5Fの両方を用いて、混合分散液中におけるそれぞれの濃度が1質量%となるよう調製(合計の濃度が2質量%)した以外は比較例101と同様にして、カルボキシメチルセルロース・ナノカーボンを含有する分散液を得た。得られた分散液は流動しやすく、強い光沢は見られなかった。
<Comparative Example 103>
A mixed dispersion using both LG Chem's MWCNT (LUCAN CP1001M and MWCNT aggregated to form granules) and Ito Graphite's Phosphorus Graphite Z-5F as nanocarbon precursors. A dispersion containing carboxymethyl cellulose / nanocarbon was obtained in the same manner as in Comparative Example 101 except that the respective concentrations in the medium were adjusted to 1% by mass (total concentration was 2% by mass). The obtained dispersion was easy to flow, and no strong luster was observed.
<比較例104>
 製造例A19で得られた微細繊維状セルロース分散液と、後述する製造例a11で得られたナノカーボン分散液とを、超音波ホモジナイザー(ヒールッシャー社製UP400S)を用いて混合し、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がまばらであった。
<Comparative Example 104>
The fine fibrous cellulose dispersion obtained in Production Example A19 and the nanocarbon dispersion obtained in Production Example a11 described later are mixed using an ultrasonic homogenizer (UP400S manufactured by Heelscher Co., Ltd.), and the fine fibrous cellulose is mixed. -A nanocarbon dispersion was obtained. As a result of visually observing the obtained dispersion liquid, the dispersion state was sparse.
<製造例a11>
 イオン交換水中に、ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)が4質量%、懸濁を促進するための分散剤(増粘剤)としてカルボキシメチルセルロース(関東化学社製、重合度約1050)が1質量%となるよう懸濁させた。その後、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、240MPaの圧力にて6回処理を行った。なお、本装置には、バブリング抑制の機構を配備せずに、処理を行った。このようにして、4質量%濃度のナノカーボン分散液(分散剤の固形分は含まず)を得た。
<Manufacturing example a11>
In ion-exchanged water, LG Chem's MWCNT (LUCAN CP1001M, MWCNT aggregated and granulated) was 4% by mass as a nanocarbon precursor, and a dispersant (thickener) for promoting suspension. ), Carboxymethyl cellulose (manufactured by Kanto Chemical Co., Inc., degree of polymerization of about 1050) was suspended so as to be 1% by mass. Then, the treatment was carried out 6 times at a pressure of 240 MPa with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.). The processing was performed without providing a bubbling suppression mechanism in this device. In this way, a nanocarbon dispersion having a concentration of 4% by mass (not including the solid content of the dispersant) was obtained.
<比較例105>
 製造例a11で得られたナノカーボン分散液の代わりに、後述する製造例a12で得られたナノカーボン分散液を用いた以外は、比較例104と同様にして、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がまばらであった。
<Comparative Example 105>
Fine fibrous cellulose / nanocarbon dispersion in the same manner as in Comparative Example 104, except that the nanocarbon dispersion obtained in Production Example a12, which will be described later, was used instead of the nanocarbon dispersion obtained in Production Example a11. Obtained liquid. As a result of visually observing the obtained dispersion liquid, the dispersion state was sparse.
<製造例a12>
 ナノカーボン前駆体として、伊藤黒鉛社製の燐片状黒鉛Z-5Fを用いた以外は、製造例a11と同様にした。このようにして、4質量%濃度のナノカーボン分散液(分散剤の固形分は含まず)を得た。
<Manufacturing example a12>
The same procedure as in Production Example a11 was carried out except that the flake graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor. In this way, a nanocarbon dispersion having a concentration of 4% by mass (not including the solid content of the dispersant) was obtained.
<比較例106>
 製造例a11で得られたナノカーボン分散液の代わりに、後述する製造例a13で得られたナノカーボン分散液を用いた以外は、比較例104と同様にして、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がまばらであった。
<Comparative Example 106>
Fine fibrous cellulose / nanocarbon dispersion in the same manner as in Comparative Example 104, except that the nanocarbon dispersion obtained in Production Example a13, which will be described later, was used instead of the nanocarbon dispersion obtained in Production Example a11. Obtained liquid. As a result of visually observing the obtained dispersion liquid, the dispersion state was sparse.
<製造例a13>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)と、伊藤黒鉛社製の燐片状黒鉛Z-5Fの両方を用いて、それぞれの濃度が2質量%となるよう調製(合計の濃度が4質量%)したもの用いた以外は製造例a11と同様にした。このようにして、4質量%濃度のナノカーボン分散液(分散剤の固形分は含まず)を得た。
<Manufacturing example a13>
As the nanocarbon precursor, both MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated to be granular) and phosphonic graphite Z-5F manufactured by Ito Graphite Co., Ltd. are used, and their respective concentrations are used. Was prepared to be 2% by mass (total concentration was 4% by mass), and was used in the same manner as in Production Example a11. In this way, a nanocarbon dispersion having a concentration of 4% by mass (not including the solid content of the dispersant) was obtained.
<比較例107>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)を用いた。製造例A19で得られた4質量%濃度の微細繊維状セルロース分散液に、直接ナノカーボン前駆体を加えた後、さらにイオン交換水を加えて、微細繊維状セルロースの濃度が2質量%、ナノカーボン前駆体の濃度が2質量%になるよう調製した。得られた混合分散液に対して、高圧ホモジナイザー(Beryu-Mini、株式会社美粒製)で、100MPaの圧力にて3回処理を行った。なお、本装置には、製造例A12において前述したバブリング抑制の機構を配備した。高圧ホモジナイザー処理の後、微細繊維状セルロース・ナノカーボン分散液が得られた。得られた分散液を目視観察した結果、分散状態がややまばらであった。
<Comparative Example 107>
As the nanocarbon precursor, MWCNT manufactured by LG Chem (LUCAN CP1001M and MWCNT are aggregated and granulated) was used. After adding the nanocarbon precursor directly to the 4% by mass concentration of fine fibrous cellulose dispersion obtained in Production Example A19, ion-exchanged water was further added to make the fine fibrous cellulose concentration 2% by mass, nano. The concentration of the carbon precursor was adjusted to 2% by mass. The obtained mixed dispersion was treated with a high-pressure homogenizer (Beryu-Mini, manufactured by Bitsubu Co., Ltd.) three times at a pressure of 100 MPa. The bubbling suppression mechanism described above in Production Example A12 was provided in this device. After the high-pressure homogenizer treatment, a fine fibrous cellulose / nanocarbon dispersion was obtained. As a result of visually observing the obtained dispersion liquid, the dispersion state was somewhat sparse.
<比較例108>
 ナノカーボン前駆体として、伊藤黒鉛社製の燐片状黒鉛Z-5Fを用いた以外は、比較例107と同様にして、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がややまばらであった。
<Comparative Example 108>
A fine fibrous cellulose / nanocarbon dispersion was obtained in the same manner as in Comparative Example 107, except that the flake graphite Z-5F manufactured by Ito Graphite Co., Ltd. was used as the nanocarbon precursor. As a result of visually observing the obtained dispersion liquid, the dispersion state was somewhat sparse.
<比較例109>
 ナノカーボン前駆体として、LGChem社製のMWCNT(LUCAN CP1001M、MWCNTが集合して、粒状になっている)と、伊藤黒鉛社製の燐片状黒鉛Z-5Fの両方を用いて、混合分散液においてそれぞれの濃度が1質量%となるよう調製(合計の濃度が2質量%)したものを用いた以外は比較例107と同様にして、微細繊維状セルロース・ナノカーボン分散液を得た。得られた分散液を目視観察した結果、分散状態がややまばらであった。
<Comparative Example 109>
A mixed dispersion using both LG Chem's MWCNT (LUCAN CP1001M and MWCNT aggregated to form granules) and Ito Graphite's Phosphorus Graphite Z-5F as nanocarbon precursors. In the same manner as in Comparative Example 107, a fine fibrous cellulose / nanocarbon dispersion was obtained, except that those prepared so that the respective concentrations were 1% by mass (total concentration was 2% by mass) were used. As a result of visually observing the obtained dispersion liquid, the dispersion state was somewhat sparse.
