WO2022190791A1 - 端末間直接通信における制御を行うシステム、無線端末装置、車両、制御装置、基地局、方法及びプログラム - Google Patents

端末間直接通信における制御を行うシステム、無線端末装置、車両、制御装置、基地局、方法及びプログラム Download PDF

Info

Publication number
WO2022190791A1
WO2022190791A1 PCT/JP2022/006098 JP2022006098W WO2022190791A1 WO 2022190791 A1 WO2022190791 A1 WO 2022190791A1 JP 2022006098 W JP2022006098 W JP 2022006098W WO 2022190791 A1 WO2022190791 A1 WO 2022190791A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless terminal
base station
direct communication
mode
terminals
Prior art date
Application number
PCT/JP2022/006098
Other languages
English (en)
French (fr)
Inventor
学 三上
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021039713A external-priority patent/JP7190520B2/ja
Priority claimed from JP2021071210A external-priority patent/JP7432553B2/ja
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to US18/549,421 priority Critical patent/US20240155570A1/en
Priority to EP22766755.7A priority patent/EP4307778A4/en
Priority to CN202280020719.4A priority patent/CN117044343A/zh
Publication of WO2022190791A1 publication Critical patent/WO2022190791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to selection control of a radio resource allocation control mode in inter-terminal direct communication of a plurality of radio terminal devices capable of communicating via a base station of a mobile communication network.
  • the present invention relates to selection control of a radio resource allocation control mode in direct communication between terminals when forming a group.
  • the present invention also relates to HARQ retransmission control in data transmission via direct communication between terminals of a plurality of wireless terminal apparatuses capable of communicating via a base station of a mobile communication network.
  • V2X using cellular communication technology of mobile communication systems is also called “cellular V2X.”
  • LTE Long Term Evolution
  • NR next-generation
  • PC5 V2V, V2I, V2P, and V2X
  • SL Mode-1 As radio resource allocation control modes in the Sidelink communication system, a mode SL Mode-1 (hereinafter referred to as "first mode") in which the base station allocates Sidelink radio resources, and a mode in which the radio terminal device itself allocates Sidelink radio resources.
  • SL Mode-2 (hereinafter also referred to as “second mode") is known (see, for example, Patent Document 1 and Non-Patent Document 1).
  • the first mode has the advantage of realizing efficient direct communication between terminals (between in-vehicle terminals) by sidelink radio resource allocation control from the base station within the range of the cell of the base station.
  • the wireless terminal device can autonomously communicate by detecting or randomly selecting necessary wireless resources without relying on the base station.
  • the signals transmitted by the terminals collide with each other, increasing the rate of mutual interference, and as a result, the quality of direct communication between terminals deteriorates. The problem is that it is easy.
  • SL transmission in order to improve the reliability of user data transmission (hereinafter referred to as "SL transmission") by the Sidelink communication method, SL HARQ (hybrid automatic repeat request) fed back from the receiving terminal through PSFCH (Physical Sidelink Feedback Channel) HARQ retransmission control based on ACK/NACK is known (Patent Document 2, Non-Patent Document 5).
  • PSFCH Physical Sidelink Feedback Channel
  • 3GPP TR38.885 V16.0.0 "Study on NR Vehicle-to-Everything (V2X) (Release 16),” March 2019.
  • one or a plurality of wireless terminal devices can be used to transmit control messages between vehicles required for platooning of following vehicles or to share real-time information such as position information, speed information, and acceleration information between multiple vehicles.
  • group group
  • the radio resource allocation control mode of a plurality of radio terminal apparatuses within the same group must be the same. Therefore, there is a problem that it is desirable to appropriately select the radio resource allocation control mode in a plurality of radio terminal apparatuses in the same group, and to ensure low-delay and high-reliability direct communication between terminals in the same group.
  • SR Scheduling Request
  • Grant grant message
  • a system selects a radio resource allocation control mode when a plurality of radio terminal apparatuses capable of communicating via a base station of a mobile communication network form a group and perform direct communication between terminals. It is a control system.
  • the base station allocates radio resources for inter-terminal direct communication to the plurality of radio terminal devices.
  • a first mode and a second mode in which one of the plurality of wireless terminal devices allocates wireless resources for inter-terminal direct communication of the plurality of wireless terminal devices can be selected.
  • all of the plurality of wireless terminal devices belonging to the group are located within the range of the cell of the base station, complete wireless connection setup with the base station, and perform downlink communication with the base station. and means for checking whether or not the uplink is in a synchronized state, and if all the plurality of wireless terminal devices belonging to the group are confirmed to be in a synchronized state with the base station, the first mode means for transmitting, to the plurality of wireless terminal devices, resource control information for the direct terminal communication including a first mode allowable message allowing operation of the terminal-to-terminal direct communication.
  • the resource control information for direct communication between terminals may include group identification information capable of identifying the group or terminal identification information for each of a plurality of wireless terminal devices belonging to the group.
  • any one of the plurality of wireless terminal devices belonging to the group is configured to receive the resource control information for the inter-terminal direct communication by all the plurality of wireless terminal devices belonging to the group.
  • the one wireless terminal device or all the plurality of wireless terminal devices belonging to the group are in the first mode.
  • a request message requesting resource allocation control based on the base station may be transmitted to the base station side.
  • all the plurality of wireless terminal devices belonging to the group are connected to the base station after completion of receiving the resource control information for the direct communication between terminals.
  • a request message may be sent to the base station side to request resource control of direct terminal-to-terminal communication of the device.
  • the one wireless terminal device or all of the plurality of wireless terminal devices belonging to the group have completed reception of resource control information for the inter-terminal direct communication and are in a synchronized state with the base station. It may be confirmed that all the other wireless terminal devices are in the synchronized state by receiving synchronization state information indicating that the wireless terminal devices are in the synchronized state.
  • the one wireless terminal device or all of the plurality of wireless terminal devices belonging to the group receive group identification information capable of identifying the group together with the synchronization state information from all of the other wireless terminal devices. You may
  • the group may be fixedly formed by a plurality of preset wireless terminal devices, or may be ad hoc formed by a plurality of wireless terminal devices located close to each other.
  • the wireless terminal device may be provided in each of a plurality of vehicles that form the group and travel along the moving route.
  • a wireless terminal device is capable of communicating via a base station of a mobile communication network, forms a group with one or a plurality of nearby wireless terminal devices, and performs direct communication between terminals. It is a terminal device.
  • This radio terminal device is in a synchronized state in which all the plurality of radio terminal devices belonging to the group have completed reception of the resource control information for the direct communication between terminals and have synchronized downlinks and uplinks with the base station.
  • a vehicle according to a first aspect of the present invention is a vehicle that travels along a moving route in a group with another vehicle, and includes the wireless terminal device.
  • a control device provides a radio resource allocation control mode when a plurality of radio terminal devices capable of communicating via a base station of a mobile communication network form a group and perform inter-terminal direct communication. It is a control device that performs selection control.
  • the base station allocates radio resources for inter-terminal direct communication to the plurality of radio terminal devices.
  • a first mode for allocation and a second mode for allocating radio resources for inter-terminal direct communication of the plurality of radio terminal devices by one of the plurality of radio terminal devices can be selected.
  • This control device is configured so that all the plurality of wireless terminal devices belonging to the group are located within the range of the cell of the base station, have completed wireless connection setup with the base station, and are ready for downlink with the base station.
  • the control device is a base station of a mobile communication network, a node between the base station and the core network, or a CU (Central Unit) or MEC (Multi-access Edge Computing) device provided outside the core network, good too.
  • CU Central Unit
  • MEC Multi-access Edge Computing
  • a base station is a base station of a mobile communication network and includes the control device.
  • a method selects a radio resource allocation control mode when a plurality of radio terminal apparatuses capable of communicating via a base station of a mobile communication system form a group and perform inter-terminal direct communication. It is a method of control.
  • the base station allocates radio resources for inter-terminal direct communication to the plurality of radio terminal devices.
  • any one of the plurality of wireless terminal devices allocates wireless resources for inter-terminal direct communication of the plurality of wireless terminal devices; Synchronization in which all of the belonging wireless terminal devices are located within the range of the cell of the base station and radio connection setup is completed with the base station, and the downlink and uplink are synchronized with the base station. and confirming whether all the plurality of wireless terminal devices belonging to the group are in a synchronized state with the base station, a first mode permitting operation in the first mode. and transmitting resource control information for the direct terminal communication including a mode allow message to the plurality of wireless terminal devices.
  • a program selects a radio resource allocation control mode when a plurality of radio terminal apparatuses capable of communicating via a base station of a mobile communication system form a group and perform inter-terminal direct communication. It is a program executed in a computer or processor provided in a control device that performs control. This program is a radio resource allocation control mode for allocating radio resources for inter-terminal direct communication of the plurality of radio terminal devices belonging to the group, wherein the base station allocates radio resources for inter-terminal direct communication to the plurality of radio terminal devices.
  • a program according to a first aspect of the present invention is a wireless terminal device capable of communicating via a base station of a mobile communication network, forming a group with one or a plurality of nearby wireless terminal devices, and performing direct communication between terminals. is a program executed on a computer or processor provided in the . According to this program, all the plurality of wireless terminal devices belonging to the group are in a synchronous state in which the reception of the resource control information for the direct communication between terminals is completed and the downlink and uplink are synchronized with the base station.
  • program code for confirming whether or not all wireless terminal devices belonging to the group other than the wireless terminal device itself are in a synchronized state with the base station Program code for transmitting a mode designation message designating the first mode to all other wireless terminals, and checking whether all the other wireless terminals have successfully received the mode designation message.
  • the second mode is set as the initial radio resource allocation control mode. You may choose.
  • a base station has a function of communicating with a plurality of wireless terminal devices that perform direct communication between terminals, and is a mobile communication network capable of controlling wireless resources used for the direct communication between terminals.
  • is the base station of This base station monitors a feedback channel from a receiving side wireless terminal device to a transmitting side wireless terminal device of data transmission via the direct terminal communication, and decodes the feedback channel; means for notifying the wireless terminal device on the transmitting side of a grant message including information on radio resources for HARQ retransmission when a HARQ negative response is included from the wireless terminal device on the receiving side in the decoding result of the channel for HARQ; Prepare.
  • a wireless terminal device is a wireless terminal device having a function of performing communication via a base station of a mobile communication network and a function of performing direct communication between peripheral wireless terminal devices and terminals.
  • this wireless terminal device transmits data to the peripheral wireless terminal device via the direct communication between terminals, the wireless terminal device does not receive a HARQ negative acknowledgment from the peripheral wireless terminal device.
  • a system according to a second aspect of the present invention includes the base station and the wireless terminal device according to the first aspect.
  • a method is a method of performing HARQ retransmission control in data transmission via direct communication between terminals.
  • This method includes monitoring a feedback channel from a receiving-side wireless terminal device to a transmitting-side wireless terminal device in data transmission via the direct communication between terminals, decoding the feedback channel; when a channel decoding result includes a HARQ negative acknowledgment from the radio terminal device on the receiving side, notifying the radio terminal device on the transmitting side of a grant message including information on radio resources for HARQ retransmission; include.
  • a program in a base station is mobile communication that has a function of communicating with a plurality of wireless terminal devices that perform direct communication between terminals and is capable of controlling radio resources used for the direct communication between terminals. It is a program that runs on a computer or processor that resides in a base station of the network.
  • a program in a wireless terminal device is provided in a wireless terminal device having a function of communicating via a base station of a mobile communication network and a function of performing direct communication between peripheral wireless terminal devices and terminals.
  • a base station is a base of a mobile communication network having a function of communicating with a plurality of wireless terminal devices performing direct communication between terminals and capable of controlling radio resources used for the direct communication between terminals. station.
  • the base station includes means for receiving a feedback message including a HARQ negative acknowledgment and a radio resource allocation request from a radio terminal device on the receiving side of data transmission via the direct communication between terminals; means for transmitting a grant message including a HARQ negative acknowledgment and information of radio resources for HARQ retransmission to a wireless terminal receiving said data transmission.
  • a first wireless terminal device is a wireless terminal device having a function of performing communication via a base station of a mobile communication network and a function of performing direct communication between peripheral wireless terminal devices and terminals.
  • the wireless terminal apparatus includes means for receiving data transmission from the peripheral wireless terminal apparatus via the direct communication between terminals, and transmitting a feedback message including a HARQ negative acknowledgment for the data transmission and a radio resource allocation request to the base station. and means for
  • a second wireless terminal device is a wireless terminal device having a function of performing communication via a base station of a mobile communication network and a function of performing direct communication between terminals with nearby wireless terminal devices. is.
  • this wireless terminal device transmits data to the peripheral wireless terminal device via the direct communication between terminals, the wireless terminal device does not receive a HARQ negative acknowledgment from the peripheral wireless terminal device.
  • a system includes the base station, the first wireless terminal device, and the second wireless terminal device according to the second aspect.
  • a method according to the third aspect of the present invention is a method of performing HARQ retransmission control in data transmission via direct communication between terminals. This method includes receiving a feedback message including a HARQ negative acknowledgment and a radio resource allocation request from a wireless terminal device on the receiving side of data transmission via the direct terminal communication; sending a grant message including a negative acknowledgment and radio resource information for HARQ retransmissions to a wireless terminal receiving the data transmission.
  • a program in a base station is mobile communication that has a function of communicating with a plurality of wireless terminal devices that perform direct communication between terminals and is capable of controlling radio resources used for the direct communication between terminals. It is a program that runs on a computer or processor that resides in a base station of the network.
  • This program includes a program code for receiving a feedback message including a HARQ negative acknowledgment and a radio resource allocation request from a wireless terminal device on the receiving side of data transmission via the direct communication between terminals; and program code for transmitting a grant message including the HARQ negative acknowledgment and information of radio resources for HARQ retransmission to a wireless terminal receiving the data transmission.
  • a program in a first wireless terminal device is a wireless terminal device having a function of performing communication via a base station of a mobile communication network and a function of performing direct communication between peripheral wireless terminal devices and terminals. It is a program executed in a computer or processor provided in the terminal device. This program transmits a program code for receiving data transmission from the peripheral wireless terminal devices via the direct communication between terminals, and a feedback message including a HARQ negative acknowledgment for the data transmission and a radio resource allocation request to the base station. program code for transmission to;
  • a program in a second wireless terminal device is a wireless terminal device having a function of performing communication via a base station of a mobile communication network and a function of performing direct communication between peripheral wireless terminal devices and terminals. It is a program executed in a computer or processor provided in the terminal device. This program performs HARQ denial from the base station without receiving HARQ denial from the peripheral wireless terminal when data transmission is performed to the peripheral wireless terminal via the direct communication between terminals.
  • program code for receiving a grant message including a response and radio resource information for HARQ retransmission; program code for HARQ retransmission of the data transmission to the neighboring wireless terminals accordingly.
  • a vehicle according to another aspect of the present invention is a vehicle that travels on a moving route.
  • This vehicle includes any one of the wireless terminal devices described above.
  • a plurality of wireless terminal devices within the same group can be connected to a terminal.
  • a radio resource allocation control mode for allocating radio resources for inter-terminal direct communication low-delay and highly reliable terminal-to-terminal direct communication can be reliably performed within the same group.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to an embodiment.
  • FIG. 2 is an explanatory diagram showing an example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the communication system according to the embodiment.
  • FIG. 3 is an explanatory diagram showing another example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the communication system according to the embodiment.
  • FIG. 4 is an explanatory diagram showing still another example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the communication system according to the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to an embodiment.
  • FIG. 2 is an explanatory diagram showing an example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the communication system according to the embodiment.
  • FIG. 5A is an explanatory diagram showing an example of the first radio resource allocation control mode (SL Mode-1) in the communication system according to the embodiment.
  • FIG. 5B is an explanatory diagram showing an example of the first radio resource allocation control mode (SL Mode-1) in the communication system according to the embodiment.
  • FIG. 6A is an explanatory diagram showing an example of the second radio resource allocation control mode (SL Mode-2) in the communication system according to the embodiment.
  • FIG. 6B is an explanatory diagram showing an example of the second radio resource allocation control mode (SL Mode-2) in the communication system according to the embodiment.
  • FIG. 7A is an explanatory diagram showing an example of dynamic switching control of radio resource allocation control modes (SL Mode-1, SL Mode-2) in the communication system according to the embodiment.
  • FIG. 7B is an explanatory diagram showing an example of dynamic switching control of radio resource allocation control modes (SL Mode-1, SL Mode-2) in the communication system according to the embodiment.
  • FIG. 8 is a sequence diagram showing an example of dynamic switching control from the second radio resource allocation control mode (SL Mode-2) to the first radio resource allocation control mode (SL Mode-1) in the communication system according to the embodiment.
  • FIG. 9 shows another example of dynamic switching control from the second radio resource allocation control mode (SL Mode-2) to the first radio resource allocation control mode (SL Mode-1) in the communication system according to the embodiment.
  • FIG. 10 is a sequence diagram showing an example of determining the connection state between the UE and the base station in the communication system according to the embodiment.
  • FIG. 11 is a sequence diagram showing an example of synchronization establishment and connection state determination of Sidelink communication (SL) of a UE located within the range of a cell of a base station in the communication system according to the embodiment.
  • FIG. 12 is a sequence diagram showing an example of synchronization establishment and connection state determination of Sidelink communication (SL) of a UE located outside a cell of a base station in the communication system according to the embodiment.
  • FIG. 13A is an explanatory diagram showing an example configuration of the radio resource (RE) of the time slot 431 at the time of initial transmission and HARQ retransmission of SL data transmission according to the reference example.
  • FIG. 13B is an explanatory diagram showing an example configuration of the radio resource (RE) of the time slot 431 at the time of initial transmission and HARQ retransmission of SL data transmission according to the reference example.
  • FIG. 14 is a sequence diagram showing an example of initial transmission and HARQ retransmission of SL data transmission during SL Mode-1 operation according to the reference example.
  • FIG. 15 is a sequence diagram showing an example of initial transmission and HARQ retransmission of SL data transmission during SL Mode-1 operation in the communication system according to the embodiment.
  • FIG. 16 is an explanatory diagram showing an example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the data transmission of FIG. 15 .
  • FIG. 17 is a sequence diagram showing another example of initial transmission and HARQ retransmission of SL data transmission during SL Mode-1 operation in the communication system according to the embodiment.
  • the system according to the embodiment described in this document is a system that, when a plurality of vehicles such as trucks are platooning, is mounted on a plurality of vehicles that can communicate via a base station of a mobile communication network.
