WO2022190669A1 - 成形体の製造方法 - Google Patents

成形体の製造方法 Download PDF

Info

Publication number
WO2022190669A1
WO2022190669A1 PCT/JP2022/002284 JP2022002284W WO2022190669A1 WO 2022190669 A1 WO2022190669 A1 WO 2022190669A1 JP 2022002284 W JP2022002284 W JP 2022002284W WO 2022190669 A1 WO2022190669 A1 WO 2022190669A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
resin
continuous fibers
producing
fibers
Prior art date
Application number
PCT/JP2022/002284
Other languages
English (en)
French (fr)
Inventor
卓巳 加藤
穂高 横溝
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2022190669A1 publication Critical patent/WO2022190669A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns

Definitions

  • the present invention relates to a method for laminating composite material A and composite material B and performing compression molding to produce a compact.
  • Patent Document 1 a continuous reinforcing fiber prepreg using an uncured thermosetting matrix resin and a thermoplastic resin sheet are used, and a mold temperature is set to match the viscosity range peculiar to the thermoplastic resin sheet. is described.
  • Patent Document 2 describes a molded article formed by providing a barrier layer having a structure in which fibers intersect each other between a sheet molding compound layer and a reinforcing layer made of continuous fibers.
  • the degree of cure of the thermosetting resin contained in the prepreg is as low as 10% or less.
  • Continuous fibers contained in the prepreg follow the flow direction of other materials. As a result, the continuous fibers are disturbed, and high physical properties cannot be maintained when a molded product is obtained.
  • Patent Document 2 since the composite material described in Patent Document 2 has a barrier layer between the sheet molding compound layer and the reinforcing layer made of continuous fibers, an unnecessary layer is required in manufacturing the molded product. It takes more time to stack. Furthermore, there arises a problem in securing the interlaminar shear strength between the three layers, and a problem arises in that the molded article obtained is warped due to the difference in shrinkage rate between the layers.
  • the object of the present invention is to suppress the disturbance of the continuous fibers and ensure the mechanical properties even when using a three-dimensional mold including a curved surface in which the fiber orientation of the continuous fibers is particularly easily disturbed.
  • a method for manufacturing a compact is provided.
  • the present invention provides the following means. 1. A method of laminating a composite material A containing discontinuous fibers and a resin M1 and a composite material B containing continuous fibers and a resin M2 and performing compression molding to produce a molded body,
  • the surface X on which the composite material B is placed on the mold has a three-dimensional shape including a curved surface, and is curved in the bundle width direction of the continuous fibers,
  • the relationship between the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers contained in the molded body is 1 ⁇ Tmax / Tmin ⁇ 1.5.
  • a method for producing a molded article 2. 1.
  • the arrangement plane X is curved in an arc or in a folded state toward the bundle width direction of the continuous fibers.
  • the resin M2 is a semi-cured thermosetting resin, and the complex viscosity ⁇ 2 of the resin M2 is 8000 Pa ⁇ s or more and 30000 Pa ⁇ s or less. to 3. A method for producing a molded article according to any one of the above. 5. 1.
  • the resin M2 is a semi-cured thermosetting resin having a degree of curing of 50% or more. to 4.
  • the composite material B contains a latent curing agent, and the latent curing agent utilizes at least one selected from the group consisting of ionic reaction, heat dissolution, molecular sieves, microcapsules, and UV curing. . to 6.
  • the resin M1 and the resin M2 are thermoplastic resins. to 3. A method for producing a molded article according to any one of the above. 9.
  • the complex viscosities of the resin M1 and the resin M2 satisfy the following relationship. 3.
  • the continuous fibers in the molded article satisfy the following formula. to 9.
  • the continuous fibers contained in the composite material B are uniaxially oriented continuous fibers oriented in the longitudinal direction of the composite material B. to 10. A method for producing a molded article according to any one of the above. 12.
  • the continuous fibers contained in the composite material B are biaxially oriented continuous fibers oriented in the longitudinal direction of the composite material B and in a direction orthogonal to the longitudinal direction. to 10. A method for producing a molded article according to any one of the above.
  • the continuous fibers can be molded without being disturbed. can be manufactured.
  • the fibers contained in composite material A or composite material B are not particularly limited, but reinforcing fibers are preferred. Specifically, it is preferably one or more reinforcing fibers selected from the group consisting of carbon fibers, glass fibers, aramid fibers, boron fibers, and basalt fibers.
  • the fibers contained in the composite material A or B of the present invention are preferably carbon fibers.
  • carbon fibers polyacrylonitrile (PAN)-based carbon fibers, petroleum/coal pitch-based carbon fibers, rayon-based carbon fibers, cellulose-based carbon fibers, lignin-based carbon fibers, phenol-based carbon fibers, and the like are generally known.
  • PAN polyacrylonitrile
  • PAN polyacrylonitrile
  • PAN polyacrylonitrile
  • the fiber diameter of the carbon fiber single yarn (generally, the single yarn is sometimes called a filament) used is the diameter of the carbon fiber. It may be determined appropriately according to the type, and is not particularly limited.
  • the average fiber diameter is generally preferably in the range of 3 ⁇ m to 50 ⁇ m, more preferably in the range of 4 ⁇ m to 12 ⁇ m, even more preferably in the range of 5 ⁇ m to 8 ⁇ m.
  • the carbon fiber is in the form of a fiber bundle, it refers to the diameter of the carbon fiber (single filament) forming the fiber bundle, not the diameter of the fiber bundle.
  • the average fiber diameter of carbon fibers can be measured, for example, by the method described in JIS R-7607:2000.
  • the fibers contained in the composite material A or composite material B of the present invention may be glass fibers.
  • the type of glass fiber is not particularly limited, and any glass fiber made of E glass, A glass or C glass can be used, and a mixture of these can also be used.
  • the glass fiber in the present invention is not particularly limited, but the average fiber diameter of the glass fiber is preferably 1 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
  • the carbon fiber or glass fiber used in the present invention may have a sizing agent attached to its surface.
  • the type of the sizing agent can be appropriately selected according to the types of the reinforcing fibers and the matrix resin, and is not particularly limited.
  • the weight average fiber length of the discontinuous fibers contained in the composite material A is preferably 0.3 mm or more, more preferably 0.3 mm or more and 100 mm or less, and further preferably 0.3 mm or more and less than 100 mm. It is more preferably 0.3 mm or more and 80 mm or less, even more preferably 0.3 mm or more and 50 mm or less, and particularly preferably 0.3 mm or more and 40 mm or less.
  • the weight-average fiber length of the reinforcing fibers is 100 mm or less (more preferably less than 100 mm), the fluidity of the composite material A is improved, and a desired compact shape is easily obtained during compression molding. On the other hand, when the weight average fiber length is 0.3 mm or more, the mechanical strength of the molded article is likely to be improved.
  • the discontinuous fibers may be used together with reinforcing fibers having different fiber lengths.
  • the reinforcing fibers may have a single peak in the weight average fiber length, or may have a plurality of peaks.
  • the average fiber length of the reinforcing fibers is 3 mm or more, for example, the fiber length of 100 fibers randomly extracted from the molded body is measured to the nearest 1 mm using a vernier caliper or the like, and the following formula (a) is used. can be asked for.
  • the average fiber length is measured by weight average fiber length (Lw).
  • the number average fiber length (Ln) and the weight average fiber length (Lw) are determined by the following equations (a) and (b), where Li is the fiber length of each reinforcing fiber and j is the number of measured fibers.
  • Ln ⁇ Li/j Formula (a)
  • Lw ( ⁇ Li 2 )/( ⁇ Li) Formula (b)
  • the number average fiber length and the weight average fiber length are the same.
  • Reinforcing fibers can be extracted from the molded article, for example, by heat-treating the molded article at 500° C. for about 1 hour and removing the resin in a furnace.
  • the fiber volume ratio VfA contained in the composite material A is defined by the following formula (c).
  • Fiber volume ratio (VfA) 100 ⁇ fiber volume / (fiber volume + resin volume of composite material A) ⁇ formula (c) More specifically, the fiber volume ratio (VfA) is preferably 10 Vol% or more and 50 Vol% or less, more preferably 15 Vol% or more and 45 Vol% or less, and even more preferably 20 Vol% or more and 40 Vol% or less.
  • VfA reinforcing fiber volume ratio
  • Fiber form of discontinuous fibers contained in composite material A 1.
  • Bundle form Reinforcing fibers are discontinuous fibers with a fiber length of 5 mm or more, and include carbon fiber a1 with a fiber bundle of less than 0.3 mm and carbon fiber bundle a2 with a bundle width of 0.3 mm or more and 3.0 mm or less. is preferred.
  • the volume ratio of the reinforcing fiber bundle a2 to the reinforcing fibers contained in the composite material A is preferably 5 vol% or more and less than 95 vol%, more preferably 10 vol% or more and less than 90 vol%.
  • the reinforcing fibers are preferably dispersed in the in-plane direction.
  • the in-plane direction is a direction orthogonal to the plate thickness direction of the compact, and means an indefinite direction of parallel planes orthogonal to the plate thickness direction.
  • the reinforcing fibers are randomly dispersed two-dimensionally in the in-plane direction.
  • the shape of the reinforcing fibers is substantially maintained before and after molding. are preferably two-dimensionally randomly distributed.
  • the term “two-dimensionally randomly dispersed” means that the reinforcing fibers are randomly oriented in the in-plane direction of the molded body rather than in a specific direction such as one direction, and the overall directionality is in a specific direction. It refers to the state in which it is arranged in the sheet surface without showing.
  • the composite material A obtained by using the discontinuous fibers randomly dispersed two-dimensionally is a substantially isotropic composite material A having no in-plane anisotropy.
  • the degree of two-dimensional random orientation is evaluated by obtaining the ratio of tensile elastic moduli in two mutually orthogonal directions.
  • the (E ⁇ ) ratio obtained by dividing the larger of the measured tensile modulus values by the smaller one in an arbitrary direction of the molded body and in the direction orthogonal thereto is 5 or less, more preferably 2 or less, and still more preferably 2 or less. If it is 1.5 or less, it can be evaluated that the reinforcing fibers are two-dimensionally randomly dispersed.
  • the molded body Since the molded body has a shape, as a method for evaluating the two-dimensional random dispersion in the in-plane direction, if the resin contained in the composite material A is a thermoplastic resin, it is heated to a softening temperature or higher to form a flat plate shape. It is good to put it back and harden it. At this time, the composite material A and the composite material B are separated, and only the composite material A is taken out. After that, when a test piece is cut out and the tensile elastic modulus is obtained, the state of random dispersion in the two-dimensional direction can be confirmed.
  • the resin M1 contained in the composite material A is not particularly limited, and may be a thermosetting resin or a thermoplastic resin.
  • Thermoplastic Resin The preferred resin M1 contained in the composite material A is a thermoplastic resin.
  • the type of thermoplastic resin is not particularly limited, and one having a desired softening point or melting point can be appropriately selected and used.
  • As the thermoplastic matrix resin one having a softening point in the range of 180° C. to 350° C. is usually used, but it is not limited to this.
  • thermoplastic resins include, for example, vinyl chloride resins, vinylidene chloride resins, vinyl acetate resins, polyvinyl alcohol resins, polystyrene resins, acrylonitrile-styrene resins (AS resins), acrylonitrile-butadiene-styrene resins.
  • ABS resin acrylic resin, methacrylic resin, polyethylene resin, polypropylene resin, various thermoplastic polyamide resins, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, poly Butylene naphthalate resin, polybutylene terephthalate resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyether ether ketone resin, polylactic acid resin, etc. mentioned.
  • the thermoplastic resin may be either a crystalline resin or an amorphous resin.
  • preferable crystalline resins are specifically polyamide-based resins such as nylon 6, polyethylene terephthalate-based resins, polybutylene terephthalate-based resins, polyethylene-based resins, polypropylene-based resins, polyacetal-based resins, and polyphenylene sulfide-based resins.
  • a resin etc. can be mentioned.
  • polyamide-based resins, polybutylene terephthalate-based resins, and polyphenylene sulfide-based resins are preferably used because of their excellent heat resistance and mechanical strength.
  • nylon which is one of polyamide resins
  • PA6 also referred to as polycaproamide, polycaprolactam, and poly ⁇ -caprolactam
  • PA26 polyethylene adipamide
  • PA46 polytetramethylene adipamide
  • PA66 polyhexamethylene adipamide
  • PA69 polyhexamethyleneazepamide
  • PA410 polytetramethylene sebacamide
  • PA610 polyhexamethylene sebacamide
  • PA611 polyhexamethylene undecamide
  • PA612 polyhexamethylene dodecamide
  • PA11 polyundecanamide
  • PA12 polydodecanamide
  • PA1212 polydodecamethylene dodecamide
  • PA6T polyhexamethylene terephthalamide
  • PA6I polyhexamethylene isophthalamide
  • PA912 polynonamethylene dodecamide
  • PA1012 polydecamethylene dodecamide
  • PA9T polynonamethylene terephthalamide
  • PA9I polynonamethylene isophthalamide
  • PA10T polydecamethylene terephthalamide
  • PA10I polydecamethylene terephthalamide
  • the resin M1 contained in the composite material A may be a thermosetting resin.
  • thermosetting resins unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, etc. are used.
  • thermosetting resin one type may be used alone, or two or more types may be used in combination.
  • composite material A may be a sheet molding compound (sometimes referred to as SMC) containing reinforcing fibers and thermosetting resin.
  • Composite material A used in the present invention contains various fibrous or non-fibrous fillers of organic fibers or inorganic fibers, flame retardants, UV-resistant agents, stabilizers, separators, etc., as long as the objects of the present invention are not impaired. Additives such as sizing agents, pigments, softening agents, plasticizers and surfactants may be included.