<比較例110>
 セルロース繊維として、王子製紙製の針葉樹クラフトパルプ(未乾燥)をイオン交換水で2質量%濃度に希釈したものを用いた以外は、比較例101と同様にした。高圧ホモジナイザーの閉塞によって、微細繊維状セルロース・ナノカーボン分散液を得ることは出来なかった。
<Comparative Example 110>
As the cellulose fiber, a softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 2% by mass, and the same as in Comparative Example 101. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
<比較例111>
 セルロース繊維として、王子製紙製の針葉樹クラフトパルプ(未乾燥)をイオン交換水で2質量%濃度に希釈したものを用いた以外は、比較例102と同様にした。高圧ホモジナイザーの閉塞によって、微細繊維状セルロース・ナノカーボン分散液を得ることは出来なかった。
<Comparative Example 111>
As the cellulose fiber, the same as in Comparative Example 102 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 2% by mass. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
<比較例112>
 セルロース繊維として、王子製紙製の針葉樹クラフトパルプ(未乾燥)をイオン交換水で2質量%濃度に希釈したものを用いた以外は、比較例103と同様にした。高圧ホモジナイザーの閉塞によって、微細繊維状セルロース・ナノカーボン分散液を得ることは出来なかった。
<Comparative Example 112>
As the cellulose fiber, the same as in Comparative Example 103 except that the softwood kraft pulp (undried) made by Oji Paper was diluted with ion-exchanged water to a concentration of 2% by mass. Due to the blockage of the high-pressure homogenizer, a fine fibrous cellulose / nanocarbon dispersion could not be obtained.
<測定及び評価>
 製造例A1~A4、B1、C1、D1、E1、F1、G1、H1、J1で得られたセルロース繊維または微細繊維状セルロース繊維について、後述する方法により上澄み収率、置換基量を測定した。また、実施例1-1~1-13、および比較例1~19で得られた微細繊維状セルロース・ナノカーボン分散液について、後述する方法により粒子分散性とチキソトロピー性を評価した。なお、比較例20~22については、微細繊維状セルロース・ナノカーボン分散液は得られなかった。
<Measurement and evaluation>
With respect to the cellulose fibers or fine fibrous cellulose fibers obtained in Production Examples A1 to A4, B1, C1, D1, E1, F1, G1, H1 and J1, the supernatant yield and the amount of substituents were measured by the method described later. Further, the fine fibrous cellulose / nanocarbon dispersions obtained in Examples 1-1 to 1-13 and Comparative Examples 1 to 19 were evaluated for particle dispersibility and thixotropy by the method described later. In Comparative Examples 20 to 22, fine fibrous cellulose / nanocarbon dispersion was not obtained.
 なお、実施例1-1~1-13および比較例1~19については、得られた分散液をキャスト乾燥して得られたサンプルを電子顕微鏡で観察することにより、繊維幅が20nm以下の微細繊維状セルロースと、少なくとも縦・横・厚みのうち1つが1000nm以下になっているナノカーボンの存在が確認された。 In Examples 1-1 to 1-13 and Comparative Examples 1 to 19, the obtained dispersion was cast-dried and the obtained sample was observed with an electron microscope to obtain fine fibers having a fiber width of 20 nm or less. The presence of fibrous cellulose and nanocarbon having at least one of the length, width, and thickness of 1000 nm or less was confirmed.
 製造例A11~A19、B11、C11、D11、E11、F11、G11、H11、J11で得られたセルロース繊維または微細繊維状セルロースについて、後述する方法により上澄み収率、置換基量を測定した。また、実施例101-1~101-28、および比較例101~109で得られた微細繊維状セルロース・ナノカーボン分散液について、後述する方法により粒子分散性と燃焼後質量の標準偏差を評価した。なお、比較例110~112については、微細繊維状セルロース・ナノカーボン分散液は得られなかった。 For the cellulose fibers or fine fibrous celluloses obtained in Production Examples A11 to A19, B11, C11, D11, E11, F11, G11, H11 and J11, the supernatant yield and the amount of substituents were measured by the method described later. Further, with respect to the fine fibrous cellulose / nanocarbon dispersions obtained in Examples 101-1 to 101-28 and Comparative Examples 101 to 109, the particle dispersibility and the standard deviation of the mass after combustion were evaluated by the method described later. .. For Comparative Examples 110 to 112, fine fibrous cellulose / nanocarbon dispersions could not be obtained.
 なお、実施例101-1~101-28および比較例101~109については、得られた分散液をキャスト乾燥して得られたサンプルを電子顕微鏡で観察することにより、繊維幅が20nm以下の微細繊維状セルロースと、少なくとも縦・横・厚みのうち1つが1000nm以下になっているナノカーボンの存在が確認された。 In Examples 101-1 to 101-28 and Comparative Examples 101 to 109, the obtained dispersion was cast-dried and the obtained sample was observed with an electron microscope to obtain fine fibers having a fiber width of 20 nm or less. The presence of fibrous cellulose and nanocarbon having at least one of the length, width, and thickness of 1000 nm or less was confirmed.
〔リンオキソ酸基量の測定〕
 セルロース繊維のリンオキソ酸基量(リン酸基量もしくは亜リン酸基量)の測定においては、まず、対象となるセルロース繊維にイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて4回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液に対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記微細繊維状セルロース分散液に体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース分散液に、0.1Nの水酸化ナトリウム水溶液を、5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図2)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。
[Measurement of phosphorus oxo acid group amount]
In measuring the amount of phosphorous acid groups (amount of phosphorous acid groups or amount of phosphorous acid groups) of cellulose fibers, first, ion-exchanged water is added to the target cellulose fibers, and a slurry having a solid content concentration of 0.2% by mass is added. Was prepared. This slurry was treated four times at a pressure of 200 MPa with a wet atomizing device (manufactured by Sugino Machine Limited, Starburst) to obtain a fine fibrous cellulose dispersion containing fine fibrous cellulose. The obtained fine fibrous cellulose dispersion was treated with an ion exchange resin and then titrated with an alkali for measurement.
For the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) having a volume of 1/10 was added to the fine fibrous cellulose dispersion, and the mixture was shaken for 1 hour. After that, it was poured on a mesh having a mesh size of 90 μm to separate the resin and the slurry.
In the titration using alkali, the pH value indicated by the slurry is changed while adding 10 μL of 0.1 N sodium hydroxide aqueous solution to the fine fibrous cellulose dispersion treated with the ion exchange resin every 5 seconds. Was performed by measuring. The titration was performed while blowing nitrogen gas into the slurry from 15 minutes before the start of the titration. In this neutralization titration, two points are observed where the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 2). The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration. The amount of alkali (mmol) required from the start of titration to the first end point divided by the solid content (g) in the slurry to be titrated was defined as the amount of phosphorus oxo acid groups (mmol / g).
〔カルボキシ基量の測定〕
 セルロース繊維のカルボキシ基量の測定においては、まず、対象となるセルロース繊維にイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて4回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。得られた微細繊維状セルロース分散液に対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記微細繊維状セルロース分散液に体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース分散液に、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、分散液が示すpHの値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図3に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
[Measurement of carboxy group amount]
In the measurement of the carboxy group amount of the cellulose fiber, first, ion-exchanged water was added to the target cellulose fiber to prepare a slurry having a solid content concentration of 0.2% by mass. This slurry was treated four times at a pressure of 200 MPa with a wet atomizing device (manufactured by Sugino Machine Limited, Starburst) to obtain a fine fibrous cellulose dispersion containing fine fibrous cellulose. The obtained fine fibrous cellulose dispersion was treated with an ion exchange resin and then titrated with an alkali for measurement.