  • This system performs selection control of a radio resource allocation control mode when radio terminal apparatuses form a group (group) and perform direct communication between terminals according to the Sidelink communication method.
  • a base station of a mobile communication network allocates wireless resources when a plurality of wireless terminal devices mounted on a plurality of vehicles perform direct communication between terminals according to the Sidelink communication method.
  • This is a system that can reduce HARQ (Hybrid Automatic Repeat Request) retransmission delays during SL Mode-1 (first mode) operation.
  • HARQ Hybrid Automatic Repeat Request
  • LTE Long Term Evolution
  • 5G system 5th generation mobile communication system
  • LTE system Long Term Evolution-Advanced mobile communication system
  • LTE system Long Term Evolution-Advanced mobile communication system
  • 5G system 5th generation mobile communication system
  • the reference signal sequence used for channel estimation and the coding scheme used for error correction are not limited to those defined in the LTE system or the 5G system, as long as they are suitable for these uses. , can be of any kind.
  • Embodiments of the present invention may be applied to next-generation mobile communication systems after the fifth generation (also referred to as "NR system").
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to one embodiment of the present invention.
  • the communication system according to the present embodiment is an example of a 5G system, and a base station 10 with a two-cell configuration connected to a core network (for example, EPC, 5GC, or NGC) 15 of a mobile communication network.
  • a core network for example, EPC, 5GC, or NGC
  • the example in FIG. 1 shows an example in which one base station 10 is provided, the number of base stations may be plural. Also, the cells formed by the base station 10 may be a single cell or three or more cells.
  • the core network 15 is, for example, an IP (Internet Protocol)-based EPC (Evolved Packet Core) defined by 3GPP (3rd Generation Partnership Project).
  • the core network 15 may be a core network dedicated to the 5G system, or a core network shared by the 5G system and the LTE system.
  • the core network device (EPC device or 5GC device) is a logical node SCEF (Service Capability Exposure Function), NEF (Network Exposure Function), UPF (User Plane Function) that processes user data, and the like.
  • the core network device (EPC device or 5GC device) may be a VAE (V2X Application Enabler) that enables coordination of multiple V2X (Vehicle-to-Everything) services.
  • a part of the functions of the core network device (for example, the functions of the UPF or the functions of the logical nodes other than the UPF) may be included in the base station 10 as in the present embodiment.
  • the base station 10 is, for example, a gNodeB (gNB) or en-gNodeB (en-gNB) of the 5G system, and via antennas 101 and 102, a communication terminal located in a cell that is a wireless communication area formed by the own station. It can wirelessly communicate with a device (also referred to as “terminal”, “user terminal”, “user device”, “UE”, “mobile station”, “mobile device”, etc., hereinafter referred to as “UE”) 20 .
  • a device also referred to as “terminal”, “user terminal”, “user device”, “UE”, “mobile station”, “mobile device”, etc., hereinafter referred to as “UE”
  • the base station 10 includes, for example, a base station device 100 provided inside a building or the like, and a plurality of antennas 101 and 102 corresponding to two cells forming the cell formed by the base station 10 .
  • Each of the plurality of antennas 101 and 102 is provided on top of a building, pillar, steel tower, or the like.
  • the antennas 101 and 102 may be omnidirectional antennas, or antennas composed of a plurality of antenna elements capable of forming one or a plurality of beams in a predetermined direction (for example, a large number of antenna elements two-dimensionally or three-dimensionally It may be a Massive MIMO antenna consisting of arrayed array antennas or the like. In the illustrated example, two antennas 101 and 102 are provided, but the number of antennas may be singular or three or more.
  • the base station device 100 includes, for example, a DU (distribution unit) 110, a CU (aggregation unit) 120, a CNE (core network device) 130, and an MEC (multi-access edge computing) device 140.
  • the CNE 130 is an example of a 5G core, but in a non-standalone (NSA) configuration in which LTE controls 5G layer 3 (L3), it may be an EPC.
  • the MEC device 140 may be provided in a node between the base station 10 and the core network 15, or may be provided outside the core network.
  • the DU 110 has, for example, RFU (Radio Unit) 111 and RFU 112 .
  • the RFU 111 and RFU 112 include, for example, an amplifier section, a frequency conversion section, a transmission/reception switching section (DUP), a quadrature modulation/demodulation section, and the like.
  • the DU 110 may have some functions of a BBU (baseband unit) described below. In the illustrated example, since two cells are configured per base station, two RFUs 111 and 112 are provided, but the number of RFUs may be singular or three or more.
  • the CU 120 has, for example, a BBU (baseband unit) 121 and a CU controller 122 that controls each part of the CU 120.
  • the BBU 121 performs, for example, control information and user data (IP packets) to be transmitted and received, and conversion (modulation/demodulation) of baseband signals such as OFDM signals transmitted and received via wireless transmission paths. For example, QPSK, 16QAM, 64QAM, or the like can be used as the modulation method.
  • Baseband signals are sent to and received from DU 110 .
  • the CU controller 122 is composed of, for example, a CPU and a memory, and controls each part of the CU 120 by executing a preinstalled program.
  • the CU 120 may be connected to multiple DUs. Also, the CU 120 may be connected to the DU of a remotely installed slave station via a high-speed communication line such as an optical communication line using optical fiber. Alternatively, a plurality of BBUs 121 may be provided in the CU 120 and connected to each RFU.
  • the BBU 121 is composed of a plurality of BBU#1 and BBU#2, and a plurality of external connection units 121a connected to each of the BBU#1 and BBU#2 are provided.
  • a plurality of remotely located external RFU#1 and RFU#2 may be remotely connected via a high-speed communication line such as.
  • the CNE 130 has the aforementioned UPF function, and communicates with various nodes on the core network 15 using a predetermined communication interface and protocol.
  • the CNE 130 relays various data such as user data between the core network 15 and the CU 120 , and relays various data such as user data between the core network 15 and the CU 120 and the MEC device 140 .
  • the MEC device 140 is composed of, for example, a CPU and a memory, and executes a program installed in advance or a program downloaded via a communication network to perform transmission/reception with the UE 20 located in the cell of the base station 10. It is possible to process various data received and execute various controls for the UE 20 residing in the cell of the base station 10 . Moreover, the MEC device 140 can also function as various means for selection control of the radio resource allocation control mode, which will be described later, by executing a predetermined program.
  • the selection control of the radio resource allocation control mode described later may be performed by the CU 120 described above instead of the MEC device 140 .
  • the CU controller of the CU 120 may function as various means for selection control of radio resource allocation control modes, which will be described later, by executing a predetermined program.
  • the CU 120 and the MEC device 140 may cooperate with each other to perform selection control of the radio resource allocation control mode, which will be described later.
  • UEs 20(1) to 20(3) are vehicles (trucks in the illustrated example) 30(1) to 30(3) that move on a road 90 as a moving route located within a cell formed by the base station 10. installed in the Vehicles 30(1) to 30(3) on which UEs 20(1) to 20(3) are mounted form a preset group and cooperate with each other to form a vehicle group and move.
  • three UEs 20(1) to 20(3) mounted on three vehicles 30(1) to 30(3) are present in the cell of the base station 10.
  • a plurality of UEs 20 mounted on a plurality of vehicles 30 of two or four or more may be present.
  • three vehicles 30(1) to 30(3) form a vehicle group in a platoon (along the longitudinal direction of each other) and travel in a group, that is, in a platoon.
  • the relative positional relationship between the vehicles 30 is not limited as long as the UEs 20 mounted on the plurality of vehicles 30 are in a positional relationship in which they can communicate directly with each other.
  • the vehicle 30 may be a moving object such as an automobile, truck, bus, or motorcycle that moves on a road 90 that is a movement route on the ground, or a movement that can fly and move along a movement route in space such as the sky. It may be a body, or it may be a moving body that can move along a movement route underground, above water (for example, sea), or under water (for example, under the sea).
  • a moving object such as an automobile, truck, bus, or motorcycle that moves on a road 90 that is a movement route on the ground, or a movement that can fly and move along a movement route in space such as the sky.
  • It may be a body, or it may be a moving body that can move along a movement route underground, above water (for example, sea), or under water (for example, under the sea).
  • the UE 20 etc. are described without parentheses, and the plurality of vehicles 30(1) to 30 The vehicle 30 or the like is also used without parentheses when describing the configuration, function, etc., that are common to (3).
  • the UE that is the data transmission source is also called the transmission side UE 20T
  • the data transmission destination UE is also called the reception side UE 20R.
  • the UE 20 of the vehicle 30 connects the base station 10 of the mobile communication network (cellular network) by a communication method via a base station, which is a first communication method (for example, a next-generation NR method such as 3G, LTE, or 5G).
  • a communication method for example, a next-generation NR method such as 3G, LTE, or 5G.
  • 5G Uu communication is ultra-reliable and low-latency URLLLC (Ultra Reliable & Low Latency Communication), high-speed and large-capacity communication eMBB (Enhanced Mobile Broadband), and a large number of low-cost, low-power consumption terminals are simultaneously connected.
  • communication types such as mMTC (Massive Machine Type Communication) can be used.
  • 30(2) and 30(3) are unmanned automatic driving.
  • Remote operation of UEs 20(1) to 20(3) of vehicles 30(1) to 30(3) and network side via base station 10 and core network 15 of mobile communication network in truck platooning with automatic driving of following vehicle Uu communication is performed with the monitoring center.
  • the remote operation monitoring center can receive monitor images (still images, moving images) and sensor information of each vehicle 30(1) to 30(3) through uplink Uu communication.
  • the remote operation monitoring center can transmit control signals such as emergency stop signals to each vehicle 30(1) to 30(3) by downlink Uu communication.
  • Uu communication between this vehicle and the remote operation monitoring center on the network side centralized remote management and remote control of multiple vehicles 30(1) to 30(3) are realized, reducing the burden on the driver and improving safety. can be done.
  • the UE 20 includes, for example, an antenna 21, a transmission/reception switching unit (DUP), a reception unit, a CP removal unit, an FFT unit, a signal separation unit, a propagation path compensation unit, a demodulation unit, a decoding unit, a DMRS propagation path (channel) estimation unit, a signal It comprises a multiplexer, an IFFT section, a CP inserter, a transmitter and a controller.
  • Antenna 21 can be used for both Uu and Sidelink communications.
  • the DMRS propagation path (channel) estimator estimates a radio propagation path (equivalent propagation path), for example, based on the reception result of known demodulation reference signals (DMRS) transmitted from the base station 10 .
  • the demodulator demodulates and decodes the data signal included in the transmission signal based on the estimation result of the radio channel (equivalent channel). Since the other components have the same functions as the conventional one, the description thereof will be omitted.
  • the UE 20 of the vehicle 30 performs wireless communication with other vehicles (hereinafter also referred to as “direct communication between terminals”) using a second communication method that does not involve a base station of a mobile communication network (cellular network).
  • a second communication method that does not involve a base station of a mobile communication network (cellular network).
  • This can be done by direct communication between the terminals installed in the Radio links between terminals in direct communication between terminals are downlink (DL), which is the radio link from the base station side to the terminal side in communication via base stations, and uplink, which is the radio link from the terminal side to the base station side. (UL), also called Sidelink.
  • the second communication method is, for example, a Sidelink communication method using a wireless interface between terminals called PC5.
  • the PC5 interface is a D2D (Device to Device) interface in which UEs, UEs and other devices (for example, vehicles), vehicles, or vehicles and other devices directly communicate between terminals without going through a base station. Yes, it has been standardized since 3GPP Release 12 for LTE and after Release 16 for 5G.
  • Autonomous driving truck platooning see Figure 1 and autonomous driving/platooning BRT (Bus Rapid Transit), or driving on a railroad track that electronically connects multiple vehicles traveling on the road through inter-terminal communication
  • the Sidelink communication method in which the terminals mounted on each vehicle communicate directly with each other, is used for the transmission of control messages between each vehicle in the electronic connection between railway vehicles and the transmission of surrounding monitoring video from the following vehicle to the leading vehicle. Suitable.
  • vehicle control messages e.g., speed, acceleration, distance between vehicles, control information such as steering
  • monitor images still images, moving images
  • sensor information e.g., sensor information.
  • Sidelink (FL) in the figure is inter-vehicle communication from the preceding vehicle to the following vehicle
  • Sidelink (BL) is inter-vehicle communication from the following vehicle to the preceding vehicle.
  • Autonomous truck platooning using this inter-vehicle communication can eliminate the shortage of drivers and improve the working environment.
  • a single terminal-to-terminal direct communication (hereinafter referred to as "single-hop communication") may be performed between the UE of a vehicle to which data is to be transmitted and not through the UE of another vehicle.
  • single-hop communication involving multiple terminal-to-terminal direct communications via UEs in multiple other vehicles may be performed.
  • the Layer-2 ID is a communication identifier (frame identifier) that identifies a frame (also called a "MAC packet"), which is a data processing unit in the data link layer (Layer-2) of the layered communication model. is defined.
  • layer 1 consisting of a physical layer, a MAC (media access control) layer, an RLC (radio link control) layer, and a PDCP (packet data convergence) layer from the bottom to the top.
  • Layer 2 that processes data in units of frames, network layer that processes data in units of packets using various protocols (eg IP, Non-IP, ARP), application layer, etc. .
  • Data in the application layer is also called a "message”.
  • Dst.L2 ID Destination L2 ID
  • L2 ID Destination L2 ID
  • the UE 20 of the vehicle 30 on the receiving side determines whether or not the frame identifier (Dst.L2ID) of the destination included in the header of the received frame matches the frame identifier (L2ID) assigned to its own device. .
  • the received frame A packet containing the data (message) of .
  • the reception By processing the data so that the packet containing the data (message) of the received frame is not passed to the upper layer, it is possible to prevent the data from being used by the application.
  • the UEs 20(1) to 20(3) of a plurality of vehicles 30(1) to 30(3) may be in the same cell or in different cells.
  • the UEs 20(1) to 20(3) of the vehicles 30(1) to 30(3) perform direct communication between terminals by the Sidelink communication method and Uu communication by the communication method via the base station selectively or simultaneously. may be
  • FIG. 2 is an explanatory diagram showing an example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the communication system according to the present embodiment.
  • different frequency bands are used in the downlink of Uu communication (hereinafter referred to as "DL"), the uplink of Uu communication (hereinafter referred to as "UL”), and the Sidelink communication (hereinafter referred to as "SL"). .
  • DL and UL radio frames 401 and 402 each have a predetermined subcarrier interval (15 kHz in the example shown) and a predetermined number (10 in the example shown) of time slots (“subframes”). ) has a predetermined time length (10 ms in the illustrated example).
  • a leading time slot 401a in a DL radio frame 401 includes a block (SSB) consisting of a downlink SS (synchronization signal) and a PBCH (physical broadcast channel), and a PBCH_DMRS (reference for PBCH demodulation) for demodulating PBCH information.
  • signal is a special time slot that contains In the second and subsequent DL time slots 401b, PDCCH (physical downlink control channel) for downlink control, PDSCH (physical downlink shared channel) for data transmission, and PDCCH and PDSCH data demodulation.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the leading time slot 402a in the UL radio frame 402 is a special time slot that includes an uplink PRACH (Physical Random Access Channel).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PUCCH and PUSCH data for demodulation.
  • An OFDM symbol used for each DMRS (data demodulation reference signal) can be assigned.
  • control information to be transmitted by PUCCH may be multiplexed on PUSCH without using PUCCH.
  • the SL radio frame 403 has a predetermined subcarrier interval (60 kHz, which is wider than DL/UL in the illustrated example), and has a predetermined number (40, which is greater than DL/UL in the illustrated example). It has a predetermined time length (10 ms in the example shown) consisting of time slots.
  • the leading time slot 403a in the SL radio frame 403 is SLSS (Sidelink synchronization signal) and PSBCH composed of Sidelink Primary Synchronization Signal (S-PSS) and Sidelink Secondary Synchronization Signal (S-SSS) used for synchronizing Sidelink communication.
  • S-PSS Sidelink Primary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • PSBCH_DMRS PSBCH demodulation reference signal
  • each UE is the leader UE may be specified from the mobile communication network side (for example, MEC device), or may be specified by a storage medium incorporated in the UE (for example, a subscriber information storage medium SIM (Subscriber It may be determined based on the information written in the Identity Module Card)).
  • MEC device mobile communication network side
  • SIM Subscriber information storage medium
  • PSCCH Physical Sidelink Control Channel
  • PSFCH Physical Sidelink Feedback Channel
  • OFDM Orthogonal Frequency Division Multiplexing
  • PSCCH is, for example, within the service area of the cell of the base station 10, one of the plurality of UEs 20 (leader UE, master UE) 20 (1) is the main body, and the other member UEs 20 (2) and 20 (3) ) can be used for synchronization processing and connection establishment processing of Sidelink communication performed between .
  • FIG. 3 is an explanatory diagram showing another example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the communication system according to the present embodiment.
  • DL and UL are operated by TDD (time division multiplexing) in the same frequency band
  • SL is operated by an independent frequency band different from DL and UL.
  • a radio frame 411 shared by DL and UL has a predetermined subcarrier interval (15 kHz in the example shown) and has a predetermined time length consisting of a predetermined number (20 in the example shown) of time slots. (10 ms in the example shown).
  • the leading time slot 411a in the shared radio frame 411 is a special time slot containing a block (SSB) consisting of downlink SS and PBCH and PBCH_DMRS.
  • OFDM symbols used for downlink PDCCH, PDSCH and DMRS can be allocated to a plurality of time slots 411c denoted by "D" in the figure.
  • Two time slots 411b marked with "S” in the figure are special time slots containing uplink GP (guard period), PRACH and SRS (sounding reference signal), respectively.
  • OFDM symbols used for uplink PUCCH, PUSCH and DMRS can be allocated to a plurality of time slots 411d denoted by "U” in the figure.
  • control information to be transmitted by PUCCH may be multiplexed on PUSCH without using PUCCH.
  • the SL radio frame 412 has a predetermined subcarrier interval (60 kHz in the illustrated example) and has a predetermined time length (40 in the illustrated example) consisting of a predetermined number (40 in the illustrated example) of time slots. 10 ms).
  • the leading time slot 412a in the SL radio frame 412 is a special time slot containing SLSS, PSBCH, and PSBCH_DMRS used for Sidelink communication synchronization.
  • Other time slots 412b can be assigned OFDM symbols used for PSCCH, PSFCH as a feedback channel, PSSCH and DMRS.
  • FIG. 4 is an explanatory diagram showing still another example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the communication system according to the present embodiment.
  • DL, UL and SL are operated by TDD (time division multiplexing) in the same frequency band.
  • a radio frame 421 shared by DL, UL and SL has a predetermined subcarrier interval (60 kHz in the example shown) and is composed of a predetermined number (40 in the example shown) of time slots. It has a time length (10 ms in the example shown).
  • the first time slot 421a is a special time slot that includes an uplink PRACH, a block (SSB) consisting of downlink SS and PBCH, and PBCH_DMRS.
  • the second time slot 421b from the beginning is a special time slot containing SS and PBCH blocks used for synchronization of Sidelink communication.
  • Other plural time slots of the shared radio frame 421 are a DL time slot 421c(1), a UL time slot 421c(2), and an SL time slot 421c(3) separated by GP (guard period). and OFDM symbols used for the downlink PDCCH and PDSCH can be assigned to the DL time slot 421c(1). OFDM symbols used for uplink PUCCH and PUSCH can be allocated to the UL time slot 421c(2). In time slots in which resources are allocated to PUSCH, control information to be transmitted by PUCCH may be multiplexed on PUSCH without using PUCCH. The OFDM symbols used for the PSCCH and PSSCH can be assigned to the SL time slot 421c(3).
  • radio resources some of the UL resources that have been standardized for LTE D2D, etc., may be used as SL resources.
  • the UEs 20(1) to 20(3) of the vehicles 30(1) to 30(3) determine and set the transmission/reception timing of radio frames when performing direct communication between terminals according to the Sidelink communication method. For example, it is possible to select from the Uu synchronization method as the first synchronization method and the SLSS synchronization method as the second synchronization method. Also, as another synchronization method, a GNSS synchronization method may be used.
  • the Uu synchronization method uses the Primary Synchronization Signal (PSS), the Secondary Synchronization Signal (SSS), etc., which are periodically transmitted by the base station 10 of the mobile communication network (cellular network) for cell search and DL synchronization establishment on the terminal side. is used as a reference for inter-terminal synchronization.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the SL synchronization method realizes inter-terminal synchronization using SLSS, and is used when other synchronization references cannot be used, such as inside a tunnel or in an area outside the service area of a base station.
  • the GNSS synchronization method is a method in which a GNSS (Global Navigation Satellite System) receiver as current position acquisition means provided in the UE 20 uses a time reference obtained by receiving radio waves from GNSS satellites as a reference for inter-terminal synchronization. Yes, and the signal source of the time reference is the GNSS receiver within the device itself.
  • GNSS Global Navigation Satellite System
  • the UE 20 of the vehicle 30 uses the Uu synchronization method to determine the transmission/reception timing of the radio frame of the Sidelink communication system within the range of the cell of the base station 10, and the common signal from the base station outside the range of the cell of the base station 10. , and other synchronization reference signal sources cannot be used, the SLSS synchronization method is used to determine the transmission/reception timing of the radio frame of the Sidelink communication method.