  • Composite material B [Continuous Fibers Contained in Composite Material B] 1.
  • General Composite material B in the present invention comprises continuous fibers.
  • the continuous fibers are also continuous fiber bundles and have a bundle width.
  • the width and thickness of the fiber bundle are determined by taking the fiber direction of the fiber bundle as the x-axis direction and the y-axis direction perpendicular thereto when three straight lines (x-axis, y-axis, and z-axis) are perpendicular to each other.
  • the longer one of the maximum value ymax of the length and the maximum value zmax of the length in the z-axis direction is taken as the width, and the shorter one is taken as the thickness.
  • the weight average fiber length of the continuous fibers is preferably 100 mm or more.
  • the continuous fibers may be in the form of sheets such as woven or knitted fabrics, unidirectionally arranged sheets of strands, and multiaxial fabrics.
  • the multiaxial fabric generally refers to a sheet of fiber reinforcement bundles aligned in one direction and laminated at different angles (multiaxial fabric base material), polyamide yarn, polyester yarn, glass fiber It refers to a woven fabric in which a stitch thread such as a thread penetrates the laminate in the thickness direction and stitches back and forth between the front and back surfaces of the laminate along the surface direction.
  • the continuous fibers contained in the composite material B in the present invention are preferably uniaxially oriented continuous fibers.
  • Uniaxially oriented continuous fibers mean that the fibers are oriented in only one direction and are not oriented in other directions. When uniaxially oriented continuous fibers are used, the problem of widening of the fiber width during molding becomes more pronounced. It is more preferable that the continuous fibers contained in the composite material B are uniaxially oriented continuous fibers oriented in the longitudinal direction of the composite material B.
  • Biaxially Oriented Continuous fibers contained in the composite material B are preferably biaxially oriented continuous fibers oriented in the longitudinal direction of the composite material B and in a direction orthogonal to the longitudinal direction.
  • the composite material B may be biaxially oriented by laminating uniaxially oriented continuous fiber prepregs. This is because the continuous fibers oriented in the direction perpendicular to the longitudinal direction suppress disturbance of the continuous fibers in the longitudinal direction.
  • “disordered orientation of continuous fibers” in the present invention refers to "disordered continuous fibers in the longitudinal direction of composite material B".
  • the arrangement surface X may include at least one curved surface that curves in the bundle width direction.
  • the fiber volume ratio VfB contained in the composite material B is defined by the following formula (d).
  • Fiber volume ratio (VfB) 100 x fiber volume / (fiber volume + resin volume of composite material B) (d) More specifically, the fiber volume ratio (VfB) is preferably 10 Vol% or more and 60 Vol% or less, more preferably 30 Vol% or more and 60 Vol% or less, and even more preferably 40 Vol% or more and 60 Vol% or less.
  • VfB reinforcing fiber volume ratio
  • the resin M2 contained in the composite material B may be a thermosetting resin.
  • an unsaturated polyester resin, a vinyl ester resin, an epoxy resin, a phenol resin, or the like is used, but the epoxy resin is preferable from the viewpoint of adhesiveness and heat resistance.
  • the thermosetting resin one type may be used alone, or two or more types may be used in combination.
  • the resin M2 contained in the composite material B is preferably a thermosetting resin, more preferably a semi-cured thermosetting resin.
  • the curing degree of the semi-cured resin is preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, even more preferably 65% or more, and even more preferably 70% or more.
  • the degree of curing can be adjusted by adjusting the heating temperature using one type of curing agent, or by using two or more types of curing agents with different reaction temperatures and reacting only the curing agent that reacts on the low temperature side. There are ways to do so.
  • the degree of cure of the thermosetting resin can be determined by mixing the unreacted thermosetting resin with a curing agent, allowing it to react, and measuring the reaction heat (using a differential scanning calorimeter, DSC). Specifically, samples are prepared by adding a curing agent in various amounts to an unreacted thermosetting resin, and the amount of reaction heat when the thermosetting resin is cured is measured by DSC. If the curing agent is added in a specific amount or more, the amount of heat generated by the reaction becomes constant. the compounding amount of the agent). The degree of cure is determined by the ratio of the added amount to the standard amount. For example, if the added amount of the curing agent is 50% with respect to the reference amount, the curing degree is 50%.
  • the straightness of the continuous fibers contained in the composite material B during molding in the orientation direction is easily maintained, and even if the arrangement plane X is a three-dimensional shape, the continuous fibers It becomes easy to manufacture a compact in which the relationship between the maximum thickness Tmax and the minimum thickness Tmin satisfies 1 ⁇ Tmax/Tmin ⁇ 1.5.
  • Curing Agent 1.3.1 One Type of Curing Agent There is no particular limitation on the type of curing agent, but one that facilitates adjustment of the degree of curing is preferred. When one type of curing agent is used, it is preferable that the curing reaction progresses slowly over a wide temperature range.
  • Two types of curing agents When using two types of curing agents, it is preferable to use a combination that has a sufficient difference in the temperature range in which the curing reaction proceeds in order to utilize the two-stage curing described later.
  • the temperature ranges in which the respective curing agents start to react are preferably separated by 30°C or more, more preferably by 50°C or more.
  • the curing agent that reacts on the low temperature side can be cured in the temperature range from room temperature to 100°C.
  • the curing agent that reacts at high temperatures is preferably a latent curing agent that reacts at a specific temperature or higher.
  • the latent curing agent preferably utilizes at least one selected from the group consisting of ionic reaction, heat dissolution, molecular sieves, microcapsules, and UV curing.
  • a composite material B may be obtained by adding a latent curing agent to a composite of an uncured thermosetting resin material and continuous fibers.
  • the curing agent can be eluted with a specific trigger.
  • Examples of epoxy resin curing agents include Lewis acid complexes utilizing ionic reaction, dicyandiamide and imidazole compounds utilizing dissolution by heating, and the like.
  • the composite material B is preferably made by pultrusion and semi-cured.
  • pultrusion it is possible to semi-harden the resin while impregnating it with unreacted thermosetting resin in a die, and it is easy to manufacture a desired fiber basis weight and resin ratio.
  • the temperature for semi-curing is not particularly limited, and the temperature may be set according to the characteristics of the curing agent used.
  • a preferred temperature range for semi-curing is 100° C. or less. By setting the temperature to 100° C. or less, it is possible to maintain a wide process window (processing condition width) of the curing heating temperature in the second stage.
  • the semi-cured thermosetting resin contained in the composite material B can complete curing when laminated with the composite material A and molded. That is, the resin M2 can be completely cured during molding to produce a molded product. In other words, the semi-cured composite material B can be shaped in the molding process. When curing is completed when molding the resin M2, it is preferable to use the latent curing agent.
  • Composite material B may contain a microcapsule-type curing agent.
  • the microcapsule curing agent has a mechanism in which the capsules collapse in a specific temperature range and the curing component contained therein dissolves into the matrix.
  • the microcapsule curing agent may be used in the first stage curing.
  • the microcapsules do not disintegrate at room temperature, and the microcapsules may disintegrate in the temperature range during the production of the composite material B.
  • the microcapsule curing agent may be used in the second stage curing.
  • the microcapsules do not collapse in the manufacturing process of the composite material B, in other words, the microcapsules preferably collapse in a temperature range of 120° C. or higher.
  • the microcapsules are disintegrated during press molding, the curing agent contained in the microcapsules is eluted, and curing progresses in the mold to complete curing.
  • the temperature for complete curing is the mold temperature for press molding.
  • Resin M2 can be cured with a microcapsule curing agent.
  • the resin M2 in the present invention is a thermosetting resin obtained by semi-curing the resin M2, and preferably has a complex viscosity ⁇ 2 of 8000 Pa ⁇ s or more and 30000 Pa ⁇ s or less.
  • the resin M2 is a semi-cured thermosetting resin
  • the complex viscosity ⁇ 2 is more preferably 8000 Pa ⁇ s or more and 20000 Pa ⁇ s or less, and still more preferably 10000 Pa ⁇ s or more and 16000 Pa ⁇ s or less.
  • the resin M2 may be a thermoplastic resin. More specifically, it is more preferable that the resin M1 and the resin M2 are thermoplastic resins and that the complex viscosities of the resin M1 and the resin M2 satisfy the following relationship. 3 ⁇ 1 ⁇ 2 ⁇ 30000 (Pa ⁇ s) and ⁇ 1 ⁇ 500 (Pa ⁇ s) however, ⁇ 1 (Pa s): complex viscosity of resin M1 at shear rate 2 (1/s) ⁇ 2 (Pa s): complex viscosity of resin M2 at shear rate 2 (1/s) .
  • Composite material A is preferably a material that flows easily so as not to cause chipping (sometimes called short shots) at the ends of the molded body. It is preferable that it is less likely to flow.
  • the complex viscosity is 500 Pa ⁇ s at 245°C, and it is preferable to mold while being heated to a temperature higher than this.
  • the resin M2 is PA66 (polyhexamethylene adipamide, melting point: about 260°C)
  • PA66 polyhexamethylene adipamide, melting point: about 260°C
  • the complex viscosity is 1550 Pa ⁇ s at 263°C. Since the viscosity changes greatly near the melting point, it is necessary to mold under strict temperature control.
  • PA66 MXD6-PA (melting point: about 240° C.)
  • PA410 polytetramethylene sebacamide, melting point: about 240° C.
  • UV curing resin may be used as the resin M2 contained in the composite material B in order to reduce the influence of temperature rise.
  • compression molding The molded article of the present invention is produced by laminating the composite material A and the composite material B and compression-molding them. Compression molding is often called press molding, but there are two main types of press molding: cold press molding and hot press molding.
  • Cold Press Molding is a method applied when the resin M1 is a thermoplastic resin.
  • the resin M2 may be a thermoplastic resin or a thermosetting resin.
  • the resin M1 is preheated to a temperature at which it can be molded (step A1), and the molding die is controlled to a constant temperature at which the resin M1 solidifies and is molded.
  • Composite material A has the highest temperature in the preheated state, and the temperature decreases unilaterally in (step A2). That is, the composite material A continues to cool in the mold without being heated.
  • Cold press molding includes at least the following (Step A1) to (Step A3).
  • Step A1 This is a step of heating the composite material A to a first predetermined temperature.
  • the resin M1 it is preferable to heat the resin M1 to a moldable temperature or higher (softening point or higher).
  • the resin M2 contained in the composite material B is a thermoplastic resin
  • the composite material B may or may not be heated.
  • the composite material B it is preferable to heat it to a moldable temperature or higher.
  • the composite material B may be heated by receiving heat from the composite material A when the composite material A and the composite material B are laminated.
  • the resin M2 contained in the composite material B is a thermosetting resin, it may or may not be heated.
  • Step A2 Placing Composite Material A and Composite Material B in a mold adjusted to a second predetermined temperature and pressing.
  • the molding pressure at this time is not particularly limited, it is preferably less than 20 MPa, more preferably 10 MPa or less relative to the projected area of the mold cavity. By setting the pressure to less than 20 MPa, it is not necessary to have large-scale molding equipment even in the production of large molded articles. If it is less than 20 MPa with respect to the projected area of the mold cavity, it becomes easy to maintain the straightness of the continuous fibers of the composite material B during molding.
  • Step A3 Hold pressure and allow composite material A and composite material B to fully solidify.
  • the resin M2 is a semi-cured thermosetting resin
  • the resin M2 is hardened by receiving heat from the molding die and the composite material A, and can be changed from a semi-cured state to a fully cured state.
  • a compact is manufactured by performing the steps (Step A1) to (Step A3).
  • Step A1 to (Step A3) must be performed in the above order, but other steps may be included between each step.
  • the other step is, for example, pre-shaping into the shape of the cavity of the mold by using a shaping mold different from the mold used in (step A2) before (step A2). There is a shaping process.
  • step A2 vacuum press molding, in which compression molding is performed while vacuuming, may be used.
  • Hot Press Molding is a molding method in which the resin M1 is heated in a mold.
  • step B1 to step B4 will be described for the case where the resin M1 and the resin M2 are thermosetting resins.
  • Step B1 A step of laminating composite material A and composite material B and arranging them in a mold.
  • Step B2 A step of heating and pressurizing the composite material A and the composite material B placed on the mold.
  • Composite material A and composite material B placed on the mold are heated to a temperature at which curing is initiated or higher.
  • the resin M1 and the resin M2 are clamped, pressurized, and shaped. Hardening is advanced by heating, and shaping is completed at the same time.
  • Step B3 A step of keeping the pressure at the target pressure.
  • the target pressure is 0.1 MPa to 20 MPa, preferably 0.2 MPa to 10 MPa.
  • a rough estimate of the pressure holding time is 1 to 20 minutes.
  • Step B4 A step of cooling.
  • Molding can be completed by performing the steps from (Step B1) to (Step B2). Each of the above steps should be performed in the above order, but may include other steps.
  • the method for producing a molded article of the present invention is a method of laminating a composite material A containing discontinuous fibers and a resin M1 and a composite material B containing continuous fibers and a resin M2, followed by compression molding to produce a molded article.