For the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) having a volume of 1/10 was added to the fine fibrous cellulose dispersion, and the mixture was shaken for 1 hour. After that, it was poured on a mesh having a mesh size of 90 μm to separate the resin and the slurry.
For titration using alkali, a 0.1 N sodium hydroxide aqueous solution is added to the fine fibrous cellulose dispersion treated with an ion exchange resin once every 30 seconds by 50 μL, and the pH indicated by the dispersion is adjusted. This was done by measuring the change in value. The amount of carboxy group (mmol / g) is obtained by dividing the amount of alkali (mmol) required in the region corresponding to the first region shown in FIG. 3 of the measurement results by the solid content (g) in the slurry to be titrated. Calculated.
〔硫酸エステル基量、スルホン基量の測定〕
 セルロース繊維の硫酸エステル基量、スルホン基量は、次のように測定した。製造例C1、H1、C11、H11で得られたセルロース繊維を冷凍庫で凍結させた後、凍結乾燥機(ラブコンコ社製FreeZone)で3日間乾燥させた。得られた凍結乾燥物をハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20,000rpmで60秒、粉砕処理を行って粉末状にした。
 凍結乾燥及び粉砕処理後の試料を密閉容器中で硝酸を用いて加圧加熱分解した。その後、適宜希釈してICP-OESで硫黄量を測定した。供試した微細繊維状セルロースの絶乾質量で割り返して算出した値を微細繊維状セルロースの硫酸エステル基量、スルホン基量(単位:mmol/g)とした。
[Measurement of sulfate ester group amount and sulfone group amount]
The amount of sulfate ester group and the amount of sulfone group of the cellulose fiber were measured as follows. The cellulose fibers obtained in Production Examples C1, H1, C11 and H11 were frozen in a freezer and then dried in a freeze-dryer (FreeZone manufactured by Loveconco) for 3 days. The obtained freeze-dried product was pulverized using a hand mixer (manufactured by Osaka Chemical Co., Ltd., Lab Miller PLUS) at a rotation speed of 20,000 rpm for 60 seconds to obtain a powder.
The sample after freeze-drying and pulverization was decomposed by heating under pressure using nitric acid in a closed container. Then, it was diluted appropriately and the amount of sulfur was measured by ICP-OES. The values calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested were taken as the amount of sulfate ester groups and the amount of sulfone groups (unit: mmol / g) of the fine fibrous cellulose.
<セルロース繊維および微細繊維状セルロース分散液の遠心分離後の上澄み収率の測定>
 セルロース繊維または微細繊維状セルロース分散液を遠心分離した後の上澄み収率を以下に記載の方法により測定した。遠心分離後の上澄み収率は、微細繊維状セルロースの収率の指標となり、上澄み収率が90%を超えていれば、実質的にセルロース繊維の全てが幅1000nm以下の微細繊維状セルロースになっている。一方で上澄み収率が70%未満の場合、まだ微細化されていないセルロース繊維を相当量含んでいる。
 上澄み収率を測定する際には、セルロース繊維または微細繊維状セルロース分散液を固形分濃度0.2質量%に調製し、冷却高速遠心分離機(コクサン社、H-2000B)を用い、12000G、10分の条件で遠心分離した。得られた上澄み液を回収し、上澄み液の固形分濃度を測定した。下記式に基づいて、上澄み収率を求めた。
上澄み収率(%)=上澄み液の固形分濃度(質量%)/0.2×100
<Measurement of supernatant yield after centrifugation of cellulose fibers and fine fibrous cellulose dispersion>
The yield of the supernatant after centrifuging the cellulose fiber or the fine fibrous cellulose dispersion was measured by the method described below. The supernatant yield after centrifugation is an index of the yield of fine fibrous cellulose, and if the supernatant yield exceeds 90%, substantially all of the cellulose fibers become fine fibrous cellulose having a width of 1000 nm or less. ing. On the other hand, when the supernatant yield is less than 70%, it contains a considerable amount of cellulose fibers that have not been refined yet.
When measuring the supernatant yield, a cellulose fiber or fine fibrous cellulose dispersion was prepared to have a solid content concentration of 0.2% by mass, and a cooling high-speed centrifuge (Kokusan Co., Ltd., H-2000B) was used to prepare 12000 G. Centrifugation was performed under the condition of 10 minutes. The obtained supernatant was collected, and the solid content concentration of the supernatant was measured. The supernatant yield was determined based on the following formula.
Supernatant yield (%) = Solid content concentration of supernatant liquid (mass%) /0.2 × 100
<微細繊維状セルロース・ナノカーボン分散液の粒子分散性>
 実施例及び比較例で得られた微細繊維状セルロース・ナノカーボン分散液の粒子分散性を次の基準で評価した。この粒子分散性が高いほど、より高度にセルロース繊維や、カーボン粒子がナノ化し、均一に分散していることになる。具体的には、全乾燥固形分濃度を0.2質量%とした微細繊維状セルロース・ナノカーボン分散液に、1体積%の、ガラスビーズ(アズワン製BZ-1)を加え、目視で観察を行い、下記の通り評価した。
A:ガラスビーズの沈降が見られない
B:少量のガラスビーズが沈降する
C:ガラスビーズの全量が沈降する
<Particle dispersibility of fine fibrous cellulose / nanocarbon dispersion>
The particle dispersibility of the fine fibrous cellulose / nanocarbon dispersions obtained in Examples and Comparative Examples was evaluated according to the following criteria. The higher the particle dispersibility, the more highly the cellulose fibers and carbon particles are nano-sized and uniformly dispersed. Specifically, 1 volume% of glass beads (BZ-1 manufactured by AS ONE) are added to a fine fibrous cellulose / nanocarbon dispersion having a total dry solid content concentration of 0.2% by mass, and visually observed. The results were evaluated as follows.
A: No settling of glass beads B: A small amount of glass beads settles C: The entire amount of glass beads settles
<微細繊維状セルロース・ナノカーボン分散液のチキソトロピー性(TI値)>
 実施例及び比較例で得られた微細繊維状セルロース・ナノカーボン分散液のチキソトロピー性(TI値)を評価した。TI値が大きく、チキソトロピー性が高いほど、より高度にセルロース繊維や、カーボン粒子がナノ化し、均一に分散しており、さらに、得られた微細繊維状セルロースや、ナノカーボン粒子の損傷が少ないことになる。
 微細繊維状セルロース・ナノカーボン分散液のTI値を算出する際には、微細繊維状セルロース・ナノカーボン分散液の濃度を、イオン交換水で適宜希釈して、後述の条件で測定される粘度が1000cpsとなるようにした。同じ濃度の分散液を用いて、後述の条件で、23℃、回転速度を60rpmとした際の粘度ηを測定した。その後、1000/ηの値(TI値)を算出し、以下の基準に分類した。
A:TI値が5以上
B:TI値が2以上5未満
C:TI値が2未満
<Thixotropy (TI value) of fine fibrous cellulose / nanocarbon dispersion>
The thixotropy (TI value) of the fine fibrous cellulose / nanocarbon dispersions obtained in Examples and Comparative Examples was evaluated. The higher the TI value and the higher the thixotropy, the higher the degree of nano-sized cellulose fibers and carbon particles, and the more uniformly dispersed, and the less damage the obtained fine fibrous cellulose and nanocarbon particles are. become.
When calculating the TI value of the fine fibrous cellulose / nanocarbon dispersion, the concentration of the fine fibrous cellulose / nanocarbon dispersion is appropriately diluted with ion-exchanged water to obtain the viscosity measured under the conditions described below. It was set to 1000 cps. Using a dispersion having the same concentration, the viscosity η was measured at 23 ° C. and a rotation speed of 60 rpm under the conditions described below. Then, a value of 1000 / η (TI value) was calculated and classified according to the following criteria.