  • Mode-1 as a first mode in which the base station 10 allocates SL radio resources as a radio resource (time slot) allocation control mode in the Sidelink communication method illustrated in FIGS. , also referred to as "Mode-1" for short.
  • SL Mode-2 (hereinafter also referred to as "Mode-2" for short) as a second mode in which each UE 20 autonomously selects an SL radio resource.
  • Mode-1 and Mode-2 can be selected and applied to each group (group) composed of UEs 20 of a plurality of vehicles 30.
  • FIG. A group (group) may be statically formed with a plurality of preset UEs, or may be ad hoc formed with a plurality of UEs located close to each other.
  • Mode-1 has the advantage of realizing efficient direct communication (inter-terminal direct communication) between UEs 20 by Sidelink radio resource allocation control from the base station 10 within the range of the cell 10A of the base station 10 shown in FIG. 5A.
  • the UEs 20 of the vehicles 30(1) to 30(3) belonging to the first group G1 use radio resources allocated by Sidelink radio resource allocation control from the base station 10.
  • UEs 20(4) and 20(5) of vehicles 30(4) and 30(5) belonging to the second group G2 can perform terminal-to-terminal direct communication with each other. can communicate directly between
  • Mode-1 synchronization and radio resource selection required for direct communication between terminals depend on synchronization signals and control signals transmitted by the base station 10, so the cell of the base station 10 as shown in FIG. UEs 20(1) to 20(3) of vehicles 30(1) to 30(3) belonging to group G1 cannot directly communicate between Sidelink terminals. .
  • FIG. 6A and 6B are explanatory diagrams showing an example of the second radio resource allocation control mode (Mode-2) in the communication system according to the embodiment.
  • Mode-2 even within the range of cell 10A of base station 10 shown in FIG. Direct communication between terminals can be performed by autonomously detecting or randomly selecting necessary radio resources without depending on each other.
  • the UEs 20(4) and 20(5) of the vehicles 30(4) and 30(5) belonging to the group G2 autonomously detect or randomly select necessary radio resources without relying on the base station 10. can be used for direct communication between terminals.
  • Mode-2 as shown in FIG.
  • the UEs 20(1) to 20(3) of the vehicles 30(1) to 30(3) It is possible to autonomously detect or randomly select necessary radio resources and assign them to each UE autonomously without relying on , so that terminals can directly communicate with each other.
  • Mode-2 especially when there are many UEs that perform autonomous direct communication between terminals, the signals transmitted by the UEs collide and the rate of mutual interference increases. There is a problem that the quality of communication tends to deteriorate.
  • a plurality of UEs 20 in the same group G1 are located within the range of the cell 10A of the base station 10, and have completed wireless connection setup with the base station 10.
  • a radio resource allocation control mode (Mode- 1, Mode-2) are controlled dynamically. By performing such control, the advantages of Mode-1 and Mode-2 can be compensated for and their advantages can be exploited.
  • FIG. 7A and 7B are explanatory diagrams showing an example of dynamic switching control of radio resource allocation control modes (Mode-1, Mode-2) in the communication system according to the embodiment.
  • the CU 120 or the MEC device 140 of the base station 10 is configured such that all the UEs 20 of the plurality of vehicles 30 belonging to the same group G1 are located within the range of the cell 10A of the base station 10 and are connected to the base station 10.
  • the radio resource allocation control mode of Sidelink communication is set to the initial setting Mode-2 Resource control information for direct communication between terminals (SL resource control information) to a plurality of UEs 20(1) to 20(3) in group G1.
  • the CU 120 or the MEC device 140 of the base station 10 is at least one UE (UE 20 (1 ) and UE 20 (2)) are located outside the service area 10X of the cell 10A of the base station 10, and when it is confirmed that the downlink and uplink are out of synchronization with the base station 10, Sidelink Control is executed to keep the radio resource allocation control mode for communication at Mode-2, which is the initial setting.
  • FIG. 8 is a sequence showing an example of dynamic switching control from the second radio resource allocation control mode (SL Mode-2) to the first radio resource allocation control mode (SL Mode-1) in the communication system according to this embodiment. It is a diagram. Note that the three UEs 20(1), 20(2), and 20(3) in FIG. 3). A single group (group) is formed by these UEs 20(1), 20(2), and 20(3). Also, the radio resource allocation control mode for Sidelink communication before the dynamic switching control of FIG. 8 is executed is Mode-2, which is the initial setting.
  • an RRC (radio resource control) state check as a radio connection state check is performed between a plurality of UEs 20(1), 20(2), 20(3) belonging to group G1 and the base station 10. is executed (S101).
  • CU 120 or MEC device 140 of base station 10 confirms that all UEs 20(1), 20(2), 20(3) belonging to group G1 are in the "RRC_CONNECTED" state based on the result of the RRC state check, that is, It can be confirmed that the UEs 20(1), 20(2), 20(3) are located within the range of the cell 10A of the base station 10 and are in synchronization with the base station 10 (S102).
  • each UE 20(1), 20(2), and 20(3) of the plurality of vehicles 30(1), 30(2), and 30(3) are moving, each UE 20(1), 20(2) ), 20(3) are located within the range of the cell 10A of the base station 10, and between each UE 20(1), 20(2), 20(3) and the base station 10 Confirmation of whether or not it is in a synchronous state is performed periodically.
  • the CU 120 or the MEC device 140 of the base station 10 confirms that it is located within the range of the cell 10A of the base station 10 and that wireless connection setting including synchronization processing has been completed with the base station 10 (S102).
  • the resource control information includes a UE group ID that can identify the group to which the UEs 20(1), 20(2), and 20(3) that are controlled UEs that switch the radio resource allocation control mode belong. be done.
  • This target UE group ID when a plurality of UE groups exist in the cell of the base station 10, it is possible to limit the target UE group whose sidelink communication radio resource allocation control mode is switched to Mode-1.
  • UE ID individual terminal identification information that can identify the control target UE whose radio resource allocation control mode is to be switched may be included.
  • the above-mentioned Layer-2 ID may be used as the individual terminal identification information.
  • the CU 120 or the MEC device 140 of the base station 10 After transmitting Sidelink resource control information to each UE 20(1), 20(2), 20(3), the CU 120 or the MEC device 140 of the base station 10 requests resource allocation control based on Mode-1 from each UE.
  • a reception waiting state for a request message (Sidelink scheduling request message) is started (S104).
  • each UE 20 (1), 20 (2), 20 (3) does not receive Mode-1 allowable information that allows Mode-1 operation, it checks the synchronization state of Uu communication, Uu communication is asynchronous or not.
  • each of the UEs 20(1), 20(2), and 20(3) executes a process of maintaining the default Mode-2 as the sidelink communication radio resource allocation control mode (S106).
  • the leader UE 20 (1) transmits SS/PBCH (SLSS/PSBCH) blocks for Sidelink communication to the member UEs 20 (2) and 20 (3). Based on the SS/PBCH (SLSS/PSBCH) block of the Sidelink communication received from the leader UE 20(1), the sidelink communication synchronization is established.
  • SLSS/PSBCH SS/PBCH
  • the leader UE 20 (1) all other member UE 20 (2) belonging to the same group , 20(3) to receive Uu synchronization state information transfer indicating the synchronization state of Uu communication, and determine whether each member UE 20(2), 20(3) (Uu) is in the Uu communication synchronization state ( S107).
  • the Uu sync state information transfer includes the aforementioned UE group ID and Uu sync state information. If the Uu synchronization status information is "1: Uu In-Sync", it can be confirmed that the Uu communication is in a synchronized state, and if it is "0: Uu Out-of-Sync", the Uu communication is in an asynchronous state.
  • the leader UE 20(1) can confirm the member UEs regarding whether or not they can perform Mode-1 operation with each other.
  • the leader UE 20(1) can confirm the member UEs regarding whether or not they can perform Mode-1 operation with each other.
  • the leader UE 20 (1) has successfully received a mode designation message (SL mode flag: Mode-1) designating Mode-1 by all other member UEs 20 (2) and 20 (3) belonging to the same group. Check whether or not The leader UE 20 (1) sends an SL mode flag acknowledgment indicating successful reception of the mode designation message (SL mode flag: Mode-1) from all member UEs 20 (2) and 20 (3) in the group. (ACK), select Mode-1 as the radio resource allocation control mode (S111), and send a request message (SL scheduling request message) requesting resource allocation control based on Mode-1 to the CU 120 of the base station 10 or the MEC. It is transmitted to the device 140 (S112).
  • the leader UE 20 (1) sends an SL HARQ acknowledgment (ACK) to the retransmission of the mode designation message (SL mode flag: Mode-1) instead of the SL mode flag acknowledgment (ACK) to each member UE 20 ( 2) and 20(3), it may be confirmed that the mode designation message (SL mode flag: Mode-1) has been successfully received.
  • SL mode flag: Mode-1 the mode designation message
  • the CU 120 or the MEC device 140 of the base station 10 When the CU 120 or the MEC device 140 of the base station 10 receives the request message (SL scheduling request message) from the leader UE 20 (1), it executes resource allocation control based on Mode-1.
  • FIG. 9 shows another example of dynamic switching control from the second radio resource allocation control mode (SL Mode-2) to the first radio resource allocation control mode (SL Mode-1) in the communication system according to this embodiment. It is a sequence diagram showing. Note that S201 to S206 in FIG. 9 are the same as S101 to S106 in FIG. 8 described above, so description thereof will be omitted.
  • each UE 20 (1), 20 (2), 20 (3) in the group receives the Mode-1 allowable information
  • each UE 20 (1), 20 (2), 20 (3) is in the Uu communication synchronization state (S207), select Mode-1 as the radio resource allocation control mode (S208), and request message (SL scheduling request message) requesting resource allocation control based on Mode-1 to the CU 120 or MEC device 140 of the base station 10 (S209).
  • the CU 120 or the MEC device 140 of the base station 10 When the CU 120 or the MEC device 140 of the base station 10 receives the request message (SL scheduling request message) from each of the UEs 20(1), 20(2), and 20(3), it executes resource allocation control based on Mode-1. do.
  • FIG. 10 is a sequence diagram showing an example of determining the connection state between the UE 20 and the base station 10 in the communication system according to this embodiment.
  • the connection state determination illustrated in FIG. 10 can be used in the RRC state check (S101, S201) in FIGS. 8 and 9 described above.
  • the UE 20 receives downlink SS (synchronization signal) and PBCH (broadcast channel) blocks and system information from the base station 10, and transmits a random access (RA) preamble (PRACH) to the base station 10.
  • RA random access
  • PRACH random access preamble
  • RAR random access response
  • TA timing advance
  • the base station 10 transmits an RRC connection setup message to the UE 20 in response to the RRC (radio resource control) connection request message received from the UE 20 (S304, S305), and receives an RRC connection setup completion message transmitted from the UE 20 via PUSCH.
  • a message is received (S306).
  • the base station 10 Upon receiving the RRC connection setup complete message, the base station 10 confirms that the target UE 20 is located within the range of its own cell and is in DL/UL synchronization with the UE 20 at the time of initial connection. be able to. After that, by checking the CRC (Cyclic Redundancy Check) decoding result of PUCCH periodically transmitted by UE 20 for CQI (channel quality indicator) transmission, etc. (S308), base station 10 confirms the connection state with UE 20. can be determined.
  • CRC Cyclic Redundancy Check
  • the UE 20 By receiving HARQ-ACK transmitted by PDCCH from the base station 10 in response to the RRC connection setup complete message, the UE 20 is located within the cell range of the base station 10 at the time of initial connection, and It can be confirmed that there is DL/UL synchronization with the base station 10 . After that, the UE 20 can determine the connection state with the base station 10 by checking the decoding result of the PBCH periodically transmitted by the base station 10 (S309).
  • FIG. 11 is a sequence diagram showing an example of synchronization establishment and connection state determination of Sidelink communication (SL) of UEs 20 located within the range of the cell of the base station 10 in the communication system according to the present embodiment.
  • SL Sidelink communication
  • each UE 20 within the range of the cell of the base station 10 , each UE 20 establishes synchronization of Sidelink communication by establishing DL and UL synchronization with the base station 10 .
  • the connection state of Sidelink communication within the range is, for example, as shown in FIG. It can be confirmed by successful reception of PSCCH in the BL direction to member UE 20(2) (S402).
  • FIG. 12 is a sequence diagram showing an example of synchronization establishment and connection state determination of Sidelink communication (SL) of UE 20 located outside the cell area of base station 10 in the communication system according to the present embodiment.
  • SL Sidelink communication
  • synchronization of Sidelink communication is established by transmitting/receiving SS/PBCH (SLSS/PSBCH) of Sidelink communication from leader UE 20(1) to member UE 20(2) (S501).
  • S501 member UE 20(2)
  • the connection state of Sidelink communication in the out-of-range is the successful reception of the PSCCH in the FL direction from the member UE 20(2) to the leader UE 20(1) (S502) and the leader UE 20(1). ) to the member UE 20(2) by successful reception of PSCCH in the BL direction (S503).
  • direct communication between terminals When performing Sidelink communication, appropriately select a radio resource allocation control mode that allocates radio resources for direct communication between terminals to a plurality of UEs 20 (1), 20 (2), and 20 (3) in the same group, Even when the number of UEs in the same group increases, low-delay and highly reliable direct communication between terminals can be reliably performed within the same group.
  • FIGs. 13A and 13B respectively show the radio resource (RE) of time slot 431 at the time of initial transmission and HARQ retransmission of SL data transmission according to the reference example. It is an explanatory view showing an example of an example of composition.
  • AGC automatic gain control
  • PSCCH PSSCH
  • DMRS DMRS
  • Guard Guard period
  • AGC is information for controlling the gain of the receiving amplifier so that the receiving amplifier of the receiving side UE does not saturate.
  • radio for HARQ retransmission including PSFCH for returning HARQ response message (HARQ-ACK or HARQ-NACK) and Guard and AGC for the PSFCH Since the resource group 431a is inserted, radio resources that cannot be used for SL data transmission occur.
  • FIG. 14 is a sequence diagram showing an example of initial transmission and HARQ retransmission of SL data transmission during SL Mode-1 operation according to the reference example.
  • the transmitting side UE 20T executes RRC connection reconfiguration (RRC Reconfiguration Procedure) with the base station 10, and negotiates for transmission/reception of a scheduling request message in data transmission by SL Mode-1 (S101 ).
  • RRC connection reconfiguration RRC Reconfiguration Procedure
  • the transmitting side UE 20T transmits a scheduling request (Scheduling Request) message requesting radio resource allocation for the initial transmission of SL data transmission to the base station 10 via PUCCH.
  • S102 when a Grant message including information on the radio resource allocated for the initial transmission is received from the base station 10 via the PDCCH (S103), the initial transmission data is received using the PSSCH set for the radio resource. It transmits to the side UE 20R (S104).
  • HARQ-NACK negative response
  • the transmitting-side UE 20T that has received the HARQ-NACK feeds back a scheduling request message requesting radio resource allocation for HARQ retransmission of SL to the base station 10 via PUCCH (S106), and includes information on the allocated radio resources.
  • a grant message is received from the base station 10 via the PDCCH (S107)
  • the PSSCH set for that radio resource is used to transmit HARQ retransmission data to the receiving side UE 20R (S108).
  • the receiving-side UE 20R successfully receives the HARQ retransmission data, the HARQ-ACK (affirmative response) to the transmitting side UE 20T (S109).
  • the HARQ retransmission request including HARQ-NACK is received before the transmitting side UE 20T transmits the HARQ retransmission data to the receiving side UE 20R.
  • S105 feedback transmission of a scheduling request message
  • S107 reception of a grant message
  • the transmission side UE 20T transmits HARQ retransmission data to the reception side UE 20R. Staging reduces the HARQ retransmission delay.
  • FIG. 15 is a sequence diagram showing an example of initial transmission and HARQ retransmission of SL data transmission during SL Mode-1 operation in the communication system according to the embodiment.
  • FIG. 16 is an explanatory diagram showing an example of radio frames of downlink (DL) and uplink (UL) of Uu communication and sidelink communication (SL) in the data transmission of FIG. 15 . Note that in FIG. 15, the description of the processing that is common to the aforementioned FIG. 14 is omitted.
  • HARQ-NACK negative acknowledgment
  • the base station 10 can receive the PSFCH without using Timing Advance and demodulation reference signals. In order to do so, a predetermined signal sequence whose reception timing can be detected (reception timing can be estimated) at the base station 10 is multiplexed and transmitted.
  • a predetermined signal sequence whose reception timing can be detected (reception timing can be estimated) at the base station 10 is multiplexed and transmitted.
  • this signal sequence for example, a CAZAC (Constant Amplitude and Zero Auto-Correlation Code) sequence such as a ZC (Zadoff-Chu) sequence that is also used in RACH (Random Access Channel) can be used.
  • the base station 10 monitors the PSFCH in the UL/SL shared radio frame addressed to the transmitting side UE 20T transmitted from the receiving side UE 20R. After decoding the PSFCH and confirming the HARQ retransmission request including HARQ-NACK (negative acknowledgment) (S207), the base station 10 does not wait for the scheduling request (SR) message from the transmitting side UE 20T. to the transmitting side UE 20T on the PDCCH (S208).
  • SR scheduling request
  • the transmitting side UE 20T transmits HARQ retransmission data to the receiving side UE 20R using the PSSCH set in the allocated radio resource (S209).
  • the receiving side UE 20R successfully receives the HARQ retransmission data, it returns HARQ-ACK (acknowledgment) to the transmitting side UE 20T using the PSFCH set to a part of the radio resource allocated to the SL HARQ retransmission ( S210).
  • the receiving side UE 20R fails to receive the SL initial transmission data, before the transmitting side UE 20T transmits HARQ retransmission data to the receiving side UE 20R, the receiving side UE 20R to the transmitting side UET HARQ retransmission delays can be reduced because only two stages of intermediate signaling processing of message transmission/reception (S206) and message transmission/reception (S208) from the base station 10 to the transmitting side UE 20T are required.
  • S206 message transmission/reception
  • S208 message transmission/reception
  • SR scheduling request
  • FIG. 17 is a sequence diagram showing another example of initial transmission and HARQ retransmission of SL data transmission during SL Mode-1 operation in the communication system according to the embodiment. Note that in FIG. 17, the description of the processing that is common to the aforementioned FIG. 14 is omitted.
  • the radio frames illustrated in FIGS. 2 to 4 can be used as the radio frames of the downlink (DL) and uplink (UL) of Uu communication and the radio frames of Sidelink communication (SL). .
  • the reception side UE 20R When the reception side UE 20R fails to receive the initial transmission data, it sets SL HARQ-NACK (negative acknowledgment) and HARQ retransmission request (feedback message) including HARQ retransmission scheduling request message to part of the UL radio frame.
  • the PUCCH is multiplexed on or on the PUSCH and directly fed back to the base station 10 (S306).
  • the base station 10 When the base station 10 receives the HARQ retransmission request including the SL HARQ-NACK (negative acknowledgment) and the HARQ retransmission scheduling request message from the receiving side UE 20R, the SL HARQ-NACK (negative acknowledgment) and the radio allocated for SL HARQ retransmission A grant message including resource information is transmitted to the transmitting side UE 20T on the PDCCH (S307).
  • the transmitting-side UE 20T can acquire SL HARQ-NACK information via the base station 10 without using the PSFCH.
  • the transmitting side UE 20T transmits HARQ retransmission data to the receiving side UE 20R using the PSSCH set in the allocated radio resource (S308).
  • the receiving side UE 20R successfully receives the HARQ retransmission data, it returns HARQ-ACK (acknowledgment) to the transmitting side UE 20T using the PSFCH set to a part of the radio resource allocated to the SL HARQ retransmission ( S309).
  • the receiving side UE 20R when the receiving side UE 20R fails to receive the SL initial transmission data, the receiving side UE 20R feeds back to the base station by the time the transmitting side UE 20T transmits HARQ retransmission data to the receiving side UE 20R.
  • HARQ retransmission delays can be reduced because only two stages of intermediate signaling processing of direct message transmission/reception (S306) and message transmission/reception (S307) from the base station 10 to the transmitting side UE 20T are required.
  • the present embodiment it is possible to reduce HARQ retransmission delay of SL during operation of the allocation control mode in which the base station 10 allocates radio resources for SL communication between terminals existing within the range of the base station.
  • processing steps described in this specification and the radio communication system, mobile communication system, control device, MEC device, base station and radio terminal device terminal, terminal device, user equipment (UE), mobile station, mobile device
  • the components of may be implemented by various means. For example, these processes and components may be implemented in hardware, firmware, software, or any combination thereof.
  • a processing unit or the like used to implement the above processes and components in an entity means of one or more of an application specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processor (DSPD), a programmable logic device (PLD), a field programmable gate array ( FPGA), processor, controller, microcontroller, microprocessor, electronic device, other electronic unit designed to perform the functions described herein, computer, or any combination thereof. good too.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • means such as processing units used to implement the above components may be programs (e.g., procedures, functions, modules, instructions) that perform the functions described herein. , etc.).
  • any computer/processor readable medium tangibly embodying firmware and/or software code means such as a processing unit, used to implement the above steps and components described herein. may be used to implement
  • firmware and/or software code may be stored in memory and executed by a computer or processor, such as in a controller.
  • the memory may be implemented within the computer or processor, or external to the processor.
  • the firmware and/or software code may also be, for example, random access memory (RAM), read only memory (ROM), non-volatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM). ), flash memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage devices, etc. good.
  • the code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
  • the medium may be a non-temporary recording medium.
  • the code of the program is not limited to a specific format as long as it can be read and executed by a computer, processor, or other device or machine.
  • the program code may be source code, object code, or binary code, or may be a mixture of two or more of these codes.
  • Base station 10A Cell 10X: Out of range 14: MEC device 15: Core network 20: UE (radio terminal device) 21: Antenna 30: Vehicle 90: Road 100: Base station device 101: Antenna 102: Antenna 122: CU controller 140: MEC device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