  • the surface X on which the composite material B is placed on the mold has a three-dimensional shape including a curved surface, and is curved in the bundle width direction of the continuous fibers.
  • the composite material B may exist on the surface layer of the laminate, or the composite material B may exist in the center of the laminate sandwiched between the composite materials A. It's okay to be there.
  • "Bending in the bundle width direction of continuous fibers" has the same meaning as "bending along the bundle width direction of continuous fibers" and "bending in the bundle width direction of continuous fibers”. is.
  • the placement surface X is a surface included in the mold, and is a surface on which the composite material B is arranged during molding. is not. That is, after the composite material A and the composite material B are laminated, when the composite material B exists on the surface layer of the laminate, the surface of the composite material B placed on the mold is the contact surface with the mold. Become. On the other hand, when the composite material B is sandwiched between the composite materials A and is present in the center of the laminate, the composite material B is placed in the mold through the composite material A, so the composite material B comes into contact with the mold. do not do. Since the composite material B is molded after being placed in the mold, the shape of the placement surface of the mold becomes the shape of the compact as it is.
  • the placement plane is shown, for example, at 103 in FIG.
  • the three-dimensional shape may include curved surfaces (bent surfaces) and curved surfaces (bowed surfaces).
  • the three-dimensional shape may include planar regions.
  • the bending angle is preferably 3° or more, more preferably 5° or more, and even more preferably 7° or more. If there is an inclination of 3° or more, 5% or more of the compressive force is applied in the bundle width direction of the continuous fibers contained in the composite material B, so the problem of the present invention becomes more pronounced.
  • the angle of bending is indicated by ⁇ 1 in FIG.
  • a curved surface for example, a hemispherical surface and a spherical surface can be mentioned. More specifically, for example, a portion of a curved surface forming the surface of a sphere or an ellipsoid can be mentioned, and specifically indicated by 201 in FIG.
  • the radius of curvature and length are not particularly limited, but if the angle formed by the tangent to the arrangement plane X and the horizontal plane is 3 degrees or more, the problem of disordered fiber bundles becomes significant. This is because part of the compressive force is applied in the bundle direction of the continuous fibers included in the composite material B.
  • the angle between the tangent to the arrangement plane X and the horizontal plane is preferably 3 degrees or more, more preferably 5 degrees or more, and even more preferably 7 degrees or more.
  • the arrangement plane X bends in the bundle width direction of continuous fibers there is
  • the arrangement plane X has a three-dimensional shape including a curved surface, and the curved surface is curved in the bundle width direction of the continuous fibers (103 in FIG. 1).
  • the composite material B is preheated or heated in a mold to deform into a three-dimensional shape in which the continuous fibers are bent in the bundle width direction. It is preferable that the composite material B has a flat plate shape before heating and a three-dimensional shape after molding.
  • the bundle width direction of continuous fibers is, for example, the X-axis direction in FIGS.
  • the arrangement plane X is bent in an arc or in a folded state in the bundle width direction of the continuous fibers (that is, in the continuous fiber bundle width direction, the arrangement plane X is bent in an arc or bent. is preferred).
  • FIG. 2 depicts a state in which an arc is drawn in the bundle width direction of the continuous fibers
  • FIG. 3 depicts a state in which the continuous fibers are bent in the bundle width direction.
  • the arrangement plane X is curved in an arced state or in a folded state toward the bundle width direction of the continuous fibers, the conventional problems become more pronounced.
  • the continuous fibers contained in the composite material B are more likely to be disturbed due to the compressive force of molding applied in the bundle width direction of the continuous fibers.
  • continuous fibers are not disturbed, and a molded article having high mechanical properties can be stably produced.
  • FIG. 1 shows a case in which a plate-shaped composite material A and a composite material B are laminated and arranged in a mold having a large curvature.
  • composite material A and the composite material B are arranged in the mold, the lamination plane of the composite material A and the composite material B and the arrangement plane X may coincide. In other words, composite material B may be fully laminated with composite material A, rather than partially laminated.
  • composite material A and composite material B By molding composite material A and composite material B separately and joining them together, it is possible to manufacture a molded body in which continuous fibers are arranged in a three-dimensional shape, but the manufacturing process is lengthened and the manufacturing cost increases. According to the present invention, since the composite material A and the composite material B can be integrally molded, the manufacturing cost can be reduced.
  • the relationship between the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers contained in the molded article of the present invention is 1 ⁇ Tmax/Tmin ⁇ 1.5.
  • the continuous fibers contained in the molded article are the same fibers as the continuous fibers contained in the composite material B, and are in a molded state.
  • the present invention A method of laminating a composite material A containing discontinuous fibers and a resin M1 and a composite material B containing continuous fibers and a resin M2 and performing compression molding to produce a molded body,
  • the surface X on which the composite material B is placed on the mold has a three-dimensional shape including a curved surface, and is curved in the bundle width direction of the continuous fibers,
  • the relationship between the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers contained in the molded body is 1 ⁇ Tmax/Tmin ⁇ 1.5. It can also be said.
  • Tmax/Tmin is preferably 1.0 or more.
  • Tmax/Tmin ⁇ 1.5 it means that the continuous fibers are aligned in the orientation direction without being disturbed, and a molded article having high mechanical properties can be obtained.
  • the continuous fibers contained in the molded body are the continuous fibers contained in the composite material B before molding, and the maximum thickness Tmax and the minimum thickness Tmin of the continuous fibers are measured by observing the molded body after molding. . It does not measure the continuous fibers contained in the composite material B before molding.
  • the interlaminar shear strength between the composite material A and the composite material B in the compact is 30 MPa or more.
  • in compact is meant the interlaminar shear strength of Composite A and Composite B after compaction.
  • the location where the discontinuous fibers were included was the composite material A, and the location where the continuous fibers were included was the composite material B.
  • the interlaminar shear strength is 30 MPa or more, a high reinforcing effect of the composite material B can be exhibited.
  • both the resin M1 and the resin M2 are thermoplastic resins, the interlaminar shear strength can be increased by increasing the compatibility between the resin M1 and the resin M2.
  • the resin M2 is a thermosetting resin
  • the resin M2 can be crosslinked with the resin M1 during molding to increase the interlayer shear strength. That is, if the resin M2 is a semi-cured thermosetting resin, it is possible to prevent disturbance of the continuous fibers due to compression molding and increase the interlaminar shear strength with the composite material A.
  • interlaminar shear strength between composite material A and composite material B in the molded body can be measured by measuring the portion where the composite material is flat and laminated.
  • the disturbance of the continuous fibers of the composite material B can be evaluated by measuring the bundle width of the continuous fiber bundle and using the following formula.
  • the fluctuation rate of the fiber bundle width is preferably less than 0.25.
  • By making the fluctuation rate of the fiber bundle width less than 0.25 it means that the fiber width is stabilized and the disturbance of the continuous fibers contained in the molded article can be suppressed. In this case, high mechanical properties can be maintained.
  • (Maximum width Wmax of fiber bundle ⁇ Minimum width Wmin of fiber bundle)/Average width Wave of fiber bundle is preferably less than 0.20, more preferably less than 0.15, and even more preferably less than 0.10.
  • Tmax and minimum thickness Tmin The cross-section of the composite material B was observed so that the cross-section of the continuous fiber in the fiber direction could be observed from the produced molded body.
  • the minimum and maximum thicknesses of the continuous fibers contained in the composite material B after forming the molded body were measured by evenly observing 10 cross sections within a range of 100 mm in the fiber direction.
  • Tmin Minimum thickness of continuous fiber after molding contained in composite material B
  • Tmax Maximum thickness of continuous fiber after molding contained in composite material B From the obtained Tmin and Tmax, the shape of the continuous fiber The retention force was evaluated by the following formula.
  • Tmax/Tmin Shape-retaining power of continuous fiber The value of Tmax/Tmin closer to 1 indicates higher shape-retaining power, and the larger the number, the smaller the shape-retaining power.
  • Interlaminar shear strength was used as an index of the interlaminar shear strength of composite material A and composite material B.
  • the interlaminar shear test method was performed based on JIS K7078, and calculated by the following formula (e). The interlaminar shear strength was measured at a point where composite material A and composite material B were laminated to form a plane.
  • 3P/4bh Expression (e)
  • Interlaminar shear strength (MPa)
  • P breaking load (N)
  • b Width of test piece (mm)
  • h Test piece n thickness (mm)
  • Example 1 Preparation of composite material A
  • carbon fiber “Tenax” registered trademark
  • STS40-24K average fiber diameter 7 ⁇ m, number of single fibers 24,000 manufactured by Teijin Limited cut to a fiber length of 20 mm
  • a material a composite material of carbon fiber and nylon 6 resin in which carbon fibers are randomly oriented two-dimensionally was prepared using Nylon 6 resin A1030 manufactured by Unitika Ltd. according to the method described in US Pat. No. 8,946,342.
  • the resulting composite material was heated at 2.0 MPa for 5 minutes in a press heated to 270° C. to obtain a plate-like composite material A with a width of 250 mm ⁇ length of 250 mm ⁇ average thickness of 2.5 mm.
  • Analysis of the carbon fibers contained in the plate-like composite material A revealed that the carbon fiber volume fraction (Vf) was 35%, the fiber length was constant, and the weight average fiber length was 20 mm.
  • Vf carbon fiber volume fraction
  • thermosetting resin composition As a thermosetting resin, epoxy resin E206S manufactured by Konishi Co., Ltd. was prepared, and 14.7 phr of curing agent ST15 manufactured by Mitsubishi Chemical Co., Ltd. was added to this. Curing agent 2E4MZCN manufactured by Kasei Kogyo Co., Ltd. was mixed at a rate of 5.0 phr. The mixing ratio of the curing agent ST15 was 50% of the amount required for completely curing the epoxy resin E206S with the curing agent ST15 alone.
  • the mixing ratio of the curing agent 2E4MZ-CN was such that the amount added was 50% or more of the amount required to completely cure the epoxy resin E206S with the curing agent 2E4MZ-CN alone.
  • phr per hundred resin indicates the weight ratio when the weight of the epoxy resin in the resin mixture is 100.
  • the amount of curing agent required for complete curing is obtained by preparing samples by adding the amount of curing agent to the epoxy resin at various compounding ratios and using a DSC (X-DSC7000 manufactured by SII Nano Technology Co., Ltd.).
  • DSC X-DSC7000 manufactured by SII Nano Technology Co., Ltd.
  • the amount of reaction heat becomes constant when the curing agent is added at a certain compounding ratio or higher, and it refers to the amount of curing agent added when the amount of reaction heat becomes constant.
  • the surface X on which the composite material B is placed on the mold has a three-dimensional shape including a curved surface, and the fiber turbulence of the continuous fibers can be evaluated when the continuous fibers are bent in the bundle width direction.
  • a hemispherical mold with a radius of 75 mm was prepared (Fig. 1).
  • a sample was prepared separately from the compact produced in Fig. 1 for interlaminar shear strength measurement. Specifically, a plate-shaped composite material A with a width of 250 mm, a length of 250 mm, and an average thickness of 2.5 mm and a composite material B of a width of 20 mm, a length of 100 mm, and a thickness of 0.5 mm are laminated to form a planar shape. made the body. A planar portion in which the composite material A and the composite material B were laminated was cut out, and the interlaminar shear strength was measured.
  • Examples 2 to 6 As described in Table 1, a molded article was produced in the same manner as in Example 1, except that the degree of curing was changed by changing the amount of the curing agent added. Table 1 shows the results.
  • Example 7 As the composite material B, uniaxially oriented continuous fibers (only one orientation direction, not oriented in other directions) and a material using PA66 as a matrix resin (Akulon (registered trademark) manufactured by DSM Engineering Materials Co., Ltd. ) A molded article was produced in the same manner as in Example 1, except that PA66-HC12) was used. Table 1 shows the results.
  • Example 8 As the composite material B, a uniaxially oriented continuous fiber (only one orientation direction, not oriented in other directions) and a material using PA6 as a matrix resin (Akulon (registered trademark) manufactured by DSM Engineering Materials Co., Ltd. ) PA6-HC10UD) was used, and the continuous fibers were oriented in the longitudinal direction of the composite material B and in the direction perpendicular to the longitudinal direction.
  • the material (Akulon (registered trademark) PA6-HC10UD manufactured by DSM Engineering Materials Co., Ltd.) has a thickness of 0.25 mm, two layers in the longitudinal direction and one layer in the direction perpendicular to the longitudinal direction. did.
  • a compact was produced in the same manner as in Example 1 except for this. Table 1 shows the results.
  • the molded article of the present invention and the molded article obtained by molding the same can be used in any part where shock absorption is desired, such as various structural members, such as structural members of automobiles, various electrical products, frames and housings of machines. be done. Particularly preferably, it can be used as an automobile part.