A: TI value is 5 or more B: TI value is 2 or more and less than 5 C: TI value is less than 2
<微細繊維状セルロース・ナノカーボン分散液の粘度測定>
 微細繊維状セルロース・ナノカーボン分散液の粘度は、次のように測定した。まず、微細繊維状セルロース・ナノカーボン分散液のB型粘度が1000cpsとなるように、微細繊維状セルロース・ナノカーボン分散液を希釈した。希釈後は、ディスパーザーにて1500rpmで5分間撹拌した。次いで、得られたスラリーの粘度をB型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定した。測定条件は、回転速度3rpmとし、測定開始から3分後の粘度値をスラリーの粘度(初期粘度)とした。また、測定対象のスラリーは測定前に23℃、相対湿度50%の環境下に24時間静置した。測定時のスラリーの液温は23℃であった。
<Viscosity measurement of fine fibrous cellulose / nanocarbon dispersion>
The viscosity of the fine fibrous cellulose / nanocarbon dispersion was measured as follows. First, the fine fibrous cellulose / nanocarbon dispersion was diluted so that the B-type viscosity of the fine fibrous cellulose / nanocarbon dispersion was 1000 cps. After dilution, the mixture was stirred with a disperser at 1500 rpm for 5 minutes. Next, the viscosity of the obtained slurry was measured using a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD). The measurement conditions were a rotation speed of 3 rpm, and the viscosity value 3 minutes after the start of measurement was defined as the viscosity (initial viscosity) of the slurry. The slurry to be measured was allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement. The liquid temperature of the slurry at the time of measurement was 23 ° C.
<均一分散性>
 実施例及び比較例で得られた微細繊維状セルロース・ナノカーボン分散液を目視観察し、以下の基準で分散性を評価した。
A:分散性が連続した1つの液状であり、微細繊維状セルロース分散液のみ存在する箇所と、ナノカーボン分散液のみ存在する箇所は無い
B:分散性が連続した1つの液状であるが、微細繊維状セルロース分散液のみ存在する箇所と、ナノカーボン分散液のみ存在する箇所とがまばらに存在する
C:分散液が複数に分離しており、微細繊維状セルロース分散液のみ存在する箇所と、ナノカーボン分散液のみ存在する箇所とがまばらに存在する
<Uniform dispersibility>
The fine fibrous cellulose / nanocarbon dispersions obtained in Examples and Comparative Examples were visually observed and the dispersibility was evaluated according to the following criteria.
A: One liquid with continuous dispersibility, where only fine fibrous cellulose dispersion exists and no place where only nanocarbon dispersion exists B: One liquid with continuous dispersibility, but fine The location where only the fibrous cellulose dispersion is present and the location where only the nanocarbon dispersion is present are sparsely present. C: The dispersion is separated into multiple parts, and the location where only the fine fibrous cellulose dispersion is present and the nano There are sparsely populated areas where only the carbon dispersion is present.
<燃焼後質量割合の標準偏差>
 燃焼後質量割合の標準偏差は、示差熱熱重量同時測定装置(セイコーインスツルメンツ株式会社(現株式会社日立ハイテクサイエンス)製、TG/DTA6300)を用いて測定した。具体的には、得られた微細繊維状セルロース・ナノカーボン分散液からランダムに1cc分取した試料を、窒素雰囲気下で下記温度プログラムの通り昇温させ、1秒間に1度、重量を測定した。110℃での重量に対して、600℃に到達した際の重量の割合(燃焼後質量の割合)を計算し、10回測定した際の燃焼後質量割合の標準偏差を求め、下記の通り評価した。
<温度プログラム>
1.50℃で5分間保持
2.50℃→100℃へ昇温(昇温速度:10℃/分)
3.100℃で10分間保持
4.100℃→600℃へ昇温(昇温速度:10℃/分)
<評価基準>
A:標準偏差を平均値で割った値(CV値)が10%未満である
B:標準偏差を平均値で割った値(CV値)が10%以上20%未満である
C:標準偏差を平均値で割った値(CV値)が20%以上である
 なお、微細繊維状セルロース・ナノカーボン含有物の燃焼後質量割合は下記のαをβで除した値(α/βの値)であり、CV値は、α/βの値を算出するため測定を10回行い、α/βの値の標準偏差をα/βの値の平均値で除した値である。
α:微細繊維状セルロース・ナノカーボン含有物の燃焼後質量(600℃到達時の質量)
β:微細繊維状セルロース・ナノカーボン含有物の絶乾質量(110℃到達時の質量)
<Standard deviation of mass ratio after combustion>
The standard deviation of the mass ratio after combustion was measured using a differential thermogravimetric simultaneous measuring device (TG / DTA6300 manufactured by Seiko Instruments Co., Ltd. (currently Hitachi High-Tech Science Co., Ltd.)). Specifically, 1 cc of a sample randomly separated from the obtained fine fibrous cellulose / nanocarbon dispersion was heated in a nitrogen atmosphere according to the following temperature program, and the weight was measured once per second. .. Calculate the ratio of weight when reaching 600 ° C (ratio of mass after combustion) to the weight at 110 ° C, obtain the standard deviation of the mass ratio after combustion when measured 10 times, and evaluate as follows. did.
<Temperature program>
Hold at 1.50 ° C for 5 minutes Increase temperature from 2.50 ° C to 100 ° C (heating rate: 10 ° C / min)
3. Hold at 100 ° C for 10 minutes 4. Raise the temperature from 100 ° C to 600 ° C (heating rate: 10 ° C / min)
<Evaluation criteria>
A: The value obtained by dividing the standard deviation by the average value (CV value) is less than 10% B: The value obtained by dividing the standard deviation by the average value (CV value) is 10% or more and less than 20% C: The standard deviation The value divided by the average value (CV value) is 20% or more. The mass ratio of the fine fibrous cellulose / nanocarbon-containing material after combustion is the value obtained by dividing the following α by β (value of α / β). Yes, the CV value is a value obtained by performing measurement 10 times to calculate the value of α / β and dividing the standard deviation of the value of α / β by the average value of the values of α / β.
α: Mass after combustion of fine fibrous cellulose / nanocarbon-containing material (mass when reaching 600 ° C)
β: Absolute dry mass of fine fibrous cellulose / nanocarbon-containing material (mass when reaching 110 ° C)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例では、粒子分散性に優れた微細繊維状セルロース・ナノカーボン含有物が得られた。
 また、実施例で得られた微細繊維状セルロース・ナノカーボン含有物(分散液)を基材に塗工して乾かすと、分散液は短時間で乾燥し、偏析の少ないシートとなった。
In the examples, a fine fibrous cellulose / nanocarbon-containing material having excellent particle dispersibility was obtained.
Further, when the fine fibrous cellulose / nanocarbon-containing material (dispersion liquid) obtained in the examples was applied to a base material and dried, the dispersion liquid was dried in a short time to obtain a sheet with less segregation.
<微細繊維状セルロース・ナノカーボン含有インクの調製>
<実施例2-1>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液を、10mLシリンジに詰め、シリンジから毎秒1mLの注入スピード、毎秒20mmの移動スピードでポリプロピレンの基材上に、直線状に押し出した。押し出し後、分散液が成す直線が、床面と水平の状態を保ちながら基材を45°に傾けた。分散液は、液ダレすることなく基材上に密着していた。また、分散液を乾燥させると、基材にそのまま密着した。したがって、分散液は、インクとして使用可能である。また、インクが乾燥した線には導電性があることが確認できた。したがって、分散液は導電性インクとしても使用可能である。
<Preparation of fine fibrous cellulose / nanocarbon-containing ink>
<Example 2-1>
The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 was packed in a 10 mL syringe, and the injection speed from the syringe was 1 mL per second, 20 mm per second. It was extruded linearly onto the polypropylene substrate at the moving speed of. After extrusion, the straight line formed by the dispersion liquid tilted the base material at 45 ° while maintaining a horizontal state with the floor surface. The dispersion liquid adhered to the substrate without dripping. Moreover, when the dispersion liquid was dried, it adhered to the substrate as it was. Therefore, the dispersion can be used as an ink. In addition, it was confirmed that the line from which the ink was dried has conductivity. Therefore, the dispersion can also be used as a conductive ink.