同一グループ内の複数のUEに端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードを適切に選択して、同一グループ内で低遅延かつ高信頼な端末間直接通信を確実に行う。グループに属する複数のUE20の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、基地局が端末間直接通信の無線リソースを割り当てる第1モードと、複数のUEのいずれかが端末間直接通信の無線リソースを割り当てる第2モードとから選択可能である。基地局10は、グループ内の全UEが基地局10のセルの圏内に位置し且つ基地局10との間で無線接続設定が完了して基地局10との間で同期した同期状態にあるか否かを確認し、グループ内の全UEが基地局10との同期状態にあることを確認した場合、第1モードの動作を許容する第1モード許容メッセージを含む端末間直接通信のリソース制御情報を複数のUEに送信する。

Description

端末間直接通信における制御を行うシステム、無線端末装置、車両、制御装置、基地局、方法及びプログラム
 本発明は、移動通信網の基地局を介して通信可能な複数の無線端末装置の端末間直接通信における無線リソース割当制御モードの選択制御に関し、特に、前記複数の無線端末装置が一又は複数のグループを組む場合の端末間直接通信における無線リソース割当制御モードの選択制御に関する。また、本発明は、移動通信網の基地局を介して通信可能な複数の無線端末装置の端末間直接通信を介したデータ伝送におけるHARQ再送制御に関する。
 従来、V2V(Vehicle-to-Vehicle)、V2I(Vehicle-to-Infrastructure)、V2P(Vehicle-to-Pedestrian)、V2X(Vehicle-to-Everything)などの近距離装置間(D2D:Device-to-Device)で直接無線通信する通信方式が知られている。特に、移動体通信システムのセルラー通信技術を用いたV2Xは「セルラーV2X」とも呼ばれている。
 3GPP(3rd Generation Partnership Project)のLTE(Long Term Evolution)や次世代(NR)の仕様では、移動通信網(コアネットワーク)を介さずに、V2V、V2I、V2P、V2Xなどの近距離装置間(D2D)でPC5と呼ばれるインターフェースを用いて直接無線通信するSidelink通信方式の標準仕様が策定されている(例えば、非特許文献1、2、3、4参照)。
 上記Sidelink通信方式における無線リソース割当制御モードとして、基地局がSidelinkの無線リソースを割り当てるモードSL Mode-1(以下「第1モード」という。)と、無線端末装置自身がSidelinkの無線リソースを割り当てるモードSL Mode-2(以下「第2モード」ともいう。)が知られている(例えば、特許文献1および非特許文献1参照)。第1モードでは、基地局のセルの圏内において,基地局からのSidelinkの無線リソース割当制御により効率的な端末間(車載端末間)直接通信を実現するという利点を有するが、端末間直接通信に必要な同期や無線リソースの選択を基地局が送信する同期信号および制御信号に依存しているため、基地局のセルの圏外で適用できないという課題がある。一方、第2モードでは、無線端末装置は基地局に頼ることなく必要な無線リソースを検知又はランダムで選択して、自律的に通信することができ、基地局のセルの圏外でも適用できるという利点を有する一方、特に自律的な端末間直接通信を行う端末が多数存在すると、端末同士が送信する信号が衝突し、互いに干渉となる割合が増えて、その結果、端末間直接通信の品質が劣化しやすいという課題がある。
 また、上記Sidelink通信方式によるユーザデータ伝送(以下「SL伝送」という。)の高信頼化のために、受信側端末からPSFCH(Physical Sidelink Feedback Channel)を通じてフィードバックされるSL HARQ(ハイブリッド自動再送要求) ACK/NACKに基づくHARQ再送制御が知られている(特許文献2、非特許文献5)。
欧州特許第3136811号明細書 米国特許出願公開第2020/0314959号明細書
Pavel Mach, Zdenek Becavar, and Tomas Vanek, "In-Band Device-to-Device Communication in OFDMA Cellular Networks: A Survey and Challenges, "IEEE Communication Surveys & Tutorials, vol.17, no.4, pp.1885-1922, June 2015. 3GPP TR22.886 V16.2.0, "Study on enhancement of 3GPP support for 5G V2X services (Release 16)," Dec. 2018. 3GPP TR37.985 V16.0.0, "Overall description of Radio Access Network (RAN) aspects for Vehicle-to-everything (V2X) based on LTE and NR (Release 16)," June 2020. 3GPP TR38.885 V16.0.0, "Study on NR Vehicle-to-Everything (V2X) (Release 16)," March 2019. Shao-Yu Lien, Der-Jiunn Deng, Chun-Cheng Lin, Hua-Lung Tsai, Tao Chen, Chao Guo, And Shin-Ming Cheng, "3GPP NR Sidelink Transmissions Toward 5G V2X,"IEEE Access, vol.8, pp.35368-35382, February 2020 (DOI: 10.1109/ACCESS.2020.2973706).
 近年、上記2つの無線リソース割当制御モード(SL Mode-1及びSL Mode-2)を、無線端末装置と基地局との無線リンク状態に応じて動的に切り替える無線リソース割当制御モードの選択制御(「Dynamic Mode Selection」あるいは「Dynamic Mode Switching」とも呼ばれる。)が提案されている。
 しかしながら、例えば後続車自動運転隊列走行で必要となる車両間制御メッセージ伝送あるいは複数車両間の位置情報、速度情報、加速度情報のようなリアルタイム情報共有のように、複数の無線端末装置で一又は複数のグループ(群)を形成し、同一グループ内で端末間(車載端末間)直接通信を行う場合、同一グループ内の複数の無線端末装置の無線リソース割当制御モードは同一である必要がある。そのため、同一グループ内の複数の無線端末装置において無線リソース割当制御モードを適切に選択して、同一グループ内で低遅延かつ高信頼な端末間直接通信を確実に行えるようにしたい、という課題がある。
 また、上記基地局がSidelinkの無線リソースを割り当てる第1モードでは、初回送信およびHARQ再送に関わらず、SL伝送のための動的な無線リソースは、まず上りリンクの制御チャネルPUCCH等を介してSL伝送のための無線リソース割当要求(SR: Scheduling Request)を基地局に要求し、基地局が割り当てた無線リソースによるSL伝送を許可するための許可メッセージ(Grant)を下り制御チャネル(PDCCH)で基地局から端末側に通知することで確保している。
 しかしながら、上記第1モード動作時では、初回送信だけでなくHARQ再送においても上りリンクの制御チャネル(PUCCH)等を介して、SL伝送用の無線リソース割当要求(SR)を基地局に送るL1/L2シグナリングを行っているため、上記第1モード動作時のHARQ再送遅延が増大する、という課題がある。
 本発明の第1の態様に係るシステムは、移動通信網の基地局を介して通信可能な複数の無線端末装置がグループを形成して端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行うシステムである。このシステムにおいて、前記グループに属する複数の無線端末装置の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、前記基地局が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第1モードと、前記複数の無線端末装置のいずれかの無線端末装置が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第2モードとから選択可能である。このシステムは、前記グループに属するすべての複数の無線端末装置が前記基地局のセルの圏内に位置し且つ前記基地局との間で無線接続設定が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、前記グループに属するすべての複数の無線端末装置が前記基地局との同期状態にあることを確認した場合、前記第1モードの動作を許容する第1モード許容メッセージを含む前記端末間直接通信のリソース制御情報を、前記複数の無線端末装置に送信する手段と、を備える。
 前記システムにおいて、前記端末間直接通信のリソース制御情報は、前記グループを識別可能なグループ識別情報又は前記グループに属する複数の無線端末装置それぞれの端末識別情報を含んでもよい。
 前記システムにおいて、前記グループに属する複数の無線端末装置のいずれか一の無線端末装置は、前記グループに属するすべての複数の無線端末装置が前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、前記グループに属する複数の無線端末装置の自装置以外の他のすべての無線端末装置が前記基地局との同期状態にあることを確認した場合、前記他のすべての無線端末装置に前記第1モードを指定するモード指定メッセージを送信する手段と、前記他のすべての無線端末装置が前記モード指定メッセージの受信に成功したか否かを確認する手段と、を備えてもよい。ここで、前記グループに属するすべての複数の無線端末装置が前記モード指定メッセージの受信に成功した場合、前記一の無線端末装置又は前記グループに属するすべての複数の無線端末装置は、前記第1モードに基づくリソース割当制御を要求する要求メッセージを前記基地局側に送信してもよい。
 前記システムにおいて、前記グループに属するすべての複数の無線端末装置はそれぞれ、前記グループに属するすべての複数の無線端末装置が前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、前記グループに属する複数の無線端末装置の自装置以外の他のすべての無線端末装置が前記基地局との同期状態にあることを確認した場合、前記他のすべての無線端末装置に前記第1モードを指定するモード指定メッセージを送信する手段と、前記他のすべての無線端末装置が前記モード指定メッセージの受信に成功したか否かを確認する手段と、を備えてもよい。ここで、前記グループに属するすべての複数の無線端末装置が前記モード指定メッセージの受信に成功した場合、前記グループに属するすべての複数の無線端末装置はそれぞれ、前記グループに属するすべての複数の無線端末装置の端末間直接通信のリソース制御を要求する要求メッセージを前記基地局側に送信してもよい。
 前記システムにおいて、前記一の無線端末装置又は前記グループに属するすべての複数の無線端末装置は、前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で同期状態にあることを示す同期状態情報を、前記他のすべての無線端末装置から受信することにより、前記他のすべての無線端末装置が前記同期状態にあることを確認してもよい。ここで、前記一の無線端末装置又は前記グループに属するすべての複数の無線端末装置は、前記他のすべての無線端末装置から、前記同期状態情報とともに、前記グループを識別可能なグループ識別情報を受信してもよい。
 前記システムにおいて、前記グループは、予め設定された複数の無線端末装置で固定的に形成され、又は、互いに近接して位置する複数の無線端末装置でアドホックに形成されてもよい。
 前記システムにおいて、前記無線端末装置は、前記グループを形成して移動経路を走行する複数の車両のそれぞれに設けてもよい。
 本発明の第1の態様に係る無線端末装置は、移動通信網の基地局を介して通信可能であり、周辺の一又は複数の無線端末装置とグループを形成して端末間直接通信を行う無線端末装置である。この無線端末装置は、前記グループに属するすべての複数の無線端末装置が前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、前記グループに属する複数の無線端末装置の自装置以外の他のすべての無線端末装置が前記基地局との同期状態にあることを確認した場合、前記他のすべての無線端末装置に前記第1モードを指定するモード指定メッセージを送信する手段と、前記他のすべての無線端末装置が前記モード指定メッセージの受信に成功したか否かを確認する手段と、を備える。
 本発明の第1の態様に係る車両は、他の車両とグループを組んで移動経路を走行する車両であり、前記無線端末装置を備える。
 本発明の第1の態様に係る制御装置は、移動通信網の基地局を介して通信可能な複数の無線端末装置がグループを形成して端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行う制御装置である。この制御装置において、前記グループに属する複数の無線端末装置の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、前記基地局が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第1モードと、前記複数の無線端末装置のいずれかの無線端末装置が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第2モードとから選択可能である。この制御装置は、前記グループに属するすべての複数の無線端末装置が前記基地局のセルの圏内に位置し且つ前記基地局との間で無線接続設定が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、前記グループに属するすべての複数の無線端末装置が前記基地局との同期状態にあることを確認した場合、前記第1モードの動作を許容する第1モード許容メッセージを含む前記端末間直接通信のリソース制御情報を、前記複数の無線端末装置に送信する手段と、を備える。
 前記制御装置は、移動通信網の基地局又は前記基地局とコアネットワークとの間のノード又はコアネットワークの外側に設けられたCU(Central Unit)又はMEC(Multi-access Edge Computing)装置であってもよい。
 本発明の第1の態様に係る基地局は、移動通信網の基地局であり、前記制御装置を備える。
 本発明の第1の態様に係る方法は、移動通信システムの基地局を介して通信可能な複数の無線端末装置がグループを形成して端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行う方法である。この方法は、前記グループに属する複数の無線端末装置の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、前記基地局が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第1モードと、前記複数の無線端末装置のいずれかの無線端末装置が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第2モードとから選択可能にすることと、前記グループに属するすべての複数の無線端末装置が前記基地局のセルの圏内に位置し且つ前記基地局との間で無線接続設定が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認することと、前記グループに属するすべての複数の無線端末装置が前記基地局との同期状態にあることを確認した場合、前記第1モードの動作を許容する第1モード許容メッセージを含む前記端末間直接通信のリソース制御情報を、前記複数の無線端末装置に送信することと、を含む。
 本発明の第1の態様に係るプログラムは、移動通信システムの基地局を介して通信可能な複数の無線端末装置がグループを形成して端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行う制御装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記グループに属する複数の無線端末装置の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、前記基地局が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第1モードと、前記複数の無線端末装置のいずれかの無線端末装置が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第2モードとから選択可能にするためのプログラムコードと、前記グループに属するすべての複数の無線端末装置が前記基地局のセルの圏内に位置し且つ前記基地局との間で無線接続設定が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認するためのプログラムコードと、前記グループに属するすべての複数の無線端末装置が前記基地局との同期状態にあることを確認した場合、前記第1モードの動作を許容する第1モード許容メッセージを含む前記端末間直接通信のリソース制御情報を、前記複数の無線端末装置に送信するためのプログラムコードと、を含む。
 本発明の第1の態様に係るプログラムは、移動通信網の基地局を介して通信可能であり、周辺の一又は複数の無線端末装置とグループを形成して端末間直接通信を行う無線端末装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記グループに属するすべての複数の無線端末装置が前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認するためのプログラムコードと、前記グループに属する複数の無線端末装置の自装置以外の他のすべての無線端末装置が前記基地局との同期状態にあることを確認した場合、前記他のすべての無線端末装置に前記第1モードを指定するモード指定メッセージを送信するためのプログラムコードと、前記他のすべての無線端末装置が前記モード指定メッセージの受信に成功したか否かを確認するためのプログラムコードと、を含む。
 前記第1の態様に係る前記システム、前記無線端末装置、前記車両、前記制御装置、前記基地局、前記方法及び前記プログラムのそれぞれにおいて、初期の前記無線リソース割当制御モードとして、前記第2モードを選択してもよい。
 本発明の第2の態様に係る基地局は、端末間直接通信を行う複数の無線端末装置との通信を行う機能を有し、前記端末間直接通信に用いる無線リソースを制御可能な移動通信網の基地局である。この基地局は、前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から送信側の無線端末装置へのフィードバック用チャネルを監視し、前記フィードバック用チャネルを復号する手段と、前記フィードバック用チャネルの復号結果に前記受信側の無線端末装置からHARQ否定応答が含まれているとき、HARQ再送用の無線リソースの情報を含む許可メッセージを前記送信側の無線端末装置に通知する手段と、を備える。
 本発明の第2の態様に係る無線端末装置は、移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置である。この無線端末装置は、前記端末間直接通信を介して前記周辺の無線端末装置に対してデータ伝送を行ったとき、前記周辺の無線端末装置からHARQ否定応答を受信することなく、前記基地局からHARQ再送用の無線リソースの情報を含む許可メッセージを受信する手段と、前記周辺の無線端末装置からのHARQ否定応答を受信することなく前記基地局から受信した前記許可メッセージに応じて、前記周辺の無線端末装置に対して前記データ伝送のHARQ再送を行う手段と、を備える。
 本発明の第2の態様に係るシステムは、第1の態様に係る前記基地局と前記無線端末装置とを備える。
 本発明の第2の態様に係る方法は、端末間直接通信を介したデータ伝送におけるHARQ再送制御を行う方法である。この方法は、前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から送信側の無線端末装置へのフィードバック用チャネルを監視し、前記フィードバック用チャネルを復号することと、前記フィードバック用チャネルの復号結果に前記受信側の無線端末装置からHARQ否定応答が含まれているとき、HARQ再送用の無線リソースの情報を含む許可メッセージを前記送信側の無線端末装置に通知することと、を含む。
 本発明の第2の態様に係る基地局におけるプログラムは、端末間直接通信を行う複数の無線端末装置との通信を行う機能を有し前記端末間直接通信に用いる無線リソースを制御可能な移動通信網の基地局に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から送信側の無線端末装置へのフィードバック用チャネルを監視し、前記フィードバック用チャネルを復号するためのプログラムコードと、前記フィードバック用チャネルの復号結果に前記受信側の無線端末装置からHARQ否定応答が含まれているとき、HARQ再送用の無線リソースの情報を含む許可メッセージを前記送信側の無線端末装置に通知するためのプログラムコードと、を含む。
 本発明の第2の態様に係る無線端末装置におけるプログラムは、移動通信網の基地局を介して通信する機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記端末間直接通信を介して前記周辺の無線端末装置に対してデータ伝送を行ったとき、前記周辺の無線端末装置からHARQ否定応答を受信することなく、前記基地局からHARQ再送用の無線リソースの情報を含む許可メッセージを受信するためのプログラムコードと、前記周辺の無線端末装置からのHARQ否定応答を受信することなく前記基地局から受信した前記許可メッセージに応じて、前記周辺の無線端末装置に対して前記データ伝送のHARQ再送を行うためのプログラムコードと、を含む。
 本発明の第3の態様に係る基地局は、端末間直接通信を行う複数の無線端末装置と通信する機能を有し、前記端末間直接通信に用いる無線リソースを制御可能な移動通信網の基地局である。この基地局は、前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から、HARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを受信する手段と、前記フィードバックメッセージに応じて、前記HARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを前記データ伝送の受信側の無線端末装置に送信する手段と、を備える。
 本発明の第3の態様に係る第1の無線端末装置は、移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置である。この無線端末装置は、前記端末間直接通信を介して前記周辺の無線端末装置からデータ伝送を受ける手段と、前記データ伝送に対するHARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを前記基地局に送信する手段と、を備える。
 本発明の第3の態様に係る第2の無線端末装置は、移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置である。この無線端末装置は、前記端末間直接通信を介して前記周辺の無線端末装置に対してデータ伝送を行ったとき、前記周辺の無線端末装置からHARQ否定応答を受信することなく、前記基地局からHARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを受信する手段と、前記周辺の無線端末装置からのHARQ否定応答を受信することなく前記基地局から受信した前記許可メッセージに応じて、前記周辺の無線端末装置に対して前記データ伝送のHARQ再送を行う手段と、を備える。
 本発明の第3の態様に係るシステムは、第2の態様に係る前記基地局と前記第1の無線端末装置と前記第2の無線端末装置とを備える。
 本発明の第3の態様に係る方法は、端末間直接通信を介したデータ伝送におけるHARQ再送制御を行う方法である。この方法は、前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から、HARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを受信することと、前記フィードバックメッセージに応じて、前記HARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを、前記データ伝送の受信側の無線端末装置に送信することと、を含む。
 本発明の第3の態様に係る基地局におけるプログラムは、端末間直接通信を行う複数の無線端末装置との通信を行う機能を有し前記端末間直接通信に用いる無線リソースを制御可能な移動通信網の基地局に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から、HARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを受信するためのプログラムコードと、前記フィードバックメッセージに応じて、前記HARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを、前記データ伝送の受信側の無線端末装置に送信するためのプログラムコードと、を含む。
 本発明の第3の態様に係る第1の無線端末装置におけるプログラムは、移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記端末間直接通信を介して前記周辺の無線端末装置からデータ伝送を受けるためのプログラムコードと、前記データ伝送に対するHARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを、前記基地局に送信するためのプログラムコードと、を含む。
 本発明の第3の態様に係る第2の無線端末装置におけるプログラムは、移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムである。このプログラムは、前記端末間直接通信を介して前記周辺の無線端末装置に対してデータ伝送を行ったとき、前記周辺の無線端末装置からHARQ否定応答を受信することなく、前記基地局からHARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを受信するためのプログラムコードと、前記周辺の無線端末装置からのHARQ否定応答を受信することなく前記基地局から受信した前記許可メッセージに応じて、前記周辺の無線端末装置に対して前記データ伝送のHARQ再送を行うためのプログラムコードと、を含む。
 本発明の他の態様に係る車両は、移動経路を走行する車両である。この車両は前記いずれかの無線端末装置を備える。
 本発明によれば、移動通信網の基地局を介して通信可能な複数の無線端末装置で形成されるグループ内で端末間直接通信を行う場合に、同一グループ内の複数の無線端末装置に端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードを適切に選択して、同一グループ内で低遅延かつ高信頼な端末間直接通信を確実に行うことができる。
 また、本発明によれば、基地局が端末間直接通信の無線リソースを割り当てる割当制御モードの動作中におけるHARQ再送遅延を低減することができる。