Abstract

不連続繊維と樹脂M1を含む複合材料Aと、連続繊維と樹脂M2を含む複合材料Bとを積層して圧縮成形し、成形体を製造する方法であって、複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっており、成形体に含まれる連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5である、成形体の製造方法により、連続繊維の繊維配向が特に乱れやすくなる、曲面を含んだ三次元形状の成形型を用いた場合であっても、連続繊維の乱れを抑制し、機械物性を担保できる。

Description

成形体の製造方法
 本発明は、複合材料Aと複合材料Bとを積層して圧縮成形し、成形体を製造する方法に関するものである。
 近年、不連続繊維や連続繊維で強化された成形体は、機械物性に優れており、自動車等の構造部材として注目されている。
 特許文献1では、未硬化の熱硬化性マトリックス樹脂を用いた連続強化繊維プリプレグと熱可塑性樹脂シートを用い、熱可塑性樹脂シート特有の粘度範囲に合わせた金型温度に設定して成形した成形体の製造方法が記載されている。
 特許文献2では、シートモールディングコンパウド層と連続繊維による強化層との間に繊維が互いに交差する構造を有するバリア層を設けて成形した成形体が記載されている。
日本国特開2008-230236号公報 国際公開第2018/101245号
 しかしながら、特許文献1に記載の連続繊維強化プリプレグは、プリプレグに含まれる熱硬化性樹脂の硬化度が10%以下と低いため、その他の材料(例えば不連続繊維強化複合材料)とともに圧縮成形すると、その他の材料の流動方向にプリプレグに含まれる連続繊維が追従してしまう。この結果、連続繊維が乱れてしまい、成形体となったときに、高い物性を保つことができない。
 また、特許文献2に記載の複合材料は、シートモールディングコンパウンド層と連続繊維による強化層との間にバリア層を設けているため、成形体を製造するにあたって、本来必要のない層が必要となり、積層の手間が増える。更に、3つの層間での層間せん断強度の確保に問題が生じるし、層間の収縮率の違いによって得られた成形体が反ってしまう課題が生じる。
 そこで本発明の目的は、連続繊維の繊維配向が特に乱れやすくなる、曲面を含んだ三次元形状の成形型を用いた場合であっても、連続繊維の乱れを抑制し、機械物性を担保できる成形体の製造方法を提供する。
 上記課題を解決するために、本発明は以下の手段を提供する。
1.不連続繊維と樹脂M1を含む複合材料Aと、連続繊維と樹脂M2を含む複合材料Bとを積層して圧縮成形し、成形体を製造する方法であって、
 複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっており、
 成形体に含まれる連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5である、
成形体の製造方法。
2.前記配置面Xは、連続繊維の束幅方向に向かって、弧を描いた状態、又は折れた状態で曲がっている、前記1.に記載の成形体の製造方法。
3.成形体における複合材料Aと複合材料Bとの層間せん断強度が30MPa以上である、前記1.又は2.に記載の成形体の製造方法。
4.樹脂M2が半硬化した熱硬化性樹脂であって、樹脂M2の複素粘度η2が8000Pa・s以上30000Pa・s以下である、前記1.乃至3.のいずれか1項に記載の成形体の製造方法。
5.樹脂M2が半硬化した熱硬化性樹脂であって、硬化度が50%以上である、前記1.乃至4.のいずれか1項に記載の成形体の製造方法。
6.成形の時に、樹脂M2を完全硬化して成形体を製造する、前記4.又は5.に記載の成形体の製造方法。
7.複合材料Bは潜在性硬化剤を含み、前記潜在性硬化剤は、イオン反応、加熱溶解、モレキュラーシーブ、マイクロカプセル、又はUV硬化の一群から選ばれる少なくとも1つを利用したものである、前記4.乃至6.のいずれか1項に記載の成形体の製造方法。
8.樹脂M1、及び樹脂M2が熱可塑性樹脂である、前記1.乃至3.のいずれか1項に記載の成形体の製造方法。
9.樹脂M1と樹脂M2の複素粘度が、下記の関係を満たす前記8.に記載の成形体の製造方法。
 3×η1<η2<30000(Pa・s)かつ η1<500(Pa・s)
ただし、
 η1(Pa・s):せん断速度2(1/s)のときの、樹脂M1の複素粘度
 η2(Pa・s):せん断速度2(1/s)のときの、樹脂M2の複素粘度
である。
10.成形体における連続繊維が、下記式を満たす、前記1.乃至9.のいずれか1項に記載の成形体の製造方法。
 (繊維束の最大幅Wmax-繊維束の最小幅Wmin)/繊維束の平均幅Wave<0.25
11.複合材料Bに含まれる連続繊維は、一軸配向した連続繊維であって、複合材料Bの長手方向に配向している、前記1.乃至10.のいずれか1項に記載の成形体の製造方法。
12.複合材料Bに含まれる連続繊維は、二軸配向した連続繊維であって、複合材料Bの長手方向、及び長手方向と直交した方向に配向している、前記1.乃至10.のいずれか1項に記載の成形体の製造方法。
 不連続繊維で強化された複合材料と、連続繊維で強化された複合材料とを積層して成形したときに、連続繊維が乱れずに成形できるため、安定して高い機械物性を有する成形体を製造することができる。
本発明の成形体の製造方法の一例を描いた模式図。 (a)(b)本発明の複合材料Bと、成形下型の関係の一例を示す模式図。 (a)(b)本発明の複合材料Bと、成形下型の関係の一例を示す模式図。
[強化繊維]
 複合材料A、又は複合材料Bに含まれる繊維に特に限定は無いが、強化繊維であることが好ましい。具体的には、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、及び玄武岩繊維からなる群より選ばれる1つ以上の強化繊維であることが好ましい。
[炭素繊維]
 本発明の複合材料A又はBに含まれる繊維は、炭素繊維であることが好ましい。炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。なかでも、本発明においては引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましい。
[炭素繊維の繊維直径]
 本発明の複合材料A又は複合材料Bに含まれる繊維が炭素繊維の場合、用いられる炭素繊維の単糸(一般的に、単糸はフィラメントと呼ぶ場合がある)の繊維直径は、炭素繊維の種類に応じて適宜決定すればよく、特に限定されるものではない。平均繊維直径は、通常、3μm~50μmの範囲内であることが好ましく、4μm~12μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることがさらに好ましい。炭素繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する炭素繊維(単糸)の直径を指す。炭素繊維の平均繊維直径は、例えば、JIS R-7607:2000に記載された方法によって測定することができる。
[ガラス繊維]
 本発明の複合材料A又は複合材料Bに含まれる繊維は、ガラス繊維であっても良い。ガラス繊維の種類に特に限定は無く、Eガラス、AガラスまたはCガラスからなるガラス繊維のいずれをも使用することができ、また、これらを混合して使用することもできる。本発明におけるガラス繊維に特に限定は無いが、ガラス繊維の平均繊維直径は、1μm~50μmが好ましく、5μm~20μmがより好ましい。
[サイジング剤]
 本発明に用いられる炭素繊維又はガラス繊維は、表面にサイジング剤が付着しているものであってもよい。サイジング剤が付着している強化繊維を用いる場合、当該サイジング剤の種類は、強化繊維及びマトリクス樹脂の種類に応じて適宜選択することができるものであり、特に限定されるものではない。
[複合材料A]
[複合材料Aに含まれる不連続繊維]
1.重量平均繊維長
 複合材料Aに含まれる不連続繊維の重量平均繊維長は0.3mm以上が好ましく、0.3mm以上100mm以下であることがより好ましく、0.3mm以上100mm未満であることが更に好ましく、0.3mm以上80mm以下であることが一層好ましく、0.3mm以上50mm以下であることがより一層好ましく、0.3mm以上40mm以下であることが特に好ましい。強化繊維の重量平均繊維長が100mm以下(より好ましくは100mm未満)の場合、複合材料Aの流動性が向上し、圧縮成形する際に、所望の成形体形状を得やすい。一方、重量平均繊維長が0.3mm以上の場合、成形体の機械強度が向上しやすい。
 不連続繊維は繊維長が互いに異なる強化繊維を併用してもよい。換言すると、強化繊維は、重量平均繊維長に単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。
 強化繊維の平均繊維長は3mm以上であれば、例えば、成形体から無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、下記式(a)に基づいて求めることができる。平均繊維長の測定は、重量平均繊維長(Lw)で測定する。
 個々の強化繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、以下の式(a)、(b)により求められる。
 Ln=ΣLi/j・・・式(a)
 Lw=(ΣLi)/(ΣLi)・・・式(b)
 なお、繊維長が一定長の場合は数平均繊維長と重量平均繊維長は同じ値になる。
 成形体から強化繊維の抽出は、例えば、成形体に対し、500℃×1時間程度の加熱処理を施し、炉内にて樹脂を除去することによって行うことができる。
[複合材料Aの繊維体積割合VfA]
 本発明において、複合材料Aに含まれる繊維体積割合VfAは下記式(c)で定義される。
 繊維体積割合(VfA)=100×繊維体積/(繊維体積+複合材料Aの樹脂体積)・・・式(c)
 より具体的には、繊維体積割合(VfA)は10Vol%以上50Vol%以下であることが好ましく、15Vol%以上45Vol%以下であることがより好ましく、20Vol%以上40Vol%以下であれば更に好ましい。
 強化繊維体積割合(VfA)が10Vol%以上の場合、所望の機械特性が得られやすい。一方で、強化繊維体積割合(VfA)が50Vol%を超えない場合、プレス成形等に使用する際の流動性が良好で、所望の成形体形状を得られやすい。
[複合材料Aに含まれる不連続繊維の繊維形態]
1.束形態
 強化繊維は繊維長が5mm以上の不連続繊維であって、繊維束0.3mm未満の炭素繊維a1と、束幅0.3mm以上3.0mm以下の炭素繊維束a2とを含んでいることが好ましい。複合材料Aに含まれる強化繊維に対する強化繊維束a2の体積割合は、5Vol%以上95Vol%未満が好ましく、10Vol%以上90Vol%未満がより好ましい。
2.分散
 複合材料Aにおいて、強化繊維は面内方向に分散していることが好ましい。面内方向とは、成形体の板厚方向に直交する方向であり、板厚方向に直交する平行な面の不定の方向を意味している。
 更に、強化繊維は面内方向に2次元方向にランダムに分散していることが好ましい。複合材料Aを流動させずに圧縮成形した場合、成形前後で強化繊維の形態はほぼ維持されるため、複合材料Aを成形した成形体に含まれる強化繊維も同様に、成形体の面内方向に2次元ランダムに分散していることが好ましい。
 ここで、2次元ランダムに分散しているとは、強化繊維が、成形体の面内方向において一方向のような特定方向ではなく無秩序に配向しており、全体的には特定の方向性を示すことなくシート面内に配置されている状態を言う。この2次元ランダムに分散している不連続繊維を用いて得られる複合材料Aは、面内に異方性を有しない、実質的に等方性の複合材料Aである。
 なお、2次元ランダムの配向度は、互いに直交する二方向の引張弾性率の比を求めることで評価する。成形体の任意の方向、及びこれと直交する方向について、それぞれ測定した引張弾性率の値のうち大きいものを小さいもので割った(Eδ)比が5以下、より好ましくは2以下、更に好ましくは1.5以下であれば、強化繊維が2次元ランダムに分散していると評価できる。成形体は形状を有しているため、面内方向への2次元ランダム分散の評価方法としては、複合材料Aに含まれる樹脂が熱可塑性樹脂の場合、軟化温度以上に加熱して平板形状に戻して固化すると良い。この際、複合材料Aと複合材料Bは分離し、複合材料Aのみ取り出す。その後、試験片を切り出して引張弾性率を求めると、2次元方向のランダム分散状態を確認できる。
[複合材料Aに含まれる樹脂M1]
 複合材料Aに含まれる樹脂M1に特に限定は無く、熱硬化性樹脂であっても、熱可塑性樹脂であっても良い。
1.熱可塑性樹脂
 複合材料Aに含まれる好ましい樹脂M1は、熱可塑性樹脂である。熱可塑性樹脂の種類は特に限定されるものではなく、所望の軟化点又は融点を有するものを適宜選択して用いることができる。上記熱可塑性のマトリクス樹脂としては、通常、軟化点が180℃~350℃の範囲内のものが用いられるが、これに限定されるものではない。