<実施例2-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例2-1と同様にして、インクとしての適性を確認した。その結果、分散液は、液ダレすることなく基材上に密着していた。また、分散液を乾燥させると、基材にそのまま密着した。したがって、分散液は、インクとして使用可能である。また、インクが乾燥した線には導電性があることが確認できた。したがって、分散液は導電性インクとしても使用可能である。
<Example 2-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. The suitability as an ink was confirmed in the same manner as in Example 2-1 except that the fiber) / nanocarbon (grafene) dispersion was used. As a result, the dispersion liquid adhered to the base material without dripping. Moreover, when the dispersion liquid was dried, it adhered to the substrate as it was. Therefore, the dispersion can be used as an ink. In addition, it was confirmed that the line from which the ink was dried has conductivity. Therefore, the dispersion can also be used as a conductive ink.
<微細繊維状セルロース・ナノカーボン含有ゴムの調製>
<実施例3-1>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液に、天然ゴムラテックス(商品名:「実験用試薬 ラテックス液天然ゴム」、ケニス株式会社製)を加え、高速回転ディスパーザーで混合した。なお、ゴム成分100質量部に対して、微細繊維状セルロースとナノカーボンの合計質量が5質量部になるよう混合した。得られた混合液を、テフロントレー上にキャストし、23℃、相対湿度50%の条件で1週間乾燥後、105℃で15分間熱処理したところ、微細繊維状セルロース・ナノカーボン含有ゴムシートが得られた。得られたゴムシートは、ムラが無く、微細繊維状セルロースとナノカーボンが、それぞれ、あるいは相互に結合したものがゴム中に均一分散したシートであった。
<Preparation of rubber containing fine fibrous cellulose / nanocarbon>
<Example 3-1>
Natural rubber latex (trade name: "Experimental reagent latex liquid natural rubber" is added to the fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18. , Made by KENIS, Ltd.) and mixed with a high-speed rotating disperser. The total mass of the fine fibrous cellulose and the nanocarbon was 5 parts by mass with respect to 100 parts by mass of the rubber component. The obtained mixed solution was cast on a tea tray, dried at 23 ° C. and a relative humidity of 50% for 1 week, and then heat-treated at 105 ° C. for 15 minutes to obtain a rubber sheet containing fine fibrous cellulose / nanocarbon. Was done. The obtained rubber sheet was a sheet in which fine fibrous cellulose and nanocarbon were uniformly dispersed in the rubber, or those in which fine fibrous cellulose and nanocarbon were bonded to each other were uniformly dispersed in the rubber.
<実施例3-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例3-1と同様にして、ゴム複合材としての適性を確認した。得られたゴムシートは、ムラが無く、微細繊維状セルロースとナノカーボンが、それぞれ、あるいは相互に結合したものがゴム中に均一分散したシートであった。
<Example 3-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. The suitability as a rubber composite material was confirmed in the same manner as in Example 3-1 except that the fiber) / nanocarbon (grafene) dispersion was used. The obtained rubber sheet was a sheet in which fine fibrous cellulose and nanocarbon were uniformly dispersed in the rubber, or those in which fine fibrous cellulose and nanocarbon were bonded to each other were uniformly dispersed in the rubber.
<微細繊維状セルロース・ナノカーボン含有樹脂の調製>
<実施例4-1>
<ポリビニルアルコールの溶解>
 イオン交換水に、ポリビニルアルコール(株式会社クラレ製、ポバール105、重合度:500、けん化度:98~99mol%)を20質量%になるように加え、95℃で1時間撹拌し、溶解した。
<Preparation of fine fibrous cellulose / nanocarbon-containing resin>
<Example 4-1>
<Dissolution of polyvinyl alcohol>
Polyvinyl alcohol (manufactured by Kuraray Co., Ltd., Poval 105, degree of polymerization: 500, degree of saponification: 98 to 99 mol%) was added to ion-exchanged water so as to have a concentration of 20% by mass, and the mixture was stirred at 95 ° C. for 1 hour to dissolve.
<シート化>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液に、ポリビニルアルコール溶液を添加し、微細繊維状セルロースとナノカーボンの合計質量100質量部に対し、ポリビニルアルコールが100質量部になるように調製した。次いで、総固形分濃度が0.6質量%となるよう濃度調整を行った。シートの仕上がり坪量が、45g/mになるように懸濁液を計量して、市販のアクリル板上に展開し、70℃の乾燥機で24時間乾燥した。なお、所定の坪量となるようアクリル板上には堰止用の板を配置した。以上の手順により、シートが得られ、その厚みは30μmであった。得られたシートは、ムラが無く、微細繊維状セルロースとナノカーボンが、それぞれ、あるいは相互に結合したものが樹脂中に均一分散したシートであった。
<Sheet>
A polyvinyl alcohol solution is added to the fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 to obtain fine fibrous cellulose and nanocarbon. The amount of polyvinyl alcohol was adjusted to 100 parts by mass with respect to 100 parts by mass of the total mass. Next, the concentration was adjusted so that the total solid content concentration was 0.6% by mass. The suspension was weighed so that the finished basis weight of the sheet was 45 g / m 2 , developed on a commercially available acrylic plate, and dried in a dryer at 70 ° C. for 24 hours. A dammed plate was placed on the acrylic plate so as to have a predetermined basis weight. A sheet was obtained by the above procedure, and its thickness was 30 μm. The obtained sheet was a sheet in which fine fibrous cellulose and nanocarbon were uniformly dispersed in the resin, respectively, or those in which fine fibrous cellulose and nanocarbon were bonded to each other without unevenness.
<実施例4-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例4-1と同様にして、樹脂複合材としての適性を確認した。得られたシートは、ムラが無く、微細繊維状セルロースとナノカーボンが、それぞれ、あるいは相互に結合したものが樹脂中に均一分散したシートであった。
<Example 4-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. The suitability as a resin composite material was confirmed in the same manner as in Example 4-1 except that a fiber) / nanocarbon (grafene) dispersion was used. The obtained sheet was a sheet in which fine fibrous cellulose and nanocarbon were uniformly dispersed in the resin, respectively, or those in which fine fibrous cellulose and nanocarbon were bonded to each other without unevenness.
<微細繊維状セルロース・ナノカーボン含有シートの調製>
<実施例5-1>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液に、イオン交換水を加えて、総固形分濃度が0.5質量%になるよう濃度調整を行った。シートの仕上がり坪量が、45g/mになるように懸濁液を計量して、市販のアクリル板上に展開し、70℃の乾燥機で24時間乾燥した。なお、所定の坪量となるようアクリル板上には堰止用の板を配置した。以上の手順により、シートが得られ、その厚みは30μmであった。得られたシートはムラが見られず、手でしごいた際にも繊維や粒子が脱離することは無く、安定したシートであった。
<Preparation of fine fibrous cellulose / nanocarbon-containing sheet>
<Example 5-1>
Ion-exchanged water is added to the fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18, and the total solid content concentration is 0.5. The concentration was adjusted to be mass%. The suspension was weighed so that the finished basis weight of the sheet was 45 g / m 2 , developed on a commercially available acrylic plate, and dried in a dryer at 70 ° C. for 24 hours. A dammed plate was placed on the acrylic plate so as to have a predetermined basis weight. A sheet was obtained by the above procedure, and its thickness was 30 μm. The obtained sheet showed no unevenness, and fibers and particles did not come off even when squeezed by hand, and the sheet was stable.