図1は、実施形態に係る通信システムの全体構成の一例を示す概略構成図である。 図2は、実施形態に係る通信システムにおけるUu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームの一例を示す説明図である。 図3は、実施形態に係る通信システムにおけるUu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームの他の例を示す説明図である。 図4は、実施形態に係る通信システムにおけるUu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームの更に他の例を示す説明図である。 図5Aは、実施形態に係る通信システムにおける第1の無線リソース割当制御モード(SL Mode-1)の一例を示す説明図である。 図5Bは、実施形態に係る通信システムにおける第1の無線リソース割当制御モード(SL Mode-1)の一例を示す説明図である。 図6Aは、実施形態に係る通信システムにおける第2の無線リソース割当制御モード(SL Mode-2)の一例を示す説明図である。 図6Bは、実施形態に係る通信システムにおける第2の無線リソース割当制御モード(SL Mode-2)の一例を示す説明図である。 図7Aは、実施形態に係る通信システムにおける無線リソース割当制御モード(SL Mode-1、SL Mode-2)の動的切り替え制御の一例を示す説明図である。 図7Bは、実施形態に係る通信システムにおける無線リソース割当制御モード(SL Mode-1、SL Mode-2)の動的切り替え制御の一例を示す説明図である。 図8は、実施形態に係る通信システムにおける第2無線リソース割当制御モード(SL Mode-2)から第1無線リソース割当制御モード(SL Mode-1)への動的切り替え制御の一例を示すシーケンス図である。 図9は、実施形態に係る通信システムにおける第2無線リソース割当制御モード(SL Mode-2)から第1無線リソース割当制御モード(SL Mode-1)への動的切り替え制御の他の例を示すシーケンス図である。 図10は、実施形態に係る通信システムにおけるUEと基地局の接続状態の判定の一例を示すシーケンス図である。 図11は、実施形態に係る通信システムにおける基地局のセルの圏内に位置するUEのSidelink通信(SL)の同期確立及び接続状態の判定の一例を示すシーケンス図である。 図12は、実施形態に係る通信システムにおける基地局のセルの圏外に位置するUEのSidelink通信(SL)の同期確立及び接続状態の判定の一例を示すシーケンス図である。 図13Aは、参考例に係るSLのデータ伝送の初回送信時及びHARQ再送時におけるタイムスロット431の無線リソース(RE)の構成例の一例を示す説明図である。 図13Bは、参考例に係るSLのデータ伝送の初回送信時及びHARQ再送時におけるタイムスロット431の無線リソース(RE)の構成例の一例を示す説明図である。 図14は、参考例に係るSL Mode-1動作時におけるSLデータ伝送の初回送信及びHARQ再送の一例を示すシーケンス図である。 図15は、実施形態に係る通信システムにおけるSL Mode-1動作時におけるSLデータ伝送の初回送信及びHARQ再送の一例を示すシーケンス図である。 図16は、図15のデータ伝送におけるUu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームの一例を示す説明図である。 図17は、実施形態に係る通信システムにおけるSL Mode-1動作時におけるSLデータ伝送の初回送信及びHARQ再送の他の例を示すシーケンス図である。
 以下、図面を参照しながら本発明の実施形態について説明する。
 本書に記載された実施形態に係るシステムは、複数のトラックなどの車両が隊列走行等を行っている場合に、移動通信網の基地局を介して通信可能な複数の車両に搭載された複数の無線端末装置がグループ(群)を形成してSidelink通信方式による端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行うシステムである。
 本書に記載された他の実施形態に係るシステムは、複数の車両に搭載された複数の無線端末装置がSidelink通信方式による端末間直接通信を行うときの無線リソースを移動通信網の基地局が割り当てるSL Mode-1(第1モード)の動作中におけるHARQ(ハイブリッド自動再送要求)再送遅延を低減できるシステムである。
 ここでは、LTE(Long Term Evolution)/LTE-Advancedの移動通信システム(以下「LTEシステム」という。)、第5世代の移動通信システム(以下「5Gシステム」という。)への適用を前提に本発明の実施形態を説明するが、類似のセル構成、物理チャネル構成を用いるシステムであれば、本発明の概念はどのようなシステムにも適用可能である。また、伝搬路の推定に用いられる参照信号系列や誤り訂正のために用いられる符号化方式はLTEシステムや5Gシステムで定義されているものに限定されず、これらの用途に適合するものであれば、どのような種類のものでも構わない。本発明の実施形態は、第5世代よりも後の次世代の移動通信システム(「NRシステム」ともいう。)に適用してもよい。
 図1は、本発明の一実施形態に係る通信システムの全体構成の一例を示す概略構成図である。図1において、本実施形態に係る通信システムは、5Gシステムの例であり、移動通信網のコアネットワーク(例えば、EPC、5GC、又は、NGC)15に接続された2セル構成の基地局10を備える。なお、図1の例では1つの基地局10を備えた例を示しているが、基地局の数は複数であってもよい。また、基地局10が形成するセルは単一のセルでもよいし、3以上のセルでもよい。
 コアネットワーク15は、例えば3GPP(3rd Generation Partnership Project)で規定されたIP(Internet Protocol)ベースのEPC(Evolved Packet Core)である。コアネットワーク15は、5Gシステム専用のコアネットワークでもよいし、5GシステムとLTEシステムとに兼用されるコアネットワークでもよい。コアネットワーク装置(EPC装置、又は、5GC装置)は、例えば3GPPで規定されたサービスをサードパーティーのアプリケーションプロバイダに提供するための標準インターフェースを有する論理ノードのSCEF(Service Capability Exposure Function)、NEF(Network Exposure Function)、ユーザデータの処理を行うUPF(User Plane Function)等である。コアネットワーク装置(EPC装置、又は、5GC装置)は、複数のV2X(Vehicle-to-Everything)サービスの連携を可能にするVAE(V2X Application Enabler)であってもよい。なお、コアネットワーク装置の一部の機能(例えば、UPFの機能あるいはUPF以外の論理ノードの機能)は、本実施形態のように基地局10が有してもよい。
 基地局10は、例えば5GシステムのgNodeB(gNB)又はen-gNodeB(en-gNB)であり、アンテナ101,102を介して、自局が形成する無線通信エリアであるセルに在圏する通信端末装置(「端末」、「ユーザ端末」、「ユーザ装置」、「UE」、「移動局」、「移動機」等ともいう。以下「UE」という。)20と無線通信することができる。
 基地局10は、例えば、建物などの内部に設けられた基地局装置100と、基地局10が形成するセルを構成する2セルに対応する複数のアンテナ101,102とを備える。複数のアンテナ101,102はそれぞれ、建物、支柱、鉄塔などの上部に設けられている。アンテナ101,102は、無指向性のアンテナでもよいし、所定方向に一又は複数のビームを形成可能な複数のアンテナ素子からなるアンテナ(例えば、多数のアンテナ素子が2次元的又は3次元的に配列されたアレイアンテナなどからなるMassiveMIMOアンテナ)であってもよい。なお、図示の例では、2つのアンテナ101,102を備えているが、アンテナの数は単数でもよいし、3以上であってもよい。
 基地局装置100は、例えば、DU(分散ユニット)110と、CU(集約ユニット)120と、CNE(コアネットワーク装置)130と、MEC(Multi-access Edge Computing)装置140とを備える。なお、図示の例において、CNE130は5Gコアとしている場合の例であるが、5Gのレイヤ3(L3)での制御をLTEで行うNon-StandAlone(NSA)構成では、EPCとしてもよい。また、MEC装置140は、基地局10とコアネットワーク15との間のノードに設けてもよいし、コアネットワークの外側に設けてもよい。
 DU110は、例えばRFU(無線ユニット)111,RFU112を有する。RFU111,RFU112は、例えば、増幅部、周波数変換部、送受信切替部(DUP)、直交変復調部等を備える。DU110は、下記のBBU(ベースバンドユニット)の一部の機能を有してもよい。なお、図示の例では基地局あたり2つのセルを構成するため、2つのRFU111,112を備えているが、RFUの数は単数でもよいし、3以上であってもよい。
 CU120は、例えば、BBU(ベースバンドユニット)121と、CU120の各部を制御するCUコントローラ122とを有する。BBU121は、例えば、送受信対象の制御情報やユーザデータ(IPパケット)と、無線伝送路を介して送受信されるOFDM信号等のベースバンド信号の変換(変復調)とを行う。変調方式としては、例えばQPSK、16QAM、64QAM等を用いることができる。ベースバンド信号はDU110との間で送受される。CUコントローラ122は、例えばCPUやメモリなどで構成され、予め組み込まれたプログラムを実行することにより、CU120の各部を制御する。
 CU120は、複数のDUに接続してもよい。また、CU120は、光ファイバを用いた光通信回線などの高速通信回線を介して遠隔設置した子局のDUに接続してもよい。また、BBU121は、CU120内に複数設けて、RFUごとに接続される構成でもよい。例えば、BBU121を複数のBBU#1,BBU#2で構成し、各BBU#1,BBU#2に接続された複数の外部接続部121aを設け、これら複数の外部接続部121aに、光通信回線などの高速通信回線を介して、遠隔配置された外部の複数のRFU#1,RFU#2がリモート接続されるように構成してもよい。
 CNE130は、前述のUPFの機能を有し、コアネットワーク15上の各種ノードとの間で所定の通信インターフェース及びプロトコルにより通信する。CNE130は、コアネットワーク15とCU120との間でユーザデータ等の各種データを中継したり、コアネットワーク15及びCU120とMEC装置140との間でユーザデータ等の各種データを中継したりする。
 MEC装置140は、例えばCPUやメモリなどで構成され、予め組み込まれたプログラム又は通信網を介してダウンロードされたプログラムを実行することにより、基地局10のセルに在圏するUE20との間で送受信される各種データを処理したり、基地局10のセルに在圏するUE20に対する各種の制御を実行したりことができる。また、MEC装置140は、所定のプログラムを実行することにより、後述の無線リソース割当制御モードの選択制御のための各種手段としても機能することができる。
 なお、後述の無線リソース割当制御モードの選択制御は、MEC装置140の代わりに、前述のCU120が行ってもよい。例えば、CU120のCUコントローラが、所定のプログラムを実行することにより、後述の無線リソース割当制御モードの選択制御のための各種手段としても機能してもよい。また、CU120及びMEC装置140が互いに連携して後述の無線リソース割当制御モードの選択制御を行ってもよい。
 UE20(1)~20(3)は、基地局10が形成するセル内に位置している移動経路としての道路90を移動する車両(図示の例ではトラック)30(1)~30(3)に搭載されている。UE20(1)~20(3)が搭載された車両30(1)~30(3)は、予め設定されたグループを組んで互いに連携、車群を形成し、移動する。
 なお、図示の例では、基地局10のセルに3台の車両30(1)~30(3)に搭載された3つのUE20(1)~20(3)が在圏している場合について示しているが、2台又は4台以上の複数の車両30に搭載された複数のUE20が在圏していてもよい。また、図示の例では、3台の車両30(1)~(3)が隊列状(互いに前後方向となる)に車群を形成して群走行、すなわち隊列走行している場合を示しているが、各車両30の相対的な位置関係については、複数の各車両30に搭載されたUE20同士が互いに直接通信できる位置関係にある限り制限されない。さらに、車両30は、地上の移動経路である道路90を移動する自動車、トラック、バス、バイクなどの移動体であってもよいし、上空などの空間における移動経路を飛行して移動可能な移動体であってもよいし、地下、水上(例えば海上)、水中(例えば海中)などにおける移動経路を移動可能な移動体であってもよい。
 また、以下の説明において、複数のUE20(1)~20(3)に共通する構成、機能などについて説明する場合は括弧を付けないでUE20等と記載し、複数の車両30(1)~30(3)に共通する構成、機能などについて説明する場合も括弧を付けないで車両30等と記載する。また、端末間直接通信において、データの送信元のUEを送信側UE20Tともいい、データの送信先のUEを受信側UE20Rともいう。
 車両30のUE20は、第1の通信方式である基地局経由通信方式(例えば、3G、LTE、又は、5G等の次世代のNRの方式)により移動通信網(セルラーネットワーク)の基地局10を介して通信可能である(以下、基地局経由通信方式による通信を「Uu通信」ともいう)。5GのUu通信は、超高信頼・低遅延通信のURLLC(Ultra Reliable & Low Latency Communication)、高速・大容量通信のeMBB(Enhanced Mobile BroadBand)、低コスト・低消費電力の端末が大量かつ同時接続のmMTC(Massive Machine Type Communication)等の通信タイプを利用できる。特に、後続車自動運転トラック隊列走行(図1参照)、自動運転・隊列走行BRT(Bus Rapid Transit)、軌道線路上を走行する鉄道車両などにおける遠隔監視、遠隔操作等の用途には、超高信頼・低遅延通信URLLCが適する。
 例えば図1の後続車自動運転トラック隊列走行において、先頭の車両(以下「リーダー車両」ともいう。)30(1)は有人ドライバーによる手動運転であり、後続の車両(以下「メンバー車両」ともいう。)30(2),30(3)が無人の自動運転である。後続車自動運転トラック隊列走行において、基地局10及び移動通信網のコアネットワーク15を介して、車両30(1)~30(3)のUE20(1)~20(3)と網側の遠隔運行監視センターとがUu通信を行う。例えば、遠隔運行監視センターは、上りリンクのUu通信により、各車両30(1)~30(3)の監視モニタ画像(静止画、動画)やセンサ情報を受信することができる。また、遠隔運行監視センターは、下りリンクのUu通信により、緊急停止信号などの制御信号を各車両30(1)~30(3)に送信することができる。この車両と網側の遠隔運行監視センターとのUu通信により、複数の車両30(1)~30(3)の集中遠隔管理と遠隔操作を実現し、ドライバーの負担軽減及び安全性を向上させることができる。
 UE20は、例えば、アンテナ21、送受信切替部(DUP)、受信部、CP除去部、FFT部、信号分離部、伝搬路補償部、復調部、復号部、DMRS伝搬路(チャネル)推定部、信号多重部、IFFT部、CP挿入部、送信部及び制御部を備える。アンテナ21は、Uu通信及びSidelink通信の両方に用いることができる。DMRS伝搬路(チャネル)推定部は、例えば、基地局10から送信されてきた既知の復調用参照信号(DMRS)の受信結果に基づいて、無線伝搬路(等価伝搬路)を推定する。復調部は、無線伝搬路(等価伝搬路)の推定結果に基づいて、送信信号に含まれるデータ信号を復調して復号する。他の各部の構成部分については、従来と同様な機能を有するので、それらの説明は省略する。
 また、車両30のUE20は、移動通信網(セルラーネットワーク)の基地局を介さない第2の通信方式により、他の車両との無線通信(以下「端末間直接通信」ともいう。)を各車両に搭載された端末間の直接通信により行うことができる。端末間直接通信における端末間の無線リンクは、基地局経由通信における基地局側から端末側への無線リンクである下りリンク(DL)、および端末側から基地局側への無線リンクである上りリンク(UL)と対比させて、サイドリンク(Sidelink)とも呼ばれる。第2通信方式は、例えば、PC5と呼ばれる端末同士間の無線インターフェースを用いるSidelink通信方式である。PC5インターフェースは、UE同士、UEと他の装置(例えば車両)、車両同士、又は、車両と他の装置が、基地局を介さないで端末間直接通信を行うD2D(Device to Device)のインターフェースであり、LTEでは3GPPリリース12以降、5Gではリリース16以降でそれぞれ標準化されている。
 端末間通信により道路上を走行する複数の車両を電子的に連結する、後続車自動運転トラック隊列走行(図1参照)及び自動運転・隊列走行BRT(Bus Rapid Transit)、あるいは軌道線路上を走行する鉄道車両間の電子連結などにおける各車両間の制御メッセージ伝送や後続車両から先頭車両への周辺監視動画伝送の用途には、各車両に搭載された端末同士が直接通信を行うSidelink通信方式が適する。
 例えば図1の後続車自動運転トラック隊列走行において、FL(フォワードリンク)及びBL(バックワードリンク)の車車間通信(端末間直接通信)により、車両間で車両制御メッセージ(例えば、速度、加速度、車間距離、操舵などの制御情報)の伝送、監視モニタ画像(静止画、動画)やセンサ情報の伝送等を行うことができる。図中のSidelink(FL)は前方車両から後続車両へ向かう車車間通信であり、Sidelink(BL)は後続車両から前方車両へ向かう車車間通信である。この車車間通信(端末間直接通信)を利用した後続車自動運転トラック隊列走行により、ドライバー不足の解消及び労働環境の改善を図ることができる。更に、車車間通信(端末間直接通信)における5Gの超低遅延かつ高信頼通信の適用により、隊列走行時の車間距離を短縮することでき、車群の空気抵抗減少による燃料消費効率の改善、及び、CO排出量の削減を図るとともに、道路容量の増大による渋滞緩和を実現することができる。
 Sidelink通信方式では、データ送信先の車両のUEとの間で、他の車両のUEを介さない単一の端末間直接通信(以下「シングルホップ通信」という。)を行ってもよいし、一又は複数の他の車両のUEを介した複数の端末間直接通信を伴うマルチホップ通信を行ってもよい。
 Sidelink通信方式では、階層化通信モデルのデータリンク層(Layer-2)におけるデータの処理単位であるフレーム(「MACパケット」とも呼ばれる。)を識別する通信識別子(フレーム識別子)であるLayer-2 IDが定義されている。
 UE20における階層化通信モデルでは、例えば、最下位から上位に向かって、物理層からなるレイヤ1(L1)、MAC(メディアアクセス制御)層とRLC(無線リンク制御)層とPDCP(パケットデータ収束)層とによりデータをフレーム単位で処理するレイヤ2(L2)、各種プロトコル(例えば、IP,Non-IP,ARP)を用いてデータをパケット単位で処理するネットワーク層、アプリケーション層などで構成されている。アプリケーション層におけるデータは「メッセージ」とも呼ばれる。
 UE20は、例えば、移動通信の上りリンクの無線リソースの一部を用い、レイヤ2(L2)における送信先(通信宛先)の通信識別子としてのフレーム識別子であるDestination L2ID(Dst.L2ID)を指定してデータ(メッセージ)をフレーム単位で送信する。受信側の車両30のUE20は、受信したフレームのヘッダに含まれる送信先のフレーム識別子(Dst.L2ID)が、自装置に割り当てられたフレーム識別子(L2ID)に一致しているか否かを判断する。
 車両30のUE20は、受信したフレームのヘッダに含まれる送信先のフレーム識別子(Dst.L2ID)が、自装置に割り当てられたフレーム識別子(L2ID)に一致していると判断した場合、受信したフレームのデータ(メッセージ)を含むパケットを上位層に上げるようにデータ処理することにより、当該データをアプリケーションに使用できるようにすることができる。一方、車両30のUE20は、受信したフレームのヘッダに含まれる送信先のフレーム識別子(Dst.L2ID)が、自装置に割り当てられたフレーム識別子(L2ID)に一致していないと判断した場合、受信したフレームのデータ(メッセージ)を含むパケットを上位層に上げないようにデータ処理することにより、当該データをアプリケーションに使用できないようにすることができる。
 なお、図1の例では複数の車両30(1)~30(3)のUE20(1)~20(3)は同一のセル内に在圏してもよいし、互いに異なるセルに在圏してもよい。また、車両30(1)~30(3)のUE20(1)~20(3)は、Sidelink通信方式による端末間直接通信と基地局経由通信方式によるUu通信とを選択的に又は同時に行うものであってもよい。
 図2は、本実施形態に係る通信システムにおけるUu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームの一例を示す説明図である。図2において、Uu通信の下りリンク(以下「DL」という。)、Uu通信の上りリンク(以下「UL」という。)及びSidelink通信(以下「SL」という。)において、互いに異なる周波数帯を用いる。
 図2において、DL及びULの無線フレーム401,402はそれぞれ、所定のサブキャリア間隔(図示の例では15kHz)を有し、所定数(図示の例では10個)のタイムスロット(「サブフレーム」ともいう。)からなる所定の時間長(図示の例では10ms)を有する。
 DLの無線フレーム401における先頭のタイムスロット401aは、下りリンクのSS(同期信号)及びPBCH(物理報知チャネル)からなるブロック(SSB)と、PBCHの情報を復調するためのPBCH_DMRS(PBCH復調用参照信号)とが含まれる特別なタイムスロットである。DLの2番目以降のタイムスロット401bには、下りリンクの制御用のPDCCH(物理下りリンク制御チャネル)、データ伝送用のPDSCH(物理下りリンク共有チャネル)並びにPDCCH及びPDSCHのデータを復調するためのDMRS(データ復調用参照信号)のそれぞれに使用されるOFDM(直交周波数分割多重)シンボルを割り当てることができる。
 ULの無線フレーム402における先頭のタイムスロット402aは、上りリンクのPRACH(物理ランダムアクセスチャンネル)が含まれる特別なタイムスロットである。ULの2番目以降のタイムスロット402bには、上りリンクの制御用のPUCCH(物理上りリンク制御チャネル)、データ伝送用のPUSCH(物理上りリンク共有チャネル)並びにPUCCH及びPUSCHのデータを復調するためのDMRS(データ復調用参照信号)のそれぞれに使用されるOFDMシンボルを割り当てることができる。なお、PUSCHへのリソース割当が行われるタイムスロットでは、PUCCHを用いずPUCCHで伝送すべき制御情報をPUSCHに多重してもよい。
 図2において、SLの無線フレーム403は、所定のサブキャリア間隔(図示の例ではDL・ULよりも広い60kHz)を有し、所定数(図示の例ではDL・ULよりも多い40個)のタイムスロットからなる所定の時間長(図示の例では10ms)を有する。
 SLの無線フレーム403における先頭のタイムスロット403aは、Sidelink通信の同期に用いるSidelink Primary Synchronization Signal(S-PSS)およびSidelink Secondary Synchronization Signal(S-SSS)から構成されるSLSS(Sidelink同期信号)及びPSBCH(物理Sidelink報知チャネル)と、PSBCHの情報を復調するためのPSBCH_DMRS(PSBCH復調用参照信号)とが含まれる特別なタイムスロットである。SLSS、PSBCH及びPSBCH_DMRSは、例えば、基地局10のセルの圏外において、複数のUE20のいずれか一のUE(以下「リーダーUE」又は「マスターUE」ともいう。)20(1)が主体となって他のUE(以下「メンバーUE」ともいう。)20(2),20(3)との間で行うSidelink通信の同期処理及び接続確立処理に用いることができる。
 なお、各UEがリーダーUEであるか否かは、移動通信網側(例えばMEC装置)から指定してもよいし、UEに組み込まれる記憶媒体(例えば、加入者情報記憶媒体であるSIM(Subscriber Identity Module Card))に書き込まれた情報に基づいて決定されてもよい。
 SLの無線フレーム403における他のタイムスロットには、Sidelink通信のL1/ L2制御用のPSCCH(物理Sidelink制御チャネル)、データ再送(HARQ-ACK/NACKフィードバック)用のPSFCH(物理Sidelinkフィードバックチャネル)、データ伝送用のPSSCH(物理Sidelink共有チャネル)、並びに、PSCCH、PSFCH及びPSSCHのデータを復調するためのDMRSのそれぞれに使用されるOFDM(直交周波数分割多重)シンボルを割り当てることができる。PSCCHは、例えば、基地局10のセルの圏内において、複数のUE20のいずれか一のUE(リーダーUE、マスターUE)20(1)が主体となって他のメンバーUE20(2),20(3)との間で行うSidelink通信の同期処理及び接続確立処理に用いることができる。
 図3は、本実施形態に係る通信システムにおけるUu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームの他の例を示す説明図である。図3の例では、DLとULとが同一周波数帯のTDD(時間分割多重)で運用され、SLがDL及びULとは異なる独立周波数帯で運用されている。
 図3において、DL及びULに共用の無線フレーム411は、所定のサブキャリア間隔(図示の例では15kHz)を有し、所定数(図示の例では20個)のタイムスロットからなる所定の時間長(図示の例では10ms)を有する。
 共用の無線フレーム411における先頭のタイムスロット411aは、下りリンクのSS及びPBCHからなるブロック(SSB)並びにPBCH_DMRSが含まれる特別なタイムスロットである。図中の「D」が付された複数のタイムスロット411cには、下りリンクのPDCCH、PDSCH及びDMRSに使用されるOFDMシンボルを割り当てることができる。図中の「S」が付された2つのタイムスロット411bはそれぞれ、上りリンクのGP(ガード期間)、PRACH及びSRS(サウンディング参照信号)が含まれる特別なタイムスロットである。図中の「U」が付された複数のタイムスロット411dには、上りリンクのPUCCH、PUSCH及びDMRSに使用されるOFDMシンボルを割り当てることができる。なお、PUSCHへのリソース割当が行われるタイムスロットでは、PUCCHを用いずPUCCHで伝送すべき制御情報をPUSCHに多重してもよい。
 図3において、SLの無線フレーム412は、所定のサブキャリア間隔(図示の例では60kHz)を有し、所定数(図示の例では40個)のタイムスロットからなる所定の時間長(図示の例では10ms)を有する。
 SLの無線フレーム412における先頭のタイムスロット412aは、Sidelink通信の同期に用いるSLSS及びPSBCHとPSBCH_DMRSとが含まれる特別なタイムスロットである。他のタイムスロット412bには、PSCCH、フィードバック用チャネルとしてのPSFCH、PSSCH及びDMRSに使用されるOFDMシンボルを割り当てることができる。
 図4は、本実施形態に係る通信システムにおけるUu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームの更に他の例を示す説明図である。図4の例では、DLとULとSLが同一周波数帯のTDD(時間分割多重)で運用されている。
 図4において、DL、UL及びSLに共用の無線フレーム421は、所定のサブキャリア間隔(図示の例では60kHz)を有し、所定数(図示の例では40個)のタイムスロットからなる所定の時間長(図示の例では10ms)を有する。先頭のタイムスロット421aは、上りリンクのPRACHと、下りリンクのSS及びPBCHからなるブロック(SSB)並びにPBCH_DMRSとが含まれる特別なタイムスロットである。先頭から2番目のタイムスロット421bは、Sidelink通信の同期に用いるSS及びPBCHのブロックが含まれる特別なタイムスロットである。
 共用の無線フレーム421の他の複数のタイムスロットはそれぞれ、GP(ガード期間)で区切られたDL用タイムスロット421c(1)とUL用タイムスロット421c(2)とSL用タイムスロット421c(3)とを有する。DL用タイムスロット421c(1)には、下りリンクのPDCCH及びPDSCHに使用されるOFDMシンボルを割り当てることができる。UL用タイムスロット421c(2)には、上りリンクのPUCCH及びPUSCHに使用されるOFDMシンボルを割り当てることができる。なお、PUSCHへのリソース割当が行われるタイムスロットでは、PUCCHを用いずPUCCHで伝送すべき制御情報をPUSCHに多重してもよい。SL用タイムスロット421c(3)には、PSCCH及びPSSCHに使用されるOFDMシンボルを割り当てることができる。
 なお、その他の無線リソースの例では、LTEのD2D等でも標準化されているUL用リソースの一部をSL用リソースとして使用してもよい。
 車両30(1)~30(3)のUE20(1)~20(3)は、Sidelink通信方式による端末間直接通信を行うときの無線フレームの送受信タイミングを決定して設定する端末間同期方式として、例えば、第1の同期方式としてのUu同期方式及び第2の同期方式としてのSLSS同期方式から選択することができる。また、その他の同期方式としては、GNSS同期方式を用いてもよい。
 Uu同期方式は、移動通信網(セルラーネットワーク)の基地局10が端末側のセルサーチやDL同期確立のために定期的に送信しているPrimary Synchronization Signal(PSS)やSecondary Synchronization Signal(SSS)等の共通信号を端末間同期用リファレンスとして用いる方式である。SL同期方式は、SLSSを用いて端末間同期を実現し、トンネル内や基地局圏外エリアなど他の同期用リファレンスが利用できない場合に用いられる。一方、GNSS同期方式は、UE20に設けた現在位置取得手段としてのGNSS(Global Navigation Satellite System)受信機がGNSS衛星からの電波を受信して取得した時刻リファレンスを端末間同期用リファレンスとして用いる方式であり、時刻リファレンスの信号源は自装置内のGNSS受信機である。