 熱可塑性樹脂の種類としては、例えば、塩化ビニル系樹脂、塩化ビニリデン系樹脂、酢酸ビニル系樹脂、ポリビニルアルコール系樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン系樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン系樹脂(ABS樹脂)、アクリル系樹脂、メタクリル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、各種の熱可塑性ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、ポリブチレンナフタレート系樹脂、ボリブチレンテレフタレート系樹脂、ポリアリレート系樹脂、ポリフェニレンエーテ系樹脂、ポリフェニレンスルフィド系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリ乳酸系樹脂などが挙げられる。
 熱可塑性樹脂は、結晶性樹脂であっても、非晶性樹脂であっても良い。結晶性樹脂の場合、好ましい結晶性樹脂は、具体的にはナイロン6などのポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂などを挙げる事ができる。中でも、ポリアミド系樹脂、ポリブチレンテレフタレート系樹脂、ポリフェニレンスルフィド系樹脂は、耐熱性や機械的強度に優れるなど好適に用いられる。
 ポリアミド系樹脂の一つであるナイロン(以下「PA」と略記することがある)としては、PA6(ポリカプロアミド、ポリカプロラクタム、ポリε-カプロラクタムとも称される)、PA26(ポリエチレンアジパミド)、PA46(ポリテトラメチレンアジパミド)、PA66(ポリヘキサメチレンアジパミド)、PA69(ポリヘキサメチレンアゼパミド)、PA410(ポリテトラメチレンセバカミド)、PA610(ポリヘキサメチレンセバカミド)、PA611(ポリヘキサメチレンウンデカミド)、PA612(ポリヘキサメチレンドデカミド)、PA11(ポリウンデカンアミド)、PA12(ポリドデカンアミド)、PA1212(ポリドデカメチレンドデカミド)、PA6T(ポリヘキサメチレンテレフタルアミド)、PA6I(ポリヘキサメチレンイソフタルアミド)、PA912(ポリノナメチレンドデカミド)、PA1012(ポリデカメチレンドデカミド)、PA9T(ポリノナメチレンテレフタラミド)、PA9I(ポリノナメチレンイソフタルアミド)、PA10T(ポリデカメチレンテレフタラミド)、PA10I(ポリデカメチレンイソフタルアミド)、PA11T(ポリウンデカメチレンテレフタルアミド)、PA11I(ポリウンデカメチレンイソフタルアミド)、PA12T(ポリドデカメチレンテレフタラミド)、PA12I(ポリドデカメチレンイソフタルアミド)、ポリアミドMXD6(ポリメタキシリレンアジパミド)からなる群より選ばれる少なくとも1種が好ましい。
2.熱硬化性樹脂
 複合材料Aに含まれる樹脂M1は、熱硬化性樹脂であっても良い。熱硬化性樹脂の場合、不飽和ポリエステル系樹脂、ビニルエステル系樹脂、エポキシ樹脂、フェノール樹脂などが用いられる。熱硬化性樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。より具体的には、複合材料Aは、強化繊維と熱硬化性樹脂を含んだシートモールディングコンパウンド(SMCと呼ぶ場合がある)であっても良い。
3.その他の剤
 本発明で用いる複合材料Aには、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状のフィラー、難燃剤、耐UV剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤を含んでいてもよい。
[複合材料B]
[複合材料Bに含まれる連続繊維]
1.全般
 本発明における複合材料Bは連続繊維を含む。該連続繊維は連続繊維束でもあり、束幅を有する。繊維束の幅と厚みは、互いに直交する3つの直線(x軸、y軸、及びz軸とする)を考えた場合に、繊維束の繊維方向をx軸方向とし、それに直交するy軸方向の長さの最大値ymaxとz軸方向の長さの最大値zmaxとのうち長い方を幅とし、短い方を厚みとする。
 連続繊維の重量平均繊維長は100mm以上が好ましい。
 連続繊維は、織編物、ストランドの一方向配列シート状物及び多軸織物等のシート状であっても良い。なお、多軸織物とは、一般に、一方向に引き揃えた繊維強化材の束をシート状にして角度を変えて積層したもの(多軸織物基材)を、ポリアミド糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面の間を表面方向に沿って往復しステッチした織物をいう。
2.一軸配向
 本発明における複合材料Bに含まれる連続繊維は、一軸配向した連続繊維であることが好ましい。一軸配向した連続繊維とは、配向方向が一つのみであり、他の方向には配向していないことを意味する。一軸配向した連続繊維を用いた場合、成形する時に繊維幅が広がってしまう課題が、より顕著になる。複合材料Bに含まれる連続繊維は、一軸配向した連続繊維であって、複合材料Bの長手方向に配向していることがより好ましい。
3.二軸配向
 複合材料Bに含まれる連続繊維は、二軸配向した連続繊維であって、複合材料Bの長手方向、及び長手方向と直交した方向に配向していることが好ましい。このとき、複合材料Bは一軸配向した連続繊維プリプレグを積層して二軸配向とすれば良い。これは、長手方向と直交した方向に配向している連続繊維によって、長手方向の連続繊維の乱れを抑制するためである。なお、二軸配向した場合、本発明における「連続繊維の配向の乱れ」とは、「複合材料Bの長手方向の連続繊維の乱れ」を指す。また、二軸配向した連続繊維を用いる場合の配置面Xは少なくとも1つの束幅方向に向かって曲がる曲面を含んでいればよい。
[複合材料Bの繊維体積割合(VfB)]
 本発明において、複合材料Bに含まれる繊維体積割合VfBは下記式(d)で定義される。
 繊維体積割合(VfB)=100×繊維体積/(繊維体積+複合材料Bの樹脂体積)・・・式(d)
 より具体的には、繊維体積割合(VfB)は10Vol%以上60Vol%以下であることが好ましく、30Vol%以上60Vol%以下であることがより好ましく、40Vol%以上60Vol%以下であればさらに好ましい。
 強化繊維体積割合(VfB)が10Vol%以上の場合、所望の機械特性が得られやすい。一方、強化繊維体積割合(VfB)が60Vol%を超えない場合、強化繊維周辺に樹脂が一定量存在し、複合材料Aの樹脂M1と複合材料Bの樹脂M2を安定して密着させることができるため高い物性を維持し易くなる。
[複合材料Bに含まれる樹脂M2]
1.熱硬化性樹脂
1.1 種類
 複合材料Bに含まれる樹脂M2は、熱硬化性樹脂であっても良い。複合材料Bに含まれる熱硬化性樹脂は、不飽和ポリエステル系樹脂、ビニルエステル系樹脂、エポキシ樹脂、フェノール樹脂などが用いられるが、接着性、耐熱性の観点からエポキシ樹脂が好ましい。熱硬化性樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
1.2 硬化度
 複合材料Bに含まれる樹脂M2は、熱硬化性樹脂であることが好ましく、半硬化した熱硬化性樹脂であることがより好ましい。半硬化樹脂の硬化度は50%以上が好ましく、55%以上がより好ましく、60%以上が更に好ましく、65%以上が一層好ましく、70%以上がより一層好ましい。
 硬化度の調整方法は、1種類の硬化剤を使用して加熱温度を調整する方法、反応温度の異なる2種類以上の硬化剤を使用し、低温側で反応する硬化剤のみを反応させて調整する方法などがある。
 熱硬化性樹脂の硬化度は、未反応の熱硬化性樹脂に対して硬化剤を混ぜて反応させ、反応熱量を測定する(示差走査熱量計、DSCを用いる)ことによって決定できる。具体的には、未反応の熱硬化性樹脂に対して、様々な配合量で硬化剤を添加したサンプルを作製し、熱硬化性樹脂を硬化させたときの反応熱量をDSCで測定する。特定の配合量以上で硬化剤を添加すると反応熱量が一定となるので、反応熱量が一定となった時の硬化剤の配合量を基準量とする(硬化度100%とすることが出来る、硬化剤の配合量とする)。基準量に対して投入した添加量の割合で硬化度を決定する。例えば、基準量に対して投入した硬化剤の添加量が50%であれば、硬化度50%となる。
 半硬化した熱硬化性樹脂を用いることで成形の時に複合材料Bに含まれる連続繊維の配向方向への直進性が保持されやすくなり、配置面Xが三次元形状であっても、連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5となる成形体を製造するのが容易となる。
1.3 硬化剤
1.3.1 1種類の硬化剤
 硬化剤の種類に特に限定はないが、硬化度の調整を行いやすいものが好ましい。1種類の硬化剤を使用する場合には、広範囲の温度域で緩やかに硬化反応が進むものが好ましい。
1.3.2 2種類の硬化剤
 2種類の硬化剤を使用する場合には、後述する2段階硬化に利用するため、硬化反応が進行する温度域に十分な差がある組合せが好ましい。2種類の硬化剤を使用する場合、それぞれの硬化剤の反応が開始する温度域が30℃以上離れていることが好ましく、50℃以上離れていることがより好ましい。
 低温側で反応させる硬化剤は常温~100℃までの温度範囲で硬化出来ることが好ましい。
 一方、高温側で反応させる硬化剤は、製造効率上の観点から、特定の温度以上の領域で反応する潜在性硬化剤が好ましい。潜在性硬化剤は、イオン反応、加熱溶解、モレキュラーシーブ、マイクロカプセル、又はUV硬化の一群から選ばれる少なくとも1つを利用することが好ましい。未硬化の熱硬化性樹脂材料と連続繊維とを複合化したものに、潜在性硬化剤を添加し、複合材料Bとすると良い。潜在性硬化剤として、モレキュラーシーブやマイクロカプセルなどに封入しておけば、特定のトリガーで硬化剤を溶出できる。また、エポキシ樹脂硬化剤においてはイオン反応を利用したルイス酸錯体、加熱による溶解を利用したジシアンジアミドやイミダゾール化合物などが挙げられる。
1.4 2段階硬化
 複合材料Bの作製過程で1段階目の硬化を行うことで半硬化樹脂とし、その後、複合材料Aと複合材料Bとを積層して成形体を製造する際に2段階目の硬化を行うことが好ましい(2段階硬化)。
 複合材料Bとして、一軸配向した連続繊維を用いた場合、複合材料Bは引抜成形によって作成され、半硬化させたものが好ましい。引抜成形であればダイ内で未反応の熱硬化性樹脂を含浸させながら半硬化させることが可能であり、繊維目付や樹脂割合も所望のものを製造することが容易である。この時、半硬化させるための温度に特に制限はなく、使用する硬化剤の特性に合わせた温度とすれば良い。半硬化させるための好ましい温度範囲は100℃以下である。100℃以下とすることで2段階目の硬化加熱温度のプロセスウィンドウ(加工の条件幅)を広く保つことができる。複合材料Bに含まれる半硬化した熱硬化性樹脂は、複合材料Aと積層して成形する際に硬化を完了させることができる。すなわち、成形の時に樹脂M2を完全硬化して成形体を製造することができる。言い換えると半硬化状態の複合材料Bは、成形工程で賦形可能である。樹脂M2を成形する際に硬化を完了させる場合、前記潜在性硬化剤を用いると良い。
1.5 複合材料Bに含まれるマイクロカプセル硬化剤
 複合材料Bには、マイクロカプセル型の硬化剤を含んでいても良い。マイクロカプセル硬化剤は、特定の温度領域においてカプセルが崩壊し、中に含まれる硬化成分がマトリクス中に溶出する機構を持つ。
(1)2段階硬化のうち1段階目の硬化での使用
 樹脂M2を2段階で硬化させる場合、マイクロカプセル硬化剤を1段階目の硬化に用いても良い。この場合、室温ではマイクロカプセルは崩壊せず、複合材料Bの製造時の温度領域でマイクロカプセルを崩壊させればよい。
(2)2段階硬化のうち2段階目の硬化での使用
 樹脂M2を2段階で硬化させる場合、マイクロカプセル硬化剤を2段階目の硬化に用いても良い。この場合、複合材料Bの製造工程ではマイクロカプセルが崩壊しないことが好ましく、言い換えるとマイクロカプセルは120度以上の温度領域で崩壊することが好ましい。
 一方、プレス成形する際には半硬化樹脂を完全硬化させることが好ましい。プレス成形の際にマイクロカプセルが崩壊し、マイクロカプセル中に含まれる硬化剤が溶出し、成形型内で硬化が進んで完全硬化させることが好ましい。この場合、完全硬化させる温度は、プレス成形の成形型温となる。
(3)2段階硬化のうち1段階目及び2段階目での使用
 2種類のマイクロカプセル硬化剤を用いることで、(1)一段階目の硬化と、(2)二段階目の双方において、樹脂M2をマイクロカプセル硬化剤によって硬化させることができる。
1.6 樹脂M2の複素粘度(η2(Pa・s))