<実施例5-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例5-1と同様にして、微細繊維状セルロース・ナノカーボン含有シートを調製した。この手順により、シートが得られ、その厚みは30μmであった。得られたシートはムラが見られず、手でしごいた際にも繊維や粒子が脱離することは無く、安定したシートであった。
<Example 5-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. A fine fibrous cellulose / nanocarbon-containing sheet was prepared in the same manner as in Example 5-1 except that the fiber) / nanocarbon (graphene) dispersion was used. By this procedure, a sheet was obtained, the thickness of which was 30 μm. The obtained sheet showed no unevenness, and fibers and particles did not come off even when squeezed by hand, and the sheet was stable.
<微細繊維状セルロース・ナノカーボン含有板状体の調製>
<実施例6-1>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液に、製紙用パルプ(王子製紙製、針葉樹クラフトパルプ)を加え、微細繊維状セルロースとナノカーボンの合計質量100質量部に対し、製紙用パルプが400質量部になるように調製した。得られた混合分散液に、1%質量硫酸アルミニウム水溶液を100質量部加えて、製紙用ワイヤーで濾過を行い、パルプケーキを得た。得られたケーキを機械圧搾した後、120℃に設定したシリンダードライヤで乾燥させたところ、厚さ1mmの板状体が得られた。得られた板状体は水に強く、構造体として適当であった。また、得られた板状体は導電性を示した。
<Preparation of plate-like body containing fine fibrous cellulose / nanocarbon>
<Example 6-1>
Papermaking pulp (Oji Paper, coniferous kraft pulp) was added to the fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18. The pulp for papermaking was prepared to be 400 parts by mass with respect to the total mass of 100 parts by mass of the fine fibrous cellulose and nanocarbon. 100 parts by mass of a 1% mass aluminum sulfate aqueous solution was added to the obtained mixed dispersion, and filtration was performed with a papermaking wire to obtain a pulp cake. The obtained cake was mechanically squeezed and then dried with a cylinder dryer set at 120 ° C. to obtain a plate-like body having a thickness of 1 mm. The obtained plate-like body was resistant to water and was suitable as a structure. Moreover, the obtained plate-like body showed conductivity.
<微細繊維状セルロース・ナノカーボン含有板状体の調製>
<実施例6-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例6-1と同様にしたところ、微細繊維状セルロース・ナノカーボン含有板状体が得られた。得られた板状体は水に強く、構造体として適当であった。また、得られた板状体は導電性を示した。
<Preparation of plate-like body containing fine fibrous cellulose / nanocarbon>
<Example 6-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. When the same procedure as in Example 6-1 was carried out except that the fiber) / nanocarbon (graphene) dispersion was used, a fine fibrous cellulose / nanocarbon-containing plate-like body was obtained. The obtained plate-like body was resistant to water and was suitable as a structure. Moreover, the obtained plate-like body showed conductivity.
<微細繊維状セルロース・ナノカーボン含有糸の調製>
<実施例7-1>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液を、塩化アルミニウムを10質量%含むエタノールに注射器を用いて注入したところ、線状のゲル状体が得られた。この線状のゲル状体を溶媒から引き上げ、70℃の乾燥機で24時間乾燥後、イオン交換水で洗浄して、さらにアセトン中に浸して引き上げて風乾させた。その結果、繊維径が1~3mmであり、手で引っ張っても千切れない糸が得られた。
<Preparation of fine fibrous cellulose / nanocarbon-containing yarn>
<Example 7-1>
The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 was injected into ethanol containing 10% by mass of aluminum chloride using a syringe. However, a linear gel-like body was obtained. This linear gel was pulled up from the solvent, dried in a dryer at 70 ° C. for 24 hours, washed with ion-exchanged water, further immersed in acetone, pulled up and air-dried. As a result, a yarn having a fiber diameter of 1 to 3 mm and not torn even when pulled by hand was obtained.
<実施例7-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例7-1と同様にした結果、繊維径が1~3mmであり、手で引っ張っても千切れない糸が得られた。
<Example 7-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. As a result of the same procedure as in Example 7-1 except that the fiber) / nanocarbon (grafene) dispersion was used, a thread having a fiber diameter of 1 to 3 mm and not torn even when pulled by hand was obtained.
<電磁波遮断シート>
<実施例8-1>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液を、12000Gの重力加速度で15分間遠心分離操作を行った。得られた分散液の上澄みをキャストし、半透明の微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)フィルムを得た。得られたフィルムでスマートフォン(4G電波で通信)を挟み、フィルムの端部をアルミ箔で完全に覆ったところ、スマートフォンが圏外を示した。以上より、得られた微細繊維状セルロース・ナノカーボン含有フィルムは、電磁波遮断シートであることが確認された。
<Electromagnetic wave blocking sheet>
<Example 8-1>
The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 was centrifuged at a gravitational acceleration of 12000 G for 15 minutes. The supernatant of the obtained dispersion was cast to obtain a translucent fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) film. When a smartphone (communication with 4G radio waves) was sandwiched between the obtained films and the edges of the film were completely covered with aluminum foil, the smartphone showed out of service area. From the above, it was confirmed that the obtained fine fibrous cellulose / nanocarbon-containing film was an electromagnetic wave blocking sheet.
<実施例8-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例8-1と同様にした結果、半透明の微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)フィルムを得た。得られたフィルムでスマートフォン(4G電波で通信)を挟み、フィルムの端部をアルミ箔で完全に覆ったところ、スマートフォンが圏外を示した。以上より、得られた微細繊維状セルロース・ナノカーボン含有フィルムは、電磁波遮断シートであることが確認された。
<Example 8-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. As a result of the same procedure as in Example 8-1 except that the fiber) / nanocarbon (graphene) dispersion was used, a translucent fine fibrous cellulose (cellulose nanofiber) / nanocarbon (graphene) film was obtained. When a smartphone (communication with 4G radio waves) was sandwiched between the obtained films and the edges of the film were completely covered with aluminum foil, the smartphone showed out of service area. From the above, it was confirmed that the obtained fine fibrous cellulose / nanocarbon-containing film was an electromagnetic wave blocking sheet.
<電極>
<実施例9-1>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液を、乾燥後の塗膜の厚みが30μmとなるよう塗工した。この塗膜付きアルミ箔を2枚作製し、さらに10質量%のポリビニルアルコールを含む飽和食塩水を含浸した薄ろ紙を準備した。アルミ箔、塗膜、含浸ろ紙、塗膜、アルミ箔の順になるよう、短絡しないよう重ねて簡易素子を得た。この簡易素子の電気抵抗は、10Ω以下であった。また、電源に接続することで充電されることを確認した。したがって、得られた簡易素子は電気二重層キャパシタを形成していることが確認された。また、この簡易素子は、容易に巻き取ることができ、巻回形の電気二重層キャパシタになることも確認された。以上より、本実施形態の微細繊維状セルロース・ナノカーボン分散液を塗工した金属箔等は、電池や、キャパシタの電極として利用出来ることが確認された。
<Electrode>
<Example 9-1>
The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 was applied so that the thickness of the coating film after drying was 30 μm. .. Two sheets of this aluminum foil with a coating film were prepared, and a thin filter paper impregnated with a saturated saline solution containing 10% by mass of polyvinyl alcohol was prepared. A simple element was obtained by stacking aluminum foil, coating film, impregnated filter paper, coating film, and aluminum foil in this order without short-circuiting. The electrical resistance of this simple element was 10 Ω or less. We also confirmed that it can be charged by connecting it to a power source. Therefore, it was confirmed that the obtained simple element forms an electric double layer capacitor. It was also confirmed that this simple element can be easily wound up and becomes a winding type electric double layer capacitor. From the above, it was confirmed that the metal foil or the like coated with the fine fibrous cellulose / nanocarbon dispersion liquid of the present embodiment can be used as an electrode of a battery or a capacitor.