 例えば、車両30のUE20は、基地局10のセルの圏内において、Uu同期方式を用いてSidelink通信方式の無線フレームの送受信タイミングを決定し、基地局10のセルの圏外では基地局からの共通信号をはじめ、その他の同期用リファレンス信号源を利用することができないため、SLSS同期方式を用いてSidelink通信方式の無線フレームの送受信タイミングを決定する。
 上記構成の無線通信システムにおいて図2~図4に例示したSidelink通信方式における無線リソース(タイムスロット)割当制御モードとして、基地局10がSL無線リソースを割り当てる第1モードとしてのSL Mode-1(以下、略して「Mode-1」ともいう。)と、各UE20がSL無線リソースを自律的に選択する第2モードとしてのSL Mode-2(以下、略して「Mode-2」ともいう。)がある。このMode-1及びMode-2は、複数の車両30のUE20で構成されるグループ(群)ごとに選択して適用することができる。グループ(群)は、予め設定された複数のUEで固定的に形成されてもよいし、又は、互いに近接して位置する複数のUEでアドホックに形成されてもよい。
[無線リソース割当制御モードの選択制御]
 図5A及び図5Bは、実施形態に係る通信システムにおける第1の無線リソース割当制御モード(Mode-1)の一例を示す説明図である。Mode-1では、図5Aに示す基地局10のセル10Aの圏内において、基地局10からのSidelinkの無線リソース割当制御により効率的なUE20間の直接通信(端末間直接通信)を実現するという利点を有する。基地局10のセル10Aの圏内において、基地局10からのSidelinkの無線リソース割当制御によって割り当てられた無線リソースを用いて、第1のグループG1に属する車両30(1)~30(3)のUE20(1)~20(3)は互いに端末間直接通信をすることができ、第2のグループG2に属する車両30(4)、30(5)のUE20(4)、20(5)は互いに端末間直接通信をすることができる。
 しかしながら、Mode-1では、端末間直接通信に必要な同期や無線リソースの選択を基地局10が送信する同期信号および制御信号に依存しているため、図5Bに示すように基地局10のセル10Aの圏外10Xで適用できず、グループG1に属する車両30(1)~30(3)のUE20(1)~20(3)は、Sidelinkの端末間直接通信をすることができないという課題がある。
 図6A及び図6Bは、実施形態に係る通信システムにおける第2の無線リソース割当制御モード(Mode-2)の一例を示す説明図である。Mode-2では、図6Aに示す基地局10のセル10Aの圏内においても、グループG1に属する車両30(1)~30(3)のUE20(1)~20(3)は、基地局10に頼ることなくそれぞれ自律的に必要な無線リソースを検知又はランダムで選択して、端末間直接通信を行うことができる。同様に、グループG2に属する車両30(4)、30(5)のUE20(4)、20(5)は、基地局10に頼ることなくそれぞれ自律的に必要な無線リソースを検知又はランダムで選択して端末間直接通信をすることができる。また、Mode-2では、図6Bに示すように基地局10のセル10Aの圏外10Xにおいても、車両30(1)~30(3)のUE20(1)~20(3)は、基地局10に頼ることなくそれぞれ自律的に必要な無線リソースを検知又はランダムで選択して各UEに自律的に割り当て、端末間直接通信をすることができる。
 しかしながら、Mode-2では、特に自律的な端末間直接通信を行うUEが多数存在すると、UE同士が送信する信号が衝突し、互いに干渉となる割合が増えて、その結果、Sidelinkの端末間直接通信の品質が劣化しやすいという課題がある。
 そこで、本実施形態では、同一グループG1内の複数のUE20が基地局10のセル10Aの圏内に位置し且つ基地局10との間で無線接続設定が完了して基地局10との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認し、その確認結果に基づいて、同一グループ内の複数のUE20に端末間直接通信の無線リソースを割り当てる無線リソース割当制御モード(Mode-1,Mode-2)を動的に切り替える制御を行っている。このような制御を行うことにより、Mode-1およびMode-2の持つ互いの欠点を補いつつ、互いの長所を生かすことができる。
 図7A及び図7Bは、実施形態に係る通信システムにおける無線リソース割当制御モード(Mode-1、Mode-2)の動的切り替え制御の一例を示す説明図である。例えば、図7Aに示すように、基地局10のCU120あるいはMEC装置140は、同一グループG1に属する複数の車両30のUE20がすべて、基地局10のセル10Aの圏内に位置し且つ基地局10との間で無線接続設定が完了して基地局10との間で下りリンク及び上りリンクが同期した同期状態にあることを確認した場合、Sidelink通信の無線リソース割当制御モードを初期設定のMode-2(第2モード)からMode-1(第1モード)に切り替え、Mode-1の動作を許容する第1モード許容メッセージ(Mode-1 Allowed)を含む端末間直接通信のリソース制御情報(SLリソース制御情報)を、グループG1内の複数のUE20(1)~20(3)に送信する制御を実行する。
 一方、本実施形態では、図7Bに示すように、基地局10のCU120あるいはMEC装置140は、同一グループG1に属する複数の車両30のUE20の少なくとも一つのUE(図示の例では、UE20(1)及びUE20(2))が、基地局10のセル10Aの圏外10Xに位置し、基地局10との間で下りリンク及び上りリンクが同期していない非同期状態にあることを確認した場合、Sidelink通信の無線リソース割当制御モードを初期設定のMode-2のままに維持する制御を実行する。
 図8は、本実施形態に係る通信システムにおける第2無線リソース割当制御モード(SL Mode-2)から第1無線リソース割当制御モード(SL Mode-1)への動的切り替え制御の一例を示すシーケンス図である。なお、図8中の3つのUE20(1),20(2),20(3)はそれぞれ、図1の道路90上を隊列走行している車両30(1),20(2),20(3)に搭載されたUEである。これらのUE20(1),20(2),20(3)により単一のグループ(群)が形成されている。また、図8の動的切り替え制御を実行する前のSidelink通信の無線リソース割当制御モードは、初期設定のMode-2である。
 図8において、まず、グループG1に属する複数のUE20(1),20(2),20(3)と基地局10との間で、無線接続状態チェックとしてのRRC(無線リソース制御)状態チェックが実行される(S101)。基地局10のCU120あるいはMEC装置140は、RRC状態チェックの結果に基づき、グループG1に属するすべてのUE20(1),20(2),20(3)が「RRC_CONNECTED」状態にあること、すなわち、UE20(1),20(2),20(3)が基地局10のセル10Aの圏内に位置し且つ基地局10との間で同期状態にあることを確認することができる(S102)。
 なお、複数の車両30(1),30(2),30(3)のUE20(1),20(2),20(3)は移動しているので、各UE20(1),20(2),20(3)が基地局10のセル10Aの圏内に位置しているか否かの確認、及び、各UE20(1),20(2),20(3)と基地局10との間が同期状態にあるか否かの確認は、定期的に行われる。
 基地局10のCU120あるいはMEC装置140は、基地局10のセル10Aの圏内に位置し且つ基地局10との間で同期処理を含む無線接続設定が完了していることを確認する(S102)と、UE20(1),20(2),20(3)のそれぞれに、Mode-1の動作を許容する第1モード許容メッセージとしてのMode-1許容情報(「Mode-1 Allowed」)を含む端末間直接通信のリソース制御情報(Sidelinkリソース制御情報)を送信する(S103)。Mode-1許容情報が「1:Mode-1 Allowed」であれば、Mode-1の動作が許容されていることを確認でき、「0:Mode-1 Not Allowed」であれば、Mode-1の動作が許容されていないことを確認できる。
 リソース制御情報(SLリソース制御情報)には、無線リソース割当制御モードを切り替える制御対象UEであるUE20(1),20(2),20(3)が属するグループを識別可能なUEグループIDが含められる。この対象UEグループIDにより、基地局10のセル内に複数のUEグループが存在する場合において、Sidelink通信の無線リソース割当制御モードをMode-1に切り替える対象のUEグループを限定することができる。なお、リソース制御情報(SLリソース制御情報)にUEグループIDを含める代わりに、無線リソース割当制御モードを切り替える制御対象UEを識別可能な個別端末識別情報(UE ID)を含めてもよい。個別端末識別情報としては、前述のLayer-2 IDを用いてもよい。
 基地局10のCU120あるいはMEC装置140は、各UE20(1),20(2),20(3)にSidelinkリソース制御情報を送信した後、各UEからのMode-1に基づくリソース割当制御を要求する要求メッセージ(Sidelinkスケジューリング要求メッセージ)の受信待ち状態を開始する(S104)。
 各UE20(1),20(2),20(3)は、基地局10のCU120あるいはMEC装置140からMode-1の動作を許容するMode-1許容情報を受信した場合、Sidelink通信のSS/PBCH(SLSS/PSBCH)ブロックを用いたSidelink同期処理をスキップする(S105)。
 なお、各UE20(1),20(2),20(3)は、Mode-1の動作を許容するMode-1許容情報を受信しなかった場合、Uu通信の同期状態を確認し、Uu通信の非同期か否かを判断する。Uu通信の非同期の場合、各UE20(1),20(2),20(3)は、Sidelink通信の無線リソース割当制御モードとして初期設定のMode-2を維持する処理を実行する(S106)。具体的には、リーダーUE20(1)はメンバーUE20(2),20(3)にSidelink通信のSS/PBCH(SLSS/PSBCH)ブロックを送信する、メンバーUE20(2),20(3)は、リーダーUE20(1)から受信したSidelink通信のSS/PBCH(SLSS/PSBCH)ブロックに基づいて、Sidelink通信の同期を確立する処理を実行する。
 上記S105において、各UE20(1),20(2),20(3)がMode-1許容情報を受信した場合、リーダーUE20(1)は、同一グループに属する他のすべてのメンバーUE20(2),20(3)からUu通信の同期状態を示すUu同期状態情報転送を受信し、各メンバーUE20(2),20(3)(Uu)がUu通信同期状態にあるか否かを判断する(S107)。Uu同期状態情報転送には、前述のUEグループIDとUu同期状態情報とを含められる。Uu同期状態情報が「1:Uu In-Sync」であれば、Uu通信の同期状態にあることを確認でき、「0:Uu Out-of-Sync」であれば、Uu通信の非同期状態にあることを確認できる。また、UEグループIDを含むUu同期状態情報転送を受信ことにより、リーダーUE20(1)は、互いにMode-1の動作を行うことの可否に関するメンバーUEを確認することができ、また、基地局10のセル内に複数のUEグループが存在する場合において、Sidelink通信の無線リソース割当制御モードをMode-1に切り替える対象のUEグループを限定することができる。
 リーダーUE20(1)は、同一グループに属する他のすべてのメンバーUE20(2),20(3)がUu通信の同期状態にあることを確認したら(S108)、各メンバーUE20(2),20(3)に、Mode-1を指定するモード指定メッセージ(SL mode flag:Mode-1)を送信する(S109)。
 リーダーUE20(1)は、同一グループに属する他のすべてのメンバーUE20(2),20(3)が、Mode-1を指定するモード指定メッセージ(SL mode flag:Mode-1)の受信に成功したか否かを確認する。リーダーUE20(1)は、グループ内のすべてのメンバーUE20(2),20(3)から、上記モード指定メッセージ(SL mode flag:Mode-1)の受信に成功したことを示すSL mode flag肯定応答(ACK)を受信したら、無線リソース割当制御モードとしてMode-1を選択し(S111)、Mode-1に基づくリソース割当制御を要求する要求メッセージ(SLスケジューリング要求メッセージ)を基地局10のCU120あるいはMEC装置140に送信する(S112)。
 なお、リーダーUE20(1)は、上記SL mode flag肯定応答(ACK)の代わりに、上記モード指定メッセージ(SL mode flag:Mode-1)の再送に対するSL HARQ肯定応答(ACK)を各メンバーUE20(2),20(3)から受信することにより、モード指定メッセージ(SL mode flag:Mode-1)の受信に成功したことを確認してもよい。
 基地局10のCU120あるいはMEC装置140は、リーダーUE20(1)から上記要求メッセージ(SLスケジューリング要求メッセージ)を受信したら、Mode-1に基づくリソース割当制御を実行する。
 図9は、本実施形態に係る通信システムにおける第2無線リソース割当制御モード(SL Mode-2)から第1無線リソース割当制御モード(SL Mode-1)への動的切り替え制御の他の例を示すシーケンス図である。なお、図9中のS201~S206については、前述の図8のS101~S106と同様であるので、説明を省略する。
 図9において、グループ内のすべてのUE20(1),20(2),20(3)は、Mode-1許容情報を受信した後、各UE20(1),20(2),20(3)がUu通信同期状態にあることを確認したら(S207)、無線リソース割当制御モードとしてMode-1を選択し(S208)、Mode-1に基づくリソース割当制御を要求する要求メッセージ(SLスケジューリング要求メッセージ)を基地局10のCU120あるいはMEC装置140に送信する(S209)。
 基地局10のCU120あるいはMEC装置140は、各UE20(1),20(2),20(3)から上記要求メッセージ(SLスケジューリング要求メッセージ)を受信したら、Mode-1に基づくリソース割当制御を実行する。
 図10は、本実施形態に係る通信システムにおけるUE20と基地局10の接続状態の判定の一例を示すシーケンス図である。図10に例示する接続状態の判定は、前述の図8及び図9におけるRRC状態チェック(S101,S201)で用いることができる。
 図10において、UE20は、基地局10から下りリンクのSS(同期信号)及びPBCH(報知チャネル)のブロック及びシステム情報を受信し、ランダムアクセス(RA)プリアンブル(PRACH)を基地局10に送信し、ランダムアクセス応答(RAR)とタイミングアドバンス(TA)コマンドを基地局10から受信することにより、基地局10に対する初回アクセス手順を実行する(S301~S304)。基地局10は、UE20から受信したRRC(無線リソース制御)接続要求のメッセージに応じてRRC接続セットアップのメッセージをUE20に送信し(S304,S305)、UE20からPUSCHで送信されたRRC接続セットアップ完了のメッセージを受信する(S306)。RRC接続セットアップ完了のメッセージの受信により、基地局10は、初回接続時に、対象のUE20が自セルの圏内に位置し、且つ、UE20との間がDL/ULの同期状態にあることを確認することができる。以降は、UE20がCQI(チャネル品質指標)送信などのために定期的に送信するPUCCHのCRC(巡回冗長検査)復号結果を確認することにより(S308)、基地局10は、UE20との接続状態を判定することができる。
 UE20は、RRC接続セットアップ完了のメッセージに対して基地局10からPDCCHで送信されたHARQ-ACKを受信することにより、初回接続時に、当該UE20が基地局10のセルの圏内に位置し、且つ、基地局10との間がDL/ULの同期状態にあることを確認することができる。以降は、基地局10が定期的に送信するPBCHの復号結果を確認することにより(S309)、UE20は、基地局10との接続状態を判定することができる。
 図11は、本実施形態に係る通信システムにおける基地局10のセルの圏内に位置するUE20のSidelink通信(SL)の同期確立及び接続状態の判定の一例を示すシーケンス図である。図11において、基地局10のセルの圏内では、各UE20は基地局10とのDL及びULの同期確立によってSidelink通信の同期を確立する。圏内でのSidelink通信の接続状態は、例えば図11に示すように、メンバーUE20(2)からリーダーUE20(1)へのFL方向のPSCCHの受信成功(S401)、及び、リーダーUE20(1)からメンバーUE20(2)へのBL方向のPSCCHの受信成功(S402)でもって確認することができる。
 図12は、本実施形態に係る通信システムにおける基地局10のセルの圏外に位置するUE20のSidelink通信(SL)の同期確立及び接続状態の判定の一例を示すシーケンス図である。基地局10のセルの圏外では、基地局との通信は発生せず、Uu通信に比べて短距離通信が前提となり、SLSS同期方式Timing Advanceを通常適用しない。例えば、図12に示すように、リーダーUE20(1)からメンバーUE20(2)へSidlink通信のSS/PBCH(SLSS/PSBCH)の送受信を実施することにより、Sidelink通信の同期を確立する(S501)。また、圏外でのSidelink通信の接続状態は、例えば図12に示すように、メンバーUE20(2)からリーダーUE20(1)へのFL方向のPSCCHの受信成功(S502)、及び、リーダーUE20(1)からメンバーUE20(2)へのBL方向のPSCCHの受信成功(S503)でもって確認することができる。
 以上、本実施形態によれば、移動通信網の基地局10を介して通信可能な複数のUE20(1),20(2),20(3)で形成されるグループ内で端末間直接通信(Sidelink通信)を行う場合に、同一グループ内の複数のUE20(1),20(2),20(3)に端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードを適切に選択して、同一グループ内のUEが増えてきた場合でも、同一グループ内で低遅延かつ高信頼な端末間直接通信を確実に行うことができる。
[端末間直接通信を介したデータ伝送におけるHARQ再送制御]  図13A及び図13Bはそれぞれ、参考例に係るSLのデータ伝送の初回送信時及びHARQ再送時におけるタイムスロット431の無線リソース(RE)の構成例の一例を示す説明図である。SLのデータ伝送のタイムスロット431の先頭部分に、AGC(自動ゲイン制御)、PSCCH、PSSCH、DMRS及びGuard(ガード期間)が割り当てる。AGCは、受信側UEの受信アンプが飽和しないように受信アンプのゲインを制御するための情報である。図13AのSLのデータ伝送の初回送信時には、タイムスロット431の複数のPSSCHのいずれかに伝送対象のデータが設定される。図13BのSLのデータ伝送のHARQ再送時には、HARQの応答メッセージ(HARQ-ACK、又は、HARQ-NACK)を返信するためのPSFCHと当該PSFCHのためのGuard及びAGCとを含むHARQ再送用の無線リソース群431aが挿入されるため、SLのデータ伝送に使えなくなる無線リソースが発生する。
 図14は、参考例に係るSL Mode-1動作時におけるSLデータ伝送の初回送信及びHARQ再送の一例を示すシーケンス図である。図14において、送信側UE20Tは、基地局10との間でRRC接続再構成(RRC Reconfiguration Procedure)を実行し、SL Mode-1によるデータ伝送におけるスケジューリング要求メッセージの送受信のためのネゴシエーションを行う(S101)。
 基地局10とのRRC接続再構成が完了したら、送信側UE20Tは、SLのデータ伝送の初回送信のための無線リソース割り当てを要求するスケジューリング要求(Scheduling Request)メッセージをPUCCHで基地局10に送信し(S102)、初回送信に割り当てられた無線リソースの情報を含む許可(Grant)メッセージをPDCCHで基地局10から受信する(S103)と、その無線リソースに設定したPSSCHを用いて初回送信データを受信側UE20Rに送信する(S104)。
 受信側UE20Rは、初回送信データの受信に失敗すると、SLの初回送信に割り当てられた無線リソースの一部(例えば、図13Bの無線リソース群431a)に設定したPSFCHを用いてHARQ-NACK(否定応答)を含むHARQ再送要求を、送信側UE20Tに返信する(S105)。HARQ-NACKを受信した送信側UE20Tは、SLのHARQ再送のための無線リソース割り当てを要求するスケジューリング要求メッセージをPUCCHで基地局10にフィードバック送信し(S106)、割り当てられた無線リソースの情報を含む許可(Grant)メッセージをPDCCHで基地局10から受信する(S107)と、その無線リソースに設定したPSSCHを用いてHARQ再送データを受信側UE20Rに送信する(S108)。受信側UE20Rは、HARQ再送データの受信に成功すると、SLのHARQ再送に割り当てられた無線リソースの一部(例えば、図13Bの無線リソース群431a)に設定したPSFCHを用いてHARQ-ACK(肯定応答)を、送信側UE20Tに返信する(S109)。
 図14の参考例では、受信側UE20RがSLの初回送信データの受信に失敗したとき、送信側UE20TがHARQ再送データを受信側UE20Rに送信するまでに、HARQ-NACKを含むHARQ再送要求の受信(S105)とスケジューリング要求メッセージのフィードバック送信(S106)と許可(Grant)メッセージの受信(S107)の3段階の中間的なシグナリング処理が必要になるため、HARQ再送遅延が増大する。
 そこで、本実施形態では、以下に示すように受信側UE20RがSLの初回送信データの受信に失敗したとき送信側UE20TがHARQ再送データを受信側UE20Rに送信するまでの中間的なシグナリング処理を2段階にすることにより、HARQ再送遅延を低減している。
 図15は、実施形態に係る通信システムにおけるSL Mode-1動作時におけるSLデータ伝送の初回送信及びHARQ再送の一例を示すシーケンス図である。図16は、図15のデータ伝送におけるUu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームの一例を示す説明図である。なお、図15において、前述の図14と共通する処理については説明を省略する。
 図15において、送信側UE20Tと基地局10との間でSL Mode-1によるデータ伝送におけるスケジューリング要求メッセージの送受信のためのネゴシエーションを行うとき(S201)、受信側UE20Rと基地局10との間でRRC接続再構成を実行し、受信側UE20Rから基地局10へHARQ再送要求を直接フィードバック(FB)送信するときのスケジューリング要求メッセージの送受信のためのネゴシエーションを行う(S202)。
 受信側UE20Rは、初回送信データの受信に失敗すると、SLの初回送信に割り当てられたUL/SL共用の無線フレームの一部(例えば、図16の無線フレーム442の第5スロット442c(2)のSL要無線リソース群431a)に設定したPSFCHを用いてHARQ-NACK(否定応答)を含むHARQ再送要求を、送信側UE20Tに返信する(S206)。
 なお、受信側UE20RからHARQ再送要求のPSFCHに先だって送信されるAGC(for PSFCH)の区間(図16参照)では、基地局10がTiming Advanceおよび復調用参照信号を用いることなくPSFCHを受信できるようにするために、基地局10での受信タイミング検出可能な(受信タイミング推定可能な)所定の信号系列を多重して伝送する。この信号系列としては、例えば、RACH(Random Access CHannel)等でも使われているZC(Zadoff-Chu)系列等のCAZAC(Constant Amplitude and Zero Auto-correlation Code)系列を用いることができる。
 基地局10は、受信側UE20Rから送信される送信側UE20T宛のUL/SL共用の無線フレームにおけるPSFCHをモニターする。基地局10は、当該PSFCHを復号してHARQ-NACK(否定応答)を含むHARQ再送要求を確認したら(S207)、送信側UE20Tからのスケジューリング要求(SR)メッセージを待つことなく、SL HARQ再送用に割り当てた無線リソースの情報を含む許可(Grant)メッセージをPDCCHで送信側UE20Tに送信する(S208)。
 送信側UE20Tは、割り当てられた無線リソースに設定したPSSCHを用いてHARQ再送データを受信側UE20Rに送信する(S209)。受信側UE20Rは、HARQ再送データの受信に成功すると、SLのHARQ再送に割り当てられた無線リソースの一部に設定したPSFCHを用いてHARQ-ACK(肯定応答)を、送信側UE20Tに返信する(S210)。
 図15の例によれば、受信側UE20RがSLの初回送信データの受信に失敗したとき、送信側UE20TがHARQ再送データを受信側UE20Rに送信するまでに、受信側UE20Rから送信側UETへのメッセージの送受信(S206)と基地局10から送信側UE20Tへのメッセージの送受信(S208)の2段階の中間的なシグナリング処理で済むため、HARQ再送遅延を低減できる。
 また、図15の例によれば、送信側UE20Tから基地局10へのHARQ再送のためのスケジューリング要求(SR)が不要であり、送信側UE20Tと基地局10との間の制御オーバーヘッドを削減することができる。
 図17は、実施形態に係る通信システムにおけるSL Mode-1動作時におけるSLデータ伝送の初回送信及びHARQ再送の他の例を示すシーケンス図である。なお、図17において、前述の図14と共通する処理については説明を省略する。
 図17の例では、Uu通信の下りリンク(DL)及び上りリンク(UL)並びにSidelink通信(SL)の無線フレームとして、例えば、前述の図2~図4に例示する無線フレームを用いることができる。
 図17において、送信側UE20Tと基地局10との間でSL Mode-1によるデータ伝送におけるスケジューリング要求メッセージの送受信のためのネゴシエーションを行うとき(S301)、受信側UE20Rと基地局10との間でRRC接続再構成を実行し、受信側UE20Rから基地局10へHARQ再送要求を直接送信するときのスケジューリング要求メッセージの送受信のためのネゴシエーションを行う(S302)。
 受信側UE20Rは、初回送信データの受信に失敗すると、SL HARQ-NACK(否定応答)及びHARQ再送のスケジューリング要求メッセージを含むHARQ再送要求(フィードバックメッセージ)を、ULの無線フレームの一部に設定したPUCCHをもしくはPUSCH上に多重し、基地局10に対して直接フィードバック送信する(S306)。
 基地局10は、受信側UE20RからSL HARQ-NACK(否定応答)及びHARQ再送のスケジューリング要求メッセージを含むHARQ再送要求を受信すると、SL HARQ-NACK(否定応答)とSL HARQ再送用に割り当てた無線リソースの情報を含む許可(Grant)メッセージとをPDCCHで送信側UE20Tに送信する(S307)。送信側UE20Tは、PSFCHを用いずに、SL HARQ-NACKの情報を基地局10経由で取得することができる。
 送信側UE20Tは、割り当てられた無線リソースに設定したPSSCHを用いてHARQ再送データを受信側UE20Rに送信する(S308)。受信側UE20Rは、HARQ再送データの受信に成功すると、SLのHARQ再送に割り当てられた無線リソースの一部に設定したPSFCHを用いてHARQ-ACK(肯定応答)を、送信側UE20Tに返信する(S309)。
 図17の例によれば、受信側UE20RがSLの初回送信データの受信に失敗したとき、送信側UE20TがHARQ再送データを受信側UE20Rに送信するまでに、受信側UE20Rから基地局へのフィードバックメッセージの直接送受信(S306)と基地局10から送信側UE20Tへのメッセージの送受信(S307)の2段階の中間的なシグナリング処理で済むため、HARQ再送遅延を低減できる。
 また、図17の例によれば、受信側UE20Rから送信側UE20TへのPSFCHを用いたHARQ再送信のためのメッセージ送受信がないため、PSFCHに伴うオーバーヘッドを削減することができる。また、PSFCHのAGC及びGuard区間用の無線リソースも削減することができる。
 以上、本実施形態によれば、基地局10が当該基地局圏内に存在する端末同士のSL通信の無線リソースを割り当てる割当制御モードの動作中におけるSLのHARQ再送遅延を低減することができる。
 なお、本明細書で説明された処理工程並びに無線通信システム、移動通信システム、制御装置、MEC装置、基地局及び無線端末装置(端末、端末装置、ユーザ装置(UE)、移動局、移動機)の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。
 ハードウェア実装については、実体(例えば、各種無線通信装置、Node B、eNodeB、gNodeB、端末、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。
10   :基地局
10A  :セル
10X  :圏外
14   :MEC装置
15   :コアネットワーク
20   :UE(無線端末装置)
21   :アンテナ
30   :車両
90   :道路
100  :基地局装置
101  :アンテナ
102  :アンテナ
122  :CUコントローラ
140  :MEC装置