 本発明における樹脂M2は、樹脂M2が半硬化した熱硬化性樹脂であって、複素粘度η2が8000Pa・s以上30000Pa・s以下であることが好ましい。この範囲を満たすことで、複合材料Aと複合材料Bとを積層して成形した際に、成形型の形状(特に曲面を含んだ三次元形状)に沿うように複合材料Bを賦形しやすくなるし、成形する時に複合材料Bに含まれる連続繊維の直進性も担保できるため、賦形性と高い機械物性とを両立できる製造方法を提供できる。
 より好ましくは、樹脂M2が半硬化した熱硬化性樹脂であって、複素粘度η2は、8000Pa・s以上20000Pa・s以下がより好ましく、10000Pa・s以上16000Pa・s以下が更に好ましい。
2.熱可塑性樹脂
 樹脂M2は熱可塑性樹脂であっても良い。より具体的には、樹脂M1、及び樹脂M2が熱可塑性樹脂であって、樹脂M1と樹脂M2の複素粘度が下記の関係を満たすと、より好ましい。
 3×η1<η2<30000(Pa・s) かつ η1<500(Pa・s)
ただし、
 η1(Pa・s):せん断速度2(1/s)のときの、樹脂M1の複素粘度
 η2(Pa・s):せん断速度2(1/s)のときの、樹脂M2の複素粘度
である。
 複合材料Aは成形体の端部に欠け(ショートショットと呼ぶ場合がある)を発生させないために流動し易い材料であることが好ましく、一方、複合材料Bは部分補強するため、複合材料Aに比べて流動しにくいことが好ましい。
 3×η1<η2<30000(Pa・s)かつη1<500(Pa・s)を満たすことで、複合材料Aと、複合材料Bとの間で、成形時の流動性に大きな差を設けることができ、樹脂M1は樹脂M2に比べて大きな流動性を確保できる。3×η1<η2あれば、複合材料Aに比べて複合材料Bの樹脂M2は流動し難くなり、成形体における連続繊維による補強が容易になる。
 樹脂M1がナイロン6(融点:約225℃、PA6と呼ぶ場合がある)の場合、複素粘度は245℃で500Pa・sであり、これ以上の温度に加熱した状態で成形することが好ましい。
 樹脂M2が、PA66(ポリヘキサメチレンアジパミド、融点:約260℃)の場合、複素粘度は263℃で1550Pa・sである。融点付近では粘度が大きく変化するため、厳格な温度管理のもと成形する必要がある。また、PA66以外にも、樹脂M2はMXD6-PA(融点:約240℃)、PA410(ポリテトラメチレンセバカミド、融点:約240℃)、なども用いることが可能である。
3.紫外線硬化樹脂
 温度上昇による影響を受けにくくするためには、紫外線硬化性樹脂を、複合材料Bに含まれる樹脂M2として用いても良い。
[圧縮成形]
 本発明の成形体は、複合材料Aと複合材料Bとを積層して圧縮成形して製造する。
 圧縮成形はプレス成形と呼ばれることが多いが、プレス成形には主にコールドプレス成形とホットプレス成形の2種類がある。
1.コールドプレス成形
 コールドプレス成形は、樹脂M1が熱可塑性樹脂である場合に適用される方法である。このとき、樹脂M2は熱可塑性樹脂であっても、熱硬化性樹脂であっても良い。
 樹脂M1を賦形可能な温度以上に予備加熱し(工程A1)、成形型は樹脂M1が固化する温度で一定温度に制御し成形する。複合材料Aは予備加熱された状態における温度が最も高く、(工程A2)では温度が一方的に下がっていく。すなわち、複合材料Aは成形型内では加熱されずに冷却され続ける。コールドプレス成形は少なくとも以下の(工程A1)~(工程A3)を含んでいる。
(工程A1)
 複合材料Aを、第1の所定温度に加熱する工程である。例えば樹脂M1の成形可能な温度以上(軟化点以上)に加熱すると良い。
 複合材料Bに含まれる樹脂M2が熱可塑性樹脂の場合、複合材料Bは加熱しても加熱しなくても良い。複合材料Bを加熱する場合、成形可能な温度以上に加熱することが好ましい。複合材料Bを加熱しない場合、複合材料Aと複合材料Bを積層したときに、複合材料Aから熱を受けることで、複合材料Bを加熱すれば良い。
 複合材料Bに含まれる樹脂M2が熱硬化性樹脂の場合、加熱しても加熱しなくても良い。
(工程A2)
 複合材料Aと、複合材料Bを、第2の所定温度に調節された成形型に配置し加圧する工程。
 このときの成形圧力については特に限定はしないが、成形型キャビティ投影面積に対して20MPa未満が好ましく、10MPa以下であるとより好ましい。20MPa未満とすることで、大きな成形体の製造においても大規模な成形設備をもたなくてよい。成形型キャビティ投影面積に対して20MPa未満であれば、成形の時に複合材料Bの連続繊維の直進性を維持しやすくなる。
(工程A3)
 保圧し、複合材料Aおよび複合材料Bが十分に固化させる工程。樹脂M2が半硬化した熱硬化性樹脂である場合、成形型や複合材料Aの熱を受けことで硬化が進み、半硬化状態から完全硬化状態とすることが出来る。
 (工程A1)~(工程A3)の工程を行うことで、成形体を製造する。
(他の工程)
 上記の(工程A1)~(工程A3)の各工程は、上記の順番で行う必要があるが、各工程間に他の工程を含んでもよい。
 (i)他の工程とは、例えば、(工程A2)の前に(工程A2)で利用される成形型と別の賦形型を利用して、成形型のキャビティの形状に予め賦形する賦形工程がある。
 (ii)(工程A2)において、真空にしながら圧縮成形する真空プレス成形を用いてもよい。
2.ホットプレス成形
 ホットプレス成形は、成形型内で樹脂M1が加熱される成形方法である。
 例えば、樹脂M1と樹脂M2とが、熱硬化性樹脂の場合について、(工程B1)~(工程B4)を説明する。
(工程B1) 複合材料A、及び複合材料Bを積層し、成形型へ配置する工程。
(工程B2) 成形型上に載置された複合材料A、及び複合材料Bを加熱し、加圧する工程。
 成形型上に載置された複合材料A、及び複合材料Bとを、硬化が開始される温度以上に加熱する。成形型内で樹脂M1と樹脂M2は型締めされて加圧され、賦形される。加熱されることで硬化が進められ、同時に賦形が完了する。樹脂M2が半硬化した熱硬化性樹脂である場合、工程B2で硬化が進み、半硬化状態から完全硬化状態とすることができる。
(工程B3) 目標圧力で保圧する工程。目標圧力は0.1MPa~20MPaであり、好ましくは0.2MPa~10MPaである。保圧する時間の目安は1~20分である。
(工程B4) 冷却する工程。
 (工程B1)から(工程B2)の工程を行うことで、成形を完結できる。
 上記の各工程は、上記の順番で行う必要があるが、他の工程を含んでもよい。
[配置面X]
1.形状
 本発明の成形体の製造方法は、不連続繊維と樹脂M1を含む複合材料Aと、連続繊維と樹脂M2を含む複合材料Bとを積層して圧縮成形し、成形体を製造する方法であって、複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっている。複合材料Aと複合材料Bとが積層された後は、複合材料Bは積層体の表層に存在していても良いし、複合材料Aに挟まれて複合材料Bが積層体の中央に存在していても良い。「連続繊維の束幅方向に向かって曲がっている」とは、「連続繊維の束幅方向に沿って曲がっている」、及び「連続繊維の束幅方向に曲がっている」ということと同じ意味である。
1.1 三次元形状
 配置面Xとは、成形型に含まれる面であって、成形の際に、複合材料Bが配置される面であるが、必ずしも複合材料Bと成形型との接触面ではない。すなわち複合材料Aと複合材料Bとが積層された後、複合材料Bが積層体の表層に存在している場合は、複合材料Bの成形型への配置面は、成形型への接触面となる。一方、複合材料Aに挟まれて複合材料Bが積層体の中央に存在している場合、複合材料Bは複合材料Aを介して成形型に配置されるため、複合材料Bは成形型に接触しない。成形型に配置後、複合材料Bは成形されるため、成形型の配置面の形状は、そのまま成形体の形状となる。配置面は、例えば図1の103に示される。
 三次元形状は、屈曲した面(折れ曲がっている面)や、湾曲した面(弓なりに曲がった面)を含んでいても良い。三次元形状は、平面の領域を含んでいても良い。
 屈曲した面の場合、例えば図3の301で示された面が挙げられる。屈曲は角度が3°以上であることが好ましく、5°以上であることがより好ましく、7°以上が更に好ましい。3°以上の傾きがあることで圧縮力の5%以上が複合材料Bに含まれる連続繊維の束幅方向に加わるため本発明の課題がより顕著になる。屈曲の角度は、図3のθ1で示される。
 湾曲した面の場合、例えば半球状面、球状面が挙げられる。より詳しくは、例えば、球体や楕円体の表面を構成する曲面の一部分が挙げられ、具体的には図2の201で示される。曲率の半径や長さには特に制限はないが、配置面Xの接線と、水平面とのなす角が3度以上あると、繊維束が乱れる課題が顕著になる。これは、圧縮力の一部が、複合材料Bに含まれる連続繊維の束方向に加わってしまうためである。配置面Xの接線と、水平面とのなす角は、3度以上が好ましく、5度以上がより好ましく、7度以上が更に好ましい。
1.2 配置面Xは連続繊維の束幅方向に向かって曲がる
 配置面Xは、曲面を含んだ三次元形状であって、複合材料Bに含まれる連続繊維の束幅方向に向かって曲がっている。言い換えると、配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって前記曲面は曲がっている(図1の103)。複合材料Bは、予め加熱するか、又は成形型内で加熱し、連続繊維の束幅方向に向かって曲がった形状である三次元形状の状態に変形させる。加熱前の複合材料Bは平板形状であり、成形後に三次元形状となるのが好ましい。連続繊維の束幅方向とは、例えば図1、図2、図3でいうX軸方向である。
 配置面Xは、連続繊維の束幅方向に向かって、弧を描いた状態、又は折れた状態で曲がっている(すなわち、連続繊維の束幅方向に、弧を描いて曲がっている、又は折れ曲がっている)ことが好ましい。図2では、連続繊維の束幅方向に向かって弧を描いた状態が描かれており、図3では、連続繊維の束幅方向に向かって折れた状態が描かれている。
 連続繊維として、例えば特許文献1(特開2008-230236号)に記載のものを使用すると、配置面Xで、連続繊維の配向が乱れやすい。これは、特許文献1(特開2008-230236号)に記載の連続繊維が含まれた熱硬化性樹脂プリプレグの硬化度は10%以下と低く、成形時の粘度が低すぎるためである。例えば図2の201や図3の301に示される場所に、特許文献1(特開2008-230236号)に記載の連続繊維を含んだ熱硬化性樹脂プリプレグを配置した場合、圧縮成形したとき、連続繊維が束幅方向へ圧縮力を受けることに加え、不連続繊維を含む複合材料Aの成形流動に引き摺られてしまい、連続繊維の配向が乱れが発生する。
 配置面Xは、連続繊維の束幅方向に向かって、弧を描いた状態、又は折れた状態で曲がっている場合、従来の課題はより顕著になる。このような形状を持つ場合、複合材料Bに含まれる連続繊維の束幅方向に、成形の圧縮力が加わるため連続繊維がより乱れやすくなる。本発明の製造方法では連続繊維は乱れず、安定して高い機械物性を有する成形体を製造することができる。
1.3 配置面Xと積層面
 成形体を製造するための、複合材料Aと複合材料Bの具体例としては、例えば図1のような場合が挙げられる。図1は大きな曲率を持つ成形型に、平板形状の複合材料Aと複合材料Bを積層して配置する場合である。
 複合材料Aと複合材料Bを成形型に配置したとき、複合材料Aと複合材料Bとの積層面と、配置面Xとは一致していても良い。言い換えると、複合材料Bは複合材料Aと、部分的な積層ではなく、完全に積層されていても良い。
 複合材料Aと複合材料Bとをそれぞれ成形して両者を接合すれば、三次元形状へ連続繊維を配置させた成形体を製造できるが、製造プロセスが長くなって製造コストが増加してしまう。本発明によれば、複合材料Aと複合材料Bを一体成形できるため、製造コストを低減できる。
[成形体に含まれる連続繊維の最大厚みと最小厚み]
 本発明の成形体に含まれる連続繊維の最大厚みTmaxと、最小厚みTminの関係は、1≦Tmax/Tmin≦1.5である。ここで、成形体に含まれる連続繊維とは、複合材料Bに含まれていた連続繊維と同一の繊維であって、成形された状態にあるものをいう。
 すなわち、本発明は、
 不連続繊維と樹脂M1を含む複合材料Aと、連続繊維と樹脂M2を含む複合材料Bとを積層して圧縮成形し、成形体を製造する方法であって、
 複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっており、
 成形体に含まれる前記連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5である。
ともいえる。
 好ましくは、1≦Tmax/Tmin<1.3であり、より好ましくは1≦Tmax/Tmin<1.2であり、更に好ましくは1≦Tmax/Tmin<1.1である。Tmax/Tminは1.0以上であることが好ましい。
 Tmax/Tmin≦1.5であれば、連続繊維が配向方向へ乱れることなく揃っていることを意味し、高い機械物性を有する成形体を得ることができる。