<実施例9-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例9-1と同様にした結果、得られた簡易素子の電気抵抗は、10Ω以下であった。また、電源に接続することで充電されることを確認した。したがって、得られた簡易素子は電気二重層キャパシタを形成していることが確認された。また、この簡易素子は、容易に巻き取ることができ、巻回形の電気二重層キャパシタになることも確認された。以上より、本実施形態の微細繊維状セルロース・ナノカーボン分散液を塗工した金属箔等は、電池や、キャパシタの電極として利用出来ることが確認された。
<Example 9-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. As a result of the same procedure as in Example 9-1 except that the fiber) / nanocarbon (graphene) dispersion was used, the electric resistance of the obtained simple element was 10 Ω or less. We also confirmed that it can be charged by connecting it to a power source. Therefore, it was confirmed that the obtained simple element forms an electric double layer capacitor. It was also confirmed that this simple element can be easily wound up and becomes a winding type electric double layer capacitor. From the above, it was confirmed that the metal foil or the like coated with the fine fibrous cellulose / nanocarbon dispersion liquid of the present embodiment can be used as an electrode of a battery or a capacitor.
<微細繊維状セルロース・ナノカーボン含有コンクリートの調製>
<実施例10-1>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(カーボンナノチューブ)分散液を、インスタントセメント(トーヨーマテラン株式会社製)を硬化させるための水に換えて使用した。具体的には、インスタントセメント100質量部に対して、微細繊維状セルロースとナノカーボンの分散液が含む水の量が15質量部になるように混合した。混合後、練り合わせることでモルタルが得られ、このモルタルを厚さ2cm、縦、横が10cmとなるよう型に入れ込み、1日静置して硬化させた。その結果、微細繊維状セルロース・ナノカーボン含有コンクリートが得られた。得られたコンクリートは十分に硬化して、優れた強度を有していた。また、得られたコンクリートは導電性を示した。
<Preparation of fine fibrous cellulose / nanocarbon-containing concrete>
<Example 10-1>
The fine fibrous cellulose (cellulose nanofiber) / nanocarbon (carbon nanotube) dispersion obtained in Example 1-1 or Example 101-18 for curing instant cement (manufactured by Toyo Materan Co., Ltd.). Used in place of water. Specifically, 100 parts by mass of instant cement was mixed so that the amount of water contained in the dispersion of fine fibrous cellulose and nanocarbon was 15 parts by mass. After mixing, mortar was obtained by kneading, and the mortar was placed in a mold having a thickness of 2 cm and a length and width of 10 cm, and allowed to stand for 1 day to be cured. As a result, a concrete containing fine fibrous cellulose / nanocarbon was obtained. The obtained concrete was sufficiently hardened and had excellent strength. Moreover, the obtained concrete showed conductivity.
<実施例10-2>
 実施例1-1又は実施例101-18で得られた微細繊維状セルロース・ナノカーボン分散液の代わりに、実施例1-3又は実施例101-13で得られた微細繊維状セルロース(セルロースナノファイバー)・ナノカーボン(グラフェン)分散液を用いた以外は、実施例10-1と同様にしたところ、微細繊維状セルロース・ナノカーボン含有コンクリートが得られた。得られたコンクリートは十分に硬化して、優れた強度を有していた。また、得られたコンクリートは導電性を示した。
<Example 10-2>
Instead of the fine fibrous cellulose / nanocarbon dispersion obtained in Example 1-1 or Example 101-18, the fine fibrous cellulose (cellulose nano) obtained in Example 1-3 or Example 101-13. When the same procedure as in Example 10-1 was carried out except that the fiber) / nanocarbon (graphene) dispersion was used, a fine fibrous cellulose / nanocarbon-containing concrete was obtained. The obtained concrete was sufficiently hardened and had excellent strength. Moreover, the obtained concrete showed conductivity.
10   ジェット流発生部
20   バブリング抑制部
100 微細化処理装置
10 Jet flow generator 20 Bubbling suppression unit 100 Miniaturization processing device

Claims (23)

  1.  イオン性置換基を有するセルロース繊維と、ナノカーボン前駆体と、溶媒とを含む混合液に微細化処理を行う工程を含み、
     前記微細化処理を行う工程では、バブリングが抑制される、微細繊維状セルロース・ナノカーボン含有物の製造方法。
    A step of performing a miniaturization treatment on a mixed solution containing a cellulose fiber having an ionic substituent, a nanocarbon precursor, and a solvent is included.
    A method for producing a fine fibrous cellulose / nanocarbon-containing material, in which bubbling is suppressed in the step of performing the micronization treatment.
  2.  前記混合液における前記溶媒の含有量は、前記混合液の全質量に対して99質量%以下である、請求項1に記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。 The method for producing a fine fibrous cellulose / nanocarbon-containing product according to claim 1, wherein the content of the solvent in the mixed solution is 99% by mass or less with respect to the total mass of the mixed solution.
  3.  前記微細化処理を行う工程では、高圧ホモジナイザーを用いて微細化処理を行う、請求項1又は2に記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。 The method for producing a fine fibrous cellulose / nanocarbon-containing material according to claim 1 or 2, wherein in the step of performing the miniaturization treatment, the miniaturization treatment is performed using a high-pressure homogenizer.
  4.  前記微細化処理を行う工程では、冷却によりバブリングが抑制される、請求項1~3のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。 The method for producing a fine fibrous cellulose / nanocarbon-containing material according to any one of claims 1 to 3, wherein bubbling is suppressed by cooling in the step of performing the micronization treatment.
  5.  前記イオン性置換基は、アニオン性基である、請求項1~4のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。 The method for producing a fine fibrous cellulose / nanocarbon-containing product according to any one of claims 1 to 4, wherein the ionic substituent is an anionic group.
  6.  前記イオン性置換基は、リンオキソ酸基又はリンオキソ酸基に由来する置換基である、請求項1~5のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物の製造方法。 The method for producing a fine fibrous cellulose / nanocarbon-containing material according to any one of claims 1 to 5, wherein the ionic substituent is a phosphoric acid group or a substituent derived from a phosphoric acid group.
  7.  繊維幅が1000nm以下であり、かつイオン性置換基を有する微細繊維状セルロースと、ナノカーボンとを含有し、
     下記条件aで算出されたチキソトロピックインデックス値(TI値)が2以上である、微細繊維状セルロース・ナノカーボン含有物;
    (条件a)
     前記微細繊維状セルロース・ナノカーボン含有物を水に分散させて、B型粘度計にて23℃、3rpmの回転数で測定した粘度が1000cpsの分散液を得る;B型粘度計にて23℃、60rpmの回転数で測定した該分散液の粘度(η)を測定し、1000/ηの値を前記微細繊維状セルロース・ナノカーボン含有物のチキソトロピックインデックス値(TI値)とする。
    It contains fine fibrous cellulose having a fiber width of 1000 nm or less and having an ionic substituent, and nanocarbon.
    Fine fibrous cellulose / nanocarbon-containing material having a thixotropic index value (TI value) of 2 or more calculated under the following condition a;
    (Condition a)
    The fine fibrous cellulose / nanocarbon-containing material is dispersed in water to obtain a dispersion having a viscosity of 1000 cps measured at 23 ° C. with a B-type viscometer at a rotation speed of 3 rpm; 23 ° C. with a B-type viscometer. , The viscosity (η) of the dispersion measured at a rotation speed of 60 rpm is measured, and a value of 1000 / η is defined as a thixotropic index value (TI value) of the fine fibrous cellulose / nanocarbon-containing product.
  8.  前記微細繊維状セルロース・ナノカーボン含有物における溶媒の含有量は、前記微細繊維状セルロース・ナノカーボン含有物の全質量に対して99質量%以下であり、
     前記微細繊維状セルロース・ナノカーボン含有物中において、前記微細繊維状セルロースと前記ナノカーボンは、均一分散している、請求項7に記載の微細繊維状セルロース・ナノカーボン含有物。
    The content of the solvent in the fine fibrous cellulose / nanocarbon-containing material is 99% by mass or less with respect to the total mass of the fine fibrous cellulose / nanocarbon-containing material.