Claims (34)

  1.  移動通信網の基地局を介して通信可能な複数の無線端末装置がグループを形成して端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行うシステムであって、
     前記グループに属する複数の無線端末装置の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、前記基地局が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第1モードと、前記複数の無線端末装置のいずれかの無線端末装置が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第2モードとから選択可能であり、
     前記グループに属するすべての複数の無線端末装置が前記基地局のセルの圏内に位置し且つ前記基地局との間で無線接続設定が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、
     前記グループに属するすべての複数の無線端末装置が前記基地局との同期状態にあることを確認した場合、前記第1モードの動作を許容する第1モード許容メッセージを含む前記端末間直接通信のリソース制御情報を、前記複数の無線端末装置に送信する手段と、
    を備える、ことを特徴とするシステム。
  2.  請求項1のシステムにおいて、
     前記端末間直接通信のリソース制御情報は、前記グループを識別可能なグループ識別情報又は前記グループに属する複数の無線端末装置それぞれの端末識別情報を含む、ことを特徴とするシステム。
  3.  請求項1又は2のシステムにおいて、
     前記グループに属する複数の無線端末装置のいずれか一の無線端末装置は、
      前記グループに属するすべての複数の無線端末装置が前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、
      前記グループに属する複数の無線端末装置の自装置以外の他のすべての無線端末装置が前記基地局との同期状態にあることを確認した場合、前記他のすべての無線端末装置に前記第1モードを指定するモード指定メッセージを送信する手段と、
      前記他のすべての無線端末装置が前記モード指定メッセージの受信に成功したか否かを確認する手段と、
    を備える、ことを特徴とするシステム。
  4.  請求項3のシステムにおいて、
     前記グループに属するすべての複数の無線端末装置が前記モード指定メッセージの受信に成功した場合、前記一の無線端末装置又は前記グループに属するすべての複数の無線端末装置は、前記第1モードに基づくリソース割当制御を要求する要求メッセージを前記基地局側に送信する、ことを特徴とするシステム。
  5.  請求項1又は2のシステムにおいて、
     前記グループに属するすべての複数の無線端末装置はそれぞれ、
      前記グループに属するすべての複数の無線端末装置が前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、
      前記グループに属する複数の無線端末装置の自装置以外の他のすべての無線端末装置が前記基地局との同期状態にあることを確認した場合、前記他のすべての無線端末装置に前記第1モードを指定するモード指定メッセージを送信する手段と、
      前記他のすべての無線端末装置が前記モード指定メッセージの受信に成功したか否かを確認する手段と、
    を備える、ことを特徴とするシステム。
  6.  請求項5のシステムにおいて、
     前記グループに属するすべての複数の無線端末装置が前記モード指定メッセージの受信に成功した場合、前記グループに属するすべての複数の無線端末装置はそれぞれ、前記グループに属するすべての複数の無線端末装置の端末間直接通信のリソース制御を要求する要求メッセージを前記基地局側に送信する、ことを特徴とするシステム。
  7.  請求項3乃至6のいずれかのシステムにおいて、
     前記一の無線端末装置又は前記グループに属するすべての複数の無線端末装置は、前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で同期状態にあることを示す同期状態情報を、前記他のすべての無線端末装置から受信することにより、前記他のすべての無線端末装置が前記同期状態にあることを確認する、ことを特徴とするシステム。
  8.  請求項7のシステムにおいて、
     前記一の無線端末装置又は前記グループに属するすべての複数の無線端末装置は、前記他のすべての無線端末装置から、前記同期状態情報とともに、前記グループを識別可能なグループ識別情報を受信する、ことを特徴とするシステム。
  9.  請求項1乃至8のいずれかのシステムにおいて、
     前記グループは、予め設定された複数の無線端末装置で固定的に形成され、又は、互いに近接して位置する複数の無線端末装置でアドホックに形成される、ことを特徴とするシステム。
  10.  請求項1乃至9のいずれかのシステムにおいて、
     初期の前記無線リソース割当制御モードとして、前記第2モードが選択されている、ことを特徴とするシステム。
  11.  請求項1乃至9のいずれかのシステムにおいて、
     前記無線端末装置は、前記グループを形成して移動経路を走行する複数の車両のそれぞれに設けられている、ことを特徴とするシステム。
  12.  移動通信網の基地局を介して通信可能であり、周辺の一又は複数の無線端末装置とグループを形成して端末間直接通信を行う無線端末装置であって、
     前記グループに属するすべての複数の無線端末装置が前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、
     前記グループに属する複数の無線端末装置の自装置以外の他のすべての無線端末装置が前記基地局との同期状態にあることを確認した場合、前記他のすべての無線端末装置に前記第1モードを指定するモード指定メッセージを送信する手段と、
     前記他のすべての無線端末装置が前記モード指定メッセージの受信に成功したか否かを確認する手段と、
    を備える、ことを特徴とする無線端末装置。
  13.  他の車両とグループを組んで移動経路を走行する車両であって、
     請求項12の無線端末装置を備えることを特徴とする車両。
  14.  移動通信網の基地局を介して通信可能な複数の無線端末装置がグループを形成して端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行う制御装置であって、
     前記グループに属する複数の無線端末装置の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、前記基地局が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第1モードと、前記複数の無線端末装置のいずれかの無線端末装置が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第2モードとから選択可能であり、
     前記グループに属するすべての複数の無線端末装置が前記基地局のセルの圏内に位置し且つ前記基地局との間で無線接続設定が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認する手段と、
     前記グループに属するすべての複数の無線端末装置が前記基地局との同期状態にあることを確認した場合、前記第1モードの動作を許容する第1モード許容メッセージを含む前記端末間直接通信のリソース制御情報を、前記複数の無線端末装置に送信する手段と、
    を備える、ことを特徴とする制御装置。
  15.  請求項14のいずれかの制御装置において、
     当該制御装置は、移動通信網の基地局又は前記基地局とコアネットワークとの間のノード又はコアネットワークの外側に設けられたCU(Central Unit)又はMEC(Multi-access Edge Computing)装置である、ことを特徴とする制御装置。
  16.  移動通信網の基地局であって、
     請求項14の制御装置を備えることを特徴とする基地局。
  17.  移動通信システムの基地局を介して通信可能な複数の無線端末装置がグループを形成して端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行う方法であって、
     前記グループに属する複数の無線端末装置の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、前記基地局が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第1モードと、前記複数の無線端末装置のいずれかの無線端末装置が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第2モードとから選択可能にすることと、
     前記グループに属するすべての複数の無線端末装置が前記基地局のセルの圏内に位置し且つ前記基地局との間で無線接続設定が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認することと、
     前記グループに属するすべての複数の無線端末装置が前記基地局との同期状態にあることを確認した場合、前記第1モードの動作を許容する第1モード許容メッセージを含む前記端末間直接通信のリソース制御情報を、前記複数の無線端末装置に送信することと、
    を含む、ことを特徴とする方法。
  18.  移動通信システムの基地局を介して通信可能な複数の無線端末装置がグループを形成して端末間直接通信を行うときの無線リソース割当制御モードの選択制御を行う制御装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記グループに属する複数の無線端末装置の端末間直接通信の無線リソースを割り当てる無線リソース割当制御モードとして、前記基地局が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第1モードと、前記複数の無線端末装置のいずれかの無線端末装置が前記複数の無線端末装置の端末間直接通信の無線リソースを割り当てる第2モードとから選択可能にするためのプログラムコードと、
     前記グループに属するすべての複数の無線端末装置が前記基地局のセルの圏内に位置し且つ前記基地局との間で無線接続設定が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認するためのプログラムコードと、
     前記グループに属するすべての複数の無線端末装置が前記基地局との同期状態にあることを確認した場合、前記第1モードの動作を許容する第1モード許容メッセージを含む前記端末間直接通信のリソース制御情報を、前記複数の無線端末装置に送信するためのプログラムコードと、
    を含む、ことを特徴とするシステム。
  19.  移動通信網の基地局を介して通信可能であり、周辺の一又は複数の無線端末装置とグループを形成して端末間直接通信を行う無線端末装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記グループに属するすべての複数の無線端末装置が前記端末間直接通信のリソース制御情報の受信が完了して前記基地局との間で下りリンク及び上りリンクが同期した同期状態にあるか否かを確認するためのプログラムコードと、
     前記グループに属する複数の無線端末装置の自装置以外の他のすべての無線端末装置が前記基地局との同期状態にあることを確認した場合、前記他のすべての無線端末装置に前記第1モードを指定するモード指定メッセージを送信するためのプログラムコードと、
     前記他のすべての無線端末装置が前記モード指定メッセージの受信に成功したか否かを確認するためのプログラムコードと、
    を含む、ことを特徴とするプログラム。
  20.  端末間直接通信を行う複数の無線端末装置との通信を行う機能を有し前記端末間直接通信に用いる無線リソースを制御可能な移動通信網の基地局であって、
     前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から送信側の無線端末装置へのフィードバック用チャネルを監視し、前記フィードバック用チャネルを復号する手段と、
     前記フィードバック用チャネルの復号結果に前記受信側の無線端末装置からHARQ否定応答が含まれているとき、HARQ再送用の無線リソースの情報を含む許可メッセージを前記送信側の無線端末装置に通知する手段と、
    を備えることを特徴とする基地局。
  21.  端末間直接通信を行う複数の無線端末装置との通信を行う機能を有し前記端末間直接通信に用いる無線リソースを制御可能な移動通信網の基地局であって、
     前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から、HARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを受信する手段と、
     前記フィードバックメッセージに応じて、前記HARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを前記データ伝送の受信側の無線端末装置に送信する手段と、
    を備えることを特徴とする基地局。
  22.  移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置であって、
     前記端末間直接通信を介して前記周辺の無線端末装置に対してデータ伝送を行ったとき、前記周辺の無線端末装置からHARQ否定応答を受信することなく、前記基地局からHARQ再送用の無線リソースの情報を含む許可メッセージを受信する手段と、
     前記周辺の無線端末装置からのHARQ否定応答を受信することなく前記基地局から受信した前記許可メッセージに応じて、前記周辺の無線端末装置に対して前記データ伝送のHARQ再送を行う手段と、
    を備えることを特徴とする無線端末装置。
  23.  移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置であって、
     前記端末間直接通信を介して前記周辺の無線端末装置からデータ伝送を受ける手段と、
     前記データ伝送に対するHARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを前記基地局に送信する手段と、
    を備える、ことを特徴とする無線端末装置。
  24.  移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置であって、
     前記端末間直接通信を介して前記周辺の無線端末装置に対してデータ伝送を行ったとき、前記周辺の無線端末装置からHARQ否定応答を受信することなく、前記基地局からHARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを受信する手段と、
     前記周辺の無線端末装置からのHARQ否定応答を受信することなく前記基地局から受信した前記許可メッセージに応じて、前記周辺の無線端末装置に対して前記データ伝送のHARQ再送を行う手段と、
    を備えることを特徴とする無線端末装置。
  25.  請求項20の基地局と、請求項22の無線端末装置とを備えるシステム。
  26.  請求項21の基地局と、請求項23の無線端末装置と、請求項24の無線端末装置とを備えるシステム。
  27.  移動経路を走行する車両であって、
     請求項22乃至24のいずれかの無線端末装置を備えることを特徴とする車両。
  28.  端末間直接通信を介したデータ伝送におけるHARQ再送制御を行う方法であって、
     前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から送信側の無線端末装置へのフィードバック用チャネルを監視し、前記フィードバック用チャネルを復号することと、
     前記フィードバック用チャネルの復号結果に前記受信側の無線端末装置からHARQ否定応答が含まれているとき、HARQ再送用の無線リソースの情報を含む許可メッセージを前記送信側の無線端末装置に通知することと、
    を含むことを特徴とする方法。
  29.  端末間直接通信を介したデータ伝送におけるHARQ再送制御を行う方法であって、
     前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から、HARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを受信することと、
     前記フィードバックメッセージに応じて、前記HARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを、前記データ伝送の受信側の無線端末装置に送信することと、
    を含む、ことを特徴とする方法。
  30.  端末間直接通信を行う複数の無線端末装置との通信を行う機能を有し前記端末間直接通信に用いる無線リソースを制御可能な移動通信網の基地局に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から送信側の無線端末装置へのフィードバック用チャネルを監視し、前記フィードバック用チャネルを復号するためのプログラムコードと、
     前記フィードバック用チャネルの復号結果に前記受信側の無線端末装置からHARQ否定応答が含まれているとき、HARQ再送用の無線リソースの情報を含む許可メッセージを前記送信側の無線端末装置に通知するためのプログラムコードと、
    を含むことを特徴とするプログラム。
  31.  端末間直接通信を行う複数の無線端末装置との通信を行う機能を有し前記端末間直接通信に用いる無線リソースを制御可能な移動通信網の基地局に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記端末間直接通信を介したデータ伝送の受信側の無線端末装置から、HARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを受信するためのプログラムコードと、
     前記フィードバックメッセージに応じて、前記HARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを、前記データ伝送の受信側の無線端末装置に送信するためのプログラムコードと、
    を含むことを特徴とするプログラム。
  32.  移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記端末間直接通信を介して前記周辺の無線端末装置に対してデータ伝送を行ったとき、前記周辺の無線端末装置からHARQ否定応答を受信することなく、前記基地局からHARQ再送用の無線リソースの情報を含む許可メッセージを受信するためのプログラムコードと、
     前記周辺の無線端末装置からのHARQ否定応答を受信することなく前記基地局から受信した前記許可メッセージに応じて、前記周辺の無線端末装置に対して前記データ伝送のHARQ再送を行うためのプログラムコードと、
    を含むことを特徴とするプログラム。
  33.  移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記端末間直接通信を介して前記周辺の無線端末装置からデータ伝送を受けるためのプログラムコードと、
     前記データ伝送に対するHARQ否定応答及び無線リソース割当要求を含むフィードバックメッセージを、前記基地局に送信するためのプログラムコードと、
    を含むことを特徴とするプログラム。
  34.  移動通信網の基地局を介した通信を行う機能と周辺の無線端末装置と端末間直接通信を行う機能とを有する無線端末装置に備えるコンピュータ又はプロセッサにおいて実行されるプログラムであって、
     前記端末間直接通信を介して前記周辺の無線端末装置に対してデータ伝送を行ったとき、前記周辺の無線端末装置からHARQ否定応答を受信することなく、前記基地局からHARQ否定応答とHARQ再送用の無線リソースの情報とを含む許可メッセージを受信するためのプログラムコードと、
     前記周辺の無線端末装置からのHARQ否定応答を受信することなく前記基地局から受信した前記許可メッセージに応じて、前記周辺の無線端末装置に対して前記データ伝送のHARQ再送を行うためのプログラムコードと、
    を含むことを特徴とするプログラム。
PCT/JP2022/006098 2021-03-11 2022-02-16 端末間直接通信における制御を行うシステム、無線端末装置、車両、制御装置、基地局、方法及びプログラム WO2022190791A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/549,421 US20240155570A1 (en) 2021-03-11 2022-02-16 System, radio terminal apparatus, vehicle, control apparatus, base station, method and program for performing control in inter-terminal direct communication
EP22766755.7A EP4307778A4 (en) 2021-03-11 2022-02-16 SYSTEM FOR CONTROLLING DIRECT COMMUNICATION BETWEEN TERMINALS, WIRELESS TERMINAL DEVICE, VEHICLE, CONTROL DEVICE, BASE STATION, METHOD AND PROGRAM
CN202280020719.4A CN117044343A (zh) 2021-03-11 2022-02-16 进行终端间直接通信中的控制的系统、无线终端装置、车辆、控制装置、基站、方法以及程序