 成形体に含まれる連続繊維は、成形前の複合材料Bに含まれていた連続繊維であり、連続繊維の最大厚みTmaxと、最小厚みTminの測定は、成形後の成形体を観察して行う。成形前の複合材料Bに含まれる連続繊維に対して測定するものではない。
 連続繊維の最大厚みTmaxと、最小厚みTminの測定は後述するが、繊維方向100mm以内の場所を測定することが好ましい。
[複合材料Aと複合材料Bとの層間せん断強度]
 成形体における複合材料Aと複合材料Bとの層間せん断強度が30MPa以上であることが好ましい。「成形体における」とは、成形した後の、複合材料Aと複合材料Bの層間せん断強度を意味する。成形前に複合材料Aと複合材料Bであった箇所を見分けるには、成形体に含まれる繊維を観察すれば良い。不連続繊維が含まれている箇所は複合材料Aであった場所であり、連続繊維が含まれている箇所は複合材料Bであった場所である。層間せん断強度が30MPa以上であれば、複合材料Bの補強効果を高く発現することができる。樹脂M1と樹脂M2が共に熱可塑性樹脂である場合、樹脂M1と樹脂M2の相溶性を高くすることで、層間せん断強度を高くできる。
 樹脂M2が熱硬化性樹脂である場合、樹脂M2が半硬化した熱硬化性樹脂を用いることで、成形の時に、樹脂M2は樹脂M1と架橋して層間せん断強度を高くできる。つまり、樹脂M2が半硬化した熱硬化性樹脂であれば、圧縮成形による連続繊維の乱れを防ぐとともに複合材料Aとの層間せん断強度を高めることができる。
 なお、成形体における複合材料Aと複合材料Bとの層間せん断強度は、平面となって積層されている部分を測定すれば良い。
[繊維束幅の変動率]
 複合材料Bの連続繊維の乱れは、連続繊維束の束幅を計測し、下記式で評価できる。
 (繊維束の最大幅Wmax-繊維束の最小幅Wmin)/繊維束の平均幅Wave
 本発明においては、繊維束幅の変動率は0.25未満とすることが好ましい。繊維束幅の変動率を0.25未満とすることで繊維幅が安定し、成形体に含まれる連続繊維の乱れを抑制できていることを意味する。この場合、高い機械物性を維持できる。
 (繊維束の最大幅Wmax-繊維束の最小幅Wmin)/繊維束の平均幅Waveは、0.20未満が好ましく、0.15未満がより好ましく、0.10未満が更に好ましい。
 以下、本発明について実施例を用いて具体的に説明するが、本発明はこれらに限定されるものではない。
1.材料
1.1 炭素繊維
 帝人社製の炭素繊維“テナックス”(登録商標)STS40-24K(平均繊維径7μm、単繊維数24,000本)。炭素繊維をCFと略する場合がある。
1.2 熱可塑性樹脂
 ・ポリアミド6(ユニチカ株式会社製A1030、PA6と略する場合がある)。
1.3 熱硬化性樹脂組成物
 ・エポキシ樹脂(コニシ株式会社製エポキシ樹脂E206S)。エポキシ樹脂をEpoxyと記載する場合がある。
 ・硬化剤
  三菱ケミカル社製硬化剤ST15(1段階目の硬化剤)
  四国化成工業製硬化剤2E4MZ-CN(2段階目の硬化剤)
2.各種測定
 本実施例における各値は、以下の方法に従って求めた。
(1)複合材料に含まれる繊維体積割合(VfA、VfB)の測定
 複合材料A(又は複合材料B)から100mm×100mmのサンプルを切り出し、サンプルを550℃に加熱した電気炉(ヤマト科学株式会社製FP410)の中で窒素雰囲気下で、1時間加熱してマトリクス樹脂等の有機物を焼き飛ばした。
 焼き飛ばし前後のサンプルの重量を秤量することによって強化繊維と熱可塑性樹脂の重量を算出した。次に、各成分の比重を用いて、強化繊維の体積割合を算出した。
 繊維体積割合(VfA)=100×繊維体積/(繊維体積+複合材料Aの樹脂体積)・・・ 式(c)
 繊維体積割合(VfB)=100×繊維体積/(繊維体積+複合材料Bの樹脂体積)・・・ 式(d)
(2)最大厚みTmaxと、最小厚みTmin
 作成した成形体から、連続繊維の繊維方向の断面を観察できるように、複合材料Bの断面を観察した。繊維方向に100mmの範囲で、均等に10カ所の断面を観察することによって、成形体となった後の、複合材料Bに含まれていた連続繊維の厚みの最小厚みと最大厚みを測定した。
 Tmin: 複合材料Bに含まれていた、成形後の連続繊維の最小厚み
 Tmax: 複合材料Bに含まれていた、成形後の連続繊維の最大厚み
 得られたTminとTmaxから、連続繊維の形状維持力を下記式で評価した。
 Tmax/Tmin: 連続繊維の形状維持力
 Tmax/Tminの値が1に近いほど形状維持力が高く、数字が大きくなるほど形状
維持力が小さいことを表している。
(3)複合材料Aと複合材料Bの層間におけるせん断強度
 複合材料Aと複合材料Bの層間せん断強度の指標として層間せん断強度を用いた。層間せん断試験方法はJIS K7078に基づいて行い下記式(e)により算出した。層間せん断強度は複合材料Aと複合材料Bとが積層されて、平面を形成している箇所を測定した。
 τ = 3P/4bh ・・・式(e)
 τ: 層間せん断強度(MPa)
 P: 破壊荷重(N)
 b: 試験片の幅(mm)
 h: 試験片n厚さ(mm)
(4)複合材料Bの樹脂M2の複素粘度
 複合材料Bに含まれる樹脂M2の複素粘度の測定には、レオメータ(TAインスツルメンツ製、DiscoveryHR30)を使用した。
 樹脂M2が熱硬化性樹脂である場合、加熱による粘度低下と、硬化による粘度上昇とが、どちらも起こりえるため、樹脂M2を周波数2Hzで常温から200℃まで5℃毎分の昇温速度で加熱して複素粘度を測定し、昇温測定の間で最も低かった複素粘度の値を、樹脂M2の複素粘度とした。
(5)繊維束幅の変動率
 複合材料Bに含まれていた、成形後の連続繊維の乱れを評価するため、連続繊維の繊維束幅の変動係数を測定した。
 複合材料Bに含まれていた、成形体となった連続繊維を観察し、連続繊維に沿って100mm長さを対象エリアとした。
 対象エリアでの繊維束の最大幅、最小幅、繊維束の平均幅を用いて下記式(f)により算出した。
(Wmax-Wmin)/Wave ・・・式(f)
 Wmax:繊維束の最大幅
 Wmin:繊維束の最小幅
 Wave:繊維束の平均幅
[実施例1]
1.複合材料Aの準備
 炭素繊維として、繊維長20mmにカットした帝人社製の炭素繊維“テナックス”(登録商標)STS40-24K(平均繊維径7μm、単繊維数24,000本)を使用し、樹脂として、ユニチカ社製のナイロン6樹脂A1030を用いて、米国特許第8946342号に記載された方法に基づき二次元ランダムに炭素繊維が配向した炭素繊維およびナイロン6樹脂の複合材料を作成した。得られた複合材料を270℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、幅250mm×長さ250mm×平均厚み2.5mmの板状の複合材料Aを得た。
 板状の複合材料Aに含まれる炭素繊維の解析を行ったところ、炭素繊維体積割合(Vf)は35%、炭素繊維の繊維長は一定長であり、重量平均繊維長は20mmであった。
2.複合材料Bの準備
2.1 熱硬化性樹脂組成物の準備
 熱硬化性樹脂として、コニシ株式会社製エポキシ樹脂E206Sを準備し、これに対して三菱ケミカル社製硬化剤ST15を14.7phr、四国化成工業製硬化剤2E4MZCNを5.0phrの割合で混合した。硬化剤ST15の配合割合は、硬化剤ST15単独でエポキシ樹脂E206Sを完全硬化するのに必要な量に対して50%となる添加量であった。硬化剤2E4MZ-CNの配合割合は、硬化剤2E4MZ-CN単独でエポキシ樹脂E206Sを完全硬化するのに必要な量に対して50%以上となる添加量であった。なお、phr(per hundred resin)は、樹脂混合物中におけるエポキシ樹脂の重量を100としたときの重量の割合を示す。
 ここで、完全硬化に必要な硬化剤の添加量とは、エポキシ樹脂に対して硬化剤の添加量を様々な配合比で加えたサンプルを作製しDSC(SIIナノテクノロジー社製X-DSC7000)で硬化時の反応熱量を測定した際、硬化剤をある配合比以上で添加すると反応熱量が一定となり、反応熱量が一定となった時の硬化剤の添加量を指す。
2.2 複合材料Bの作製
 炭素繊維として帝人株式会社製の炭素繊維“テナックス”(登録商標)STS40-48K(平均繊維径7μm、繊度3200tex、密度1.77g/cm)を使用し、20mm×0.5mmの断面積を有する引抜ダイを通過させ、引抜ダイ内で熱硬化性樹脂を含浸させた。得られた熱硬化性樹脂を含浸させた炭素繊維を100mm長さにカットし、オーブンで20分間80℃で加熱し、硬化剤ST15のみを反応させることで、樹脂M2が半硬化した熱硬化性樹脂を含む幅20mm×長さ100mm×厚み0.5mm複合材料Bを得た。硬化剤ST15のみを反応させたため、樹脂M2の硬化度は50%であった。
3.成形型および成形条件
 複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であり、連続繊維の束幅方向に向かって曲がっているときの連続繊維の繊維乱れを評価できるよう、半径75mmの半球状の金型を準備した(図1)。
 150℃に加熱した金型に、270℃に加熱した複合材料Aを載置し、半球の頂点に室温(25℃)状態の複合材料Bを積層した後に型締めし、20MPaの圧力で3分間保持した後に成形体を採取した。結果を表1に示す。
 なお、層間せん断強度測定用として、図1で作成した成形体とは別にサンプルを準備した。具体的には、幅250mm×長さ250mm×平均厚み2.5mmの板状の複合材料Aと、幅20mm×長さ100mm×厚み0.5mm複合材料Bとを、積層して平面形状の成形体を作製した。複合材料Aと複合材料Bが積層された平面部分を切り出し、層間せん断強度を測定した。
[実施例2乃至6]
 表1に記載されたように、硬化剤の添加量を変えることで、硬化度を変更した以外は、実施例1と同様にして成形体を製造した。結果を表1に示す。
[実施例7]
 複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA66をマトリックス樹脂とした材料(DSMエンジニアリングマテリアル株式会社製Akulon(登録商標) PA66-HC12)を使用こと以外は、実施例1と同様にして成形体を作製した。結果を表1に示す。
[実施例8]
 複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA6をマトリクス樹脂とした材料(DSMエンジニアリングマテリアル株式会社製Akulon(登録商標) PA6-HC10UD)を用い、複合材料Bの長手方向及び、長手方向と直交した方向に連続繊維が配向するようにした。また、当該材料(DSMエンジニアリングマテリアル株式会社製Akulon(登録商標) PA6-HC10UD)は厚み0.25mmであり、長手方向に二層、長手方向と直交する方向に一層を積層し、複合材料Bとした。これ以外は、実施例1と同様にして成形体を作製した。結果を表1に示す。
[比較例1乃至2]
 表1に記載されたように、硬化度を変更した以外は、実施例1と同様にして成形体を製造した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[参考例1]
 複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA6をマトリクス樹脂とした材料(DSMエンジニアリングマテリアル株式会社製Akulon(登録商標) PA6-HC10UD)を用いたこと以外は、実施例1と同様にして成形体を作製した。結果を表2に示す。
[参考例2]
 複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA-MXD6をマトリックス樹脂とした材料(三菱エンジニアリングプラスチック株式会社製レニーテープ)を用いたこと以外は、実施例1と同様にして成形体を作製した。結果を表2に示す。
[参考例3]
 複合材料Bとして、一軸配向した連続繊維(配向方向が一つのみであり、他の方向には配向していない)と、PA410をマトリックス樹脂とした材料(DSMエンジニアリングマテリアル株式会社製Eco-Paxx(登録商標) PA410-HC12UD)を用いたこと以外は、実施例1と同様にして成形体を作製した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明の成形体及びこれを成形して得られた成形体は、各種構成部材、例えば自動車の構造部材、また各種電気製品、機械のフレームや筐体等、衝撃吸収が望まれるあらゆる部位に用いられる。特に好ましくは、自動車部品として利用できる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2021年3月9日出願の日本特許出願(特願2021-037498)に基づくものであり、その内容はここに参照として取り込まれる。
101:成形型(上型)
102:成形型(下型)
103:配置面X
A:複合材料A
B:複合材料B
201:湾曲した面
301:屈曲した面
θ1:屈曲の角度