    The fine fibrous cellulose / nanocarbon-containing material according to claim 7, wherein the fine fibrous cellulose and the nanocarbon are uniformly dispersed in the fine fibrous cellulose / nanocarbon-containing material.
  9.  前記イオン性置換基は、アニオン性基である、請求項7又は8に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing product according to claim 7 or 8, wherein the ionic substituent is an anionic group.
  10.  前記イオン性置換基は、リンオキソ酸基又はリンオキソ酸基に由来する置換基である、請求項7~9のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing product according to any one of claims 7 to 9, wherein the ionic substituent is a phosphoric acid group or a substituent derived from a phosphoric acid group.
  11.  前記ナノカーボンは、カーボンナノチューブ及びグラフェンからなる群から選択される少なくとも1種である、請求項7~10のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing product according to any one of claims 7 to 10, wherein the nanocarbon is at least one selected from the group consisting of carbon nanotubes and graphene.
  12.  塗料用である、請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing product according to any one of claims 7 to 11, which is used for paints.
  13.  樹脂組成物用である、請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing product according to any one of claims 7 to 11, which is used for a resin composition.
  14.  コンクリート材料用である、請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing product according to any one of claims 7 to 11, which is used for concrete materials.
  15.  糸状もしくは板状の構造体用である、請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing product according to any one of claims 7 to 11, which is used for a filamentous or plate-like structure.
  16.  電磁波シールド用である、請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing material according to any one of claims 7 to 11, which is used for electromagnetic wave shielding.
  17.  電気化学デバイス用である、請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物。 The fine fibrous cellulose / nanocarbon-containing product according to any one of claims 7 to 11, which is used for an electrochemical device.
  18.  請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物を含む、塗料。 A paint containing the fine fibrous cellulose / nanocarbon-containing material according to any one of claims 7 to 11.
  19.  請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物を含む、樹脂組成物。 A resin composition containing the fine fibrous cellulose / nanocarbon-containing material according to any one of claims 7 to 11.
  20.  請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物を含む、コンクリート材料。 A concrete material containing the fine fibrous cellulose / nanocarbon-containing material according to any one of claims 7 to 11.
  21.  請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物を含む、糸状もしくは板状の構造体。 A filamentous or plate-like structure containing the fine fibrous cellulose / nanocarbon-containing material according to any one of claims 7 to 11.
  22.  請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物を含む、電磁波シールド。 An electromagnetic wave shield containing the fine fibrous cellulose / nanocarbon-containing material according to any one of claims 7 to 11.
  23.  請求項7~11のいずれか1項に記載の微細繊維状セルロース・ナノカーボン含有物を含む、電気化学デバイス。 An electrochemical device containing the fine fibrous cellulose / nanocarbon-containing material according to any one of claims 7 to 11.
PCT/JP2021/002766 2020-01-28 2021-01-27 Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material WO2021153590A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-012032 2020-01-28
JP2020012032 2020-01-28
JP2020-012031 2020-01-28
JP2020012031 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021153590A1 true WO2021153590A1 (en) 2021-08-05

Family

ID=77078940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002766 WO2021153590A1 (en) 2020-01-28 2021-01-27 Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material

Country Status (1)

Country Link
WO (1) WO2021153590A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210296653A1 (en) * 2020-03-23 2021-09-23 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
WO2023210531A1 (en) * 2022-04-25 2023-11-02 東亞合成株式会社 Carbon nanotube dispersant, dispersion and method for manufacturing same, electrode and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042652A1 (en) * 2011-09-22 2013-03-28 凸版印刷株式会社 Carbon particle dispersion and method for producing same
JP2014122289A (en) * 2012-12-21 2014-07-03 Mitsubishi Chemicals Corp Method for producing fine cellulose fiber dispersion
WO2014115560A1 (en) * 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
WO2017104609A1 (en) * 2015-12-16 2017-06-22 ナノサミット株式会社 Novel nanocarbon composite
WO2019198429A1 (en) * 2018-04-10 2019-10-17 第一工業製薬株式会社 Redispersible composition containing cellulose fibers and non-cellulose powder granules
WO2021033423A1 (en) * 2019-08-19 2021-02-25 国立大学法人東京大学 Carbon fiber-reinforced composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042652A1 (en) * 2011-09-22 2013-03-28 凸版印刷株式会社 Carbon particle dispersion and method for producing same
JP2014122289A (en) * 2012-12-21 2014-07-03 Mitsubishi Chemicals Corp Method for producing fine cellulose fiber dispersion
WO2014115560A1 (en) * 2013-01-24 2014-07-31 日本ゼオン株式会社 Carbon nanotube dispersion, method for manufacturing same, carbon nanotube composition, and method for manufacturing same
WO2017104609A1 (en) * 2015-12-16 2017-06-22 ナノサミット株式会社 Novel nanocarbon composite
WO2019198429A1 (en) * 2018-04-10 2019-10-17 第一工業製薬株式会社 Redispersible composition containing cellulose fibers and non-cellulose powder granules
WO2021033423A1 (en) * 2019-08-19 2021-02-25 国立大学法人東京大学 Carbon fiber-reinforced composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210296653A1 (en) * 2020-03-23 2021-09-23 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US11955642B2 (en) * 2020-03-23 2024-04-09 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
WO2023210531A1 (en) * 2022-04-25 2023-11-02 東亞合成株式会社 Carbon nanotube dispersant, dispersion and method for manufacturing same, electrode and battery

Similar Documents

Publication Publication Date Title
JP7290147B2 (en) Method for producing fibrous cellulose-containing coating, resin composition, coating and laminate
JP7172033B2 (en) Fibrous Cellulose, Fibrous Cellulose-Containing Composition, Fibrous Cellulose Dispersion, and Method for Producing Fibrous Cellulose
WO2021153590A1 (en) Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material
JP2017057291A (en) Fine fibrous cellulose-containing material
JP2021175799A (en) Fibrous cellulose-containing fluid dispersion and production method thereof
WO2018159743A1 (en) Fibrous cellulose, fibrous cellulose-containing composition, fibrous cellulose liquid dispersion, and production method for fibrous cellulose
JP7419819B2 (en) Fibrous cellulose-containing resin composition, sheet and molded article
JP7255106B2 (en) Solid and fibrous cellulose-containing composition
JP2021116519A (en) Method for producing microfibrous cellulose/micro inorganic laminar compound-containing material, and microfibrous cellulose/micro inorganic laminar compound-containing material
JP2020063351A (en) Fibrous cellulose, fibrous cellulose dispersion and production method of fibrous cellulose
JP7351305B2 (en) Fibrous cellulose-containing composition, liquid composition and molded article
JP2021116430A (en) Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material
JP2021116429A (en) Method for producing microfibrous cellulose/nanocarbon-containing material, and microfibrous cellulose/nanocarbon-containing material
JP7010206B2 (en) Fibrous cellulose
JP7090023B2 (en) Fibrous Cellulose, Fibrous Cellulose Containing Material, Molded Body and Method for Producing Fibrous Cellulose
JP2021116518A (en) Method for producing microfibrous cellulose/micro inorganic laminar compound-containing material, and microfibrous cellulose/micro inorganic laminar compound-containing material
JP2020070342A (en) Cellulose-containing composition, liquid composition, solid body and method for producing cellulose-containing composition
JP2020132747A (en) Solid body-like material, and fibrous cellulose-containing composition
JP2020132652A (en) Fibrous cellulose-containing composition, liquid composition and molding
JP2020105470A (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and formed body
JP6708274B1 (en) Method for producing fibrous cellulose-containing coating, resin composition, coating and laminate
JP7127005B2 (en) Fine fibrous cellulose inclusions
JP6769499B2 (en) Fibrous cellulose-containing resin composition, liquid composition, molded product, and method for producing the molded product.
JP2022063104A (en) Dispersion
JP6978403B2 (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747074

Country of ref document: EP

Kind code of ref document: A1