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-039713 2021-03-11
JP2021039713A JP7190520B2 (ja) 2021-03-11 2021-03-11 端末間直接通信における無線リソース割当制御モードの選択制御を行うシステム、無線端末装置、車両、制御装置、基地局、方法及びプログラム
JP2021-071210 2021-04-20
JP2021071210A JP7432553B2 (ja) 2021-04-20 2021-04-20 端末間直接通信を介したデータ伝送におけるharq再送制御を行うシステム、無線端末装置、車両、基地局、方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2022190791A1 true WO2022190791A1 (ja) 2022-09-15

Family

ID=83227662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006098 WO2022190791A1 (ja) 2021-03-11 2022-02-16 端末間直接通信における制御を行うシステム、無線端末装置、車両、制御装置、基地局、方法及びプログラム

Country Status (3)

Country Link
US (1) US20240155570A1 (ja)
EP (1) EP4307778A4 (ja)
WO (1) WO2022190791A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092710A1 (en) * 2013-10-01 2015-04-02 Samsung Electronics Co., Ltd. Method and apparatus for device-to-device communication
JP2016131388A (ja) * 2012-06-27 2016-07-21 京セラ株式会社 無線端末、プロセッサ、基地局及び移動通信方法
EP3136811A1 (en) 2014-04-23 2017-03-01 LG Electronics Inc. Device-to-device (d2d) operation method carried out by terminal in rrc connection state in wireless communication system, and terminal using the method
JP2017514355A (ja) * 2014-03-21 2017-06-01 ソニー株式会社 通信デバイスおよび方法
US20200154501A1 (en) * 2018-11-13 2020-05-14 Qualcomm Incorporated Ev2x mobility support for mode 3.5/rsu scheduled mode
US20200314959A1 (en) 2019-03-26 2020-10-01 Samsung Electronics Co., Ltd. Method and apparatus for initiating radio resource control (rrc) connection for vehicle-to-everything (v2x) communication
US20210028891A1 (en) * 2019-07-23 2021-01-28 Samsung Electronics Co., Ltd. Method and apparatus for sidelink transmission in a wireless communication system
WO2021029083A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 端末及び通信方法
WO2021067999A1 (en) * 2019-10-02 2021-04-08 Qualcomm Incorporated Concurrent physical sidelink feedback channel detection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033896A3 (en) * 1999-03-04 2000-10-18 Canon Kabushiki Kaisha Method and device for communicating a message on a network and systems using them.
US9094910B2 (en) * 2008-09-09 2015-07-28 Htc Corporation Methods utilized in mobile device for handling situations when time alignment timer expires, and mobile device thereof
WO2016034210A1 (en) * 2014-09-02 2016-03-10 Telefonaktiebolaget L M Ericsson (Publ) Cellular base station and method of operation
JP6436547B2 (ja) * 2014-09-25 2018-12-12 インテル アイピー コーポレーション D2d検出および通信のためのアクセス制御メカニズムをサポートするネットワークノード、ユーザ機器、コンピュータプログラム、および装置
WO2017077463A1 (en) * 2015-11-02 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Adapting d2d operation on non-serving carrier frequency
KR20200086920A (ko) * 2019-01-10 2020-07-20 삼성전자주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 전송 자원을 할당하는 장치 및 방법
US20220183017A1 (en) * 2019-08-14 2022-06-09 Samsung Electronics Co., Ltd. Power control method, device and storage medium for sidelink communication system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131388A (ja) * 2012-06-27 2016-07-21 京セラ株式会社 無線端末、プロセッサ、基地局及び移動通信方法
US20150092710A1 (en) * 2013-10-01 2015-04-02 Samsung Electronics Co., Ltd. Method and apparatus for device-to-device communication
JP2017514355A (ja) * 2014-03-21 2017-06-01 ソニー株式会社 通信デバイスおよび方法
EP3136811A1 (en) 2014-04-23 2017-03-01 LG Electronics Inc. Device-to-device (d2d) operation method carried out by terminal in rrc connection state in wireless communication system, and terminal using the method
US20200154501A1 (en) * 2018-11-13 2020-05-14 Qualcomm Incorporated Ev2x mobility support for mode 3.5/rsu scheduled mode
US20200314959A1 (en) 2019-03-26 2020-10-01 Samsung Electronics Co., Ltd. Method and apparatus for initiating radio resource control (rrc) connection for vehicle-to-everything (v2x) communication
US20210028891A1 (en) * 2019-07-23 2021-01-28 Samsung Electronics Co., Ltd. Method and apparatus for sidelink transmission in a wireless communication system
WO2021029083A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 端末及び通信方法
WO2021067999A1 (en) * 2019-10-02 2021-04-08 Qualcomm Incorporated Concurrent physical sidelink feedback channel detection

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
3GPP TR22.886, December 2018 (2018-12-01)
3GPP TR37.985, June 2020 (2020-06-01)
3GPP TR38.885, March 2019 (2019-03-01)
PAVEL MACHZDENEK BECAVARTOMAS VANEK: "In-Band Device-to-Device Communication in OFDMA Cellular Networks: A Survey and Challenges", IEEE COMMUNICATION SURVEYS & TUTORIALS, vol. 17, no. 4, June 2015 (2015-06-01), pages 1885 - 1922, XP011590611, DOI: 10.1109/COMST.2015.2447036
SAMSUNG: "On Physical Layer Procedures for NR V2X", 3GPP DRAFT; R1-1901048, vol. RAN WG1, 11 January 2019 (2019-01-11), Taipei, Taiwan, pages 1 - 11, XP051576582 *
See also references of EP4307778A4
SHAO-YU LIENDER-JIUNN DENGCHUN-CHENG LINHUA-LUNG TSAITAO CHENCHAO GUOSHIN-MING CHENG: "3GPP NR Sidelink Transmissions Toward 5G V2X", IEEE ACCESS, vol. 8, February 2020 (2020-02-01), pages 35368 - 35382, XP011774398, DOI: 10.1109/ACCESS.2020.2973706

Also Published As

Publication number Publication date
EP4307778A1 (en) 2024-01-17
EP4307778A4 (en) 2024-10-23
US20240155570A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP7230815B2 (ja) 通信装置
KR102381203B1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 단말의 동작 방법 및 상기 방법을 이용하는 단말
US12052107B2 (en) Method and apparatus for supporting HARQ retransmission in wireless communication system
JP6533345B2 (ja) 無線端末及び基地局
WO2020166280A1 (ja) 通信装置及び通信方法
US20230319850A1 (en) NR Sidelink Multi-Control/Data Multiplexing
US20230171036A1 (en) Feedback and traffic differentiation in sidelink relays
US10999850B2 (en) Communication device and base station
KR20230040997A (ko) 사이드링크 중계에서의 피드백 및 트래픽 구별
US20230180098A1 (en) NR Sidelink Relaying
JPWO2008126295A1 (ja) 通信方法、移動局及び基地局
EP4456577A1 (en) Nr sidelink relaying discovery
CN116686389A (zh) 用于在无线通信系统中处理sl drx不活动定时器的方法和装置
EP3834541B1 (en) Method for resource allocation in device to device communication
US20240039680A1 (en) Feedback Procedures for SL Power Saving UEs
US20220061026A1 (en) Terminal device, base station, method, and recording medium
WO2022190791A1 (ja) 端末間直接通信における制御を行うシステム、無線端末装置、車両、制御装置、基地局、方法及びプログラム
JP7190520B2 (ja) 端末間直接通信における無線リソース割当制御モードの選択制御を行うシステム、無線端末装置、車両、制御装置、基地局、方法及びプログラム
JP7434623B2 (ja) 端末間直接通信を介したデータ伝送におけるharq再送制御を行うシステム、無線端末装置、車両、基地局、方法及びプログラム
WO2017188302A1 (ja) リレーノード及び無線端末
CN116472781A (zh) Nr直连链路中继发现

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766755

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549421

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280020719.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022766755

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766755

Country of ref document: EP

Effective date: 20231011