 

Claims (12)

  1.  不連続繊維と樹脂M1を含む複合材料Aと、連続繊維と樹脂M2を含む複合材料Bとを積層して圧縮成形し、成形体を製造する方法であって、
     複合材料Bの成形型への配置面Xは、曲面を含んだ三次元形状であって、前記連続繊維の束幅方向に向かって曲がっており、
     成形体に含まれる連続繊維の最大厚みTmaxと、最小厚みTminの関係が、1≦Tmax/Tmin≦1.5である、
    成形体の製造方法。
  2.  前記配置面Xは、連続繊維の束幅方向に向かって、弧を描いた状態、又は折れた状態で曲がっている、請求項1に記載の成形体の製造方法。
  3.  成形体における複合材料Aと複合材料Bとの層間せん断強度が30MPa以上である、請求項1又は2に記載の成形体の製造方法。
  4.  樹脂M2が半硬化した熱硬化性樹脂であって、樹脂M2の複素粘度η2が8000Pa・s以上30000Pa・s以下である、請求項1乃至3のいずれか1項に記載の成形体の製造方法。
  5.  樹脂M2が半硬化した熱硬化性樹脂であって、硬化度が50%以上である、請求項1乃至4のいずれか1項に記載の成形体の製造方法。
  6.  成形の時に、樹脂M2を完全硬化して成形体を製造する、請求項4又は5に記載の成形体の製造方法。
  7.  複合材料Bは潜在性硬化剤を含み、前記潜在性硬化剤は、イオン反応、加熱溶解、モレキュラーシーブ、マイクロカプセル、又はUV硬化の一群から選ばれる少なくとも1つを利用したものである、請求項4乃至6のいずれか1項に記載の成形体の製造方法。
  8.  樹脂M1、及び樹脂M2が熱可塑性樹脂である、請求項1乃至3のいずれか1項に記載の成形体の製造方法。
  9.  樹脂M1と樹脂M2の複素粘度が、下記の関係を満たす請求項8に記載の成形体の製造方法。
     3×η1<η2<30000(Pa・s) かつ η1<500(Pa・s)
    ただし、
     η1(Pa・s):せん断速度2(1/s)のときの、樹脂M1の複素粘度
     η2(Pa・s):せん断速度2(1/s)のときの、樹脂M2の複素粘度
    である。
  10.  成形体における連続繊維が、下記式を満たす、請求項1乃至9のいずれか1項に記載の成形体の製造方法。
     (繊維束の最大幅Wmax-繊維束の最小幅Wmin)/繊維束の平均幅Wave<0.25
  11.  複合材料Bに含まれる連続繊維は、一軸配向した連続繊維であって、複合材料Bの長手方向に配向している、請求項1乃至10のいずれか1項に記載の成形体の製造方法。
  12.  複合材料Bに含まれる連続繊維は、二軸配向した連続繊維であって、複合材料Bの長手方向、及び長手方向と直交した方向に配向している、請求項1乃至10のいずれか1項に記載の成形体の製造方法。
PCT/JP2022/002284 2021-03-09 2022-01-21 成形体の製造方法 WO2022190669A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021037498 2021-03-09
JP2021-037498 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022190669A1 true WO2022190669A1 (ja) 2022-09-15

Family

ID=83226661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002284 WO2022190669A1 (ja) 2021-03-09 2022-01-21 成形体の製造方法

Country Status (1)

Country Link
WO (1) WO2022190669A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044328A (ja) * 1983-08-22 1985-03-09 Tsunehiko Tsuboi 強化プラスチック板の成形法
JPH0858026A (ja) * 1993-12-28 1996-03-05 Kotobuki:Kk プラスチック成形体およびその製造方法
JP2002248694A (ja) * 2001-02-26 2002-09-03 Toray Ind Inc 繊維強化複合材料の成形方法
US20170349288A1 (en) * 2016-06-03 2017-12-07 Airbus Operations Gmbh A method for manufacturing an overhead storage compartment for an aircraft cabin
US20200031063A1 (en) * 2016-09-29 2020-01-30 Thyssenkrupp Steel Europe Ag Method for Producing a Shaped Part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044328A (ja) * 1983-08-22 1985-03-09 Tsunehiko Tsuboi 強化プラスチック板の成形法
JPH0858026A (ja) * 1993-12-28 1996-03-05 Kotobuki:Kk プラスチック成形体およびその製造方法
JP2002248694A (ja) * 2001-02-26 2002-09-03 Toray Ind Inc 繊維強化複合材料の成形方法
US20170349288A1 (en) * 2016-06-03 2017-12-07 Airbus Operations Gmbh A method for manufacturing an overhead storage compartment for an aircraft cabin
US20200031063A1 (en) * 2016-09-29 2020-01-30 Thyssenkrupp Steel Europe Ag Method for Producing a Shaped Part

Similar Documents

Publication Publication Date Title
JP4789940B2 (ja) 等方性の繊維強化熱可塑性樹脂シートとその製造方法並びに成形板
KR101630219B1 (ko) 금속 복합체의 제조 방법 및 전자기기 하우징
JP5706402B2 (ja) 複合積層構造物に熱可塑性樹脂および/または架橋性樹脂を送達する方法
KR101146612B1 (ko) 프리프레그, 프리폼, 성형품 및 프리프레그의 제조방법
US20100218890A1 (en) Methods for preparing nanoparticle-containing thermoplastic composite laminates
JP5294609B2 (ja) ガスバリア性の炭素繊維強化プリプレグ及び炭素繊維強化プラスチック並びにそれらの製造方法
US20130122763A1 (en) Composite materials
WO2008141201A1 (en) Composite materials
WO2019012886A1 (ja) 成形品の製造方法および製造装置
US11746445B2 (en) Carbon fiber bundle, prepreg, and fiber-reinforced composite material
JP2009235182A (ja) プリフォーム用基材とその製造方法
WO2018193908A1 (ja) 繊維強化複合材料成形品およびその製造方法
WO2022190669A1 (ja) 成形体の製造方法
JP5966969B2 (ja) プリプレグの製造方法
TW202134029A (zh) 三明治結構體及其製造方法
CN115023329B (zh) 包含碳纤维和玻璃纤维的冷压成形体及其制造方法
CN111356720A (zh) 具有降低的表面波纹度的纤维增强复合材料
KR101263976B1 (ko) 경제성 및 기계적 물성이 뛰어난 복합시트의 제조방법, 제조장치 및 이로부터 제조된 복합시트
WO2014015801A1 (zh) 复合塑料布、其应用和应用方法
JP6597131B2 (ja) 長繊維強化複合材料の製造方法および長繊維強化複合材料
JP2011246595A (ja) ガラス繊維強化複合材料およびその製造方法
CN115135474B (zh) 片状模塑料和成形品的制造方法
JP2008308626A (ja) シート状の繊維強化複合材料とその製造方法
JP7143473B2 (ja) プリプレグ及びその製造方法、並びに繊維強化複合材料
JP2023142070A (ja) 繊維強化複合材料及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766636

Country of ref document: EP

Kind code of ref document: A1